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Abstract

This paper deals with the numerical solution of the two-dimensional time-dependent Mer-
ton partial integro-differential equation (PIDE) for the values of rainbow options under the
two-asset Merton jump-diffusion model. Key features of this well-known equation are a two-
dimensional nonlocal integral part and a mixed spatial derivative term. For its efficient and
stable numerical solution, we study seven recent and novel operator splitting schemes of the
implicit-explicit (IMEX) and the alternating direction implicit (ADI) kind. Here the integral
part is always conveniently treated in an explicit fashion. The convergence behaviour and the
relative performance of the seven schemes are investigated in ample numerical experiments for
both European put-on-the-min and put-on-the-average options.

1 Introduction

The inherent risk diversification of multi-name or rainbow options, for which the payoff depends
on multiple underlying asset prices, has made them increasingly popular over the recent years.
Margrabe [31] proposed such a rainbow option, which allows to exchange one asset for another,
and derived a valuation formula under the Black–Scholes framework. The term rainbow option was
later introduced by Rubinstein [35], who referred to the number of underlying assets as the number
of colors of the option. The development of fast, accurate and stable methods for obtaining the
fair values of options forms a central topic in the field of computational finance. The fair value
of an option is equal to its expected discounted payoff under a risk-neutral measure. Acquiring a
semi-closed analytical valuation formula, as for example Black & Scholes [5] and Margrabe [31] did,
would be most favorable, but this is often not possible. Accordingly, there is a strong demand for
reliable numerical methods that can efficiently approximate fair option values.

For the numerical approximation of the fair value of an option, three main approaches are consid-
ered in the literature up to now. Firstly, Monte Carlo methods estimate the expected discounted
payoff value by computing sample means. The second way is by numerical integration, which is em-
ployed in for example the Carr–Madan method [9] and the COS method by Fang & Oosterlee [13].
The third main approach is to numerically solve a time-dependent partial differential equation
(PDE) that holds for the option value. This approach was introduced in computational finance
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by Schwartz [38], who considered a finite difference discretization of the celebrated Black–Scholes
PDE. The development, analysis and application of numerical methods for time-dependent PDEs
has since then been widely studied in the literature for valuing many types of options under a broad
range of asset pricing models, see for example [21, 39, 41].

It is well-known in financial markets that sudden, large changes in asset prices can occur. In view
of this common phenomenon, Merton [32] added a jump term to the original stochastic process for
the asset price assumed by Black & Scholes [5], yielding a so-called jump-diffusion model. Under
such an advanced asset price process, the option value satisfies a one-dimensional time-dependent
partial integro-differential equation (PIDE). The integral part, which stems from the jump term,
runs over the whole asset price domain, and hence, is nonlocal.

In the present paper we consider the extension of the prominent Merton jump-diffusion model to two
assets where the jumps in the asset prices occur simultaneously. This yields a two-dimensional time-
dependent PIDE for the values of two-asset options. The efficient and stable numerical solution of
this equation poses two principal challenges: (a) an effective treatment of the two-dimensional PDE
part, which involves a mixed derivative term, and (b) an effective treatment of the two-dimensional
integral part, which is nonlocal.

We follow the well-known and versatile method of lines (MOL) approach [19], whereby the PIDE
is first discretized in the spatial variables and subsequently in the temporal variable. Spatial
discretization of the integral part gives rise to a very large, dense matrix that is computationally
expensive to work with. However, by a change of variables, the double integral can be turned
into a two-dimensional cross-correlation. Spatial discretization of this new integral version leads
to a matrix having a block-Toeplitz structure for which matrix-vector products can be computed
efficiently using the fast Fourier transform (FFT). For one-dimensional PIDEs, the application of
FFT in approximating the integral part has been advocated in [1, 2, 12]. In particular, Almendral
& Oosterlee [1] observed that the matrix corresponding to the jump term is Toeplitz and can
be embedded in a circulant matrix, so that matrix-vector products can be computed exactly by
means of FFT. In [10, 37] the FFT technique has next been applied in the case of two-dimensional
PIDEs with a two-dimensional integral part. Salmi, Toivanen & von Sydow [37] considered a useful
embedding of a block-Toeplitz matrix into a block-circulant one. Here we shall employ a similar
idea, which was introduced in a different context in Barrowes, Teixeira & Kong [3].

After spatial discretization of the two-dimensional Merton PIDE one arrives at a very large, stiff
system of ordinary differential equations (ODEs). The application of common implicit temporal
discretization methods, such as the Crank–Nicolson scheme, requires the solution of very large,
dense linear systems in every time step. The main aim of the present paper is to study a variety of
recent and novel operator splitting schemes that effectively overcome this.

For one-dimensional option valuation PIDEs, Cont & Voltchkova [11] proposed an implicit-explicit
(IMEX) Euler time-stepping scheme, where the PDE part is treated implicitly and the integral part
explicitly. This IMEX Euler scheme is only first-order consistent. Various authors subsequently
considered higher-order IMEX schemes for PIDEs in finance, see for example [8, 14, 30]. Salmi &
Toivanen [36] recommended the IMEX CNAB scheme, where the PDE part is handled in a Crank–
Nicolson manner and the integral part is treated in a two-step Adams–Bashforth fashion. This
second-order two-step IMEX scheme has next been applied to two-dimensional option valuation
PIDEs in for example [23, 37].

An alternative approach was proposed by Tavella & Randall [39] and d’Halluin, Forsyth & Vetzal
[12]. These authors considered the Crank–Nicolson scheme together with a fixed-point iteration
on the integral part for the solution of the linear system in each time step. This approach has
been applied to two-dimensional option valuation PIDEs in Clift & Forsyth [10], including the two-
dimensional Merton PIDE. It is found that in general two to three iterations are sufficient to reach
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a satisfactory error level. When the number of fixed-point iterations is frozen, a particular one-step
IMEX scheme is obtained, see Section 4 below.

For multidimensional option valuation PDEs (without integral part), operator splitting schemes
are widely considered in the literature. Notably, alternating direction implicit (ADI) methods,
which combine implicit unidirectional correction stages with explicit stages involving the mixed
derivative terms, are highly effective, see for example [16, 21, 23, 25, 40]. Hundsdorfer & in ’t Hout
[18] recently studied a novel class of multistep stabilizing correction methods for PDEs with mixed
derivative terms and showed that such methods can be competitive with the well-established one-
step modified Craig–Sneyd (MCS) scheme [25] in the application to the familiar two-dimensional
Heston PDE [17].

In the past years, ADI methods have been extended and applied to two-dimensional PIDEs in
finance. In [28] Strang splitting was employed between the PDE and integral parts and an ADI
scheme was used for the PDE subproblems, see also [27]. The direct extension of ADI methods to
PIDEs has recently been considered in [24, 29]. Here the implicit unidirectional stages are combined
with explicit stages involving both the mixed derivative term and the integral part. In ’t Hout &
Toivanen [24] defined three adaptations of the MCS scheme to two-dimensional PIDEs that are all
second-order consistent. They found that the adaptation where the integral part is treated in a two-
step Adams–Bashforth fashion is preferred in the application to the well-known two-dimensional
Bates PIDE [4], which merges the Heston PDE and the one-dimensional Merton PIDE.

An outline of the rest of this paper is as follows. Section 2 describes the asset price dynamics under
the two-asset Merton jump-diffusion model and introduces the two-dimensional PIDE that holds
for the value of a rainbow option under this model. Section 3 deals with the first step in the MOL
approach, the spatial discretization of the two-dimensional Merton PIDE. Here particular attention
is given to a suitable discretization of the double integral part, which enables application of the
FFT algorithm from [3]. Section 4 concerns the second step in the MOL approach, the temporal
discretization of the semidiscretized PIDE. We formulate seven recent and novel operator splitting
schemes of both the IMEX and the ADI kind, which all treat the integral part in an explicit fashion.
In Section 5 extensive numerical experiments are presented. Here two types of rainbow options are
considered: a European put-on-the-min option and a European put-on-the-average option. For all
seven splitting schemes, the behaviour of the temporal discretization error is investigated in detail.
Moreover, employing the recent semi-closed analytical formula derived in Boen [6], also the total
discretization error is studied in the case of the put-on-the-min option. The final Section 6 gives
conclusions.

2 The two-asset Merton jump-diffusion model

Let pΩ,F , tFτu,Qq be a probability measure space, with Q a risk-neutral measure. Under a two-
asset jump-diffusion model, the asset prices under Q are given by

Sp1q
τ “ S

p1q
0 exp

˜
pr ´ 1

2
σ2
1 ´ λκ1qτ ` σ1W

p1q
τ `

Nτÿ

k“1

Y
p1q
k

¸
,

Sp2q
τ “ S

p2q
0 exp

˜
pr ´ 1

2
σ2
2 ´ λκ2qτ ` σ2W

p2q
τ `

Nτÿ

k“1

Y
p2q
k

¸
,

where

• r is the risk-free interest rate,
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• σi (i “ 1, 2) is the instantaneous volatility of asset i, conditional on the event that no jumps
occur,

• Wτ “ pW p1q
τ ,W

p2q
τ qJ consists of two correlated standard Brownian motions, with correlation

coefficient ρ,

• λ is the jump intensity of the Poisson arrival process N “ tNτ , τ ě 0u,

• Y
piq
k pk “ 1, 2, 3, . . .q are independent jump sizes that have an identical distribution to the

random jump size Y piq and, for any given k, the jumps Y
piq
k pi “ 1, 2q occur simultaneously,

driven by the same Poisson arrival process N , and are correlated with correlation coefficient pρ,
• κi is the expected relative jump size

κi “ EQreY piq ´ 1s pi “ 1, 2q.

The Wτ , Nτ and Y “ pY p1q, Y p2qqJ are assumed to be independent of each other whenever τ ě 0.

In the two-dimensional version of the Merton model [32], the random vector Y is bivariate normally
distributed with mean pγ1, γ2qJ and covariance matrix

ΣY “
˜

δ21 pρδ1δ2
pρδ1δ2 δ22

¸
,

where δ2i is the variance of Y piq pi “ 1, 2q. The moment generating function of Y is then given by

MQ,Y puq “ EQ

”
eu

JY
ı

“ exp
`
γ1u1 ` γ2u2 ` 1

2

`
δ21u

2
1 ` 2pρδ1δ2u1u2 ` δ22u

2
2

˘˘
, u “

˜
u1

u2

¸
,

and the expected relative jump size is

κi “ eγi` 1

2
δ2i ´ 1 pi “ 1, 2q.

Under the two-asset Merton jump-diffusion model, the value v “ vps1, s2, tq of a European-style1

option with maturity date T ą 0 and si (i “ 1, 2) representing the price of asset i at time τ “ T ´ t,
satisfies the following PIDE [10]:

Bv
Bt “ 1

2
σ2
1s

2
1

B2v

Bs21
` ρσ1σ2s1s2

B2v

Bs1Bs2
` 1

2
σ2
2s

2
2

B2v

Bs22
` pr ´ λκ1qs1

Bv
Bs1

` pr ´ λκ2qs2
Bv
Bs2

´ pr ` λqv ` λ

ż 8

0

ż 8

0

vps1y1, s2y2, tqfpy1, y2qdy1dy2 (2.1)

whenever s1 ą 0, s2 ą 0, 0 ă t ď T . Here

fpy1, y2q “ 1

2πδ1δ2
a
1 ´ pρ2 y1y2

exp

¨
˚̋´

´
lnpy1q´γ1

δ1

¯2

`
´

lnpy2q´γ2

δ2

¯2

´ 2pρ
´

lnpy1q´γ1

δ1

¯ ´
lnpy2q´γ2

δ2

¯

2p1 ´ pρ2q

˛
‹‚

is the probability density function of a bivariate lognormal distribution. The initial condition for
(2.1) is given by

vps1, s2, 0q “ φps1, s2q,
where φ denotes the payoff function of the option, that is, the option value at expiry. Further, as
the boundary condition, it holds that the PIDE (2.1) is itself fulfilled on the two sides s1 “ 0 and
s2 “ 0, respectively.

1A European-style option can only be exercised at the maturity date T .
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3 Spatial discretization

For the numerical solution of the initial-boundary value problem for (2.1) we consider the well-
known and versatile method of lines (MOL) approach, which consists of two consecutive steps [19]:
first the PIDE (2.1) is discretized in space and subsequently in time. This section discusses the
spatial discretization. In the next section we turn to the temporal discretization.

3.1 Convection-diffusion-reaction part

To render the numerical solution of (2.1) feasible, the spatial domain is truncated to a bounded set
r0, Smaxs ˆ r0, Smaxs with fixed value Smax taken sufficiently large. On the two far sides s1 “ Smax

and s2 “ Smax a linear boundary condition is imposed, which is common in finance,

B2v

Bs21
“ 0 pif s1 “ Smaxq and

B2v

Bs22
“ 0 pif s2 “ Smaxq. (3.1)

In this subsection we describe the finite difference discretization of the convection-diffusion-reaction
part of (2.1), given by

Dv “ 1
2
σ2
1s

2
1

B2v

Bs21
` ρσ1σ2s1s2

B2v

Bs1Bs2
` 1

2
σ2
2s

2
2

B2v

Bs22
` pr ´ λκ1qs1

Bv
Bs1

` pr ´ λκ2qs2
Bv
Bs2

´ pr ` λqv.

The option value function v will be approximated at a nonuniform, Cartesian set of spatial grid
points,

ps1,i, s2,jq P r0, Smaxs ˆ r0, Smaxs p0 ď i ď m1, 0 ď j ď m2q, (3.2)

with s1,0 “ s2,0 “ 0 and s1,m1
“ s2,m2

“ Smax. The nonuniform grid in each spatial direction is
chosen such that relatively many grid points lie in a region of financial and/or numerical interest.
It is generated by applying a smooth transformation to an artificial uniform grid. In Section 5 more
details shall be given of the specific type of spatial grids that is used.

Let 0 “ s0 ă s1 ă ¨ ¨ ¨ ă sm “ Smax be any given smooth, nonuniform, unidirectional spatial grid
with mesh widths hi “ si´si´1 (1 ď i ď m) and let u : r0, Smaxs Ñ R be any given smooth function.
The following second-order central finite difference formulas are employed for the approximation of
the first and second derivatives of u:

u1psiq « ωi,´1upsi´1q ` ωi,0upsiq ` ωi,1upsi`1q,

with

ωi,´1 “ ´hi`1

hiphi ` hi`1q , ωi,0 “ hi`1 ´ hi

hihi`1

, ωi,1 “ hi

hi`1phi ` hi`1q
and

u2psiq « ωi,´1upsi´1q ` ωi,0upsiq ` ωi,1upsi`1q,

with

ωi,´1 “ 2

hiphi ` hi`1q , ωi,0 “ ´2

hihi`1

, ωi,1 “ 2

hi`1phi ` hi`1q .

for 1 ď i ď m´1. If i “ 0, no finite difference formulas are required in view of the degeneracy of (2.1)
at the zero boundaries. If i “ m, the first derivative is approximated by the first-order backward
finite difference formula and the second derivative vanishes by the linear boundary condition (3.1).
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Concerning the mixed derivative term in (2.1), this is discretized by successively applying the
relevant finite difference formulas for the first derivative in the two spatial directions.

Let the vector V ptq “ pV0,0ptq, V1,0ptq, . . . , Vm1´1,m2
ptq, Vm1,m2

ptqqJ where entry Vi,jptq denotes the
semidiscrete approximation to vps1,i, s2,j , tq whenever 0 ď i ď m1, 0 ď j ď m2. The semidiscrete
version of the convection-diffusion-reaction part Dv can then be written as

ApDqV ptq

with matrix
ApDq “ ApMq `A1 `A2,

where

ApMq “ ρσ1σ2

´
X2D

p1q
2

¯
b

´
X1D

p1q
1

¯
,

A1 “ I2 b
´

1
2
σ2
1X

2
1D

p2q
1 ` pr ´ λκ1qX1D

p1q
1 ´ 1

2
pr ` λqI1

¯
,

A2 “
´

1
2
σ2
2X

2
2D

p2q
2 ` pr ´ λκ2qX2D

p1q
2 ´ 1

2
pr ` λqI2

¯
b I1.

Here Ik, Xk, D
plq
k are given pmk ` 1q ˆ pmk ` 1q matrices for k, l P t1, 2u, where Ik is the identity

matrix, Xk is the diagonal matrix

Xk “ diagpsk,0, sk,1, . . . , sk,mk
q

andD
plq
k is the matrix representing numerical differentiation of order l in the k-th spatial direction by

the relevant finite difference formula above. The matrix ApMq corresponds to the mixed derivative
term in (2.1) and Ak corresponds to all derivative terms in the k-th spatial direction (k “ 1, 2).
Further, the reaction term has been distributed equally across A1 and A2.

3.2 Integral part

In order to discretize the integral part in the PIDE (2.1), we apply a well-known transformation to
the log-price variable. Let xi “ lnpsiq be the log-price of the i-th asset and ηi “ lnpyiq (i “ 1, 2),
then

J ps1, s2q :“ λ

ż 8

0

ż 8

0

vps1y1, s2y2, tqfpy1, y2qdy1dy2

“ λ

ż 8

´8

ż 8

´8

vpx1 ` η1, x2 ` η2, tqfpη1, η2qdη1dη2

“ λ

ż 8

´8

ż 8

´8

vpξ1, ξ2, tqfpξ1 ´ x1, ξ2 ´ x2qdξ1dξ2,

where vpξ1, ξ2, tq “ vpeξ1 , eξ2 , tq and fpη1, η2q “ fpeη1 , eη2qeη1eη2 is the probability density function
of a bivariate normal distribution. Since f is a real-valued function, it is clear that the double
integral in the log-price variable can be viewed as a two-dimensional cross-correlation (see e.g. [7]):

J px1, x2q :“ λ

ż 8

´8

ż 8

´8

vpξ1, ξ2, tqfpξ1 ´ x1, ξ2 ´ x2qdξ1dξ2 “ λpv ‹ ‹fqpx1, x2q,

where ‹‹ denotes the two-dimensional cross-correlation operator and J px1, x2q “ J pex1 , ex2q.
For the semidiscretization, we restrict the log-price domain to r´Xmax, Xmaxs ˆ r´Xmax, Xmaxs
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with Xmax “ lnpSmaxq and consider a M1 ˆ M2 uniform grid px1,k, x2,lq “ pk∆x1, l∆x2q for

k “ ´ |M1 ` 1, . . . , |M1, l “ ´ |M2 ` 1, . . . , |M2, where |Mi “ Mi{2, |Mi∆xi “ Xmax and Mi is chosen
to be a power of 2 such that the mesh width ∆xi is smaller than the smallest mesh width in the
nonuniform lnpsiq-grid (i “ 1, 2). The double integral J px1,k, x2,lq is approximated by

Jk,l “ λ

|M2ÿ

j“´ |M2`1

|M1ÿ

i“´ |M1`1

V i,jF i´k,j´l ,

with approximation V i,j « vpx1,i, x2,j , tq defined below and F i´k,j´l “ f i´k,j´l∆x1∆x2 where

f i´k,j´l “ fpx1,i ´ x1,k, x2,j ´ x2,lq.

Let EpM,dq denote the M ˆM matrix with ones on the d-th off-diagonal and zeros elsewhere. The
matrix

A
pJq “ λF

with

F “
M2´1ÿ

d“´M2`1

EpM2, dq b F
1

d

and

F
1

d “
M1´1ÿ

c“´M1`1

EpM1, cqF c,d

is then an asymmetrical two-level block-Toeplitz matrix of size pM1M2q ˆ pM1M2q. Its structure is
illustrated in Appendix A. Let the vectors

J “ pJ
´ |M1`1,´ |M2`1

, J
´ |M1`2,´ |M2`1

, . . . , J |M1´1, |M2
, J |M1, |M2

qJ,

V “ pV
´ |M1`1,´ |M2`1

, V
´ |M1`2,´ |M2`1

, . . . , V |M1´1, |M2
, V |M1, |M2

qJ,

then
J “ A

pJq
V .

This matrix-vector product can be computed very efficiently using the FFT algorithm for matrix-
vector multiplications with asymmetric multilevel block-Toeplitz matrices, introduced in Barrowes,
Teixeira & Kong [3]. This fast algorithm computes the matrix-vector product using two FFTs and
one inverse FFT (IFFT), reducing the computational cost to OpM1M2 logpM1M2qq. The algorithm
from [3] essentially embeds the block-Toeplitz matrix in a circulant matrix before applying the
FFT, conveniently avoiding any wrap-around effect, which would have been present when applying
the FFT directly to the block-Toeplitz matrix. Further, we mention that the algorithm from [3] is
more efficient than that employed in [37], as the former uses only one-dimensional FFTs, whereas
the latter requires two-dimensional FFTs.

Note that the spatial grid on which we discretize the PIDE (2.1) is nonuniform, and in general
does not lead to a uniform log-price grid. We therefore (bi)linearly interpolate the option value
approximations between the two grids directly before and after application of the algorithm of [3].
Linearly interpolating V to V (using Lagrange basis functions on the s-grid, as in e.g. [12]), yields

V i,j “ φΠpiqψΩpjqVΠpiq,Ωpjq ` p1 ´ φΠpiqqψΩpjqVΠpiq`1,Ωpjq

` φΠpiqp1 ´ ψΩpjqqVΠpiq,Ωpjq`1 ` p1 ´ φΠpiqqp1 ´ ψΩpjqqVΠpiq`1,Ωpjq`1 , (3.3)
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whenever s1,Πpiq ď ex1,i ď s1,Πpiq`1 and s2,Ωpjq ď ex2,j ď s1,Ωpjq`1, where φΠpiq, ψΩpjq P r0, 1s are
interpolation weights . This can be written as

V “ XV,

where the matrix X contains the interpolation weights such that (3.3) holds. Similarly, linearly
interpolating J back to the original s-grid, leads to approximations Jk,l of J ps1,k, s2,lq given by

Jk,l “φΛpkqψΥplqJΛpkq,Υplq ` p1 ´ φΛpkqqψΥplqJΛpkq`1,Υplq

` φΛpkqp1 ´ ψΥplqqJΛpkq,Υplq`1 ` p1 ´ φΛpkqqp1 ´ ψΥplqqJΛpkq`1,Υplq`1, (3.4)

whenever ex1,Λpkq ď s1,k ď ex1,Λpkq`1 and ex2,Υplq ď s2,l ď ex2,Υplq`1 , where φΛpkq, ψΥplq P r0, 1s are
interpolation weights. This can be written as

J “ X J,

where the matrix X contains the interpolation weights such that (3.4) holds. Consequently, we
have

J “ X J “ X A
pJq
V “ X A

pJq
XV.

The entire procedure is summarized in Algorithm 1.

Algorithm 1 Computing the approximation to the integral part in (2.1)

1. Linearly interpolate V ptq “ pV0,0ptq, V1,0ptq, . . . , Vm1´1,m2
ptq, Vm1,m2

ptqqJ onto the uniform
log-price grid, leading to the vector V .
2. Extend the log-price grid px1,k, x2,lq for k “ ´ |M1 ` 1, . . . , |M1, l “ ´ |M2 ` 1, . . . , |M2 on both
sides, keeping it uniform:

x1,´M1`1, . . . , x1,´ |M1
, . . . , x1,0, . . . , x1, |M1

, . . . , x1,M1´1,

x2,´M2`1, . . . , x2,´ |M2
, . . . , x2,0, . . . , x2, |M2

, . . . , x2,M2´1,

and compute F i´k,j´l for i, k “ ´ |M1 ` 1, . . . , |M1, j, l “ ´ |M2 ` 1, . . . , |M2.

3. Compute the matrix-vector product A
pJq
V using the fast algorithm of [3], resulting in the

vector J .
4. Linearly interpolate J back to the original nonuniform grid ps1,i, s2,jq for i “ 1, . . .m1,
j “ 1, . . .m2, leading to the vector J .

Note that in the interpolation step from the uniform log-price grid to the nonuniform price grid,
we obtain values Ji,j for i “ 1, . . . ,m1, j “ 1, . . . ,m2. On the boundaries s1 “ 0 and s2 “ 0, the
two-dimensional Merton PIDE (2.1) reduces to the one-dimensional Merton PIDE and the jump
part can be computed using a similar FFT technique (see f.i. [12]).

Denoting the approximation of J on the full grid (3.2) by ApJqV ptq, we arrive at the following
semidiscrete system of ODEs:

V 1ptq “ AV ptq, (3.5)

for 0 ă t ď T , where A “ ApDq `ApJq “ ApMq `A1 `A2 `ApJq.

The maximum norm of the matrix ApJq can be bounded independently of the spatial grid by a
moderate constant whenever λ is moderate. Accordingly, the dense matrix ApJq constitutes a
nonstiff part of the semidiscrete system, whereas the sparse matrix ApDq constitutes a stiff part.
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4 Temporal discretization

For the temporal discretization of the semidiscrete system (3.5) we shall investigate seven operator
splitting schemes. Each of these schemes conveniently treats the nonstiff integral part, given by the
matrix ApJq, in an explicit fashion.

Let integer N ě 1 be given and step size ∆t “ T {N . Each of the following schemes defines an
approximation V n to V ptnq at the temporal grid point tn “ n∆t successively for n “ 1, 2, . . . , N .
The initial vector V p0q “ V 0 is determined by the payoff function and will be specified in Section 5.

1. Crank–Nicolson Forward Euler (CNFE) scheme:

In this basic method the convection-diffusion-reaction part, including the mixed derivative, is
handled implicitly using the Crank–Nicolson scheme and the integral part is treated explicitly
in a forward Euler manner:

´
I ´ 1

2
∆tApDq

¯
V n “

´
I ` 1

2
∆tApDq

¯
V n´1 ` ∆tApJqV n´1. (4.1)

Method (4.1) is a one-step IMEX scheme. Due to the application of forward Euler, its order2

is just equal to one.

2. Crank–Nicolson scheme with fixed-point iteration (CNFI):

In Tavella & Randall [39] and d’Halluin, Forsyth & Vetzal [12] the Crank–Nicolson scheme
has been proposed with a fixed-point iteration on the integral part:

´
I ´ 1

2
∆tApDq

¯
Yk “

´
I ` 1

2
∆tApDq

¯
V n´1 ` 1

2
∆tApJqpYk´1 ` V n´1q (4.2)

for k “ 1, 2, . . . , l and V n “ Yl using the starting value Y0 “ V n´1. Clearly, with just one
iteration, method (4.1) is obtained. Method (4.2) can be applied with a dynamic convergence
criterion. Numerical experiments in [10, 12] reveal that this generally leads to l “ 2 or l “ 3
iterations. For comparable computational work to the other schemes, formulated below, we
choose here a fixed number of l “ 2 iterations. Then method (4.2) can be regarded as a
one-step IMEX scheme, where the integral part is treated by the explicit trapezoidal rule,
also called the modified Euler method. It can be verified, by Taylor expansion, that its order
is equal to two.

3. Implicit-Explicit Trapezoidal Rule (IETR):

A different combination of the implicit trapezoidal rule (Crank–Nicolson) for the convection-
diffusion-reaction part and its explicit variant for the integral part is considered by in ’t Hout
[21]:

$
’’’&
’’’%

Y0 “ V n´1 ` ∆t pApDq `ApJqqV n´1,

pY0 “ Y0 ` 1
2
∆tApJq

`
Y0 ´ V n´1

˘
,

Y1 “ pY0 ` 1
2
∆tApDq

`
Y1 ´ V n´1

˘
,

V n “ Y1.

(4.3)

Here the first two internal stages Y0, pY0 are explicit, whereas the third internal stage Y1 is
implicit. Method (4.3) is also a one-step IMEX scheme with order equal to two. This method
is already well-known in the literature on the numerical solution of PDEs, without integral
part, see e.g. Hundsdorfer & Verwer [19].

2This refers to the classical order of consistency, that is, for fixed nonstiff ODEs.
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4. Crank–Nicolson Adams–Bashforth (CNAB) scheme:

In the CNAB method, the convection-diffusion-reaction part is again treated by the Crank–
Nicolson scheme, but the integral part is now handled in a two-step Adams–Bashforth fashion:

´
I ´ 1

2
∆tApDq

¯
V n “

´
I ` 1

2
∆tApDq

¯
V n´1 ` 1

2
∆tApJqp3V n´1 ´ V n´2q. (4.4)

Method (4.4) forms a two-step IMEX scheme and is of order equal to two. This method has
first been studied for the application to PIDEs in Salmi & Toivanen [36] and Salmi, Toivanen
& von Sydow [37]. Previously, it has been investigated for the numerical solution of PDEs in
e.g. [15, 19, 20].

It is well-known that the nonsmoothness of the initial (payoff) function can have an adverse effect on
the convergence behaviour of the Crank–Nicolson scheme, which can be resolved by first applying,
at initial time t “ 0, two time steps with step size ∆t{2 using the implicit Euler method to define
the approximation V 1 to V pt1q, see e.g. [21, 33, 34]. In the present application to PIDEs, the
implicit Euler method can be computationally demanding. We therefore apply, for all four schemes
above, the IMEX Euler scheme as the starting method:

´
I ´ 1

2
∆tApDq

¯
V

1
2 “ V 0 ` 1

2
∆tApJqV 0,

´
I ´ 1

2
∆tApDq

¯
V 1 “ V

1
2 ` 1

2
∆tApJqV

1
2 .

In the following, three recent operator splitting schemes for PIDEs are formulated that employ a
subsequent, useful splitting of the two-dimensional convection-diffusion-reaction part, given by the
matrix ApDq.

5. One-step adaptation of the modified Craig–Sneyd (MCS) scheme:

This method is a direct adaptation of a well-established one-step ADI scheme:

$
’’’’’’’’&
’’’’’’’’%

Y0 “ V n´1 ` ∆t pApDq `ApJqqV n´1,

Yj “ Yj´1 ` θ∆tAjpYj ´ V n´1q pj “ 1, 2q,
pY0 “ Y0 ` θ∆t pApMq `ApJqqpY2 ´ V n´1q,
rY0 “ pY0 ` p1

2
´ θq∆t pApDq `ApJqqpY2 ´ V n´1q,

rYj “ rYj´1 ` θ∆tAjprYj ´ V n´1q pj “ 1, 2q,
V n “ rY2,

(4.5)

where θ ą 0 is a given parameter. The MCS scheme was introduced by in ’t Hout & Welfert
[25] for the numerical solution of PDEs with mixed derivative terms. The above, direct
adaptation to PIDEs has recently been studied in in ’t Hout & Toivanen [24]. Method (4.5)
is of order two for any value θ. Here we make the common choice θ “ 1

3
, which is moti-

vated by stability and accuracy results in the literature for two-dimensional problems, see
e.g. [22, 24, 25, 26]. It is readily seen that in (4.5) the integral part and mixed derivative term

are both treated by the explicit trapezoidal rule. Notice that the explicit stages pY0, rY0 can be
combined, so that the integral part is evaluated twice per time step. The implicit stages Yj ,
rYj (for j “ 1, 2) are often called stabilizing corrections and are unidirectional. The pertinent
linear systems for these stages are tridiagonal, so that they can be solved very efficiently using
an a priori LU factorization.
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6. Two-step adaptation of the MCS (MCS2) scheme:

In [24] an alternative adaptation of the MCS scheme to PIDEs has been proposed, where the
integral part is dealt with in a two-step Adams–Bashforth fashion:

$
’’’’’’’’’’&
’’’’’’’’’’%

X0 “ V n´1 ` ∆tApDqV n´1,

Y0 “ X0 ` 1
2
∆tApJqp3V n´1 ´ V n´2q,

Yj “ Yj´1 ` θ∆tAjpYj ´ V n´1q pj “ 1, 2q,
pY0 “ Y0 ` θ∆tApMqpY2 ´ V n´1q,
rY0 “ pY0 ` p1

2
´ θq∆tApDqpY2 ´ V n´1q,

rYj “ rYj´1 ` θ∆tAjprYj ´ V n´1q pj “ 1, 2q,
V n “ rY2.

(4.6)

Method (4.6) is also of order two for any value θ. We take again θ “ 1
3
and, for starting (4.6),

define V 1 by the one-step method (4.5).

7. Stabilizing correction two-step Adams-type (SC2A) scheme:

In Hundsdorfer & in ’t Hout [18] a novel class of stabilizing correction multistep methods has
recently been investigated for the numerical solution of PDEs. We select here a prominent
member of this class, the two-step Adams-type scheme called SC2A, and consider its direct
adaptation to PIDEs:

$
’&
’%

Y0 “ V n´1 ` ∆t pApMq `ApJqq
ř2

i“1
pbiV n´i ` ∆t pA1 `A2q

ř2
i“1

qbiV n´i,

Yj “ Yj´1 ` θ∆tAjpYj ´ V n´1q pj “ 1, 2q,
V n “ Y2,

(4.7)

with coefficients ppb1,pb2q “
`
3
2
,´ 1

2

˘
and pqb1,qb2q “

`
3
2

´ θ,´ 1
2

` θ
˘
. The integral part and

mixed derivative term are now both handled by the two-step Adams–Bashforth scheme.
Method (4.7) is also of order two for any value θ. Following [18] we take θ “ 3

4
, which

is motivated by stability and accuracy results. For starting (4.7), the one-step method (4.5)
is used with θ “ 1

3
to define V 1.

In each of the seven time-stepping schemes described above, any matrix-vector product with the
matrix ApJq means applying Algorithm 1, hence requiring two FFTs and one IFFT. In the schemes
(4.1), (4.4), (4.6), (4.7) only one such matrix-vector product arises per time step, whereas two such
products appear in the schemes (4.2), (4.3), (4.5).

5 Numerical study

In this section we examine through extensive numerical experiments the convergence behaviour
of the seven operator splitting schemes formulated in Section 4 in the numerical solution of the
semidiscrete two-dimensional Merton PIDE. For the numerical study we consider the three param-
eter sets for the two-asset Merton jump-diffusion model and European-style option given in Table 1.
Set 1 is taken from Clift & Forsyth [10]. Set 2 has the same diffusion parameters as in Zvan, Forsyth
& Vetzal [42], and is complemented with jump parameters where the intensity λ is taken larger
than in Set 1. Set 3 is fully new and yields more intensive jumps. Here λT is rather large, which
poses a particular numerical challenge. Notice that for all three sets the correlation coefficients ρ
and pρ are both nonzero.
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σ1 σ2 ρ λ γ1 γ2 pρ δ1 δ2 r K T

Set 1 0.12 0.15 0.30 0.60 -0.10 0.10 -0.20 0.17 0.13 0.05 100 1

Set 2 0.30 0.30 0.50 2 -0.50 0.30 -0.60 0.40 0.10 0.05 40 0.5

Set 3 0.20 0.30 0.70 8 -0.05 -0.20 0.50 0.45 0.06 0.05 40 1

Table 1: Parameter sets for the two-asset Merton jump-diffusion model and European option.

Two types of rainbow options are considered: a European put-on-the-min option and a European
put-on-the-average option. Their payoff functions are, respectively,

φput-on-minps1, s2q “ maxp0,K ´ minps1, s2qq

and

φput-on-averageps1, s2q “ max

ˆ
0,K ´ s1 ` s2

2

˙
.

Clearly, the two payoff functions φ are continuous, but not everywhere continuously differentiable.
For each option a specific nonuniform spatial grid tps1,i, s2,jq : 0 ď i ď m1, 0 ď j ď m2u is chosen,
where the nonsmoothness of φ is taken into account. The number of grid points is taken to be the
same in both directions, m1 “ m2 “ m. For the put-on-the-min option, relatively many points
s1,i and s2,j are placed around the locations s1 “ K and s2 “ K, respectively. For the put-on-
the-average option, the payoff is nonsmooth on the line segment given by s1 ` s2 “ 2K. Here the
grid in each direction is taken to be uniform on the interval r0, 2Ks and nonuniform outside, with
relatively many points inside this interval. For both options, the nonuniform grids are generated
by applying a smooth transformation to an artificial uniform grid, see e.g. [21]. For Sets 1, 2, 3
we heuristically choose Smax “ 5K, 30K, 50K, respectively, in the case of the put-on-the-min and
Smax “ 5K, 15K, 25K, respectively, in the case of the put-on-the-average option. As an illustration,
Figure 1 displays the two spatial grids if m “ 50, K “ 100, Smax “ 5K. In Figure 2 the graphs of
the two payoff functions are shown.

The initial vector V p0q “ V 0 is defined by pointwise evaluation of the payoff function φ at the
spatial grid points, except at those points that lie closest to the set of nonsmoothness of φ, where
cell averaging is applied. For k “ 1, 2 let

sk,l`1{2 “ 1
2

psk,l ` sk,l`1q if 0 ď l ă m,

hk,l`1{2 “ sk,l`1{2 ´ sk,l´1{2 if 0 ď l ď m,

with sk,´1{2 “ 0 and sk,m`1{2 “ Smax. Then we define [21]

Vi,jp0q “ 1

h1,i`1{2h2,j`1{2

ż s1,i`1{2

s1,i´1{2

ż s2,j`1{2

s2,j´1{2

φps1, s2qds2ds1

whenever the cell
rs1,i´1{2, s1,i`1{2q ˆ rs2,j´1{2, s2,j`1{2q

has a nonempty intersection with the set of points where φ is nonsmooth. For both payoffs under
consideration, the above integral is readily calculated.

In the following we investigate, for all seven operator splitting methods formulated in Section 4
for the semidiscrete system (3.5), the temporal discretization error at t “ T on a natural region of
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financial interest (ROI),

pEROIpm,Nq “ max
!

|V N 1

i,j ´ Vi,jpT q| : ∆t “ T {N 1 and 1
2
K ă s1,i, s2,j ă 3

2
K

)
. (5.1)

Clearly, the temporal discretization error is measured in the maximum norm, which is the most
relevant norm in finance. Numerical experiments reveal that the evaluation of the two-dimensional
integral part is computationally the dominant part in each time step, compare also [37]. In view
of this, for a fair comparison of the different time-stepping methods, we consider the three schemes
(4.2), (4.3), (4.5) with N 1 “ N time steps and the four schemes (4.1), (4.4), (4.6), (4.7) with
N 1 “ 2N time steps, as the latter four schemes require only one evaluation of the integral part per
time step, whereas the former three schemes employ two such evaluations. A reference value for
V pT q has been computed by applying the MCS2 scheme with 3000 time steps.

Figure 3 displays the temporal errors pEROIpm,Nq form “ 150 and a range of values 10 ď N ď 1000
for the put-on-the-min option (left column) and put-on-the-average option (right column) and the
three parameter sets given in Table 1. For all seven splitting methods, the positive result holds that
the temporal errors always lie below a moderate value and show a regular, monotonically decreasing
behaviour as N increases. The CNFE scheme (4.1) shows an order of convergence just equal to
one, as expected. Each of the other six splitting schemes (4.2)–(4.7) attains a favourable order of
convergence equal to two. Comparing the different second-order methods, the MCS2 scheme yields
the smallest temporal error constant in all experiments. It is further interesting to notice that for
Set 3, with more intensive jumps, each of the two-step schemes CNAB, MCS2, SC2A outperforms
all of the one-step schemes under consideration. The range of the temporal error constants for the
different second-order methods is also the largest for this set. We performed additional numerical
experiments, choosing a coarser (m “ 75) as well as a finer (m “ 250) spatial grid. The obtained
results were almost identical to those displayed in Figure 3, indicating that the observed temporal
convergence orders are valid in a favourable, stiff sense. Recall that the CNFI scheme has been
applied with a fixed number of l “ 2 iterations. We also carried out experiments for this scheme
with l “ 3 iterations, taking now N 1 “ r2N{3s time steps for a fair comparison. This did not lead
to a significant improvement in accuracy, however, and did not alter the above conclusions.

A semi-closed analytical formula has recently been derived in Boen [6] for the value of a European
put-on-the-min option under the two-asset Merton model. This formula is stated in Appendix B.
Hence, in this case, we can also study the total discretization error at t “ T on the region of interest,

EROIpm,Nq “ max
!

|V N 1

i,j ´ vps1,i, s2,j , T q| : ∆t “ T {N 1 and 1
2
K ă s1,i, s2,j ă 3

2
K

)
. (5.2)

Figure 4 displays the total errors EROIpm,Nq for a range of values 10 ď m ď 500 and the three
parameter sets given in Table 1, where we have chosen N “ rm{3s and N 1 as above. Clearly,
with all splitting methods except CNFE, a second-order convergence behaviour is found, which
is as desired. The total errors obtained with these six time-stepping methods are visually almost
identical, indicating that the spatial discretization error dominates in these experiments.

6 Conclusion

In this paper we have studied seven different operator splitting schemes when applied to the two-
dimensional Merton PIDE with a focus on IMEX and ADI methods. Each of the considered
schemes conveniently treats the nonstiff, nonlocal integral part in an explicit fashion. Any matrix-
vector product arising from the semidiscretization of the integral part is computed efficiently by
means of FFT using Algorithm 1. Through ample numerical experiments, we have investigated the
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convergence behaviour of the seven schemes and examined their relative performance. Except for
the first-order CNFE scheme, all of the considered splitting schemes showed a stiff order of temporal
convergence equal to two, which is as desired. The two-step MCS2 scheme with θ “ 1

3
stood out

as yielding the smallest temporal error constant in all the conducted experiments. Together with
the positive results recently derived in [24], we therefore recommend this splitting scheme for the
efficient and stable temporal discretization of two-dimensional PIDEs in financial option valuation.
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Figure 1: Spatial grid for the European put-on-the-min (left) and the European put-on-the-average
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Figure 3: Temporal errors pEROIp150, Nq of the seven operator splitting schemes in the case of
the European put-on-the-min (left) and the put-on-the-average (right) option under the two-asset
Merton model with parameter Set 1 (top), Set 2 (mid) and Set 3 (bottom) from Table 1. The CNFI,
IETR, MCS schemes are applied with ∆t “ T {N and the CNFE, CNAB, MCS2, SC2A schemes
with ∆t “ T {p2Nq.
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Figure 4: Total errors EROIpm,Nq in the case of the European put-on-the-min option under the
two-asset Merton model with parameter Set 1 (top), Set 2 (mid) and Set 3 (bottom) from Table 1.
The CNFI, IETR, MCS schemes are applied with ∆t “ T {N and the CNFE, CNAB, MCS2, SC2A
schemes with ∆t “ T {p2Nq and N “ rm{3s.
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A The block-Toeplitz structure of A
pJq

As an illustration, if M1 “ M2 “ 4, then F in the matrix A
pJq “ λF is of the following form:

F 0,0 F 1,0 F 2,0 F 3,0 F 0,1 F 1,1 F 2,1 F 3,1 F 0,2 F 1,2 F 2,2 F 3,2 F 0,3 F 1,3 F 2,3 F 3,3

F -1,0 F 0,0 F 1,0 F 2,0 F -1,1 F 0,1 F 1,1 F 2,1 F -1,2 F 0,2 F 1,2 F 2,2 F -1,3 F 0,3 F 1,3 F 2,3

F -2,0 F -1,0 F 0,0 F 1,0 F -2,1 F -1,1 F 0,1 F 1,1 F -2,2 F -1,2 F 0,2 F 1,2 F -2,3 F -1,3 F 0,3 F 1,3

F -3,0 F -2,0 F -1,0 F 0,0 F -3,1 F -2,1 F -1,1 F 0,1 F -3,2 F -2,2 F -1,2 F 0,2 F -3,3 F -2,3 F -1,3 F 0,3

F 0,-1 F 1,-1 F 2,-1 F 3,-1 F 0,0 F 1,0 F 2,0 F 3,0 F 0,1 F 1,1 F 2,1 F 3,1 F 0,2 F 1,2 F 2,2 F 3,2

F -1,-1 F 0,-1 F 1,-1 F 2,-1 F -1,0 F 0,0 F 1,0 F 2,0 F -1,1 F 0,1 F 1,1 F 2,1 F -1,2 F 0,2 F 1,2 F 2,2

F -2,-1 F -1,-1 F 0,-1 F 1,-1 F -2,0 F -1,0 F 0,0 F 1,0 F -2,1 F -1,1 F 0,1 F 1,1 F -2,2 F -1,2 F 0,2 F 1,2

F -3,-1 F -2,-1 F -1,-1 F 0,-1 F -3,0 F -2,0 F -1,0 F 0,0 F -3,1 F -2,1 F -1,1 F 0,1 F -3,2 F -2,2 F -1,2 F 0,2

F 0,-2 F 1,-2 F 2,-2 F 3,-2 F 0,-1 F 1,-1 F 2,-1 F 3,-1 F 0,0 F 1,0 F 2,0 F 3,0 F 0,1 F 1,1 F 2,1 F 3,1

F -1,-2 F 0,-2 F 1,-2 F 2,-2 F -1,-1 F 0,-1 F 1,-1 F 2,-1 F -1,0 F 0,0 F 1,0 F 2,0 F -1,1 F 0,1 F 1,1 F 2,1

F -2,-2 F -1,-2 F 0,-2 F 1,-2 F -2,-1 F -1,-1 F 0,-1 F 1,-1 F -2,0 F -1,0 F 0,0 F 1,0 F -2,1 F -1,1 F 0,1 F 1,1

F -3,-2 F -2,-2 F -1,-2 F 0,-2 F -3,-1 F -2,-1 F -1,-1 F 0,-1 F -3,0 F -2,0 F -1,0 F 0,0 F -3,1 F -2,1 F -1,1 F 0,1

F 0,-3 F 1,-3 F 2,-3 F 3,-3 F 0,-2 F 1,-2 F 2,-2 F 3,-2 F 0,-1 F 1,-1 F 2,-1 F 3,-1 F 0,0 F 1,0 F 2,0 F 3,0

F -1,-3 F 0,-3 F 1,-3 F 2,-3 F -1,-2 F 0,-2 F 1,-2 F 2,-2 F -1,-1 F 0,-1 F 1,-1 F 2,-1 F -1,0 F 0,0 F 1,0 F 2,0

F -2,-3 F -1,-3 F 0,-3 F 1,-3 F -2,-2 F -1,-2 F 0,-2 F 1,-2 F -2,-1 F -1,-1 F 0,-1 F 1,-1 F -2,0 F -1,0 F 0,0 F 1,0

F -3,-3 F -2,-3 F -1,-3 F 0,-3 F -3,-2 F -2,-2 F -1,-2 F 0,-2 F -3,-1 F -2,-1 F -1,-1 F 0,-1 F -3,0 F -2,0 F -1,0 F 0,0

¨
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˝

˛
‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‚

This is a block-Toeplitz matrix with Toeplitz blocks F
1

d, d “ ´3, . . . , 3:

F “

¨
˚̊
˚̊
˝

F
1

0 F
1

1 F
1

2 F
1

3

F
1

-1 F
1

0 F
1

1 F
1

2

F
1

-2 F
1

-1 F
1

0 F
1

1

F
1

-3 F
1

-2 F
1

-1 F
1

0

˛
‹‹‹‹‚
.
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B Semi-closed analytical formula for put-on-the-min option

LetMpx1, x2,Σq denote the bivariate normal cumulative distribution function, evaluated at px1, x2q,
with mean p0, 0qJ and covariance matrix Σ. Under the two-asset Merton jump-diffusion model, the
value of a European put-on-the-min option at inception is given in Boen [6]:

vpSp1q
0 , S

p2q
0 , T q “

8ÿ

n“0

e´λT pλT qn
n!

“
e´rTK ´ e´rTKMpb1, b2,Σ3q´

S
p1q
0 e´λκ1T`nγ1` 1

2
nδ2

1Mpd11, d1,Σ1q ´ S
p2q
0 e´λκ2T`nγ2` 1

2
nδ2

2Mpd22, d2,Σ2q
ı
,

where

bi “
ln

ˆ
S

piq
0

K

˙
` pr ´ 1

2
σ2
i ´ λκiqT ` nγi

?
T

b
σ2
i ` nδ2

i

T

, di “ ´bi ´
?
T

c
σ2
i ` nδ2i

T
pi “ 1, 2q,

d11 “
ln

ˆ
S

p2q
0

S
p1q
0

˙
`

`
´ 1

2
σ2 ` λpκ1 ´ κ2q

˘
T ´ npγ1 ´ γ2 ` δ21 ´ pρδ1δ2q

?
T

b
σ2 ` nδ2

T

, d22 “ ´d11´
?
T

c
σ2 ` nδ2

T
,

Σi “
˜
1 ρi

ρi 1

¸
pi “ 1, 2, 3q,

with
σ2 “ σ2

1 ´ 2ρσ1σ2 ` σ2
2 , δ2 “ δ21 ´ 2pρδ1δ2 ` δ22 ,

ρi “

b
σ2
i ` nδ2

i

Tb
σ2 ` nδ2

T

´ ρσ1σ2 ` npρδ1δ2
Tc`

σ2 ` nδ2

T

˘ ´
σ2
i ` nδ2

i

T

¯ pi “ 1, 2q,

and

ρ3 “ ρσ1σ2 ` npρδ1δ2
Tc´

σ2
1 ` nδ2

1

T

¯ ´
σ2
2 ` nδ2

2

T

¯ .
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