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Introduction

Mathematics deserve to be
cultivated for their own sake, and
the theories inapplicable to
physics as well as the others.

H. Poincaré, The value of sciece

A short history of valuation theory

Valuations were introduced in 1913 by Josef Kiirschdk ([45]) to gain under-
standing in the p-adic numbers Hensel had written about. Kiirschdk's definition
was as follows:

Definition. A valuation on a field k is a map |-| : k - R such that:

(V1) |0] =0 and |a| >0 ifa #0,

(V2) for every a €k one has |[1+a| <1+ |a

1

(V3) for any a,b € k one has |ab|| = ||al |b

’

(V4) there is at least one a in k for which 0 # |a| # 1.

which corresponds to what is now usually called an absolute value. Valuations
have through the years earned a place in modern mathematics, finding appli-
cations in many different areas of mathematics, but historically they were first
used in number theory. Important results that should be mentioned here in-
clude Ostrowski's classification of valuations on Q, several extension theorems,
Hasse's local-global principle, and Hensel’s celebrated lemma.

In the middle of the interbellum, non-commutative algebras and in particular
skewfields began to attract more attention. Hasse showed (in [35]) that maximal
orders can be described by localisations at primes contained in the centre. In [36]
he showed a local-global principle for central simple algebras by making use of



the Brauer group. Ostrowski once more made a great contribution to valuation
theory, studying Henselian fieds, ramification of valuations, and defects. Krull
allowed for valuations with values in arbitrary ordered groups, whence the term
Krull valuation which is still sometimes used.

After the second world war, the approximation theorem — which will play an
important role in chapter 4 — appeared in [2]. Schilling published what is ar-
guably the most important treatise on valuation theory ([88]) in 1950. In a
very short paper, Manis ([56]) generalised the concept of a valuation to general
commutative rings!, which led to the study of semi-valuations (see e.g. [80]).
But it is not until the seventies that non-commutative valuation theory starts
gaining traction. The concept of a prime was introduced, which has the advan-
tage that it can deal with zero-divisors. However, it is hard to associate good
value functions to general primes. For this reason, Van Geel ([95]) restricted
attention to orders with a commutative theory of fractional ideals, for which he
introduced arithmetical pseudo-valuations.

About a decade later, Dubrovin published two important papers ([22] & [23])
introducing the non-commutative valuation rings that were later named after
him. These have been studied quite a lot over the years and many results from
commutative valuation theory have counterparts for Dubrovin valuation rings
— especially in simple artinian rings which are finite dimensional over their
centre. One of the most important results from this thesis is the introduction
of arithmetical pseudo-valuations for Dubrovin valuations with non-idempotent
Jacobson radicals.

Very recently, two books dedicated to non-commutative valuation theory ap-
peared ([59] & [93]) which will hopefully help to attract more attention to this
topic. Let me finish this short history by pointing out that the long history, or at
least the first part thereof, can be found in Roquette's excellent write-up [86].

Generalising valuations

The usual definition of a valuation is:

Definition. A valuation is a surjective map v from a field k to a totally ordered
group T' with an additional symbol oo such that:

(V1) v(z) = oo if and only if z =0,
(V2) v(zy) =v(x)v(y) for all x and y in k,
(V3) v(xz+y) 2min{v(x),v(y)} for all x and y in k.

In fact, the term Manis valuation also makes the occasional appearance in the literature.



There are three obvious ways to generalise this: one can relax the conditions on
v (as for example in the case of quasi-valuations), one can change the domain
(as is the case for arithmetic pseudo-valuations cfr. e.g. 2.4), or one can change
the co-domain (as in 1.1). However, simply fiddling with one or more of these
conditions is not very satisfactory. One of the attractions, at least for the author,
of classical valuation theory is the interplay between the more analytical point
of view — with valuations and the associated ultrametrics or absolute values —
on the one hand and the more algebraic theory — rings with linearly ordered
ideals, total subrings etc. — on the other hand.?

To any valuation v one can associate the ring of positives R, and in fact this
R, determines v (up to equivalence, which we will not go into here). This leads
to the following alternative definition:

Definition. A valuation ring of a field is a ring R satisfying:

(VR1) x ¢ R implies ™' € R
(VR2) for all 0 # z in Q one has xRx™! = R.

Here, too, possible generalisations abound. Among those considered in this text
are chain rings, Dubrovin valuation rings (cfr. chapter 3 for both of those), total
subrings (cfr. section 1.3) etcetera.

Ideally, one should obtain a generalisation combining both definitions e.g. a
generalised value function which gives a nice ring of positives which in turn
determines a generalised value function (preferably the one we started with, or
one that is naturally equivalent to it). We will show that for Dubrovin valuation
rings, or at least for the noetherian ones, there is indeed a nice generalised value
function. The generalised value function is an arithmetical pseudo-valuation
here and most of the results are analogous to the classical case. Using these
results, we can develop a non-commutative divisor theory, which may lead to
Riemann-Roch results in a similar vein as in [103].

Overview

In the first chapter, the classical concept of a valuation will be decomposed in
totality and stability. Stable subrings give rise to partial valuations. These occur
naturally in the study of primes, but have not been studied very much. Many
of the results in the sections about partial valuations and partial places seem to
be technically new, but the proofs are very close to the totally ordered case.

?Although admittedly some work has been done on generalised valuations with no (obvious)
associated ring theory, e.g. for gauges as in [93] or for valuation-like maps as in [84]. | have
a strong suspicion that here, too, some interesting ring theory awaits discovery.



In the second chapter, the existing theory of primes will be outlined and the
value function associated to a separated prime will be introduced. Later on, the
theory of arithmetical pseudo-valuations will be generalised to invariant primes.
The two last sections contain new material from [102].

In the third chapter, we will introduce Dubrovin valuation rings and discuss
the pre-existing theory. Afterwards, we will show that, for Dubrovin valuation
rings with non-idempotent Jacobson radical, arithmetical pseudo-valuations ex-
ist. Here, however, the arithmetical pseudo-valuations will be defined on the
set of divisorial ideals instead of the set of fractional ideals. Constructing this
arithmetical pseudo-valuation is one of the main new points of this thesis

These results will be used to obtain a divisor theory for bounded Krull orders.
It is known that bounded Krull orders localised at height-one prime ideals yield
Dubrovin valuation rings with non-idempotent Jacobson radicals, so the results
from chapter 3 apply to these localisations. Using this, we obtain a divisor
theory for bounded Krull orders. This theory, which is developed in section 4.3,
was one perhaps the main goal of [102].

In the last two chapters, alternative approaches to non-commutative valuation
theory are investigated. One of the main problems in this area of research is
to define a good notion of valuations on matrix rings. In chapter 5, we will
generalise the concept of a graded valuation to a groupoid-graded valuation.
Since matrix rings are canonically groupoid-graded, this will provide a natural
concept of a non-commutative valuation on a matrix ring. The theorems about
G-valuations and their connection to Dubrovin valuation rings are new results.

In the last chapter, another possible generalisation is briefly studied. The idea
here is to use separated exhaustive filtrations as a generalisation of valuations.
Some existing results are slightly generalised here, but we will not stray far from
the well-beaten path.

In the short appendix A we show that right-ordered value groups of valuation-
like functions are bi-ordered. Appendix B is based on [26]. It has little to do
with the rest of the thesis, dealing with Verma modules and Appell sets instead
of valuations and valuation rings.

Why non-commutative valuation theory?

Ah, now, that is a hard question. Historically, interest in non-commutative
valuation theory comes from an attempt to understand orders but the reason
for my interest is slightly different. In classical algebraic geometry, there is a very
close correspondence between algebra and geometry. In fact, from a geometric
object, i.e. some algebraic variety, one can get an algebraic object by considering
its function field. Vice versa, to a field extension with transcendence degree 1,



one can associate the abstract Riemann surface with valuations as points (and
the trivial valuation as the generic point of the curve).

On the algebraic side, generalising concepts is relatively easy, but the meaning of
non-commutative geometry is somewhat unclear. Generalising the translation
machinery from the commutative context to a non-commutative one would
permit translation of results and insights from the algebraic framework producing
some kind of non-commutative geometry.



Chapter 1

The building blocks of
valuation theory

A valuation is usually defined as a function from (the invertible elements of) a
field to a totally ordered group satisfying some axioms. An obvious generalisa-
tion can be obtained by replacing the totally ordered group by a partially ordered
one. It turns out that, like in the classical case, there is an alternative charac-
terisation in terms of the ring of positives (cfr. 1.1.3). In fact, partial valuations
can be obtained by dropping one of the two conditions from the original charac-
terisation of valuation rings (cfr. 1.1.4). By dropping the other condition, total
subrings are obtained, which have a natural place in non-commutative valuation
theory as well. Total subrings have been studied rather extensively (cfr. e.g.
[62]), so we suffice with a short overview. Since the correspondence between
valuations and places is so important, we will also introduce partial places and
establish a similar correspondence.

Most of the results in the first two sections are very similar to the classical (i.e.
totally ordered) context. Van Geel ([95]), who studied partial valuations asso-
ciated to primes, did some work on partial valuations (which we will encounter
in 2.2) and this theory was somewhat expanded in a recent book (cfr. [59]),
but not much more has been written about partial valuations.

1.1 Partial valuations

Definition 1.1.1. Let I" be a partially ordered group and let D be a skewfield.
A partial valuation on D is a surjective map v: D — I u{oo} (where co >~
and ooy = 00 = yoo for all v € ') satisfying:

(PV1) v(z) =00 <= x=0,
(PV2) Yz,ye D :v(xy) =v(z)v(y),



(PV3) Yx,y,ze D:v(zx) 2v(z) <v(y) =v(r+y) 2v(z).
If a partial valuation satisfies the stronger
(PV4) Yx,y,ze D:v(zx)>v(z) <v(y) =v(z+y)>v(z)

we say it is a strict partial valuation. If I' is totally ordered, v is called a
valuation.

For any partial valuation, one can define R, = {x € D | v(z) > e} where e = v(1)
is the neutral element of I". This is a ring since it contains 1 and is closed under
multiplication (PV2) and addition (PV3). Suppose, moreover, that v(x) > e,
then for every d € U(D) we have v(dzd™') = v(d)v(z)v(d™!) > v(d)v(dt) =e
so R, is invariant under inner automorphisms.*

Definition 1.1.2. If R is a subring of a skewfield D, we will call R stable if it
is invariant under inner automorphisms and total if d ¢ R implies d™* € R for
every d e U(D).

Proposition 1.1.3. Suppose R is a subring of a skewfield D which is stable.
Then it is R, for some partial valuation v on D.

Proof. Let R be a stable subring of D. We write z ~ y if
Vd,d' e D:dyd € R < dxd € R

which is certainly an equivalence relation. Suppose = ~ 2’ and y ~ ¢/, then
for all d,d" in D we have dryd' € R < dx'yd' € R < dx'y'd’ € R, so the
equivalence is compatible with the multiplication on D. Therefore, I' = D/ ~
can be endowed with a canonical multiplication by putting, for all d,d’ € D,
d-d'=dd'. Setz >1if dd’ € R implies dzd' € R for all d,d’" in D. This is clearly
independent of the chosen representative. Suppose x,y € D are such that 7 > 1
and 7 > 1, then for all d,d’ € D such that dd’ € R we also have dyd’ € R. But
then (d,yd") is a pair with dyd’ € R, so dzyd' € R. Combining this with the
obvious fact that 1> T we find that © = {Z ¢ I'| Z > T} is a subsemigroup of I'.
We put a partial order relation on I' by defining, for z,y € D \ {0}:

T2y < xyleX

and 0 > 7 for all z € D. We have to prove that this is indeed a partial order
relation. It can easily be verified that < is reflexive and transitive, so suppose
T >7 and § > T for some non-zero x and y in D. Then zy~! € ¥ 5 ya~!
which means that both zy~! and yxz~! are in R. Suppose now dxy~'d € R
for some invertible d,d’ € D, then xy‘ld’d € R since R is stable under inner
automorphisms and hence d'd € R, ie. 2yl =1orZz =7y Ifz >z <7,
then 271 € ¥ 5 yz~! which implies 227! € R3 52! so (z + )z € R hence
T+y>2z,s0v:D—>Tu{oo}:x~Tis a partial valuation. O

'With U(D) we denote the set of invertible elements of D.
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This result warrants the term partial valuation ring for a subring of a field which
is invariant under inner automorphisms. It is a convenient generalisation of the
following classical characterisation of valuation rings, which is due to Schilling
(cfr. [88] or many other books on valuation theory):

Proposition 1.1.4. A subring R of a skewfield D is R, for a valuation v if and
only if R is stable and total.

Proof. It suffices to note that R, is total if and only if v(z) < 0 implies v(z™1) >
0 which is the case if any v € I' is comparable to zero, hence if I" is totally
ordered. ]

Lemma 1.1.5. If R is a stable subring of a skewfield D and vy is the corre-
sponding partial valuation, then U(R) = {z | vg(x) = 0}.

Proof. Suppose x € U(R) and suppose dxd' € R for d,d' e U(D), then zd'd € R
which implies d'd € R since ! € R. From this we can conclude vg(z) < vg(1)
hence vr(z) = vr(1). If vr(x) = vr(1), then dzd' € R if and only if dd' € R.
Since lzxz"t € R, 7! € R follows. O

Proposition 1.1.6. A stable subring R of a skewfield D which is local induces
a strict partial valuation and vice versa.

Proof. If R is local, then P = RNU(R) ={x € D |vg(z) >0} is an ideal, so it
is closed under addition. Hence vg is strict. On the other hand, if vg is a strict
partial valuation, then P = RNU(R) = {z | vg(z) > 0} is closed under addition.
Since it is always closed under multiplication and since vg(r) > 0 < vg(p) implies
vr(rp) >0, we find that P is an ideal hence the unique maximal ideal. O

Example 1.1.7. Consider a local ring in a field, say Z,) in Q, and consider
the formal power series R = Z,)[[X]] as a subring of K = Q((X)). Since K
is commutative, R is stable and since R is the ring of power series over a local
ring, it is again local. This means that R induces a partial valuation v on K
which is strict. It is not a valuation because, for example, 1/p and X1 have
v-values which are not comparable.

Example 1.1.8. Consider a field k and the field of rational polynomials k(X).
Then R = {Z?:o a;X'|neN,a = O} is a subring of k(X)) and since k(X) is
commutative, it is obviously stable. One can check quite easily that the associ-
ated partial valuation gives the following directed graph of values of monomials:

e (X (X)) o(X0) > o(X?) = o(XY) — -

AT

(X)) > u(X 3)ﬁv(X 1)HU(X H1)(X3)—>---



Consider in the same field the subring k[X?] of k(X). Then one gets the
following graph:

(X > (X)) — (X0 — u(X?) — v(X4) —

(X)) s (X)) s (X s u(XY) - u(X3) - -

For a prime on a skewfield which extends a valuation on the center, we will
show that the orderings as showcased in this last example are essentially the
only possibilities: either the ordering is directed (i.e. any two elements have a
common upper bound) or it has a number of linearly ordered path-connected
components. We will denote the skewfield of fractions of a partial valuation
ring as Q(R,). We define the path-connected component of d as

pcee(d) ={z e U(D) | 3x1,...,xn e U(D) :v(d) 2 v(x1) 2 -+ 2 v(mp) 2 0v(x)}.

Lemma 1.1.9. Suppose v is a partial valuation on a skewfield D, then pcc(1)
is the set of units of the field of fractions of R,,.

Proof. Take an arbitrary x € pcc(1). Then there are z1,...,z, with v(x) 2
v(w1) 2 -+ 2 v(zy) 2 0. This means v(z,_12,') 2 0, hence either (x,_12,,!)
or its inverse are in R,. By a simple induction argument, we find similarly that
either xn_ix;ﬁiﬂ or its inverse is in R,. Since

1

T =xT] xlxgl---xn_lxglscn,

we find for all ¢ that x must be in Q(R,). Suppose now z is in Q(R,), then
z =xy~! for certain x and y in R,. This means z 2 z 2 0. O

Corollary 1.1.10. Suppose again that v is a partial valuation on a skewfield D,
then for every non-zero x € D we have pcc(z) = U(Q(Ry))z = zU(Q(Ry)).

Proof.

pee(x) = {y[3zo, ..., xn s v(y = x0) 2 v(21) 2 -+ 2 v(wn = 1)}
= {y|EIa;0, U v(yxil) 2o(ziz )22 v(l) = 0}
= {ylyz™" e pee(0) = U(Q(R))} = {yla™"y e pec(0) = U(Q(R,))
=U(Q(Ry))x = 2U(Q(Ry))
O
Corollary 1.1.11. /fv: D - T'u{oo} is a partial valuation on a skewfield D

extending a valuation on Z (D) such that v(d) > 0 for some non-central d, then
T" is directed.



Proof. Since Q(R,) is a stable subskewfield of D which is not contained in
Z(D), it must by the Cartan-Brauer-Hua theorem be equal to D itself (cfr.

[38]). Two elements d and d’ can then be written as d = pg~! and d’ = p’q’*
for some p,p’,q,q’ € R,. Then pp is an upper bound for d and d’ while ¢~ 1¢'~!
is a lower bound for d and d’. O

Remark 1.1.12. The fact that v is a partial valuation on the skewfield is not
really necessary for this reasoning; we just make use of the fact that the relation
d<d < v(d) <v(d") restricted to U(D) is compatible with the multiplication.

On the set {pcc(z) |x € U(D)}, there is a canonical multiplication pcc(x) -
pee(y) = pee(zy) which is well-defined by corollary 1.1.10. This yields a group
D of connected components. We find

(1) Uz pQ(Ry)d=D
(2) Q(Ry)AQ(Ry)d = Q(Ry)dd’
(3) d#d' = Q(R,)dn Q(R,)d' = {0}

which is tantalizingly close to being a grading? on D. Properties (1)-(3) may
not be enough to define a grading, but they do define a Clifford system.

Definition 1.1.13. Let G be a group. A G-Clifford system® on a ring R is a
set (Ry)gec of additive subgroups such that:

(1) deG Ry =R,
(2) RyRy = Ryy forall g,¢' € G.

Clifford systems were introduced by Dade ([19]) in order to better understand
and generalise Clifford’s theory — whence, obviously, the name. A few papers
dealing with Clifford systems have appeared (e.g. [99], [98], [33]), but they
have largely been neglected in favour of strong gradings. This is probably due
to the very general nature of Clifford systems. Perhaps the more restrictive set
of conditions (1)-(3) hits the sweet spot between generality and usefulness? An
in-depth study of these objects is required in order to answer this question.

2We will consider gradings in some detail in chapter 5; the interested reader may also want
to consult [75].
3The G will often be omitted, being clear form the context.
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1.2 Partial places

In this section we will follow the construction of [27], of course adapting every-
thing to our partial and not necessarily commutative case. A skewfield C' can
be extended with a formal symbol oo to C'= C'U{co} where 0o +¢ = ¢+ 00 = 00
for any ce C' and ¢- 00 = 00 - ¢ = oofor any ¢ in C'\ {0}. The addition co + oo
and multiplication oo - oo as well as oo -0 and 0 - co remain undefined. Let for
the remainder of this section C' and D be skewfields.

Definition 1.2.1. A partial C-place of D is a map 7 : D — C such that:

(PP1) If xy and w(x)m(y) are defined, then mw(xzy) = w(x)7(y).
(PP2) If x +y and w(x) + w(y) are defined, then w(x +y) =7(z) + 7 (y).
(PP3) 3de D :w(d) =1.
Lemma 1.2.2. Every partial C-place 7 satisfies the following conditions:
e m(1)=1, m(0) =0, m(o0) = 0.
o If(x)+m(y) (resp. m(x)m(y)) is defined, then so is x +y (resp. xy).
o m(—x)=-7(x).

e m(z7!) = m(x) L.
Proof. These are all easily adapted from the source mentioned above. O

The following propositions are also not very surprising. Here, too, the proofs are
relatively straightforward adaptations from similar proofs in the classical case,
but they are perhaps important enough to warrant separate mentioning:

Proposition 1.2.3. Let R be a strict partial valuation ring in a skewfield D and
let A : R — C' be a morphism with Ker(\) = P. The mapping

- - if
7:D->C:2~ 0 I.Z‘éR
Mz) ifxeR

is a partial C-place of D.

Proof. (PP3) is trivially true, so we will restrict our attention to (PP1) and
(PP2). Take z and y in D. If w(x) + m(y) is defined, then either w(z) # oo
or m(y) # oo — we assume the former without loss of generality. Then x € R
and if w(y) = co we have y ¢ R so x +y ¢ R which implies 7w(x + y) = co. If
7m(y) # oo, then both x and y are in R so 7w(x +y) = A(x + y) which is indeed
AMz) + A(y) =m(x) +7(y) since X is a morphism.

11



Suppose z and y are such that w(z) = oo and 7(y) = a for some 0 + a € C.
If x or y is oo, then w(zy) = 00 = 00 - . If z nor y equal oo, then = ¢ R and
y € U(R) so xy ¢ R and consequently 7(zy) = 0o = o0 - av. O

Example 1.2.4. Referring back to example 1.1.7 we put R = Z,)[[X]] which
is a partial valuation ring in Q[[X]]. The canonical morphism X : R - F,
obtained by dividing out the unique maximal ideal P induces a partial place
m: Q[ X]] = F, sending elements of R to their equivalence classes in R/P and
all other elements to co.

Proposition 1.2.5. Suppose that D is a field and that w is a partial C-place
of D, then m=1(C) is a strict partial valuation ring on D.

Proof. Clearly, oo ¢ 71(C). If x and y are in 77 1(C), then 7(x) + 7(y) and
m(x)mw(y) are defined so we have w(z +y) = w(z) + 7(y) € C and w(xy) =
m(z)m(y) € C which implies together with 7(1) € C and 7(-z) = —7(z) that
771(C) is a subring of D. Stability is obvious due to the commutativity of D
and strictness is a simple consequence of the fact that W‘l(C)/Ker(ﬂﬁq(C))
is a skewfield.

If 7 is a partial C-place, then we can always consider 7 as a partial C’-place
for some sub-skewfield C’ = C such that C’ ¢ Im(x). Considered as such, 7
becomes a surjective partial place. The previous propositions establish a one-one
correspondence between surjective partial places on fields and partial valuations.

Remark 1.2.6. The commutativity of D is really necessary. Take e.g. the Weyl
skewfield (cfr. 6.2.5) Dy (k) over a field k as a superfield of k(X). The map

—  —— if xek(X
r D) o B e |° T ERE)
oo if x¢k(X)
is a partial k(X )-place of Dy (k), but 771 (k(X)) is not a partial valuation ring
on Dy (k) since it is not stable (e.g. Y1XY = X + Y1 is not in k(X)).

Proposition 1.2.7. Let D be a field. Consider a surjective partial C-place 7
of D and let R be the associated partial valuation ring. There is an inclusion-
preserving one-one correspondence between stable subrings of R and partial
valuations on C.

Proof. Suppose S € R is a partial valuation subring of R and suppose c € C.
Since 7 is surjective, there is an r € R with 7(r) = ¢, so we have c¢m(S)c™! =
a(r)r(S)n(r~t) = w(rSr~t) c w(S) so w(S) is a stable subring, i.e. a partial
valuation ring, of C.

Suppose on the other hand that S is a partial valuation ring on C, then by a

similar argument as in 1.2.5, 771(S) is a ring which is necessarily stable since
D is a field. O

12



Proposition 1.2.8. Let D c D' be skewfields and let R ¢ R’ be local stable
subrings of D and D'. The associated partial valuations v and v' take values
in some partially ordered groups T' and T'. The sets of non-invertible elements
in R and R’ respectively will be denoted by P and P’. Furthermore, we use ™
to denote the partial place associated to R and ©’ to denote the partial place
associated to R'. Then the following are equivalent:

(1) RnD=R

(2) There is an order preserving isomorphism f : A — I" for some subgroup
A of T such that f ovp/|p =v(D).

(3) g: (D) > 7'(D') : w(d) » 7' (d) is injective.

Proof. We show that both (2) and (3) are equivalent to (1). (1) < (2) Suppose
d,d" € D have the same image under vg but not under vg. We can assume
vr(d) # vr(d'), but then dd’~! ¢ R while dd’~! € R'nD which is a contradiction.
This means that [ : vg/(D) —» vr(D) : vr/(d) — vr(d) is well-defined. It can
easily be verified that f is an order-preserving isomorphism. If there is an order
preserving isomorphism between vgp/(D) and vg(D), then any d € D is vpr-
positive if and only if it is vgr-positive, or in other words, if and only if it is in
R. (1) < (3) Suppose (1) holds, then the kernel of g is m{d e D |n'(d) =0} =
7(P'nD)=n(PnD)=0. Suppose now that Ker(g) =0. If de R'n D, then
7'(d) # 00 so w(d) # o0 and x € R. O

1.3 Total subrings

In the previous sections, we have dropped the totality from Schilling’s definition
of valuation rings. The following natural question then arises: what happens if
we retain totality and drop stability instead? The answer turns out to be total
subrings. They were introduced by Radé in [83] and were later studied quite
extensively by Mathiak, who wrote [62] (cfr. also [61]) which is perhaps the
main reference work for total subrings.

Remark 1.3.1. The name total subring is due to Radé but is not completely
standard. Mathiak uses the term non-invariant valuation ring while some au-
thors call these rings valuation rings, using the term invariant valuation ring for
what we will call valuation rings.

Definition 1.3.2. Suppose D is a skewfield and S is a totally ordered set, which
includes a maximum oo and at least one other element. A generalised valuation
is a surjective map v: D — S satisfying (for all x,y,z € D):

(GV1) v(x+y) >min{v(z),v(y)},

13



(GV2) v(z) <v(y) = v(zz) <v(yz).

These generalised valuations still retain many properties of valuations, some of
which are collected in the following lemma.

Lemma 1.3.3. For a generalised valuation v : D — S the following hold:
(1) v(x) = oo if and only if z =0,
(2) v(z +y) =min{v(z),v(y)} ifv(z) # v(y),
(3) v(z) = v(-x)

Proof. Easy verifications; proofs are given in [83]. O

Much in the same way as for (partial) valuations, one can associate the ring
of positives R, = {de D |v(d)>v(1)} to any generalised valuation v on a
skewfield D. P, ={d e D |v(d) >0} is then the unique maximal ideal of R,.

Proposition 1.3.4. Left ideals of R, are totally ordered.

Proof. See [59] or [62]. O

Theorem 1.3.5. A subring R of a skewfield D is total if and only if R = R, for
some generalised valuation v on D.

Proof. See [83]. O

For another characterisation of total subrings, we refer the reader to 2.1.5. It is
interesting to compare theorem 1.3.5 with the classical result of 1.1.3. It turns
out that the totality of a valuation ring gives the totality of the ordering on the
set of values, while the group structure corresponds to stability. The following
example of a total subring which is not stable has become standard, being cited
by e.g. [83] and [95].

Example 1.3.6. Put R(¢) the field of rational functions over the reals with
ordering
apt™ + -+ am,
bot™ + -+ + by,
and put G the group of affine transformations of R(t), i.e. G is the group of
maps

>0 <~ a0b0>0

g:R(t) >R(t):x = azx+b

where a and b are in R(¢) and a is non-zero. Consequently, an element g :
x ~ ax +b of G can be represented by (a,b) with a,b € R(t) and a # 0. The
lexicographic ordering

(a,b)>(a',b)) < a>d or (a=a" and b>V)

14



turns this into an ordered group. Indeed, suppose that (a,b) > (a’,b") and
let (s,t) be an arbitrary element of G, then (a,b)(s,t) = (as,at +b) and
(a',0")(s,t) = (a's,a’t +b'). If a > a’ then certainly as > a’s. |If, on the
other hand, a = a’ and b > b, we have as = a’s and at+b > a't + b so < is
compatible with right-multiplication. The argument for compatibility with left-
multiplication is similar: in the same context as before we have (s,t)(a,b) =
(sa,sb+1t) and (s,t)(a’,b") = (sa’,sb’ +t). Again, if a > a’ we also have
sa>sa’. Ifa=a" and b> ¥, we have sa = sa’ and sb+1t > sb’ +t. We will use
e to denote the neutral element of G.

We can now construct the skew polynomial field
K(G,R(t)) ={¢:G—>R(t) | D(¢) = {z|p(x) + 0} is well-ordered}
with addition and multiplication defined as follows:

(¢ + ) (2) = p(x) + ¥(x)
(p)(x) = D5 (Y (n).

(n=x
Theset A={geG|IreR:g>(1,r)} is multiplicatively closed, hence
O ={feK(G,R())|D(¢) <A}

is multiplicatively closed. Since it is also an additive subgroup of K(G,R(t)),
it is a subring. It is clear that, for any f € K(G,R(t)), min D(¢) > e implies
f €0. Suppose now min D(f) < e and min D(f~!) <e. We can pick z,y € G
such that f(z) = min D(f) and f~(y) = min D(f~!). As a consequence, we

have f ™ (2y) = Lepeay F(O)F () = f(2) f~1(y) # 0. This means zy € D(1)
while zy < e. This is impossible, so f ¢ O = f~1 € O.

For any g € G, we can define

1 ifx=yg
Jgix .
0 ifxzg

A simple calculation gives f,-1 = fg_1 and fgn = fgfn- We know f; 1) € O, and
we find
faofa-nfeo = furoa-1wo
= fa,-+1)-

Since t > r for any r € R, t™! < r for any r € R. This means D(fa,-1)) €A
This means O is not invariant under inner automorphisms and as a result it
cannot be a valuation ring.
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Chapter 2

Primes and associated value
functions

Primes were introduced by Van Oystaeyen and Nauwelaerts ([100], [77]; these
were only primes with a completely prime ideal) as a non-commutative gener-
alisation of valuation rings, inspired by the fact that a valuation can also be
characterised by a ring and a prime ideal in it. The concept of a prime is just
about the broadest one that still holds some interest and many other generali-
sations of valuations, e.g. Dubrovin valuation rings, will turn out to be primes.

One would like to associate some kind of value function to such a prime, but this
poses some problems. A general value function does exist, but it takes values
only in a partially ordered monoid which, in general, is not even cancellative.
A different approach was suggested by Van Geel ([95]): suppose @ is a simple
artinian ring with some prime (R, P), instead of a function

v:Q —>TuU{co}
for some totally ordered group I, one considers an arithmetical pseudo-valuation
v:F(R) >TuU{oo}

where F(R) is the set of fractional R-ideals (which will be introduced in good
time). Unfortunately, for this to work, Van Geel needs a commutative theory of
fractional ideals — a rather strong condition.

In this chapter we will show, after introducing the necessary concepts and the
general value function, that, in some cases, an arithmetical pseudo-valuation
can be defined without assuming the commutativity of fractional ideals. Con-
structing arithmetical pseudo-valuations in this more general setting was one of
the main points of [102] and it will later on (cfr. 3.4) allow for the introduction
of arithmetical pseudo-valuations associated to Dubrovin valuation rings.
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2.1 Generalities about primes

Definition 2.1.1. Let A be a ring. A pair (R, P), with R a subring of A and
P a prime ideal of R is called a prime in A if

aRbc P impliesa€ P orbe P

(for any a,be A).

If, moreover,
abe P impliesa e P orbe P
(for any a,b e A) holds, then (R, P) is called a complete prime.

If R is a prime, then
AP ={aecA|aPc P and Pac P}

is a subring of A and (AT, P) is a prime of A which we will call the associ-
ated prime. Since many interesting properties of a prime (R, P) hold for the
associated prime (AP, P) as well, it is usually harmless to only consider primes
(R, P) for which R = A, but this is not necessary for us here.

The concept of a prime is a very general one. In fact, for many purposes it is
too general and one has to restrict attention to special kinds of primes.

Definition 2.1.2. A prime (R, P) in a ring A is said* to be

(1) fractional if for any a € A~ R there are x,y € R~ {0}, at least one of
which is in P, with xay € R

(2) localised if for any a € A\ R there are x,y € R~{0}, at least one of which
is in P, with zay e R~ P

(3) separated if it is localised and for all r € R~ {0} there are a,b € A with
arbe R\ P.

Alternatively, one could define a separated prime as a localised prime for which
Py={peP|ApAc P} is zero. For simple rings this is obviously true, so any
localised prime in a simple ring is necessarily separated.

Example 2.1.3. 1. If R, is a valuation ring on some field &, then (R, P,) is
a localised (hence separated) prime. Vice versa, if k is a field and (R, P)
is a localised prime in k, then R is a valuation ring on k with maximal
ideal P. This follows from 1.1.4 and 2.1.5.

'This terminology comes from [59]. In earlier work, like [95], localised and separated primes
were called semi-restricted and restricted, respectively.
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2. If Ais a ring and P is a prime ideal in A, then (A, P) is a prime in A
which is always fractional and never localised, unless P is the zero ideal.

3. Let R be a (commutative) Krull domain with fraction field k (see capter
4), let P be a minimal prime ideal of R and let Rp be the localisation
of Rat P. Thering A= {a+bX |aec Rp,bek} with prime ideal P =
{a+bX |ae PRp,bek} defines a prime in k[ X ]/(X?) which is localised
but not separated.

We now recall some basic results about primes.

Proposition 2.1.4. Let A be a ring, R a subring and P a prime ideal of R. If
for any a € A\ R there are x,y € R~ {0} with zay € R~ P, then (R, P) is a
(necessarily localised) prime of A.

Proof. See [59]. O

Proposition 2.1.5. A subring R of a skewfield D is a total subring if and only
if there is an ideal P of R such that (R, P) is completely prime.

Proof. See [59]. O

Proposition 2.1.6. If there is some separated prime (R, P) in A, then A is a
prime ring.

Proof. See [59]. O

Definition 2.1.7. To a prime (R,P) in a ring A we can associate a map
7 : R > R/P which is called the associated prime place. Let A’ be a subring
of A with some prime place m: R' - R'/P' = R’. A m-pseudo-place of A is a
triple (R,v, R) such that:

(1) R’ is a subring of A" with Rn A" = R/,
(2) ¥ : R~ R is a ring morphism with Ker(y)) n A’ = P’,

(3) R’ is a subring of R and | = 7.
A m-pseudo-place is called a m-pre-place if (R,Ker(v)) is a prime of A.

These definitions will allow us to formulate one of the most important results
in the theory of primes: a Chevalley-like extension theorem, proven by Van Geel
in [94] (although [59], which also contains a proof, is probably easier to find).
If S and T are subsets, we will use the notation < T" > for the multiplicative
closure of Tu {1} and ST for {}; s;t; | Vi:s; € S,t; e T}.
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Theorem 2.1.8. Let A again be a ring and let (R, P') be a prime in some
subring A" with associated prime place m : R' — R'/P’. Consider subsets
M c N c A satisfying

(i) NAcP'<N>and NP'c P'<N >
(i) P'<N>nA"cP’
(iii) 0 ¢ M and for all my,ms € M there is somen € N such that minms € N>
(iv) R~ P'c M
(v) MNP <N>=@
then there is a w-pre-place (R,%), R) of A.

Proof. See [59].3 O

Let A be a ring. Suppose R, R’ are subrings of A with some respective prime
ideals P and P’. We can say that (R,P) < (R',P')if Rc R and P’"nR=P.

Corollary 2.1.9. If (R, P) is maximal with respect to <, then it is a prime.

Proof. See [59]. O

Remark 2.1.10. 1. The statement in [59] is a little bit different, since it
makes use of so-called dominating pairs. As a corollary of the theorem, it
is then shown that dominating pairs are necessarily primes.

2. In the case where A’ is a field k, R is a valuation ring on k with maxi-
mal ideal P, and A is a field extension of k, this theorem becomes the
Chevalley extension theorem for valuations.

2.2 Value functions associated to primes in simple
rings

Suppose @ is a simple ring and let (R, P) be a prime in Q. To any element
x of (), one can associate the set P, = {(q,q’) €Q?|quq € P}. This induces
an equivalence relation ~ on @ by putting x1 ~ x9 if Py, = P;,. Since Q is
simple, the fact that 2 ~ 0 implies P, = Q x Q yields z = 0. The set Q = Q/ ~
is endowed with a canonical partial ordering — by putting =7 < T3 if and only
if Py, € P,, — and multiplication — by putting =7 - 72 = T1 2.

2This condition means that M is an m-system for N, which explains why M is called M.
3But lasciata ogni speranza voi ch’entrate; the proof is rather involved and not very intu-
itive.
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Proposition 2.2.1. Q is a partially ordered semigroup.
Proof. See [59]. O

It is clear that 1 is the neutral element of Q and that T is invertible if z is, but
Q is not cancellative in general. In fact, T can never be invertible if x is a zero
divisor.

Since 0 > 7 for all non-zero z in @, it makes sense to denote 0 by co.

Proposition 2.2.2. The map ¢: Q - Q : x — T satisfies the following condi-
tions:

(i) ¢(z) = oo if and only if 2 =0,
(i) ¢(za’) = p(z)d(z"),
(iii) if p(x) > ¢(y) < @(a’), then p(x +2') > ¢(y),
(iv) if z € U(Q), then (z7") = p(x) 7",
(v) if ¢(x) > ¢(y), then p(x +y) = ¢(y).

Proof. Some of the statements are proven in [59]. The proofs are anyway not
too difficult. O

Remark 2.2.3. These definitions still work just as well for non-simple rings,
provided that (R, P) is a separated prime. Otherwise, property (i) from 2.2.2
fails to hold.

If Q is a skewfield, @ is a partially ordered group. In this case, additive notation
is traditionally used for the operation on @, even if it need not be commutative,
but we will avoid this slightly confusing convention for now. For any prime
(R, P) in a skewfield @, one can define Og = {q eQ|o(q) ZT}. Because of
2.2.2, this is clearly a subring of (). There are some alternative characterisations
of positive elements which might bear repeating:

Proposition 2.2.4. If (R, P) is a localised prime in a skewfield Q, then Op =
Neev (@) 4Rq ™.
Proof. See [59]. O

This means that for a localised prime (R, P) the value function ¢, which a priori
only depends on P, is also only dependent on R which justifies the notation
Opg. Note that knowing the value function is in general not enough to know
the prime (R, P), as the following lemma shows:
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Lemma 2.2.5. For any z € U(Q) and any prime (R,P) in Q, Or = O,p,1
holds.

Proof. Denoting the value function associated to R and zRz™! by ¢ and
¢, p,-1 respectively, we find

dr(r) 21 Vq,¢ €Q: (qq’ € P=qxq e P)
= Vq,qd €Q: (z_qu'z eP=> z_quq'z € P)
< Vq,q €Q:(qq € 2Pz = qug e 2Pz
< ¢op1(2) 21

which had to be shown. O

Definition 2.2.6. A prime (R, P) is called strict if the associated partial valu-
ation is a strict partial valuation.

For a strict localised prime, one can define p = {q €Q|o(q) > T}, which is the
unique maximal ideal of Ogp.

Proposition 2.2.7. For a strict localised prime (R, P) in a skewfield Q, the
following hold:

(1) Or/p is a skewfield,
(2) every left (right) ideal of Op is a two-sided ideal,

(3) if (Og,p) is a prime of the skewfield of fractions Q(Opr), then Og is a
valuation ring in Q(OR).

Proof. See [59]. O

Proposition 2.2.8. Let (R, P) be a strict fractional prime in a simple artinian
ring Q. If A is any semisimple artinian subring of Q) and A + Q, then R is not
contained in A.

Proof. Assume R ¢ A and pick g € @\ A. Since A is noetherian, we may choose
L maximal for the property that Lqy € A for some y € A. Since A is semisimple
artinian, we have A = L @ U where U is a left ideal and uqy ¢ A for every
u e U (otherwise (L+ Ru)qy < A entails u € L which is a contradiction). There
exist x’,y" € R with 0 # 2’uqyy’ € R ¢ A. Since L is maximal for the property
that Lqgyy’ c A, it follows that 2’u € L but 2'u € U, so 2’u = 0 contradicting
z'uayy’ # 0. O

A ring is said to be a Goldie ring if the set of regular elements satisfies the Ore
condition and SR is a semisimple Artinian ring.
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Proposition 2.2.9. If (R, P) is a strict fractional prime in a simple artinian
ring Q and R is a Goldie ring, then ST R = Q where S is the set of regular
elements in R.

Proof. Let r € S, then we claim that r is regular in Q. Suppose it is not, then
ru =0 for some u € @ \ R. Since (R, P) is fractional, there exist z,y € R with
0 # zuy € R and since S satisfies the Ore condition, there are 2’ € R and v’ € S
with 7'z = 2'r so r’zuy = 2'ruy = 0 hence zuy = 0 which is a contradiction.
Since Q is simple Artinian, r~! € @ so any element of S is invertible in Q and the
injection R < Q extends to an injection ST'R < Q. Since S™'R is semisimple
artinian, the preceding proposition implies that S™'R = Q. O

Remark 2.2.10. If R is a prime Goldie ring and [ is an essential left ideal of
R then I is generated by the regular elements of I. (See [66].)

Example 2.2.11. Let O be as in example 1.3.6. We will try to find Og, i.e. the
ring of positive elements for the partial valuation associated to O as a prime.
Let us first investigate ¢((1.0)). When is (f, ') in ¢((1,0))? Clearly when

min D(f)min D(f') > (1,7)

for some real number r. Put (a,b) = min D(f) and (a’,b") = min D(f"), then
(f, f") e p(1) if aa’ > 1 or aa’ = 1 and aa’ + b > r for some real number 7.
In general, if f” has min D(f") = (¢, d), then (f,f") € ¢(f") if and only if
aa’ > ™t or aa’ = ¢ and acb’ + ad + b > r for some real 7. (Provided that
c is positive. If it is not, then ¢(f") > ¢(1) certainly does not hold.) As a
consequence, ¢(f"") >0 if and only if

aa' >1 or (aa':l and Elre]R:ab'+b>r)
implies
aa’ > ¢ ' or (aa':c_l and ElreRzacb’+ad+b>r).

This is clearly the case if ¢ > 1 and it is clearly not the case if c< 1. If c=1
it is also not the case since the term ad can destroy the desired property. This
implies that

Or={fe K(G,R(t)) | min D(f) = (a,b) thena>1ora=1and b=0}

which is a local stable subring of K(G,R(t)) and U(OR) is the set of those f
with min D(f) = (1,0).

2.3 Invariant primes

The following proposition is a slight generalisation of Schilling’s characterisation
of valuation rings in skewfields. It provides a motivation for considering invariant
primes as a canonical generalisation of valuation rings on skewfields to general
simple artinian rings.
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Proposition 2.3.1. Let (Q be a skewfield. If R ¢ Q) is invariant under inner
automorphisms and R = AT for some prime (S, P), then R is valuation ring.

Proof. Suppose (R, P) is a prime and suppose qq' € P. Obviously, Rqq" ¢
P, but since R is invariant under inner automorphisms we also have Rqq' =
qRq'qq¢’ = qRq' which implies that either ¢ or ¢’ is in P. This means that
P is completely prime so R, as the domain of a complete prime, must be a
total subring. A total subring which is stable under inner automorphisms is a
valuation ring (cfr. 1.1.4). O

Consider a strict fractional prime (R, P) of a simple artinian ring A. We always
assume that R is Goldie hence a prime ring and an order of A (by proposition
2.2.9). If P is invariant under inner automorphisms of A, we say that (P, R) is
an invariant prime of A.

Example 2.3.2. Consider once more the example from 1.3.6 and 2.2.11. If P
is the unique maximal ideal of Op, then (Og, R) is a prime which is invariant.
Note that, by 2.3.1, we do not have R = AP in this case.

For the remainder of this section, we will assume that (R, P) is an invariant
prime which is equal to its associated prime.

Remark 2.3.3. R is invariant under inner automorphisms of A.

Proof. Consider u € U(A). For p € P we have uRu™'p = uRu 'puu! and
uwpu e P so Ru~'pu € P and uRu'p ¢ uPu™' ¢ P. Hence uRu™'P c P
which implies uRu™' € R. A similar reasoning gives PuRu"! ¢ R. O

In general, by a fractional R-ideal of A we mean an R-bimodule I ¢ A such that
I contains a regular element of R and for some r,s € R, rI € R and Is ¢ R.
Observe that we may choose r and s regular since R is an order. We will denote
the set of fractional ideals of R by F(R).

Lemma 2.3.4. The following properties hold:

(1) If w is regular and ul < R then Iu € R and vice versa. Similarly, ul ¢ P
if and only if Tu ¢ P.

(2) IfI,J e F(R), then I.J c P if and only if JI ¢ P.

(3) If 1,J € F(R) then I.J € R implies JI ¢ R and vice versa. Moreover, if
J &P then ISR and if P3 1SR then J € R.

Proof. (1) Iful ¢ R, then Iu S u'Ru= R andif Ju ¢ R, then ul cuRu™! =
R. The other case is similar.
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(2) If I.J c P then, since (R, P) is a prime, either [ or J isin P, say I ¢ P.
Since [ is an ideal it is left essential so it is , by 2.2.10, generated by regular
elements. For every regular element u € I, uJ € P yields Ju € u™' Pu = P,
hence JI € P. Thecase I ¢ P and J € P is similar.

(3) Suppose I,J € F(R) such that IJ ¢ R. If I,J c P there is nothing
to prove since then IJ ¢ P and JI ¢ P, so assume J ¢ P (I ¢ P is
completely similar). From PI.J ¢ P we then obtain PI ¢ P since (P, R)
is a prime of A, so I ¢ A" = R. Again, I is generated by regular elements
since it is left essential and for u € I regular uJ € R gives Ju S u 'Ru =R
hence JI C R.

O]

Corollary 2.3.5. P is the unique maximal ideal of R.

Proof. Consider an ideal I ¢ P and a regular element u of R which is in [
but not in P (such an element exists since I is generated by regular elements).
Then Ru = RuR #+ R so u™' ¢ R. From Ru"'RuR = R with RuR ¢ P we
obtain Ru"'R ¢ R which is a contradiction. O

Remark 2.3.6. In fact, we showed that every regular element of R\ P is already
invertible in R.

Corollary 2.3.7. IfC(P) ={x € R|x mod P regular in R/ P} satisfies the Ore
condition then it is invertible in R, i.e. Qp(R) =R or R is local and P is the
Jacobson radical of R.

Proof. If C(P) is an Ore set in the prime Goldie ring R which is also an order in a
simple Artinian ring A, then C(P) consists of regular elements and since C(P) <
R~ P it consists of invertible elements of R. Consequently, the localisation of R
at C(R) is equal to R. It then follows that P is the Jacobson radical of R. [

Proposition 2.3.8. If N P" =0 then C(P) satisfies the Ore condition.

Proof. We claim that 1+ P consists of units. Indeed, consider 1 +p with pe P
and assume it is not regular, then 7(1+p) = 0 for some 0 #r € R. Then r = —rp
yields 7 € M P™ hence r = 0 which is a contradiction. If ¢ € C(P) then € is
regular in R/P. We have that P+ Rc is essential in R since it contains P hence
it is generated by regular elements. Since Ru = RuR for regular u, it follows
that P + Rc is a two-sided ideal of R, hence P+ Rc= R and Ré= R i.e. Cis
invertible. Then there is an % € R with ¢ = 1 which means uce 1+ P. If r¢ =0
then uru~luc = 0 which would contradict the fact that all elements of 1 + P
are units. Consequently, C(P) consists of R-regular elements. For every r € R
and c € C(P) we have cr = cre™c = r'c which gives the left Ore condition and
also rc = cc™lre = er’ which gives the right Ore condition. Therefore C(P) is
an Ore set. O
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Corollary 2.3.9. /f N P™ =0 then C(P) is invertible in R and R is local with
Jacobson radical P.

Corollary 2.3.10. R/P is a skewfield.

Proof. If @ € R/P is not invertible then it is not regular (cfr. the proof of
proposition 2.3.8), say sa = 0. Let @ = a mod P and 5 = s mod P, then
sa € P implies (Rs+ P)a ¢ P. Furthermore, Rs+ P is two-sided and it contains
P strictly so Rs+ P = R. This means that Ra € P so @ = 0. 0

Proposition 2.3.11. Under assumptions as before, the left R-ideals are totally
ordered and every finitely generated left R-ideal is generated by one regular
element.

Proof. By remarks 2.2.10 and 2.3.3, left R-ideals are R-ideals. Suppose zy € P
with either x or y regular in A. We suppose without loss of generality that
x is regular, so it is invertible in A. We find Ry = xRz 'ay = Rxy € P so
since (R, P) is prime, x or y must be in P. Consider now z regular (hence
invertible) in A\ R. Since = ¢ R, there must be a p e P with xp ¢ P (or px ¢ P
in which case we argue similarly). Then we have Rz"tzp c P so 27! € P since
it is A-regular. Consider now a finitely generated left ideal I in R. By [66],
it is generated by R-regular elements so it is generated by a finite number of
R-regular elements say I = Ruq + -+ + Ru,,. Since R is Goldie, every R-regular
element is A-regular, so by the preceding statements either ulugl or ugui1 must
be in R. Suppose the latter (again, in the other case we argue similarly), then
Rusg = RUQ'U/ILUQ € Ruj which means that Ruj + Ruo = Ru;. By induction we
find that every finitely generated left ideal is principal and in fact even principal
for a regular element. This in turn implies that the finitely generated left ideals
are totally ordered by inclusion. Suppose now that I and J are left R-ideals
with J ¢ I. There must be a regular z € J\ I and for every y € I we have either
yxr~! € R which would imply y € zR € J or zy~! € R but this is contradictory
since it implies x € Ry ¢ I. O

2.4 Arithmetical pseudo-valuations associated to in-
variant primes

An arithmetical pseudo-valuation (or apv for short) on R as before is a function
v:F(R) - T for some partially ordered semigroup I" such that:

(APV1) v(1J) =v(I)+v(J);
(APV2) v(I+J)>min{v(I),v(J])};

(APV3) v(R) =0;
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(APV4) I cJ implies v(I) > v(J).

For more information about arithmetical pseudo-valuations, we refer to [59] and
[95]. In this section, we will assume that (R, P) is an invariant prime. Note
that we will use + for the operation on I even if it need not be commutative.
Similarly, we use 0 for the neutral element. This notation is in concordance with
the usage in e.g. [59] and [95].

Theorem 2.4.1. For any (R, P) there is an arithmetical pseudo-valuation v :
F(R) - T, where T is a totally ordered semigroup, such that

P={acA|v(RaR)>0} and R={aec¢A|v(RaR)>0}.

Proof. Observe that for any I,.J € F(R) we have I.J € F(R) and I +J € F(R),
moreover for every a € A we have RaR € F(R). Indeed, if a € A then there is a
regular u € R such that ua € R since R is an order, then RuaR = RuRaR € RaR
and as an R-ideal, RuaR contains a regular element of R. If I and J are in
F(R) then IJ contains a regular element and if ul € R and vJ € R for regular
u and v then Jv € R so ulJv € R whence vul.J € vRv™' = R with vu regular.
For I+.J we have vu(I+J) ¢ R+vuJ with vuJ = vuv~'vJ € R since vuv™ € R.

Forany I € F(R) we definev(I) = (P:1)={ae A|al c P} andsince RaRI ¢
P if and only if TRaR c P this is also equal to v(I) ={a€ A|Iac P}. Note
that v(I) # {0} because ul € R for some regular u € R, hence 0 # Pu c v(I).
We also have v(R) = P. Put I' = {v(I) | I € F(R)} and define a partial order
< by

v(I)<v(J) < ov()cou(J).

Note that if I ¢ J then v(I) > v(J). We claim that T" is in fact totally ordered.
Indeed, if I,J € F(R) such that v(I) ¢ v(J) and v(J) ¢ v(I) then there is an
a€Awithal € PbutaJ ¢ P andabeA with bJ c P but bl ¢ P. Since P is
prime, aJbl ¢ P but RblaJ ¢ RbPJ c RbJ c P yields RaJbl € P which is a
contradiction in view of lemma 2.3.4.

We can define a (not necessarily commutative) operation + on I' by putting
v(I) +v(J) = v(IJ). The unit for this operation is v(R). We now verify
that + is well-defined. Suppose v(I) = v(I") and v(J) = v(J") and consider
x € v(IJ), then ReRIJ ¢ P so RxRI c v(J) = v(J') or RekRIJ ¢ P. By
the same lemma as before, IJ'RxR ¢ P follows hence J'RzR < v(I) = v(I")
i.e. I'J'RxR c P which implies x € v(I'J") and consequently v(IJ) cv(I'J").
The other inclusion can be obtained by the same argument if the roles of I,.J
and I',J’ are interchanged.

We now check that this operation is compatible with <. Take some v(I) > v(J)
and consider v(HI) and v(HJ). If e v(HJ) then ¢HJ € P so qH cv(J) c
v(I) which implies gHI € P so q € v(HI). To prove that < is also stable under
right multiplication, we consider ¢ € v(JH). Then ¢qJH < P or equivalently
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JHq ¢ P. By lemma 2.3.4 HqJ ¢ P follows so Hq ¢ v(J) € v(I) hence
IHqc Pie gev(IH).

If v(I) <v(J) then al ¢ P yields a(I +J) < P since aJ € P, so v(I+J) 2
v(I) =min{v(I),v(J)}. Together with the preceding, this implies that v is an
arithmetical pseudo-valuation. The only thing left to prove is that

R={aeA|v(RaR) >0} and P={acA|v(RaR)>0}.

Suppose v(RaR) > 0 = v(R) = P, then there is some x € v(RaR) ~ P. Now
xRaR < P gives a€ P, so {a€ A|v(RaR) >0} < P. If pe P, then v(RpR) 2
R2 P, hencepe{acA|v(RaR)>0}so P={acA|v(RaR)>0}. IfacA
is such that v(RaR) =0 and p € P then v(RaRRpR) = v(RaR) + v(RpR) =
v(RpR) >0 so RaRRpR ¢ P and therefore ap € P which implies a € R since
R = A" On the other hand, if 7 € R then PRrR ¢ P. Since RrR is generated
by regular elements, it follows that r € Y. Ru; R for a finite set of regular u;.
Consequently, since I' is totally ordered, v(RrR) = v(Ru;R) where v(Ru;R)
has the minimal value among these regular elements. If v(RrR) < 0 then
v(P) <v(PRrR) since PRrR < P and then

v(P) <v(PRrR) =v(P)+v(RrR) <v(P) (2.1)

since v(RrR) < 0. This means that all < in 2.1 are actually equalities and
in fact v(P) = v(P) + v(Ru;R) = v(PRu;R) so if aPRu;R < P then also
aP ¢ P. By choosing a = u;l we find u;lP c P. In a similar fashion we find

Pu;' ¢ P and consequently u;! € AY = R so v(RrR) = v(Ru;R) = v(R) = 0

)

which contradicts v(RrR) < 0. Consequently R ={a € A|v(RaR) > 0}. O

Proposition 2.4.2. With R, P and A as before, I is a group if and only if for
any fractional R-ideal I there is a nonzero y € R with yI € R but yI ¢ P.

Proof. If T is a group and I € F(R) then for some J € F(R) we have v([) +
v(J) =0 ie v(lJ)=wv(JI)=v(R). Consequently, IJP ¢ P 2 PIJ so
IJc AP = R. Since alJ c P iff aR € P we have I.J ¢ P. Then we can choose
ayeJ with Iy < R but Iy ¢ P which implies RIRyc R and RIRy ¢ P.

Suppose now that there is some y with yI € R but yI ¢ P. For any x € v(RyRI)
we have RtRRyRI ¢ P which implies RzR < P and consequently = € v(R).
From RyRI ¢ R we can deduce v(R) < v(RyRI) hence v(R) = v(RyRI)
which means that v(RyR) is the inverse of v(I). O

Note that the second part of the proof of the preceding theorem guarantees
that every v([]) is also v(RaR) for some a € A.

Lemma 2.4.3. IfNP" =0 and ' is a group then R is a Dubrovin valuation
ring (cfr. 3.2.1 for a definition of Dubrovin valuation rings).
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Proof. By applying corollary 2.3.9 one finds that R/P is prime Goldie with
invertible regular elements, i.e. it is a simple artinian ring. Consider ¢ € A\ R.
There exists some y € A with RyRRqR ¢ R but RyRRqR ¢ P. Then there
exists a z € RyR with zqg € R~ P and since RqRRyR ¢ R but RgqRRyR ¢ P
we can use a similar construction to find an element 2z’ with gz’ e R\ P. [

Theorem 2.4.4. IfT is a group and N P™ =0, then R is a valuation ring and
A is a skewfield.

Proof. If a € R~ P then P + Ra is essential, two-sided and contains P so it is
equal to R. Then, for some r € R and p € P, we have 1 = p+ra. We have
already seen (cfr. proof of proposition 2.3.8) that 1 + P consists of units, so
ra is a unit hence a is a unit. If ¢ € A\ R there is some y with yqg € R\ P,
so yq is a unit of R hence ¢ is a unit of A. Finally, if some p € P were not
invertible, then Ap € P since no element in Ap is a unit. Then we would have
A(RpR) c P, but this would contain some regular u which is invertible in A
and Au € P would give a contradiction. This implies that A is a skewfield
and R is an invariant Dubrovin valuation ring on A, so it must be a valuation
ring. ]

Recall that a partially ordered group G is called archimedean if (for all a,b € G)
VneZ:a"<b = a=e

where e is the neutral element of G.

Corollary 2.4.5. IfT" is an archimedean group, then R is a valuation ring.

Proof. In view of the preceding proposition we only have to show that N P" = 0.
Suppose it is not, then I = N P™" is a nonzero ideal. Pick 0 # b € I, then
RbR c I is a fractional ideal, hence there exists an ideal J € F(R) with v(J) +
v(RbR) = 0. Then v(P") + v(RbR) < 0 for any n, so nv(P) + v(RbR) < 0.
However, putting v(RbR) =, there must be some n with nv(p) > —y which is
a contradiction. O

Proposition 2.4.6. Let R be any order in a simple artinian ring A and suppose
that v: F(R) — T is an apv which takes values in a totally ordered semigroup
I". Then:

(1) P={aecA|v(RaR) >0} defines a prime (P, AT) for which
{aeA|v(RaR) >0} c A”.

(2) ifv(l)={aecA|al c P} andT is a group, then the inclusion from (1)
is an equality.
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Proof. (1) For a,b e P we have v(R(a+b)R) > min{v(RaR),v(RbR)} which
is strictly positive, so a + b€ P. Clearly, P is an ideal in A” and R c A since
v(R) =0 and we have v(RrRRpR) = v(RpR) >0 for all e Rand pe P. If
a,a’ € A are such that aAa’ ¢ P then aRa’ ¢ P hence v(RaRa'R) > 0. From
v(RaR) + v(Ra'R) > 0 it follows that either v(RaR) > 0 or v(Ra'R) > 0, i.e.
either a € P or a’ € P. If v(RaR) > 0 for some a € A then for all p € P we have
v(RaRpR) =v(RaR) +v(Rp) >0 and v(RpRaR) = v(RpR) +v(RaR) >0 so
ae AP

(2) Consider a € AP, RaR is invertible in F(R) so there is some J € F(R)
with v(RaR) + v(J) =0 = v(J) + v(RaR), hence v(JaR) = v(RaJ) = 0. If
v(RaR) < 0 then v(J) > 0 or in other words J ¢ P. But then a € A” would
give RaRJ ¢ P which implies v(RaR.J) > 0 which is a contradiction. Therefore
v(RaR) >0 and AT = {a € A|v(RaR) > 0}. O
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Chapter 3

Dubrovin valuation rings

Generalising valuations to a non-commutative context poses a few basic prob-
lems. Firstly, in some sense, the right non-commutative counterpart to fields are
simple artinian rings, but these may contain zero-divisor — something valuations
cannot handle.! Secondly, even for skewfields, good extensions do not exist in
general.?2 To deal with these problems, Dubrovin introduced what he called
non-commutative valuation rings in two seminal papers: [22] and [23]. In [22],
he proved a number of equivalent characterisations of these non-commutative
valuation rings and studied the ideal theory of such rings. In [23], he proved
some extension results, the most important of which is probably that if a skew-
field D is finite dimensional over its centre, every central valuation extends to
a non-commutative valuation ring on D. Non-commutative valuation rings —
under the name of Dubrovin valuation rings — have been studied quite a bit
since then by, a.o., Grater, Morandi, Brungs and Wadsworth. For general theory
about Dubrovin valuation rings, we refer the reader to [59] or [58].

A problem which has garnered attention since the introduction of Dubrovin
valuation rings is defining a good notion of value functions to associate to these
rings; after all, one of the nicest things about commutative valuation rings is the
existence of both a completely ring theoretical definition and a more analytic
one in terms of value functions. Various attempts have been made to introduce
value functions, cfr. e.g. [69] or [29].

We will give an overview of the main results concerning Dubrovin valuation
rings, including some characterisations and some of the more important results.
We will then follow the outline from Van Geel's work and introduce arithmetical
pseudo-valuations in much the same way as in 2.4. For this we will need to
restrict our attention to Dubrovin valuations rings R with J(R)? # J(R). These
rings can be considered as the right non-commutative counterpart of classical

1For this reason, some authors — in particular Mahdavi Hezavehi — have considered
matrix-valuations (see e.g. [52] or [16]) but the results remain somewhat unsatisfactory.
?Although they do in some important cases, cfr. e.g. [68] or [3].
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valuation rings, as they will allow us to study divisor theory for bounded Krull
orders (cfr. chapter 4). The exposition in this chapter is along the lines of [59],
while most of the new results (which are contained in section 3.4) come from
[102].

3.1 Chain rings and n-chain rings

Definition 3.1.1. A subring S of some ring R is called a left n-chain ring in R
if for all ag,...,an+1 in S there is some i with

a; € Z(IjS.
J#i
A right n-chain ring is defined similarly and if S is both a left n-chain ring and
a right n-chain ring it is called an n-chain ring. If n =1, we say S is a chain
ring.

Note that if S is an n-chain ring of R and S ¢ R’ € R, then S is an n-chain ring
of R’. Since the ideals of a valuation ring are linearly ordered, chain rings can
be considered as generalisations of valuation rings. They have been studied in
some detail, mainly by Brungs and Torner (cfr. e.g. [10], [4]), but very little has
been written about n-chain rings for arbitrary n. In fact, apart from Dubrovin’s
original paper ([22]) and some books dealing with Dubrovin valuation rings ([59]
& [58]), nothing seems to have been published about them.

Let now S be an n-chain ring in a simple artinian ring @ and suppose S-
ideals of () to be linearly ordered. In this case, we can mimic a construction
by Morandi ([69]). Define the stabiliser st(.S) = {q €Q|qSq!= S} and put
I's =st(S)/U(S). T's can be ordered in a canonical way by = > 75 if S ¢ yS
(where x and y are in st(.5)). Since S-ideals are linearly ordered, I's must also
be linearly ordered.

Proposition 3.1.2. Suppose S-ideals of Q) are linearly ordered. If for all ¢ + 0
in Q there is an s4 in st(.S) with SqS = s4S, then there is a map v:Q — T to
a totally ordered group T' satisfying (for all q,q' € Q):

(i) v(¢-q") > min{v(q),v(q")},

(i) v(qq") > v(q)v(q),

(iii) v({g € U(Q) |v(g) =v(¢™")"'}) =T,
(iv) T ~Tg,

(v) S={qeQlv(q)=0}.
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Proof. The proof is exactly the same as for Dubrovin valuation rings, which was
done by Morandi in the aforementioned [69]. O

It might be of interest to mention the special case of chain rings in skewfields.
Brungs and Torner introduced in [10] a partial valuation on a chain ring S by
putting W = {aS|a+0},amap z: W - W :aS ~ xaS for any z # 0, and
H(S) = {& | = + 0} the group of those maps. This group is partially ordered by

I >g < xzaS cyaS

leading to a canonical partial valuation v : Q — H(S). The group of positives
for v can be described in a very nice way:

Proposition 3.1.3. If S is a chain ring in a skewfield and v is the associated
partial valuation, then

{geQ|v(g) 2v(1)}= N sRs™L.

0+seS

Proof. See [10], O

Compare this result with proposition 2.2.4 where the intersection is taken over
all ¢ in U(Q). Finally, we can not but mention the existence of an interesting
structure theorem for chain rings. Since the statement is quite involved and
not necessary for us, we will not state it and instead suffice with pointing the
interested reader to [28].

Remark 3.1.4. [28] and various other sources use the term serial ring instead
of chain ring.

3.2 The basics of Dubrovin valuation rings

The usual definition of a Dubrovin valuation ring is as follows:

Definition 3.2.1. Let ) be a simple artinian ring. A Dubrovin valuation ring
on @ is a subring R with a prime ideal M such that:

(DV1) R/M is simple artinian,

(DV2) for all q € Q there are r,r’ € R such that rq,qr' € R~ M.

There are quite a few alternative characterisations, but in order to even state
them, we will need some more terminology.

Suppose that @ and @’ are simple artinian rings. We can extend them both
by a symbol co which satisfies the rules z + co = 00 = 00 + = (for any x) and
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x-00 =00 =00z (for any invertible z). Consider a surjective map f:Q — Q'

such that f(1) = 1, f(zy) = f(2)f(y) and f(z +y) = f(z) + f(y) provided
the right-hand terms are defined. We call such a map a left point if for any ¢

with f(q) = oo there is some r € @) such that f(r) # co and 0 # f(rq) # oo.
We define right points in a similar way. If f is both a left and right point, it is
called a point.

If R is a Dubrovin valuation ring, one can consider the canonical map 7: R —
R/M. R/M considered as a finitely generated module over itself is a direct sum
of a finite number of simple R/M modules. This finite number will be denoted
by d(R/M).

Recall that an order in a simple artinian ring is called Bezout if any finitely
generated left or right ideal is cyclic. If every finitely generated ideal of a ring
R is projective as an R module, R is said to be semi-hereditary. Now we are
ready to state the alternative characterisations theorem:

Theorem 3.2.2. For a subring of a simple artinian ring (), the following are
equivalent:

(1) R is a Dubrovin valuation ring,

(2) there is some simple artinian Q' and a point f : Q — Q' such that

{geQ[ f(q) # 0} =R,
(3) R is a local Bezout order,
(4) R is a local semi-hereditary order,

(5) R is a local d(R/M)-chain ring.

Proof. See [59], [58] or [22]. O

Remark 3.2.3. 1. Any Dubrovin valuation ring R on a simple artinian @ is
the domain of a localised prime, so R determines M uniquely and vice
versa. In fact, M must necessarily be the Jacobson radical of R (cfr.
[59]). Consequently, 1+ P consists of units.

2. Given a Dubrovin valuation ring R, it can easily be checked that

ifge R

YUy o0y —> UOOII—)g
F:QU{e0} » R/MU {0} g {oo D

is the (two-sided) point associated to R.

It is well-known that any simple artinian ring is isomorphic to M, (D) for some
n and some skewfield D (cfr. e.g. [67]).
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Proposition 3.2.4. If R is a Dubrovin valuation ring on Q ~ M, (D), then

(i) M, (R) is a Dubrovin valuation ring of M,,(Q),
(ii) eRe is a Dubrovin valuation ring for any idempotent e,

(iii) R =qM,(S)q* for some q € U(Q) and some Dubrovin valuation ring S
of D,

so the class of Dubrovin valuation rings is Morita invariant.

Proof. See [59], [58] or [22]. O

Example 3.2.5. The following is perhaps the easiest non-trivial example of a
Dubrovin valuation ring: let H denote the Hamilton quaternions over Q, let Z,
be the p-valuation ring for some prime number p and put R = Z,+Zyi+Zy,j+Zpk
where {1,1, j, k} is the usual basis of H. We will denote the p-valuation by v, and
the Jacobson radical of R, which is pZ,,+pZyi+pZy,j+pZyk by P. Suppose x =
a+bi+cj+dk is an element of H\R and put n = min {v,(a),v,(b), vp(c), vp(d)}.
Multiplying z with p™ yields an element of R which is not in P, so (R, P)
satisfies (DV'2).

3.3 Some ideal theory for Dubrovin valuation rings

We would like to introduce arithmetical pseudo-valuations associated to some
class of Dubrovin valuation rings, but in order to do so we will have to study
the ideal theory of Dubrovin valuation rings a little bit. We will strive to keep
this section as concise as possible and will therefore not go into any details
whatever. Fix for the remainder of this section a Dubrovin valuation ring R in
a simple artinian ring Q. The following proposition will be crucial for us:

Proposition 3.3.1. The set of R ideals is totally ordered.
Proof. See [59]. O

Slightly less important but still very interesting is the following:

Proposition 3.3.2. Any R-bimodule in Q) is in fact an R-ideal.

Proof. See [59]. O
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We will now do some arithmetic using the R-ideals of @), in much the same vein
as in [85]. Fix for an R-ideal I the following notation:

O(I)={qeQ|qlcI}
O,(I)={qeQ|Iqc T}
I"={qeQ|qlqcI}.

For overrings S and T' of R, we introduce further notation
(T:1)1={qe@fql T}y  (S:1)r={qeQ|Iqc S}
and finally we put
T=(O(1):(O:D)r)r I"=(0x(1): (O : D))y

Lemma 3.3.3. With notation as before we have

(1) I* =(I'Y)Y 1t =*T={Sc|ceU(Q),I cSc},

(2) (I")* =17,

(3) (I =1
Proof. See e.g. [59]. O

Definition 3.3.4. An R-ideal I of Q is called divisorial if I* = I. The set of
divisorial R-ideals will be denoted by D(R).

Proposition 3.3.5. The set D(R) is a groupoid® with a multiplication defined
by IoJ=(IJ) ifO.(I)=0,(J).

Proof. This is an easy verification. (Or see [59].) O

As an immediate consequence, the set
Ds(R) ={IeD(R)| O(I) =5 =0,(I)}

is a group for every overring S of R. Recall that an ideal of a ring R is called
a Goldie prime ideal if R/P is a prime Goldie ring, i.e. if R/P has a simple
artinian ring of fractions. The maximal length of a chain

PigPyg--gh,

of Goldie prime ideals is called the rank of R. Note that a rank 1 Dubrovin
valuation ring in a simple artinian ring A is a maximal subring of A. A pair
P, ¢ P, of Goldie primes with no further Goldie primes in between is called a

3For groupoids see chapter 5.
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prime segment. Prime segments have been studied in some generality (cfr. [8])
and have been classified for Dubrovin valuation rings (cfr. [7]), but are not very
important for us. We will suffice with stating a theorem indicating which groups
can occur as the group of divisorial ideals for some rank one Dubrovin valuation
ring.

Proposition 3.3.6. For a rank one Dubrovin valuation ring R, one of the fol-
lowing holds:

(i) There is no ideal 0 ¢ I ¢ J(R) and D(R) is the trivial group.

(ii) There is a (non-Goldie) prime ideal 0 ¢ P ¢ J(R) and D(R) ~ (Z,+) is
generated by P*.

(i) For every r € J(R) \ {0} there is an ideal I with a € I and NpenI™ =0.
In this case we have

Z f J(R)? ¢ J(R
p(ry = [0 IR S IE).

(R,+) if J(R)*=J(R)
This suggests that our definition of rank is the right one, since the valuations
of rank one in the classical sense are those with value groups isomorphic to a
subgroup of (R, +).

3.4 Arithmetical pseudo-valuations on Dubrovin valu-
ation rings

For primes containing an order with commutative semigroup of fractional ide-
als, Van Geel ([95]) introduced arithmetical pseudo-valuations, but this condi-
tion is very strong and reduces the applicability in practice to maximal orders
and Dubrovin valuation rings in finite dimensional central simple algebras. For
Dubrovin valuation rings on infinite dimensional central simple algebras the
semigroup F(R) need not be commutative. In this section, which is based on
[102], we will show that this condition can be relaxed so as to obtain arithmetical
pseudo-valuations for more general Dubrovin valuation rings.

Throughout, the Jacobson radical of a Dubrovin valuation ring R will be denoted
by P.

Proposition 3.4.1. For a noetherian Dubrovin valuation ring R we have for all
I,JeF(R) thatIJ< P iff JIcP.

Proof. From I.J c P it follows that either I ¢ P or J ¢ P, since (R, P) is a
localised prime. Assume without loss of generality I ¢ P. Since R-ideals are
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linearly ordered (3.3.1), if JI ¢ P then P ¢ JI so we have Rc JI c JPcJ
hence J = RJ ¢ JIJ < JP < J which gives J = JP. Since R is an order,
there is some regular u € R with uJ € R and since R is noetherian uJ =Y a; R
for a finite set of a@;'s in wJ. Then also J = Yu'a;R, so J is a finitely
generated R-submodule of A. By Nakayama's lemma J must be zero, which is
a contradiction. ]

Corollary 3.4.2. If R is a noetherian Dubrovin valuation ring then there is an
arithmetical pseudo-valuation

v:F(R)->T:I— (P:I)={acA|al c P}

for some totally ordered group T'. Furthermore, P = {a € A|v(RaR) >0} and
R={aeA|v(RaR) > 0}.

Proof. Using the preceding proposition instead of 2.3.4 we can repeat the proof
of theorem 2.4.1. The only thing we need to prove is that the I" which said
theorem provides is a group, so consider I € F(R). By a similar argument as in
the proof of proposition 3.4.1 it is finitely generated as a left R-ideal of A. Since
a Dubrovin valuation ring is a Bezout order (3.2.2), it is cyclic. In fact I = Ru
for some regular u and thus RuR = Ru. Since R is a Dubrovin valuation ring,
there is some a € A with ua € R~ P. Then Rua ¢ R, Rua ¢ P and Ia € R,
Ia ¢ P. in the same way one obtains a b such that b € R but bl ¢ P. We can
now repeat the last part of the proof of proposition 2.4.2 to conclude that I' is
a group. ]

Remark 3.4.3. If R is a Dubrovin valuation ring where
v:F(R)->T:I—{acAl|al cP}

is a non-trivial arithmetical pseudo-valuation with values in a totally ordered

group, then I.J € P if and only if JI ¢ P. Indeed, suppose IJ € P and JI ¢ P
then, as in proposition 3.4.1, we find JP = J but then v(P) = 0 which is
impossible.

If R is non-noetherian, then P = P? is possible in which case no nice apv can
exist since otherwise v(P) = 2v(P) which would imply v(P) = 0. If we exclude
this slightly pathological case, a nice apv does exist.

Proposition 3.4.4. Let R be a Dubrovin valuation ring with N P™ = 0, then
there is an apv as before.

Proof. If I,J € F(R) with IJ ¢ P but JI ¢ P. The same argument as in

proposition 3.4.1 leads to J = JP so J = JP" for any n. There is some regular
u € R with u.J ¢ P hence uJ = uJP™ ¢ P""1. But then uJ = 0 which implies
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J =0 and this is a contradiction. Now we can proceed as in corollary 3.4.2 to
find an apv with values in a semigroup.

The only thing we need to prove is that I' is a group. Lemma 1.5.4 in [59]
says that P = Rp = pR for some regular p € P. Since P is principal as a
left R-ideal, lemma 1.5.6 in the same source gives pPpl=R=p1lp (recall
that P~' = {a e A| PaP c P}). Consider now a fractional R-ideal I. Clearly,
(R:1)I c R. Suppose we also have (R:I)I c P, then P"1(R:I)I c R hence
PYR:T)c(R:1I)so PY(R:I)IcP. This means (R:1)I ¢ P? and by
repeating this process we find (R:I)I € P" for any n, but (R: [)IcNP"=0
which is a contradiction. Therefore, (R:I)I € R but (R:1)I ¢ P, so there
exists an a € (R: I) such that al € R but al ¢ P. O

Example 3.4.5. Consider (R, P) as in example 3.2.5. The maximal ideal of R
is P =P, + Pyi+ P,j+ P,k where P, is the maximal ideal of Z, and P" is just
Py +Pli+ P)j+Pyk. This immediately yields N P" = 0, so there exists an apv
for this Dubrovin valuation ring; it is simply the map v : F — Z which sends P"
to n. This definition makes sense, since we will show later (cfr. 3.4.8) that all
fractional ideals are of the form P".

Perhaps more interesting than this simple example if the following, which demon-
strates the use of our construction to obtain apvs on more exotic Dubrovin
valuation rings.

Example 3.4.6. Let (Q be a simple Artinian ring, let 0 € Aut(Q), and put
Q[X, o] the skew polynomial ring over Q. Q[X, 0] has a maximal ideal P =
XQ[X,0]. Put T the localisation of Q[ X, o] at P. For t = (¥ a;2") (X bzt) !
arbitrary in T, we can define f(t) = apby'. This givesamap ¢: 7T » Q : t ~
f(t). It has been shown in [107] that an order R of @ is a Dubrovin valuation
ring if and only if R = ¢ '(R) is a Dubrovin valuation ring of T and that
J(R) = J(R) + J(T). It is clear that if R is a Dubrovin valuation ring on Q
with N J(R)™ = 0 we also have N.J(R) = 0. Therefore an apv exists, but R is
not finite dimensional over its centre.

The following characterises noetherian Dubrovin valuation rings within the class
of rank one Dubrovin valuation rings. The result may be known but we found
no reference for it in the literature.

Proposition 3.4.7. For a Dubrovin valuation ring R on a simple Artinian ring
A the following are equivalent:

(1) R is noetherian.
(2) R has rank 1 and P  P?.
(3) R has rank 1 and N P" = 0.
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Proof. (1) = (2) If R is noetherian then all ideals (and R-ideals of A) are
principal, so P # P2. Suppose 0 # @ is another prime ideal in P. Let P = Rp,
then @ = Ip for some non-trivial ideal I of R. @ = IP yields I € @ since @
is prime and P ¢ Q. Hence Q = IP c QP < Q implies Q = QP which implies
@ = 0 by Nakayama's lemma. (2) = (3) If P # P2, then N P™ # P which, by
Lemma 1.5.15 in [59], gives NP™ = 0. (3) = (1) Since NP" =0, P + P2
Since R is rank 1, R = O;(I) = O,(I) for any R-ideal I. By proposition 1.5.8
in [59], it follows that if I is not principal, then II! = P and P = P? which is
a contradiction. O

Recall that an order is an Asano order if every ideal I # 0 of R is invertible. If R
is an Asano order satisfying the ascending chain condition on ideals, then F(R)
is the Abelian group generated by maximal ideals and every maximal ideal is a
minimal non-zero prime ideal (see e.g. [66]).

A semi-local order R in a simple Artinian A is a noetherian Asano order if and
only if it is a principal ideal ring. If R is a Dubrovin valuation ring of A then
R is a maximal order if and only if rk(R) = 1 and R is Asano if and only if it
is a principal ideal ring, so a noetherian Dubrovin valuation ring is a noetherian
maximal order and an Asano order, i.e. a principal ideal ring.

Proposition 3.4.8. If R is a noetherian Dubrovin valuation ring then the cor-
responding apv takes values in Z.

Proof. Since R is a noetherian Asano order, F(R) is generated by the maximal

ideals of R, but since P is the unique maximal ideal and the value group is
necessarily torsion-free, we have F(R) = Z. O
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Chapter 4

A divisor theory for bounded
Krull orders

Divisor theory is an important tool in classical algebraic geometry. Therefore,
when trying to develop a non-commutative algebraic geometry, it is natural to
look for a suitable analogon of divisor theory in the non-commutative world. In
the commutative case, the proper context for developing divisor theory are Krull
domains. These are, by definition, integral domains R satisfying

(1) R, is a discrete valuation ring for all p € X'(R)
(2) R=Nyex1(r) Ry

3) Any r e R~ {0} is contained in R, for but finitely many p e X'(R
P

where X1(R) is the set of height one prime ideals of R. In [57], Marubayashi
gave a generalisation of this concept by replacing the discrete valuation rings
with noetherian local Asano orders and the localisations with noetherian essen-
tial overrings of R.1' This definition was again generalised by Chamarie (cfr.
[12]) to the concept of non-commutative Krull orders as we will use it?. When
comparing the definition above to 4.2.2, it becomes clear that Chamarie's defi-
nition is a logical choice.3

We will use the arithmetical pseudo-valuations associated to Dubrovin valua-
tion rings with non-idempotent Jacobson radical, as established in chapter 3,
together with results from [59] to develop a divisor theory for bounded Krull
domains. We will, in particular, be able to prove some useful approximation

A similar approach was followed in [48].

2Although we will be mainly interested in the case of bounded Krull domains, where both
definitions coincide.

3|t may be of interest to also mention the concept of Q-Krull rings, see [41].
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theorems which are quite similar to the commutative case. The first two sec-
tions of this chapter are based on the exposition in [59], while the last section
contains mostly material from [102].

4.1 Bounded Krull orders...

Definition 4.1.1. Let R be a ring and let E be an injective left R-module.
A collection F of left ideals of R is called a left Gabriel topology on R if
Hom(R/I,E) =0 for all ¢ F and

(1) Ir't={xeR|arel}eF forall I e F andreR,

(2) if I is a left ideal of R such that Iz~ € F for all z in some J € F, then
IeF.

Mutatis mutandis right Gabriel topologies are defined. If F is a Gabriel topology,
it follows immediately that F is closed under multiplication and that it is a filter.
In fact, in e.g. [92] Gabriel topologies are introduced as filters satisfying (2).
The interested reader is referred to either [92] or [32] for more information on
Gabriel topologies.

Let R now be a subring of some simple artinian ). Consider
Fr={I|TIleft ideal: (R:Iz™"), = R for all z € R}.

This g is a left Gabriel topology known as the canonical left Gabriel topology.
If I'is an ideal, we put I’ = {re R|3F ¢ Fr:Frcl}. Wecall T’ the T-closure
of I and we say that [ is 7-closed if I = T.

Definition 4.1.2. A maximal order is called a Krull order if it satisfies the
ascending chain condition on T-closed left ideals.

Example 4.1.3. Clearly, any noetherian maximal order is a Krull order, but the
converse does not hold in general. Consider for example R = k[(X;)iez] where
k is a field and Z is an infinite set. Then an Ore extension R[X;0,0] will be a
non-noetherian Krull order.

It is perhaps of interest to compare this definition to the one given by Maruba-
yashi in [57]. To avoid confusion, we will call a Krull order in the sense of
Marubayashi a Marubayashi order. A Marubayashi order, then, is a prime Goldie
ring A with two collections (R;)iez and (S;);es of essential overrings of A
satisfying:

(1) A=(N;Ri)n(N;S))

(2) R; is noetherian and local Asano for all
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(3) S; is noetherian and simple for all j

(4) |T] <00

(5) if a € A is regular, then aR; = R; for all but finitely many .

Definitions for the terminology may be found in loc. cit.

Recall that two orders R and R’ in a simple artinian ring @ are said to be
equivalent if there are some invertible c,c¢’,d,d’ € Q such that cR¢’ ¢ R’ and
dR'd’ c R.

Proposition 4.1.4. Any maximal order equivalent to a Krull order is itself a
Krull order.

Proof. See [12]. O

Proposition 4.1.5. Any Ore extension R[X, o] of a Krull order R is again a
Krull order.

Proof. See [12]. O

Remark 4.1.6. As Chamarie points out in [12], there are Krull orders which are
not Marubayashi orders. His argument is as follows: by [18], a simple noetherian
integral domain R has global dimension < 2 if and only if every maximal order
equivalent to M, (R) is simple. Since e.g. the Weyl algebra A, (C) with n > 2
is a simple noetherian integral domain with global dimension > 2, there are
maximal orders equivalent to M, (R) which are not simple. By the preceding
proposition, these are Krull orders which cannot be Marubayashi orders since
they are not simple.

The following proposition, which is also due to Chamarie, relates the two defi-
nitions in a convenient manner:

Proposition 4.1.7. An order R in a simple artinian ring () is a Marubayashi
order if and only if:

(i) R is a Krull order
(i) Ro={qeQ|3I two-sided ideal of R: qI < R} is noetherian
(i) for any non-zero two-sided ideal I of R, one has IRy = Ryl = Ry.

Proof. See [12]. O

Definition 4.1.8. A ring is called left bounded if any essential left ideal contains
a non-zero two-sided ideal.
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Once more, the concept of a right bounded ring is defined analogously. It has
been shown by Chamarie ([12]) that a Krull order is left bounded if and only
if it is right bounded, so we will simply talk about bounded Krull orders. If a
Krull order R is bounded, then Ry = @) and consequently R is a Marubayashi
order. Remark 4.1.6 gives some examples of non-bounded Krull orders.

4.2 ...are the right context...

In this section we will study divisorial ideals in Krull orders and their localisation.
We will follow the exposition from [59] although many results are from [12].
Some additional results from [102] are also included.

Proposition 4.2.1. Consider a Krull order R. Let I = *(P{'---P5") be a divi-
sorial ideal for some maximal divisorial ideals P;. Then R can be localised at I,
Ry is a bounded principal ideal ring, and

(i) Rr =N Rp,;
(I'I') J(R[) = ﬂPZ‘R[.
Proof. See [59]. O

The following theorem is crucial. It shows that bounded Krull orders and
Dubrovin valuation rings are the proper counterparts for the Krull domains and
discrete valuation rings of the commutative case.

Theorem 4.2.2. Let R be a Krull order in some simple artinian ). Then:

(1) R=Ron(Npexi(r) Rp),

(2) for any P € X*(R), Rp is a rank one Dubrovin valuation ring with
J(Rp)2 * J(RP),

(3) any regular ce R is in U(Rp) for all but finitely many P € X'(R).
Proof. See [59]. O

In the case where R is a bounded Krull order, Ry = @ which yields R =
Npex1(r) 2p — in others words: bounded Krull orders are a proper context for
non-commutative divisor theory. We will now show that the definite article in
the title of this section is well-chosen. To this end we repeat a result from [59]
which is a converse of sorts to the previous theorem:

Proposition 4.2.3. If R is an order in some simple artinian () such that

43



(i) R=N;Ro, for regular Ore sets O;
(ii) Ro,is a local principal ideal ring

(iii) any regular c € R is in U(Rp,) for all but finitely many i
then R is a bounded Krull order.

Proof. See [59]. O

Theorem 4.2.4. Let R be a prime noetherian ring and an order in a simple
artinian Q. Suppose every minimal non-zero prime ideal is localiseable, Rp is
a Dubrovin valuation ring for every P € X1(R) and R = N Rp, then R is a
bounded Krull order.

Proof. Since R is noetherian, every Rp is noetherian too and since it is a
Dubrovin valuation ring it must be an Asano order hence a principal ideal ring.
Since every Rp is a maximal order, so is R. As a noetherian maximal order,
R is a Krull order and by theorem 4.2.2 every regular element is a non-unit in
only finitely many of the Rp's (for P maximal divisorial, i.e. P € X1(R)). The
theorem now follows from the preceding proposition. O

4.3 ...for non-commutative divisor theory.

The following example shows that, in a very simple case, we can readily introduce
divisors. Starting from this idea, we will develop some divisor theory and, in
particular, prove some approximation theorems.

Example 4.3.1. Consider the simple artinian ring M, (Q) *. The subring
M, (Z) is a Krull order in M,,(Q) with minimal prime ideals of the form pM,,(Z)
for some prime number p. The value function associated to pM,,(Z) is the map

vp: My (Q) > Z: (aij)ij = HZHJH {Vp(aij)}

where V), is the valuation on Q associated to p. In this way, we can associate to
any element = of M, (Q) the sum ¥, v,(z)p. Clearly, this sum has only finitely
many non-zero factors.

Let, for the remainder of this section, () be a simple Artinian ring and let R
be a bounded Krull order in ). We want to develop some divisor theory in
this context. The localisation of R at a rank 1 prime ideal P is a Dubrovin
valuation ring with J(Rp)? # J(Rp), so we can associate an arithmetical
pseudo-valuation vp to it.

*Or indeed M, (Q) for Q the field of fractions of a Krull domain Z; the reasoning is
essentially the same.
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Definition 4.3.2. A divisor of a bounded Krull order R is an element in the free
Abelian group @pex1(ryZP. To any I € F(R) we can associate the divisor
div(I) = X vp(Ip)P where Ip = Rpl. The set of divisors of R will de denoted
by Div(R).

This definition is justified by the following proposition (which is also given, with
a slightly different proof, in [66]):

Proposition 4.3.3. Suppose Rp is noetherian. If I is an R-ideal of A, then Ip
is an Rp-ideal of A.

Proof. Let u be regular in R with ul ¢ R, then RuRI ¢ R and RuR = Ru’
for some regular u’ € R. Then Rpu'l is the localisation of Ru'l and it is an
ideal of Rp. Rpu’ is the localisation of Ru’ so it is also an ideal of Rp, hence
Rpu'I = Rpu'Rpl = Rpu'Ip is an ideal of Rp. Now U’'Ip € Rp, i.e. Ip is an
Rp-ideal of A. O

Observe that, since any regular element is a non-unit in only finitely many
localisations, div(/) contains only finitely many non-zero terms. Moreover,
div(I) < div(J) if and only if vp(I) < vp(J) for all P e X*(R). By putting
I" = Npexi(ry Ip we find vp(I) = vp(I*). We can consider div : D(R) —
Div(R), which is a group morphism of Abelian groups. It reverses the ordering
in the sense that I ¢ J yields div(J)|div(]). We will now prove some approxi-
mation theorems. Maury (cfr. [64]) proved the first approximation result in the
sense of (A) hereafter. However, we will generalise the results in a somewhat
more elaborate way as used by Van Geel in [95] for rings with a commutative
(semi)group of fractional deals.

By theorem 4.2.2 and proposition 3.4.7, all Rp are noetherian. In view of
4.3.3, Ip is an Rp-ideal so it makes sense to define vp(x) = v((RzR)p) for an
element x of R.

Lemma 4.3.4. Let I be a fractional ideal. Foranyv =vp, theset {v(x) |z eI}
has a minimum which is equal to v(I).

Proof. It is clear that v(x) > v(I) for any z € I, so suppose there is some y
with v(I) < v(y) < v(z) for all z € I. Any z € v(y) must be in v(RzR), so
yRxR c P for all z € I which implies yI € P, hence y € v(I) which means

v(I) =v(y). O
Lemma 4.3.5. For any fractional ideal I, v(I) =0 for almost all v.
Proof. For any a € () there is some regular ¢ € R with ca € R. It is known

that any regular element of a bounded Krull order is invertible in all but finitely
many localisations Rp, so v(c) = 0 for almost all v and consequently v(a) >0
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for almost all v. By the preceding lemma, there is for any v some z, with
v(I) =min{v(x) |z eI} =v(xy,) =v((Rz,R)*). Since R is a Krull order, the
ascending chain condition holds on divisorial ideals, so {(Rxz,R)* | v} has but
finitely many elements, (Rx,, R)", ..., (Rz,, R)* say. But every divisorial ideal
contains a regular element, which is almost always invertible, hence v(Rz,,R) =
0 for all but finitely many v and all i € {1,...,n} whence v(I) = 0 for almost all
. O

We will denote by (A) the following approximation property:

Let vq,...,v; be a finite number of arithmetical pseudo-valuations associated to
rank 1 prime ideals in R, let n1,...,n; be integers, and let aq, ...,a; be elements
of Q). Then there exists some x € QQ such that v;(x—a;) >n; fori=1,....t and
v(z) >0 for any v ¢ {v1,..., v }.

Lemma 4.3.6. If (A) holds, we can pick x in such a way that v;(z — a;) = n;.

Proof. By (A), we can pick z such that v;(z — a;) > n;. Since v is surjective
and because of 4.3.4 we can also find z; with v;(2;) =n;. Then, once more by
(A), we can find 2" with v;(2’ — 2;) > n; from which we can deduce

vi(2") =i (2" = 2) +2) =ny

and
vi(z+2 —a;) =n;.

Therefore, z + 2’ is the  we were looking for. O

Lemma 4.3.7. Suppose again that (A) holds. For any vy, ...,v; and nga,...,n €
N there is a regular ¢ € R with v1(c) =0, v;(¢) >n; fori=2,...;t and v(c) =0
for any v ¢ {v1, ..., v }.

Proof. We can certainly find some x with vi(z) =0, v;(z) = n; for i =2,..,¢
and v(z) > 0 for any v ¢ {v1,...,v4}. Since v(x) > 0 for any v, x is in R.
Every v; comes from a Dubrovin valuation ring obtained by localising R at
a minimal non-zero prime ideal which we will call P;. RxzR is an ideal with
vi(RxR) =v1(x) =0, so RxR ¢ P;. Since these ideals are generated by their
regular elements, we can find some regular ¢ in RzR~ Py. Clearly, v(c) > v(z)
for any v, but v(c) = 0 — otherwise ¢ € P; would hold — which means that it
satisfies all the conditions from the statement. O]

Lemma 4.3.8. Assume the same setting as before. For every z € () and every
v there is some regular right invariant r,, with v(r,) = v(2) and v'(r,) > v'(2)
for every other v'.
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Proof. Consider the fractional ideal R,zR,. This is equal to R,7, R, for some
regular r,,. Clearly v(z) = v(r}). Since r, € R,zR, there are some a;,b; € R,
with 7, = Y% ja;zb;. Since a;,b; € R,, we have v(a;),v(b;) > 0. There are
only finitely many v’, say vy, ..., v, for which there is some i with v"(a) <0 or
v'(b) < 0. Take c regular with v(c) = 0 and v;(c) > 2max;; {-v;(a;), -vi(a;)}
for j = 2,...,t. By our choice of ¢, we have v'(ca;) > 0 and v'(cb;) > 0 for
all v’, which implies ca; € R 5 ¢b;. The r, we are looking for is cr,. Indeed:
v(ry) =v(er,) =v(rl) =v(z) and for any v' we have v'(r,). O

Lemma 4.3.9. In the same context as before, we can find some regular right
invariant element r with vy (r) =ny and v;(r) > n;.

Proof. We know we can find some z with v1(z) = ny and v;(z) > 0 for the
other 7. By the previous lemma we find the desired 7. O

We now will consider systems of equations

n 1011 + -+ + Tpaip + b1

Yn = T1Gml1 T+ Tpamp t+ bm

for certain a;; and b; in Q). A local solution with respect to R,, for such a system
of equations is a set of elements z; € R, such that all y; are in R, as well. A
global solution is a set of x; € R such that all y; are in R too.

Lemma 4.3.10. A system of equations as described above has a global solution
if and only if it has local solutions with respect to any R,.

Proof. It is quite clear that any global solution immediately entails a local so-
lution with respect to any R,: if v is such that v(a;;) >0 and v(b;) > 0, then
any n-tuple x1, ..., 2, with v(x;) > 0 for all 7 is a local solution.

Suppose now that z; is a local solution with respect to v and suppose that there
are x} such that v(z; — z}) + v(ag;) > 0. We have now

U(Z(l‘l —x)ag;) > miinv((:vl- —x})ag;)
> miin(v(aci —xi) +v(ag))
>0

which, since Y x;ak; € R, implies ¥ z}ay; € R,. Hence the n-tuple z1, ..., z;, is

n
also a local solution with respect to v.

Suppose now that there is a local solution for every v. It is clear that we
can choose the same solution for all but finitely many v’s, so we can just
consider a finite set of local solutions x;1, ..., z;s with respect to the respective
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pseudo-valuations vy, ...,vs. Define ny = maxy(ag;) for any 1 <t <s. By the
approximation property (A), we can find x1, ...,z with v,(x; — z;) > —ny and
v(x;) > 0 for any v ¢ {v1,...,vs}. These x; are a local solution for every v,
hence a global solution. O

Lemma 4.3.11. Let x1aq + -+ xpa, = b be an equation such that if there is
some i with v(a;) <0 for a certain v, then there is some regular right invariant
ar, with v(ag) = min; v(a;). Then a global solution exists (for this equation) if
and only if v(b) > v(a;) for all v.

Proof. If there is a global solution for the equation at hand, then certainly
v(z;) >0 for all v and all i. Consequently,

v(b) > minv(x;a;)

> minv(a;)
(2

which implies that the condition is necessary.

We will now show that it is also sufficient. Suppose v(b) > min; v(a;). If the
right-hand side is greater than or equal to zero, then v(b) > 0 so a local solution
with respect to v exists by the same argument as in the beginning of the previous
lemma. If the right-hand side is smaller than zero, we find min;(v(a;)) = v(ax)
where we can choose a; to be regular and right invariant. Since ay is regular
and @ is simple Artinian, ay is invertible in (). Consider now the equation
TR = —:rlalalgl — = xk_lak_lagl - xkﬂakﬂa;l — xsasagl - ba,;l. Since
ay, is right-invariant, Ra,;lakR = Ra,;lRakR so —v(ag) = v(a;l). This in turn
implies v(ba;!) > 0, but then zj = ba;* and x; = 0 for i # k gives a local solution
with respect to v. By the previous lemma, a global solution must exist. O

Proposition 4.3.12. There is a 1 — 1 correspondence between divisorial ideals
of R and divisors.

Proof. Consider a divisorial ideal I with v(I) = ~,. We already know that ~, = 0
for all but finitely many v, so let vy, ...,vs be the set of arithmetical pseudo-
valuations for which ~,, # 0. Since v(I) = min{v(r) |r € I}, there are z; € I
with v;(z;) = v and v(z;) > 0 for all other v. By a previous lemma, one can
also find regular right-Rp,-invariant a; with v;(a;) = vi(2;) = v, vj(a:) > ;,
v(a;) > 0 for all other v, and with a; € Rz;R. Consider now the equation
r1a1 +--+xsas = b. By our choice of a;, there is a global solution if and only if
v;(b) > 7;. Hence the set of global solutions {b| Vv :v(b) >,} is a subset of
I =1*. The other inclusion holds by definition, so divisorial ideals are uniquely
determined by their associated divisor.

Suppose we have a divisor §. Then there is some z with v(z) > ord,(¢) if
ord,(0) # 0 and v’(2) > 0 otherwise. Moreover, this z can be chosen to be
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regular and Rp,-right-invariant for some fixed u. Define
V={v]|v(z)#0orord,(d) #0}.

This is a finite set, so there is some x with v(z) = ord,(d) for all v € V
and v’(x) > 0 for all other v'. Put I the ideal generated by z and x, then
v(I*) =ord,(6), but since v(I*) =min{v(y) | y € I*} we have v(I*) = ord, ()
for all v, which shows that every divisor is associated to some divisorial ideal
I O

Since similar results have been obtained (cfr. [95]) for rings with a commutative
group of fractional ideals and in view of the simple example 4.3.1, the objection
might be raised that perhaps no new examples exist. This, however, is not the
case, as the following example shows.

Example 4.3.13. Let R be the ring F,[ X ][Y, ¢] where ¢ is the automorphism
¢:Fp[X] - F,[X] defined by ¢(X) = X +1. Now, [F,[ X] is a Krull order and,
by [12], Ore extensions of Krull orders are again Krull orders. Consequently,
R is a Krull order. In fact, since it is a prime Pl-ring, it is also bounded
(cfr. [66]). We will show that RXRY R # RY RXR. Suppose, for the sake
of contradiction, that RXRY R = RYRXR and call this ideal I. We have
that YX = (X+1)Y = XY +Y,s0Y =YX - XY eI. Moreover, we can
also conclude that, for any polynomial p(X), there is some polynomial p'(X)
with Yp(X) = p/(X)Y. Consequently, for every polynomial p(X,Y") there is a
polynomial p’(X,Y") with Yp(X,Y) =p'(X,Y)Y.

We find Y = ¥, pXqY and consequently 1 = %, pXq for certain p,q €
F,[X][Y,¢]. We can write

p:pnyn+"'+p0 and q:qmym+...+q0

where the p; and ¢; are elements of F,[X]| with p, and g¢,, different from
zero. Then we find 1 = p,Y" X @, Y"™ + r where r is of lower Y-degree than
Y " X @, Y™. But then p,Y" X¢q,, Y must be zero, which implies that p,, or
¢m must be zero — but this is a contradiction. Therefore, p and ¢ must be in
F,[X] whence 1 € F,[ X |XF,[X]. This, too, is impossible, hence RXRY R #
RY RX R which implies that F(R) is not abelian. The group of divisorial ideals,
on the other hand, is commutative.
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Chapter 5

Groupoid valuation rings

Valuations on fields, or equivalently valuation subrings of fields, are both in-
teresting and useful tools, finding applications in number theory, algebraic ge-
ometry and many more subjects of commutative algebra. Many generalisations
of valuations and of valuation rings to simple Artinian rings have been pro-
posed. These include localised primes, where rings with prime ideals satisfying
certain conditions are used as generalised valuation rings, arithmetical pseudo-
valuations, where value functions are defined on certain sets of ideals instead of
on elements, and Dubrovin valuation rings, which are a special kind of localised
primes with very nice properties.

Since any simple Artinian ring is isomorphic to a matrix ring over a skewfield and
since matrices are groupoid rings, it is natural to look for generalised valuations
in groupoid rings and general groupoid graded rings. Kelarev ([43], [44]) was the
first to study groupoid graded rings. He managed to generalise many theorems
from the classical group graded case, relating properties — like semi-local, Pl-
ness, etc. — of the ring R to the rings R, for e € Gy. Further contributions to
the theory of groupoid graded rings include work by Lundstrom ([51]), Oinert
([81]) and a Clifford-like theorem ([50]). Groupoid-graded rings have also been
studied as special cases of semigroup-graded rings. Important work here has
been done by a.o. Clase, Jespers and Okninski (e.g. [13], [42], [40]).

For a groupoid G, we will define G-skewfields as the proper analogon of fields
and construct some examples. We will then give suitable generalisations for
stability and totality in groupoid-graded rings. This will lead to Theorem
5.3.9, which describes the correspondence between G-valuation rings and G-
valuations. As will be seen in the last section, there is an interesting link between
G-valuations and Dubrovin valuation rings. In fact, a subring of M,, (k) where
k is a field is a Dubrovin valuation ring if and only if it is a groupoid-valuation
ring for a suitable groupoid.

In the first two sections of this chapter we will introduce some necessary concepts
and basic results. Many of these results have been known in some form for some
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time already and some others are relatively straightforward generalisations of
analogous results from the group-graded case. The last two sections contain
new work and provide a link with Dubrovin valuations. This chapter is based
on [105].

5.1 Groupoid graded rings

By a groupoid one usually means a category wherein all morphisms are isomor-
phisms, but the original definition (as given by Brandt in [6]) of a groupoid is a
set G with a unitary operation -~! : G — G and a partial function -x-: GxG - G
such that (for a,b and c in G)

(1) if axb=c holds, then every one of these elements is uniquely determined
by the other two;

2) (axb)xc=ax(bxc) if all terms involved exist;

)
3) axa™! and a! x a exist for all a € G;
) 1
)

4) atxaxb=>b (resp. bxa*a ' =b)if axb (resp. b*a) exists;

(
(
(
(5) for every two idempotents e and ¢’ in G, there is some g € G with gg™ = ¢
and g lg=¢';

although (1) is a consequence of (2)-(4). The * is usually left out to lighten
notation. Brandt's definition differs from the categorical one only because of
(5) (and the fact that his definition only deals with small categories). We will
use the term groupoid for a set with an operation satisfying (1)-(4) and call it
connected if it also satisfies (5). If for g,¢’ € G there is some h with gh = ¢’ we
say that g and ¢’ are connected and that h connects them. Connectedness is
an equivalence relation and equivalence classes with respect to connectedness
are called connected components.

Remark 5.1.1. Every groupoid G can be embedded in a semigroup by adding
a formal symbol 0, i.e. G =G u {0}, and by putting

'o':éxé—’éi(x,y)»» Txy ifx*yfsdefined.
0 if z xy is not defined

If G is connected, G will be a completely 0-simple inverse semigroup. (See e.g.
[46] for terminology concerning semigroups.)
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For every element g of a groupoid G the elements s(g) = gg~! and t(g) = g7 g
are idempotents called the source and the target of g.> A multiplication gg’ of
two elements g, ¢’ € G exists if and only if t(g) =s(g’).

A ring R is said to be G-graded if there are abelian subgroups (Ry)gec such
that R = @y Ry and RyRy € Ry if gg' exists while RgRy = 0 otherwise. An
additive subgroup S of a G-graded ring R is called G-graded if S = @yc(SN
Rg). In this case, we will shorten Sn R, to S;. The elements of H = Ugea R,
are the homogeneous elements of R. A subring (resp. ideal) of R is a G-graded
subring (resp. G-graded ideal) if and only if it is generated by homogeneous
elements. Therefore, we will also use the term homogeneous ideal for a G-
graded ideal. If I is a homogeneous ideal of R, then R/I inherits a canonical
G-grading by R/I = @4ec(Ry+I)/1. For any subset S of a G-graded ring we
define the support of S as sup(S)={geG|Ryn S #0}.

Example 5.1.2. The matrix ring M, (R) (over some ring R) is the classical
example of a groupoid graded ring. Let G be the groupoid obtained by defin-
ing a multiplication on the set {1,...n} x {1,...,n} by (4,5)(j,k) = (i,k) and
(4,7)(k,1) undefined if j # k. Putting M,,(R)(; ;) = RE;;, where E; ; is the
matrix with a one on place (7, ) and zeroes everywhere else, yields a G-grading
of M, (R).

In fact, this is an example of a groupoid ring. For any ring R and any groupoid
G, the groupoid ring R[(G] is constructed by endowing the set

R[G]={f:G—>R|#{geG| f(g) #0} < oo},

with a sum and a multiplication as follows:

(f+ND=f@D+f (@, (Ff9= 2 fla)f'(g")

9'9"=g

Note that these operations are well-defined because f and f’ have finite sup-
port. In a similar fashion as for group rings it can be checked that they de-
fine a ring structure on R[G]. This ring is G-graded by putting R[G], =

{f:G—=R|Vg #g:f(g")=0}.

From now on we will suppose that G is a groupoid and R is a G-graded ring.
We will denote the set of idempotent elements of G by G and we define Ry as
Dgec, Ig- This set is called the principal component of R and contains 1. Let
1 = Yeeq 1e be the homogeneous decomposition of 1. In fact, 1, = 0 for every
g € G~ Gy as was shown e.g. in [51]. Let G’ be the subgroupoid defined by
G = {g e | 15(9) +0+ 1t(g)}-

In his original paper, Brandt uses the terms left-unit for the source and right-unit for the
target. Because of this, the source and target of an element g of G are sometimes denoted by
I(g) and r(g) respectively.
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Proposition 5.1.3. If R = @, Ry is a G-grading on R, then R = @ yccr Ry,
i.e. R is already G'-graded.

Proof. See [51]. O

It is not hard to verify that G’ has only finitely many idempotent elements so,
by the preceding proposition, we can without loss of generality assume that all
groupoids considered will have only finitely many idempotents. In fact we can
even assume that 1, # 0 for all e € Gy.

Proposition 5.1.4. If G is a groupoid and R is a G-graded ring, then the
following elementary properties hold:

(1) R. is a ring for any idempotent e of G.
(2) If I is a G-ideal of R, then I. is an ideal of R, for every idempotent e.
(3) Ry is a left Ry, right Ryz)-module.

(4) G is a group if and only if there is some invertible homogeneous element.

Proof. Since the product of two distinct idempotents ¢ and e’ of G is always
undefined, we have r =71 =3 rlc =1, for all r € R.. So we find that 1. is
the unit of R.. Moreover, R, is by definition closed under addition and, since
e is an idempotent, it is also closed under multiplication. For (3) it suffices to
note that the map

(-+) 1 Rygy x Ry = Ry = (w,y) =y

defines a left Rg,)-multiplication on Ry, the right Ry, )-multiplication being
defined analogously. (2) is a special case of (3) in disguise where I. € R..
To prove (4), note that, since ee’ is undefined for idempotents e # €', any
homogeneous element h € R, must be a zero divisor if there is some unit
e # t(h) or e # s(h). If G is a group with unique unit e, then 1 € R, is
homogeneous and invertible. O

Let R be a G-graded ring for some groupoid G. If RyRy = Rgy whenever gg’
exists we say that R is strongly G-graded. This is equivalent with 15,y € Ry R -1
(or 1y(g) € Ry-1 Ry) for all g. Indeed, suppose 14,y € RyR 1 for all g, then

Ryy € RyRy1Ryy € RyRy.

The other implication is immediate.
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Proposition 5.1.5. Let R be a strongly G-graded ring. The homogeneous
ideals of R are in 1-1 correspondence with ideals

Ie, €Reyy.s1e, € R,

where the e; are representatives of the connected components of G.

Proof. Since R is strongly graded, we must have that
lyg = RgRy1 1y € Ryly € Iyy

if gg’ is defined, so any two homogeneous ideals of R restricting to the same
ideals on R.,, ..., Re, must be equal. On the other hand, if I, € R,,,..., I,
R., are ideals in their respective rings, then we can define I, = Ryy/ 1. where ¢’
is the element connecting g and e. I = @ I, is then a homogeneous ideal of
R. O

We say a homogeneous ideal is G-maximal if the only strictly larger homoge-
neous ideal is R itself. As an immediate consequence of the preceding propo-
sition, the G-maximal ideals of a strongly G-graded R are those corresponding
to a maximal ideal in one of the connected components and to R, for any g
not in that component. Therefore, the intersection of the G-maximal ideals —
which we call the G-Jacobson radical — is the homogeneous ideal corresponding
to the Jacobson radical in every connected component.

We write, for any a € R,

t(a)= > 1. and s(a)= > L.
eeGo ecGo
ale#0 lea#0

A G-inverse of a is an element b satisfying
s(a) =ab=t(b) and s(b)=ba=t(a).

If a has a G-inverse, we say that it is G-invertible and a GG-graded ring for which
every non-zero homogeneous element is G-invertible is called a G-skewfield.
Notice that the grading on a G-skewfield is necessarily strong. We will use
the notation a™! for the G-inverse of a, but one should keep in mind that the
G-inverse of a may exist even if a is not invertible in R. We will denote by R*
the set of G-invertible elements of a G-graded ring R, while the set of invertible
elements will be denoted by U(R).

Proposition 5.1.6. If G is a groupoid and R is a G-graded ring, then:

(1) The G-inverse of a, if it exists, is unique.

(2) The G-inverse of a homogeneous element, if it exists, is homogeneous.
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(3) If a is invertible in R, say ba = ab =1, then b is the G-inverse of a.

(4) If R is a G-skewfield, then R, is a skewfield for any idempotent e.

Proof. If b and b are G-inverses of a, then
b="bt(b) = bs(a) = bab’ =s(a)b’ =b'ab = b't(b') =¥

Suppose a € Ry, is homogeneous and let ¢! = Ygescq bg. For all g # ht
we have that aa™! = s(a) implies ab;, = 0 and a™'a = t(a) implies bya = 0 .
Therefore, by-1 is a G-inverse and by (1) it must be unique. If a is invertible with
inverse b, then 1.a # 0 for all e € Gy, which establishes that s(a) = 1. Similarly,
we find t(a) = 1 and by symmetry the same holds for b. Consequently, a and
b are each others G-inverses. Since for any a € R, we have a™' ¢ Ry (4)
follows. O]

If G is a groupoid and S is subgroupoid containing all idempotents, then one
can construct a factor groupoid G/S = G/ ~ where

n n
g~h had th...,gnEG,SO,...,SnGS:Hgi:g,SOHgiSi:h.
i=1 i=1

Since S, contains all idempotents, t(g) and s(g) must be in .S for all g so we
have reflexivity of ~. If x ~ gy, then we have x; and s; with z1---x,, = = and
S0X181"*TpSpy =Y, SO

1

-1 -1 -1 -1 -1 -1 -1 -1
€T = (30 YSp Ty T 81 )"'(Sn—lxn—l'"$1

50 yspt).

Note that between two successive y's in this expression, we always find the
term s, ot s7tatsgt = y7! with some extra s;! in between. This means
that we have written x as a product toy1t1--Ymtm Where y1---y,, =y and for
some tg, ...,t, in S, i. e. ~is symmetric. Suppose, finally, that z ~y and y ~ z,
then we have decompositions y = sgx1-TpS, and z = toy1--Ymtm for certain

s;, i, t; and y;. Consequently,
-1 -1 -1 -1
z=1p (80$181"'$n8nym Yo ) “lm-1 (ym—1“‘y1 Soxlsl“'xnsn) tm.-

Every time y,;ll---yl‘l = 3! (with some ¢; in between) occurs, it is preceded
by sor181---TnS, = y. This gives the desired decomposition of z as a product
upxjur--xyu; with zi---x; = . By definition, ~ is compatible with the multipli-
cation on G, so GG/S is a well-defined groupoid.
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5.2 Skew twisted groupoid rings

We have given the definition of a groupoid ring in example 5.1.2. Just like in
the group-graded case, this example can be generalised by giving an abstract
construction of skew twisted groupoid rings, using a straightforward modification
of the approach in e.g. [75]. Let R be a ring, let G be a groupoid (which we
still suppose to have only finitely many idempotents) and let «: GxG — U(R)
and 0 : G — Aut(R) be functions which satisfy, for a,b,c€ G, r € R and e € G,
the following conditions:

(i) a(a)(a(b)(r)) = a(a,b)a(ab)(r)a(a,b)™"
(i) a(a,b)a(ab,c) =o(a)(a(b,c))ala,bc)

(i) a(a,e) =1r=a(l,e)

if all terms involved exist. In classical terminology, ¢ would be called a weak
action of G on R and a would be called a o-cocycle.

Proposition 5.2.1. The free left R-module RS [G] with basis G and multipli-
cation defined by:

(ra)(sb) = {ga(a)(s)a(a, b)ab if ab exists

if ab does not exist

and distributivity is a strongly G-graded ring. If x € U(R), then zg € RZ[G]*
for any g € G.

Proof. First we have to establish associativity of the multiplication, so take
r,s,t € R and a,b,c € G. If abc does not exist there is nothing to prove since
all terms are zero, so suppose abc does exist. Then we have:

(ra)((H)(t€)) = (ra)(s0(B) (D)a(b, c)be)
ro(a)(so(b)(t)a(b,c))a(a,be)abe

; ro(a)(s)o(a)(o(b)(t))o(a)(a(b,c))a(a,be)abe
© ro(a)(s)a(a, bo(ab)(t)a(a,b) o (a)(a(b,c))a(a, be)abe
@ 1o (a)(s)a(a, b)o(ab)(t)a(a,b) " ala, b)a(ab, ¢)abe
ro(a)(s)a(a,b)o(ab)(t)a(ab,c)abe
(ro(a)(s)a(a,b)ab)(ct)

((ra)(sb))(ct)

Clearly, ¥ 4ec, 1rY is the identity for the multiplication and distributivity holds by
construction. The fact that R} [G] = @4e; Ry is also an immediate consequence
of the definition and the same is true for (Ra)(Rb) = R(ab) — provided, of
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course, that ab exists. We have, for all g € G, that gg7! = a(g,g71)i(g) while
g tg=a(gt,g)r(g) and by (4i) and (iii) we also have that

o(g (g9 =a(g (g, g Nalg ™ 997")

=a(g ™t 9)alg 9,97 ) =a(g™

,9)

so a(g,g ') tg is the inverse for g~'. If » € U(R) and if g is arbitrary in G,
then we can choose s € R such that o(g7)(s) =1, Then

rg 'sa(g,g7") g =ra(g