
Wetenschappen
Wiskunde

Non-commutative generalisations of
valuations and places

Proefschrift voorgelegd tot het behalen van de graad van
doctor in de wiskunde aan de Universiteit Antwerpen te

verdedigen door

Nikolaas VERHULST

Promotor:
Dr. Freddy Van Oystaeyen

Antwerpen, 2016



Contents

Introduction 1

1 The building blocks of valuation theory 6

1.1 Partial valuations . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2 Partial places . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.3 Total subrings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2 Primes and associated value functions 16

2.1 Generalities about primes . . . . . . . . . . . . . . . . . . . . . . . 17

2.2 Value functions associated to primes in simple rings . . . . . . . 19

2.3 Invariant primes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.4 Arithmetical pseudo-valuations associated to invariant primes . . 25

3 Dubrovin valuation rings 30

3.1 Chain rings and n-chain rings . . . . . . . . . . . . . . . . . . . . 31

3.2 The basics of Dubrovin valuation rings . . . . . . . . . . . . . . . 32

3.3 Some ideal theory for Dubrovin valuation rings . . . . . . . . . . 34

3.4 Arithmetical pseudo-valuations on Dubrovin valuation rings . . . 36

4 A divisor theory for bounded Krull orders 40

4.1 Bounded Krull orders... . . . . . . . . . . . . . . . . . . . . . . . . 41

4.2 ...are the right context... . . . . . . . . . . . . . . . . . . . . . . . 43

4.3 ...for non-commutative divisor theory. . . . . . . . . . . . . . . . . 44

i



5 Groupoid valuation rings 50

5.1 Groupoid graded rings . . . . . . . . . . . . . . . . . . . . . . . . 51

5.2 Skew twisted groupoid rings . . . . . . . . . . . . . . . . . . . . . 56

5.3 G-valuations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.4 A connection with Dubrovin valuation rings . . . . . . . . . . . . 64

6 Filtrations associated to pseudo-valuations 66

6.1 Basic concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

6.2 Pseudo-valuations compatible with a valuation . . . . . . . . . . 70

6.3 Valuations and nilpotent Lie brackets . . . . . . . . . . . . . . . . 72

Appendices 74

A There is no such thing as a right valuation 75

B Appell sets and Verma modules for sl(2) 79

Future prospects 87

Nederlandse samenvatting 90

Acknowledgements 92

Bibliography 94

Index 101

ii



Introduction

Mathematics deserve to be
cultivated for their own sake, and
the theories inapplicable to
physics as well as the others.

H. Poincaré, The value of sciece

A short history of valuation theory

Valuations were introduced in 1913 by Josef Kürschák ([45]) to gain under-
standing in the p-adic numbers Hensel had written about. Kürschák’s definition
was as follows:

Definition. A valuation on a field k is a map ∥⋅∥ ∶ k → R such that:

(V1) ∥0∥ = 0 and ∥a∥ > 0 if a ≠ 0,

(V2) for every a ∈ k one has ∥1 + a∥ ≤ 1 + ∥a∥,

(V3) for any a, b ∈ k one has ∥ab∥ = ∥a∥ ∥b∥,

(V4) there is at least one a in k for which 0 ≠ ∥a∥ ≠ 1.

which corresponds to what is now usually called an absolute value. Valuations
have through the years earned a place in modern mathematics, finding appli-
cations in many different areas of mathematics, but historically they were first
used in number theory. Important results that should be mentioned here in-
clude Ostrowski’s classification of valuations on Q, several extension theorems,
Hasse’s local-global principle, and Hensel’s celebrated lemma.

In the middle of the interbellum, non-commutative algebras and in particular
skewfields began to attract more attention. Hasse showed (in [35]) that maximal
orders can be described by localisations at primes contained in the centre. In [36]
he showed a local-global principle for central simple algebras by making use of
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the Brauer group. Ostrowski once more made a great contribution to valuation
theory, studying Henselian fieds, ramification of valuations, and defects. Krull
allowed for valuations with values in arbitrary ordered groups, whence the term
Krull valuation which is still sometimes used.

After the second world war, the approximation theorem — which will play an
important role in chapter 4 — appeared in [2]. Schilling published what is ar-
guably the most important treatise on valuation theory ([88]) in 1950. In a
very short paper, Manis ([56]) generalised the concept of a valuation to general
commutative rings1, which led to the study of semi-valuations (see e.g. [80]).
But it is not until the seventies that non-commutative valuation theory starts
gaining traction. The concept of a prime was introduced, which has the advan-
tage that it can deal with zero-divisors. However, it is hard to associate good
value functions to general primes. For this reason, Van Geel ([95]) restricted
attention to orders with a commutative theory of fractional ideals, for which he
introduced arithmetical pseudo-valuations.

About a decade later, Dubrovin published two important papers ([22] & [23])
introducing the non-commutative valuation rings that were later named after
him. These have been studied quite a lot over the years and many results from
commutative valuation theory have counterparts for Dubrovin valuation rings
— especially in simple artinian rings which are finite dimensional over their
centre. One of the most important results from this thesis is the introduction
of arithmetical pseudo-valuations for Dubrovin valuations with non-idempotent
Jacobson radicals.

Very recently, two books dedicated to non-commutative valuation theory ap-
peared ([59] & [93]) which will hopefully help to attract more attention to this
topic. Let me finish this short history by pointing out that the long history, or at
least the first part thereof, can be found in Roquette’s excellent write-up [86].

Generalising valuations

The usual definition of a valuation is:

Definition. A valuation is a surjective map v from a field k to a totally ordered
group Γ with an additional symbol ∞ such that:

(V1) v(x) = ∞ if and only if x = 0,

(V2) v(xy) = v(x)v(y) for all x and y in k,

(V3) v(x + y) ≥ min{v(x), v(y)} for all x and y in k.

1In fact, the term Manis valuation also makes the occasional appearance in the literature.
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There are three obvious ways to generalise this: one can relax the conditions on
v (as for example in the case of quasi-valuations), one can change the domain
(as is the case for arithmetic pseudo-valuations cfr. e.g. 2.4), or one can change
the co-domain (as in 1.1). However, simply fiddling with one or more of these
conditions is not very satisfactory. One of the attractions, at least for the author,
of classical valuation theory is the interplay between the more analytical point
of view — with valuations and the associated ultrametrics or absolute values —
on the one hand and the more algebraic theory — rings with linearly ordered
ideals, total subrings etc. — on the other hand.2

To any valuation v one can associate the ring of positives Rv and in fact this
Rv determines v (up to equivalence, which we will not go into here). This leads
to the following alternative definition:

Definition. A valuation ring of a field is a ring R satisfying:

(VR1) x ∉ R implies x−1 ∈ R

(VR2) for all 0 ≠ x in Q one has xRx−1 = R.

Here, too, possible generalisations abound. Among those considered in this text
are chain rings, Dubrovin valuation rings (cfr. chapter 3 for both of those), total
subrings (cfr. section 1.3) etcetera.

Ideally, one should obtain a generalisation combining both definitions e.g. a
generalised value function which gives a nice ring of positives which in turn
determines a generalised value function (preferably the one we started with, or
one that is naturally equivalent to it). We will show that for Dubrovin valuation
rings, or at least for the noetherian ones, there is indeed a nice generalised value
function. The generalised value function is an arithmetical pseudo-valuation
here and most of the results are analogous to the classical case. Using these
results, we can develop a non-commutative divisor theory, which may lead to
Riemann-Roch results in a similar vein as in [103].

Overview

In the first chapter, the classical concept of a valuation will be decomposed in
totality and stability. Stable subrings give rise to partial valuations. These occur
naturally in the study of primes, but have not been studied very much. Many
of the results in the sections about partial valuations and partial places seem to
be technically new, but the proofs are very close to the totally ordered case.

2Although admittedly some work has been done on generalised valuations with no (obvious)
associated ring theory, e.g. for gauges as in [93] or for valuation-like maps as in [84]. I have
a strong suspicion that here, too, some interesting ring theory awaits discovery.
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In the second chapter, the existing theory of primes will be outlined and the
value function associated to a separated prime will be introduced. Later on, the
theory of arithmetical pseudo-valuations will be generalised to invariant primes.
The two last sections contain new material from [102].

In the third chapter, we will introduce Dubrovin valuation rings and discuss
the pre-existing theory. Afterwards, we will show that, for Dubrovin valuation
rings with non-idempotent Jacobson radical, arithmetical pseudo-valuations ex-
ist. Here, however, the arithmetical pseudo-valuations will be defined on the
set of divisorial ideals instead of the set of fractional ideals. Constructing this
arithmetical pseudo-valuation is one of the main new points of this thesis

These results will be used to obtain a divisor theory for bounded Krull orders.
It is known that bounded Krull orders localised at height-one prime ideals yield
Dubrovin valuation rings with non-idempotent Jacobson radicals, so the results
from chapter 3 apply to these localisations. Using this, we obtain a divisor
theory for bounded Krull orders. This theory, which is developed in section 4.3,
was one perhaps the main goal of [102].

In the last two chapters, alternative approaches to non-commutative valuation
theory are investigated. One of the main problems in this area of research is
to define a good notion of valuations on matrix rings. In chapter 5, we will
generalise the concept of a graded valuation to a groupoid-graded valuation.
Since matrix rings are canonically groupoid-graded, this will provide a natural
concept of a non-commutative valuation on a matrix ring. The theorems about
G-valuations and their connection to Dubrovin valuation rings are new results.

In the last chapter, another possible generalisation is briefly studied. The idea
here is to use separated exhaustive filtrations as a generalisation of valuations.
Some existing results are slightly generalised here, but we will not stray far from
the well-beaten path.

In the short appendix A we show that right-ordered value groups of valuation-
like functions are bi-ordered. Appendix B is based on [26]. It has little to do
with the rest of the thesis, dealing with Verma modules and Appell sets instead
of valuations and valuation rings.

Why non-commutative valuation theory?

Ah, now, that is a hard question. Historically, interest in non-commutative
valuation theory comes from an attempt to understand orders but the reason
for my interest is slightly different. In classical algebraic geometry, there is a very
close correspondence between algebra and geometry. In fact, from a geometric
object, i.e. some algebraic variety, one can get an algebraic object by considering
its function field. Vice versa, to a field extension with transcendence degree 1,
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one can associate the abstract Riemann surface with valuations as points (and
the trivial valuation as the generic point of the curve).

On the algebraic side, generalising concepts is relatively easy, but the meaning of
non-commutative geometry is somewhat unclear. Generalising the translation
machinery from the commutative context to a non-commutative one would
permit translation of results and insights from the algebraic framework producing
some kind of non-commutative geometry.
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Chapter 1

The building blocks of
valuation theory

A valuation is usually defined as a function from (the invertible elements of) a
field to a totally ordered group satisfying some axioms. An obvious generalisa-
tion can be obtained by replacing the totally ordered group by a partially ordered
one. It turns out that, like in the classical case, there is an alternative charac-
terisation in terms of the ring of positives (cfr. 1.1.3). In fact, partial valuations
can be obtained by dropping one of the two conditions from the original charac-
terisation of valuation rings (cfr. 1.1.4). By dropping the other condition, total
subrings are obtained, which have a natural place in non-commutative valuation
theory as well. Total subrings have been studied rather extensively (cfr. e.g.
[62]), so we suffice with a short overview. Since the correspondence between
valuations and places is so important, we will also introduce partial places and
establish a similar correspondence.

Most of the results in the first two sections are very similar to the classical (i.e.
totally ordered) context. Van Geel ([95]), who studied partial valuations asso-
ciated to primes, did some work on partial valuations (which we will encounter
in 2.2) and this theory was somewhat expanded in a recent book (cfr. [59]),
but not much more has been written about partial valuations.

1.1 Partial valuations

Definition 1.1.1. Let Γ be a partially ordered group and let D be a skewfield.
A partial valuation on D is a surjective map v ∶ D → Γ ∪ {∞} (where ∞ ≥ γ
and ∞γ = ∞ = γ∞ for all γ ∈ Γ) satisfying:

(PV1) v(x) = ∞⇔ x = 0,

(PV2) ∀x, y ∈D ∶ v(xy) = v(x)v(y),
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(PV3) ∀x, y, z ∈D ∶ v(x) ≥ v(z) ≤ v(y) ⇒ v(x + y) ≥ v(z).

If a partial valuation satisfies the stronger

(PV4) ∀x, y, z ∈D ∶ v(x) > v(z) < v(y) ⇒ v(x + y) > v(z)

we say it is a strict partial valuation. If Γ is totally ordered, v is called a
valuation.

For any partial valuation, one can define Rv = {x ∈D ∣ v(x) ≥ e} where e = v(1)
is the neutral element of Γ. This is a ring since it contains 1 and is closed under
multiplication (PV2) and addition (PV3). Suppose, moreover, that v(x) ≥ e,
then for every d ∈ U(D) we have v(dxd−1) = v(d)v(x)v(d−1) ≥ v(d)v(d−1) = e
so Rv is invariant under inner automorphisms.1

Definition 1.1.2. If R is a subring of a skewfield D, we will call R stable if it
is invariant under inner automorphisms and total if d ∉ R implies d−1 ∈ R for
every d ∈ U(D).

Proposition 1.1.3. Suppose R is a subring of a skewfield D which is stable.
Then it is Rv for some partial valuation v on D.

Proof. Let R be a stable subring of D. We write x ∼ y if

∀d, d′ ∈D ∶ dyd′ ∈ R⇔ dxd′ ∈ R

which is certainly an equivalence relation. Suppose x ∼ x′ and y ∼ y′, then
for all d, d′ in D we have dxyd′ ∈ R ⇔ dx′yd′ ∈ R ⇔ dx′y′d′ ∈ R, so the
equivalence is compatible with the multiplication on D. Therefore, Γ = D/ ∼
can be endowed with a canonical multiplication by putting, for all d, d′ ∈ D,
d ⋅d′ = dd′. Set x ≥ 1 if dd′ ∈ R implies dxd′ ∈ R for all d, d′ in D. This is clearly
independent of the chosen representative. Suppose x, y ∈D are such that x ≥ 1
and y ≥ 1, then for all d, d′ ∈ D such that dd′ ∈ R we also have dyd′ ∈ R. But
then (d, yd′) is a pair with dyd′ ∈ R, so dxyd′ ∈ R. Combining this with the
obvious fact that 1 ≥ 1 we find that Σ = {x ∈ Γ ∣ x ≥ 1} is a subsemigroup of Γ.
We put a partial order relation on Γ by defining, for x, y ∈D ∖ {0}:

x ≥ y ⇔ xy−1 ∈ Σ

and 0 ≥ x for all x ∈ D. We have to prove that this is indeed a partial order
relation. It can easily be verified that ≤ is reflexive and transitive, so suppose
x ≥ y and y ≥ x for some non-zero x and y in D. Then xy−1 ∈ Σ ∋ yx−1

which means that both xy−1 and yx−1 are in R. Suppose now dxy−1d′ ∈ R
for some invertible d, d′ ∈ D, then xy−1d′d ∈ R since R is stable under inner
automorphisms and hence d′d ∈ R, i.e. xy−1 = 1 or x = y. If x ≥ z ≤ y,
then xz−1 ∈ Σ ∋ yz−1 which implies xz−1 ∈ R ∋ yz−1 so (x + y)z−1 ∈ R hence
x + y ≥ z, so v ∶D → Γ ∪ {∞} ∶ x↦ x is a partial valuation.

1With U(D) we denote the set of invertible elements of D.
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This result warrants the term partial valuation ring for a subring of a field which
is invariant under inner automorphisms. It is a convenient generalisation of the
following classical characterisation of valuation rings, which is due to Schilling
(cfr. [88] or many other books on valuation theory):

Proposition 1.1.4. A subring R of a skewfield D is Rv for a valuation v if and
only if R is stable and total.

Proof. It suffices to note that Rv is total if and only if v(x) < 0 implies v(x−1) ≥
0 which is the case if any γ ∈ Γ is comparable to zero, hence if Γ is totally
ordered.

Lemma 1.1.5. If R is a stable subring of a skewfield D and vR is the corre-
sponding partial valuation, then U(R) = {x ∣ vR(x) = 0}.

Proof. Suppose x ∈ U(R) and suppose dxd′ ∈ R for d, d′ ∈ U(D), then xd′d ∈ R
which implies d′d ∈ R since x−1 ∈ R. From this we can conclude vR(x) ≤ vR(1)
hence vR(x) = vR(1). If vR(x) = vR(1), then dxd′ ∈ R if and only if dd′ ∈ R.
Since 1xx−1 ∈ R, x−1 ∈ R follows.

Proposition 1.1.6. A stable subring R of a skewfield D which is local induces
a strict partial valuation and vice versa.

Proof. If R is local, then P = R ∖U(R) = {x ∈D ∣ vR(x) > 0} is an ideal, so it
is closed under addition. Hence vR is strict. On the other hand, if vR is a strict
partial valuation, then P = R∖U(R) = {x ∣ vR(x) > 0} is closed under addition.
Since it is always closed under multiplication and since vR(r) ≥ 0 < vR(p) implies
vR(rp) > 0, we find that P is an ideal hence the unique maximal ideal.

Example 1.1.7. Consider a local ring in a field, say Z(p) in Q, and consider
the formal power series R = Z(p)[[X]] as a subring of K = Q((X)). Since K
is commutative, R is stable and since R is the ring of power series over a local
ring, it is again local. This means that R induces a partial valuation v on K
which is strict. It is not a valuation because, for example, 1/p and X−1 have
v-values which are not comparable.

Example 1.1.8. Consider a field k and the field of rational polynomials k(X).
Then R = {∑ni=0 aiX

i ∣ n ∈ N, a1 = 0} is a subring of k(X) and since k(X) is
commutative, it is obviously stable. One can check quite easily that the associ-
ated partial valuation gives the following directed graph of values of monomials:

⋯ v(X−4) v(X−2) v(X0) v(X2) v(X4) ⋯

⋯ v(X−5) v(X−3) v(X−1) v(X1) v(X3) ⋯
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Consider in the same field the subring k[X2] of k(X). Then one gets the
following graph:

⋯ v(X−4) v(X−2) v(X0) v(X2) v(X4) ⋯

⋯ v(X−5) v(X−3) v(X−1) v(X1) v(X3) ⋯

For a prime on a skewfield which extends a valuation on the center, we will
show that the orderings as showcased in this last example are essentially the
only possibilities: either the ordering is directed (i.e. any two elements have a
common upper bound) or it has a number of linearly ordered path-connected
components. We will denote the skewfield of fractions of a partial valuation
ring as Q(Rv). We define the path-connected component of d as

pcc(d) = {x ∈ U(D) ∣ ∃x1, ..., xn ∈ U(D) ∶ v(d) ≷ v(x1) ≷ ⋯ ≷ v(xn) ≷ v(x)} .

Lemma 1.1.9. Suppose v is a partial valuation on a skewfield D, then pcc(1)
is the set of units of the field of fractions of Rv.

Proof. Take an arbitrary x ∈ pcc(1). Then there are x1, . . . , xn with v(x) ≷
v(x1) ≷ ⋯ ≷ v(xn) ≷ 0. This means v(xn−1x

−1
n ) ≷ 0, hence either (xn−1x

−1
n )

or its inverse are in Rv. By a simple induction argument, we find similarly that
either xn−ix

−1
n−i+1 or its inverse is in Rv. Since

x = xx−1
1 x1x

−1
2 ⋯xn−1x

−1
n xn,

we find for all i that x must be in Q(Rv). Suppose now z is in Q(Rv), then
z = xy−1 for certain x and y in Rv. This means z ≷ x ≷ 0.

Corollary 1.1.10. Suppose again that v is a partial valuation on a skewfield D,
then for every non-zero x ∈D we have pcc(x) = U(Q(Rv))x = xU(Q(Rv)).

Proof.

pcc(x) = {y∣∃x0, . . . , xn ∶ v(y = x0) ≷ v(x1) ≷ ⋯ ≷ v(xn = x)}
= {y∣∃x0, . . . , xn ∶ v(yx−1) ≷ v(x1x

−1) ≷ ⋯ ≷ v(1) = 0}
= {y∣yx−1 ∈ pcc(0) = U(Q(Rv))} = {y∣x−1y ∈ pcc(0) = U(Q(Rv))}
= U(Q(Rv))x = xU(Q(Rv))

Corollary 1.1.11. If v ∶ D → Γ ∪ {∞} is a partial valuation on a skewfield D
extending a valuation on Z(D) such that v(d) ≥ 0 for some non-central d, then
Γ is directed.
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Proof. Since Q(Rv) is a stable subskewfield of D which is not contained in
Z(D), it must by the Cartan-Brauer-Hua theorem be equal to D itself (cfr.
[38]). Two elements d and d′ can then be written as d = pq−1 and d′ = p′q′−1

for some p, p′, q, q′ ∈ Rv. Then pp′ is an upper bound for d and d′ while q−1q′−1

is a lower bound for d and d′.

Remark 1.1.12. The fact that v is a partial valuation on the skewfield is not
really necessary for this reasoning; we just make use of the fact that the relation
d ≤ d′⇔ v(d) ≤ v(d′) restricted to U(D) is compatible with the multiplication.

On the set {pcc(x) ∣ x ∈ U(D)}, there is a canonical multiplication pcc(x) ⋅
pcc(y) = pcc(xy) which is well-defined by corollary 1.1.10. This yields a group
D of connected components. We find

(1) ⋃d∈DQ(Rv)d =D

(2) Q(Rv)dQ(Rv)d′ = Q(Rv)dd′

(3) d ≠ d′ ⇒ Q(Rv)d ∩Q(Rv)d′ = {0}

which is tantalizingly close to being a grading2 on D. Properties (1)-(3) may
not be enough to define a grading, but they do define a Clifford system.

Definition 1.1.13. Let G be a group. A G-Clifford system3 on a ring R is a
set (Rg)g∈G of additive subgroups such that:

(1) ∑g∈GRg = R,

(2) RgRg′ = Rgg′ for all g, g′ ∈ G.

Clifford systems were introduced by Dade ([19]) in order to better understand
and generalise Clifford’s theory — whence, obviously, the name. A few papers
dealing with Clifford systems have appeared (e.g. [99], [98], [33]), but they
have largely been neglected in favour of strong gradings. This is probably due
to the very general nature of Clifford systems. Perhaps the more restrictive set
of conditions (1)-(3) hits the sweet spot between generality and usefulness? An
in-depth study of these objects is required in order to answer this question.

2We will consider gradings in some detail in chapter 5; the interested reader may also want
to consult [75].

3The G will often be omitted, being clear form the context.

10



1.2 Partial places

In this section we will follow the construction of [27], of course adapting every-
thing to our partial and not necessarily commutative case. A skewfield C can
be extended with a formal symbol ∞ to C̃ = C ∪{∞} where ∞+ c = c+∞ = ∞
for any c ∈ C and c ⋅ ∞ = ∞ ⋅ c = ∞for any c in C ∖ {0}. The addition ∞+∞
and multiplication ∞ ⋅∞ as well as ∞ ⋅ 0 and 0 ⋅ ∞ remain undefined. Let for
the remainder of this section C and D be skewfields.

Definition 1.2.1. A partial C-place of D is a map π ∶ D̃ → C̃ such that:

(PP1) If xy and π(x)π(y) are defined, then π(xy) = π(x)π(y).

(PP2) If x + y and π(x) + π(y) are defined, then π(x + y) = π(x) + π(y).

(PP3) ∃d ∈ D̃ ∶ π(d) = 1.

Lemma 1.2.2. Every partial C-place π satisfies the following conditions:

� π(1) = 1, π(0) = 0, π(∞) = ∞.

� If π(x) + π(y) (resp. π(x)π(y)) is defined, then so is x + y (resp. xy).

� π(−x) = −π(x).

� π(x−1) = π(x)−1.

Proof. These are all easily adapted from the source mentioned above.

The following propositions are also not very surprising. Here, too, the proofs are
relatively straightforward adaptations from similar proofs in the classical case,
but they are perhaps important enough to warrant separate mentioning:

Proposition 1.2.3. Let R be a strict partial valuation ring in a skewfield D and
let λ ∶ R → C be a morphism with Ker(λ) = P . The mapping

π ∶ D̃ → C̃ ∶ x↦
⎧⎪⎪⎨⎪⎪⎩

∞ if x ∉ R
λ(x) if x ∈ R

is a partial C-place of D.

Proof. (PP3) is trivially true, so we will restrict our attention to (PP1) and
(PP2). Take x and y in D. If π(x) + π(y) is defined, then either π(x) ≠ ∞
or π(y) ≠ ∞ — we assume the former without loss of generality. Then x ∈ R
and if π(y) = ∞ we have y ∉ R so x + y ∉ R which implies π(x + y) = ∞. If
π(y) ≠ ∞, then both x and y are in R so π(x + y) = λ(x + y) which is indeed
λ(x) + λ(y) = π(x) + π(y) since λ is a morphism.
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Suppose x and y are such that π(x) = ∞ and π(y) = α for some 0 ≠ α ∈ C.
If x or y is ∞, then π(xy) = ∞ = ∞ ⋅ α. If x nor y equal ∞, then x ∉ R and
y ∈ U(R) so xy ∉ R and consequently π(xy) = ∞ = ∞ ⋅ α.

Example 1.2.4. Referring back to example 1.1.7 we put R = Z(p)[[X]] which
is a partial valuation ring in Q[[X]]. The canonical morphism λ ∶ R → Fp
obtained by dividing out the unique maximal ideal P induces a partial place
π ∶ Q[[X]] → Fp sending elements of R to their equivalence classes in R/P and
all other elements to ∞.

Proposition 1.2.5. Suppose that D is a field and that π is a partial C-place
of D, then π−1(C) is a strict partial valuation ring on D.

Proof. Clearly, ∞ ∉ π−1(C). If x and y are in π−1(C), then π(x) + π(y) and
π(x)π(y) are defined so we have π(x + y) = π(x) + π(y) ∈ C and π(xy) =
π(x)π(y) ∈ C which implies together with π(1) ∈ C and π(−x) = −π(x) that
π−1(C) is a subring of D. Stability is obvious due to the commutativity of D
and strictness is a simple consequence of the fact that π−1(C)/Ker(π∣π−1(C))
is a skewfield.

If π is a partial C-place, then we can always consider π as a partial C ′-place
for some sub-skewfield C ′ = C such that C ′ ⊆ Im(π). Considered as such, π
becomes a surjective partial place. The previous propositions establish a one-one
correspondence between surjective partial places on fields and partial valuations.

Remark 1.2.6. The commutativity of D is really necessary. Take e.g. the Weyl
skewfield (cfr. 6.2.5) D1(k) over a field k as a superfield of k(X). The map

π ∶ D̃1(k) → k̃(X) ∶ x↦
⎧⎪⎪⎨⎪⎪⎩

x if x ∈ k(X)
∞ if x ∉ k(X)

is a partial k(X)-place of D1(k), but π−1(k(X)) is not a partial valuation ring
on D1(k) since it is not stable (e.g. Y −1XY =X + Y −1 is not in k(X)).

Proposition 1.2.7. Let D be a field. Consider a surjective partial C-place π
of D and let R be the associated partial valuation ring. There is an inclusion-
preserving one-one correspondence between stable subrings of R and partial
valuations on C.

Proof. Suppose S ⊆ R is a partial valuation subring of R and suppose c ∈ C.
Since π is surjective, there is an r ∈ R with π(r) = c, so we have cπ(S)c−1 =
π(r)π(S)π(r−1) = π(rSr−1) ⊆ π(S) so π(S) is a stable subring, i.e. a partial
valuation ring, of C.

Suppose on the other hand that S is a partial valuation ring on C, then by a
similar argument as in 1.2.5, π−1(S) is a ring which is necessarily stable since
D is a field.
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Proposition 1.2.8. Let D ⊆ D′ be skewfields and let R ⊆ R′ be local stable
subrings of D and D′. The associated partial valuations v and v′ take values
in some partially ordered groups Γ and Γ′. The sets of non-invertible elements
in R and R′ respectively will be denoted by P and P ′. Furthermore, we use π
to denote the partial place associated to R and π′ to denote the partial place
associated to R′. Then the following are equivalent:

(1) R′ ∩D = R

(2) There is an order preserving isomorphism f ∶ ∆ → Γ for some subgroup
∆ of Γ′ such that f ○ vR′ ∣D = v(D).

(3) g ∶ π(D) → π′(D′) ∶ π(d) ↦ π′(d) is injective.

Proof. We show that both (2) and (3) are equivalent to (1). (1) ⇔ (2) Suppose

d, d′ ∈ D have the same image under vR′ but not under vR. We can assume
vR(d) ≱ vR(d′), but then dd′−1 ∉ R while dd′−1 ∈ R′∩D which is a contradiction.
This means that f ∶ vR′(D) → vR(D) ∶ vR′(d) ↦ vR(d) is well-defined. It can
easily be verified that f is an order-preserving isomorphism. If there is an order
preserving isomorphism between vR′(D) and vR(D), then any d ∈ D is vR′-
positive if and only if it is vR-positive, or in other words, if and only if it is in
R. (1) ⇔ (3) Suppose (1) holds, then the kernel of g is π {d ∈D ∣ π′(d) = 0} =
π(P ′ ∩D) = π(P ∩D) = 0. Suppose now that Ker(g) = 0. If d ∈ R′ ∩D, then
π′(d) ≠ ∞ so π(d) ≠ ∞ and x ∈ R.

1.3 Total subrings

In the previous sections, we have dropped the totality from Schilling’s definition
of valuation rings. The following natural question then arises: what happens if
we retain totality and drop stability instead? The answer turns out to be total
subrings. They were introduced by Radó in [83] and were later studied quite
extensively by Mathiak, who wrote [62] (cfr. also [61]) which is perhaps the
main reference work for total subrings.

Remark 1.3.1. The name total subring is due to Radó but is not completely
standard. Mathiak uses the term non-invariant valuation ring while some au-
thors call these rings valuation rings, using the term invariant valuation ring for
what we will call valuation rings.

Definition 1.3.2. Suppose D is a skewfield and S is a totally ordered set, which
includes a maximum ∞ and at least one other element. A generalised valuation
is a surjective map v ∶D → S satisfying (for all x, y, z ∈D):

(GV1) v(x + y) ≥ min{v(x), v(y)},
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(GV2) v(x) ≤ v(y) ⇒ v(xz) ≤ v(yz).

These generalised valuations still retain many properties of valuations, some of
which are collected in the following lemma.

Lemma 1.3.3. For a generalised valuation v ∶D → S the following hold:

(1) v(x) = ∞ if and only if x = 0,

(2) v(x + y) = min{v(x), v(y)} if v(x) ≠ v(y),

(3) v(x) = v(−x)

Proof. Easy verifications; proofs are given in [83].

Much in the same way as for (partial) valuations, one can associate the ring
of positives Rv = {d ∈D ∣ v(d) ≥ v(1)} to any generalised valuation v on a
skewfield D. Pv = {d ∈D ∣ v(d) > 0} is then the unique maximal ideal of Rv.

Proposition 1.3.4. Left ideals of Rv are totally ordered.

Proof. See [59] or [62].

Theorem 1.3.5. A subring R of a skewfield D is total if and only if R = Rv for
some generalised valuation v on D.

Proof. See [83].

For another characterisation of total subrings, we refer the reader to 2.1.5. It is
interesting to compare theorem 1.3.5 with the classical result of 1.1.3. It turns
out that the totality of a valuation ring gives the totality of the ordering on the
set of values, while the group structure corresponds to stability. The following
example of a total subring which is not stable has become standard, being cited
by e.g. [83] and [95].

Example 1.3.6. Put R(t) the field of rational functions over the reals with
ordering

a0t
m +⋯ + am

b0tn +⋯ + bn
> 0 ⇐⇒ a0b0 > 0

and put G the group of affine transformations of R(t), i.e. G is the group of
maps

g ∶ R(t) → R(t) ∶ x↦ ax + b

where a and b are in R(t) and a is non-zero. Consequently, an element g ∶
x ↦ ax + b of G can be represented by (a, b) with a, b ∈ R(t) and a ≠ 0. The
lexicographic ordering

(a, b) ≥ (a′, b′) ⇔ a > a′ or (a = a′ and b ≥ b′)
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turns this into an ordered group. Indeed, suppose that (a, b) ≥ (a′, b′) and
let (s, t) be an arbitrary element of G, then (a, b)(s, t) = (as, at + b) and
(a′, b′)(s, t) = (a′s, a′t + b′). If a > a′ then certainly as > a′s. If, on the
other hand, a = a′ and b ≥ b′, we have as = a′s and at + b ≥ a′t + b′ so ≤ is
compatible with right-multiplication. The argument for compatibility with left-
multiplication is similar: in the same context as before we have (s, t)(a, b) =
(sa, sb + t) and (s, t)(a′, b′) = (sa′, sb′ + t). Again, if a > a′ we also have
sa > sa′. If a = a′ and b ≥ b′, we have sa = sa′ and sb + t > sb′ + t. We will use
e to denote the neutral element of G.

We can now construct the skew polynomial field

K(G,R(t)) = {φ ∶ G→ R(t) ∣D(φ) = {x∣φ(x) ≠ 0} is well-ordered}

with addition and multiplication defined as follows:

(φ + ψ)(x) = φ(x) + ψ(x)
(φψ)(x) = ∑

ζη=x
φ(ζ)ψ(η).

The set ∆ = {g ∈ G ∣ ∃r ∈ R ∶ g ≥ (1, r)} is multiplicatively closed, hence

O = {f ∈K(G,R(t)) ∣D(φ) ⊆ ∆}

is multiplicatively closed. Since it is also an additive subgroup of K(G,R(t)),
it is a subring. It is clear that, for any f ∈ K(G,R(t)), minD(φ) > e implies
f ∈ O. Suppose now minD(f) < e and minD(f−1) < e. We can pick x, y ∈ G
such that f(x) = minD(f) and f−1(y) = minD(f−1). As a consequence, we
have ff−1(xy) = ∑ζη=xy f(ζ)f−1(η) = f(x)f−1(y) ≠ 0. This means xy ∈D(1)
while xy < e. This is impossible, so f ∉ O⇒ f−1 ∈ O.

For any g ∈ G, we can define

fg ∶ x↦
⎧⎪⎪⎨⎪⎪⎩

1 if x = g
0 if x ≠ g

A simple calculation gives fg−1 = f−1
g and fgh = fgfh. We know f(1,−1) ∈ O, and

we find

f−1
(t,0)f(1,−1)f(t,0) = f(t−1,0)(1,−1)(t,0)

= f(1,−t−1).

Since t > r for any r ∈ R, t−1 < r for any r ∈ R. This means D(f(1,−t)) ⊈ ∆.
This means O is not invariant under inner automorphisms and as a result it
cannot be a valuation ring.
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Chapter 2

Primes and associated value
functions

Primes were introduced by Van Oystaeyen and Nauwelaerts ([100], [77]; these
were only primes with a completely prime ideal) as a non-commutative gener-
alisation of valuation rings, inspired by the fact that a valuation can also be
characterised by a ring and a prime ideal in it. The concept of a prime is just
about the broadest one that still holds some interest and many other generali-
sations of valuations, e.g. Dubrovin valuation rings, will turn out to be primes.

One would like to associate some kind of value function to such a prime, but this
poses some problems. A general value function does exist, but it takes values
only in a partially ordered monoid which, in general, is not even cancellative.
A different approach was suggested by Van Geel ([95]): suppose Q is a simple
artinian ring with some prime (R,P ), instead of a function

v ∶ Q→ Γ ∪ {∞}

for some totally ordered group Γ, one considers an arithmetical pseudo-valuation

v ∶ F(R) → Γ ∪ {∞}

where F(R) is the set of fractional R-ideals (which will be introduced in good
time). Unfortunately, for this to work, Van Geel needs a commutative theory of
fractional ideals — a rather strong condition.

In this chapter we will show, after introducing the necessary concepts and the
general value function, that, in some cases, an arithmetical pseudo-valuation
can be defined without assuming the commutativity of fractional ideals. Con-
structing arithmetical pseudo-valuations in this more general setting was one of
the main points of [102] and it will later on (cfr. 3.4) allow for the introduction
of arithmetical pseudo-valuations associated to Dubrovin valuation rings.
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2.1 Generalities about primes

Definition 2.1.1. Let A be a ring. A pair (R,P ), with R a subring of A and
P a prime ideal of R is called a prime in A if

aRb ⊆ P implies a ∈ P or b ∈ P

(for any a, b ∈ A).

If, moreover,

ab ∈ P implies a ∈ P or b ∈ P

(for any a, b ∈ A) holds, then (R,P ) is called a complete prime.

If R is a prime, then

AP = {a ∈ A ∣ aP ⊆ P and Pa ⊆ P}

is a subring of A and (AP , P ) is a prime of A which we will call the associ-
ated prime. Since many interesting properties of a prime (R,P ) hold for the
associated prime (AP , P ) as well, it is usually harmless to only consider primes
(R,P ) for which R = AP , but this is not necessary for us here.

The concept of a prime is a very general one. In fact, for many purposes it is
too general and one has to restrict attention to special kinds of primes.

Definition 2.1.2. A prime (R,P ) in a ring A is said1 to be

(1) fractional if for any a ∈ A ∖ R there are x, y ∈ R ∖ {0}, at least one of
which is in P , with xay ∈ R

(2) localised if for any a ∈ A∖R there are x, y ∈ R∖{0}, at least one of which
is in P , with xay ∈ R ∖ P

(3) separated if it is localised and for all r ∈ R ∖ {0} there are a, b ∈ A with
arb ∈ R ∖ P .

Alternatively, one could define a separated prime as a localised prime for which
P0 = {p ∈ P ∣ ApA ⊆ P} is zero. For simple rings this is obviously true, so any
localised prime in a simple ring is necessarily separated.

Example 2.1.3. 1. If Rv is a valuation ring on some field k, then (Rv, Pv) is
a localised (hence separated) prime. Vice versa, if k is a field and (R,P )
is a localised prime in k, then R is a valuation ring on k with maximal
ideal P . This follows from 1.1.4 and 2.1.5.

1This terminology comes from [59]. In earlier work, like [95], localised and separated primes
were called semi-restricted and restricted, respectively.
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2. If A is a ring and P is a prime ideal in A, then (A,P ) is a prime in A
which is always fractional and never localised, unless P is the zero ideal.

3. Let R be a (commutative) Krull domain with fraction field k (see capter
4), let P be a minimal prime ideal of R and let RP be the localisation
of R at P . The ring A = {a + bX ∣ a ∈ RP , b ∈ k} with prime ideal P =
{a + bX ∣ a ∈ PRP , b ∈ k} defines a prime in k[X]/(X2) which is localised
but not separated.

We now recall some basic results about primes.

Proposition 2.1.4. Let A be a ring, R a subring and P a prime ideal of R. If
for any a ∈ A ∖R there are x, y ∈ R ∖ {0} with xay ∈ R ∖ P , then (R,P ) is a
(necessarily localised) prime of A.

Proof. See [59].

Proposition 2.1.5. A subring R of a skewfield D is a total subring if and only
if there is an ideal P of R such that (R,P ) is completely prime.

Proof. See [59].

Proposition 2.1.6. If there is some separated prime (R,P ) in A, then A is a
prime ring.

Proof. See [59].

Definition 2.1.7. To a prime (R,P ) in a ring A we can associate a map
π ∶ R → R/P which is called the associated prime place. Let A′ be a subring
of A with some prime place π ∶ R′ → R′/P ′ = R′. A π-pseudo-place of A is a
triple (R,ψ,R) such that:

(1) R′ is a subring of A′ with R ∩A′ = R′,

(2) ψ ∶ R → R is a ring morphism with Ker(ψ) ∩A′ = P ′,

(3) R′ is a subring of R and ψ∣A′ = π.

A π-pseudo-place is called a π-pre-place if (R,Ker(ψ)) is a prime of A.

These definitions will allow us to formulate one of the most important results
in the theory of primes: a Chevalley-like extension theorem, proven by Van Geel
in [94] (although [59], which also contains a proof, is probably easier to find).
If S and T are subsets, we will use the notation < T > for the multiplicative
closure of T ∪ {1} and ST for {∑i siti ∣ ∀i ∶ si ∈ S, ti ∈ T}.
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Theorem 2.1.8. Let A again be a ring and let (R′, P ′) be a prime in some
subring A′ with associated prime place π ∶ R′ → R′/P ′. Consider subsets
M ⊆ N ⊆ A satisfying

(i) NA ⊆ P ′ < N > and NP ′ ⊆ P ′ < N >

(ii) P ′ < N > ∩A′ ⊆ P ′

(iii) 0 ∉M and for all m1,m2 ∈M there is some n ∈ N such that m1nm2 ∈ N2

(iv) R′ ∖ P ′ ⊆M

(v) M ∩ P ′ < N >= ∅

then there is a π-pre-place (R,ψ,R) of A.

Proof. See [59].3

Let A be a ring. Suppose R,R′ are subrings of A with some respective prime
ideals P and P ′. We can say that (R,P ) ≤ (R′, P ′) if R ⊆ R′ and P ′ ∩R = P .

Corollary 2.1.9. If (R,P ) is maximal with respect to ≤, then it is a prime.

Proof. See [59].

Remark 2.1.10. 1. The statement in [59] is a little bit different, since it
makes use of so-called dominating pairs. As a corollary of the theorem, it
is then shown that dominating pairs are necessarily primes.

2. In the case where A′ is a field k, R is a valuation ring on k with maxi-
mal ideal P , and A is a field extension of k, this theorem becomes the
Chevalley extension theorem for valuations.

2.2 Value functions associated to primes in simple
rings

Suppose Q is a simple ring and let (R,P ) be a prime in Q. To any element
x of Q, one can associate the set Px = {(q, q′) ∈ Q2 ∣ qxq′ ∈ P}. This induces
an equivalence relation ∼ on Q by putting x1 ∼ x2 if Px1 = Px2 . Since Q is
simple, the fact that x ∼ 0 implies Px = Q ×Q yields x = 0. The set Q = Q/ ∼
is endowed with a canonical partial ordering — by putting x1 ≤ x2 if and only
if Px1 ⊆ Px2 — and multiplication — by putting x1 ⋅ x2 = x1x2.

2This condition means that M is an m-system for N , which explains why M is called M .
3But lasciata ogni speranza voi ch’entrate; the proof is rather involved and not very intu-

itive.
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Proposition 2.2.1. Q is a partially ordered semigroup.

Proof. See [59].

It is clear that 1 is the neutral element of Q and that x is invertible if x is, but
Q is not cancellative in general. In fact, x can never be invertible if x is a zero
divisor.

Since 0 > x for all non-zero x in Q, it makes sense to denote 0 by ∞.

Proposition 2.2.2. The map φ ∶ Q → Q ∶ x ↦ x satisfies the following condi-
tions:

(i) φ(x) = ∞ if and only if x = 0,

(ii) φ(xx′) = φ(x)φ(x′),

(iii) if φ(x) ≥ φ(y) ≤ φ(x′), then φ(x + x′) ≥ φ(y),

(iv) if x ∈ U(Q), then φ(x−1) = φ(x)−1,

(v) if φ(x) > φ(y), then φ(x + y) = φ(y).

Proof. Some of the statements are proven in [59]. The proofs are anyway not
too difficult.

Remark 2.2.3. These definitions still work just as well for non-simple rings,
provided that (R,P ) is a separated prime. Otherwise, property (i) from 2.2.2
fails to hold.

If Q is a skewfield, Q is a partially ordered group. In this case, additive notation
is traditionally used for the operation on Q, even if it need not be commutative,
but we will avoid this slightly confusing convention for now. For any prime
(R,P ) in a skewfield Q, one can define OR = {q ∈ Q ∣ φ(q) ≥ 1}. Because of
2.2.2, this is clearly a subring of Q. There are some alternative characterisations
of positive elements which might bear repeating:

Proposition 2.2.4. If (R,P ) is a localised prime in a skewfield Q, then OR =
⋂q∈U(Q) qRq−1.

Proof. See [59].

This means that for a localised prime (R,P ) the value function φ, which a priori
only depends on P , is also only dependent on R which justifies the notation
OR. Note that knowing the value function is in general not enough to know
the prime (R,P ), as the following lemma shows:
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Lemma 2.2.5. For any z ∈ U(Q) and any prime (R,P ) in Q, OR = OzRz−1
holds.

Proof. Denoting the value function associated to R and zRz−1 by φR and
φzRz−1 respectively, we find

φR(x) ≥ 1⇔∀q, q′ ∈ Q ∶ (qq′ ∈ P ⇒ qxq′ ∈ P )
⇔ ∀q, q′ ∈ Q ∶ (z−1qq′z ∈ P ⇒ z−1qxq′z ∈ P )
⇔ ∀q, q′ ∈ Q ∶ (qq′ ∈ zPz−1 ⇒ qxq′ ∈ zPz−1)
⇔ φzRz−1(x) ≥ 1

which had to be shown.

Definition 2.2.6. A prime (R,P ) is called strict if the associated partial valu-
ation is a strict partial valuation.

For a strict localised prime, one can define p = {q ∈ Q ∣ φ(q) ≥ 1}, which is the
unique maximal ideal of OR.

Proposition 2.2.7. For a strict localised prime (R,P ) in a skewfield Q, the
following hold:

(1) OR/p is a skewfield,

(2) every left (right) ideal of OR is a two-sided ideal,

(3) if (OR,p) is a prime of the skewfield of fractions Q(OR), then OR is a
valuation ring in Q(OR).

Proof. See [59].

Proposition 2.2.8. Let (R,P ) be a strict fractional prime in a simple artinian
ring Q. If A is any semisimple artinian subring of Q and A ≠ Q, then R is not
contained in A.

Proof. Assume R ⊆ A and pick q ∈ Q∖A. Since A is noetherian, we may choose
L maximal for the property that Lqy ⊆ A for some y ∈ A. Since A is semisimple
artinian, we have A = L ⊕ U where U is a left ideal and uqy ∉ A for every
u ∈ U (otherwise (L+Ru)qy ⊆ A entails u ∈ L which is a contradiction). There
exist x′, y′ ∈ R with 0 ≠ x′uqyy′ ∈ R ⊆ A. Since L is maximal for the property
that Lqyy′ ⊆ A, it follows that x′u ∈ L but x′u ∈ U , so x′u = 0 contradicting
x′uayy′ ≠ 0.

A ring is said to be a Goldie ring if the set of regular elements satisfies the Ore
condition and S−1R is a semisimple Artinian ring.
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Proposition 2.2.9. If (R,P ) is a strict fractional prime in a simple artinian
ring Q and R is a Goldie ring, then S−1R = Q where S is the set of regular
elements in R.

Proof. Let r ∈ S, then we claim that r is regular in Q. Suppose it is not, then
ru = 0 for some u ∈ Q ∖R. Since (R,P ) is fractional, there exist x, y ∈ R with
0 ≠ xuy ∈ R and since S satisfies the Ore condition, there are x′ ∈ R and r′ ∈ S
with r′x = x′r so r′xuy = x′ruy = 0 hence xuy = 0 which is a contradiction.
Since Q is simple Artinian, r−1 ∈ Q so any element of S is invertible in Q and the
injection R ↪ Q extends to an injection S−1R ↪ Q. Since S−1R is semisimple
artinian, the preceding proposition implies that S−1R = Q.

Remark 2.2.10. If R is a prime Goldie ring and I is an essential left ideal of
R then I is generated by the regular elements of I. (See [66].)

Example 2.2.11. Let O be as in example 1.3.6. We will try to find OR, i.e. the
ring of positive elements for the partial valuation associated to O as a prime.
Let us first investigate φ((1.0)). When is (f, f ′) in φ((1,0))? Clearly when

minD(f)minD(f ′) > (1, r)

for some real number r. Put (a, b) = minD(f) and (a′, b′) = minD(f ′), then
(f, f ′) ∈ φ(1) if aa′ > 1 or aa′ = 1 and aa′ + b > r for some real number r.
In general, if f ′′ has minD(f ′′) = (c, d), then (f, f ′) ∈ φ(f ′′) if and only if
aa′ > c′−1 or aa′ = c−1 and acb′ + ad + b > r for some real r. (Provided that
c is positive. If it is not, then φ(f ′′) ≥ φ(1) certainly does not hold.) As a
consequence, φ(f ′′) ≥ 0 if and only if

aa′ > 1 or (aa′ = 1 and ∃r ∈ R ∶ ab′ + b > r)

implies
aa′ > c−1 or (aa′ = c−1 and ∃r ∈ R ∶ acb′ + ad + b > r) .

This is clearly the case if c > 1 and it is clearly not the case if c < 1. If c = 1
it is also not the case since the term ad can destroy the desired property. This
implies that

OR = {f ∈K(G,R(t)) ∣ minD(f) = (a, b) then a > 1 or a = 1 and b = 0}

which is a local stable subring of K(G,R(t)) and U(OR) is the set of those f
with minD(f) = (1,0).

2.3 Invariant primes

The following proposition is a slight generalisation of Schilling’s characterisation
of valuation rings in skewfields. It provides a motivation for considering invariant
primes as a canonical generalisation of valuation rings on skewfields to general
simple artinian rings.
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Proposition 2.3.1. Let Q be a skewfield. If R ⊆ Q is invariant under inner
automorphisms and R = AP for some prime (S,P ), then R is valuation ring.

Proof. Suppose (R,P ) is a prime and suppose qq′ ∈ P . Obviously, Rqq′ ⊆
P , but since R is invariant under inner automorphisms we also have Rqq′ =
qRq−1qq′ = qRq′ which implies that either q or q′ is in P . This means that
P is completely prime so R, as the domain of a complete prime, must be a
total subring. A total subring which is stable under inner automorphisms is a
valuation ring (cfr. 1.1.4).

Consider a strict fractional prime (R,P ) of a simple artinian ring A. We always
assume that R is Goldie hence a prime ring and an order of A (by proposition
2.2.9). If P is invariant under inner automorphisms of A, we say that (P,R) is
an invariant prime of A.

Example 2.3.2. Consider once more the example from 1.3.6 and 2.2.11. If P
is the unique maximal ideal of OR, then (OR,R) is a prime which is invariant.
Note that, by 2.3.1, we do not have R = AP in this case.

For the remainder of this section, we will assume that (R,P ) is an invariant
prime which is equal to its associated prime.

Remark 2.3.3. R is invariant under inner automorphisms of A.

Proof. Consider u ∈ U(A). For p ∈ P we have uRu−1p = uRu−1puu−1 and
u−1pu ∈ P so Ru−1pu ⊆ P and uRu−1p ⊆ uPu−1 ⊆ P . Hence uRu−1P ⊆ P
which implies uRu−1 ⊆ R. A similar reasoning gives PuRu−1 ⊆ R.

In general, by a fractional R-ideal of A we mean an R-bimodule I ⊆ A such that
I contains a regular element of R and for some r, s ∈ R, rI ⊆ R and Is ⊆ R.
Observe that we may choose r and s regular since R is an order. We will denote
the set of fractional ideals of R by F(R).

Lemma 2.3.4. The following properties hold:

(1) If u is regular and uI ⊆ R then Iu ⊆ R and vice versa. Similarly, uI ⊆ P
if and only if Iu ⊆ P .

(2) If I, J ∈ F(R), then IJ ⊆ P if and only if JI ⊆ P .

(3) If I, J ∈ F(R) then IJ ⊆ R implies JI ⊆ R and vice versa. Moreover, if
J ⊈ P then I ⊆ R and if P ⊉ I ⊆ R then J ⊆ R.

Proof. (1) If uI ⊆ R, then Iu ⊆ u−1Ru = R and if Iu ⊆ R, then uI ⊆ uRu−1 =
R. The other case is similar.
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(2) If IJ ⊆ P then, since (R,P ) is a prime, either I or J is in P , say I ⊆ P .
Since I is an ideal it is left essential so it is , by 2.2.10, generated by regular
elements. For every regular element u ∈ I, uJ ⊆ P yields Ju ⊆ u−1Pu = P ,
hence JI ⊆ P . The case I ⊈ P and J ⊆ P is similar.

(3) Suppose I, J ∈ F(R) such that IJ ⊆ R. If I, J ⊆ P there is nothing
to prove since then IJ ⊆ P and JI ⊆ P , so assume J ⊈ P (I ⊈ P is
completely similar). From PIJ ⊆ P we then obtain PI ⊆ P since (P,R)
is a prime of A, so I ⊆ AP = R. Again, I is generated by regular elements
since it is left essential and for u ∈ I regular uJ ⊆ R gives Ju ⊆ u−1Ru = R
hence JI ⊆ R.

Corollary 2.3.5. P is the unique maximal ideal of R.

Proof. Consider an ideal I ⊈ P and a regular element u of R which is in I
but not in P (such an element exists since I is generated by regular elements).
Then Ru = RuR ≠ R so u−1 ∉ R. From Ru−1RuR = R with RuR ⊈ P we
obtain Ru−1R ⊆ R which is a contradiction.

Remark 2.3.6. In fact, we showed that every regular element of R∖P is already
invertible in R.

Corollary 2.3.7. If C(P ) = {x ∈ R ∣ x mod P regular in R/P} satisfies the Ore
condition then it is invertible in R, i.e. QP (R) = R or R is local and P is the
Jacobson radical of R.

Proof. If C(P ) is an Ore set in the prime Goldie ring R which is also an order in a
simple Artinian ring A, then C(P ) consists of regular elements and since C(P ) ⊆
R∖P it consists of invertible elements of R. Consequently, the localisation of R
at C(R) is equal to R. It then follows that P is the Jacobson radical of R.

Proposition 2.3.8. If ⋂Pn = 0 then C(P ) satisfies the Ore condition.

Proof. We claim that 1+P consists of units. Indeed, consider 1+ p with p ∈ P
and assume it is not regular, then r(1+p) = 0 for some 0 ≠ r ∈ R. Then r = −rp
yields r ∈ ⋂Pn hence r = 0 which is a contradiction. If c ∈ C(P ) then c is
regular in R/P . We have that P +Rc is essential in R since it contains P hence
it is generated by regular elements. Since Ru = RuR for regular u, it follows
that P +Rc is a two-sided ideal of R, hence P +Rc = R and Rc = R i.e. c is
invertible. Then there is an u ∈ R with uc = 1 which means uc ∈ 1+P . If rc = 0
then uru−1uc = 0 which would contradict the fact that all elements of 1 + P
are units. Consequently, C(P ) consists of R-regular elements. For every r ∈ R
and c ∈ C(P ) we have cr = crc−1c = r′c which gives the left Ore condition and
also rc = cc−1rc = cr′ which gives the right Ore condition. Therefore C(P ) is
an Ore set.
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Corollary 2.3.9. If ⋂Pn = 0 then C(P ) is invertible in R and R is local with
Jacobson radical P .

Corollary 2.3.10. R/P is a skewfield.

Proof. If a ∈ R/P is not invertible then it is not regular (cfr. the proof of
proposition 2.3.8), say sa = 0. Let a = a mod P and s = s mod P , then
sa ∈ P implies (Rs+P )a ⊆ P . Furthermore, Rs+P is two-sided and it contains
P strictly so Rs + P = R. This means that Ra ⊆ P so a = 0.

Proposition 2.3.11. Under assumptions as before, the left R-ideals are totally
ordered and every finitely generated left R-ideal is generated by one regular
element.

Proof. By remarks 2.2.10 and 2.3.3, left R-ideals are R-ideals. Suppose xy ∈ P
with either x or y regular in A. We suppose without loss of generality that
x is regular, so it is invertible in A. We find xRy = xRx−1xy = Rxy ⊆ P so
since (R,P ) is prime, x or y must be in P . Consider now x regular (hence
invertible) in A∖R. Since x ∉ R, there must be a p ∈ P with xp ∉ P (or px ∉ P
in which case we argue similarly). Then we have Rx−1xp ⊆ P so x−1 ∈ P since
it is A-regular. Consider now a finitely generated left ideal I in R. By [66],
it is generated by R-regular elements so it is generated by a finite number of
R-regular elements say I = Ru1 +⋯ +Run. Since R is Goldie, every R-regular
element is A-regular, so by the preceding statements either u1u

−1
2 or u2u

−1
1 must

be in R. Suppose the latter (again, in the other case we argue similarly), then
Ru2 = Ru2u

−1
1 u1 ⊆ Ru1 which means that Ru1 +Ru2 = Ru1. By induction we

find that every finitely generated left ideal is principal and in fact even principal
for a regular element. This in turn implies that the finitely generated left ideals
are totally ordered by inclusion. Suppose now that I and J are left R-ideals
with J ⊈ I. There must be a regular x ∈ J ∖I and for every y ∈ I we have either
yx−1 ∈ R which would imply y ∈ xR ⊆ J or xy−1 ∈ R but this is contradictory
since it implies x ∈ Ry ⊆ I.

2.4 Arithmetical pseudo-valuations associated to in-
variant primes

An arithmetical pseudo-valuation (or apv for short) on R as before is a function
v ∶ F(R) → Γ for some partially ordered semigroup Γ such that:

(APV1) v(IJ) = v(I) + v(J);

(APV2) v(I + J) ≥ min{v(I), v(J)};

(APV3) v(R) = 0;
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(APV4) I ⊆ J implies v(I) ≥ v(J).

For more information about arithmetical pseudo-valuations, we refer to [59] and
[95]. In this section, we will assume that (R,P ) is an invariant prime. Note
that we will use + for the operation on Γ even if it need not be commutative.
Similarly, we use 0 for the neutral element. This notation is in concordance with
the usage in e.g. [59] and [95].

Theorem 2.4.1. For any (R,P ) there is an arithmetical pseudo-valuation v ∶
F(R) → Γ, where Γ is a totally ordered semigroup, such that

P = {a ∈ A ∣ v(RaR) > 0} and R = {a ∈ A ∣ v(RaR) ≥ 0} .

Proof. Observe that for any I, J ∈ F(R) we have IJ ∈ F(R) and I+J ∈ F(R),
moreover for every a ∈ A we have RaR ∈ F(R). Indeed, if a ∈ A then there is a
regular u ∈ R such that ua ∈ R since R is an order, then RuaR = RuRaR ⊆ RaR
and as an R-ideal, RuaR contains a regular element of R. If I and J are in
F(R) then IJ contains a regular element and if uI ⊆ R and vJ ⊆ R for regular
u and v then Jv ⊆ R so uIJv ⊆ R whence vuIJ ⊆ vRv−1 = R with vu regular.
For I+J we have vu(I+J) ⊆ R+vuJ with vuJ = vuv−1vJ ⊆ R since vuv−1 ∈ R.

For any I ∈ F(R) we define v(I) = (P ∶ I) = {a ∈ A ∣ aI ⊆ P} and since RaRI ⊆
P if and only if IRaR ⊆ P this is also equal to v(I) = {a ∈ A ∣ Ia ⊆ P}. Note
that v(I) ≠ {0} because uI ⊆ R for some regular u ∈ R, hence 0 ≠ Pu ⊆ v(I).
We also have v(R) = P . Put Γ = {v(I) ∣ I ∈ F(R)} and define a partial order
≤ by

v(I) ≤ v(J) ⇔ v(I) ⊆ v(J).

Note that if I ⊆ J then v(I) ≥ v(J). We claim that Γ is in fact totally ordered.
Indeed, if I, J ∈ F(R) such that v(I) ⊈ v(J) and v(J) ⊈ v(I) then there is an
a ∈ A with aI ⊆ P but aJ ⊈ P and a b ∈ A with bJ ⊆ P but bI ⊈ P . Since P is
prime, aJbI ⊈ P but RbIaJ ⊆ RbPJ ⊆ RbJ ⊆ P yields RaJbI ⊆ P which is a
contradiction in view of lemma 2.3.4.

We can define a (not necessarily commutative) operation + on Γ by putting
v(I) + v(J) = v(IJ). The unit for this operation is v(R). We now verify
that + is well-defined. Suppose v(I) = v(I ′) and v(J) = v(J ′) and consider
x ∈ v(IJ), then RxRIJ ⊆ P so RxRI ⊆ v(J) = v(J ′) or RxRIJ ′ ⊆ P . By
the same lemma as before, IJ ′RxR ⊆ P follows hence J ′RxR ⊆ v(I) = v(I ′)
i.e. I ′J ′RxR ⊆ P which implies x ∈ v(I ′J ′) and consequently v(IJ) ⊆ v(I ′J ′).
The other inclusion can be obtained by the same argument if the roles of I, J
and I ′, J ′ are interchanged.

We now check that this operation is compatible with ≤. Take some v(I) ≥ v(J)
and consider v(HI) and v(HJ). If q ∈ v(HJ) then qHJ ⊆ P so qH ⊆ v(J) ⊆
v(I) which implies qHI ⊆ P so q ∈ v(HI). To prove that ≤ is also stable under
right multiplication, we consider q ∈ v(JH). Then qJH ⊆ P or equivalently
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JHq ⊆ P . By lemma 2.3.4 HqJ ⊆ P follows so Hq ⊆ v(J) ⊆ v(I) hence
IHq ⊆ P i.e. q ∈ v(IH).

If v(I) ≤ v(J) then aI ⊆ P yields a(I + J) ⊆ P since aJ ⊆ P , so v(I + J) ⊇
v(I) = min{v(I), v(J)}. Together with the preceding, this implies that v is an
arithmetical pseudo-valuation. The only thing left to prove is that

R = {a ∈ A ∣ v(RaR) ≥ 0} and P = {a ∈ A ∣ v(RaR) > 0} .

Suppose v(RaR) > 0 = v(R) = P , then there is some x ∈ v(RaR) ∖ P . Now
xRaR ⊆ P gives a ∈ P , so {a ∈ A ∣ v(RaR) > 0} ⊆ P . If p ∈ P , then v(RpR) ⊇
R ⊋ P , hence p ∈ {a ∈ A ∣ v(RaR) > 0} so P = {a ∈ A ∣ v(RaR) > 0}. If a ∈ A
is such that v(RaR) = 0 and p ∈ P then v(RaRRpR) = v(RaR) + v(RpR) =
v(RpR) > 0 so RaRRpR ⊆ P and therefore ap ∈ P which implies a ∈ R since
R = AP . On the other hand, if r ∈ R then PRrR ⊆ P . Since RrR is generated
by regular elements, it follows that r ∈ ∑RuiR for a finite set of regular ui.
Consequently, since Γ is totally ordered, v(RrR) = v(RuiR) where v(RuiR)
has the minimal value among these regular elements. If v(RrR) < 0 then
v(P ) ≤ v(PRrR) since PRrR ⊆ P and then

v(P ) ≤ v(PRrR) = v(P ) + v(RrR) ≤ v(P ) (2.1)

since v(RrR) < 0. This means that all ≤ in 2.1 are actually equalities and
in fact v(P ) = v(P ) + v(RuiR) = v(PRuiR) so if aPRuiR ⊆ P then also
aP ⊆ P . By choosing a = u−1

i we find u−1
i P ⊆ P . In a similar fashion we find

Pu−1
i ⊆ P and consequently u−1

i ∈ AP = R so v(RrR) = v(RuiR) = v(R) = 0
which contradicts v(RrR) < 0. Consequently R = {a ∈ A ∣ v(RaR) ≥ 0}.

Proposition 2.4.2. With R,P and A as before, Γ is a group if and only if for
any fractional R-ideal I there is a nonzero y ∈ R with yI ⊆ R but yI ⊈ P .

Proof. If Γ is a group and I ∈ F(R) then for some J ∈ F(R) we have v(I) +
v(J) = 0 i.e. v(IJ) = v(JI) = v(R). Consequently, IJP ⊆ P ⊇ PIJ so
IJ ⊆ AP = R. Since aIJ ⊆ P iff aR ⊆ P we have IJ ⊈ P . Then we can choose
a y ∈ J with Iy ⊆ R but Iy ⊈ P which implies RIRy ⊆ R and RIRy ⊈ P .

Suppose now that there is some y with yI ⊆ R but yI ⊈ P . For any x ∈ v(RyRI)
we have RxRRyRI ⊆ P which implies RxR ⊆ P and consequently x ∈ v(R).
From RyRI ⊆ R we can deduce v(R) ⊆ v(RyRI) hence v(R) = v(RyRI)
which means that v(RyR) is the inverse of v(I).

Note that the second part of the proof of the preceding theorem guarantees
that every v(I) is also v(RaR) for some a ∈ A.

Lemma 2.4.3. If ⋂Pn = 0 and Γ is a group then R is a Dubrovin valuation
ring (cfr. 3.2.1 for a definition of Dubrovin valuation rings).
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Proof. By applying corollary 2.3.9 one finds that R/P is prime Goldie with
invertible regular elements, i.e. it is a simple artinian ring. Consider q ∈ A ∖R.
There exists some y ∈ A with RyRRqR ⊆ R but RyRRqR ⊈ P . Then there
exists a z ∈ RyR with zq ∈ R ∖ P and since RqRRyR ⊆ R but RqRRyR ⊈ P
we can use a similar construction to find an element z′ with qz′ ∈ R ∖ P .

Theorem 2.4.4. If Γ is a group and ⋂Pn = 0, then R is a valuation ring and
A is a skewfield.

Proof. If a ∈ R ∖ P then P +Ra is essential, two-sided and contains P so it is
equal to R. Then, for some r ∈ R and p ∈ P , we have 1 = p + ra. We have
already seen (cfr. proof of proposition 2.3.8) that 1 + P consists of units, so
ra is a unit hence a is a unit. If q ∈ A ∖R there is some y with yq ∈ R ∖ P ,
so yq is a unit of R hence q is a unit of A. Finally, if some p ∈ P were not
invertible, then Ap ⊆ P since no element in Ap is a unit. Then we would have
A(RpR) ⊆ P , but this would contain some regular u which is invertible in A
and Au ⊆ P would give a contradiction. This implies that A is a skewfield
and R is an invariant Dubrovin valuation ring on A, so it must be a valuation
ring.

Recall that a partially ordered group G is called archimedean if (for all a, b ∈ G)

∀n ∈ Z ∶ an < b Ô⇒ a = e

where e is the neutral element of G.

Corollary 2.4.5. If Γ is an archimedean group, then R is a valuation ring.

Proof. In view of the preceding proposition we only have to show that ⋂Pn = 0.
Suppose it is not, then I = ⋂Pn is a nonzero ideal. Pick 0 ≠ b ∈ I, then
RbR ⊆ I is a fractional ideal, hence there exists an ideal J ∈ F(R) with v(J) +
v(RbR) = 0. Then v(Pn) + v(RbR) ≤ 0 for any n, so nv(P ) + v(RbR) ≤ 0.
However, putting v(RbR) = γ, there must be some n with nv(p) > −γ which is
a contradiction.

Proposition 2.4.6. Let R be any order in a simple artinian ring A and suppose
that v ∶ F(R) → Γ is an apv which takes values in a totally ordered semigroup
Γ. Then:

(1) P = {a ∈ A ∣ v(RaR) > 0} defines a prime (P,AP ) for which

{a ∈ A ∣ v(RaR) ≥ 0} ⊆ AP .

(2) if v(I) = {a ∈ A ∣ aI ⊆ P} and Γ is a group, then the inclusion from (1)
is an equality.
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Proof. (1) For a, b ∈ P we have v(R(a+ b)R) ≥ min{v(RaR), v(RbR)} which
is strictly positive, so a + b ∈ P . Clearly, P is an ideal in AP and R ⊆ AP since
v(R) = 0 and we have v(RrRRpR) = v(RpR) > 0 for all r ∈ R and p ∈ P . If
a, a′ ∈ A are such that aAPa′ ⊆ P then aRa′ ⊆ P hence v(RaRa′R) > 0. From
v(RaR) + v(Ra′R) > 0 it follows that either v(RaR) > 0 or v(Ra′R) > 0, i.e.
either a ∈ P or a′ ∈ P . If v(RaR) ≥ 0 for some a ∈ A then for all p ∈ P we have
v(RaRpR) = v(RaR) + v(Rp) > 0 and v(RpRaR) = v(RpR) + v(RaR) > 0 so
a ∈ AP .

(2) Consider a ∈ AP . RaR is invertible in F(R) so there is some J ∈ F(R)
with v(RaR) + v(J) = 0 = v(J) + v(RaR), hence v(JaR) = v(RaJ) = 0. If
v(RaR) < 0 then v(J) > 0 or in other words J ⊆ P . But then a ∈ AP would
give RaRJ ⊆ P which implies v(RaRJ) > 0 which is a contradiction. Therefore
v(RaR) ≥ 0 and AP = {a ∈ A ∣ v(RaR) ≥ 0}.
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Chapter 3

Dubrovin valuation rings

Generalising valuations to a non-commutative context poses a few basic prob-
lems. Firstly, in some sense, the right non-commutative counterpart to fields are
simple artinian rings, but these may contain zero-divisor — something valuations
cannot handle.1 Secondly, even for skewfields, good extensions do not exist in
general.2 To deal with these problems, Dubrovin introduced what he called
non-commutative valuation rings in two seminal papers: [22] and [23]. In [22],
he proved a number of equivalent characterisations of these non-commutative
valuation rings and studied the ideal theory of such rings. In [23], he proved
some extension results, the most important of which is probably that if a skew-
field D is finite dimensional over its centre, every central valuation extends to
a non-commutative valuation ring on D. Non-commutative valuation rings —
under the name of Dubrovin valuation rings — have been studied quite a bit
since then by, a.o., Gräter, Morandi, Brungs and Wadsworth. For general theory
about Dubrovin valuation rings, we refer the reader to [59] or [58].

A problem which has garnered attention since the introduction of Dubrovin
valuation rings is defining a good notion of value functions to associate to these
rings; after all, one of the nicest things about commutative valuation rings is the
existence of both a completely ring theoretical definition and a more analytic
one in terms of value functions. Various attempts have been made to introduce
value functions, cfr. e.g. [69] or [29].

We will give an overview of the main results concerning Dubrovin valuation
rings, including some characterisations and some of the more important results.
We will then follow the outline from Van Geel’s work and introduce arithmetical
pseudo-valuations in much the same way as in 2.4. For this we will need to
restrict our attention to Dubrovin valuations rings R with J(R)2 ≠ J(R). These
rings can be considered as the right non-commutative counterpart of classical

1For this reason, some authors — in particular Mahdavi Hezavehi — have considered
matrix-valuations (see e.g. [52] or [16]) but the results remain somewhat unsatisfactory.

2Although they do in some important cases, cfr. e.g. [68] or [3].
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valuation rings, as they will allow us to study divisor theory for bounded Krull
orders (cfr. chapter 4). The exposition in this chapter is along the lines of [59],
while most of the new results (which are contained in section 3.4) come from
[102].

3.1 Chain rings and n-chain rings

Definition 3.1.1. A subring S of some ring R is called a left n-chain ring in R
if for all a0, ..., an+1 in S there is some i with

ai ∈ ∑
j≠i
ajS.

A right n-chain ring is defined similarly and if S is both a left n-chain ring and
a right n-chain ring it is called an n-chain ring. If n = 1, we say S is a chain
ring.

Note that if S is an n-chain ring of R and S ⊆ R′ ⊆ R, then S is an n-chain ring
of R′. Since the ideals of a valuation ring are linearly ordered, chain rings can
be considered as generalisations of valuation rings. They have been studied in
some detail, mainly by Brungs and Törner (cfr. e.g. [10], [4]), but very little has
been written about n-chain rings for arbitrary n. In fact, apart from Dubrovin’s
original paper ([22]) and some books dealing with Dubrovin valuation rings ([59]
& [58]), nothing seems to have been published about them.

Let now S be an n-chain ring in a simple artinian ring Q and suppose S-
ideals of Q to be linearly ordered. In this case, we can mimic a construction
by Morandi ([69]). Define the stabiliser st(S) = {q ∈ Q ∣ qSq−1 = S} and put
ΓS = st(S)/U(S). ΓS can be ordered in a canonical way by x ≥ y if xS ⊆ yS
(where x and y are in st(S)). Since S-ideals are linearly ordered, ΓS must also
be linearly ordered.

Proposition 3.1.2. Suppose S-ideals of Q are linearly ordered. If for all q ≠ 0
in Q there is an sq in st(S) with SqS = sqS, then there is a map v ∶ Q → Γ to
a totally ordered group Γ satisfying (for all q, q′ ∈ Q):

(i) v(q − q′) ≥ min{v(q), v(q′)},

(ii) v(qq′) ≥ v(q)v(q′),

(iii) v({q ∈ U(Q) ∣ v(q) = v(q−1)−1}) = Γ,

(iv) Γ ≃ ΓS ,

(v) S = {q ∈ Q ∣ v(q) ≥ 0}.
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Proof. The proof is exactly the same as for Dubrovin valuation rings, which was
done by Morandi in the aforementioned [69].

It might be of interest to mention the special case of chain rings in skewfields.
Brungs and Törner introduced in [10] a partial valuation on a chain ring S by
putting W = {aS ∣ a ≠ 0}, a map x̃ ∶ W → W ∶ aS ↦ xaS for any x ≠ 0, and
H̃(S) = {x̃ ∣ x ≠ 0} the group of those maps. This group is partially ordered by

x̃ ≥ ỹ⇔ xaS ⊆ yaS

leading to a canonical partial valuation v ∶ Q → H̃(S). The group of positives
for v can be described in a very nice way:

Proposition 3.1.3. If S is a chain ring in a skewfield and v is the associated
partial valuation, then

{q ∈ Q ∣ v(q) ≥ v(1)} = ⋂
0≠s∈S

sRs−1.

Proof. See [10],

Compare this result with proposition 2.2.4 where the intersection is taken over
all q in U(Q). Finally, we can not but mention the existence of an interesting
structure theorem for chain rings. Since the statement is quite involved and
not necessary for us, we will not state it and instead suffice with pointing the
interested reader to [28].

Remark 3.1.4. [28] and various other sources use the term serial ring instead
of chain ring.

3.2 The basics of Dubrovin valuation rings

The usual definition of a Dubrovin valuation ring is as follows:

Definition 3.2.1. Let Q be a simple artinian ring. A Dubrovin valuation ring
on Q is a subring R with a prime ideal M such that:

(DV1) R/M is simple artinian,

(DV2) for all q ∈ Q there are r, r′ ∈ R such that rq, qr′ ∈ R ∖M .

There are quite a few alternative characterisations, but in order to even state
them, we will need some more terminology.

Suppose that Q and Q′ are simple artinian rings. We can extend them both
by a symbol ∞ which satisfies the rules x + ∞ = ∞ = ∞ + x (for any x) and
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x ⋅ ∞ = ∞ = ∞ ⋅ x (for any invertible x). Consider a surjective map f ∶ Q → Q′

such that f(1) = 1, f(xy) = f(x)f(y) and f(x + y) = f(x) + f(y) provided
the right-hand terms are defined. We call such a map a left point if for any q
with f(q) = ∞ there is some r ∈ Q such that f(r) ≠ ∞ and 0 ≠ f(rq) ≠ ∞.
We define right points in a similar way. If f is both a left and right point, it is
called a point.

If R is a Dubrovin valuation ring, one can consider the canonical map π ∶ R →
R/M . R/M considered as a finitely generated module over itself is a direct sum
of a finite number of simple R/M modules. This finite number will be denoted
by d(R/M).

Recall that an order in a simple artinian ring is called Bezout if any finitely
generated left or right ideal is cyclic. If every finitely generated ideal of a ring
R is projective as an R module, R is said to be semi-hereditary. Now we are
ready to state the alternative characterisations theorem:

Theorem 3.2.2. For a subring of a simple artinian ring Q, the following are
equivalent:

(1) R is a Dubrovin valuation ring,

(2) there is some simple artinian Q′ and a point f ∶ Q → Q′ such that
{q ∈ Q ∣ f(q) ≠ ∞} = R,

(3) R is a local Bezout order,

(4) R is a local semi-hereditary order,

(5) R is a local d(R/M)-chain ring.

Proof. See [59], [58] or [22].

Remark 3.2.3. 1. Any Dubrovin valuation ring R on a simple artinian Q is
the domain of a localised prime, so R determines M uniquely and vice
versa. In fact, M must necessarily be the Jacobson radical of R (cfr.
[59]). Consequently, 1 + P consists of units.

2. Given a Dubrovin valuation ring R, it can easily be checked that

f ∶ Q ∪ {∞} → R/M ∪ {∞} ∶ q ↦
⎧⎪⎪⎨⎪⎪⎩

q if q ∈ R
∞ if q ∉ R

is the (two-sided) point associated to R.

It is well-known that any simple artinian ring is isomorphic to Mn(D) for some
n and some skewfield D (cfr. e.g. [67]).
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Proposition 3.2.4. If R is a Dubrovin valuation ring on Q ≃Mn(D), then

(i) Mm(R) is a Dubrovin valuation ring of Mm(Q),

(ii) eRe is a Dubrovin valuation ring for any idempotent e,

(iii) R = qMn(S)q−1 for some q ∈ U(Q) and some Dubrovin valuation ring S
of D,

so the class of Dubrovin valuation rings is Morita invariant.

Proof. See [59], [58] or [22].

Example 3.2.5. The following is perhaps the easiest non-trivial example of a
Dubrovin valuation ring: let H denote the Hamilton quaternions over Q, let Zp
be the p-valuation ring for some prime number p and put R = Zp+Zpi+Zpj+Zpk
where {1, i, j, k} is the usual basis of H. We will denote the p-valuation by vp and
the Jacobson radical of R, which is pZp+pZpi+pZpj+pZpk by P . Suppose x =
a+bi+cj+dk is an element of H∖R and put n = min{vp(a), vp(b), vp(c), vp(d)}.
Multiplying x with pn yields an element of R which is not in P , so (R,P )
satisfies (DV 2).

3.3 Some ideal theory for Dubrovin valuation rings

We would like to introduce arithmetical pseudo-valuations associated to some
class of Dubrovin valuation rings, but in order to do so we will have to study
the ideal theory of Dubrovin valuation rings a little bit. We will strive to keep
this section as concise as possible and will therefore not go into any details
whatever. Fix for the remainder of this section a Dubrovin valuation ring R in
a simple artinian ring Q. The following proposition will be crucial for us:

Proposition 3.3.1. The set of R ideals is totally ordered.

Proof. See [59].

Slightly less important but still very interesting is the following:

Proposition 3.3.2. Any R-bimodule in Q is in fact an R-ideal.

Proof. See [59].
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We will now do some arithmetic using the R-ideals of Q, in much the same vein
as in [85]. Fix for an R-ideal I the following notation:

Ol(I) = {q ∈ Q ∣ qI ⊆ I}
Or(I) = {q ∈ Q ∣ Iq ⊆ I}
I−1 = {q ∈ Q ∣ qIq ⊆ I} .

For overrings S and T of R, we introduce further notation

(T ∶ I)l = {q ∈ Q ∣ qI ⊆ T} (S ∶ I)r = {q ∈ Q ∣ Iq ⊆ S}

and finally we put

∗I = (Ol(I) ∶ (Ol ∶ I)r)l I∗ = (Or(I) ∶ (Or ∶ I)l)r.

Lemma 3.3.3. With notation as before we have

(1) I∗ = (I−1)−1 = ∗I = {Sc ∣ c ∈ U(Q), I ⊆ Sc},

(2) (I∗)∗ = I∗,

(3) (I−1)∗ = I−1.

Proof. See e.g. [59].

Definition 3.3.4. An R-ideal I of Q is called divisorial if I∗ = I. The set of
divisorial R-ideals will be denoted by D(R).

Proposition 3.3.5. The set D(R) is a groupoid3 with a multiplication defined
by I ○ J = (IJ)∗ if Or(I) = Ol(J).

Proof. This is an easy verification. (Or see [59].)

As an immediate consequence, the set

DS(R) = {I ∈ D(R) ∣ Ol(I) = S = Or(I)}

is a group for every overring S of R. Recall that an ideal of a ring R is called
a Goldie prime ideal if R/P is a prime Goldie ring, i.e. if R/P has a simple
artinian ring of fractions. The maximal length of a chain

P1 ⊊ P2 ⊊ ⋯ ⊊ Pn

of Goldie prime ideals is called the rank of R. Note that a rank 1 Dubrovin
valuation ring in a simple artinian ring A is a maximal subring of A. A pair
P1 ⊊ P2 of Goldie primes with no further Goldie primes in between is called a

3For groupoids see chapter 5.
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prime segment. Prime segments have been studied in some generality (cfr. [8])
and have been classified for Dubrovin valuation rings (cfr. [7]), but are not very
important for us. We will suffice with stating a theorem indicating which groups
can occur as the group of divisorial ideals for some rank one Dubrovin valuation
ring.

Proposition 3.3.6. For a rank one Dubrovin valuation ring R, one of the fol-
lowing holds:

(i) There is no ideal 0 ⊊ I ⊊ J(R) and D(R) is the trivial group.

(ii) There is a (non-Goldie) prime ideal 0 ⊊ P ⊊ J(R) and D(R) ≃ (Z,+) is
generated by P ∗.

(iii) For every r ∈ J(R) ∖ {0} there is an ideal I with a ∈ I and ⋂n∈N In = 0.
In this case we have

D(R) ≃
⎧⎪⎪⎨⎪⎪⎩

(Z,+) if J(R)2 ⊊ J(R)
(R,+) if J(R)2 = J(R)

.

This suggests that our definition of rank is the right one, since the valuations
of rank one in the classical sense are those with value groups isomorphic to a
subgroup of (R,+).

3.4 Arithmetical pseudo-valuations on Dubrovin valu-
ation rings

For primes containing an order with commutative semigroup of fractional ide-
als, Van Geel ([95]) introduced arithmetical pseudo-valuations, but this condi-
tion is very strong and reduces the applicability in practice to maximal orders
and Dubrovin valuation rings in finite dimensional central simple algebras. For
Dubrovin valuation rings on infinite dimensional central simple algebras the
semigroup F(R) need not be commutative. In this section, which is based on
[102], we will show that this condition can be relaxed so as to obtain arithmetical
pseudo-valuations for more general Dubrovin valuation rings.

Throughout, the Jacobson radical of a Dubrovin valuation ring R will be denoted
by P .

Proposition 3.4.1. For a noetherian Dubrovin valuation ring R we have for all
I, J ∈ F(R) that IJ ⊆ P iff JI ⊆ P .

Proof. From IJ ⊆ P it follows that either I ⊆ P or J ⊆ P , since (R,P ) is a
localised prime. Assume without loss of generality I ⊆ P . Since R-ideals are
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linearly ordered (3.3.1), if JI ⊈ P then P ⊊ JI so we have R ⊆ JI ⊆ JP ⊆ J
hence J = RJ ⊆ JIJ ⊆ JP ⊆ J which gives J = JP . Since R is an order,
there is some regular u ∈ R with uJ ⊆ R and since R is noetherian uJ = ∑aiR
for a finite set of ai’s in uJ . Then also J = ∑u−1aiR, so J is a finitely
generated R-submodule of A. By Nakayama’s lemma J must be zero, which is
a contradiction.

Corollary 3.4.2. If R is a noetherian Dubrovin valuation ring then there is an
arithmetical pseudo-valuation

v ∶ F(R) → Γ ∶ I ↦ (P ∶ I) = {a ∈ A ∣ aI ⊆ P}

for some totally ordered group Γ. Furthermore, P = {a ∈ A ∣ v(RaR) > 0} and
R = {a ∈ A ∣ v(RaR) ≥ 0}.

Proof. Using the preceding proposition instead of 2.3.4 we can repeat the proof
of theorem 2.4.1. The only thing we need to prove is that the Γ which said
theorem provides is a group, so consider I ∈ F(R). By a similar argument as in
the proof of proposition 3.4.1 it is finitely generated as a left R-ideal of A. Since
a Dubrovin valuation ring is a Bezout order (3.2.2), it is cyclic. In fact I = Ru
for some regular u and thus RuR = Ru. Since R is a Dubrovin valuation ring,
there is some a ∈ A with ua ∈ R ∖ P . Then Rua ⊆ R, Rua ⊈ P and Ia ⊆ R,
Ia ⊈ P . in the same way one obtains a b such that bI ⊆ R but bI ⊈ P . We can
now repeat the last part of the proof of proposition 2.4.2 to conclude that Γ is
a group.

Remark 3.4.3. If R is a Dubrovin valuation ring where

v ∶ F(R) → Γ ∶ I ↦ {a ∈ A ∣ aI ⊆ P}

is a non-trivial arithmetical pseudo-valuation with values in a totally ordered
group, then IJ ⊆ P if and only if JI ⊆ P . Indeed, suppose IJ ⊆ P and JI ⊈ P
then, as in proposition 3.4.1, we find JP = J but then v(P ) = 0 which is
impossible.

If R is non-noetherian, then P = P 2 is possible in which case no nice apv can
exist since otherwise v(P ) = 2v(P ) which would imply v(P ) = 0. If we exclude
this slightly pathological case, a nice apv does exist.

Proposition 3.4.4. Let R be a Dubrovin valuation ring with ⋂Pn = 0, then
there is an apv as before.

Proof. If I, J ∈ F(R) with IJ ⊆ P but JI ⊈ P . The same argument as in
proposition 3.4.1 leads to J = JP so J = JPn for any n. There is some regular
u ∈ R with uJ ⊆ P hence uJ = uJPn ⊆ Pn+1. But then uJ = 0 which implies
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J = 0 and this is a contradiction. Now we can proceed as in corollary 3.4.2 to
find an apv with values in a semigroup.

The only thing we need to prove is that Γ is a group. Lemma 1.5.4 in [59]
says that P = Rp = pR for some regular p ∈ P . Since P is principal as a
left R-ideal, lemma 1.5.6 in the same source gives PP−1 = R = P −1P (recall
that P −1 = {a ∈ A ∣ PaP ⊆ P}). Consider now a fractional R-ideal I. Clearly,
(R ∶ I)I ⊆ R. Suppose we also have (R ∶ I)I ⊆ P , then P −1(R ∶ I)I ⊆ R hence
P −1(R ∶ I) ⊆ (R ∶ I) so P −1(R ∶ I)I ⊆ P . This means (R ∶ I)I ⊆ P 2 and by
repeating this process we find (R ∶ I)I ⊆ Pn for any n, but (R ∶ I)I ⊆ ⋂Pn = 0
which is a contradiction. Therefore, (R ∶ I)I ⊆ R but (R ∶ I)I ⊈ P , so there
exists an a ∈ (R ∶ I) such that aI ⊆ R but aI ⊈ P .

Example 3.4.5. Consider (R,P ) as in example 3.2.5. The maximal ideal of R
is P = Pp +Ppi+Ppj +Ppk where Pp is the maximal ideal of Zp and Pn is just
Pnp +Pnp i+Pnp j+Pnp k. This immediately yields ⋂Pn = 0, so there exists an apv
for this Dubrovin valuation ring; it is simply the map v ∶ F → Z which sends Pn

to n. This definition makes sense, since we will show later (cfr. 3.4.8) that all
fractional ideals are of the form Pn.

Perhaps more interesting than this simple example if the following, which demon-
strates the use of our construction to obtain apvs on more exotic Dubrovin
valuation rings.

Example 3.4.6. Let Q be a simple Artinian ring, let σ ∈ Aut(Q), and put
Q[X,σ] the skew polynomial ring over Q. Q[X,σ] has a maximal ideal P =
XQ[X,σ]. Put T the localisation of Q[X,σ] at P . For t = (∑aixi)(∑ bixi)−1

arbitrary in T , we can define f(t) = a0b
−1
0 . This gives a map φ ∶ T → Q ∶ t ↦

f(t). It has been shown in [107] that an order R of Q is a Dubrovin valuation
ring if and only if R̃ = φ−1(R) is a Dubrovin valuation ring of T and that
J(R̃) = J(R) + J(T ). It is clear that if R is a Dubrovin valuation ring on Q
with ⋂J(R)n = 0 we also have ⋂J(R̃) = 0. Therefore an apv exists, but R is
not finite dimensional over its centre.

The following characterises noetherian Dubrovin valuation rings within the class
of rank one Dubrovin valuation rings. The result may be known but we found
no reference for it in the literature.

Proposition 3.4.7. For a Dubrovin valuation ring R on a simple Artinian ring
A the following are equivalent:

(1) R is noetherian.

(2) R has rank 1 and P ≠ P 2.

(3) R has rank 1 and ⋂Pn = 0.
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Proof. (1) ⇒ (2) If R is noetherian then all ideals (and R-ideals of A) are
principal, so P ≠ P 2. Suppose 0 ≠ Q is another prime ideal in P . Let P = Rp,
then Q = Ip for some non-trivial ideal I of R. Q = IP yields I ⊆ Q since Q
is prime and P ⊈ Q. Hence Q = IP ⊆ QP ⊆ Q implies Q = QP which implies
Q = 0 by Nakayama’s lemma. (2) ⇒ (3) If P ≠ P 2, then ⋂Pn ≠ P which, by
Lemma 1.5.15 in [59], gives ⋂Pn = 0. (3) ⇒ (1) Since ⋂Pn = 0, P ≠ P 2.
Since R is rank 1, R = Ol(I) = Or(I) for any R-ideal I. By proposition 1.5.8
in [59], it follows that if I is not principal, then II−1 = P and P = P 2 which is
a contradiction.

Recall that an order is an Asano order if every ideal I ≠ 0 of R is invertible. If R
is an Asano order satisfying the ascending chain condition on ideals, then F(R)
is the Abelian group generated by maximal ideals and every maximal ideal is a
minimal non-zero prime ideal (see e.g. [66]).

A semi-local order R in a simple Artinian A is a noetherian Asano order if and
only if it is a principal ideal ring. If R is a Dubrovin valuation ring of A then
R is a maximal order if and only if rk(R) = 1 and R is Asano if and only if it
is a principal ideal ring, so a noetherian Dubrovin valuation ring is a noetherian
maximal order and an Asano order, i.e. a principal ideal ring.

Proposition 3.4.8. If R is a noetherian Dubrovin valuation ring then the cor-
responding apv takes values in Z.

Proof. Since R is a noetherian Asano order, F(R) is generated by the maximal
ideals of R, but since P is the unique maximal ideal and the value group is
necessarily torsion-free, we have F(R) = Z.
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Chapter 4

A divisor theory for bounded
Krull orders

Divisor theory is an important tool in classical algebraic geometry. Therefore,
when trying to develop a non-commutative algebraic geometry, it is natural to
look for a suitable analogon of divisor theory in the non-commutative world. In
the commutative case, the proper context for developing divisor theory are Krull
domains. These are, by definition, integral domains R satisfying

(1) Rp is a discrete valuation ring for all p ∈X1(R)

(2) R = ⋂p∈X1(R)Rp

(3) Any r ∈ R ∖ {0} is contained in Rp for but finitely many p ∈X1(R)

where X1(R) is the set of height one prime ideals of R. In [57], Marubayashi
gave a generalisation of this concept by replacing the discrete valuation rings
with noetherian local Asano orders and the localisations with noetherian essen-
tial overrings of R.1 This definition was again generalised by Chamarie (cfr.
[12]) to the concept of non-commutative Krull orders as we will use it2. When
comparing the definition above to 4.2.2, it becomes clear that Chamarie’s defi-
nition is a logical choice.3

We will use the arithmetical pseudo-valuations associated to Dubrovin valua-
tion rings with non-idempotent Jacobson radical, as established in chapter 3,
together with results from [59] to develop a divisor theory for bounded Krull
domains. We will, in particular, be able to prove some useful approximation

1A similar approach was followed in [48].
2Although we will be mainly interested in the case of bounded Krull domains, where both

definitions coincide.
3It may be of interest to also mention the concept of Ω-Krull rings, see [41].
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theorems which are quite similar to the commutative case. The first two sec-
tions of this chapter are based on the exposition in [59], while the last section
contains mostly material from [102].

4.1 Bounded Krull orders...

Definition 4.1.1. Let R be a ring and let E be an injective left R-module.
A collection F of left ideals of R is called a left Gabriel topology on R if
Hom(R/I,E) = 0 for all ∈ F and

(1) Ir−1 = {x ∈ R ∣ xr ∈ I} ∈ F for all I ∈ F and r ∈ R,

(2) if I is a left ideal of R such that Ix−1 ∈ F for all x in some J ∈ F , then
I ∈ F .

Mutatis mutandis right Gabriel topologies are defined. If F is a Gabriel topology,
it follows immediately that F is closed under multiplication and that it is a filter.
In fact, in e.g. [92] Gabriel topologies are introduced as filters satisfying (2).
The interested reader is referred to either [92] or [32] for more information on
Gabriel topologies.

Let R now be a subring of some simple artinian Q. Consider

FR = {I ∣ I left ideal ∶ (R ∶ Ix−1)r = R for all x ∈ R} .

This FR is a left Gabriel topology known as the canonical left Gabriel topology.
If I is an ideal, we put I

τ = {r ∈ R ∣ ∃F ∈ FR ∶ Fr ⊆ I}. We call I
τ

the τ -closure
of I and we say that I is τ -closed if I = Iτ .

Definition 4.1.2. A maximal order is called a Krull order if it satisfies the
ascending chain condition on τ -closed left ideals.

Example 4.1.3. Clearly, any noetherian maximal order is a Krull order, but the
converse does not hold in general. Consider for example R = k[(Xi)i∈I] where
k is a field and I is an infinite set. Then an Ore extension R[X;σ, δ] will be a
non-noetherian Krull order.

It is perhaps of interest to compare this definition to the one given by Maruba-
yashi in [57]. To avoid confusion, we will call a Krull order in the sense of
Marubayashi a Marubayashi order . A Marubayashi order, then, is a prime Goldie
ring A with two collections (Ri)i∈I and (Sj)j∈J of essential overrings of A
satisfying:

(1) A = (⋂iRi) ∩ (⋂j Sj)

(2) Ri is noetherian and local Asano for all i
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(3) Sj is noetherian and simple for all j

(4) ∣J ∣ < ∞

(5) if a ∈ A is regular, then aRi = Ri for all but finitely many i.

Definitions for the terminology may be found in loc. cit.

Recall that two orders R and R′ in a simple artinian ring Q are said to be
equivalent if there are some invertible c, c′, d, d′ ∈ Q such that cRc′ ⊆ R′ and
dR′d′ ⊆ R.

Proposition 4.1.4. Any maximal order equivalent to a Krull order is itself a
Krull order.

Proof. See [12].

Proposition 4.1.5. Any Ore extension R[X,σ] of a Krull order R is again a
Krull order.

Proof. See [12].

Remark 4.1.6. As Chamarie points out in [12], there are Krull orders which are
not Marubayashi orders. His argument is as follows: by [18], a simple noetherian
integral domain R has global dimension ≤ 2 if and only if every maximal order
equivalent to Mn(R) is simple. Since e.g. the Weyl algebra An(C) with n > 2
is a simple noetherian integral domain with global dimension > 2, there are
maximal orders equivalent to Mn(R) which are not simple. By the preceding
proposition, these are Krull orders which cannot be Marubayashi orders since
they are not simple.

The following proposition, which is also due to Chamarie, relates the two defi-
nitions in a convenient manner:

Proposition 4.1.7. An order R in a simple artinian ring Q is a Marubayashi
order if and only if:

(i) R is a Krull order

(ii) R0 = {q ∈ Q ∣ ∃I two-sided ideal of R ∶ qI ⊆ R} is noetherian

(iii) for any non-zero two-sided ideal I of R, one has IR0 = R0I = R0.

Proof. See [12].

Definition 4.1.8. A ring is called left bounded if any essential left ideal contains
a non-zero two-sided ideal.
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Once more, the concept of a right bounded ring is defined analogously. It has
been shown by Chamarie ([12]) that a Krull order is left bounded if and only
if it is right bounded, so we will simply talk about bounded Krull orders. If a
Krull order R is bounded, then R0 = Q and consequently R is a Marubayashi
order. Remark 4.1.6 gives some examples of non-bounded Krull orders.

4.2 ...are the right context...

In this section we will study divisorial ideals in Krull orders and their localisation.
We will follow the exposition from [59] although many results are from [12].
Some additional results from [102] are also included.

Proposition 4.2.1. Consider a Krull order R. Let I = ∗(P e11 ⋯P enn ) be a divi-
sorial ideal for some maximal divisorial ideals Pi. Then R can be localised at I,
RI is a bounded principal ideal ring, and

(i) RI = ⋂iRPi ;

(ii) J(RI) = ⋂PiRI .

Proof. See [59].

The following theorem is crucial. It shows that bounded Krull orders and
Dubrovin valuation rings are the proper counterparts for the Krull domains and
discrete valuation rings of the commutative case.

Theorem 4.2.2. Let R be a Krull order in some simple artinian Q. Then:

(1) R = R0 ∩ (⋂P ∈X1(R)RP ),

(2) for any P ∈ X1(R), RP is a rank one Dubrovin valuation ring with
J(RP )2 ≠ J(RP ),

(3) any regular c ∈ R is in U(RP ) for all but finitely many P ∈X1(R).

Proof. See [59].

In the case where R is a bounded Krull order, R0 = Q which yields R =
⋂P ∈X1(R)RP — in others words: bounded Krull orders are a proper context for
non-commutative divisor theory. We will now show that the definite article in
the title of this section is well-chosen. To this end we repeat a result from [59]
which is a converse of sorts to the previous theorem:

Proposition 4.2.3. If R is an order in some simple artinian Q such that
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(i) R = ⋂iROi for regular Ore sets Oi

(ii) ROi is a local principal ideal ring

(iii) any regular c ∈ R is in U(ROi) for all but finitely many i

then R is a bounded Krull order.

Proof. See [59].

Theorem 4.2.4. Let R be a prime noetherian ring and an order in a simple
artinian Q. Suppose every minimal non-zero prime ideal is localiseable, RP is
a Dubrovin valuation ring for every P ∈ X1(R) and R = ⋂RP , then R is a
bounded Krull order.

Proof. Since R is noetherian, every RP is noetherian too and since it is a
Dubrovin valuation ring it must be an Asano order hence a principal ideal ring.
Since every RP is a maximal order, so is R. As a noetherian maximal order,
R is a Krull order and by theorem 4.2.2 every regular element is a non-unit in
only finitely many of the RP ’s (for P maximal divisorial, i.e. P ∈X1(R)). The
theorem now follows from the preceding proposition.

4.3 ...for non-commutative divisor theory.

The following example shows that, in a very simple case, we can readily introduce
divisors. Starting from this idea, we will develop some divisor theory and, in
particular, prove some approximation theorems.

Example 4.3.1. Consider the simple artinian ring Mn(Q) 4. The subring
Mn(Z) is a Krull order in Mn(Q) with minimal prime ideals of the form pMn(Z)
for some prime number p. The value function associated to pMn(Z) is the map

vp ∶Mn(Q) → Z ∶ (ai,j)i,j ↦min
i,j

{Vp(ai,j)}

where Vp is the valuation on Q associated to p. In this way, we can associate to
any element x of Mn(Q) the sum ∑p vp(x)p. Clearly, this sum has only finitely
many non-zero factors.

Let, for the remainder of this section, Q be a simple Artinian ring and let R
be a bounded Krull order in Q. We want to develop some divisor theory in
this context. The localisation of R at a rank 1 prime ideal P is a Dubrovin
valuation ring with J(RP )2 ≠ J(RP ), so we can associate an arithmetical
pseudo-valuation vP to it.

4Or indeed Mn(Q) for Q the field of fractions of a Krull domain Z; the reasoning is
essentially the same.
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Definition 4.3.2. A divisor of a bounded Krull order R is an element in the free
Abelian group ⊕P ∈X1(R)ZP . To any I ∈ F(R) we can associate the divisor
div(I) = ∑ vP (IP )P where IP = RP I. The set of divisors of R will de denoted
by Div(R).

This definition is justified by the following proposition (which is also given, with
a slightly different proof, in [66]):

Proposition 4.3.3. Suppose RP is noetherian. If I is an R-ideal of A, then IP
is an RP -ideal of A.

Proof. Let u be regular in R with uI ⊆ R, then RuRI ⊆ R and RuR = Ru′
for some regular u′ ∈ R. Then RPu

′I is the localisation of Ru′I and it is an
ideal of RP . RPu

′ is the localisation of Ru′ so it is also an ideal of RP , hence
RPu

′I = RPu′RP I = RPu′IP is an ideal of RP . Now U ′IP ⊆ RP , i.e. IP is an
RP -ideal of A.

Observe that, since any regular element is a non-unit in only finitely many
localisations, div(I) contains only finitely many non-zero terms. Moreover,
div(I) ≤ div(J) if and only if vP (I) ≤ vP (J) for all P ∈ X1(R). By putting
I∗ = ⋂P ∈X1(R) IP we find vP (I) = vP (I∗). We can consider div ∶ D(R) →
Div(R), which is a group morphism of Abelian groups. It reverses the ordering
in the sense that I ⊆ J yields div(J)∣div(I). We will now prove some approxi-
mation theorems. Maury (cfr. [64]) proved the first approximation result in the
sense of (A) hereafter. However, we will generalise the results in a somewhat
more elaborate way as used by Van Geel in [95] for rings with a commutative
(semi)group of fractional deals.

By theorem 4.2.2 and proposition 3.4.7, all RP are noetherian. In view of
4.3.3, IP is an RP -ideal so it makes sense to define vP (x) = v((RxR)P ) for an
element x of R.

Lemma 4.3.4. Let I be a fractional ideal. For any v = vP , the set {v(x) ∣ x ∈ I}
has a minimum which is equal to v(I).

Proof. It is clear that v(x) ≥ v(I) for any x ∈ I, so suppose there is some y
with v(I) ≤ v(y) ≤ v(x) for all x ∈ I. Any z ∈ v(y) must be in v(RxR), so
yRxR ⊆ P for all x ∈ I which implies yI ⊆ P , hence y ∈ v(I) which means
v(I) = v(y).

Lemma 4.3.5. For any fractional ideal I, v(I) = 0 for almost all v.

Proof. For any a ∈ Q there is some regular c ∈ R with ca ∈ R. It is known
that any regular element of a bounded Krull order is invertible in all but finitely
many localisations RP , so v(c) = 0 for almost all v and consequently v(a) ≥ 0
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for almost all v. By the preceding lemma, there is for any v some xv with
v(I) = min{v(x) ∣ x ∈ I} = v(xv) = v((RxvR)∗). Since R is a Krull order, the
ascending chain condition holds on divisorial ideals, so {(RxvR)∗ ∣ v} has but
finitely many elements, (Rxv1R)∗, ..., (RxvnR)∗ say. But every divisorial ideal
contains a regular element, which is almost always invertible, hence v(RxviR) =
0 for all but finitely many v and all i ∈ {1, ..., n} whence v(I) = 0 for almost all
v.

We will denote by (A) the following approximation property:

Let v1, ..., vt be a finite number of arithmetical pseudo-valuations associated to
rank 1 prime ideals in R, let n1, ..., nt be integers, and let a1, ..., at be elements
of Q. Then there exists some x ∈ Q such that vi(x− ai) ≥ ni for i = 1, ..., t and
v(x) ≥ 0 for any v ∉ {v1, ..., vt}.

Lemma 4.3.6. If (A) holds, we can pick x in such a way that vi(x − ai) = ni.

Proof. By (A), we can pick z such that vi(z − ai) > ni. Since v is surjective
and because of 4.3.4 we can also find zi with vi(zi) = ni. Then, once more by
(A), we can find z′ with vi(z′ − zi) > ni from which we can deduce

vi(z′) = vi((z′ − zi) + zi) = ni

and
vi(z + z′ − ai) = ni.

Therefore, z + z′ is the x we were looking for.

Lemma 4.3.7. Suppose again that (A) holds. For any v1, ..., vt and n2, ..., nt ∈
N there is a regular c ∈ R with v1(c) = 0, vi(c) ≥ ni for i = 2, ..., t and v(c) = 0
for any v ∉ {v1, ..., vt}.

Proof. We can certainly find some x with v1(x) = 0, vi(x) = ni for i = 2, .., t
and v(x) ≥ 0 for any v ∉ {v1, ..., vt}. Since v(x) ≥ 0 for any v, x is in R.
Every vi comes from a Dubrovin valuation ring obtained by localising R at
a minimal non-zero prime ideal which we will call Pi. RxR is an ideal with
v1(RxR) = v1(x) = 0, so RxR ⊈ P1. Since these ideals are generated by their
regular elements, we can find some regular c in RxR∖P1. Clearly, v(c) ≥ v(x)
for any v, but v(c) = 0 – otherwise c ∈ P1 would hold – which means that it
satisfies all the conditions from the statement.

Lemma 4.3.8. Assume the same setting as before. For every z ∈ Q and every
v there is some regular right invariant rv with v(rv) = v(z) and v′(rv) ≥ v′(z)
for every other v′.
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Proof. Consider the fractional ideal RvzRv. This is equal to Rvr
′
vRv for some

regular r′v. Clearly v(z) = v(r′v). Since r′v ∈ RvzRv there are some ai, bi ∈ Rv
with r′v = ∑ni=0 aizbi. Since ai, bi ∈ Rv, we have v(ai), v(bi) ≥ 0. There are
only finitely many v′, say v2, ..., vt, for which there is some i with v′(a) < 0 or
v′(b) < 0. Take c regular with v(c) = 0 and vj(c) ≥ 2 maxj,i {−vj(ai),−vi(aj)}
for j = 2, ..., t. By our choice of c, we have v′(cai) ≥ 0 and v′(cbi) ≥ 0 for
all v′, which implies cai ∈ R ∋ cbi. The rv we are looking for is cr′v. Indeed:
v(rv) = v(cr′v) = v(r′v) = v(z) and for any v′ we have v′(rv).

Lemma 4.3.9. In the same context as before, we can find some regular right
invariant element r with v1(r) = n1 and vi(r) ≥ ni.

Proof. We know we can find some z with v1(z) = n1 and vi(z) ≥ 0 for the
other i. By the previous lemma we find the desired r.

We now will consider systems of equations

y1 = x1a11 +⋯ + xna1n + b1
⋮

ym = x1am1 +⋯ + xnamn + bm

for certain aij and bi in Q. A local solution with respect to Rv for such a system
of equations is a set of elements xi ∈ Rv such that all yj are in Rv as well. A
global solution is a set of xi ∈ R such that all yj are in R too.

Lemma 4.3.10. A system of equations as described above has a global solution
if and only if it has local solutions with respect to any Rv.

Proof. It is quite clear that any global solution immediately entails a local so-
lution with respect to any Rv: if v is such that v(aij) ≥ 0 and v(bi) ≥ 0, then
any n-tuple x1, ..., xn with v(xi) ≥ 0 for all i is a local solution.

Suppose now that xi is a local solution with respect to v and suppose that there
are x′i such that v(xi − x′i) + v(aki) ≥ 0. We have now

v(∑(xi − x′i)aki) ≥ min
i
v((xi − x′i)aki)

≥ min
i

(v(xi − x′i) + v(aki))

≥ 0

which, since ∑xiaki ∈ Rv, implies ∑x′iaki ∈ Rv. Hence the n-tuple x′1, ..., x
′
n is

also a local solution with respect to v.

Suppose now that there is a local solution for every v. It is clear that we
can choose the same solution for all but finitely many v’s, so we can just
consider a finite set of local solutions xi1, ..., xis with respect to the respective
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pseudo-valuations v1, ..., vs. Define nti = maxk(aki) for any 1 ≤ t ≤ s. By the
approximation property (A), we can find x1, ..., xn with vt(xi − xit) ≥ −nti and
v(xi) ≥ 0 for any v ∉ {v1, ..., vs}. These xi are a local solution for every v,
hence a global solution.

Lemma 4.3.11. Let x1a1 + ⋯ + xnan = b be an equation such that if there is
some i with v(ai) < 0 for a certain v, then there is some regular right invariant
ak with v(ak) = mini v(ai). Then a global solution exists (for this equation) if
and only if v(b) ≥ v(ai) for all v.

Proof. If there is a global solution for the equation at hand, then certainly
v(xi) ≥ 0 for all v and all i. Consequently,

v(b) ≥ min
i
v(xiai)

≥ min
i
v(ai)

which implies that the condition is necessary.

We will now show that it is also sufficient. Suppose v(b) ≥ mini v(ai). If the
right-hand side is greater than or equal to zero, then v(b) ≥ 0 so a local solution
with respect to v exists by the same argument as in the beginning of the previous
lemma. If the right-hand side is smaller than zero, we find mini(v(ai)) = v(ak)
where we can choose ak to be regular and right invariant. Since ak is regular
and Q is simple Artinian, ak is invertible in Q. Consider now the equation
xk = −x1a1a

−1
k − ⋯ − xk−1ak−1a

−1
k − xk+1ak+1a

−1
k − ⋯ − xsasa−1

k − ba−1
k . Since

ak is right-invariant, Ra−1
k akR = Ra−1

k RakR so −v(ak) = v(a−1
k ). This in turn

implies v(ba−1
k ) ≥ 0, but then xk = ba−1

k and xi = 0 for i ≠ k gives a local solution
with respect to v. By the previous lemma, a global solution must exist.

Proposition 4.3.12. There is a 1 − 1 correspondence between divisorial ideals
of R and divisors.

Proof. Consider a divisorial ideal I with v(I) = γv. We already know that γv = 0
for all but finitely many v, so let v1, ..., vs be the set of arithmetical pseudo-
valuations for which γvi ≠ 0. Since v(I) = min{v(r) ∣ r ∈ I}, there are zi ∈ I
with vi(zi) = γi and v(zi) ≥ 0 for all other v. By a previous lemma, one can
also find regular right-RPi-invariant ai with vi(ai) = vi(zi) = γi, vj(ai) ≥ γj ,
v(ai) ≥ 0 for all other v, and with ai ∈ RziR. Consider now the equation
x1a1 +⋯+xsas = b. By our choice of ai, there is a global solution if and only if
vi(b) ≥ γi. Hence the set of global solutions {b ∣ ∀v ∶ v(b) ≥ γv} is a subset of
I = I∗. The other inclusion holds by definition, so divisorial ideals are uniquely
determined by their associated divisor.

Suppose we have a divisor δ. Then there is some z with v(z) ≥ ordv(δ) if
ordv(δ) ≠ 0 and v′(z) ≥ 0 otherwise. Moreover, this z can be chosen to be
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regular and RPu-right-invariant for some fixed u. Define

V = {v ∣ v(z) ≠ 0 or ordv(δ) ≠ 0} .

This is a finite set, so there is some x with v(x) = ordv(δ) for all v ∈ V
and v′(x) ≥ 0 for all other v′. Put I the ideal generated by z and x, then
v(I∗) = ordv(δ), but since v(I∗) = min{v(y) ∣ y ∈ I∗} we have v(I∗) = ordv(δ)
for all v, which shows that every divisor is associated to some divisorial ideal
I∗.

Since similar results have been obtained (cfr. [95]) for rings with a commutative
group of fractional ideals and in view of the simple example 4.3.1, the objection
might be raised that perhaps no new examples exist. This, however, is not the
case, as the following example shows.

Example 4.3.13. Let R be the ring Fp[X][Y,φ] where φ is the automorphism
φ ∶ Fp[X] → Fp[X] defined by φ(X) =X +1. Now, Fp[X] is a Krull order and,
by [12], Ore extensions of Krull orders are again Krull orders. Consequently,
R is a Krull order. In fact, since it is a prime PI-ring, it is also bounded
(cfr. [66]). We will show that RXRY R ≠ RY RXR. Suppose, for the sake
of contradiction, that RXRY R = RY RXR and call this ideal I. We have
that Y X = (X + 1)Y = XY + Y , so Y = Y X −XY ∈ I. Moreover, we can
also conclude that, for any polynomial p(X), there is some polynomial p′(X)
with Y p(X) = p′(X)Y . Consequently, for every polynomial p(X,Y ) there is a
polynomial p′(X,Y ) with Y p(X,Y ) = p′(X,Y )Y .

We find Y = ∑p,q pXqY and consequently 1 = ∑p,q pXq for certain p, q ∈
Fp[X][Y,φ]. We can write

p = pnY n +⋯ + p0 and q = qmY m +⋯ + q0

where the pi and qi are elements of Fp[X] with pn and qm different from
zero. Then we find 1 = pnY nXqmY

m + r where r is of lower Y -degree than
pnY

nXqmY
m. But then pnY

nXqmY
m must be zero, which implies that pn or

qm must be zero — but this is a contradiction. Therefore, p and q must be in
Fp[X] whence 1 ∈ Fp[X]XFp[X]. This, too, is impossible, hence RXRY R ≠
RY RXR which implies that F(R) is not abelian. The group of divisorial ideals,
on the other hand, is commutative.
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Chapter 5

Groupoid valuation rings

Valuations on fields, or equivalently valuation subrings of fields, are both in-
teresting and useful tools, finding applications in number theory, algebraic ge-
ometry and many more subjects of commutative algebra. Many generalisations
of valuations and of valuation rings to simple Artinian rings have been pro-
posed. These include localised primes, where rings with prime ideals satisfying
certain conditions are used as generalised valuation rings, arithmetical pseudo-
valuations, where value functions are defined on certain sets of ideals instead of
on elements, and Dubrovin valuation rings, which are a special kind of localised
primes with very nice properties.

Since any simple Artinian ring is isomorphic to a matrix ring over a skewfield and
since matrices are groupoid rings, it is natural to look for generalised valuations
in groupoid rings and general groupoid graded rings. Kelarev ([43], [44]) was the
first to study groupoid graded rings. He managed to generalise many theorems
from the classical group graded case, relating properties — like semi-local, PI-
ness, etc. — of the ring R to the rings Re for e ∈ G0. Further contributions to
the theory of groupoid graded rings include work by Lundström ([51]), Öinert
([81]) and a Clifford-like theorem ([50]). Groupoid-graded rings have also been
studied as special cases of semigroup-graded rings. Important work here has
been done by a.o. Clase, Jespers and Okniński (e.g. [13], [42], [40]).

For a groupoid G, we will define G-skewfields as the proper analogon of fields
and construct some examples. We will then give suitable generalisations for
stability and totality in groupoid-graded rings. This will lead to Theorem
5.3.9, which describes the correspondence between G-valuation rings and G-
valuations. As will be seen in the last section, there is an interesting link between
G-valuations and Dubrovin valuation rings. In fact, a subring of Mn(k) where
k is a field is a Dubrovin valuation ring if and only if it is a groupoid-valuation
ring for a suitable groupoid.

In the first two sections of this chapter we will introduce some necessary concepts
and basic results. Many of these results have been known in some form for some
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time already and some others are relatively straightforward generalisations of
analogous results from the group-graded case. The last two sections contain
new work and provide a link with Dubrovin valuations. This chapter is based
on [105].

5.1 Groupoid graded rings

By a groupoid one usually means a category wherein all morphisms are isomor-
phisms, but the original definition (as given by Brandt in [6]) of a groupoid is a
set G with a unitary operation ⋅−1 ∶ G→ G and a partial function ⋅⋆⋅ ∶ G×G→ G
such that (for a, b and c in G)

(1) if a⋆ b = c holds, then every one of these elements is uniquely determined
by the other two;

(2) (a ⋆ b) ⋆ c = a ⋆ (b ⋆ c) if all terms involved exist;

(3) a ⋆ a−1 and a−1 ⋆ a exist for all a ∈ G;

(4) a−1 ⋆ a ⋆ b = b (resp. b ⋆ a ⋆ a−1 = b) if a ⋆ b (resp. b ⋆ a) exists;

(5) for every two idempotents e and e′ in G, there is some g ∈ G with gg−1 = e
and g−1g = e′;

although (1) is a consequence of (2)-(4). The ⋆ is usually left out to lighten
notation. Brandt’s definition differs from the categorical one only because of
(5) (and the fact that his definition only deals with small categories). We will
use the term groupoid for a set with an operation satisfying (1)-(4) and call it
connected if it also satisfies (5). If for g, g′ ∈ G there is some h with gh = g′ we
say that g and g′ are connected and that h connects them. Connectedness is
an equivalence relation and equivalence classes with respect to connectedness
are called connected components.

Remark 5.1.1. Every groupoid G can be embedded in a semigroup by adding
a formal symbol 0, i.e. G̃ = G ∪ {0}, and by putting

⋅ ○ ⋅ ∶ G̃ × G̃→ G̃ ∶ (x, y) ↦
⎧⎪⎪⎨⎪⎪⎩

x ⋆ y if x ⋆ y is defined

0 if x ⋆ y is not defined

If G is connected, G̃ will be a completely 0-simple inverse semigroup. (See e.g.
[46] for terminology concerning semigroups.)
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For every element g of a groupoid G the elements s(g) = gg−1 and t(g) = g−1g
are idempotents called the source and the target of g.1 A multiplication gg′ of
two elements g, g′ ∈ G exists if and only if t(g) = s(g′).

A ring R is said to be G-graded if there are abelian subgroups (Rg)g∈G such
that R = ⊕g∈GRg and RgRg′ ⊆ Rgg′ if gg′ exists while RgRg′ = 0 otherwise. An
additive subgroup S of a G-graded ring R is called G-graded if S = ⊕g∈G(S ∩
Rg). In this case, we will shorten S ∩Rg to Sg. The elements of H = ⋃g∈GRg
are the homogeneous elements of R. A subring (resp. ideal) of R is a G-graded
subring (resp. G-graded ideal) if and only if it is generated by homogeneous
elements. Therefore, we will also use the term homogeneous ideal for a G-
graded ideal. If I is a homogeneous ideal of R, then R/I inherits a canonical
G-grading by R/I = ⊕g∈G(Rg + I)/I. For any subset S of a G-graded ring we
define the support of S as sup(S) = {g ∈ G ∣ Rg ∩ S ≠ 0}.

Example 5.1.2. The matrix ring Mn(R) (over some ring R) is the classical
example of a groupoid graded ring. Let G be the groupoid obtained by defin-
ing a multiplication on the set {1, ...n} × {1, ..., n} by (i, j)(j, k) = (i, k) and
(i, j)(k, l) undefined if j ≠ k. Putting Mn(R)(i,j) = REi,j , where Ei,j is the
matrix with a one on place (i, j) and zeroes everywhere else, yields a G-grading
of Mn(R).

In fact, this is an example of a groupoid ring. For any ring R and any groupoid
G, the groupoid ring R[G] is constructed by endowing the set

R[G] = {f ∶ G→ R ∣ #{g ∈ G ∣ f(g) ≠ 0} < ∞} ,

with a sum and a multiplication as follows:

(f + f ′)(g) = f(g) + f ′(g), (ff ′)(g) = ∑
g′g′′=g

f(g′)f ′(g′′).

Note that these operations are well-defined because f and f ′ have finite sup-
port. In a similar fashion as for group rings it can be checked that they de-
fine a ring structure on R[G]. This ring is G-graded by putting R[G]g =
{f ∶ G→ R ∣ ∀g′ ≠ g ∶ f(g′) = 0}.

From now on we will suppose that G is a groupoid and R is a G-graded ring.
We will denote the set of idempotent elements of G by G0 and we define R0 as

⊕g∈G0
Rg. This set is called the principal component of R and contains 1. Let

1 = ∑e∈G 1e be the homogeneous decomposition of 1. In fact, 1g = 0 for every
g ∈ G ∖G0 as was shown e.g. in [51]. Let G′ be the subgroupoid defined by
G′ = {g ∈ G ∣ 1s(g) ≠ 0 ≠ 1t(g)}.

1In his original paper, Brandt uses the terms left-unit for the source and right-unit for the
target. Because of this, the source and target of an element g of G are sometimes denoted by
l(g) and r(g) respectively.
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Proposition 5.1.3. If R = ⊕g∈GRg is a G-grading on R, then R = ⊕g′∈G′ Rg′ ,
i.e. R is already G′-graded.

Proof. See [51].

It is not hard to verify that G′ has only finitely many idempotent elements so,
by the preceding proposition, we can without loss of generality assume that all
groupoids considered will have only finitely many idempotents. In fact we can
even assume that 1e ≠ 0 for all e ∈ G0.

Proposition 5.1.4. If G is a groupoid and R is a G-graded ring, then the
following elementary properties hold:

(1) Re is a ring for any idempotent e of G.

(2) If I is a G-ideal of R, then Ie is an ideal of Re for every idempotent e.

(3) Rg is a left Rs(g), right Rt(g)-module.

(4) G is a group if and only if there is some invertible homogeneous element.

Proof. Since the product of two distinct idempotents e and e′ of G is always
undefined, we have r = r1 = ∑e∈G0

r1e = r1e for all r ∈ Re. So we find that 1e is
the unit of Re. Moreover, Re is by definition closed under addition and, since
e is an idempotent, it is also closed under multiplication. For (3) it suffices to
note that the map

(. ⋅ .) ∶ Rs(g) ×Rg → Rg ∶ (x, y) ↦ xy

defines a left Rs(g)-multiplication on Rg, the right Rt(g)-multiplication being
defined analogously. (2) is a special case of (3) in disguise where Ie ⊆ Re.
To prove (4), note that, since ee′ is undefined for idempotents e ≠ e′, any
homogeneous element h ∈ Rg must be a zero divisor if there is some unit
e ≠ t(h) or e ≠ s(h). If G is a group with unique unit e, then 1 ∈ Re is
homogeneous and invertible.

Let R be a G-graded ring for some groupoid G. If RgRg′ = Rgg′ whenever gg′

exists we say that R is strongly G-graded. This is equivalent with 1s(g) ∈ RgRg−1
(or 1t(g) ∈ Rg−1Rg) for all g. Indeed, suppose 1s(g) ∈ RgRg−1 for all g, then

Rgg′ ⊆ RgRg−1Rgg′ ⊆ RgRg′ .

The other implication is immediate.
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Proposition 5.1.5. Let R be a strongly G-graded ring. The homogeneous
ideals of R are in 1-1 correspondence with ideals

Ie1 ⊆ Re1 , ..., Ien ⊆ Ren

where the ei are representatives of the connected components of G.

Proof. Since R is strongly graded, we must have that

Igg′ = RgRg−1Igg′ ⊆ RgIg′ ⊆ Igg′

if gg′ is defined, so any two homogeneous ideals of R restricting to the same
ideals on Re1 , ...,Ren must be equal. On the other hand, if Ie1 ⊆ Re1 , ..., Ien ⊆
Ren are ideals in their respective rings, then we can define Ig = Rgg′Ie where g′

is the element connecting g and e. I = ⊕g∈G Ig is then a homogeneous ideal of
R.

We say a homogeneous ideal is G-maximal if the only strictly larger homoge-
neous ideal is R itself. As an immediate consequence of the preceding propo-
sition, the G-maximal ideals of a strongly G-graded R are those corresponding
to a maximal ideal in one of the connected components and to Rg for any g
not in that component. Therefore, the intersection of the G-maximal ideals –
which we call the G-Jacobson radical – is the homogeneous ideal corresponding
to the Jacobson radical in every connected component.

We write, for any a ∈ R,

t(a) = ∑
e∈G0
a1e≠0

1e and s(a) = ∑
e∈G0
1ea≠0

1e.

A G-inverse of a is an element b satisfying

s(a) = ab = t(b) and s(b) = ba = t(a).

If a has a G-inverse, we say that it is G-invertible and a G-graded ring for which
every non-zero homogeneous element is G-invertible is called a G-skewfield.
Notice that the grading on a G-skewfield is necessarily strong. We will use
the notation a−1 for the G-inverse of a, but one should keep in mind that the
G-inverse of a may exist even if a is not invertible in R. We will denote by R∗

the set of G-invertible elements of a G-graded ring R, while the set of invertible
elements will be denoted by U(R).

Proposition 5.1.6. If G is a groupoid and R is a G-graded ring, then:

(1) The G-inverse of a, if it exists, is unique.

(2) The G-inverse of a homogeneous element, if it exists, is homogeneous.
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(3) If a is invertible in R, say ba = ab = 1, then b is the G-inverse of a.

(4) If R is a G-skewfield, then Re is a skewfield for any idempotent e.

Proof. If b and b′ are G-inverses of a, then

b = bt(b) = bs(a) = bab′ = s(a)b′ = b′ab′ = b′t(b′) = b′.

Suppose a ∈ Rh is homogeneous and let a−1 = ∑g∈S⊆G bg. For all g ≠ h−1

we have that aa−1 = s(a) implies abg = 0 and a−1a = t(a) implies bga = 0 .
Therefore, bh−1 is a G-inverse and by (1) it must be unique. If a is invertible with
inverse b, then 1ea ≠ 0 for all e ∈ G0, which establishes that s(a) = 1. Similarly,
we find t(a) = 1 and by symmetry the same holds for b. Consequently, a and
b are each others G-inverses. Since for any a ∈ Rg we have a−1 ∈ Rg−1 (4)
follows.

If G is a groupoid and S is subgroupoid containing all idempotents, then one
can construct a factor groupoid G/S = G/ ∼ where

g ∼ h ⇔ ∃g1, ..., gn ∈ G,s0, ..., sn ∈ S ∶
n

∏
i=1

gi = g, s0

n

∏
i=1

gisi = h.

Since Se contains all idempotents, t(g) and s(g) must be in S for all g so we
have reflexivity of ∼. If x ∼ y, then we have xi and si with x1⋯xn = x and
s0x1s1⋯xnsn = y, so

x = (s−1
0 ys−1

n x
−1
n ⋯x−1

2 s−1
1 )⋯(s−1

n−1x
−1
n−1⋯x−1

1 s−1
0 ys−1

n ).

Note that between two successive y’s in this expression, we always find the
term s−1

n x
−1
n ⋯s−1

1 x−1
1 s−1

0 = y−1 with some extra s−1
i in between. This means

that we have written x as a product t0y1t1⋯ymtm where y1⋯ym = y and for
some t0, ..., tm in S, i. e. ∼ is symmetric. Suppose, finally, that x ∼ y and y ∼ z,
then we have decompositions y = s0x1⋯xnsn and z = t0y1⋯ymtm for certain
si, xi, ti and yi. Consequently,

z = t0 (s0x1s1⋯xnsny−1
m ⋯y−1

2 )⋯tm−1 (y−1
m−1⋯y−1

1 s0x1s1⋯xnsn) tm.

Every time y−1
m ⋯y−1

1 = y−1 (with some ti in between) occurs, it is preceded
by s0x1s1⋯xnsn = y. This gives the desired decomposition of z as a product
u0x

′
1u1⋯x′lul with x′1⋯x′l = x. By definition, ∼ is compatible with the multipli-

cation on G, so G/S is a well-defined groupoid.
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5.2 Skew twisted groupoid rings

We have given the definition of a groupoid ring in example 5.1.2. Just like in
the group-graded case, this example can be generalised by giving an abstract
construction of skew twisted groupoid rings, using a straightforward modification
of the approach in e.g. [75]. Let R be a ring, let G be a groupoid (which we
still suppose to have only finitely many idempotents) and let α ∶ G×G→ U(R)
and σ ∶ G→ Aut(R) be functions which satisfy, for a, b, c ∈ G, r ∈ R and e ∈ G0,
the following conditions:

(i) σ(a)(σ(b)(r)) = α(a, b)σ(ab)(r)α(a, b)−1

(ii) α(a, b)α(ab, c) = σ(a)(α(b, c))α(a, bc)

(iii) α(a, e) = 1R = α(1, e)

if all terms involved exist. In classical terminology, σ would be called a weak
action of G on R and α would be called a σ-cocycle.

Proposition 5.2.1. The free left R-module Rσα[G] with basis G and multipli-
cation defined by:

(ra)(sb) =
⎧⎪⎪⎨⎪⎪⎩

rσ(a)(s)α(a, b)ab if ab exists

0 if ab does not exist

and distributivity is a strongly G-graded ring. If x ∈ U(R), then xg ∈ Rσα[G]∗
for any g ∈ G.

Proof. First we have to establish associativity of the multiplication, so take
r, s, t ∈ R and a, b, c ∈ G. If abc does not exist there is nothing to prove since
all terms are zero, so suppose abc does exist. Then we have:

(ra)((sb)(tc)) = (ra)(sσ(b)(t)α(b, c)bc)
= rσ(a)(sσ(b)(t)α(b, c))α(a, bc)abc
= rσ(a)(s)σ(a)(σ(b)(t))σ(a)(α(b, c))α(a, bc)abc
(i)= rσ(a)(s)α(a, b)σ(ab)(t)α(a, b)−1σ(a)(α(b, c))α(a, bc)abc
(ii)= rσ(a)(s)α(a, b)σ(ab)(t)α(a, b)−1α(a, b)α(ab, c)abc
= rσ(a)(s)α(a, b)σ(ab)(t)α(ab, c)abc
= (rσ(a)(s)α(a, b)ab)(ct)
= ((ra)(sb))(ct)

Clearly, ∑g∈G0
1Rg is the identity for the multiplication and distributivity holds by

construction. The fact that Rσα[G] = ⊕g∈GRg is also an immediate consequence
of the definition and the same is true for (Ra)(Rb) = R(ab) — provided, of
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course, that ab exists. We have, for all g ∈ G, that gg−1 = α(g, g−1)l(g) while
g−1g = α(g−1, g)r(g) and by (ii) and (iii) we also have that

σ(g−1)α(g, g−1) = σ(g−1)α(g, g−1)α(g−1, gg−1)
= α(g−1, g)α(g−1g, g−1) = α(g−1, g)

so α(g, g−1)−1g is the inverse for g−1. If r ∈ U(R) and if g is arbitrary in G,
then we can choose s ∈ R such that σ(g−1)(s) = r−1. Then

rg−1sα(g, g−1)−1g = rσ(g−1)(sα(g, g−1)−1)α(g−1, g)g−1g

= rr−1σ(g−1)(α(g, g−1)−1)α(g−1, g)g−1g

= g−1g

while

sα(g, g−1)−1grg−1 = sα(g, g−1)σ(g)(r)α(g, g−1)gg−1

= sα(g, g−1)σ(g)(σ(g−1)(s−1))α(g, g−1)gg−1

= sα(g, g−1)α(g, g−1)s−1α(g, g−1)−1α(g, g−1)gg−1

= gg−1

which proves rg to be G-invertible.

In the classical case, any crossed product, i.e. a graded ring with an invertible
element in every Rg, is of this form for some α and σ (cfr. [75]), but there is
no hope for such a theorem here, in view of the following example.

Example 5.2.2. Take G the same groupoid as in example 5.1.2. Let R be a sub-
ring of a field k and let I be a non-trivial ideal of R. Put I−1 = {x ∈ k ∣ xI ⊆ R}.
Then

Q =

⎛
⎜⎜⎜⎜⎜⎜
⎝

R I I2 ⋯ In−1

I−1 R I ⋯ In−2

I−2 I−1 R ⋯ In−3

⋮ ⋮ ⋮ ⋱ ⋮
I−n+1 I−n+2 I−n+3 ⋯ R

⎞
⎟⎟⎟⎟⎟⎟
⎠

defines a G-crossed product where not all Qg are isomorphic.2

If S is any set, we can define a groupoid structure on S × S in a similar way
as in example 5.1.2: we put (s, s′) ⋆ (t, t′) = (s, t′) if s′ = t and we say it is
undefined otherwise. We denote this structure by ∆S .

2Note the similarity between this example and fragments as defined in [78].
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Remark 5.2.3. Every ideal of Rσα[∆S] is homogeneous, regardless of S and R,
for if ∑ r(s,t)(s, t) is in an ideal I, then so is

(σ(a, a)(ra,bα((a, b), (b, b)))α((a, a), (a, b)))−1(a, a)
(∑ r(s,t)(s, t))1(b,b)(b, b) = 1(a,b)(a, b).

The following theorem is very similar to a theorem of Munn (cfr. [71]), although
he restricts attention to finite groupoids G.

Proposition 5.2.4. Any groupoid ring R[G] is isomorphic to a subring of
R[∆G].

Proof. Define for any x = ∑xgg in R[G] an element f(x) in R[∆G] by putting,
for any g, g′ ∈ G, f(x)g,g′ = 0 if there is no h with g = hg′ and f(x)g,g′ = xgg′−1
otherwise. We can now define a map

f ∶ R[G] → R[∆G] ∶ x↦ f(x).

It is immediate from the definition that f preserves sums. Suppose now that
a = ∑agg and b = ∑ bgg are in R[G], then f(a)g,g′ = agg′−1 and f(b)g,g′ = bgg′−1
if gg′−1 exists and zero otherwise. Consequently,

(f(a)f(b))g,g′ = ∑
s

f(a)g,sf(b)s,g′ = ∑
s

ags−1bsg′−1

where the summation index s runs over all those elements of G for which all
terms involved exist. On the other hand, ab = ∑g∑g′g′′=g ag′bg′′g so f(ab)g,g′ is
either zero or ∑ss′=gg′−1 asbs′ . By renaming the summation index we find that
this is indeed equal to (f(a)f(b))g,g′ , so f is a ring morphism, which is clearly
injective.

Remark 5.2.5. If G is a subgroup of Aut(R), σ is the canonical injection and
α ∶ G ×G → R∗ is a σ-cocycle, then this proposition still holds; it suffices to
redefine f(x)g,g′ as α(gg′−1, g′)xgg′−1 . Whether a similar proposition is true for
arbitrary skew twisted groupoid rings remains unclear.

Example 5.2.6. Let G be the Z/2Z-groupoid on two elements, i.e. the category
with objects a and b and morphisms e0, e1 ∶ a → a, f0, f1 ∶ b → b, g0, h0 ∶ a → b
and g1, h1 ∶ b → a where e0 and f0 are the identity morphisms, g−1

0 = g1 and
h−1

0 = h1. In this case ∣G∣ = 8 and f is the map which sends an element
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x = α0e0 + α1e1 + α2f0 + α3f1 + α4g0 + α5g1 + α6h0 + α7h1 to the matrix

f(x) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

e0 e1 f0 f1 g0 g1 h0 h1

e0 α0 α1 0 0 0 α4 0 α6

e1 α1 α0 0 0 0 α6 0 α4

f0 0 0 α2 α3 α5 0 α7 0
f1 0 0 α3 α2 α7 0 α5 0
g0 0 0 α4 α6 α2 0 α3 0
g1 α5 α7 0 0 0 α0 0 α1

h0 0 0 α6 α4 α3 0 α2 0
h1 α7 α5 0 0 0 α1 0 α0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Notice that the coefficients of the elements in G0 appear on the diagonal and
that zeroes occur symmetrically.

If G is finite, then R[∆G] is a matrix ring over R. In this case, it makes sense to
define the determinant of an element of R[G] as the determinant of its associ-
ated matrix in R[∆G]. If R is commutative, this allows us to compute inverses
in R[G] by computing inverses in a matrix ring, as the following proposition
shows.

Proposition 5.2.7. If G is finite and R is commutative, then f(R[G]) is closed
under inverses.

Proof. This is an immediate consequence of the Cayley-Hamilton theorem 3.
Indeed, if A is a matrix over a commutative ring we know A(∑ ciAi) = I for
some coefficients ci in R. If A is in Im(f), then so are all ciA

i and consequently
A−1 ∈ Im(f).

5.3 G-valuations

Let R be a G-graded subring of a G-skewfield Q. If for every homogeneous
h ∈ Q we have either h ∈ R or h−1 ∈ R, then we say that R is G-total . This
is the canonical generalisation of totality and gives rise to somewhat similar
results. Note that if R is a G-total subring of the G-skewfield Q, then Re is a
total subring of the skewfield Qe for any idempotent e ∈ G. In particular, any
G-total subring of a G-skewfield contains 1e for all idempotents e.

Proposition 5.3.1. Suppose R is a G-total subring of the G-skewfield Q. If
I and J are homogeneous left (resp. right) ideals, then Ig ⊆ Jg or Jg ⊆ Ig.
Moreover, if Ig ⊊ Jg then Ig′ ⊆ Jg′ for any g′ with the same right (resp. left)
unit as g.4

3This very old result is not due to Cayley or Hamilton, but rather Frobenius (cfr. [30])
4This is a rare case where I knew the proof of the proposition before I knew the statement!

Indeed, the proof is basically the same as in the commutative case, but it took me quite some
time to realise that the final ⊆ was not a ⊊.
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Proof. Suppose I and J are homogeneous and Jg ⊈ Ig, so there exists some
non-zero h ∈ Jg ∖ Ig. Suppose t(g′) = t(g), and let h′ ≠ 0 be in Ig′ . This means
that hh′−1 and h′h−1 are defined and at least one of these is in R. If hh′−1 is
in R, then hh′−1h′ is in I ∩Rg = Ig which is a contradiction, so h′h−1 must be
in R and consequently h′h−1h is in J ∩Rg′ = Jg′ . The other case is similar.

Corollary 5.3.2. If R is a G-total subring of the G-skewfield Q, then any left
(resp. right) ideal generated by homogeneous elements h1, ..., hn with the same
target (resp. source) is cyclic.

Proposition 5.3.3. Let R be a G-total subring of a G-skewfield Q, and put M
the (homogeneous) ideal generated by the set of homogeneous elements which
are not G-invertible in R. Then R/M is a G-skewfield and M is maximal for
the property that it contains no 1e∈G0 .

Proof. If x ≠ 0 is some homogeneous element of R/M , then x = h + p where h
is a non-zero homogeneous element of R∖M and p ∈M . Let p = h1+⋯+hn be
the homogeneous decomposition of p. Then h−1 is also in R ∖M and xh−1 =
hh−1 + ph−1 = 1s(h) = 1s(x) since ph−1 must be in M – otherwise some hih

−1 is
not in M and we would have hh−1

i ∈ R and consequently h−1hh−1
i = h−1

i ∈ R,

which contradicts hi ∈M . Analogously, we find h−1x = 1t(x) which implies that
R/M is a G-skewfield. If M ′ is an ideal which contains M strictly, then there
is some x ∈M ′ ∖M so x is G-invertible in R and consequently there xx−1 is in
M , which implies that 1e ∈M for some e ∈ G0.

A G-graded subring R of a G-skewfield Q is called G-stable if hRt(h)h
−1 = Rs(h)

for any homogeneous h. This implies that Re is stable for all e ∈ G0. In
particular, if R is a G-total G-stable subring of the G-skewfield Q, then Re is
a valuation ring for every e in G0.

Proposition 5.3.4. Let R be a G-stable subring of the G-skewfield Q. Any
right (resp. left) homogeneous ideal of R is a left (resp. right) ideal.

Proof. Let I be a right G-ideal of R, let h ∈ I ∩Qg be homogeneous and pick
r ∈ R ∩Qg′ arbitrary. If g′g does not exist rh = 0 ∈ I follows, so suppose g′g
does exist. Because of G-stability of R, h−1rh is in R – whether it is zero or
not. If h−1r exists, we have hh−1rh = rh ∈ I since I is a right G-ideal. If h−1r
does not exist, hh−1rh = 0 so it is again in I. This proves the claim for right
G-ideals; the reasoning for left G-ideals is similar.

Example 5.3.5. Let k be a field and let Rv be a valuation ring in k with unique
maximal ideal mv. Consider the subring

R = [Rv k
0 Rv

]
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of the ∆2-skewfield Q = M2(k). R is a G-total (and G-stable) subring of Q,
but the homogeneous ideals are not totally ordered since

M1 = [mv k
0 Rv

] and M2 = [Rv k
0 mv

]

are incomparable.

Definition 5.3.6. Let G be a groupoid and let Q be a G-skewfield. A (partial)
G-valuation on Q is a surjective map v ∶ Q → Γ ∪ {∞} for some (partially)
ordered groupoid Γ (and ∞ > γ for all γ ∈ Γ) satisfying:

(1) v(x) = ∞⇔ x = 0,

(2) v(x + y) ≥ v(z) if v(y) ≥ v(z) ≤ v(x),

(3) v(hh′) = v(h)v(h′) for homogeneous h,h′ and if hh′ is defined.

For the theory of (partially) ordered groupoids we refer the interested reader to
[46].

If v ∶ Q → Γ ∪ {∞} is a G-valuation, then we let Rv be the ring generated by
homogeneous elements h with v(h) ≥ v(t(h)). Note that, since G0 is a finite
set, 1 ∈ R follows. Since Rv is generated by homogeneous elements, it inherits
a G-grading from Q.

Proposition 5.3.7. For any G-valuation v ∶ Q→ Γ∪{∞} the ring Rv is G-stable
and G-total.

Proof. Suppose h is a homogeneous element of Q and suppose v(h) < v(t(h)).
Then

v(h−1) = v(t(h))v(h−1) > v(h)v(h−1) = v(s(h)) = v(t(h−1))

showing that h−1 ∈ Rv. To show G-stability, pick some homogeneous element
h ∈ Qg and suppose that r ∈ Rr(h), then v(hrh−1) ≥ v(h)v(1t(h))v(h−1) =
v(1s(h)). Since s(h) is the target of hrh−1, this shows that hrh−1 ∈ R ∩
Qs(h) = Rs(h). Similarly, if r′ is in Rs(h), it follows that h−1r′h is in Rt(h), so
r′ ∈ hRt(h)h

−1 which establishes the G-stability of Rv.

Corollary 5.3.8. For any G-valuation v ∶ Q → Γ ∪ {∞} and any homogeneous
h ∈ Q, we have either v(h) ≥ v(t(h)) or v(h) ≤ v(t(h)).

Proposition 5.3.9. Any G-stable, G-total subring R of a G-skewfield Q is Rv
for some ordered groupoid Γ and some partial G-valuation v ∶ Q→ Γ ∪ {∞}.
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Proof. H(Q)∗ is a groupoid for the multiplication and H(R)∗ is a subgroupoid
containing all 1e for e ∈ G0, so there is a quotient groupoid Ω =H(Q)∗/H(R)∗.
We can define an ordering on Ω by

x ≥ y⇔∃r0, ..., rn ∈H(R), y1, ..., yn ∈H(Q)∗ ∶
n

∏
i=1

yi = y, r0

n

∏
i=1

yiri = x.

We show that this is a well-defined relation. Since for x = z there are ri ∈H(R)∗
with x1⋯xn = x and r0x1r1⋯xnrn = z. If x ≥ y, we have s0, ..., sm ∈ H(R)
with x = s0y1s1⋯ymsm and y1⋯ym = y. Consequently

z = r0(s0y1s1⋯ymsmx−1
n ⋯x−1

2 )r1⋯(x−1
n−1⋯x−1

1 s0y1s1⋯ymsm)rn.

This shows that z ≥ y. Of course, one can use a similar reasoning to prove x ≥ y′
if y = y′. Moreover, ≤ is reflexive and transitive by similar arguments as used
in the construction of the factor groupoid. To prove that ≥ is antisymmetric,
assume that x ≥ y ≥ x. Then we have x1⋯xn = x, y1⋯ym = y, r0x1r1⋯xnrn = y
and s0y1s1⋯ymsm = x for some xi, yi ∈ Q and ri, si ∈ R. Therefore,

y = r0(s0y1s1⋯ymsmx−1
n ⋯x−1

2 )r1⋯(x−1
n−1⋯x−1

1 s0y1s1⋯ymsm).

Every x−1
n ⋯x−1

1 (with some ri in between) occurring in this decomposition can
be cancelled out against s0y1s1⋯ymsm if we choose a good decomposition. This
leaves us with s0y1⋯ymsm. Depending on which decomposition we choose for
that term, we can make it either into x or into y. If we choose x, we have
shown that y = x and therefore that ≤ is antisymmetric. It is obvious that ≤ is
compatible with multiplication in Ω. If t(x) = t(y) for some homogeneous x and
y, then either xy−1 ∈ R or yx−1 ∈ R. Suppose the former holds, then x = xy−1y,
so x ≥ y. If the latter holds, then y ≥ x follows by a similar reasoning. Note
that, for h,h′ ∈ Qg, we have h + h′ ≥ min{h,h′}. Indeed, since h and h′ are
in the same component, they have the same target and consequently we have
either hh′−1 ∈ R or h′h−1 ∈ R. Suppose without loss of generality hh′−1 ∈ R,
then h + h′ = (hh′−1 + 1)h′ hence h + h′ is larger than h′.

Note that the ordering on Ω induces an ordering on G by putting g ≤ g′ if
and only if 1g ≤ 1g′ . Define a pre-order on Q by putting, for q = ∑g qgg and
q′ = ∑g q′gg in Q,

q ≤ q′ ⇔ (∀g ∈ G ∶ qgg > q′gg⇒ ∃g′ > g ∶ qg′g′ > q′g′g′) .

This pre-order is compatible with multiplication, since this holds for the ordering
on Ω. Consequently, we can endow Γ = Q∗/ ∼, where x ∼ y iff x ≤ y and y ≤ x,
with a multiplication defined as qq′ = qq′ if qq′ ≠ 0 and qq′ undefined otherwise.
Define the map

v ∶ Q→ Γ ∪ {∞} ∶ x↦
⎧⎪⎪⎨⎪⎪⎩

x if x ≠ 0

∞ if x = 0
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We have to check that v(x + y) ≥ v(z) if v(x) ≥ v(z) ≤ v(y), but since, for
x = ∑xgg and x′ = ∑x′gg in Q∗, we have (xg + x′g)g ≥ min{xgg, x′gg} for all
g, this follows.

It is clear that R is a subset of Rv and we know that 1e ∈ R for any idempo-
tent e ∈ G0. Suppose now that v(h) > v(t(h)) for some homogeneous h. If
h is not in R, then h−1 is in R, whence v(h−1) ≥ v(s(h−1)) = v(t(h)), lead-
ing to v(h−1h) > v(t(h)) which is impossible, so h ∈ R. If v(h) = v(t(h)),
then h ∼ 1t(h), so we have g1, ..., gn ∈ H(Q)∗ and s0, ..., sn ∈ H(R)∗ with

∏ gi = h and s0∏ gisi = 1t(h). Due to the fact that R is G-stable, we can
rewrite this as 1t(h) = ∏ gis

′
0⋯s′n−1sn for some s′i ∈ H(R)∗. This implies

h = 1t(h)s
−1
n s

′−1
n−1⋯s′−1

0 ∈H(R)∗.

Example 5.3.10. 1. Let us first consider an example of the simplest kind:
the groupoid valuation ring

(Rv Rv
Rv Rv

) contained in the ∆2-skewfield (k k
k k

)

for a valuation ring Rv with maximal ideal P in a field k. In this case,
Ω is simply a group. In fact, Ω ≃ Γ ≃ Rv/P and the associated value
function is

v ∶ Q→ Γ ∪ {∞} ∶ (a b
c d

) ↦min{v(a), v(b), v(c), v(d)} .

2. Matters get a bit more complicated if we consider the situation from
example 5.3.5. In this case we find that e.g. 11,1 and 12,2 are incomparable
in Ω, while 11,2 is larger and 12,1 is smaller than both. Let a and b be in
k with v(a) > v(b). Then we have e.g.

v ((b a
b b

)) ≥ v ((a b
a a

)) while e.g. v ((a b
b b

)) and v ((b b
b a

))

are incomparable.

Corollary 5.3.11. In the same context as 5.3.9, we have

{h ∈H(R) ∣ h−1 ∉ R} = {h ∈H(R) ∣ v(h) > v(t(h))} .

Proof. Take a homogeneous h with v(h) > v(t(h)), then

v(h−1) = v(t(h))v(h−1) < v(h)v(h−1) = v(s(h)) = v(t(h−1))

so h−1 ∉ R. On the other hand, if h ∈ H(R) and h−1 ∉ R, then v(h−1) <
v(t(h−1)) = v(s(h)) so

v(t(h)) = v(h−1)v(h) < v(s(h))v(h) = v(h).

Some of the theory developed here has been studied for G a group, e.g. in [73]
and [47].
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5.4 A connection with Dubrovin valuation rings

Dubrovin valuation rings are generally not equipped with nice value functions.
Van Geel defined (cfr. [95]) a very general kind of value functions, but these take
values in partially ordered groups. Morandi (cfr. [69]), Ferreira & Wadsworth
(cfr. [29]), and Van Oystaeyen & Verhulst (cfr. [102]) all introduced value
functions with values in totally ordered groups for different classes of Dubrovin
valuation rings. In this section, we will show that Dubrovin valuation rings in
matrix rings over fields are ∆n-valuation rings.

Proposition 5.4.1. If Q = kσα[∆n] is a skew twisted matrix ring over a skewfield
k and R is a ∆n-stable, ∆n-total subring containing all 1kδij , then R is a
Dubrovin valuation ring.

Proof. Let I be an ideal in R, which by remark 5.2.3 is homogeneous. By
5.3.3, the ideal M generated by homogeneous elements of R which are not in
R∗ is the unique maximal ideal which does not contain 1δii for any i. Consider
some ideal I which contains some 1δii . Since R contains all 1δij , it follows
that δjj ∈ I for any j. Therefore I must be R, so M is maximal. We have
R/M ≃ ⊕δ∈∆n

Rδ/Mδ, so R is simple Artinian.

Let v be the G-valuation as constructed in 5.3.9. If ∑aδδ is not in R, then
there is some δ with v(aδδ) < 0 minimal hence (aδδ)−1 is in R. Furthermore,

v(a(aδδ−1)) = min{v(aγγ)v((aδδ)−1) ∣ γ ∈ ∆n}
= v(aδδ)v((aδδ)−1) = v(1l(δ))

which implies that a(aδδ)−1 is in R ∖M . In a similar fashion we find that
(aδδ)−1s ∈ R ∖M , so R is a Dubrovin valuation ring.

Lemma 5.4.2. If Q ≃Mn(k) for a field k and R is a Dubrovin valuation ring
on Q, then R is a ∆n-stable, ∆n-total subring of Q.

Proof. It is known (cfr. [59]) that R = qMn(S)q−1 for some q ∈ Q∗ and some
Dubrovin valuation ring S of k. We will show that Mn(S) is ∆-stable and
∆-total, from which our claim follows immediately. Mn(S) contains 1δ for all
δ ∈ ∆n and since k is a field, S is a valuation ring. If then aδδ ∉Mn(S), we have
aδ ∉ S so a−1

δ ∈ S and (aδδ)−1 = aδδ−1 ∈ S and Mn(S) is ∆n-total. If a = ∑aεε
is in R, then for any homogeneous bδδ we have bδδab

−1
δ δ

−1 = bδar(δ)b−1
δ r(δ)

which is in Mn(S) since S is stable.

Unfortunately, if Q = Mn(D) is a matrix ring over a skewfield, the restriction
of a Dubrovin valuation ring R in Q to D might be a Dubrovin valuation ring
which is neither total nor stable. In this case, R will obviously not be ∆n-stable
or ∆n-total. Suppose Q is some simple Artinian ring which is finite dimensional
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over its centre, then there exists a splitting field k with Q ⊗ k ≃ Mn(k) such
that k is a finite extension of Z(Q).

Lemma 5.4.3. If R is a Dubrovin valuation ring in Q, then R⊗k is a Dubrovin
valuation ring in Q⊗ k.

Proof. Let M be the unique maximal ideal of R. Since Q and k are both
finite dimensional and simple over Z(Q), Q ⊗ k is also finite dimensional and
simple over Z(Q). Clearly, M ⊗ k is a maximal ideal of R ⊗ k. If q ⊗ c is in
Q⊗ k ∖R ⊗ k, then q is in Q ∖R, so there is some m ∈M with qm ∈ R ∖M .
Then (q ⊗ c)(m ⊗ 1) = qm ⊗ c ∈ R ⊗ k ∖M ⊗ k. Similarly, (m′ ⊗ 1)(q ⊗ c) ∈
R⊗ k ∖M ⊗ k

Corollary 5.4.4. If R is a Dubrovin valuation ring on a simple Artinian Q =
Mn(∆) with ∆ finite dimensional over k = Z(Q), then there is some finite
extension k′ of k, some valuation v on k′ and some invertible q ∈ Q ⊗ k′ such
that R = qMn(Rv)q−1.

The v in this proposition is obviously an extension of the valuation associated
to R ∩Z(Q).

If Rσα[G] is a skew twisted groupoid ring and I is an additive subgroup of R,
we say that I is σ-invariant if σ(g)(I) = I for all g ∈ G.

Proposition 5.4.5. Suppose that Qσα[G] is a skew twisted groupoid ring and
that R is a σ-invariant subring of Q. Define for a σ-invariant ideal I of R and
Rσα[G] ideal I ′ = {∑xgg ∣ ∀g ∈ G ∶ xg ∈ I}. If I satisfies (D2), then so does I ′.

Proof. Since I is a σ-invariant ideal of R, I ′ is an ideal of Rσα[G]. Assume
that I is an ideal of R which satisfies (D2). Suppose there is some x = ∑xgg ∈
Qσα[G]∖Rσα[G]. Take such an xg ∉ R. For some appropriate rr(g) ∈ R we have
xgrr(g) ∈ R ∖ I. Since R is σ-stable, σ(r(g))−1(rr(g)) is in R. Moreover,

(xgg)(σ(r(g))−1(rr(g))r(g)) = xgrr(g)g

which is in Rσα[G]∖ I ′. By a similar reasoning we find a y with yx ∈ Rσα[G]∖ I ′
so I ′ satisfies (D2).

Remark 5.4.6. If G is finite and connected, I is σ-invariant and R/I is simple
Artinian, then by a similar reasoning as in 5.4.1 we find that Rσα[G]/I ′ is simple
Artinian as well.
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Chapter 6

Filtrations associated to
pseudo-valuations

There is a very close link between between valuation theory on the one hand
and filtrations on fields on the other hand. In fact, as we will show later,
to any valuation on a field one can associate a separated exhaustive strictly
increasing filtration. This suggests that filtrations could be used to generalise
results from classical valuation theory to a more general (non-commutative)
context. This idea was explored a.o. in [1]. There are also connections with
topics like Auslander regular rings, micro-localisations, and Zariski rings, for
which we refer the interested reader to [49]. After an introductory section to
explain the terminology, we will give some new and tantalising generalisations
of results by Willaert and Makar-Limanov, but much work still remains to be
done.

6.1 Basic concepts

Definition 6.1.1. Let Γ be a partially ordered group.1 A filtration on a ring R
is a series (FγR)γ∈Γ of subgroups satisfying (for γ, δ ∈ Γ):

(1) γ ≤ δÔ⇒ FγR ⊆ FδR,

(2) FγRFδR ⊆ FγδR,

(3) 1 ∈ FeR if e is the neutral element of Γ.

If the stronger

1It is possible to define profiltrations if Γ is only partially right-ordered (cfr. [17]), but then
condition (2) must be replaced by the more unwieldy FγRFδR ⊆ ⋃ε≤δ FγεR.

66



(2’) FγRFδR = FγδR

holds, it is called a strong filtration.

Filtered modules can be defined in a similar fashion, keeping in mind that the
filtration should be compatible with the one on the base ring, but we do not
need them here. We refer the interested reader to [74] for more on filtered rings
and modules.

An important concept in the theory of filtered rings is the associated graded
ring, which is introduced as follows: suppose FR is a Γ-filtration on some ring
R. For any γ in Γ, we can define F−

γ = ⋃δ<γ FδR. The associated graded ring
is then

G(R) = ⊕
γ∈Γ

FγR/F −
γ R

which is by definition Γ-graded. To make sure that this is indeed a ring, one
has to use the principal symbol map σ ∶ R → G(R) ∶ r ↦ r where r is the
equivalence class of r in G(R). For any two homogeneous elements g1 = σ(r1)
of degree d1 and g2 = σ(r2) of degree d2, the multiplication g1g2 is defined as
the equivalence class of r1r2 in Fd1d2/F−

d1d2
. By bilinear extension, this gives a

multiplication on all of G(R). Notice that σ(r1r2) = σ(r1)σ(r2) if σ(r1r2) ≠ 0.

We will use the following terminology:

� A filtration is called exhaustive if ⋃
γ∈Γ

FγR = R.

� A filtration is called separated if ⋂
γ∈Γ

FγR = 0.

� A filtration is called nice if it is both separated and exhaustive and the
associated principal symbol map is surjective.

It is worth noticing that F0R is a subring and that FγR is an F0R-ideal if γ < e
where e is the neutral element of Γ.

Example 6.1.2. 1. If g is a Lie-algebra over k with universal enveloping
algebra U , then U is filtered by the degree. By Poincaré-Birkhoff-Witt
(cfr. any handbook on Lie-algebras, e.g. [89]), the associated graded ring
is simply a polynomial ring.

2. If R is any ring and I is an ideal of R, then F−nR = In, FnR = 0 for n ≥ 0
defines a Z-filtration on R. It is called the I-adic filtration.

3. If R = ⊕γ∈ΓRγ is a graded ring, then it has a canonical Γ-filtration by
FγR = ⊕δ≥γ−1 FδR.

Definition 6.1.3. Let R be a ring and let Γ be a totally ordered group. A
pseudo-valuation on R is a surjective map v ∶ R → Γ ∪ {∞} such that:
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1. v(r) = ∞ if and only if r = 0,

2. v(rr′) ≥ v(r)v(r′),

3. v(r − r′) ≥ min{v(r), v(r′)}.

Sometimes (as in [59], where these objects are called value functions) one more
condition is added:

4. v(st(v)) = Γ

where st(v) = {r ∈ U(R) ∣ v(r−1) = −v(r)}. Pseudo-valuations of this kind are
called regular, after the terminology of [14]. If Γ ≃ Z, we say that the pseudo-
valuation is discrete.

Pseudo-valuations were introduced by Mahler ([53] & [54]) in the thirties. They
were studied, if at all, mainly from a topological point of view (e.g. in [14]). Two
pseudo-valuations are said to be equivalent of they induce the same topology.
However, we will not explore the topological side of pseudo-valuation theory
here.

Proposition 6.1.4. A pseudo-valuation v ∶ R → Γ satisfies the following (for all
s ∈ st(v) and x, y ∈ R):

(1) v(x) = v(−x).

(2) v(x + y) = min{v(x), v(y)} if v(x) ≠ v(y).

(3) v(sx) = v(s)v(x) and v(xs) = v(x)v(s).

Proof. (1) and (2) can be found in [59] or [53]. For (3) it suffices to note that
v(sy) ≥ v(s)v(s−1sy) ≥ v(sy).

Any pseudo-valuation v ∶ R → Γ induces a Γ-filtration on R by putting

F vγR = {r ∈ R ∣ v(r) ≥ γ−1} .

On the other hand, if FR is a nice Γ-filtration for some totally ordered Γ, then
σ is a pseudo-valuation (provided it is surjective). This correspondence between
pseudo-valuations and filtrations is the subject of current investigations.

Example 6.1.5. 1. If R is a (commutative) PID and I is an ideal, then
I = (r) for some r ∈ R and the localisation of R at all prime ideals which
do not contain I is a subring S of the field of fractions K(R). Any
element x of K(R) can be expressed as ab−1 for a, b coprime in S and

v ∶K(R) → Z ∶ ab−1 ↦mr(a) −mr(b),

where mr(t) is the multiplicity of r as a divisor of t, defines a pseudo-
valuation on K(R). By taking the completion with respect to this pseudo-
valuation, one gets a counterpart to the n-adic numbers (cfr. e.g. [91]).
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2. If φ ∶ F(R) → Z is an arithmetical pseudo-valuation on some ring R, then
v ∶ R → Z ∶ x ↦ φ(RxR) is a discrete pseudo-valuation. In particular, if
R is a noetherian Dubrovin valuation in a simple artinian ring, then by
theorem 3.4.8 it is the ring of positives for such a pseudo-valuation.

The following theorem, which can be found in [3], gives a characterisation of
the filtrations coming from valuations in terms of the associated graded ring.

Theorem 6.1.6. For a separated filtration FnQ on an artinian ring Q, the
following are equivalent:

(i) G(Q) is a domain.

(ii) Q is a skewfield and G(Q) is a graded skewfield.

(iii) Q is a skewfield and F0Q is a valuation ring on Q and G(Q) is strongly
Γs-graded for the subgroup Γs = {γ ∈ Γ ∣ G(Q)γ ≠ 0}.

Proof. Cfr. loc. cit.

Proposition 6.1.7. For a pseudo-valuation v on a ring Q which takes values in
Z and has the induced filtration FQ, the following are equivalent:

(i) v is regular,

(ii) there is an x ∈ F−1Q with x−1 ∈ F1Q,

(iii) the filtration is strong.

Proof. (ii)⇔ (iii) That (ii) is a consequence of (iii) is clear since if FnQFmQ =
Fn+mQ for n,m ≥ −1, then there are some a ∈ F−1Q, b ∈ F1Q with ab =
1. So suppose there is some x ∈ F−1Q with x−1 ∈ F1Q. We certainly have
F−1QF1Q = F0Q. We will now show that FnQ = (F1Q)n for n ≥ 1. For
any a ∈ FnQ ∖ Fn−1Q we have aF−1Q ⊆ Fn−1Q. Therefore ax ∈ Fn−1Q. By
induction, Fn−1Q = (F1Q)n−1 and since x−1 ∈ F1Q we find a ∈ F1Q

n. By
definition of a filtration F 2

−1Q ⊆ F−2Q ⊆ F−1Q. Multiplying on the left with
F1Q yields F−1Q = F1QF−2Q and consequently F 2

−1Q = F−2Q.

(i)⇔ (ii) If v is regular, there is an x with v(x−1) = v(x)−1 = 1. If x ∈ F−1Q

with v(x−1) = 1, then v(xn)−1 = n = v(xn)−1.

Example 6.1.8. 1. Consider R =M2(Zp) ⊆M2(Q) for some prime number
p. If we put R = F0Q, then several choices are possible for F−1Q. Pick
for example F−1Q =M2(pZp), then F1Q is still not determined. Here we
can pick, say

F1Q = [
1
pZp Zp
Zp 1

pZp
] .
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There is clearly some x in F−1Q with x−1 in F1Q, so the filtration (and
therefore also the pseudo-valuation) is now completely fixed.

2. The following construction is due to Cohn ([14]). Consider the field F =
Q((Xi)i∈N∖{0}) and some fixed prime number p. Let S be the subring
generated by

(1) r
s (for r, s ∈ Z with gcd(r, s) = 1) such that p does not divide s,

(2) f−1 for a polynomial f with all coefficients as in (1) but not all
divisible by p,

(3) pnXi
n for all i, n ∈ N ∖ {0}.

As Cohn has shown (cfr. loc. cit.), there is for every f ∈ F a unique
n ∈ Z with pnf ∈ S. This defines a nice filtration on F and consequently a
pseudo-valuation. Cohn showed that the topology induced by this pseudo-
valuation cannot be induced by a regular pseudo-valuation.

One last theorem worth mentioning, especially because of the possible general-
isations, is also due to Cohn (cfr. loc. cit. once more) and gives another very
nice characterisation of regular pseudo-valuations:

Theorem 6.1.9. A pseudo-valuation v ∶ k → R on a field k is equivalent to a
regular pseudo-valuation if and only if there is a collection of valuations (vi)i∈I
such that

v(x) = inf
i∈I

{vi(x)} .

Proof. See once more loc. cit. although the valuations are written exponentially
there. Consequently, this inf appears as a sup.

6.2 Pseudo-valuations compatible with a valuation

Willaert ([106]) was the first to introduce a compatibility criterion for valuations,
allowing him to describe and classify many valuations on the Weyl skewfield. He
defined compatibility only with respect to the Bernstein filtration (or equivalently
with the Bernstein valuation), but some of his results hold true in much greater
generality.

Suppose Q is a skewfield and let v and w be pseudo-valuations on Q. Then
v and w induce respective filtrations F vγR and Fwγ R, associated graded rings
Gv(Q) and Gw(Q), and principal symbol maps σv and σw. Moreover, v induces
a filtration on Gw(R)0 by:

Fγ(Gw(R)0) = (Fγ(Q) ∩ Fw0 (Q))/(Fγ(Q) ∩ Fw−0 Q).
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This filtration is exhaustive, but not necessarily separated. The following lemma,
which is a straightforward adaptation from [106], gives a condition under which
it is separated.

Lemma 6.2.1. Suppose w is a valuation and Γ is archimedean. Fγ(Gw(R)0)
is separated if and only if:

σw(x) = 1 ⇒ v(x) ≤ 0.2

Proof. Suppose σw(x) is non-zero and in ⋂γ F vγ (Gw(Q)0), then there is some y

with σw(x) = σw(y) and v(y) > −v(x−1). Then v(yx−1) > 0 while σw(yx−1) =
1. If, on the other hand, x ∈ Gw(Q)0 with σw(x) = 1 and v(x) > 0, then
1 = 1−xn+xn must be in F vγ (Gw(R)0) for all γ because Γ is archimedean.

Remark 6.2.2. An exhaustive filtration on a simple artinian ring Q which is
not the constant filtration FnQ = Q is necessarily separated, since ⋂γ≥1 Fγ−1Q
is an ideal of ⋃γ FγQ. As a consequence, ⋂γ Fγ(Gw(Q)0) is either 0 or all of
Gw(Q)0.

Definition 6.2.3. If ⋂γ Fγ(Gw(Q)0) = 0, we say that v is compatible with w.

Let R = ⊕Rγ be a Γ-graded ring with a (skew)field of fractions D obtained by
localising at a set of homogeneous elements which satisfy the Ore conditions.
Then D inherits a canonical Γ-grading from R. This grading also induces a
pseudo-valuation w on D.

Proposition 6.2.4. Assume that w is a valuation and Γ is Archimedean. Any
valuation v on D which is compatible with w is then determined by its value
on homogeneous components of R.

Proof. It is clear that v is determined by its values on R. Consider r = h1 + h2

for some homogeneous h1, h2 in R. Assume without loss of generality that
σw(h2) < σw(h1) = σw(r). From σw(r/h1) = 1 we can then conclude that
v(r) ≤ v(h1) and consequently v(r) = min{v(h1), v(h2)}.

Example 6.2.5. One of the most important examples will be the Weyl algebra
and the associated Weyl skewfield. For a (skew)field k, the n-th Weyl algebra
over k is defined as:

An(k) = k <Xi, Yi ∣ i = 1, ..., n > /(XiYi −YiXi − 1,XiXj −XjXi, YiYj −YjYi).

Intuitively, one should think of Yi as the operator of partial differentiation with
respect to Xi. We refer the interested reader to [21] for more on Weyl algebras.

2Here it is justified to write 0 for the neutral element of Γ, since any archimedean ordered
group is a subgroup of R, hence abelian.
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A monograph on the Weyl algebra3 has appeared ([97]), but seems to be very
rare. Weyl algebras have Ore localisations and the skewfields of fractions are
denoted by Dn(k). We will mainly be interested in D1(k). On the Weyl algebra,
there is a canonical filtration by putting FBn A1(k) the k-vector space generated
by monomials XiY j with i + j ≤ n. Since this filtration is usually called the
Bernstein filtration, we have used a superindex B; we will similarly use σB for
the associated principal symbol map. Following [106], we will classify discrete
valuations compatible with the valuation induced by the Bernstein filtration.

In the Weyl algebra, we have XY −Y X = 1 which yields v(XY −Y X) = v(0) so
v(X)+v(Y ) ≤ 0. If v(X) < v(Y ), then v(X) = V (X +Y ). Since [X,X +Y ] =
1, we may replace Y by X + Y so we can assume v(X) = v(Y ) < 0. If the
valuation of F = ∑aiXiY −i is larger than the valuation of G = ∑ai(XY −1)i,
then v(F /G) > 0 while σB(F /G) = 1 which contradicts the compatibility of
v with the Bernstein filtration. If E = ∑aiXiY n−i is a homogeneous element
of degree n, then EY −n = F hence v(E) = v(G) + nv(Y ). Consequently, v
is determined by the values it takes on k(XY −1). Moreover, v(XY −1) = 0 so
v restricted to k(XY −1) is either the trivial valuation — in which case v is
equivalent to the Bernstein valuation — or it measures the multiplicity of some
non-zero α ∈ k. In the latter case, v is determined by α, v(X) and v(XY −1−α).
It is shown in [106] that — for any α ∈ k, v(X) ∈ Z and v(XY −1 − α) ∈ Z —
this does indeed yield a discrete valuation provided that v(XY −1−α) ≤ −v(X).

6.3 Valuations and nilpotent Lie brackets

The valuations on the Weyl skewfields have been studied in depth, for example
in [90], [55], [104], and [106]. That these studies have been so fruitful is in
no small part due to the fact that An(k) is graded and that the commutator
lowers the degree, i.e. deg([a, b]) < min{deg(a),deg(b)}. This little factoid
makes the following trick work:

Lemma 6.3.1. Let R be a ring with skewfield of fractions D and let v be a
valuation on D. If r ∈ R is such that

[⋅, r] ∶ R → R ∶ x↦ xr − rx

is nilpotent, then v(r) ∈ Z(Γ).

Proof. Let r be as in the statement and suppose v(rx) ≠ v(xr) for some
x ∈ R. It is harmless to assume v(rx) < v(xr). Then v([⋅, r](x)) = v(rx) and
by induction v([⋅, r]n(x)) = v(rnx) for every n. But this is in contradiction
with the fact that, for some m, [x, r]m = 0 and consequently v([x, r]m) = ∞.
Therefore v(rx) = v(xr) for all x in R, but since D is the skewfield of fractions
of R we have v(r) ∈ Z(Γ).

3The definite particle indicates that n = 1.
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By the following lemma, we get one dimension for free when investigating com-
mutativity of some valuation.

Lemma 6.3.2. Let R be a ring with skewfield of fractions D, let v ∶D → Γ be a
valuation on D, and let R′ be a subring with skewfield of fractions Q′. Suppose
furthermore that GKdim(R′) = GKdim(R) − 1 and that v(R′) ⊆ Z(Γ). Then
v is abelian on Q.

Proof. Suppose r ∉ Z(Γ), then rn ∉ Z(Γ) for all n. For any s ∈ R we then have
that

∑αijr
isj = 0

for some coefficients αij in R′, so there must be two different monomials in this
sum with the same valuation. This implies that v(s)l is in the subgroup of Γ
generated by Z(Γ) and v(r), ergo some power of v(s) commutes with some
power of v(r), but then v(s) and v(r) must also commute.

This is essentially what Makar-Limanov used in [55] to show that every valuation
on Dn(k) is abelian (see below). Shtipel’man had already proven this theorem
([90]), but he had to rely on more computational methods which are intrinsic
to the Weyl skewfields.

The following examples give the two most extreme possibilities: in the first case
all valuations are abelian, in the second case, none are.

Example 6.3.3. 1. In the Weyl algebra R = A1(k), the generator X has
a nilpotent Lie bracket.4 Put R′ = k[X], then the Gelfand-Kirillov di-
mension of R′ is the Gelfand-Kirillov dimension of R minus one, so every
valuation on D1(k) is abelian.

2. Let G be a non-abelian linearly ordered group. Construct K(G,R(t))
as in example 1.3.6. It is proven in [55] that this skewfield admits no
non-trivial abelian valuations.

4See [21] for a classification of elements of the Weyl algebra for which this is true.
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Appendix A

There is no such thing as a
right valuation

The title might seem a bit harsh, because the term does pop up in the literature
every now and then (e.g. in [9]), but not in the sense we will use it.

Definition. A partially right ordered monoid or promonoid is a monoid M
endowed with a partial ordering ≤ such that

a ≤ b ⇒ ac ≤ bc

for all a, b, c in M . A right value map is a surjective monoid morphism from
some monoid M to a promonoid M ′.

Right ordered groups (see e.g. [17] or [63]) and partially ordered monoids (see
e.g. [31]) have been studied a bit, but promonoids have been mostly neglected.
Of course, plomonoids and left value maps can be defined analogously. If a
right value map is also a left value map we will call it a value map. The nuetral
element in M will be denoted e. The following proposition is a generalisation
of 1.1.3.

Proposition. If M is a monoid and M ′ is a submonoid, then M ′ induces a
canonical right value map φ on M such that Mφ = {m ∈M ∣ φ(m) ≥ φ(e)} ⊆
M ′.

Proof. For any x, y ∈M , set x ∼ y if and only if

axb ∈M ′ ⇔ ayb ∈M ′.

This equivalence is compatible with multiplication — as can be easily checked
— so we obtain a quotient monoid M =M/ ∼. The equivalence class of x ∈M
in M will be denoted by x. Consider S = {m ∈M ∣ ab ∈M ′ ⇒ amb ∈M ′}.
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Clearly, S is closed under products and contains e so it is a submonoid of M .
Put x ≥ y if and only if x = sy for some s ∈ S. This is clearly a reflexive and
transitive relation. Suppose x ≥ yx, then there are s, s′ ∈ S with x = sy and
y = s′x. Suppose axb ∈M ′, then as′xb ∈M ′ so ayb ∈M ′. Similarly, if ayb ∈M ′

then asyb ∈M ′ so axb ∈M ′. This means that x ∼ y so x = y and consequently
≤ is a partial ordering. Hence the projection φ ∶ M → M is a value map. If
φ(x) ≥ φ(e) we find x = exe ∈M ′ so Mφ ⊆M ′.

Remark. If M is a group and M ′ is a normal subgroup, then x and y in M are
equivalent in the sense of the preceding proposition if and only if

axb ∈M ′⇔ ayb ∈M ′⇔ bax ∈M ′⇔ bay ∈M ′

⇔M ′x =M ′y

which means that they are equivalent in the sense of the classical group quotient.

Note that by the same reasoning one can also construct a left value map.
Moreover, one can reverse the ordering on M to obtain another right respectively
left value map, ψ say, where Mψ = {m ∈M ∣ ψ(m) ≤ ψ(e)} ⊆M ′.

Proposition. Let M be a monoid, φ a right-value map and Mφ the set of
positive elements. Then:

(1) m ∈ U(Mφ) implies φ(m) = φ(e),

(2) {m ∈M ∣ φ(m) > 0} is multiplicatively closed,

(3) M ′ =Mφ if and only if ab ∈M ′ implies amb ∈M ′ for every m ∈M ′,

(4) φ is a (two sided) value map if and only if Mφx = xMφ for any x ∈M .

Proof. (1) If x ∈ U(Mφ) then φ(e) = φ(x−1)φ(x) ≥ φ(x) ≥ φ(e).

(2) Let φ(m) > φ(e) and φ(l) ≥ φ(e), then φ(lm) ≥ φ(m) > 0. On the other
hand φ(ml) ≥ φ(m) > 0.

(3) If m ∈ M ′ implies that amb ∈ M ′ if ab ∈ M ′, then φ(m) ∈ S hence
φ(m) ≥ φ(e) so m ∈Mφ. The other inclusion is always true. Similarly, if
φ(m) ≥ φ(e) for all m ∈M ′ then ab ∈M ′ implies amb ∈M ′.

(4) If Mφx = xMφ for all x ∈ M then {y ∈M ∣ φ(y) ≥ φ(x)} = Mφx = xMφ

so for all y ∈Mφx there is some m ∈Mφ with y = xm. As a consequence,
we have ay = axm for every a ∈ M which implies that the ordering on
M is two-sided. If M is bi-ordered, then an element m is in Mφx if an
only if φ(m) is larger than φ(x) if and only if m ∈ xMφ which had to be
shown.
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Proposition. Suppose G is a right cancellative monoid. Any submonoid M with
U(M) = e induces a partial right ordering ≤M on G such that {g ∈ G ∣ g ≥M e} =
M .

Proof. If M is such a submonoid then we can say a ≤M b if ma = b for some
m ∈ M . Since e ∈ M , this is a reflexive relation and since M is closed under
multiplication it is transitive. Suppose a ≤M b ≤M a, then there are m and m′

in M with mb = a and m′a = b so a =mm′a which implies that m is invertible
since G is right cancellative. But since U(M) = e, m must be e hence a = b.
This ordering is preserved under right multiplication, for if a ≤M b, then a =mb
for some m ∈ M but then ac = mbc hence ac ≤M bc. If g ≥M e then there is
some m ∈ M with g = me = m so g ∈ M and for any m ∈ M we clearly have
m ≥M e.

If Q is a simple Artinian ring and S is a subring with U(S) = {e} then it induces
a partial right order on Q. Moreover, since S is closed under sums, we have that
x ≥ 0 ≤ y implies x + y ≥ 0 which in turn means a ≥ b ≤ c⇒ a + c ≥ b. A right
value map with this property will be called a provaluation. But the condition
U(S) = {e} is far too strong.

Lemma. Let R be a ring without zero-divisors and let S be a subring. S is
the ring of positives for a provaluation iff U(S) is the kernel for some monoid
morphism φ ∶ R∖{0} →M . This morphism is then the associated provaluation.

Proof. If U(S) is the kernel of φ then S, the image of S ∖ {0} under φ, is a
submonoid of R ∖ {0} /ker(φ) ≃ M for which U(S) = {1}, so it induces an

ordering on T such that {t ∈ T ∣ t ≥ 1} = S. This implies that φ is in fact a
provaluation, since φ(x) ≥ φ(1) ≤ φ(y) implies x, y ∈ S hence x, y ∈ S. Then
we have x + y ∈ S and consequently φ(x + y) ≥ φ(1).

If, on the other hand, S is the ring of positives for some provaluation φ, then
U(S) = ker(φ), which proves the claim.

Corollary. If D is a skewfield, then a subring S is the ring of positives for some
provaluation iff U(S) is a normal subgroup of U(D).

Proof. If U(S) is a normal subgroup, then π ∶ U(D) → U(D)/U(S) is a monoid
(even group) morphism with the required kernel. On the other hand, if S is
a subring of positives, then U(S) is the kernel of a map U(D) → M . This
monoid morphism is necessarily a group morphism, so U(S) is normal.

Corollary. A strict provaluation is a partial valuation.

Proof. Put S = {x ∣ φ(x) ≥ 0}. Since φ is strict, P = {x ∣ φ(x) > 0} is the
unique maximal ideal. If s ∈ S then either s or 1 + s ∈ U(S) in which case
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1 + xsx−1 = x(1 + s)x−1 ∈ U(S), so xSx−1 ∈ S. Therefore, S is stable, hence it
induces a partial valuation.

So if v is a provaluation which takes values in a totally right-ordered group,
then v takes values in a bi-ordered group, hence it is a valuation as the title of
this appendix suggests.
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Appendix B

Appell sets and Verma modules
for sl(2)

Introduction

Mathematical analysis and classical representation theory have always gained
from a mutual infusion of ideas and techniques. The former often provides
concrete examples which may illustrate and initiate more abstract notions which
are studied and generalised in the latter. The present paper is written with this
philosophy in mind, hereby drawing inspiration from two particular problems
arising in harmonic analysis on Rm. First of all, there exist quite a few function
theories which are centred around a set of operators which realize a copy of
the simple Lie algebra sl(2) under the commutator bracket. Classical harmonic
analysis itself, for example, is centred around the Laplace operator ∆m, acting
as an endomorphism on C[x1, . . . , xm]. The associated Lie algebra sl(2) is then
given by

sl(2) ≅ Alg (X,Y,H) ≅ Alg(1

2
∆m,−

1

2
∣x∣2,−Ex −

m

2
) , (B.1)

where ∣x∣2 is the squared norm of x ∈ Rm and Ex = ∑xj∂xj stands for the
Euler operator on Rm. A celebrated result in harmonic analysis, due to R. Howe
[37], describes this Lie algebra as the so-called dual partner of the orthogonal
group SO(m), acting on polynomials in C[x1, . . . , xm] through the regular rep-
resentation, leading to a multiplicity-free decomposition of this space in terms
of Verma modules for sl(2). Also, in super analysis (a function theory in which
both commuting and anti-commuting variables are taken into account, see e.g.
[20]) and the theory of Dunkl operators (in which the rotational symmetry is
reduced to a finite subgroup, see e.g. [24]), a key ingredient is the existence of
a subalgebra A ≅ sl(2) inside the full endomorphism algebra acting on the poly-
nomials (or smooth functions in general). This algebra is then used to define
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generalisations of the classical Hermite polynomials, which lead to an expression
for the Fourier integral as an exponential operator exp(A), with A ∈ A.

A second motivation comes from the theory of Appell sequences. Classically,
these are defined in terms of a complex variable z, as sets of holomorphic
polynomials {Pk(z) ∣ k ∈ Z+} satisfying the relation P ′

k(z) = kPk−1(z), where
degPk(z) = k and P0 ≠ 0. Denoting the derivation operator by means of
P = ∂z, one can also interpret these Appell sequences as representations for the
Heisenberg-Weyl algebra h1, provided there exists an associated raising operator
M satisfying MPk(z) = Pk+1(z) for all k ∈ Z+. Formally, this operator thus
performs the integration within the Appell sequence. One can indeed verify that
these defining relations imply that P and M satisfy the canonical commutation
relation [P,M] = 1 ∈ C = z(h1). Notable examples are the Hermite polynomials,
but also other orthogonal polynomials such as Bernouilli and Euler polynomials.
More generally, we say:

Definition. A representation for the Heisenberg algebra (denoted by h1) is an
algebra morphism ρV ∶ h1 → End(V). If there exists a vector v0 in kerρV (P ),
we will from now on refer to the set A = {ρkV (M)[1] ∣ k ∈ Z+} as an Appell
sequence related to the operators (ρV (P ), ρV (M)).

In the classical situation, the vector space V = span(Pk(z))k is a polynomial
family, with ρV (P ) a differential operator and ρV (M) a conjugation thereof (a
formal integration operator). In this paper, we will consider generalisations of
Appell sequences, for which V may be a more abstract representation space.
Note that the representation V must be infinite-dimensional, which follows from
the fact that tr([ρV (P ), ρV (M)]) = 0, as it is the trace of a commutator. This
means that finite-dimensional representations must necessarily satisfy dim(V) =
1. This suggests looking for generalisations of Appell sequences in canonical
infinite-dimensional modules for sl(2), i.e. Verma modules.

Recently, the problem of constructing analogues of complex Appell sequences in
multivariate analysis has gained new interest, see a.o. [11]. These sequences are
defined as polynomial sets V = span(Pk(x))k containing scalar-valued (resp.
Clifford algebra-valued) null solutions for the Laplace or Dirac operator in the
variable x ∈ Rm, for which the lowering operator P is a differential operator be-
longing to the Clifford-Weyl algebra WC

m, defined by WC
m = Alg (xi;∂xj) ⊗Cm

(with Cm the universal Clifford algebra in m dimensions). It turns out that some
of these Appell sequences can be related to the branching problem for certain
irreducible representations for the spin group, the (inductive) construction of
orthonormal bases for these spaces and generalisations of the classical Fueter
theorem, see e.g. [25]. This has given rise to Gegenbauer and Jacobi poly-
nomials in harmonic (resp. Clifford) analysis, for which the formal integration
operator was obtained in terms of an operator containing fractions. The results
form this section come from [26].
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Appell sets in Verma modules for sl(2)
Adopting the classical definition (which can be given for any Lie algebra g) to
our case of interest, we have the following:

Definition. Let λ ∈ C be a complex number, and consider the vector space
Vλ = Cvλ on which sl(2) acts as H[vλ] = λvλ and X[vλ] = 0, Y [vλ] = 0. One
may then define the highest-weight1 Verma module Mλ = U(n−) ⊗U(b+) Vλ,
where n− = CY and b+ = CH ⊕CX, with highest weight λ ∈ C.

In view of the PBW-theorem for the universal enveloping algebra U (sl(2)), the
weight space decomposition is given by Mλ = spanC (Y k ⊗ vλ ∣ k ∈ Z+). The
following fact about Verma modules is well-known:

Proposition. The Verma modules Mλ are irreducible for λ ∉ Z+.

Proof. See e.g. [34].

The conditions on λ ensuring that Mλ is irreducible are very convenient, in the
sense that we will only be able to introduce generalisations of Appell sequences
as algebra morphisms σλ from h1 into End(Mλ) under the same conditions
on λ as in the proposition above (which means that the action of σλ(P ) and
σλ(M) will only be well-defined for λ ∈ C ∖ Z+). In what follows, we consider
the subring R = U (b−) ⊂ U (sl(2)), where we use the notation b− = CH ⊕CY
for the (other) Borel subalgebra (compare with b+).

Remark. Fractions will play a crucial role throughout this paper, and we there-
fore define them as A/B = AB−1, where the inversion always appears at the
right hand side. This is important, because in general A and B will belong to
a non-commutative ring.

Definition. For all α ∈ C, we define S−α = ⟨(H +α+ 2j) ∣ j ∈ Z−⟩ ⊂ R as the set
which is multiplicatively generated by the elements between brackets.

It is then easily verified that S−α ⊂ R satisfies the right Ore condition for arbitrary
α ∈ C, see e.g. [15]. This condition is needed whenever one wants to consider
the right ring of fractions R(S−1) with respect to a multiplicatively closed subset
S ⊆ R. Indeed, for arbitrary ξ ∈ R and σ ∈ S−α one has that ξS−α ∩ σR ≠ ∅.
Indeed, in view of the PBW-theorem for U (sl(2)), it suffices to consider an
element ξ of the form ξ = Y aHb (hereby omitting the tensor product symbols
and with a, b ∈ Z+). For σ =H +α+ 2j (with j ∈ Z−), one then clearly has that
(H + α + 2j)Y aHb = Y aHb (H + α + 2(j − a)), since 2(j − a) ∈ Z−. We can
thus define the localisation w.r.t. the set S−α, which will be denoted by means
of R−

α = R ((S−α)−1).

1In this paper, we have chosen to work with highest-weight Verma modules Mλ, but the
construction for lowest-weight modules is similar.
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Remark. Since (H + α + 2j)Y aHbXc = Y aHbXc (H + α + 2(j + c − a)), it is
clear that one can also consider the localisation of the full enveloping algebra
U (sl(2)) with respect to the (enlarged) subset Sα = ⟨(H + α + 2j) ∶ j ∈ Z⟩,
where j ∈ Z is now an arbitrary integer. We therefore also introduce the notation
Uα (sl(2)) = U (sl(2)) (S−1

α ). Obviously, for all α ∈ C one has that R−
α ⊂

Uα (sl(2)). Note that these are all inside the skew field over U (sl(2)).

The motivation for considering this particular localisation R−
α, instead of just

Uα (sl(2)), comes from the fact that the action of the latter localisation will
not always be well-defined on the Verma modules we would like to consider for
practical purposes. In full generality, one has the following:

Proposition. Whenever (λ + α) ∉ 2Z+, the action of R−
α is well-defined on

irreducible Verma modules Mλ.

Proof. To prove that the action on the localisation w.r.t. S−α is well-defined,
we first of all note that the elements in S−α act as a constant on the weight
spaces. It then suffices to verify that for all integers k ≥ 0 and j ≤ 0 one has
that (H + α + 2j)[Y k ⊗ vλ] = (α + λ − 2k + 2j)Y k ⊗ vλ ≠ 0. This is indeed
guaranteed whenever α + λ ≠ 2(k + ∣j∣) ∈ 2Z+.

Corollary. The action of R−
λ is well-defined on irreducible Verma modules Mλ

(i.e. for arbitrary λ ∈ C such that λ is not a positive integer).

Corollary. For arbitrary α ∈ C, the action of Uα (sl(2)) is well-defined on irre-
ducible Verma modules Mλ whenever α + λ ∉ 2Z.

Remark. Note that the action of Uλ (sl(2)) on Mλ is not always well-defined,
in view of the fact that e.g. for λ = l ∈ Z− and j = k − l we get that (H + λ +
2j)[Y k ⊗ vλ] = 0.

Let us then prove the main result of this section:

Theorem. Suppose Mλ is an irreducible Verma module for the algebra sl(2),
which means that λ ∉ Z+. One can then define an action of h1 on Mλ, by
means of the algebra morphism

σλ ∶ h1 → End(Mλ) ∶ (P,M) ↦ (X, 2Y

H + λ
) .

Note that the operator σλ(M) actually belongs to the localisation R−
λ, which

means that its (repeated) action on Mλ is well-defined.

Remark. Recalling the notation from the introduction, we thus have that the
basis for Mλ defined by A = {σkλ(M)[1 ⊗ vλ] ∶ k ∈ Z+} defines an Appell
sequence.
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Proof. It suffices to verify that the action of σλ(P ) and σλ(M) on the module
Mλ satisfies the Heisenberg relation [σλ(P ), σλ(M)] = 1. For that purpose, we
note that for all k > 0, we have:

[σλ(P ), σλ(M)](Y k ⊗ vλ) = (XY 2

H + λ
− Y 2

H + λ
X) (Y k ⊗ vλ)

= Y k ⊗ vλ.

For k = 0, the statement is trivial, which proves the theorem.

Invoking the definition (λ)k = λ(λ − 1)⋯(λ − k + 1), we then have:

Definition. Suppose Mλ is a highest-weight Verma module for sl(2), with
λ ∈ C ∖Z+. The monomial basis for Mλ is given by the weight vectors

vλ(k) =
1

(λ)k
Y k ⊗ vλ (k ∈ Z+).

Note that the embedding of h1 into Uλ (sl(2)) also gives rise to another Appell
sequence. To see this, we will calculate the commutator [σλ(P ), σλ(M)] inside
the localisation and then investigate its action on Verma modules Mµ (with
µ ∈ C arbitrary). In view of the fact that (H + λ)X =X(H + λ + 2), we get:

[σλ(P ), σλ(M)] = 2H

H + λ
+ 2Y [X, 1

H + λ
] = 2

H(H + λ + 2) + 2Y X

(H + λ)(H + λ + 2)
.

When acting on an arbitrary weight space in the module Mµ, we thus get:

[σλ(P ), σλ(M)]Y k ⊗ vµ = 2
(µ − 2k)(µ + λ − 2k + 2) + 2k(µ + 1 − k)

(µ + λ − 2k)(µ + λ − 2k + 2)
Y k ⊗ vµ.

It is then easily verified that the Appell condition is verified (i.e. the constant
in front of the weight vector is equal to 1) for µ ∈ {λ,2 − λ}. This means that
we have now obtained the following (somewhat stronger) result:

Corollary. Consider an complex number λ ∈ C ∖Z. One can then define

σλ ∶ h1 → End(Mµ) ∶ (P,M) ↦ (X, 2Y

H + λ
) ,

for µ ∈ {λ,2 − λ}. Both Verma modules Mλ and M2−λ then become Appell
sequences for the operators σλ(P ) and σλ(M). Note that the latter operator
belongs to R−

λ, which means that its action is always well-defined.

Note that we imposed the condition λ ∉ Z in the corollary above, to ensure that
both λ,µ = 2 − λ ∈ C ∖Z+. Let us then consider a few examples:
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1. Consider the classical realisation for sl(2) in harmonic analysis on Rm,
see (B.1). It is then clear that we can start from an arbitrary harmonic
function fα(x) on an open subset Ω ⊂ Rm which is homogeneous of
degree α ∈ C. This function then plays the role of a highest weight vector
for which λ = −α − m

2 ∉ Z−, leading to the Appell sequence

Aλ =
⎧⎪⎪⎨⎪⎪⎩

∣x∣2kfα(x)
2k (α + m

2
) (α + m

2 + 1) . . . (α + m
2 + k − 1)

⎫⎪⎪⎬⎪⎪⎭
,

for the lowering operator P = 1
2∆x.

In case α+ m
2 ∉ Z, we can also consider an Appell sequence starting from

Mµ, with µ = 2 − λ. In the context of harmonic analysis, there is a well-
known realisation for the highest weight vector for Mλ in terms of the
Kelvin inversion:

J0 ∶ fα(x) ↦
1

∣x∣m−2
f ( x

∣x∣2
) = ∣x∣2−m−2αfα(x).

This gives rise to the Appel sequence

Aµ =
⎧⎪⎪⎨⎪⎪⎩

(−1)k∣x∣2−m−2α+2kfα(x)
2k (α + m

2 − 2) (α + m
2 − 3) . . . (α + m

2 − k − 1)

⎫⎪⎪⎬⎪⎪⎭
.

2. In [25], we have obtained the harmonic (resp. monogenic) Gegenbauer
polynomials through the knowledge of a particular subalgebra of the Weyl
algebra Wm (resp. WC

m), for all m ≥ 3 given by

sl(2) ≅ Alg (−∂xm , xm(2Ex +m − 2) − r2∂xm ,−2Ex − (m − 2)) .

It is then clear that the polynomial set

G2−m = {(xm(2Ex +m − 2) − r2∂xm)k[1] ∣ k ∈ N}

can be considered as a highest-weight Verma module Mλ with highest
weight vector 1 ∈ C, for λ = −(m − 2).

Hermite bases in Verma modules for sl(2)
One can now develop a general framework to define special polynomials (e.g.
Hermite polynomials). Traditionally, such polynomials can be defined through
an explicit formula of the form Sk(z) = ∑kj=0 cj,k(S)zj , with z ∈ C and cj,k(S) a
certain coefficient that determines the special function under consideration. We
will generalise this picture, hereby using the following idea: instead of using a
complex variable z, we will use the operator σλ(Y ) which creates the monomial
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basis for an arbitrary (fixed) Verma module Mλ, hereby fixing the realization
sl(2) = Alg(X,Y,H). For example, the Hermite basis for the Verma module
Mλ is then defined through the repeated action of the following operators in
Uλ (sl(2)):

σ
(h)
λ (P ) =X and σ

(h)
λ (M) = σλ(M − P ) = 2Y

H + λ
−X.

Note that we have added a superscript (h) to indicate that these generate
the Hermite basis, corresponding to the probabilists’ Hermite polynomials, as
opposed to the physicists’ Hermite polynomials which would require adding a
factor 2 to the term σλ(M). The raising operator can also be defined as

σ
(h)
λ (M) = − exp(1

2
σ2
λ(M))σλ(P ) exp(−1

2
σ2
λ(M)) , (B.2)

where the exponential is defined through its formal Taylor expansion.

Definition. Suppose Mλ is a Verma module, with λ ∈ C∖Z+ and weight spaces
Y k ⊗ vλ (k ∈ Z+). The Hermite basis for Mλ is then given by the following set
of vectors:

v
(h)
λ (k) = ( 2Y

H + λ
−X)

k

[1⊗ vλ] (k ∈ Z+).

As a result of expression (B.2), this can also be written as follows:

v
(h)
λ (k) = (−1)k exp(1

2
σ2
λ(M))σkλ(P ) exp(−1

2
σ2
λ(M)) [1⊗ vλ].

The fact that this defines a basis follows from the following proposition, the
essence of which is encoded in a technical lemma:

Lemma. For all k ∈ Z+, we have the following expansion of binomial type when
acting on the highest weight vector 1⊗ vλ:

(σλ(M) − σλ(P ))2k =
k

∑
j=0

(−1)jk!

2jj!(k − 2j)!
σ2k−2j
λ (M)

(σλ(M) − σλ(P ))2k+1 =
k

∑
j=0

(−1)jk!

2jj!(k − 2j)!
σ1+2k−2j
λ (M)

Proof. The theorem can easily be proved by induction, taking into account that
factors σλ(P ) may safely be ignored once they are at the right-hand side (in
view of the fact that the expression is meant to act on the highest weight vector
1⊗ vλ ∈Mλ).
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Proposition. The explicit expression for the Hermite basis vectors for a Verma
module Mλ in terms of the monomial basis, is given by:

v
(h)
λ (k) =

κ

∑
j=0

(−1)jk!

2jj!(k − 2j)!(λ)k−2j
Y k−2j ⊗ vλ,

hereby introducing the integer κ = ⌊k2 ⌋ ∈ Z
+.

Proof. This immediately follows from the previous lemma, hereby making use
of the fact that σλ(M) generates the monomial basis for Mλ.

The classical Hermite polynomial Hk(x) in a real variable x ∈ R, as in the prob-
abilistic normalisation, corresponds to the case where monomial basis vectors
vλ(k) ∈ Mλ are identified with monomials xk. Note that the Hermite basis
vectors satisfy the following recurrence relations:

v
(h)
λ (k + 1) = 1

(λ − k)
Y v
(h)
λ (k) −Xv(h)λ (k)

= 1

(λ − k)
Y v
(h)
λ (k) − kv(h)λ (k − 1) ,

where we explicitly made use of the fact that the Hermite basis vectors define
an Appell sequence. This gives then rise to the following eigenvalue problem
for the linear operator Lλ ∈ Uλ (sl(2)), which is the equivalent of the Hermite
equation in the classical context:

Lλv
(h)
λ (k) = (X2 − 2Y

H + λ
) v(h)λ (k) = −kv(h)λ (k).
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Future prospects

The end of this text in no way indicates the end of the research. The theory
of partial valuations and partial places is unfortunately still underdeveloped and
there can be little doubt that are many statements about valuations can be
generalised to this context, quite possibly without too much difficulties. The
geometric meaning of partial valuations should also be investigated. There is a
possible role for partial valuations in interpreting certain quantum effects; this,
too, deserves further study.

The restricted Clifford systems as introduced in 1.1 promise to offer an interest-
ing new perspective in primes extending valuation rings. By our results, these
can be separated in two categories: those with an associated value function
taking values in a directed group and those consisting of copies of the field
stitched together in some way. How exactly this stitching works is still un-
clear at the moment, but it will probably involve something similar to crossed
products. Probably, the restricted Clifford systems will determine this stitch-
ing. Clifford systems are epimorphic images of strongly graded rings (cfr. [72]),
which suggests that there is a close link with graded valuation theory as well.

In chapter 5 we have introduced some groupoid-graded valuation theory, but
there is certainly a lot of work yet to be done here. Extensions of groupoid val-
uations should be studied in detail. Some kind of divisor theory for (sufficiently
well-behaved) groupoid valuations as well as a ramification theory can probably
be introduced and studied.

Another topic that still wants exploration is that of crystalline graded (and
possibly even crystalline groupoid graded) valuation theory. Crystalline gradings
were introduced in [76] as a formal setting for a.o. generalised Weyl algebras
and generalised Clifford algebras. Over the years, they have been studied in
some detail (cfr. besides [76] e.g. [82] or [79]) but, as far as I am aware, no
valuation theory has been introduced in this setting.

In a related topic, one could study (crystalline groupoid) graded pseudo-valua-
tions and their associated filtrations. The following question, for example, seems
quite natural: when is a subring of a (crystalline groupoid) graded skewfield the
ring of positives for a (crystalline groupoid) graded pseudo-valuation? Seeing
that a classification of filtrations associated to pseudo-valuations is — even for
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very nice rings — rather difficult, this question is probably very hard. Profiltra-
tions and some concept of groupoid-filtrations should also not be ignored.

There are also many questions left open for noetherian Dubrovin valuation rings,
their associated arithmetical pseudo-valuations, and the possible geometry of
bounded Krull orders. The most obvious one is of course whether some kind of
Riemann-Roch theorem holds in this setting. To answer this question, one has
to introduce, for a divisor d,

L(d) = {f ∈ F(R) ∣ div(f) + d ≥ 0}

and, as in [104], consider the quotient L(d)/L(d′) for some other divisor d′

which divides d. Its dimension should then correspond to the degree of the
divisor d − d′. Of course, stating a tentative version of a statement is easy —
actually proving it is a different matter.

Something which has barely been touched upon in this thesis is the topological
side of valuation theory. Gabriel topologies on Dubrovin valuation rings have
been classified (cfr. [60]) and Janesch ([39]) used V -topologies to show the
non-existence of certain extensions of valuations to Dubrovin valuation rings,
but topologies on the space of Dubrovin valuation rings which are localisations
of some bounded Krull domain have yet to be investigated. This would be
a natural non-commutative analogon of the abstract Riemann surfaces from
classical algebraic geometry.

It is also important to construct more examples of (noetherian) Dubrovin valu-
ations, or at least to investigate their (non-)existence in certain classes of skew-
fields. It would be very interesting, for example, to know whether non-trivial
(noetherian) Dubrovin valuation rings exist on the Weyl skewfields.

For other non-commutative generalisations of valuations, there is still more
work to be done. Topologies associated to groupoid graded valuation rings and
topologies on the space of such generalised valuations for a given simple Artinian
ring should be studied. Since we have shown the existence of a link between
the world of Dubrovin valuation rings and that of groupoid graded valuations,
there is no doubt a topological link as well, but what this could be remains for
the moment unclear to me.

Let me end with one final suggestions for future work: a categorification of
valuation theory. Category theory has, by now, earned a prominent place in
modern mathematics and has proven to be a useful tool with a wide range
of applications. It would therefore be both interesting and convenient could
some kind of valuation theory be defined on a purely categorical level. To
realise this, one should first have a notion of ordered and pre-ordered categories.
It is probably necessary to restrict attention to abelian (or at least additive)
categories in order to generalise the condition v(x+ y) ≥ min{v(x), v(y)}, but
in that context it should be possible to define orderings by using generalisations
of the concept of positives cones. After all, a category is nothing more than a
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semigroupoid with neutral elements — a monoidoid, if you want — and ordered
semigroups have been studied extensively (cfr. e.g. [31], [5]). By extending
results from this theory to the more general categorical setting, orderings on
and positive cones of categories could be introduced. Another possibility is the
use of 2-categories, where the ordering corresponds to the 2-morphisms.
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Nederlandse samenvatting

Klassieke valuatietheorie speelt een belangrijke rol in algebräısche meetkunde,
algebräısche getaltheorie etc., maar het is niet onmiddellijk duidelijk wat de
correcte veralgemening naar een niet-commutatieve context is. De voor de hand
liggende tegenhanger voor het commutatieve lichaam is de simpele artinse ring,
maar dergelijke ringen bevatten nuldelers, hetgeen het bestaan van valuaties
onmogelijk maakt. In deze thesis worden een aantal natuurlijke veralgemeningen
bestudeerd.

In het eerste hoofdstuk wordt het concept valuatie in zijn hoofdbestanddelen
ontbonden: enerzijds de totale deelringen en anderzijds de partiële valuaties.
Aangezien totale deelringen al tamelijk uitvoerig bestudeerd zijn, concentreren
wij ons op de partiële valuaties. Partiële plaatsen worden ook ingevoerd en in
verband gebracht met partiële valuaties. Enkele resultaten uit de klassieke valu-
atietheorie worden veralgemeend naar deze nieuwe (niet-commutatieve) context.

In het tweede hoofdstuk worden priemen bestudeerd. Het was al lang bekend
dat aan elke lokale priem (R,P ) in een simpele artinse ring Q een partiële
valuatie v kan worden geassocieerd, maar de ring van v-positieve elementen
is in het algemeen een strikte deelring van R. Voor het geval van invariante
priemen, i.e. priemen die stabiel zijn onder inwendige automorfismen van Q,
hebben we een aritmetische pseudo-valuaties geconstrueerd waarvoor de ring van
positieven wel degelijk terug R is. Deze resultaten veralgemenen gelijkaardige
stellingen van Van Geel en Van Oystaeyen en kunnen op hun beurt ongetwijfeld
nog veralgemeend worden; het essentiële ingrediënt hierbij is lemma 2.3.4.

Doordat een gelijkaardig lemma geldt voor Dubrovin-valuatieringen met een
niet-idempotent Jacobson radicaal — een klasse van ringen met gelijkaardige
eigenschappen als klassieke valuatieringen — hebben we (in hoofdstuk drie)
ook voor deze ringen een aritmetische pseudo-valuatie kunnen construeren met
de correcte ring van positieven. Bovendien neemt deze aritmetische pseudo-
valuatie, voor noetherse Dubrovin-valuatieringen, waarden aan in Z. Gebruik-
makend van het reeds bekende feit dat lokalisaties van begrensde Krull orders
noetherse Dubrovin-valuatieringen zijn, hebben we voor dergelijke ringen een
divisorentheorie kunnen invoeren (cfr. hoofdstuk vier). Dit opent nieuwe mo-
gelijkheden, zoals bijvoorbeeld een Riemann-Roch stelling voor begrensde Krull
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orders.

Een heel andere insteek wordt gevolgd in hoofdstuk vijf. Zoals reeds ver-
meld zijn simpel artinse ringen in zekere zin de correcte niet-commutatieve
veralgemening van lichamen. Dergelijke ringen zijn, dankzij een oude stelling
van Wedderburn, noodzakelijk isomorf met matrixringen over scheve lichamen.
Aangezien matrixringen groepöıde-gegradeerd zijn, is het logisch om de theorie
van gegradeerde valuaties naar deze context te veralgemenen en verder te on-
twikkelen. Hiertoe geven we in hoofdstuk vijf een aanzet. Niet alleen worden
daar de nodige concepten ingevoerd en een aantal veralgemeningen van klassieke
bewijzen gegeven, maar er wordt ook een link gelegd met andere veralgemeende
valuaties — met name Dubrovin-valuatieringen.

In hoofdstuk zes wordt een andere interessante invalshoek belicht. Aan elke
valuatie kan een (gesepareerde, exhaustieve) filtratie worden geassocieerd (die
bovendien voldoet aan FγR ⊊ FδR voor γ < δ), dus het is logisch om deze fil-
traties te beschouwen als veralgemeende valuaties. Aan dergelijke filtraties kan
een canonieke pseudo-valuaties worden geassocieerd met F0R als ring van posi-
tieve elementen. Helaas lijkt het karakteriseren van die deelringen die pseudo-
valuatieringen zijn in het algemeen een tamelijk wild probleem. Voor reguliere
pseudo-valuaties is de kans op een volledige classificatie groter — zeker als alleen
deelringen van simpele artinse ringen worden beschouwd — maar hier wordt op
het moment nog aan gewerkt.

Zoals bij elk wiskundig onderzoek zijn ook bij deze thesis een aantal pistes op
niets uitgedraaid. Ik zou nog verder willen gaan: het meeste werk dat gedaan is,
heeft uiteindelijk niets opgeleverd. Een aantal denkpistes die wel interessante
resultaten gaven maar die wat verder van de rest van de thesis afstaan, zijn
verzameld in de appendices. In appendix A wordt een vroeg en enigszins näıef
vermoeden van mij, namelijk dat totale deelringen misschien in 1 − 1-verband
zouden kunnen staan met rechts valuaties, de kop ingedrukt. Appendix B is het
resultaat van een nevenproject over een onderwerp dat in se weinig te maken
heeft met (niet-commutatieve) valuatietheorie. De bekomen resultaten vallen
volledig binnen het domein van de analyse in plaats van de algebra, maar tonen
de kracht van ringtheorie. Met name de localisatietheorie van Ore is nodig om
operatoren uit S−α te inverteren, waarop de constructie van de Appell-sequences
berust.
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[32] P. Gabriel, Des catégories abéliennes, Bull. Soc. Math. France, Vol.90,
1962, 323-448

[33] P. Greszczuk, On G-systems and G-graded rings, Proc. Amer. Math. Soc.,
Vol.95 No.3, 1985, 348-352

[34] B. C. Hall, Lie groups, Lie algebras, and representations: an elementary
introduction, Grad. Texts in Math., 2015
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Birkhäuser, 1988

[48] L. Le Bruyn & F. Van Oystaeyen, A note on noncommutative Krull do-
mains, Comm. Alg., Vol.14 No.8, 1986, 1457-1472

[49] Li H. & F. Van Oystaeyen, Zariskian filtrations, K-monographs in math.
Vol.2, Kluwer Acad. Publ., 1996

[50] Liu G. & Li F., On strongly groupoid graded rings and the corresponding
Clifford theorem, Algebra Colloq., Vol.13 No.2, 2006, 181-196

[51] P. Lundström, Separable groupoid rings, Comm. Algebra, Vol.34 No.8,
2006, 3029-3041

[52] M. Mahdavi Hezavehi, Matrix valuations and their associated skew fields,
Results Math., Vol. 5, 1982, 149-156
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