A patient with pontocerebellar hypoplasia type 6 : novel RARS2 mutations, comparison to previously published patients and clinical distinction from PEHO syndrome

Reference:
Nevanlinna Viivi, Konovalova Svetlana, Ceulemans Berten, Muona Mikko, Anni Laari, Hilander Taru, Katarin Gorski, Valanne Leena, Anttonen Anna-Kaisa, Tyynismaa Henna, ... - A patient with pontocerebellar hypoplasia type 6: novel RARS2 mutations, comparison to previously published patients and clinical distinction from PEHO syndrome
European journal of medical genetics - ISSN 1769-7212 - 63:3(2020), 103766
Full text (Publisher's DOI): https://doi.org/10.1016/J.EJMG.2019.103766
To cite this reference: https://hdl.handle.net/10067/1677150151162165141
A patient with pontocerebellar hypoplasia type 6: Novel RARS2 mutations, comparison to previously published patients and clinical distinction from PEHO syndrome

PII: S1769-7212(18)30943-1
DOI: https://doi.org/10.1016/j.ejmg.2019.103766
Reference: EJMG 103766

To appear in: European Journal of Medical Genetics

Received Date: 21 December 2018
Revised Date: 15 September 2019
Accepted Date: 15 September 2019

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2019 Published by Elsevier Masson SAS.
A Patient with Pontocerebellar Hypoplasia Type 6: Novel RARS2 Mutations, Comparison to Previously Published Patients and Clinical Distinction from PEHO Syndrome

Viivi Nevanlinnaa,b, Svetlana Konovalovac, Berten Ceulemansd, Mikko Muonaa,1, Anni Laaria,c, Taru Hilanderc, Katarin Gorskia,c, Leena Valannee, Anna-Kaisa Anttonena,f,g, Henna Tyynismaac,f,h, Carolina Couragea,c, Anna-Elina Lehesjokia,c,f,*

aFolkhälsan Research Center, Helsinki, Finland
bFaculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
cResearch Programs Unit, Molecular Neurology, University of Helsinki, Finland
dDepartment of Pediatric Neurology, Antwerp University Hospital, University of Antwerp, Belgium
eDepartment of Radiology, Hospital District of Helsinki and Uusimaa Medical Imaging Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
fDepartment of Medical and Clinical Genetics, Medicum, University of Helsinki, Finland
gLaboratory of Genetics, Helsinki University Hospital, Helsinki, Finland
hNeuroscience Center, HiLIFE, University of Helsinki, Helsinki, Finland
1Present address: Blueprint Genetics, Helsinki, Finland
\textsuperscript{*Corresponding author. Folkhälsan Research Center, Biomedicum Helsinki, Haartmaninkatu 8, 00290, Helsinki, Finland; tel: +358 2941 25072; email: anna-elina.lehesjoki@helsinki.fi
Abstract

Pontocerebellar hypoplasia type 6 (PCH6) is a rare infantile-onset progressive encephalopathy caused by biallelic mutations in \textit{RARS2} that encodes the mitochondrial arginine-tRNA synthetase enzyme (mtArgRS). The clinical presentation overlaps that of PEHO syndrome (Progressive Encephalopathy with oedema, Hypsarrhythmia and Optic atrophy). The proband presented with severe intellectual disability, epilepsy with varying seizure types, optic atrophy, axial hypotonia, acquired microcephaly, dysmorphic features and progressive cerebral and cerebellar atrophy and delayed myelination on MRI. The presentation had resemblance to PEHO syndrome but sequencing of \textit{ZNHIT3} did not identify pathogenic variants. Subsequent whole genome sequencing revealed novel compound heterozygous variants in \textit{RARS2}, a missense variant affecting a highly conserved amino acid and a frameshift variant with consequent degradation of the transcript resulting in decreased mtArgRS protein level confirming the diagnosis of PCH6. Features distinguishing the proband’s phenotype from PEHO syndrome were later appearance of hypotonia and elevated lactate levels in blood and cerebrospinal fluid. On MRI the proband presented with more severe supratentorial atrophy and lesser degree of abnormal myelination than PEHO syndrome patients. The study highlights the challenges in clinical diagnosis of patients with neonatal and early infantile encephalopathies with overlapping clinical features and brain MRI findings.

Keywords

Pontocerebellar hypoplasia type 6, RARS2, PEHO syndrome, progressive cerebellar and cerebral atrophy
Introduction

Pontocerebellar hypoplasia (PCH) is a group of neurodegenerative disorders with autosomal recessive inheritance. Up to date 11 different subtypes have been described, with 17 causative genes identified (van Dijk et al., 2018). Most of the subtypes are characterized by prenatal or neonatal onset, global developmental delay and intellectual disability, microcephaly, hypoplasia and variable atrophy of cerebellar cortex and/or brainstem. The specific neurological symptoms and the severity of symptoms and brain loss vary between the subtypes (van Dijk et al., 2018).

Pontocerebellar hypoplasia type 6 (PCH6; MIM 611523) is a rare form of PCH first described in 2007 in three patients of a consanguineous Sephardic Jewish family (Edvardson et al., 2007). Since then, altogether 32 patients in 18 families have been reported in the literature (for a detailed summary of the patients and phenotypes, see Supplementary Table; Edvardson et al., 2007; Rankin et al., 2010; Namavar et al., 2011; Glamuzina et al., 2012; Cassandrini et al., 2013; Kastrissianakis et al., 2013; Joseph et al., 2014; Li et al., 2015; Lax et al., 2015; Nishri et al., 2016; Alkhateeb et al., 2016; Ngoh et al., 2016; van Dijk et al., 2017; Luhl et al., 2016; Zhang et al., 2018). Most PCH6 patients present with neonatal onset, hypotonia, microcephaly, seizures, severe intellectual disability with lack of developmental milestones and progressive atrophy of cerebral cortex, cerebellum and pons. The majority show a respiratory chain enzyme deficiency and elevated lactate levels in blood or cerebrospinal fluid (CSF). Indeed, PCH6 may be distinguished from the other PCH subtypes, which are highly variable clinically and neuroradiologically, by the presence of elevated lactate concentration (van Dijk et al., 2018).

PCH6 is caused by biallelic mutations in \textit{RARS2}, a nuclear gene that encodes the mitochondrial arginine-tRNA synthetase enzyme (mtArgRS) (Edvardson et al., 2007). Aminoacyl-tRNA synthetases play a crucial role in protein translation as they catalyze the specific attachment of an amino acid
(aminoacylation) to its cognate tRNA. MtArgRS participates in the synthesis of all 13 mitochondrial-encoded proteins by charging of mitochondrial tRNA-Arg, thus being an integral part of mitochondrial protein translation machinery, participating in generation of complexes of oxidative phosphorylation system, except complex II, which has a fully nuclear origin (Ibba and Soll, 2000).

PCH6 shows clinically some resemblance to PEHO syndrome (Progressive Encephalopathy with oedema, Hypsarrhythmia and Optic atrophy; MIM 260565), characterized by neonatal hypotonia, profound psychomotor retardation, infantile spasms with hypsarrhythmia and atrophy of optic disks (Salonen et al., 1991). Patients present with typical dysmorphic features, such as narrow forehead, epicanthic folds, short nose and open mouth, and edema of the face and limbs (Somer, 1993). Neuroimaging findings include demyelination and progressive atrophy of the cerebellar cortex, brainstem and optic nerves. In the cerebellum, the inner granular layer is nearly totally absent and Purkinje cells are deformed and disaligned (Haltia and Somer, 1993).

PEHO syndrome is inherited autosomal recessively and was recently shown to be caused in Finnish patients by a homozygous missense mutation c.92C>T; p.Leu31Ser in ZNHIT3, a gene encoding zinc finger HIT domain-containing protein 3 (Anttonen et al., 2017). PEHO syndrome is enriched in the Finnish population with an estimated incidence of 1:74 000 (Somer, 1993) and approximately 40 diagnosed patients. In other populations it is very rare, with less than 25 reported patients (Field et al., 2003; Caraballo et al., 2011; Alfadhel et al., 2011) and only one patient with compound heterozygous mutations in ZNHIT3 reported so far (Öunap et al., 2019). In the literature, patients with symptoms closely resembling PEHO syndrome are more commonly reported. The clinical presentation of patients with PEHO-like features, like those with PCH, is similar to that of PEHO syndrome, but optic atrophy and typical neuroradiologic findings are usually absent or there is no progression (Field et al., 2003; Longman et al., 2003; Chitty et al., 1996). Several genes underlying
phenotypes resembling PEHO have been described (Rankin et al., 2010; Anttonen et al., 2015; Gawlinski et al., 2016; Langlois et al., 2016; Nahorski et al., 2016; Flex et al., 2016; Miyake et al., 2016; Zollo et al., 2017; Chitre et al., 2018).

We report a patient with the initial presenting features suggestive of PEHO syndrome with typical dysmorphic features, epileptic spasms, optic atrophy and severe hypotonia, but in whom whole genome sequencing revealed novel compound heterozygous mutations in RARS2.
Materials and methods

Patient and samples

The proband was clinically examined by B.C. in Antwerp and was referred to molecular genetic analyses in Helsinki. DNA extracted from peripheral blood was obtained from the proband and both parents. Primary fibroblast cultures from the proband were available for analyses of the gene product.

An institutional review board at the Helsinki University Central Hospital approved the study. A written informed consent was obtained from the parents.

Sequencing of ZNHIT3

The five coding exons of ZNHIT3 (NM_004773.3) were Sanger sequenced from genomic DNA of the proband (primer sequences available upon request). Exon 1 covering the c.8C>T, p.Ser3Leu variant was also sequenced in the parents.

Whole genome sequencing

Library preparation for the genomic DNA sample was performed using KAPA Library Preparation Kit. The sample was sequenced in three lanes of an Illumina HiSeq2500 instrument with one lane having paired-end 250-bp reads and two lanes paired-end 10-bp reads. Sequence read alignment to human reference genome (GRCh37) and variant calling (Li et al., 2009) was done as described earlier with minor modifications (Sulonen et al., 2011). Called variants were annotated using ANNOVAR (Wang et al., 2010) and filtered using in-house scripts. DELLY (Rausch et al. 2012), which assesses split-read alignments and paired-end read information to detect structural variants was used to identify any copy number changes overlapping with the ZNHIT3 locus. Sanger sequencing
was performed from genomic DNA of the patient and the parents to validate the variants identified by whole genome sequencing and to test segregation of the variants in the family. Primer sequences are available upon request.

Sequencing of patient cDNA

Patient fibroblasts were harvested, total RNA extracted (RNeasy plus mini kit, QIAGEN) and complementary DNA (cDNA) prepared (iScript cDNA synthesis kit, BioRad). Polymerase chain reaction was performed using primers (sequences available upon request) binding to exons 8 and 14 of RARS2 and the resulting 600-bp product covering the positions of the mutations in exons 10 and 11 was sequenced using standard protocols.

Western blot analysis

Protein extracts for the detection of mtArgRS, COXII or GAPDH were prepared by lysing fibroblasts in RIPA buffer (Cell Signaling Technology) containing protease inhibitors (Halt, Thermo Fisher Scientific). After 10 min incubation on ice the samples were centrifuged at 14 000 g for 10 min (+4 °C). Proteins were separated by SDS-PAGE and transferred onto membranes. After blocking with 5% milk in 0.1% TBS–Tween 20, the membranes were incubated with the corresponding primary antibodies: rabbit anti-human mtArgRS (1:1000, Biorbyt, orb374171), rabbit anti-human COXII (1:500, GeneTex, GTX62145) or rabbit anti-human GAPDH (Cell Signaling Technology, 14C10). Reactive bands were detected using horseradish peroxidase-conjugated secondary antibodies (goat anti-rabbit or goat anti-mouse, 1:10 000, Life Technologies). Blots were imaged using the ECL western blotting substrate (Thermo Fisher Scientific) and Chemidoc XRS+ Molecular Imager (Bio-Rad). Quantification of the band intensities was performed with the Image Lab Software (Bio-Rad).
Northern blot and aminoacylation assay

Total RNA was extracted from cultured fibroblasts using Trizol reagent (Thermo Fisher scientific) according to the manufacturer’s instructions. To preserve the aminoacylation state the final RNA pellet was re-suspended in 10mM NaOAc at pH 5.0. To investigate the aminoacylation status of mt-tRNAs, 4μg of RNA was separated on long (16cm length) 6.5% polyacrylamide gel (19:1 acrylamide:bis-acrylamide) containing 8M urea in 0.1 NaOAc, pH 5.0. The fully deacylated tRNA (dAc) was obtained by incubation of the control RNA at 75°C (pH 9.0) for 15 min. To determine mt-tRNA^{Arg} steady-state levels the samples were run on 10cm gel. Northern hybridization was performed with Y-32P labeled oligonucleotide probes: 5’-GAGTCGAAATCATTCGTTTTG-3’ for the mt-tRNA^{Arg} and 5’- GTGGCTGATTTCGTTCCAGT-3’ for the mt-tRNA^{Ala}. Radioactive signal was detected by PhosphorImager plate using Typhoon scanner and quantified with the ImageQuant v5.0 software (GE Healthcare).
Results

Clinical description

The essential clinical features in our patient are summarized in Supplementary Table. The patient was the first child of non-consanguineous Belgian parents. Family history was unremarkable. He was born at term after an uneventful pregnancy. Birth weight was 3.150 kg (-1 SD), length 50 cm (-1 SD) and head circumference 35 cm (-0.5 SD). After birth slight hypothermia occurred, leading to one day neonatal care, but otherwise physical examination was normal. Very early psychomotor milestones were reported normal, but at the age of 2 to 3 months lack of social interaction, late visual contact and mild hypotonia were noted. No further developmental milestones were reached, he had no speech and showed no real social contact. The patient had no dysmorphic signs at birth, but later presented with bitemporal narrowing, high palate, open mouth, full cheeks, a tented upper lip (Fig. 1A) as well as mild edema of hands (Fig. 1B) and feet. Eye examination showed no visual contact and a pale papilla on both eyes later progressing to optic atrophy. Due to feeding difficulties the child was tube fed. An acquired microcephaly was noted with occipitofrontal circumference (OFC) of 43 cm (-3.3 SD) at the age of 1 year and 46 cm (-3.7 SD) at the age of 3 years. At the last clinical follow-up with 9 years of age, he presented as a bedridden child with profound intellectual disability, axial hypotonia, spastic quadriplegia and significant seizure burden.

First convulsions were witnessed at the age of 6 weeks with lateralized clonic movements of the face, followed by diminished consciousness and eye deviation to one side as well as bilateral clonic movements of the body. It is unclear from the history whether these seizures were already present from birth. Convulsions evolved into therapy-resistant epilepsy with varying seizure types: complex focal seizures (with and without diminished consciousness) with myoclonic jerks and laughing, rhythmic clonic movements of one or both limbs and long-lasting eye deviations with
nystagmus. The patient suffered from daily seizures several times a day with isolated myoclonic spasms and clusters in between.

EEG studies at the age of one to 3 months showed normal background activity without any epileptic activity. Multifocal epileptic activity was seen from the age of 4 months and high voltage slow background activity from the age of 5 months. The EEG did show some signs of hypsarrhythmia and could, because lack of total desynchronization, be described as a modified hypsarrhythmia. The last EEG recording, taken one day before the patient died, demonstrated a picture of status epilepticus with continuous multifocal epileptic activity.

Magnetic resonance imaging (MRI) was performed at the ages of 4.5 months and 7 years. At 4.5 months (Fig. 1C,D), it showed severe cerebral atrophy, destruction of the thalami, and delayed myelination, whereas the cerebellum appeared normal in size. At 7 years (Fig. 1E-G), the cerebellar atrophy was prominent, and microcephaly masked some of the cerebral atrophy. The pons was normal, and the myelination had reached almost a normal appearance.

Thorough metabolic investigations were unremarkable, with the exception of an intermittently raised serum lactate up to 5.3 mmol/l (0.5-2 mmol/l) and an elevated lactate level in the CSF, up to 2.8 mmol/l (<2.5 mmol/l). No abnormalities were seen in the muscle biopsy.

Prior genetic investigations including karyotype and microarray came out normal and mitochondrial DNA mutations were excluded.

The patient died at the age of nearly 12 years due to a respiratory infection.

Molecular findings: RARS2 mutations and their consequence

Given that the patient presented with symptoms overlapping with those reported in PEHO syndrome, his DNA was first Sanger sequenced to identify variants in the coding regions and splice
sites of ZNHIT3. A rare heterozygous c.8C>T, p.Ser3Leu (NM_004773.3) missense variant was identified, but the patient did not have other ZNHIT3 coding sequence variants. To identify any non-coding variants in ZNHIT3 locus, the patient was whole genome sequenced. Analysis for rare sequence variants in intronic or UTR regions of ZNHIT3, or up- or downstream to ZNHIT3 did not identify a second variant. No copy number changes overlapping with the ZNHIT3 locus was identified.

Analysis of the whole genome data was then expanded to all protein coding regions of the genome and splice sites. Whole genome sequence data was produced with mean sequencing coverage of 24.48x, and 98.2%, 95.7% and 74.2% of the genome was covered at least 5x, 10x and 20x, respectively. Analysis of the coding regions from the genome sequence data focused on rare heterozygous and potentially biallelic variants in established disease genes. Analysis of rare heterozygous variants did not yield any likely candidates explaining the patient’s disease. Analysis of rare biallelic variants revealed two heterozygous variants in RARS2 (NM_020320.3; Fig. 2A and B; https://databases.lovd.nl/shared/individuals/00234052), a one-bp deletion in exon 10 causing a frameshift and premature termination of translation 16 codons downstream (c.795delA, p.Glu265Aspfs*16) and a missense variant, c.961C>T, p.Leu321Phe, in exon 11. There is one heterozygous carrier for the c.961C>T, p.Leu321Phe variant in the gnomAD (Lek et al., 2016) database (v. 2.0; allele frequency 0.000004), whereas the frameshift variant is absent from the database. The leucine at position 321, located in the catalytic domain of RARS2, is highly conserved (Fig. 2B). In silico tools SIFT, PolyPhen-2 and MutationTaster predict the c.961C>T, p.Leu321Phe substitution as deleterious. Sanger sequencing confirmed compound heterozygosity of the two mutations in the patient: the c.795delA frameshift mutation was inherited from the mother and the c.961C>T missense mutation from the father (Fig. 2A).

The consequence of the RARS2 variants was studied on mRNA level in skin fibroblasts of the
patient. The frameshift variant in exon 10 resulting in a premature termination codon is predicted to be subjected to nonsense-mediated mRNA decay (NMD) and degradation of the transcript derived from the maternal allele. Indeed, sequencing of RARS2 cDNA revealed that at position c.961 only the paternal C>T variant was present (Fig. 2C). Western blot analysis of patient fibroblasts revealed that the mtArgRS protein level was reduced to about 50 % of control level (Fig. 2A). Northern blot analysis of total RNA from fibroblasts suggested that the steady-state level of mitochondrial tRNAArg when compared to mitochondrial tRNAAla may be decreased in patient fibroblasts (Fig. 3B). In patient and control fibroblasts, aminoacylation analysis showed the presence of only aminoacylated mt-tRNAArg, whereas deacylated mt-tRNAArg was not detected (Fig. 3C). This finding is in agreement with the previous observation (Edvardson et al., 2007), suggesting that in cultured human fibroblasts uncharged mt-tRNAArg is not stable.
Discussion

We describe a patient compound heterozygous for two novel pathogenic variants in \(RARS2 \), the gene associated with PCH6. The high conservation of the affected Leu321, the predicted deleteriousness of the Leu321Phe substitution combined with degradation of the transcript derived from the allele with the frameshift variant strongly suggest that these variants are the underlying cause for PCH6 in the patient.

The role of \(RARS2 \) in pontocerebellar hypoplasia is not fully understood with no clear genotype-phenotype correlations. It is though likely that the severity of the disease is dependent of the amount of remaining aminoacylation activity (Konovalova and Tyynismaa, 2013). mtArgRS has a fundamental function in mitochondrial protein synthesis, so total loss-of-function mutations are likely to be lethal. Compatible with this notion, mice homozygous for a knock-out allele of \(Rars2 \) are embryonic lethal (International Mouse Phenotyping Consortium; http://www.mousephenotype.org/data/genes/MGI:1923596#section-associations). Considering the markedly reduced expression from the frameshift allele, the missense mutant allele is likely to retain some mtArgRS activity in our patient. It has been suggested that due to the leaky nature of the mutations, small amounts of protein synthesis is possible in most tissues, but in high energy demanding cells, such as neurons, the reduced aminoacylation is not sufficient thus causing the symptoms of the disease (Edvardson et al., 2007). Low enzyme activity affects the development of the central nervous system already in utero as demonstrated by abnormal brain MRI findings in the neonatal period (e.g. Edvardson et al., 2007; Joseph et al., 2014; Lax et al., 2015). It is also possible that the reduced aminoacylation of tRNA-Arg has bigger effect on specific neuronal types that causes the alterations in brain typical for PCH6. There is also evidence of particular uncharged tRNAs and amino acids working as potential signaling molecules (Dong et al., 2000; Wolfson et al., 2016). Mitochondrial tRNA synthetases may also have non-canonical functions, similarly to their
cytosolic counterparts, in addition to their housekeeping function in protein synthesis, and these may contribute to the pathomechanisms. For example, mtArgRS was recently found to have a specific sub-mitochondrial localization in the membrane, which suggests that it also could have alternative functions (González-Serrano et al., 2018). Regardless of the reason, this high tissue specificity makes functional studies of the disease mechanism challenging.

Including the present patient, 33 patients with PCH6 in 19 families have been described (Supplementary Table). An overview of the key clinical features in the patients is presented in Table 1. Most patients were normal at birth but presented with variable symptoms at early age (hours to 9 months). First presenting features included hypotonia in 15/33 patients and seizures in 16/33 patients. Other early symptoms were poor feeding, lethargy and apneic episodes. All patients were reported to have global developmental delay and the majority presented seizures, the onset varying from 9 hours to several months. Most seizures were intractable myoclonic or tonic-clonic seizures, either focal, or multifocal or generalized. Other common features in the patients include progressive microcephaly, atrophy of cerebellum and cerebrum, as well as elevated lactate levels in blood or CSF. Notably, atrophy of pons was reported to be present in only 12 out of the 25 patients with reported MRI findings, indicating that pons can be normal in PCH6 (Nishri et al., 2016). The phenotype in our patient is similar to that of previously published patients, and presents with all features listed in Table 1, except atrophy of the pons. Of note, as in at least three published patients (Ngoh et al., 2016; Zhang et al., 2018; Luhl et al., 2016), the serum lactate levels in our patient were intermittently raised.

Compatible with a previous report (Rankin et al., 2010), the initial clinical features in our patient including severe intellectual disability, epilepsy, optic atrophy, hypotonia, acquired microcephaly, mild edema of hands and feet, and dysmorphic features pointed to PEHO syndrome. Although the dysmorphic features raised the suspicion of the PEHO syndrome, they may, however, be non-
specific, as many of the dysmorphic facial features are associated with developing microcephaly, extreme floppiness, and edema (Somer, 1993). Contrary to findings in our patient, patients with PEHO syndrome do not show elevated lactate levels in blood or CSF and usually present with neonatal hypotonia (Anttonen et al., 2017). Importantly, the MRI findings in our patient (Fig. 1C-G) were not typical for PEHO syndrome. The supratentorial atrophy was more severe than in a typical PEHO patient. Moreover, the myelination was not delayed to the degree seen in PEHO patients. Characteristic MRI findings including progressive cerebellar atrophy and dysmyelination are essential diagnostic criteria for PEHO syndrome (Anttonen et al., 2017). These typical findings are often disregarded when suggesting a clinical PEHO diagnosis.

Acknowledgements

We thank the family for their contribution to this study. We thank the Genome Aggregation Database (gnomAD) and the groups that provided exome and genome variant data to this resource. A full list of contributing groups can be found at http://gnomad.broadinstitute.org/about. This study was funded by the Folkhälsan Research Foundation.

Accession numbers

https://databases.lovd.nl/shared/individuals/00234052
Figure 1. Phenotypic features in the patient.

A) Facial features of the patient at 7 years of age. Note the open mouth, full cheeks, a tented upper lip and bitemporal narrowing. **B)** The hand shows edema. **C)** In a sagittal T1-weighted cranial magnetic resonance image at the age of 4.5 months cerebellum (arrowhead) and pons (arrow) appear normal in size. **D)** T2-weighted axial image at 4.5 months shows cerebral atrophy. **E & F)** T2-weighted images of the patient at 7 years of age show microcephaly and widespread cerebral atrophy as well as severe cerebellar atrophy (arrowhead in **E**) with widened cerebellar sulci (**F**). The pons (arrow in **E**) as well as the myelination appear normal. **G)** T2-axial slices at 7 years also show atrophy and signal increase of the thalami (open arrowheads).

Figure 2. Two novel PCH6-associated mutations in the RARS2 gene.

A) Sanger sequencing chromatograms of the proband’s (P) and the parents’ genomic DNA showing the c.795delA variant inherited from the mother (M) and the c.961C>T variant inherited from the father (F). Positions of variants are indicated with arrowheads. **B)** A schematic picture of the exon-intron structure of RARS2 and the domain structure of the encoded protein (modified from Gonzáles-Serrano et al., 2018) showing the locations of the identified mutations and high conservation of the leucine at position 321 affected by the missense substitution. **C)** Sanger sequencing chromatograms of the proband’s cDNA showing only the paternal c.961C>T variant (arrowhead) in exon 11 suggesting that the transcript derived from the maternal allele is degraded. 11F denotes forward orientation sequence and 11R reverse orientation.

Figure 3. Western blot, northern blot and aminoacylation analysis of the patient fibroblasts.
A) Steady-state level of mtArgRS protein in patient (P) and control fibroblasts (C1, C2) detected by Western blot. Quantification of the Western blot analysis is shown in the right panel. GAPDH was detected as protein loading control. Data are presented as mean ± SD. B) Northern blot analysis of mt-tRNA^Arg^ levels in patient (P) and control (C1, C2) fibroblasts. Quantification of the northern blot analysis is shown in the lower panel. Mitochondrial tRNA^Ala^ was detected as a loading control. C) Aminoacylation assay of mt-tRNA^Arg^ in control (C1, C2) and patient (P) fibroblasts. Mitochondrial tRNA^Ala^ was detected as a loading control. dAC denotes the fully deacylated control tRNA. Experiments in B and C were carried out only once.
Table 1. Overview of clinical features in published PCH6 patients

<table>
<thead>
<tr>
<th>Feature</th>
<th>n/n<sup>a</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>Global developmental delay</td>
<td>33/33</td>
</tr>
<tr>
<td>Epileptic seizures</td>
<td>24/24</td>
</tr>
<tr>
<td>Microcephaly</td>
<td>20/27</td>
</tr>
<tr>
<td>MRI findings</td>
<td></td>
</tr>
<tr>
<td>Atrophy of cerebellum</td>
<td>22/25</td>
</tr>
<tr>
<td>Atrophy of pons</td>
<td>12/25</td>
</tr>
<tr>
<td>Atrophy of cerebrum</td>
<td>18/25</td>
</tr>
<tr>
<td>Elevated lactate level in blood or CSF</td>
<td>19/23</td>
</tr>
<tr>
<td>Reduced respiratory chain enzyme activity</td>
<td>10/19</td>
</tr>
<tr>
<td>Feeding difficulties</td>
<td>17/18</td>
</tr>
<tr>
<td>Dysmorphic features</td>
<td>6/8</td>
</tr>
</tbody>
</table>

^a The features are variably reported in the patients.
References

Supplemental Data

Supplementary Table: Phenotypic features in published PCH6 patients
A

<table>
<thead>
<tr>
<th>Variant</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>c.795delA</td>
<td>p.Glu265Aspfs*16</td>
</tr>
<tr>
<td>c.961C>T</td>
<td>p.Leu321Phe</td>
</tr>
</tbody>
</table>

B

- **RARS2**
- **75.63 kb**

- p.Glu265Aspfs*16
- p.Leu321Phe

C

<table>
<thead>
<tr>
<th>Sample</th>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>H. sapiens</td>
<td>VMROGTSFLYATRDLaAIDR</td>
</tr>
<tr>
<td>Patient</td>
<td>VMROGTSFLYATRDLaAIDR</td>
</tr>
<tr>
<td>M. mulatta</td>
<td>VMROGTSFLYATRDLaAIDR</td>
</tr>
<tr>
<td>M. musculus</td>
<td>VMROGTSFLYATRDLaAIDR</td>
</tr>
<tr>
<td>G. gallus</td>
<td>VMROGTSFLYATRDLaAIDR</td>
</tr>
<tr>
<td>T. rubripes</td>
<td>VMROGTSFLYATRDLaAIDR</td>
</tr>
<tr>
<td>D. rerio</td>
<td>VMROGTSFLYATRDLaAIDR</td>
</tr>
<tr>
<td>D. melanogaster</td>
<td>VMROGTSFLYATRDLaAIDR</td>
</tr>
<tr>
<td>C. elegans</td>
<td>VMROGTSFLYATRDLaAIDR</td>
</tr>
<tr>
<td>P. troglodytes</td>
<td>VMROGTSFLYATRDLaAIDR</td>
</tr>
</tbody>
</table>