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Abstract

In this paper, we investigate how precise atoms of a small nanocluster can ultimately be located in three dimensions (3D) from a tilt
series of images acquired using annular dark field (ADF) scanning transmission electron microscopy (STEM). Therefore, we derive
an expression for the statistical precision with which the 3D atomic position coordinates can be estimated in a quantitative analysis.
Evaluating this statistical precision as a function of the microscope settings also allows us to derive the optimal experimental design.
In this manner, the optimal angular tilt range, required electron dose, optimal detector angles, and number of projection images can
be determined.
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1. Introduction1

Nanoclusters play key roles in a wide range of materials and2

devices because of their unique physical and chemical proper-3

ties [1]. These properties are determined by the specific three-4

dimensional (3D) morphology, structure and composition [2].5

It is well known that extremely small changes in their local6

structure may result into significant changes of their proper-7

ties [3–5]. Therefore, development of techniques to measure8

the atomic arrangement of individual atoms down to (sub)-9

picometre precision is important. This allows one to fully un-10

derstand and greatly enhance the properties of the resulting ma-11

terials, increasing the number of applications.12

Electron tomography using aberration-corrected scanning13

transmission electron microscopy (STEM) is considered as one14

of the most promising techniques to achieve atomic resolu-15

tion in three dimensions. In conventional electron tomogra-16

phy, a series of images is acquired by tilting the sample over17

a large angular range, with an increment of typically 1 or 218

degrees. After alignment of the projection images, the tilt se-19

ries is combined into a 3D reconstruction of the original ob-20

ject through a mathematical algorithm [6–8]. High-angle annu-21

lar dark field (HAADF) STEM [9, 10] has become a popular22

technique for materials characterisation in 3D because of its so-23

called Z-contrast. In this imaging mode, the images scale with24

the atomic number Z and the specimen thickness. For many25

years, the ultimate goal has been to achieve electron tomogra-26

phy with atomic resolution. Although this is not yet a standard27

possibility for all structures, significant progress has recently28

been achieved using different approaches [11–13]. Once the29

atoms can be resolved in 3D, the next challenge is to refine the30
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atom positions in a quantitative manner [14, 15]. However, the31

answer to the question how precise these measurements are, is32

still open. Ultimately, a precision in the (sub)-picometre range33

is desired. The subject of this paper is to investigate if this goal34

is within reach.35

In this paper, we investigate the theoretical limits with which36

atoms of a nanocluster can be located in 3D based on the ac-37

quisition of a tilt series of ADF STEM images. Ultimately, the38

reliability with which one can measure the atom positions is39

limited by the unavoidable presence of electron counting noise40

in the acquired projection images, which is the so-called Pois-41

son noise or shot noise. This sets fundamental limits to the42

precision that can be obtained. Use of the concept of Fisher in-43

formation allows us to determine an expression for the highest44

attainable precision with which positions of atoms can be lo-45

cated in 3D, or equivalently, an expression for the lower bound46

on the attainable variance. It is essential to remark that this47

lower bound is independent of the estimation method used. In48

this context this means that the CRLB is independent of the49

tomographic reconstruction algorithm. The expression for the50

lower bound on the variance not only helps to compute the pre-51

cision that can ultimately be achieved but also to determine the52

optimal angular tilt range, required electron dose, optimal de-53

tector angles, and number of projection images. Since we are54

interested in the theoretical limits, we assume an ideal experi-55

mental setup for the computation of the ultimate precision. This56

means that we assume that scan noise and alignment errors can57

be avoided or can be corrected for [16–18] and that the sample58

is a perfect free-standing nanocluster. Therefore, beam dam-59

age, the re-arrangement of the nanocluster, and the effect of a60

sample support for the nanocluster are not considered in this61

theoretical study.62

Furthermore, it is important to note that this concept of pre-63

cision is different from the well-known concept of resolution,64
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expressing the possibility of perceiving separately two point65

sources. Resolution is interpreted in many ways since it is not66

unambiguously defined. Therefore, several resolution criteria,67

including Rayleigh’s [19] have been proposed in the past. Such68

classical resolution criteria are concerned with calculated im-69

ages, that is, noise-free images exactly described by a known70

parametrised model. However, these criteria do not take the71

signal-to-noise ratio into account and disregard the possibility72

of using this prior knowledge about the image intensity dis-73

tribution to extract numerical results from the observations by74

model fitting using parameter estimation methods. For experi-75

mentally acquired images, model fitting never results in a per-76

fect match in the presence of noise such that the component77

locations can only be estimated with limited statistical preci-78

sion [20, 21]. This statistical precision will be quantified in this79

paper for the coordinates of the central atom of a nanocluster.80

This paper is organised as follows. In section 2, the para-81

metric models for the intensity observations are described. In82

section 3, an expression is derived for the attainable precision83

with which atoms can be located in 3D. Section 4 describes84

how images of gold nanoclusters have been simulated and the85

approximations that have been made. In section 5, the depen-86

dence of the attainable precision on the choice of experimental87

settings is studied. In section 6, conclusions are drawn.88

2. Parametric model for the intensity observations89

A parametric model, describing the expectations of the in-90

tensities observed when recording a tilt series of ADF STEM91

images, is needed in order to derive an expression for the attain-92

able precision. In this section, such a model will be derived us-93

ing both the multislice method and the Gaussian approximation94

model proposed by Curley et al. [22]. Although the multislice95

method is more accurate to describe the electron-object inter-96

action, it is very time-consuming, especially when simulating97

a tilt series of images. Therefore, the Gaussian approximation98

model will be used as well in order to perform fast, albeit ap-99

proximate, simulations that will allow us to get insight into the100

precision that can be attained to locate atoms in three dimen-101

sions.102

2.1. Rotation of a nanocluster103

A tilt series of ADF STEM images of a nanocluster104

needs to be modelled, where the positions of the N atoms105

correspond to the elements of the parameter vector β =106

(βx1, βy1, βz1, . . . , βxN , βyN , βzN). In the reference coordinate sys-107

tem, we assume that the origin is located at the position of the108

central atom of the nanocluster. In this paper, single-axis to-109

mography is assumed in which two-dimensional images are ob-110

tained when tilting a nanocluster around a fixed tilt axis. The tilt111

axis corresponds to the y-axis and the electron beam is assumed112

to be parallel to the z-axis as indicated in Fig. 1. For a rotation113

over [−90, 90] degrees, the x- and z-axis become equivalent for114

a symmetric structure around the rotation axis y. Furthermore,115

the tilt angles θ j, j = 1, . . . , J are equidistantly sampled in the116

interval [−α,+α] corresponding to a full angular tilt range if117

α = π/2. At each tilt angle θ j, the locations of the N atoms118

β j = (β j
x1, β

j
y1, β

j
z1, . . . , β

j
xN , β

j
yN , β

j
zN) with respect to the refer-119

ence coordinates system are then given by:120 
β

j
xi
β

j
yi

β
j
zi

 =

cosθ j 0 sinθ j

0 1 0
cosθ j 0 −sinθ j


βxi

βyi

βzi

 (1)

In the following subsections, the Gaussian approximation121

model and the multislice method will be used in order to simu-122

late images for each tilt angle θ j.123

Figure 1: Cross-section of a nanocluster indicating the x-, y- and z-axis, the
central atom (red atom), and the atoms of the central plane (orange atoms).

2.2. The multislice method124

The multislice method is known as an accurate manner to125

model the quantum mechanical electron-object interaction [23–126

26]. Its aim is to describe the electron wave function by solving127

the high energy Schrödinger equation. Therefore, the sample128

potential is divided into many slices perpendicular to the elec-129

tron beam. Each slice is chosen thin enough such that it can130

be considered as a phase object, which only modifies the phase131

of the incident wave. The potential between consecutive slices132

is considered to be zero and the propagation of the electron133

wave within the slice is approximated by the Fresnel propa-134

gator. By repeated application of the phase object transmission135

and vacuum propagation, the electron wave can be calculated136

at any depth. Especially when simulating ADF STEM images,137

not only dynamical scattering but also thermal diffuse scatter-138

ing needs to be taken into account. Indeed, electrons scattered139

toward the ADF detector, may also have undergone a phonon140

scattering event. An efficient multislice formulation that does141

include phonon scattering is the frozen phonon method [27], in142

which multiple multislice calculations are performed for differ-143

ent thermal displacements of the atoms. The resultant intensity144

in the detector plane is then averaged over the different con-145

figurations. The frozen phonon method is known as the most146

complete method for the computation of ADF STEM images.147

However, modelling an ADF STEM image is computationally148

very expensive. Indeed, the intensity in the detector plane must149
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be summed over the detector geometry, and this calculation re-150

peated for all probe positions r0 = (xk, yl) in the image. To151

simplify these calculations to some extent, the absorptive po-152

tential multislice method has been suggested by Allen et al.153

[28] and Ishizuka [24]. In this method, an imaginary term in154

the atomic potential is included to account for absorption. It155

has been shown that for nanoparticle systems and thin layered156

specimens, the absorptive potential multislice method agrees157

with full frozen phonon calculations [29, 30].158

In this paper, absorptive potential multislice calculations159

have been carried out with the STEMsim program [31] express-160

ing simulated images as a fraction f j
kl of electrons recorded by161

the detector ( f j
kl < 1). The indices (k, l) and j correspond to the162

probe located at the position (xk, yl) and tilt angle θ j, respec-163

tively. In these simulations, the finite size of the source is taken164

into account by a two-dimensional convolution with the inten-165

sity distribution of the source image, which can be modelled as166

a Gaussian distribution [32].167

2.3. The Gaussian approximation model168

The Gaussian approximation model is based on the assump-
tion of kinematic scattering of electrons and has been proposed
by Curley et al. for monometallic systems [22]. In this model,
the ADF STEM image intensity of a nanocluster is described
as a linear combination of image contributions of all atoms
constituting the object under study. When assuming a three-
dimensional Gaussian function for each atom, the contribution
of atom i to a projection image is given by [33]:

(
f j
kl

)i
= Zζ

i exp

−γ (xk − β
j
xi)

2 + (yl − β
j
yi)

2

r2
i

 (2)

where (xk, yl) is the position of the probe and (β j
xi, β

j
yi) is the po-

sition of the ith atom in projection at tilt angle θ j. Furthermore,
γ is an atom type dependent constant, determining the decay of
the electron scattering as a function of the distance to the cen-
tre of the projected atom, Zi and ri are the atomic number and
atomic radius of the ith atom, respectively, and ζ is a scatter-
ing constant depending on the collection angle of the detector.
Realistic values for the parameters ζ and γ can be obtained by
fitting the model given by Eq. (2) to an image of a single atom
obtained by averaging and rescaling multislice simulations for
an appropriate range of thicknesses. For all atoms N of the
nanocluster contributing to the image, the intensity at the pixel
(xk, yl) at tilt angle θ j is then given by:

f j
kl =

N∑
i=1

(
f j
kl

)i
(3)

2.4. The image recording169

In ADF STEM imaging, a focused electron probe is scanned170

across the sample in a raster fashion and the transmitted elec-171

trons are collected by an annular detector placed in the back172

focal plane. The image is thus recorded as a function of the173

probe position (xk, yl). Therefore, the position of the probe di-174

rectly corresponds to an image pixel at the same position. The175

recording device consists of K × L equidistant pixels of area176

∆x × ∆y, where ∆x and ∆y are the probe sampling distances in177

the x- and y-direction, respectively. Pixel (k, l) corresponds to178

position (xk, yl) ≡ (x1+(k−1)∆x, y1+(l−1)∆y) with k = 1, . . . ,K179

and l = 1, . . . , L and (x1, y1) represent the position of the pixel180

in the bottom left corner of the field of view.181

The number of incident electrons per probe position Ne is
given by the following expression:

Ne =
Iτ
e

(4)

with I the probe current in ampere, τ the recording dwell time
for one pixel, and e = 1.6 × 10−19 C the electron charge. The
expected number of detected electrons per pixel position (k, l)
at tilt angle θ j equals

λ
j
kl = f j

kl
Iτ
e

(5)

with f j
kl the fraction of electrons expected to be recorded by the182

detector [34].183

3. Statistical measurement precision184

In the preceding section, parametric models for the inten-185

sity observations made at three-dimensional nanoclusters were186

derived. These models describe the expected number of elec-187

trons arriving at the STEM detector and are parametric in the188

locations β of all atoms constituting a nanocluster. In what189

follows, it will be shown how these location parameters en-190

ter the probability density function of the statistical observa-191

tions. From this parametrised probability density function, the192

so-called Cramér-Rao Lower Bound (CRLB) may be computed193

[35, 36], which is a lower bound on the variance of the param-194

eters. It is important to notice that this lower bound is inde-195

pendent of the estimation method used, i.e. independent of the196

tomographic reconstruction algorithm. For the purpose of this197

paper, the most important parameters are the three-dimensional198

positions of the atoms in a nanocluster. Therefore, an expres-199

sion for the CRLB on the variance of the positions will be de-200

rived in subsection 3.2 based on the joint probability density201

function of the observations, which will be derived in subsec-202

tion 3.1.203

3.1. The joint probability density function of the observations204

In any STEM experiment, sets of observations made un-205

der the same conditions differ from experiment to experiment.206

These fluctuations have to be specified, which is the subject207

of this section. The usual way to describe this behaviour is to208

model the observations as stochastic variables. Stochastic vari-209

ables are defined by probability density functions [36]. In a210

STEM experiment the observations are electron counting re-211

sults. The fluctuations of these observations are denoted as212

electron counting noise, Poisson noise, or shot noise. The cor-213

responding probability density function can be modelled as a214

Poisson distribution.215
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Consider a set of stochastic observations w j
kl, k = 1, . . . ,K,

l = 1, . . . , L, and j = 1, . . . , J. Then the vector w defined as

w = (w1
11, . . . ,w

J
KL)T (6)

represents the column vector of these observations of dimension
K × L × J, where K × L corresponds to the dimension of each
projection image and J corresponds to the number of images
in the tilt series. The observations are assumed to be statisti-
cally independent and have a Poisson distribution. Therefore,
the probability that the observation w j

kl is equal to ω j
kl is given

by [37] (
λ

j
kl

)ω j
kl

ω
j
kl!

exp (−λ j
kl) (7)

with λ j
kl the expected number of detected electrons at pixel (k, l)

at tilt angle θ j for which an expression is given by Eq. (5). Since
the observations are assumed to be statistically independent, the
probability P(ω, β) that a set of observations is equal to ω =

(ω1
11, . . . , ω

J
KL)T is the product of all the probabilities described

by Eq. 7:

P(ω, β) =

J∏
j=1

K∏
k=1

L∏
l=1

(
λ

j
kl

)ω j
kl

ω
j
kl!

exp (−λ j
kl) (8)

This function is called the joint probability density function216

of the observations. Note that the location parameters β enter217

P(ω; β) via the expression λ j
kl, given by Eq. (5). Indeed, from218

section 2, it follows that in order to compute the expected num-219

ber of detected electrons, use is made of absorptive potential220

multislice calculations or the Gaussian approximation model,221

which both require the positions of all atoms present in the222

nanocluster as an input. In the following subsection, it will223

be shown how this expression for the joint probability density224

function can be used in order to compute the CRLB.225

3.2. The Cramér-Rao Lower Bound CRLB226

In this subsection, the CRLB is discussed, which is a theo-227

retical lower bound on the variance of any unbiased estimator.228

Therefore, this expression can be used in order to determine229

the attainable precision with which the location parameters of230

all atoms present in a nanocluster can be estimated. Suppose231

that an experimenter wants to measure the position parameters232

β = (βx1, βy1, βz1, . . . , βxN , βyN , βzN) of a set of N atoms of a233

nanocluster in a quantitative manner from a set of projection234

images acquired using a tomography experiment. For this pur-235

pose, one can use many estimators. An estimator is a function236

of the observations that is used to compute the parameters. In237

this context, an estimator can be a tomographic reconstruction238

algorithm. The precision of an estimator is represented by the239

variance or by its square root, the standard deviation. Gener-240

ally, different estimators will have different precisions. It can241

be shown, however, that the variance of unbiased estimators242

will never be lower than the CRLB, which is independent of243

the used estimation method. Fortunately, there exists a class of244

estimators (including the maximum likelihood estimator) that245

achieves this bound at least asymptomatically, that is, for the246

number of observations going to infinity. For details of this247

lower bound we refer to [35, 36].248

The CRLB follows from the concept of the Fisher in-
formation. The Fisher information matrix F for estima-
tion of the position parameters of a set of N atoms β =

(βx1, βy1, βz1, . . . , βxN , βyN , βzN) is defined as

F = −E
[
∂2 ln P(ω; β)
∂β∂βT

]
(9)

where P(ω; β) is the joint probability density function of the
observations given by Eq. (8) and

∂2 ln P(ω; β)
∂β∂βT (10)

is the 3N×3N Hessian matrix of ln P(ω; β) of which the (p, q)th
element is defined as:

∂2lnP(ω; β)
∂βp∂βq

(11)

where βp and βq correspond to the p and qth element of the249

vector β, respectively.250

Suppose that β̂ = (β̂x1, β̂y1, β̂z1, . . . , β̂xN , β̂yN , β̂zN)T is an unbi-
ased estimator of β. The Cramér-Rao inequality then states that
[38]

cov(β̂, β̂) ≥ F−1 (12)

where cov(β̂, β̂) is the 3N × 3N variance-covariance matrix of
the estimator β̂, defined by its (p, q)th element cov(β̂p, β̂q). Its
diagonal elements are thus the variances of the elements of β̂.
The matrix F−1 is called the Cramér-Rao lower bound on the
variance of β̂. The Cramér-Rao inequality (12) expresses that
the difference between the left-hand and right-hand member is
positive semi-definite. A property of a positive semi-definite
matrix is that its diagonal elements cannot be negative. This
means that the diagonal elements of cov(β̂, β̂) will always be
larger than or equal to the corresponding diagonal elements of
the inverse of the Fisher information matrix. Therefore, the
diagonal elements of F−1 define lower bounds on the variances
of the elements of β̂

var(β̂p) ≥ F−1(p, p) (13)

where p = 1, . . . , 3N and F−1(p, p) is the (p, p)th element of the
inverse of the Fisher information matrix. The elements F(p, q)
may be calculated explicitly using Eqs. (5)-(11) [34]:

F(p, q) =

J∑
j=1

K∑
k=1

L∑
l=1

1

λ
j
kl

∂λ
j
kl

∂βp

∂λ
j
kl

∂βq
. (14)

Eq. (14) is derived from the definition of the Fisher information
given by Eq. (9) using the knowledge of the joint probability
density function of the observations. This joint probability den-
sity function and the expectation values of the observations are
the only requirements to be able to compute the ultimate pre-
cision for locating the atoms in 3D. The derivative of λ j

kl with
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respect to β̂ in Eq. (14) may be calculated from the parametric
model of the intensity observations described in section 2. For
the multislice method, this derivative needs to be computed nu-
merically, as will be discussed in more detail in subsection 5.1.
Unlike the multislice method, the derivatives can be calculated
analytically for the Gaussian approximation model leading to a
rule of thumb. Following the approach of [34], it can be demon-
strated using Eqs. (1), (2), and (14) that the attainable precision
of the x-, y-, and z-coordinate of a single atom modelled as a
Gaussian function equals:

σ2
x = σ2

z ≈
r2

γNp

σ2
y ≈

r2

2γNp
(15)

where
(

r2

2γ

)1/2
corresponds to the Gaussian width, r equals the

atomic radius, γ is a constant dependent on the atom type, and
Np is the total electron dose. This total electron dose equals:

Np = πJ
Zζr2

γ∆x∆y

where J denotes the number of projections, Z the atomic num-251

ber, ζ a scattering constant depending on the collection an-252

gle of the detector, and ∆x and ∆y the pixel size in x- and y-253

direction. For larger clusters, the precision σ of the x-, y-, and254

z-coordinate can be described by the sum of the precision for255

one atom given by Eq. (15) and a power law describing the de-256

pendence on the cluster diameter.257

4. Simulation settings258

Simulations for four gold nanoclusters of different sizes have259

been performed as illustrated in Fig. 2. The bulk structure of260

gold is an FCC structure. However, for small nanoclusters, the261

atomic structure deviates from this ideal FCC lattice. In this pa-262

per, nanoclusters with a Mackay icosahedral morphology have263

been considered [39]. The interatomic distance in these nan-264

oclusters equals 3.0 Å. As discussed in section 2, both the mul-265

tislice method and a Gaussian approximation model have been266

used to simulate tilt series of images. The expression of the267

Gaussian approximation model is given by Eq. (3), where an268

expression for the fractional intensities f j
kl of single atoms is269

given by Eq. (2). Numbers for the parameters ζ and γ are ob-270

tained by fitting this expression to an image of a single atom271

inferred from averaging and rescaling the multislice simulated272

images of the central column of the four clusters along the [001]273

zone axis. Use has been made of the STEMsim program [31] to274

perform multislice calculations under the absorptive potential275

approximation. Furthermore, the finite source size is modelled276

by convolving the resulting image with a Gaussian distribution.277

In Appendix A, it is demonstrated that this is a good approxima-278

tion for the computation of the precision of the central atom of a279

nanocluster. The settings used for the multislice simulations are280

summarised in Table 1; for the spherical aberration and defocus281

the Scherzer settings have been chosen [40, 41]. Furthermore, it282

Table 1: Overview of simulation settings.

Slice thickness 2.0 Å
Debye-Waller factor 0.63 Å

2

Acceleration voltage 300 kV
Defocus -88.74 Å
Spherical aberration 0.04 mm
Convergence angle 21.06 mrad
FWHM of the source image 0.7 Å
Pixel size in the STEM image 0.15 Å
Pixel size of the numerical grid 0.032 Å
Beam current 10 pA
Dwell time 2 µs
Incident electron dose per image 5555 e−/Å2

is shown in Appendix B that it is suitable to use the same value283

for the Debye-Waller factor of all the atoms in the nanocluster284

when computing the precision of the central atom.285

Cluster 1
13 atoms

(diameter = 6 Å)

Cluster 2
55 atoms

(diameter = 12 Å)

Cluster 3
147 atoms

(diameter = 18 Å)

Cluster 4
309 atoms

(diameter = 24 Å)

cluster 4
STEM image
(Multislice )

cluster 4 
STEM image
(Gaussian)

STEM image
with Poisson

noise

STEM image
with Poisson

noise

Figure 2: The four smallest gold nanoclusters with icosahedral structure and a
comparison between the Gaussian model and multislice simulation without and
with Poisson noise.

For each simulated image of the electron tomography tilt se-286

ries, a super cell is created of which the dimension in the x- and287

y-direction equals the diameter of the nanocluster under consid-288

eration plus 10 Å extra to avoid wrapping around effects. The289

dimension in the z-direction equals the diameter of the cluster.290

5. Results and discussion291

5.1. Calculation of the attainable precision292

In this subsection, we will discuss and describe the steps fol-
lowed in order to quantify the attainable precision of the 3D
atomic position coordinates of the central atom inside a gold
nanocluster. The attainable precision, i.e. the lower bound on
the standard deviation σ, is given by the diagonal elements
of the inverse Fisher information matrix F, given by Eq. (14).
From this expression, it is clear that the elements of the Fisher
information matrix have to be calculated by using the deriva-
tives of the parametric model for the intensity observations λ

5



with respect to the 3D atomic coordinates. The parametric mod-
els for the intensity observations λ are given by the simulated
2D projection images using either the Gaussian approximation
model or multislice simulations. For the Gaussian approxi-
mation model, these derivatives can be calculated analytically,
since this model is parametric in the atomic coordinates. How-
ever, for the multislice simulations, the derivatives cannot be
calculated analytically, since the simulation results from a nu-
merical solution of the high energy Schrödinger equation. In or-
der to calculate the partial derivatives for the multislice method,
an additional set of multislice simulations is required in which
a single atom of the nanocluster is shifted along an axis. For ex-
ample, for the derivatives of the central atom with respect to the
x-coordinate, the central atom of the nanocluster is displaced
along the x-axis. The partial derivatives are then approximated
using the finite difference quotient:

λ′(x) ≈
λ(x) − λ(x − h)

h
(16)

where h denotes the shift of the atom. Similarly, the deriva-293

tives with respect to the y- and z-axis, for the other atoms, and294

for the different projected images of the tilt series can be calcu-295

lated. The calculation of all the derivatives for a nanocluster of296

N atoms for J tilt angles thus requires J(3N + 1) simulations.297

In order to test if the number of simulations needed for the cal-298

culation of the Fisher information matrix can be reduced, the299

Gaussian approximation model will be used. This will be dis-300

cussed in subsection 5.2. Furthermore, the optimal tilt range301

and the optimal number of projections will be evaluated for302

the Gaussian approximation model in subsections 5.3 and 5.4.303

Next, in subsections 5.5 and 5.6, multislice simulations will be304

used in order to determine the optimal detector angles of the305

annular STEM detector and the attainable precision for locating306

the central atom of the four nanoclusters. Finally, in subsection307

5.7, the method is applied for the determination of the mini-308

mally required electron dose in order to attain a pre-specified309

precision to locate the atoms in 3D.310

5.2. Determination of the number of simulations for the com-311

putation of the attainable precision312

In this subsection, the attainable precision for locating a nan-313

ocluster in 3D is evaluated as a function of the number of pa-314

rameters that is included in the calculation of the Fisher in-315

formation matrix. From Eq. (14), it can be seen that the cal-316

culation of the Fisher information matrix requires the deriva-317

tives of the expectation model λ j
kl with respect to all the po-318

sition coordinates of the atoms of the nanocluster, i.e. β =319

(βx1, βy1, βz1, . . . , βxN , βyN , βzN), 3N parameters where N de-320

notes the number of atoms in the cluster. Here, we investigate if321

the attainable precision is affected when the number of param-322

eters is reduced. It is important to note that the inverse of the323

Fisher information matrix does not equal the inverse of the el-324

ements of the Fisher information matrix, especially in the pres-325

ence of significant correlations between the parameters. This326

means that the attainable precision of e.g. the central atom is327

influenced by the presence of neighbouring atoms. In practice,328

this means that e.g. the precision of the central atom will be329

lower when the exact location of the other atoms is unknown330

and should be estimated simultaneously. In order to investi-331

gate the importance of the number of parameters for the attain-332

able precision for locating the central atom of a nanocluster,333

the attainable precision will be computed using three different334

approaches:335

1. using all the atoms: the derivatives with respect to all the336

position coordinates as described by Eq. (14) are calcu-337

lated,338

2. using the atoms of the central plane (orange atoms in Fig.339

1): the derivatives with respect to the position coordinates340

of the atoms of the central plane, i.e. parallel to the incident341

beam and perpendicular to the rotation axis, are calculated,342

3. using the central atom only (red atom in Fig. 1): the deriva-343

tives with respect to the x-, y-, and z-coordinate of the cen-344

tral atom are computed.345

The CRLB has been computed for these three different346

approaches using the Gaussian approximation model for 31347

projection images over a tilt range of [−90, 90] degrees. An348

incident electron dose of 5555 e−/Å2 per image will be used,349

which corresponds to a beam current of 10 pA, a pixel dwell350

time of 2 µs, and a pixel size of 0.15 Å. The results for the351

precision are shown in Fig. 3 as a function of the cluster352

diameter. Note that the values for the precision for 1 atom353

(cluster diameter equal to 0) in this figure can be approximated354

by the rule of thumb given by Eq. (15) and that the precision355

as a function of the cluster diameter can be approximated by356

the sum of the precision for one atom given by Eq. (15) and a357

power law. From this figure, it can be seen that the precision358

is not significantly affected when reducing the number of359

parameters for the calculation of the Fisher information matrix.360

Therefore, it is allowed to use only the central atom, i.e. the361

derivatives with respect to the position coordinates of the362

central atom, in order to evaluate the attainable precision.363

Throughout the rest of this paper, the precision will therefore364

be calculated using the derivatives with respect to the position365

coordinates of the central atom only. This means that the366

number of simulations needed for the numerical approximation367

of the derivatives of the Fisher information matrix when368

computing the precision for the accurate multislice simulations369

can be reduced drastically from J(3N + 1) to 4J.370

371

5.3. The optimal angular tilt range372

In this subsection, the lower bound on the standard deviation373

for locating the central atom of a nanocluster in 3D is evaluated374

for different tilt ranges for a fixed number of projection images,375

such that the total electron dose is kept constant. Due to the376

rotation of the nanocluster, the precision with which the atoms377

can be located in the z-direction will improve. Therefore, it is378

important to evaluate the attainable precision as a function of379

the tilt range of the nanocluster. In Fig. 4, the precision σ of the380

x-, y-, and z-coordinate for locating the central atom is shown381

as a function of the angular tilt range for a fixed number of 31382
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Figure 3: The precision σ of the x-, y-, and z-coordinate for locating the central
atom in a nanocluster as a function of the cluster diameter using all the atoms
(all), the atoms of the central plane (cp), or the central atom only (1at) based on
simulations using the Gaussian approximation model for 31 projection images
over a tilt range of [−90, 90] degrees, and an electron dose of 5555 e−/Å2 per
image.

projection images and an incident electron dose of 5555 e−/Å2
383

per image. From this figure, we can see the precision for lo-384

cating the atoms in the z-direction improves significantly when385

increasing the angular tilt range. As expected, the precision for386

locating the atoms in the y-direction does not change signifi-387

cantly when increasing the angular tilt range, since it mainly388

depends on the number of projection images in the tilt series.389

For the precision for locating the atoms in the x-direction, a390

small increase in precision is observed when increasing the tilt391

range. This can be derived from the fact that when rotating the392

cluster around the y-axis, information on the z-coordinate will393

be gained, but some information on the x-coordinate will be lost394

when keeping a fixed number of projection images. This can395

be understood better from the following: if you have included396

in this tilt series of 31 images, the projection images from the397

structure tilted over −90 and +90 degrees, there is no informa-398

tion on the x-coordinate available in these 2 projection images,399

decreasing the total information on the x-coordinate from the400

whole tilt series as compared to a tilt series with the same num-401

ber of projection images and a smaller tilt range. Based on the402

results of this analysis presented in Fig. 4, an angular tilt range403

of at least [−70, 70] degrees can be suggested. This corresponds404

to the standard tilt range for conventional tomography experi-405

ments.406

5.4. The optimal number of projection images407

In this subsection, the lower bound on the standard deviation408

for locating the central atom of a nanocluster in 3D is evaluated409

as a function of the number of projections. In Fig. 5, the result410

is shown for a nanocluster with 309 atoms using a tilt range of411

[−90, 90] degrees. The nanocluster was tilted in this range with412

a constant tilt increment for each number of projection images.413

An electron dose of 5555 e−/Å2 per image has been used for414

the tilt series of 31 images corresponding to the electron dose415

that has been used in the previous subsections. For the compu-416

tation of the precision as a function of the number of projection417
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Figure 4: The precision σ of the x-, y-, and z-coordinate as a function of the
angular tilt range for locating the central atom of a nanocluster with 309 atoms
based on simulations using the Gaussian approximation model using a fixed
number of 31 projection images for an incident electron dose of 5555 e−/Å2

per image.

images, the total incident electron dose has been kept constant,418

and the electron dose has been rescaled corresponding to the419

number of projection images. As expected, Fig. 5 shows that420

the precision improves when increasing the number of projec-421

tion images. Beyond a certain value, the gain in precision is422

marginal. Therefore, more than 20 projection images can be423

suggested as an appropriate values.424
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Figure 5: The precision σ of the x-, y-, and z-coordinate as a function of the
number of projection images for locating the central atom of a nanocluster with
309 atoms based on simulations using the Gaussian approximation model with
a tilt range of [−90, 90] degrees and a fixed total electron dose.

5.5. The optimal detector range425

Using the expression for the CRLB, the optimal experiment426

design for locating the central atom of a nanocluster in 3D can427

also be optimised in terms of the inner and outer angle of an an-428

nular STEM detector [34, 42–44]. In order to evaluate the pre-429

cision as a function of the detector angles of the annular STEM430

detector, multislice simulations have been performed with vary-431

ing detector angles. From the evaluation of the precision as a432

7



function of the outer angle, it follows that the optimal outer de-433

tector radius should be as large as possible in the experiment.434

The inner angle has been varied between 15 mrad and 90 mrad.435

Figure 6 shows the precision as a function of the inner detector436

radius using the multislice simulations using 31 projection im-437

ages, a tilt range of [−90, 90] degrees and an electron dose of438

5555 e−/Å2 per image. The optimal inner angle equals 21 mrad439

which equals the convergence angle used in the simulations. In440

this manner, dark field images can be acquired with the highest441

possible detected dose resulting in the highest attainable preci-442

sion. It is important to note here that the experimental design443

for which the precision is optimal does not necessarily corre-444

spond to the experimental settings leading to the highest signal-445

to-noise ratio or the best image contrast. Here, the evaluation of446

the precision as a function of the inner detector radius suggests447

low angle annular dark field STEM imaging. Since in this imag-448

ing mode also coherent scattering contributes to the detected449

signal, this signal will be more sensitive for strain and defects.450

The here-presented analysis can also be applied to structures451

including defects and strain as this may have an influence on452

the choice of the proposed detector settings. Nevertheless, this453

result, where the optimal inner detector radius is equal to the454

convergence angle, gives a general guideline for the choice of455

the inner detector radius.456
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Figure 6: The precision σ of the x-, y-, and z-coordinate as a function of the
inner detector radius for locating the central atom of a nanocluster with 309
atoms based on multislice simulations using 31 projection images, a tilt range
of [−90, 90] degrees and an incident electron dose of 5555 e−/Å2 per image.

5.6. The attainable precision for locating the central atom457

In order to quantify the attainable precision for a set of realis-458

tic experimental settings, we used the suggested values obtained459

in the previous subsections, i.e. a tilt range of [−72, 72] degrees,460

25 projection images, an inner detector radius of 21 mrad, and461

an incident electron dose of 5555 e−/Å2 per image. For these462

settings, multislice simulations have been performed for the463

four gold nanoclusters. These simulations take into account the464

channelling effects. These channelling effects start to play an465

important role for the largest clusters and influence the deriva-466

tives which are needed for the calculation of the attainable pre-467

cision. Therefore, using the multislice simulations the results468

for the attainable precision will be more realistic. In Fig. 7, the469

attainable precision of the x-, y-, and z-coordinate for locating470

the central atom of a nanocluster in 3D is shown for the exper-471

imental settings as a function of the cluster diameter for both472

the multislice simulations (MS) and the Gaussian approxima-473

tion model (GM). From this figure, it is clear that the central474

atom of a small nanocluster can be located more precisely in475

3D than the central atom of a larger nanocluster. Furthermore,476

it is shown that a precision of a few picometres is feasible in477

the presence of electron counting noise only. In addition, by478

comparing the values from the multislice simulations and the479

Gaussian approximation model, it can be concluded that the480

Gaussian approximation model is a reliable model for evalu-481

ating the attainable precision, since the calculated values for482

the attainable precision based on the Gaussian approximation483

model and the multislice method are very comparable. Ex-484

perimentally, atomic resolution reconstructions have recently485

been obtained [11–15]. The precision with which the three-486

dimensional atom coordinates can be measured from these re-487

construction is still an open question. In [15], it is mentioned488

that the three-dimensional coordinates of the atoms have been489

determined with a precision of ≈ 19 pm. Obviously, scan noise,490

alignment errors, the effect of a sample support, the rearrange-491

ment of surface atoms, and similar will significantly deteriorate492

the attainable precision, explaining the larger experimentally493

obtained precision. However, in this study, the purpose is to494

investigate the ultimate precision that can be attained. There-495

fore, it is assumed that scan noise and alignment errors can be496

avoided or can be corrected for in this analysis [16–18] and an497

ideal sample is assumed.498

6 12 18 24

0.6

1.2

1.8

2.4

Cluster diameter (Å)

S
ta

nd
ar

d 
de

vi
at

io
n 

σ
 (

pm
)

 

 

σ
x

MS

σ
x

GM

σ
y

MS

σ
y

GM

σ
z

MS

σ
z

GM

Figure 7: The attainable precision σ of the x-, y-, and z-coordinate as a func-
tion of the cluster diameter based on realistic multislice simulations (MS) and
the Gaussian approximation model (GM) using the suggested experimental set-
tings. A precision of w few picometres is feasible.

5.7. The precision as a function of the incident electron dose499

The actual value of the precision does not only depend on the500

choice of the tilt range, the number of projection images, or the501

annular STEM detector range, but also on the incident electron502
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dose. In a STEM experiment the number of electrons per pixel503

is determined by Eq. (4). In Fig. 8, the precision of the x-, y-,504

and z-coordinate for locating the central atom of a nanocluster505

in 3D is shown as a function of the incident electron dose when506

using 25 projection images over a tilt range of [−72, 72] degrees507

for a nanocluster of 309 atoms based on realistic multislice sim-508

ulations. It is clear from this figure that, as one could expect,509

the precision increases, i.e. the standard deviation σ decreases,510

for an increasing electron dose. The precision is proportional511

to the incident electron dose as
√

Ne. If a precision of a few pi-512

cometres is desired, then an electron dose of at least 103 e−/Å2
513

per image would be necessary. This evaluation can be of great514

importance if one wants to reduce beam damage but at the same515

time still obtain an acceptable precision to locate the atoms in516

3D.517
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Figure 8: The precision σ of the x-, y-, and z-coordinate as a function of the
dose per image (number of electrons/Å2) for locating the central atom of a
nanocluster with 309 atoms based on realistic multislice simulations with 25
projection images over a tilt range of [−72, 72] degrees.

6. Conclusions518

In this work, the theoretical limits with which the atoms of519

a nanocluster can be located in 3D based on the acquisition520

of a tilt series of ADF STEM images was investigated. Us-521

ing the concept of the Cramér-Rao lower bound, a theoretical522

lower bound on the variance, quantitative measurements were523

obtained for the precision of the x-, y-, and z-coordinate when524

locating the central atom of a nanocluster in 3D. Furthermore,525

the here-described method is put forward as a powerful tool526

that can be used to optimise the design of an experiment. For527

this goal, the precision has been evaluated for locating the cen-528

tral atom of a gold cluster as a function of the incident electron529

dose, the angular tilt range, the number of projection images,530

the annular STEM detector range, and the cluster diameter. Ob-531

viously, the exact optimal experiment design and the exact val-532

ues for the precision will depend on the material under study.533

Nevertheless, the conclusions from the study conducted in this534

paper give some general guidelines on optimal experiment de-535

sign for extracting the location of the atoms in 3D using a tilt536

series of STEM images.537

Using approximate STEM simulations, based on a Gaussian538

approximation model, the calculation of the precision was opti-539

mised, since this approach allows a full analytical computation540

of the precision. This reduces drastically the required number541

of simulations for the computation of the precision for accurate542

multislice simulations, where the precision is computed numer-543

ically. Using the Gaussian approximation model, suggestions544

for the angular tilt range and number of projection images could545

be obtained in an efficient and rapid manner. An angular tilt546

range of at least [−70, 70] degrees and a minimal number of 20547

projection images was found. In addition, it was shown that548

the precision for locating the central atom of a nanocluster is549

better for small nanoclusters. The optimisation of the detector550

angles requires multislice simulations. From this study, it could551

be concluded that an inner detector radius of the STEM detec-552

tor equal to the convergence angle is optimal for locating the553

atoms of a nanocluster in 3D. Furthermore, simulations using554

the accurate multislice method are most appropriate for quanti-555

fying the ultimate precision that can be attained. In this paper,556

we demonstrated using accurate multislice simulations that a557

precision in the picometre range for locating the atoms in 3D558

is feasible in the presence of electron counting noise only, as-559

suming ideal experimental conditions. In addition, the general560

framework presented in this paper to locate atoms in 3D from a561

tilt series of images can be applied to any structure of interest,562

such as more complex structures consisting of more than one563

atom type.564
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Appendix A. The effect of the finite size of the source on the574

precision575

In realistic STEM simulations, the finite size of the source576

is taken into account by a two-dimensional convolution with577

the intensity distribution of the source image. This intensity578

is often modelled as a Gaussian distribution with a FWHM of579

around 0.7 Å for an aberration corrected transmission electron580

microscope [29, 45]. However, it is known that the shape of581

the source image deviates significantly from a Gaussian profile582

[46, 47]. Measurements of the exact shape of the source size583

distribution show considerable longer tails as compared to a584

simple Gaussian profile. In order to study the effect of the shape585

of the source size distribution, the precision has been evalu-586

ated for 3 different values of the FWHM taken from Ref. [47].587

The precision when using a simple Gaussian profile for taking588

into account source size broadening has been compared with589
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Figure A.9: The precision σ of the x-, y-, and z-coordinate (from left to right) as a function of FWHM of the source size profile for two different shapes of the
source size for locating the central atom of a nanocluster with 13 atoms based on multislice simulations using 31 projection images, a tilt range of [−90, 90] degrees,
an inner detector radius of 21 mrad, and an incident electron dose of 5555 e−/Å2 per image. The subscripts G and GC refer to a simple Gaussian distribution and a
linear combination of Gaussian and bivariate Lorentzian/Cauchy distribution, respectively, for the source size broadening profile.

the precision when using a linear combination of a Gaussian590

and a bivariate Lorentzian/Cauchy distribution. The precision591

for locating the central atom has been evaluated for a nanoclus-592

ter of 13 atoms based on realistic multislice simulations using593

31 projection images, a tilt range of [−90, 90] degrees, an in-594

ner detector radius of 21 mrad, and an incident electron dose of595

5555 e−/Å2 per image. As expected, Fig. A.9 shows that the596

precision improves when decreasing the FWHM of the source597

size. Moreover, this figure shows that when the FWHM of the598

source size is small that the Gaussian profile is a good approx-599

imation for taking into account source size broadening when600

computing the precision of the central atom of the nanoclus-601

ter. The source size used in the paper has a FWHM of 0.7 Å.602

For this value, we expect that the difference between the two603

methods is negligible.604

Appendix B. The effect of the Debye-Waller factor on the605

precision606

In this section, it has been investigated if the assumption607

of the same Debye-Waller factor for all the atoms of a nan-608

ocluster is reasonable while evaluating the precision of the609

three-dimensional coordinates of the central atom of this610

nanocluster. For this purpose, the precision of this approach611

has been compared with the precision calculated based on612

multislice simulations using a different Debye-Waller factor613

for each atom. The smallest cluster has been chosen since614

for this cluster the effect would be the most pronounced. In615

order to obtain the Debye-Waller factors for each atom of the616

gold nanocluster with 13 atoms, molecular dynamic (MD)617

simulations were performed at T = 300 K. The simulation has618

been performed by using the LAMMPS software [48] and a619

potential calculated by G. Grochola has been used [49]. Using620

the root mean square atomic displacements obtained from this621

MD simulation, the following values for the Debye-Waller fac-622

tor (Å2) could be calculated, where the first value corresponds623

to the central atom and the other to the surface atoms of this624

cluster:625

626

0.59 → central atom
3.10 3.82 3.91

→ surface atoms3.81 3.29 3.90
3.77 3.26 3.82
3.81 3.92 3.03

627

628

Next, the precision based on the multislice simulations with629

these different Debye-Waller factors for each atom has been630

calculated for the central atom of the cluster and compared631

with the precision obtained from the multislice simulations632

with the same Debye-Waller factor (DWF) of 0.63 Å2:633

634

different DWF same DWF
σx (pm) 1.1801 1.1399
σy (pm) 0.7925 0.7735
σz (pm) 1.0898 1.0633

635

636

From this values it can be concluded that the difference in pre-637

cision is very small since the Debye-Waller factor of the central638

atom does not change a lot with respect to the value which is639

used when using the same Debye-Waller factor for all atoms of640

the nanocluster.641
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