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Abstract The predictive power of increasingly

common large-scale, behavioral data has been

emphasized by previous academic research. Such

data captures human behavior through the ac-

tions and/or interactions of people. Its sparsity

and ultra-high dimensionality pose signi�cant

challenges to state-of-the-art classi�cation tech-

niques. Moreover, no consensus exists regard-

ing the choice of methods that make a feas-

ible trade-o� between classi�cation perform-

ance and computational expense. This paper

provides a contribution in this direction through

a systematic benchmarking study. Forty-one

�ne-grained behavioral data sets are analyzed

with 11 classi�ers. Statistical performance com-

parisons enriched with learning curve analyses

demonstrate two important �ndings. First, an
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inherent generalization performance vs. time

trade-o� becomes clear, making the choice for

an appropriate classi�er dependent on compu-

tation constraints and data set characterist-

ics. Logistic regression achieves the best AUC,

however it takes the longest time to train. An

associated result is that L2 regularization pro-

ves better than sparse L1 regularization. An

attractive generalization/time trade-o� is achie-

ved by a similarity-based technique (PSN). Se-

cond, although the data sets used are large, the

results illustrate that as a direct consequence

of its high-dimensionality and sparseness, sig-

ni�cant value lies in collecting and analyzing

even more data. This �nding is observed both

in the instance and in the feature dimensions,

contrasting with learning curve studies on tra-

ditional data. The results of this study provide

guidance for researchers and practitioners for

the selection of appropriate classi�cation tech-

niques, sample sizes and data features, while

also providing focus in scalable algorithm design

in the face of large, behavioral data.

Keywords comparative study · classi�ca-
tion · big behavioral data · high-dimensional ·
sparse

1 Introduction

This paper focuses on very large-scale behavi-

oral data (Chen et al., 2009), which have be-

come increasingly common as the subject of

analysis over the past two decades, as more of

people's activities are recorded and quanti�ed.

Following the de�nition by Shmueli (2016), big
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behavioral data captures human behavior through

the actions and/or interactions of people. These

form a record of a person's behavior captured

as �ne-grained features. Customer transactions

with a bank, web surfers' web visiting beha-

vior, mobile phone users' visited locations, and

Facebook Likes are just a few examples. Pre-

dictive modeling based on behavioral data has

demonstrated promising result. Such data can

be telling of a person's personality traits (Kos-

inski et al., 2013), his interest in banking products

(Martens et al., 2016), his interest in a news

article (Liu et al., 2010), his interest in a (mo-

bile) ad (Li and Du 2012; Perlich et al. 2014),

his tendency to churn (Verbeke et al., 2014),

his credit default behavior (De Cnudde et al.,

2015) or his tendency to commit fraudulent

activities (Fawcett and Provost 1997; Junqué de

Fortuny et al. 2014).

In �ne-grained behavior data, behavior is

represented via the presence or absence of an

action-having-been-taken (binary), or in more

detail by the strength or the frequency of each

individual action (numeric). An important char-

acteristic of �ne-grained behavior data is that

the set of all possible behaviors (features) an

entity can exhibit is enormous (such as the

set of all possible locations or webpages one

can visit), resulting in ultra-high dimensional

data. Moreover, there is a limit on a person's

so-called behavioral capital (Junqué de For-

tuny et al., 2013), how many behaviors they

can reasonably engage in; the result is that

among all possible actions represented by �ne-

grained features, a person will exhibit relat-

ively few. This results in extremely sparse data.

The high-dimensionality and sparsity stand in

stark contrast to data represented by tradi-

tional sociodemographic features or summar-

izing features such as RFM (recency, frequency,

monetary) values.

In spite of the growing availability of big

behavioral data (Yang and Wu, 2006), its po-

tential for social science research (Shmueli, 2016),

and the numerous studies clearly demonstrat-

ing its value for predictive purposes, such data

poses signi�cant challenges for traditional state-

of-the-art data mining techniques (Provost and

Kolluri 1999; Brain and Webb 2002; Daless-

andro 2013). One such challenge is the curse

of dimensionality (Donoho, 2000): large num-

bers of features results in a highly sparse and

highly scattered data space, making it very

di�cult to calculate similarity or to capture

general patterns. Researchers have coped with

such challenges by either scaling up the classi-

�ers (for example, Tsang et al. 2005; Collobert

et al. 2006; Nie et al. 2014) or scaling down the

data dimensionality (for example, Chang et al.

2010; Tan et al. 2014). The latter can be done

through summarizing the �ne-grained features

in a manner similar to RFM (De Bock and

Van den Poel, 2010) or through dimensionality

reduction techniques (Kosinski et al., 2013).

Using behavioral summaries has shown to res-

ult in lower predictive performance in compar-

ison to using the features with their full gran-

ularity (De Cnudde et al. 2015; Martens et al.

2016). Matrix factorization-based dimension-

ality reduction and hashing techniques (Wein-

berger et al. 2009;Li et al. 2012) can be compu-

tationally e�cient when faced with large, high-

dimensional data with respect to time and space

usage. However, Clark and Provost (2016) demon-

strate that care should be taken in employing

them with behavioral data since using the full

feature set e�ectively results in higher predict-

ive performance compared to a reduced feature

set. In other high-dimensional contexts such as

text classi�cation, using all �ne-grained fea-

tures has also resulted in the best generaliz-

ation performance (Joachims 1998; Li et al.

2012). The question that this paper addresses

is whether and to what extend widely used,

traditional classi�ers can cope with this com-

plex and rich type of data (Brain and Webb

2002; Wu et al. 2014).

Currently, no clear consensus has been reached

in the literature regarding which classi�er to

employ for such data (see Table 1). Most of

these studies start with a data-centric perspect-

ive, examining one or two data sets using one

or more classi�cation techniques. This is done

either to demonstrate the predictive power present

in a data set, to compare existing techniques,

or to benchmark a self-developed technique

against state-of-the-art classi�ers. However, most

papers do not provide clear-cut explanations

as to why a certain technique is elected over

others for analysis. Thus, more speci�cally, the

present paper (1) helps provide guidance on

the selection of an appropriate classi�cation

method, and (2) provides an assessment of the

techniques' robustness.

Regarding guidance (1), benchmarking stud-

ies such as this are useful for comparing the
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performance of a collection of techniques � com-

paring them in a systematic manner promotes

statistically sound conclusions on the one hand

and on the other hand leads to practical guidelines

directing researchers and practitioners to an

appropriate technique suited to their needs.

In the past, large-scale benchmarking stud-

ies of data mining algorithms have been per-

formed (for example, King et al. 1995; Lim

et al. 2000; Meyer et al. 2002; Michie et al.

2009; Fernández-Delgado et al. 2014). Bench-

marking is also often carried out between two

or more techniques, investigating when which

technique performs better (for example, Langley

et al. 1992;Ralaivola and d'Alché Buc 2001;Huang

et al. 2003;Perlich et al. 2003). However, to

our knowledge, no comprehensive comparat-

ive study has yet been done focusing speci�c-

ally on massive, sparse behavioral data, even

though they are becoming common in applic-

ations of machine learning. This benchmark-

ing study follows in the tradition of Forman

(2003) and Fernández-Delgado et al. (2014),

and we follow the advice of Dem²ar (2006),

among others.

Regarding robustness (2), we also study

the performance of the classi�cation algorithms

under varying training set sizes. This is done

with learning curves, which investigate the im-

pact of data size on classi�cation performance

(Perlich et al., 2003). From this analysis, con-

clusions can be drawn regarding the extent to

which the techniques scale up in terms of per-

formance for increasing data set size, in both

the instance and feature dimensions. It is im-

portant to understand if and when more data

leads to better predictive performance: organ-

izations must plan their investment in collect-

ing and storing even more data, and practi-

tioners should have an idea about how the

results of a pilot study on a data subset are

likely to translate into results on a later, much

larger production data set. A starting point

for learning curve analysis in behavioral data

was given in Junqué de Fortuny et al. (2013),

which we will expand in a systematic man-

ner. Importantly, the learning curves for be-

havioral data show strikingly di�erent beha-

vior from learning curve studies on more tra-

ditional data (Perlich et al., 2003).

In summary, the contributions of this pa-

per are as follows:

I We perform a comparative analysis of state-

of-the-art classi�cation techniques on be-

havioral data sets. We compare both the

predictive and computational performance

for signi�cant di�erences. Subsequently,

recommendations are formulated to guide

the choice of a predictive technique when

confronted with behavioral data.

II We also assess the predictive value of be-

havioral data depending on two di�erent

data modeling schemes. An analysis is per-

formed regarding the (un)importance of

the strength of a behavioral action (bin-

ary vs. numeric data) for the analyzed

techniques. Hence, guidance is o�ered re-

garding how to model behavioral data so

as to reach optimal performance.

III The third contribution is a learning curve

analysis of the classi�cation techniques such

that performance patterns become clear

under changing data set sizes. The results

of this analysis lead to a clear view regard-

ing the relevance of more data collection

from a predictive performance viewpoint,

and a di�erent view from prior systematic

learning-curve studies on non-behavioral

data.

Before continuing to the details of our bench-

marking study, we'd like to point out that data

analysis research related to behavior is wide-

spread, and knows many research domains. What

we focus on is the use of data on actions/inter-

actions of persons, to make predictions about

those persons. This is di�erent from some of

the following concepts. Sequential data ana-

lysis is a method that allows to examine pat-

terns of behavior over time (Walker, 2016). Be-

havioral economics studies the e�ect of psy-

chological processes on economic decisions of

individuals. Behavior Informatics is the more

general term used for the informatics of be-

haviors so as to obtain behavior intelligence

and behavior insights (Cao, 2010). All these

�elds are mainly focused on insights that can

be gained from or on some behavior (data).

We focus on using the behavior data to make

predictions on some target variable.

The remainder of this work is organized

as follows. In the following section, we present

and delimit the data and the classi�ers ana-

lysed in our comparative study. This results in

the analysis of the eleven classi�ers shown in

Table 2. Section 3 describes the set-up of the
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n m PSN NB
RBF-
SVM

LIN-SVM LR-BGD LR-SGD RF LPR

L1 L2 L1 L2 L1 L2
De Cnudde and Martens (2015) 177,761 2,448 X X

Li et al. (2015) 9,489 4,368 X

Goel et al. (2012) 250,000 100,000 X

Junqué de Fortuny et al. (2014) 858,703 108,753 X X X
Chen et al. (2009) 500,000,000 150,000 X

Clark and Provost (2016) 210,004 179,605 X X X
Martens et al. (2016) 1,200,000 3,200,000 X X X
De Cnudde et al. (2015) 5,000 4,122,418 X X

Yu et al. (2010) 8,407,752 20,216,830 X X

Stankova et al. (2014) 8,407,752 20,216,830 X X
Junqué de Fortuny et al. (2013) 8,407,752 20,216,830 X

Agarwal et al. (2014) 2,300,000,000 16,777,216 X

Pandey et al. (2011) 40,000,000 ? X

Perlich et al. (2014) ? ? X X

Number of wins 4 3 0 5 2 2 0 1

Total count 4 3 1 9 2 2 1 1

Table 1: Overview of behavioral predictive literature. n is the number of instances, m is the number of
features. (Abbreviations of the techniques: PSN = pseudo social network, NB = naive Bayes, RBF-SVM =
support vector machine with RBF kernel, LIN-SVM = linear support vector machine, LR-BGD = logistic
regression with batch gradient descent, LR-SGD = logistic regression with stochastic gradient descent, RF
= random forest, LPR = logistic Poisson regression).

benchmarking study. The results are presen-

ted and discussed in Section 4. Finally, we

conclude with general remarks and further re-

search avenues in Section 5.

2 Components of the Benchmarking

Study

The scope of the benchmarking study is de-

lineated by the type of data analyzed and the

classi�cation techniques compared. This sec-

tion de�nes and delimits these dimensions and

also presents the evaluation procedure.

2.1 Data

We �rst provide a de�nition of behavioral data,

stating its speci�c characteristics and compar-

ing it with other high-dimensional and sparse

data used in predictive modeling research. Secondly,

in order that we understand the degree to which

the collection is representative and reprodu-

cible, we explain the procedure used to select

the collection of behavioral data sets.

2.1.1 Behavioral Data

We follow the de�nition for big behavioral data

given by Shmueli (2016): data originating from

human actions and/or interactions. This type

of data is special in that it involves human

and social aspects such as intention, which is

in contrast to data collected from items or

products or even physical measurements of people.

Being generated from human behavior leads to

various di�erences from non-behavior data (Junque de

Fortuny et al., 2013; Shmueli, 2016). This study

focuses data sets generated by recording spe-

ci�c, individual behaviors or actions of the people

involved, which leads to ultra-high dimension-

ality and sparseness of the resultant data set,

Some modelers instead use a summarization of

those features, such as with RFM attributes,

capturing behavior along recency, frequency

and monetary dimensions (Hu 2005; Hill et al.

2006; De Bock and Van den Poel 2010; Verbeke

et al. 2014). Research, however, has shown that

better predictive performance is achieved us-

ing the most granular form of behavioral data (Clark

and Provost 2016; Martens et al. 2016).

The existing literature on predictive mod-

eling from behavioral data provides insight into

its main properties (see Table 1). Mostly, this

data is characterized by high-dimensionality

and sparsity and by having many �ne-grained

features, where many of them providing ad-

ditional predictive information�so they are

neither uninformative nor completely redund-

ant. Partially due to the sparseness, the ob-

served feature set actually grows as the num-

ber of observed instances grows. However, as

the number of instances increases, the sparsity

grows as well; the average number of features

per instance does not grow along with the num-

ber of instances or the number of dimensions (Li

et al., 2015). This phenomenon has been ex-

plained as due to individuals' limited behavi-

oral capital: a person is restricted by resources

such as time and money regarding the number
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MN-NB Multinomial naive Bayes
MV-NB Multivariate naive Bayes
LA-SVM-L2 Least absolute errors support vector machine with a linear kernel and L2 regularization
LS-SVM-L1 Least square errors support vector machine with a linear kernel and L1 regularization
LS-SVM-L2 Least square errors support vector machine with a linear kernel and L2 regularization
PSN Relational classi�er with bigraphs
LR-BGD-L1 Batch gradient descent logistic regression with L1 regularization
LR-BGD-L2 Batch gradient descent logistic regression with L2 regularization
LR-SGD-L1 Stochastic gradient descent logistic regression with L1 regularization
LR-SGD-L2 Stochastic gradient descent logistic regression with L2 regularization
RBF-SVM Support vector machine with Gaussian kernel

Table 2: The classi�cation techniques studied.

of possible actions she can take (Junqué de

Fortuny et al., 2013).

Comparing behavioral data with other high-

dimensional data, we �nd that human behavi-

oral data on the surface resembles text data.

The latter is also high-dimensional and sparse

with many �ne-grained features, many of which

contribute to predictive performance (Joachims

1998; Li et al. 2012). Also, text data can be

modeled with binary as well as with numeric

features, resulting in di�erent performance res-

ults (McCallum and Nigam, 1998). Despite the

fact that text data consists of many relevant

features, most studies in the �eld of text cat-

egorization employ dimensionality reduction (Du-

mais et al. 1998; Sebastiani 2002; Forman 2003).

Textual data is also highly sparse and larger

text data sets tend to be sparser; we see this

in Figure 1, which plots the data set size and

sparsity of all the data sets used in this paper

(black dots) as well as all text classi�cation

data sets on the UCI Machine Learning Re-

pository (white dots; see Table 3).

Although behavioral data resembles text

data in form, there are two important di�er-

ences. First, the data generating process clearly

is di�erent, with behavioral data being gener-

ated by human actions and textual data by

a language model. The latter has been thor-

oughly studied statistically and its distribu-

tion is governed by laws such as Zipf's law (Zipf,

2016) and Heap's law (Heaps, 1978) among

others. Behavioral data, however, is much more

complex to capture. One attempt was made

in Junque de Fortuny et al. (2013), where de-

structive human choice behavior was shown to

be better modeled by a Wallenius event model

than by more traditional models.1 More re-

1 Destructive human choice behavior is a speci�c
subclass of human behavioral data where a person's
choice to take an action removes that action from
the person's future behavior consideration.

search is needed to help us understand the

data generating process(es) for behavioral data.

A second major di�erence constitutes the num-

ber of features. For all UCI text data sets,

the number of feature is substantially lower

than for the behavioral data sets analyzed in

this study. This makes sense since the num-

ber of words in the English language is less

than one million, and probably much smal-

ler2, and the e�ective vocabulary for partic-

ular document classi�cation problems smaller

still. In contrast, the number of actions taken

in many behavioral settings dwarfs the num-

ber of words; see the characteristics of our data

below. For example, consider building models

from web browsing behavior; the total number

of websites currently amounts to 170, 712, 7483,

and when considering individual webpages, the

number is orders of magnitude larger. There-

fore, it makes sense not just to use the sur-

face similarity to conclude that what works for

text will work for behavior data, but instead

to look draw the conclusion based on a careful

analysis of predictive modeling with (this sort

of) behavioral data.

2 Probably less than 250,000; see https:

//en.oxforddictionaries.com/explore/

how-many-words-are-there-in-the-english-language.
3 See https://news.netcraft.com.

Data set n m m̄ ρ
DBWorld 64 4, 702 12, 859 95.7269
CNAE-9 1, 080 856 7, 233 99.2176
NIPS 1, 500 12, 419 746, 316 95.9937
KOS 3, 430 6, 906 353, 160 98.5091
Farm Ads 4, 143 54, 877 817, 141 99.6406
Reuters 8, 293 18, 933 389, 455 99.7520
NIPS87-15 5, 811 11, 463 4, 033, 830 93.9442
Newsgroup20 18, 774 61, 188 2, 435, 219 99.7880
Enron 39, 861 28, 102 3, 710, 420 99.6688
NSF 128, 804 25, 335 10, 449, 902 99.6798
NYTimes 300, 000 102, 660 69, 679, 427 99.7738
PubMed 8, 200, 000 141, 043 483, 450, 157 99.9582

Table 3: Data set characteristics of textual classi-
�cation data sets on UCI Machine Learning Repos-
itory.

https://en.oxforddictionaries.com/explore/how-many-words-are-there-in-the-english-language
https://en.oxforddictionaries.com/explore/how-many-words-are-there-in-the-english-language
https://en.oxforddictionaries.com/explore/how-many-words-are-there-in-the-english-language
https://news.netcraft.com
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Figure 1: The sparsity (vertical axis) increases
along with the size of the data set (horizontal axis).
This is demonstrated both for the behavioral data
sets analysed in this study (black dots) and the
textual data sets from the UCI Machine Learning
Repository (white dots).

Next to textual data, one might also ob-

serve the similarity (and di�erence) with data-

sets used in recommender systems. However

our goal and setting are quite di�erent from

the recommender one (see Martens et al. (2016)).

Firstly, whereas the latter looks at in-domain

prediction (for example, using movie ratings

to predict other movies' ratings), our setting

is out-of-domain prediction (predicting gender

based on movie ratings). Secondly, the goal

of estimating a relative likelihood of belong-

ing to a class (as done in our classi�cation

setting), is di�erent from estimating ratings

(as done in recommender systems) in order to

�nd some product to recommend. This makes

the tasks both harder and easier for each set-

ting along di�erent dimensions; e.g., recom-

mender systems have to be able to predict

fairly well for a massive number of products,

but also have the luxury of simply ignoring cer-

tain di�cult-to-predict products. Finally, the

data for the present application simply can be

much larger than those in prior work in re-

commender systems. The Net�ix dataset for

example, which has received widespread atten-

tion, contains 480,189 users and 17,770 movies(Bennett

and Lanning, 2007), whereas our datasets have

up to 11 million users and 300 million features.

2.1.2 Data Set Selection Procedure

The data set selection in a comparative study

may bias the results, implying that care must

be taken both in the selection of the data and

in the deduction of conclusions regarding learner

excellence (Macià et al. 2013; Fernández-Delgado

et al. 2014; Macià and Bernadó-Mansilla 2014).

Many studies comparing predictive perform-

ance of classi�ers use the UCI Machine Learn-

ing Repository (Fernández-Delgado et al. 2014;

Macià and Bernadó-Mansilla 2014) or an ex-

isting benchmark resulting from maturity in

a speci�c research �eld (Forman, 2003). As

predictive research on big behavioral data has

only recently emerged, no ready-to-use bench-

mark is yet present. In order for our results

to be generalizable and to put forward an at-

tempt towards a benchmark for future beha-

vioral data research, we looked for behavioral

data sets in the various online data repositor-

ies listed on the KDnuggets website, which is

one of the leading sources of information on

data analytics and machine learning.4 Includ-

ing publicly available real-world data sets con-

tributes to the reproducibility of this study,

and also to the relevance of the results�as

the publicly available data sets generally have

been drawn from an application that someone

cared about, and superior performance on bench-

marks is the best empirical path we have for

a single study to show results that are likely

to translate to other problems (Provost et al.,

1998). We enrich the resulting collection with

additional real-world behavioral data sets from

prior research, but which are not publicly avail-

able. These additional data sets do not extend

replicability, but are valuable for increasing

the sample and the representativeness of the

study.

Concretely, the following online data repos-

itories contained relevant data sets: the UCI

Machine Learning Repository5, Yahoo Labs6,

the Stanford Large Network Dataset Collec-

tion7, Kaggle8, AmazonWeb Services data sets9,

the Koblenz network collection (KONECT)10

and the Max Plank Institute for Software Sys-

tems.11 Some data sets are included in a multi-

4 See http://www.kdnuggets.com/datasets/

index.html.
5 See http://archive.ics.uci.edu/ml.
6 See http://webscope.sandbox.yahoo.com.
7 See http://snap.stanford.edu/data.
8 See http://www.kaggle.com.
9 See http://aws.amazon.com.
10 See http://konect.uni-koblenz.de.
11 See http://socialnetworks.mpi-sws.org/

datasets.html.

http://www.kdnuggets.com/datasets/index.html
http://www.kdnuggets.com/datasets/index.html
http://archive.ics.uci.edu/ml
http://webscope.sandbox.yahoo.com
http://snap.stanford.edu/data
http://www.kaggle.com
http://aws.amazon.com
http://konect.uni-koblenz.de
http://socialnetworks.mpi-sws.org/datasets.html
http://socialnetworks.mpi-sws.org/datasets.html
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target setting where di�erent targets are pre-

dicted in order to use as much data sets as

possible.12

2.1.3 Data Set Collection

First, a notation is established which will be

used throughout this work. A behavioral data

set X consists of n datapoints xi with i =

(1, ..., n) and xi ∈ Rm. The high-dimensional

xi represent behavior of an instance i through

�ne-grained behavioral features j. When mod-

eling behavior in a binary manner, then xi,j ∈
{0, 1}. Binary behavior can also be enriched

with more detailed information, in that case

xi,j ∈ N. This information might refer to fre-

quency (for example in the case of visiting

behavior) or preference (for example in the

case of rating data). In this classi�cation set-

ting, Y models the target variable that should

be predicted and is a vector of size n with

yi ∈ {−1,+1}.
In total, 41 behavioral data sets are used,

originating from 15 real-world problems. The

MovieLens data set13 contains movie-rating

data from users. Based on these ratings, pre-

dictions are made concerning the gender and

age of a user. Two versions are available: one

with 100,000 features and one with 1,000,000

features. The latter is also used to predict the

genre of the movies based on users' ratings.

Eighteen data sets are constructed in order to

translate this multi-class problem to a binary

problem. Yahoo Labs14 makes available the

YahooMovies data set which contains movie-

rating data, analogous to the MovieLens data

set. Here, also the gender and age of the users

are predicted. The Ecommerce data set ori-

ginates from the PAKDD2015 challenge with

the goal of predicting gender based on product

viewing data on an e-commerce website15. Next,

the TaFeng data set contains shopping trans-

actions of users and the goal is to predict the

users' age (Huang et al., 2005). In the Book-

Crossing data set, books are rated by members

of the BookCrossing community and based on

these ratings, the age of the user is predicted (Zie-

gler et al., 2005). The LibimSeTi data set con-

tains ratings of dating pro�les by users of the

12 These multi-target problems are appropriately
handled in subsequent statistical comparisons.
13 See http://grouplens.org.
14 See http://webscope.sandbox.yahoo.com.
15 See https://knowledgepit.fedcsis.org.

dating service LibimSeti (Brozovsky and Pet-

ricek, 2007). Based on these pro�le ratings, the

gender of the user is inferred. The KDD cup

2015 challenge aspires to predict the MOOC

dropout rate from the online learning platform

XuetangX based on prior online course beha-

vior. The A-Card data sets consist of user-

visiting behavior from a city loyalty card on

which three predictions are made (De Cnudde

and Martens, 2015). First, cashout prediction

consists of predicting whether a user will trade

collected points for a bene�t. Second, an asser-

tion is made with respect to the user becoming

inactive which is referred to as defect predic-

tion. Third, for each user and �ve locations, a

prediction is made whether that location will

be visited in the near future. The Fraud data

set consists of transactional information con-

cerning payments between Belgian and foreign

companies and attempts to predict whether

a company is involved in fraudulent activit-

ies (Junqué de Fortuny et al., 2014). In Martens

et al. (2016), the Banking data set is construc-

ted by collecting debit transactions from cus-

tomers of a bank. With this payment data,

a prediction is made concerning the possible

purchase of a �nancial product o�ered by the

bank. The goal of the KDDa data set (Yu

et al., 2010) from the 2010 KDD cup challenge

is to predict the performance of students on an

algebraic test based on their past performance.

In the Flickr data set, the transactions consist

of users tagging pictures as being their `favor-

ite' and we predict the number of comments a

picture has (Cha et al., 2009). For the propri-

etary Car data set, predictions regarding the

interest in a car advertisement are made based

on users' web visiting behavior.

Table 4 summarizes some general charac-

teristics related to the data sets. Judging from

this summary, a great variety of data sets is

present in terms of size (both in the instance as

well as in the feature dimension), the nature of

the predictive variable, the n-m relation (n�
m, n � m and n ≈ m) and the balance b.

Since these are real-life data sets, in most cases,

the distribution of the classes is unbalanced

(Yang and Wu, 2006). For the fraud data set,

the highest imbalance is achieved, as the num-

ber of fraudulent organizations in comparison

to the number of non-fraudulent organizations

is very low (Liu et al., 2007).

http://grouplens.org
http://webscope.sandbox.yahoo.com
https://knowledgepit.fedcsis.org
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Data set Target variable Binary Numeric n m m̄ ρ b
MovieLens100k age X X 943 1,682 100,000 93.6953% 42.31
MovieLens100k gender X X 943 1,682 100,000 93.6953% 28.95
MovieLens1m age X X 6,040 3,883 1,000,209 95.7353% 43.36
MovieLens1m gender X X 6,040 3,883 1,000,209 95.7353% 28.29
Yahoo Movies age X X 7,642 106,363 221,330 99.9727% 21.09
Yahoo Movies gender X X 7,642 106,363 221,330 99.9727% 28.87
MovieLens10m action X X 10,681 69,878 10,000,053 98.6602% 13.79
MovieLens10m adventure X X 10,681 69,878 10,000,053 98.6602% 5.36
MovieLens10m animation X X 10,681 69,878 10,000,053 98.6602% 1.51
MovieLens10m children X X 10,681 69,878 10,000,053 98.6602% 1.75
MovieLens10m comedy X X 10,681 69,878 10,000,053 98.6602% 28.29
MovieLens10m crime X X 10,681 69,878 10,000,053 98.6602% 5.50
MovieLens10m documentary X X 10,681 69,878 10,000,053 98.6602% 4.09
MovieLens10m drama X X 10,681 69,878 10,000,053 98.6602% 29.57
MovieLens10m fantasy X X 10,681 69,878 10,000,053 98.6602% 0.43
MovieLens10m �lm noir X X 10,681 69,878 10,000,053 98.6602% 0.24
MovieLens10m horror X X 10,681 69,878 10,000,053 98.6602% 5.10
MovieLens10m musical X X 10,681 69,878 10,000,053 98.6602% 0.41
MovieLens10m mystery X X 10,681 69,878 10,000,053 98.6602% 0.43
MovieLens10m romance X X 10,681 69,878 10,000,053 98.6602% 0.56
MovieLens10m sci-� X X 10,681 69,878 10,000,053 98.6602% 0.66
MovieLens10m thriller X X 10,681 69,878 10,000,053 98.6602% 1.23
MovieLens10m war X X 10,681 69,878 10,000,053 98.6602% 0.19
MovieLens10m western X X 10,681 69,878 10,000,053 98.6602% 0.86
Ecommerce gender X 15,000 21,880 33,455 99.9898% 21.98
TaFeng age X 31,640 23,719 723,449 99.9036% 39.67
BookCrossing age X X 167,175 337,921 838,364 99.9985% 29.04
LibimSeTi gender X X 137,806 220,970 15,656,500 99.9486% 44.53
KDD2015 MOOC dropout X X 120,542 5,891 1,919,150 99,7300% 20.71
A-Card cashout X X 177,761 2,448 435,244 99.9000% 6.71
A-Card defect X X 177,761 2,448 435,244 99.9000% 13.20
A-Card Permeke X X 177,761 2,448 435,244 99.9000% 7.29
A-Card Wezenberg X X 177,761 2,448 435,244 99.9000% 2.18
A-Card MAS X X 177,761 2,448 435,244 99.9000% 1.82
A-Card Roma X X 177,761 2,448 435,244 99.9000% 0.96
A-Card Zoo X X 177,761 2,448 435,244 99.9000% 0.85
Fraud fraudulent X 858,131 107,345 1,955,912 99.9979% 0.0064
Banking interest in product X 1,204,726 3,192,554 20,914,516 99.9995% 0.35
KDDa task performance X 8,407,752 20,216,830 305,613,510 99.9998% 14.70
Car interest in ad X 9,108,905 2,936,810 65,464,708 99.9998% 0.70
Flickr comments X 11,195,144 497,472 34,645,469 99.9994% 27.05

Table 4: General characteristics concerning the data sets (ordered by ascending n): the target variable
being predicted, whether binary and numeric versions are available, the number of instances n, the number
of features m, the number of active elements m̄, the sparsity ρ de�ned as ρ = 1 − (m̄/(n ×m)) and the
balance b (percentage of positive instances in the target variable).

As mentioned and as demonstrated in Table 4,

the sparsity ρ of behavioral data sets is ex-

treme due to limited behavioral capital (Jun-

qué de Fortuny et al., 2013). Figures 2-3 show

the probability distributions of the number of

features per instance (Figure 2) and the num-

ber of instances per feature (Figure 3) which

we refer to here as the sparsity distributions.

These distributions provide support for the lim-

ited behavioral capital explanation. It is clear

from the sparsity distributions for the instances

(Figure 2) that most instances have a very low

number of active (non-zero) features. From the

tail of the distributions, it can be observed

that instances with a large number of active

features are much less frequent. Conversely,

looking at the sparsity distributions of the fea-

tures in Figure 3, also the probability of a fea-

ture being present in many instances' beha-

viors is low. This makes sense when looking

at the Banking data set for example: the ma-

jority of users have payment transactions only

with a small fraction of all possible payment

receivers. Also, the majority of the payment

receivers have payment relations with only a

small fraction of all clients of the bank.

From the sparsity distributions for the num-

ber of features per instance, an additional dif-

ference between behavioral and textual data

becomes clear. Figure 4 shows this sparsity dis-

tribution for the Newsgroup20 text data set16.

For text data, this inverted U shape is based at

least in part on the relationship between doc-

uments and sentences, and thus the sentence-

length distribution (Sigurd et al., 2004); it clearly

16 We show the sparsity distribution for the num-
ber of features per instance for one textual data
set only. For the other textual data sets from the
UCI Machine Learning Repository, we generally
�nd similar shapes.
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Figure 2: Sparsity distributions for the number of features per instance.

di�ers from almost all of the distributions for

the behavioral data sets (in Figure 2).

2.1.4 Classi�cation Techniques

As stated in Section 1, the goal of our study

is to provide insight and guidance to research-

ers and practitioners when faced with large,

behavioral data. In order to study a relevant

and representative selection of classi�ers (Ma-

cià and Bernadó-Mansilla, 2014), we take the

following approach. We examine the existing

literature performing predictive analyses on be-

havioral data to determine which techniques

have been used and why, and what problems

were encountered during the analysis. We fo-

cus on literature speci�cally analyzing �ne-grained,

high-dimensional, and sparse behavioral data

and summarize the employed classi�cation tech-

niques in Table 1 (marked with an `X' in the

appropriate column). While constructing the

table, the following rules were applied. If no

explicit mention is made of the number of in-

stances n and/or the number of features m,

we denote this with a question mark. In case

a paper analyzes several data sets, the largest

is shown. For each data set, a bold `X' rep-

resents the best-performing technique. At the

bottom, the table shows the total number of

occurrences of each technique, along with the

number of times it performed best among the

techniques used (also shown in bold). Note

that when only one technique is analyzed in

a paper, it is nonetheless denoted in boldface.



10 De Cnudde et al.

10
0

10
1

10
2

10
3

10
−4

10
−3

10
−2

10
−1

MovieLens100k

# of instances

P
ro

ba
bi

lit
y

10
0

10
1

10
2

10
3

10
4

10
−4

10
−3

10
−2

10
−1

MovieLens1m

# of instances

P
ro

ba
bi

lit
y

10
0

10
1

10
2

10
3

10
4

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

YahooMovies

# of instances

P
ro

ba
bi

lit
y

10
1

10
2

10
3

10
4

10
−5

10
−4

10
−3

10
−2

10
−1

MovieLens10m

# of instances

P
ro

ba
bi

lit
y

10
0

10
1

10
2

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Ecommerce

# of instances

P
ro

ba
bi

lit
y

10
0

10
1

10
2

10
3

10
4

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

TaFeng

# of instances

P
ro

ba
bi

lit
y

10
0

10
1

10
2

10
3

10
4

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

BookCrossing

# of instances

P
ro

ba
bi

lit
y

10
0

10
1

10
2

10
3

10
4

10
5

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

LibimSeTi

# of instances

P
ro

ba
bi

lit
y

10
0

10
2

10
4

10
6

10
−4

10
−3

10
−2

10
−1

10
0

KDD2015

# of instances

P
ro

ba
bi

lit
y

10
0

10
1

10
2

10
3

10
4

10
−4

10
−3

10
−2

10
−1

10
0

A−Card

# of instances

P
ro

ba
bi

lit
y

10
0

10
1

10
2

10
3

10
4

10
5

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Fraud

# of instances

P
ro

ba
bi

lit
y

10
0

10
1

10
2

10
3

10
4

10
5

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Flickr

# of instances

P
ro

ba
bi

lit
y

Figure 3: Sparsity distributions for the number of instances per feature.

For linear support vector machines and logistic

regression, the type of regularization is indic-

ated. When the authors did not specify which

type was used, an `X' is put in the middle.

From Table 1, it is observed that some con-

sensus seems to exist in prior work regarding

what method to use: linear SVMs are most

frequently used, along with L2 regularization.

The papers speci�cally mention the use of lin-

ear SVMs as fast and adequate in very high-

dimensional contexts. For naive Bayes, many

papers mention its speed and performance on

textual data as justi�cations. Logistic regres-

sion, interestingly, performs at least as well or

better than the linear SVMs in all reported

comparisons. Lastly, there is the SVM with

radial basis function kernel, capable of �nd-

ing non-linear patterns. Most papers, however,

condemn this technique for its lack of scalabil-

ity. We also examine the classi�ers used in text

classi�cation research and �nd that mostly sup-

port vector machines, naive Bayes, random forests

and nearest neighbor classi�ers are used when

the analysis is performed without dimensional-

ity reduction (Joachims 1998; Colas and Brazdil

2006).

The �nal selection of classi�ers for our com-

parative setting is naturally restricted by the

characteristics of the data, which impose spe-

ci�c challenges. Random forests, for example,

are not adept at handling massively high di-

mensionality with many relevant features (Do

et al., 2009): complex interactions between the

features are ignored due to the division of the
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Figure 4: Sparsity distribution for the number of features (words) per instance (document) for the News-
group20 data set.

training space in mutually exclusive subspaces.

Furthermore, it is simply infeasible to build

trees on some of the massive feature spaces and

still get non-trivial classi�cations on the ultra-

sparse instances. When using nearest neigh-

bors, the massive dimensionality drastically mag-

ni�es the neighborhood search space, which

impedes the search for similar data points and

signi�cantly increases the run time. (As noted

above, text classi�cation problems do not reach

the same massive dimensionality as behavi-

oral data problems.) Thus, despite their use

for text classi�cation, we do not select nearest

neighbor or random forests for inclusion in the

paper's comparison.

The �nal selection of classi�ers listed in

Table 2. Regarding the variations with respect

to loss function and regularization for support

vector machines, we employ the most com-

monly used options, which are those o�ered

by the widely-used Liblinear package (Fan

et al., 2008). Note that for PSN, a Python ver-

sion is publicly available17. In Appendix A, de-

tails of the classi�cation techniques are given,

along with information regarding implement-

ation and computational complexity.

17 https://github.com/SPraet/

SW-transformation/

2.2 Performance Measures

2.2.1 Area under ROC-curve (AUC)

Accuracy is a fairly intuitive and often-used

measure of performance (King et al. 1995; Lim

et al. 2000): it expresses the percentage of cor-

rectly predicted instances (Fawcett, 2006). How-

ever, it is in�uenced by class imbalance. Since

the bulk of the data sets in this study come

from real-life classi�cation tasks and exhibit

class imbalance (Table 4), accuracy is not a

satisfactory measure (Provost et al., 1998).

Instead we use the the Area Under ROC-

Curve (AUC). ROC (Receiver Operating Char-

acteristic) space is used to plot the perform-

ance of classi�ers in terms of the true positive

rate (TP) and the false positive rate (FP), on

the Y-axis and the X-axis respectively. This

is done by ranking the classi�er's prediction

scores for data points in the test set in a des-

cending fashion while iteratively lowering the

threshold for classifying an instance as posit-

ive. The AUC value is a summarizing scalar

representing the area under this performance

curve (Fawcett, 2006). Thus, it expresses the

models' ability to rank instances in a descend-

ing fashion in terms of their prediction score

or, in other words, the probability of a clas-

si�er to rank a randomly chosen positive in-

stance higher than a randomly chosen negative

https://github.com/SPraet/SW-transformation/
https://github.com/SPraet/SW-transformation/
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instance. We scale the AUC to [0,100], and so

an AUC of 50 corresponds to a model perform-

ing no better than random guessing. A perfect

model has an AUC of 100.

2.2.2 Statistical Signi�cance Test

Two statistical tests are used in order to elect

an algorithm or a group of algorithms as bet-

ter or best performing: the Wilcoxon signed

rank test and the Friedman test, both pro-

posed by Dem²ar (2006). The former compares

two treatments of a collection of data sets (used

to contrast binary versus numeric data); the

latter is used to compare a collection of treat-

ments (for comparing all classi�ers).

The Wilcoxon signed-rank test is a non-

parametric test which �rst computes the ab-

solute di�erences in performance between two

treatments of a collection of data sets. These

di�erences are ranked and summarized in two

variables R+ and R− representing the sum

of ranks where the second treatment, respect-

ively the �rst treatment, performs better. The

lowest value T = min (R+, R−) is compared

to a Wilcoxon critical value. If T is equal to

or lower than this value, the null hypothesis

stating that the two treatments perform equal

can be rejected and a signi�cant di�erence is

found.

In the Friedman test for each data set sep-

arately, the performance values for each method

are ranked. The average rank ARj = 1
N

∑
i r
j
i

of each algorithm is calculated, with rji the

rank of the j-th algorithm on the i-th data

set. The Friedman statistic is de�ned as

χ2
F =

12N

K(K + 1)

∑
j

AR2
j −

K(K + 1)2

4
,

with N the number of data sets and K the

number of algorithms. Iman and Davenport

(1980) state that this χ2 approximation res-

ults in an overly conservative statistic with too

small a critical region and present an updated

approximation

FF =
(N − 1)χ2

F

N(K − 1)− χ2
F

,

distributed according to an F-distribution with

(K−1) and (K−1)(N−1) degrees of freedom.

This value is compared to a critical value cor-

responding to an F-distribution and a signi�c-

ance level α, resulting in either accepting or re-

jecting the null-hypothesis that all algorithms

are equivalent. In the latter case the Nemenyi

post-hoc test is performed. This test de�nes a

critical di�erence

CD = qα

√
K(K + 1)

6N
,

with qα a critical value based on the Student-

ized range statistic divided by
√

2. Two clas-

si�ers demonstrate signi�cantly di�erent per-

formance measures if their average ranks di�er

more than the critical di�erence value.

2.2.3 Learning Curves

Learning curves show performance variations

of learning algorithms as a function of the size

of the training set. The goal is to get insight

into performance generalization of the algorithm

regarding data set size (Perlich et al., 2003).

The performance values in terms of AUC (which

assume independence of data size) now gain

a substantial level of detail as performance is

compared over di�erent techniques and over

di�erent data set sizes (Fernández-Delgado et al.

2014; Macià and Bernadó-Mansilla 2014).

Concretely, a learning curve plots the per-

formance as a function of the training set size,

generally on a logarithmic scale. AUC is used

as a performance measure and the training set

size is varied separately in the dimension of the

instances and the features. For the instance

dimension, increasing samples are drawn (uni-

formly at random) from the original training

data. For the feature dimension, learning curves

are built in two ways. First, increasing samples

of the features are drawn uniformly at ran-

dom. These learning curves are built to as-

sess performance variations over the number

of features, regardless of their predictive value.

Secondly, the information value of each feature

is determined. Learning curves are then built

by taking increasing feature samples according

to their descending information value. This ap-

proach enables us to relate performance vari-

ations to the importance of the features, and to

assess the relevance of many �ne-grained fea-

tures in predictive performance. The inform-

ation value of a feature can be assessed by

a plethora of metrics (Forman 2003; Guyon

and Elissee� 2003). We employ the informa-

tion gain metric here as it is a fairly quick

and accurate way to determine value in separ-

ate features (Forman 2003). Information gain



A Benchmarking Study of Classi�cation Techniques for Behavioral Data 13

models the reduction of entropy in the predict-

ive variable brought along by the presence of

a feature f

Information Gain(f) = H(Y )−H(Y |f),

with Y the classi�cation values of a training

set, f a feature and H(Y ) the entropy of Y .

3 Experimental Set-Up

Before training the model, a third of the train-

ing set (sampled uniformly at random) is set

aside as validation set for parameter selection.

Model selection with grid search is performed

to �nd an optimal value for the regularization

parameter C (for logistic regression and the

SVMs) and the kernel parameter γ for RBF-

SVM. An initial grid ([2−5, 2−3, . . . , 215] for

C and [2−15, 2−13, . . . , 23] for γ) (Hsu et al.,

2003) is explored, that is, models are construc-

ted and tested on the validation set with the

grid parameter values. Based on the best per-

forming model, a new grid is built around the

best value. These grids are then iteratively im-

proved (each time building a more �ne-grained

grid around the best value found in the previ-

ous iteration, up to three times) and the best

resulting value is �nally used in building the

classi�cation model on the training set.

Since multivariate naive Bayes and PSN

expect binary data (see Appendix A), the nu-

meric information is modeled in a binary fash-

ion through unary encoding18. This so-called

thermometer code translates non-negative, nu-

meric feature values xi,j with maximum range

R into xi,j ones followed by (R−xi,j) zeros. In
theory, this increases the dependency between

the features and violates the naive Bayes as-

sumption. However, the approach has been shown

to result in good predictions even with depend-

ent features (Hand and Yu, 2001). This unary

expansion results in higher-dimensional data

for the numeric analysis of both PSN and MV-

NB.

Dependence of the results on data sampling

is a relevant issue in benchmark study design,

impacting the reliability of the study (Fernández-

Delgado et al. 2014; Macià and Bernadó-Mansilla

18 Converting numeric to binary features can also
be done through dummy encoding. Both dummy
encoding and unary encoding gave similar results
and we discuss the unary approach in more detail
here.

2014). Therefore, k-fold cross validation is used

which determines k disjoint partitions through

sampling uniformly at random from the entire

data set, and using each partition as test set

and the remaining k− 1 as training set. Com-

monly, k is set to 10 which has been shown

su�cient in reducing bias and variance (Ko-

havi, 1995). The folds are equal for all classi-

�er executions, such that sound comparisons

across classi�ers can be made. Moreover, this

ful�lls the necessary conditions of stable res-

ults as mentioned in Dem²ar (2006); the stat-

istical tests demand `reliable estimates of the

classi�er's performance'.

The learning curves are built as follows:

1. For the learning curves in the instance di-

mension: For each of the ten cross-validation

folds, repeatedly take random subsamples

of the training set with an increasing nl-

value (nl ∈ 1, ..., n).

2. For the learning curves in the feature di-

mension (random features): For each of the

ten cross-validation folds, repeatedly take

random subsamples of the training set with

an increasing ml-value (ml ∈ 1, ...,m). Ad-

just the corresponding test set according to

the selected features.

3. For the learning curves in the feature di-

mension (feature selection): For each of the

ten cross-validation folds, repeatedly take

subsamples of the training set according

to descending information value of the fea-

tures with increasingml-value (ml ∈ 1, ...,m).

Adjust the corresponding test set accord-

ing to the selected features.

The analyses were performed on an Intel i7

processor with 4 physical cores, 3.40 GHZ clock

rate and 16 GB RAM.

Among the investigated techniques, RBF-

SVM stands out with its O(n2)-O(n3) com-

plexity as mentioned in Appendix A. This clearly

is not scalable with respect to the sizes of many

of these data sets. Therefore, for the largest di-

mensions (starting from BookCrossing in Table

4), the entire data set could not be used when

comparing AUC and time performance. A ran-

dom subsample of size 215 is used as a proxy

for these data sets.
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4 Experimental Results

We now present the results of the comparison

of the methods, focusing on those results that

will be most useful to inform the choices of

future researchers and practitioners. We �rst

discuss the results which are independent of

training size variations, followed by the ana-

lysis of the learning curves.

4.1 Performance Analysis

The analysis of performances is divided into

the following parts: (1) comparison of classi-

�cation and time performance, (2) comparison

of the e�ect of binary versus numeric data on

AUC and time, and (3) interpretation of the

performance results.

4.1.1 Comparison of Classi�cation and Time

Performance

Table 5 and Table 6 report the AUC values for

all binary and numeric data sets, respectively

(ordered by ascending maximum AUC value).

For each data set, the best AUC is denoted

in boldface. Also, the average rank per tech-

nique is shown where for each data set rank 1

is given to the best technique and rank 10 is

given to the worst performing technique. For

each algorithm, also the number of times it

performs best is given. The results for RBF-

SVM are pictured somewhat isolated because

the technique is not always run on the entire

data set.

For the binary data sets in Table 5, LR-

BGD-L2 and PSN perform best. MV-NB per-

forms better than MN-NB. The techniques op-

timized with L2 regularization (LA-SVM-L2,

LS-SVM-L2, LR-BGD-L2 and LR-SGD-L2) have

better performance compared to their counter-

parts with L1 regularization. The SGD vari-

ants of logistic regression demonstrate worse

performance than BGD. Regarding RBF-SVM,

we observe that even when using a sample for

the larger data sets, it only performs the worst

in a minority of cases; however, it almost never

is the best.

In line with the no-free-lunch theorem (Wolp-

ert, 1996), linking classi�er performance to un-

derlying data characteristics is essential and

reveals their speci�c domain of competence (Ma-

cià et al., 2013). This creates the need for meta-

analyses providing more detailed insight. Fig-

ure 5 shows a decision tree denoting which

classi�er performs best dependent on extrinsic

data characteristics. These consist of instance

dimension n, feature dimension m, number of

active elements m̄, sparsity ρ, balance b and

nature of behavior (rating, location, transac-

tional, interest). Note that for this tree, only

one of the eighteenMovieLens_genre data sets

(and only one of theMovieLens100k,MovieLens1m,

A-Card and YahooMovies data sets) is used to

train the tree to reduce over�tting. The tree

conceptualizes the following �ndings:

� For small, imbalanced data sets, the PSN

approach leads to higher classi�cation per-

formance (for exampleMovieLens_sci�,Ya-

hooMovies_age).

� For large, imbalanced data sets, MV-NB

leads to higher classi�cation performance

(for example A-Card_defect, Flickr, Fraud,

Banking).

� For very large, imbalanced data sets, LR-

BGD-L2 leads to higher classi�cation per-

formance (for example kdda, Car).

� For balanced data sets, LR-BGD-L2 leads

to higher classi�cation performance (for ex-

ampleMovieLens100k_age,MovieLens1m_

gender, BookCrossing).

The �ndings from the decision tree are em-

phasized by an additional logistic regression

performed for each technique on the data set

characteristics and whether that technique per-

forms best (1) or not (0). Signi�cant regression

coe�cients were found for MV-NB (instance

dimension n, balance b) and for LR-BGD-L2

(balance b). Note that both these meta-analyses

are purely to understand where the di�erent

techniques are performing better or worse in

this study�not to present generalizable res-

ults.

Turning to the numeric data sets, Table

6 shows that PSN performs best, followed by

LR-BGD-L2. Multivariate naive Bayes and LR-

SGD perform worst. In contrast to binary data

sets, MN-NB overall has lower rank than MV-

NB. Analogous to the binary data sets, L2

regularization and BGD perform better than

L1 regularization and SGD respectively. RBF-

SVM has a better score compared to the one

for binary data sets; however, it does not per-

form among the best techniques despite its

capability of capturing complex relations (Chang

and Lin, 2011). No decision tree was built here
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Balance (b)

Number of instances (n) LR-BGD-L2

PSN Number of actives (m̄)

MV-NB LR-BGD-L2

< 13.50 ≥ 13.50

< 94,221 ≥ 94,221

< 43,189,600 ≥ 43,189,600

Figure 5: Decision tree visualizing the most discriminative data set characteristics for all classi�ers for
binary data sets.

due to only having a sample of 8 representative

numeric data sets.

In order to extrapolate these �ndings to

a larger population of behavioral data sets,

ideally the data sets should form a random

and representative sample of the population.

However, the data collection consists of mul-

tiple multi-target problems (MovieLens, Ya-

hooMovies and A-Card). These are subsets of

prediction problems with the same features

but di�erent targets. (Encouragingly, there is

remarkable consistency in their best-performing

techniques). Two approaches were taken to ad-

dress this.

First, we randomly selected one data set

in each multi-target problem to represent the

others. Second, we weighted the ranks of these

multi-target data sets in order for all inform-

ation to be present in the analysis. Both ap-

proaches lead to the same statistical conclu-

sions, and in what follows we present the former.

Concretely, the statistical test is performed with

a sample size of 15 for the binary data and 8

for the numeric data.

The non-parametric Friedman test is per-

formed at a α = 0.05 signi�cance level. Follow-

ing the graphical representation proposed by

Dem²ar (2006), Figure 6 sets out the average

ranks of the classi�cation techniques both for

AUC (dashed lines) and execution time (solid

lines), for the binary data sets (top) and for

the numeric ones (bottom). Horizontal con-

nections between techniques denote groups of

algorithms which show no signi�cant perform-

ance di�erences. Note that the ranks in Fig-

ure 6 di�er from the ranks in Table 5 and Table

6 since a di�erent sample is used.

From Figure 6 (binary, top), we observe

that LR-BGD-L2 performs better than MN-

NB and RBF-SVM. Although LR-BGD-L2 has

the best classi�cation performance, it is very

slow in terms of run time.19 In contrast, MN-

NB is quite fast, but unfortunately it performs

quite poorly in terms of AUC. RBF-SVM achieves

the worst AUC and is the slowest. The best

performing method with respect to time is PSN.

Overall, PSN achieves a very respectable AUC-

time trade-o�.

From Figure 6 (numeric, bottom), we can-

not distinguish the techniques statistically in

terms of AUC. The small sample size of 8 is the

main reason for this. Here, also, PSN and MN-

NB are the fastest and the non-linear RBF-

SVM the slowest. Also, logistic regression and

the L2-regularized techniques are very time-

consuming.

Figure 7 presents the Pareto front for both

types of behavioral data, clearly demonstrat-

ing the multi-objective trade-o� between AUC

and time: if more computational resources are

available (further right), better classi�cation

predictions are reached. Note that the major-

ity of techniques on the Pareto fronts use L2

regularization.

19 For the kdda data set for example, LR-BGD-L2
�nd a solution in 2.5 hours, while PSN �nds one in
only 3.5 seconds.
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11 10 9 8 7 6 5 4 3 2 1

1.00 - PSN2.00 - MN-NB
4.60 - LR-SGD-L2

4.80 - LR-SGD-L1

6.07 - LS-SVM-L1

6.27 - LA-SVM-L2

7.00 - LR-BGD-L1

7.86 - LS-SVM-L2

7.13 - MV-NB

8.27 - LR-BGD-L2

11.00 - RBF-SVM

3.27 - LR-BGD-L24.80 - LS-SVM-L2

5.70 - LR-SGD-L2

5.20 - LR-BGD-L1

5.73 - LA-SVM-L2

6.06 - PSN

6.67 - LS-SVM-L1

6.10 - LR-SGD-L1

5.87 - MV-NB

7.53 - MN-NB8.47 - RBF-SVM

11 10 9 8 7 6 5 4 3 2 1

1.00 - PSN2.00 - MN-NB

3.37 - LR-SGD-L1

4.12 - LR-SGD-L2

5.37 - LS-SVM-L17.00 - LA-SVM-L2

7.37 - LS-SVM-L2

7.62 - MV-NB8.25 - LR-BGD-L1

8.87 - LR-BGD-L2

11.00 - RBF-SVM

3.50 - LR-BGD-L2

4.62 - LA-SVM-L2

5.43 - LR-BGD-L1

5.62 - LS-SVM-L2

5.93 - LS-SVM-L1

5.00 - PSN

6.50 - MV-NB

7.62 - MN-NB

7.18 - LR-SGD-L1

7.68 - LR-SGD-L2

7.25 - RBF-SVM

Figure 6: Statistical signi�cant di�erences (at alpha = 0.05 signi�cance level) between the methods in
terms of AUC (dashed lines) and time (solid lines) for a random sample of binary (top) and numeric
(bottom) data sets. The horizontal lines depict a group of methods for which no signi�cant di�erence was
found.
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MN-NB MV-NB LA-SVM-L2 LS-SVM-L1 LS-SVM-L2 PSN LR-BGD-L1 LR-BGD-L2 LR-SGD-L1 LR-SGD-L2 RBF-SVM
BookCrossing 56.17 56.05 56.16 54.46 56.24 53.54 54.78 56.25 55.10 55.13 53.48
YahooMovies_age 59.55 65.20 63.06 63.82 64.57 65.28 63.54 64.84 61.52 61.55 71.94

banking 54.79 68.17 54.25 53.40 54.62 67.08 53.73 54.95 66.28 67.24 53.45
TaFeng 71.92 70.58 70.57 69.52 71.19 69.86 69.80 71.36 65.77 66.05 63.04
MovieLens_crime 74.59 72.30 75.09 75.07 75.83 76.33 75.16 76.13 72.52 73.07 68.34
A-Card_Goto_MAS 63.73 76.50 68.58 63.36 63.27 75.51 64.93 64.97 75.55 76.50 64.78
MovieLens_adventure 73.6 59.72 73.52 73.79 73.94 76.57 73.79 73.98 68.86 67.64 70.07
fraud 76.27 77.16 57.13 50.41 55.68 76.87 52.66 55.48 72.75 77.11 69.09
MovieLens_100k_gender 74.48 69.63 74.73 73.02 77.09 74.71 72.82 77.21 73.78 74.49 75.75
Car 57.71 77.52 69.98 77.14 74.21 71.06 75.53 77.70 72.31 72.09 55.83
MovieLens_fantasy 61.99 56.13 61.35 60.43 62.27 78.3 61.23 62.22 61.00 61.80 69.85
MovieLens_romance 65.43 73.06 70.16 70.37 69.44 79.56 71.25 68.20 69.31 69.28 61.81
Ecommerce 77.24 55.85 79.54 75.31 79.60 68.30 76.02 79.62 79.26 79.26 71.95
YahooMovies_gender 73.81 79.30 79.92 79.08 80.30 80.18 79.14 80.43 75.36 75.44 78.38
MovieLens_mystery 59.86 57.32 69.61 69.85 69.70 81.07 70.32 68.03 61.95 62.80 69.26
A-Card_Goto_Permeke 77.47 80.84 61.13 64.5 64.34 78.27 63.14 63.14 82.35 82.35 81.86
MovieLens_children 80.97 73.02 79.10 79.78 79.54 83.7 79.83 79.7 76.07 75.05 80.75
MovieLens_drama 73.65 65.60 82.18 82.76 83.27 76.52 82.84 83.74 79.35 79.17 70.07
MovieLens_thriller 70.00 73.27 74.53 75.16 75.03 84.04 76.75 75.08 72.97 73.45 70.31
kdd2015 70.79 81.14 77.95 79.19 79.25 83.73 79.84 79.89 84.43 83.71 81.57
kdda 78.91 78.32 81.17 84.44 83.92 79.82 84.33 85.50 82.28 78.88 70.15
MovieLens_1m_gender 80.54 76.84 84.05 83.83 84.83 81.33 84.17 85.20 80.55 80.56 82.57
A-Card_Goto_Wezenberg 79.74 84.57 53.25 56.88 57.00 84.92 55.19 55.21 85.36 85.40 79.37
A-Card_defect 51.41 85.50 76.53 75.49 75.14 78.68 70.93 75.39 81.68 81.72 65.65
�ickr 77.77 85.99 73.48 76.77 76.22 76.63 77.08 76.97 84.38 84.25 80.15
MovieLens_comedy 77.02 77.82 84.45 85.03 85.84 78.21 85.29 86.13 82.19 82.09 74.82
A-Card_Goto_Roma 70.78 86.60 60.12 56.52 56.59 86.32 58.03 57.96 85.37 85.38 67.79
MovieLens_action 82.07 66.30 85.90 86.48 86.53 82.52 86.76 86.89 83.53 83.37 84.33
A-Card_Goto_Zoo 71.71 86.58 60.34 55.73 55.70 87.05 57.71 57.64 85.30 85.74 72.56
MovieLens_100k_age 79.43 77.20 87.09 84.17 87.71 80.21 85.08 87.95 84.10 83.33 81.61
MovieLens_animation 84.83 70.00 87.29 87.53 87.16 85.91 88.04 87.10 80.75 80.55 84.86
MovieLens_sci� 76.73 68.08 79.08 78.75 78.85 88.50 80.42 79.66 73.54 73.94 69.64
MovieLens_documentary 83.55 71.40 87.94 87.45 88.44 87.82 87.98 88.57 85.76 85.90 79.95
MovieLens_musical 80.50 72.05 81.25 79.61 80.85 90.34 79.43 80.53 75.84 76.08 73.31
MovieLens_1m_age 81.96 78.79 90.34 89.80 90.43 83.16 89.92 90.81 87.30 87.13 83.25
MovieLens_western 84.22 89.67 84.58 86.00 85.24 91.37 85.72 85.82 84.94 84.84 69.12
MovieLens_horror 90.88 88.80 91.14 91.01 91.08 91.08 91.46 91.27 90.01 89.81 88.62
A-Card_cashout 55.90 91.54 74.01 70.87 70.35 83.34 71.12 70.96 90.86 90.88 90.60
MovieLens_�lmnoir 79.50 71.82 76.40 78.94 76.07 92.90 78.57 78.60 68.33 69.10 80.17
MovieLens_war 72.86 70.61 81.18 78.82 81.71 95.23 79.92 80.74 79.80 79.83 77.53
LibimSeTi 99.64 99.65 99.68 99.69 99.68 78.97 99.69 99.69 99.65 99.65 99.66
Average Ranking 7.73 7.00 5.80 6.30 5.03 4.35 5.19 4.10 6.63 6.26 7.51
Number of wins 1 7 0 1 0 13 3 14 2 2 1

Table 5: Predictive performance of the models in terms of AUC for the binary data sets (highest-achieved performance for a data set indicated in boldface).
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MN-NB MV-NB LA-SVM-L2 LS-SVM-L1 LS-SVM-L2 PSN LR-BGD-L1 LR-BGD-L2 LR-SGD-L1 LR-SGD-L2 RBF-SVM
BookCrossing 57.24 53.19 55.28 54.22 55.13 52.57 54.24 55.78 54.36 54.46 52.16
YahooMovies_age 64.45 65.39 64.10 64.40 64.72 65.20 64.44 65.45 60.94 61.19 58.83
MovieLens_crime 74.62 66.09 71.79 73.09 72.51 72.18 73.44 73.21 72.88 73.98 72.93
MovieLens_fantasy 71.55 51.13 63.90 62.32 62.72 75.61 60.09 60.35 56.68 59.53 71.81
A-Card_Goto_MAS 63.60 76.51 66.27 61.09 60.97 76.23 62.60 62.44 70.53 62.68 65.48
MovieLens_adventure 74.20 59.19 72.24 72.32 72.78 76.88 72.11 72.68 62.36 66.56 74.31
MovieLens_100k_gender 75.57 74.56 75.87 73.37 76.16 75.98 75.07 78.72 76.24 76.64 77.03
MovieLens_mystery 75.28 54.44 64.32 67.26 63.97 79.02 69.94 64.86 56.48 59.21 69.44
MovieLens_romance 71.68 55.80 67.62 65.41 67.85 79.19 62.69 66.23 57.86 59.28 66.14
A-Card_Goto_Permeke 77.67 80.71 65.18 68.96 67.70 79.13 69.62 67.38 81.55 79.63 81.76

MovieLens_drama 72.72 69.15 79.82 80.85 79.94 75.91 81.07 81.75 75.41 75.57 71.33
YahooMovies_gender 78.09 80.69 80.64 79.34 79.71 82.00 79.62 80.97 74.65 74.74 80.31
MovieLens_1m_gender 79.99 78.79 81.25 82.65 80.35 80.59 82.48 83.23 70.23 79.44 79.42
MovieLens_thriller 78.51 57.15 74.23 72.5 73.74 83.97 74.26 73.98 64.18 64.17 79.95
MovieLens_children 81.58 69.25 78.70 77.89 78.51 83.97 76.88 78.83 73.87 78.14 80.80
MovieLens_comedy 76.51 77.30 83.03 83.44 83.59 78.77 83.57 84.36 79.50 79.81 73.28
kdd2015 62.46 83.96 67.88 67.65 64.95 84.59 66.66 69.06 73.06 80.55 80.87
A-Card_Goto_Wezenberg 76.67 84.08 56.55 57.64 57.39 85.07 57.79 57.81 79.20 72.28 80.16
A-Card_defect 52.67 85.64 72.06 74.09 71.61 81.35 74.04 73.85 76.08 61.26 67.20
MovieLens_action 81.88 67.20 83.25 85.01 83.24 82.14 84.75 86.12 81.27 81.36 84.38
MovieLens_animation 84.64 67.53 86.06 85.86 85.62 84.17 86.13 85.45 75.16 77.10 82.97
A-Card_Goto_Roma 69.85 86.64 60.05 57.72 58.35 86.59 58.25 58.46 76.17 69.47 70.47
MovieLens_sci� 84.72 56.43 78.16 76.39 77.66 87.02 77.27 77.23 72.51 72.50 76.97
MovieLens_documentary 79.39 81.20 86.35 86.45 86.78 87.41 86.91 87.10 78.65 82.07 81.05
A-Card_Goto_Zoo 67.62 86.49 56.81 55.73 57.30 87.26 55.77 55.82 72.78 76.07 75.34
MovieLens_1m_age 80.80 78.86 85.86 87.80 85.18 82.95 87.79 87.71 84.53 84.84 77.57
MovieLens_100k_age 79.53 80.33 85.58 82.27 85.10 81.19 83.49 88.52 83.55 83.45 83.84
MovieLens_musical 88.45 57.83 80.13 79.24 80.28 89.57 76.83 80.22 61.82 72.64 79.84
MovieLens_horror 89.31 88.30 88.14 88.40 88.42 90.72 89.56 89.3 87.74 87.76 90.03
MovieLens_�lmnoir 89.54 71.08 72.07 74.73 71.93 90.78 71.78 71.73 64.06 68.11 81.21
A-Card_cashout 53.49 91.48 71.30 66.40 66.68 86.91 66.37 66.23 86.96 80.32 91.57

MovieLens_western 89.04 66.81 82.92 83.61 83.71 91.68 83.64 84.00 74.31 81.05 87.46
MovieLens_war 83.20 65.55 75.83 75.82 78.06 94.06 82.07 73.68 65.28 67.73 73.97
LibMiSeTi 99.64 99.65 99.68 99.69 99.68 78.97 99.69 99.68 99.65 99.65 98.78
Average Ranking 5.73 7.70 5.97 6.39 5.79 3.58 5.66 4.76 7.72 7.36 5.55
Number of wins 2 3 1 2 0 16 1 8 0 0 2

Table 6: Predictive performance of the models in terms of AUC for the numeric data sets (highest-achieved performance for a data set indicated in boldface).
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4.1.2 Comparison of Binary and Numeric

Behavioral Data

Binary and numeric data are contrasted with

the Wilcoxon signed-rank test to determine if

numeric behavioral information, which mod-

els strength of behavior, leads to better pre-

dictions. This leads to the �nding that LS-

SVM-L2, LA-SVM-L2, LS-SVM-L1, LR-SGD-

L1 and LR-SGD-L2 in fact perform better for

binary data sets. A tendency towards a sim-

ilar result was found for LR-BGD, but without

statistical support. Discriminative, linear clas-

si�ers which try to maximize the distance between

a hyperplane and support vectors are very sens-

itive to the distance of the instances along the

feature axes (Forman et al., 2009). It is there-

fore bene�cial for those models that the range

of distances along each feature axis is small

and this is the case when only taking into ac-

count binary information (Hsu et al., 2003).

Thus, presence/absence information is su�-

cient evidence of instances' class membership

for these discriminative techniques.

Additional signi�cant di�erences contrast-

ing binary and numeric data on computational

performance are the following. All support vec-

tor machines (LA-SVM-L2, LS-SVM-L1 and

LS-SVM-L2) and both batch gradient descent

logistic regression methods (LR-BGD-L1 and

LR-BGD-L2) run faster when faced with bin-

ary behavioral data. In contrast, MN-NB runs

faster when faced with numeric behavioral data.

4.1.3 Interpretation of Performance Analysis

First, let's focus on Naive Bayes. Overall, the

results corroborate what has been found in

prior predictive analysis studies: given enough

data, discriminative classi�ers outperform gen-

erative classi�ers (Ng and Jordan, 2002). Be-

cause of the constraints of the event genera-

tion schemes, naive Bayes is not able to grasp

the underlying distribution of the data as well

as (say) logistic regression. This suggests the

need for context-speci�c event models for be-

havioral data, as neither the multivariate Bernoulli

nor the multinomial event model is quite right

for many behavioral data settings (Junque de

Fortuny et al., 2013).

Separately, the naive Bayes results also raise

a warning for researchers and practitioners.

The importance of considering the assump-

tions of the underlying data-generating pro-

cess is underlined when comparing MV-NB and

MN-NB. It is striking that MN-NB performs

quite poorly (see Table 6), but at the same

time belongs to the top-used techniques in rel-

evant literature, as illustrated in Table 1. We

conjecture that the likely reason for its fre-

quent use is that multinomial NB has been

shown to perform well in settings such as text

mining (Hand and Yu, 2001). Since these be-

havioral data resemble (perhaps super�cially)

text data sets, one might conclude that naive

Bayes would also work well here. For binary

behavioral data, however, MV-NB performs

better than MN-NB. In text classi�cation, com-

parisons between both event models on binary

bag-of-words data have shown superior per-

formance of the multinomial event model (al-

though no evidence for statistical signi�cance

was found) (Schneider 2004; Metsis et al. 2006).

The reason for this can be attributed to the as-

sumptions made by the underlying event mod-

els. The multivariate event model assumes each

feature to be generated by independent boolean

draws and thus models the presence and ab-

sence of features (McCallum and Nigam, 1998).

In contrast, the multinomial model captures

frequencies of features and assumes the fea-

tures to be drawn independently and with re-

placement from the collection of all features.

When modeling binary data, the former ap-

pears the best �t. The fact that this does not

hold for text data reinforces the importance of

context-speci�c modeling schemes and stresses

that care should be taken in assessing which

event generation model best �ts the analyzed

data (Junque de Fortuny et al., 2013). This

is also in line with the no-free-lunch theorem

stating that no assumptions can be made re-

garding a classi�er's superior performance across

di�erent data contexts (Wolpert, 1996). Cur-

rently, for human behavioral data our result

suggests that the multinomial event model is

not well suited (Junqué de Fortuny et al., 2013;

Junque de Fortuny et al., 2013).

In contrast, for numeric behavioral data

where the features model the strength of an ac-

tion, the multinomial model outperforms the

multivariate event model. This follows the in-

tuition behind their underlying event models

as stated above. In text classi�cation, MV-

NB was not found to perform well on numeric

data. Also, by running MV-NB on an expan-
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Figure 7: Pareto front for binary (top) and numeric (bottom) behavioral data.

ded unary-encoded data set, increased depend-

ence between features is created, violating the

underlying model assumptions and resulting

in lower performance (Bermejo et al., 2014).

In text classi�cation studies, MN-NB is sel-

dom used with feature values that model ab-

solute frequencies of words (as they do here).

Typically, an inverse document frequency (IDF)

measure is employed, favoring less frequently

occurring words. This IDF philosophy is in-

corporated in the PSN method and weighting

features in this manner thus seems bene�cial

in a behavioral context. Approaching the prob-

lem through a weighted bigraph between per-

sons and behaviors is a very intuitive approach

on the one hand, but also results in the most

time-e�cient method.

Moving on to the discriminative classi�-

ers, we observe the superior performance of L2

regularization over sparse L1 regularization.

This con�rms the �ndings of Zhu et al. (2003)

and Bannur (2011). Moreover, Ng (2004) the-

oretically shows that due to the rotationally-

invariant nature of L2 regularization, it is bet-

ter suited than its L1 counterpart in a con-

text with many relevant features. This implies

that many features in the high-dimensional be-

havioral context contribute to the prediction,

which is also con�rmed in the learning curve

analysis (below). Taking into account people's

limited behavioral capital and the very sparse

feature vectors, it makes sense to learn dense

concepts (from the sparse data). Similar res-

ults have been found elsewhere for behavioral

data (Clark and Provost, 2016), and also for

the analysis of high-dimensional text data (Joachims,

1998).

Comparing the performance of linear versus

non-linear classi�ers, it can be observed that

the linear classi�ers overall perform better. This

is in line with results from text classi�cation (Joachims,

1998), where the problem is often considered

linearly separable due to the high-dimensionality.

In that case, unnecessarily transforming the

problem to a higher-dimensional feature space

with RBF-SVM leads to over�tting. For nu-

meric data, however, RBF-SVM performs bet-

ter compared to its performance on binary data

which can be attributed to the fact that the

discriminative linear classi�ers do not perform
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well with numeric data as stated above. With

a larger range of feature values, the space in

which a hyperplane is to be found becomes

much larger, increasing the e�ect of the curse

of dimensionality and decreasing the possibil-

ity of linear separability. The burden of going

through much more computational complex-

ity, however, generally does not justify its use

in such high-dimensional settings, as the res-

ults here corroborate.

Further, the Pareto fronts con�rm our pre-

vious �ndings. Clearly, classi�cation techniques

such as NB, PSN and SGD, which all make use

of strong assumptions to simplify the classi�c-

ation process are located most left in Figure 7.

Making these assumptions (for example that

the features are conditionally independent in

the case of NB) leads to lower runtime com-

plexity, while at the same time giving up AUC.

Only MV-NB presents an exception to this:

its runtime of O(m̄ ·n) approaches that of the

SVM techniques. On the other hand, MV-NB

also consistently performs best on large, imbal-

anced data sets. Although the speci�c genera-

tion process of human behavioral data is not

known, estimating simple models or heurist-

ics (in the spirit of backward-engineering the

data generation process) can provide insight

into this process as well as provide decent (and

even very good) results when modeling this

data (Gigerenzer and Goldstein 1996; Giger-

enzer et al. 1999; Green and Armstrong 2015).

PSN o�ers an interesting case when we look

across all of the results. As just noted, it is by

far the fastest technique. In terms of predictive

performance, although in the main compar-

ative analysis its rank is middling, note that

it is not statistically signi�cantly worse than

the best performer. Also note that when we

go back to the full studies, PSN dominates in

wins for the numeric data sets and is a very

close second for the binary data sets. This dif-

ference from the main results is because PSN

consistently reaches the best AUC across the

MovieLens_genre data sets, most of which are

essentially discarded for the main analysis.

4.1.4 Summary of Performance Analysis

We summarize the conclusions of the perform-

ance analysis as follows:

� Overall, discriminative classi�ers perform

better than generative classi�ers with LR-

BGD-L2 yielding the best generalization

performance (AUC) for both binary and

numeric data. However, in terms of com-

putational e�ciency, it performs worst.

� In general, L2 regularization performs bet-

ter than L1 regularization. Table 1 demon-

strates that a presumption towards this em-

pirical �nding exists in literature as L2 reg-

ularization is used more frequently. As a

drawback, we �nd that L2 regularization

takes more time.

� BGD optimization is slower than its SGD

variant, while resulting in better generaliz-

ation performance.

� RBF-SVM is the slowest method for both

binary and numeric data. This is also stated

in many papers as the reason why RBF-

SVM is not considered an option with such

high-dimensionality.

� PSN and MN-NB build their models in the

shortest amount of time with the heuristic

assumptions of PSN leading to better res-

ults in the smallest amount of time.

� MV-NB performs better than MN-NB for

binary data; the opposite holds for numeric

data.

� If you want a fast and moderately accurate

method, PSN is the way to go. It is by far

the fastest, and its predictive performance

is fairly good.

� Contrasting binary and numeric behavioral

data, LIN-SVM and LR result in better

predictions in a lower amount of time for

binary data. On the other hand, MN-NB

achieves better run time for numeric data.

Linking these results to Contribution I of this

work, we can thus conclude the following. LR-

BGD-L2 performs best in terms of AUC on

binary behavioral data sets. However, in a prac-

tical setting, its time complexity might render

it impracticable. An attractive trade-o� between

performance and time is given by the PSN

technique. Regarding Contribution II, for the

discriminative linear SVM and logistic regres-

sion classi�ers, the mere modeling of presence

and absence of features (binary features) is su-

perior both with respect to classi�cation per-

formance as well as computational runtime.

4.2 Learning Curve Analysis

Figure 8, Figure 9 and Figure 10 show the

learning curves in the instance dimension, in
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the feature dimension for random feature se-

lection, and in the feature dimension with fea-

ture selection for the largest behavioral data

sets. In order to provide clarity to the many

learning curves, we structure the analysis to

�nd general patterns and attempt to identify

groups of similar behavior. Note that some

learning curves demonstrate deviant behavior

from the general trend, which is mostly due

to the random sampling procedure leading to

varying imbalance and sparsity levels. In Ap-

pendix B, more learning curves for these di-

mensions can be found. Not all learning curves

are shown; however, we have selected repres-

entative learning curves showing the main be-

haviors present in the data collection.

4.2.1 Instance Dimension Learning Curves

For the majority of the learning curves, it can

be seen that the SVM classi�ers overall show

similar behavior, with L2 regularization often

dominating L1 regularization. Moreover, the

LR-SGD curves are often similar to one an-

other. These �ndings con�rm our previous res-

ults.

On a more detailed level, we attempt to re-

late the shape of the curves to data character-

istics. Four cases can be identi�ed dependent

on two dimensions: signal-from-noise separab-

ility and imbalance. The exact signal-from-noise

separability of a data set cannot be determ-

ined, so a proxy S̃NS is used in the form of the

maximum AUC reached by the classi�cation

techniques analyzed here, analogous to Per-

lich et al. (2003). Two cases are distinguished:

S̃NS ≤ 83% refers to lower signal separabil-

ity while S̃NS > 83% refers to higher signal

separability, which is essentially the same split

used by Perlich et al. (2003). The second di-

mension denotes the imbalance of the target

variable. A high imbalance is recorded if less

than 5% of the labels are positive, otherwise

imbalance is considered low.

Along these two dimensions, four cases can

now be discussed. The �rst case is character-

ized by low imbalance and high separability.

The most obvious illustration can be seen in

LibimSeTi. An instance sample of less than 1%

is su�cient to reach an AUC not signi�cantly

di�erent from the �nal performance. The tech-

niques learn fast and the result is a concave-

down learning curve. MV-NB is the only tech-

nique which requires considerably more instances

to learn from this data as demonstrated by the

later occurrence of this shape. As the signal-

from-noise separability decreases, but stays above

83%, the curves stay concave down (MovieLens_action,

MovieLens_comedy, MovieLens_horror. This

is the case for data sets where feature dimen-

sionality is lower and the curves thus resemble

traditional concave-down learning curves and

learning curves for textual data (Colas and

Brazdil, 2006). The second case is illustrated

by MovieLens_sci�, MovieLens_thriller and

MovieLens_western. Here, the separability is

still high but the imbalance also is high result-

ing in concave-up learning curves.

Thirdly, when the separability is low and

imbalance is high, a concave-up curve is ob-

served and generative techniques demonstrate

more robustness towards that imbalance (Fraud,

Car and Banking). Theoretically indeed, SVMs

are not able to generalize well with high imbal-

ances as a separator is learned which is biased

towards the minority class (Liu et al. 2007;

Wallace et al. 2011). Moreover, combining small

instance samples with low evidence of posit-

ive samples, discriminative models have more

di�culty to separate the instances (Ng and

Jordan, 2002). Lastly, when both separability

and imbalance are low (TaFeng, BookCrossing

and YahooMovies), again a concave-up/linear

curve demonstrates a slow start-up in learn-

ing. Also, all classi�ers demonstrate compar-

able behavior in attempting to capture the

low-separable signal in the data.

In summary, in all cases except the �rst

(low imbalance, high separability), the learn-

ing curves show concave-up/linear behavior,

which implies that for these behavioral data

sets, for the ranges that we are able to consider

(which in some cases are quite large), adding

more training instances keeps on yielding sub-

stantive increases to the classi�cation perform-

ance. Although of course there is an inherent

ceiling on predictive performance, in many of

these cases there still seems to be room for

signi�cant improvement. This is in contrast

to learning curves for large traditional, non-

behavioral data (such as Shavlik et al. 1991;

Perlich et al. 2003; Martens et al. 2016) which

mostly have concave-down shapes. In that case

generally, the bene�t of adding training set

samples leads to diminishing return in AUC (Prov-

ost and Kolluri, 1999). Importantly, the com-
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monality of concave-up learning curves should

lead practitioners to exercise caution when per-

forming pilot studies on smaller data samples�

as the observed performance may well not rep-

resent what is possible to achieve larger data

sets.

Linking this to Contribution III of this work,

it is apparent from these learning curves that

overall adding more training instances leads

to a better performing model. This reinforces

what has been found in Junqué de Fortuny

et al. (2013): even for large data sets, more

data indeed still often will yield substantially

better predictions.

4.2.2 Feature Dimension Learning Curves

with Random Feature Selection

It can be seen that all algorithms start roughly

equally when faced with few features and over-

all no classi�cation technique is signi�cantly

better at handling fewer features.

When the data has low separability and

no extreme imbalance (YahooMovies, TaFeng

and BookCrossing), the learning curves are con-

cave up and no classi�er dominance can be

distinguished. As imbalance increases for low

S̃NS datasets (Banking, Car and Fraud), the

generative classi�ers again dominate the dis-

criminative techniques. The latter also holds

for highly separable datasets (MovieLens_sci�,

MovieLens_thriller andAcard_Wezenberg), al-

though the high S̃NS and the lower feature di-

mension reshape the end of the learning curves

towards being concave down. In the case of a

high signal from noise separability with no ex-

treme imbalance on large datasets (Flickr and

KDDa), the techniques learn slowly resulting

in concave-up curves. In contrast, for smaller

datasets (MovieLens1m,KDD2015 andMovieLens_

horror) learning goes faster, and the resulting

curves are linear or concave down.

A comparison of the learning curves in the

instance and feature dimensions leads to the

�nding that performance convergence is more

sensitive to the features than to the instances:

the feature learning curves overall demonstrate

concave up behavior. This is strongly con�rmed

in the high S̃NS data set LibimSeTi : the per-

formance converges faster in the instance di-

mension than in the feature dimension.

Following the �ndings in the previous sec-

tion, the support vector machines and the SGD

variants each demonstrate similar behavior. Re-

garding individual classi�ers' robustness, it is

hinted at by the learning curves forMovieLens

(comedy), MovieLens1m (age) and LibimSeTi

that MV-NB learns more quickly in the fea-

ture than in the instance dimension: the bias

component of its error is larger in the latter

due to smaller sampling size combined with

having many features (Friedman, 1997).

The foremost conclusion from these results

is that adding more features leads to higher

predictive performance (Contribution III). Moreover,

due to the shapes being concave up (and some

linear), it seems that many features provide

signi�cant, independent predictive evidence. We

look deeper into this next.

4.2.3 Feature Dimension Learning Curves

with Intelligent Feature Selection

Unsurprisingly, it can be observed that the

starting point with intelligent feature selec-

tion is higher in comparison to the starting

point when adding random features. For the

large behavioral data sets (very �ne-grained

with more than 1 million features such as Car,

KDDa and Banking), adding more features,

the curves exhibit a similar concave-up shape

as when no feature selection is used. This prompts

us to conclude that for these very large be-

havioral data sets, the features show low re-

dundancy and very many are essential in pre-

dicting the target variable. For smaller beha-

vioral data sets (such as Flickr, BookCrossing,

TaFeng and Ecommerce), the curves change

from concave up to linear. Hence, there is dis-

criminative informative value present in the

features, although each still contributes to bet-

ter predictions. This has also been found in

text analysis (Joachims, 1998). For the other

data sets, the curves demonstrate concave-down

learning behavior. Adding the most informat-

ive features �rst leads to a signi�cant perform-

ance increase. The remaining less-discriminative

features result in diminished increases and in

some cases even decrease the AUC. This is the

case for the linear support vector machines in a

high-imbalanced setting (Acard_Permeke, Ac-

ard_Wezenberg) for which these techniques are

highly sensitive (Forman, 2003). Similar res-

ults have been found in text classi�cation where

the feature dimensions are comparable in size
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to these lower feature-granularity data sets (Colas

and Brazdil, 2006).

Referring back to Contribution III, using

more, although less informative features still

leads to a higher predictive value, especially

in the case of very �ne-grained features. This

implies that care should be taken with pre-

processing techniques such as feature selection

in the context of very �ne-grained behavioral

data.

5 Conclusion

The academic literature regarding big behavi-

oral data provides substantial evidence of its

predictive power in a wide variety of �elds.

However, not all state-of-the-art classi�cation

techniques are suitable for the high-dimensional

and sparse characteristics of these data sets.

Through a systematic comparative benchmark-

ing study, this paper investigated the perform-

ance of these state-of-the-art classi�ers with

large, sparse behavioral data.

The �rst contribution consists of �nding

a well-performing method both in terms of

AUC and computational complexity. The res-

ults, however, indicate that an AUC-time trade-

o� is inherent to the problem as the Pareto

front clearly illustrates: given more time, one

can choose to achieve higher classi�cation per-

formance. In terms of AUC, logistic regression

with L2 regularization leads to signi�cantly

better results. Unfortunately, it attains this

result at a high computational cost. Relating

these results to the techniques used in the aca-

demic literature (Table 1), linear support vec-

tor machines are most frequently used, while

our results �nd that logistic regression would

perform better. The propensity in literature

towards the use of L2 regularization is suppor-

ted by our �ndings.20 This suggests and con-

�rms �ndings from comparisons with dimen-

sionality reduction techniques that each beha-

vioral feature captures a di�erent �ne-grained

aspect of an instances' behavior, resulting in

low feature redundancy. The learning curves

built by adding features dependent on their

information value also support this �nding. In

20 This is in contrast to what, at least anecdotally,
is a common reaction among practitioners: that
since the data are high-dimensional and sparse, one
should use L1 regularization, confusing the presence
of sparse data with a desire for a sparse model.

terms of computational complexity, PSN and

MN-NB stand out with their signi�cantly low

run time. MN-NB is commonly used (see Table

1) due to its frequent and successful applica-

tion in high-dimensional text analysis. Despite

its speed, however, its underlying assumptions

do not lead to high-quality predictions in this

behavioral setting. PSN appears to be a much

better AUC-time trade-o�.

On a more �ne-grained level, a tree clas-

si�er and a logistic regression are learned on

the results to explore the competence domain

of the best-performing classi�ers. These meta-

analyses are to be interpreted with caution due

to the restricted sample size. As imbalance in-

creases, MV-NB performs better. If the sample

is heavily unbalanced for small data sets, PSN

becomes the method of choice. As con�rmed in

the learning curves, the generative techniques

indeed perform better in a highly imbalanced

setting. In low-imbalanced data sets, the dis-

criminative classi�ers have higher AUC.

The second contribution is to determine

whether a more complex numeric represent-

ation of the behaviors adds predictive power

over a binary action-taken-or-not representa-

tion. The discriminative techniques perform

better when the data merely models presence/-

absence of features in contrast to data enriched

with behavioral strength; the mere presence

of behavior apparently informs the modeling

su�ciently, which obviously could lead to de-

creased investment in data collection and man-

agement.

By systematically comparing these classi-

�cation techniques in a benchmarking study,

we have formally investigated what is correctly

or incorrectly presumed by previous behavi-

oral analysis studies. The conclusions can now

point researchers and practitioners towards a

unifying direction for both future behavioral

research and future technique optimization re-

search. Furthermore, the importance of context-

speci�c data modeling schemes has been em-

phasized.

Limitations related to this analysis origin-

ate from limited public availability of beha-

vioral data sets. This results in a relatively

small sample for signi�cance testing. However,

we worked to make it as broad a sample as

possible. One avenue of future research there-

fore consists of updating this proposed set of

benchmarks with even more behavioral data
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sets as these become available. Especially for

numeric data sets, this could lead to stronger

conclusions. Moreover, sound meta-analyses could

then strengthen the relations between data set

characteristics and choice of classi�er. Ideally,

in future research an event generation model

can be constructed for this type of data res-

ulting in the generation of arti�cial data sets

that could enrich this benchmark collection.

A second possibility for further research con-

stitutes a focus towards scaling up the well-

performing L2-regularized techniques in terms

of computational complexity on very sparse

data (Dalessandro et al., 2014), most import-

antly for LR-BGD-L2. It would also be inter-

esting to explore whether fast, heuristic pre-

dictions by e.g. a PSN technique could be used

to speed up the training phase of more com-

plex, slower classi�ers such as LR-BGD-L2 or

RBF-SVM in order to combine the best of

both worlds (Dalessandro et al. 2014; Junqué de

Fortuny et al. 2015).

With respect to the third contribution, a

learning curve analysis is performed which shows

that better performance continues to be ob-

served when more data (both in instance and

feature dimension) is used. In contrast to non-

behavioral instance learning curves, the curves

are generally linear/concave-up. This implies

that performance still increases when adding

more training data, even to very large data

set sizes, which is only marginally the case for

traditional non-behavioral features. Very �ne-

grained, large data sets which demonstrate very

low redundancy in the features show no de-

pendence on the informative value of features

as demonstrated by the concave-up curves when

adding informative features in a descending

fashion. For smaller, less �ne-grained data sets,

a higher redundancy between the features is

present with a higher sensitivity to more be-

havioral features. Hence, it is very valuable to

collect as much data as possible in this beha-

vioral setting both regarding more instances

as well as regarding more modular behavioral

aspects.

Moreover, this shows that traditional learn-

ing curve analysis might be misleading. For

example, Provost and Fawcett (2013) suggest

that investing in more training data probably

is not worthwhile as learning curves show that

generalization performance has leveled o�. This

advice was indeed supported by traditional learn-

ing curve analyses, where one seldom witnesses

learning curves that look poor for signi�cant

stretches and then suddenly turn steeply up.

However, here we see this pattern repeatedly

and thus researchers and practitioners should

be given di�erent advice for data such as these.

For future research, de�ning and quantifying

behavioral characteristics of data sets could

also prove helpful in determining causes for

di�erent generalization patterns of classi�ca-

tion techniques.

In this paper we focused on the predict-

ive performance (and computational require-

ments) of the generated classi�cation models.

Increasingly important aspects of such models

is explainability and fairness. The ability to ex-

plain the decisions made can be important for

various reason such as model acceptance and

model improvement, see for example Martens

and Provost (2014). The high-dimensionality

of behavioral datasets make traditional approaches,

such as investigating the coe�cients of a linear

model or rule extraction, problematic. Instance-

based approaches might be an interesting al-

ternative for this setting, to be investigated

in future research. Related to this issue, de-

tecting and removing potential negative bias

against sensitive groups (de�ned by for ex-

ample gender, race or sexuality) to ensure fair-

ness of the prediction model also constitutes

a relevant and challenging issue for future re-

search.

As a �nal conclusion, it is apparent that

the predictive analysis of big behavioral data

signi�cantly di�ers from the analysis of tradi-

tional (even big) data. The results of this study

should be taken into account in the general

predictive analysis of this kind of data.

A Classi�cation Techniques

A classi�cation technique takes a data set X along
with values Y for the target variable for each of the
instances xi in X and attempts to learn a function
h(x) = ŷ as an approximation of the true value Y .
The classi�er builds a predictive model based on a
training set (Xtrain, Ytrain). The trained model is
then used to predict y values of new, unseen data
points belonging to a test set.



26 De Cnudde et al.

A.1 Naive Bayes

The naive Bayes classi�er is a generative classi�er
using Bayes' rule to build a predictive model

p(y|x) =
p(y)p(x|y)

p(x)
.

Since the denominator is not dependent on the class
variable y, it is not taken into account. Then, mak-
ing use of the naive assumption that features are
mutually conditionally independent, the above equa-
tion can be rewritten as follows and forms the prob-
ability model used by the naive Bayes classi�er

p(y|x) ∝ p(y)

m∏
j=1

p(xj |y). (1)

In order to determine p(x|y), an underlying event
model is assumed for the generation of the features.
Considering the binomial and multinomial charac-
ter of the distributions of the behavioral features,
the multivariate and the multinomial event model
are considered suitable.

A multinomial event model has proven success-
ful in text classi�cation, an area also character-
ized by high dimensionality (McCallum and Nigam,
1998), and this model de�nes the conditional prob-
ability as

p(x|y) =

(
m∑
j=1

xj)!

m∏
j=1

xj !

m∏
j=1

p(xj |y)xj .

A multinomial distribution implies that the fea-
tures result from independent draws from the col-
lection of all features. It does not take into account
absent features, which is computationally bene�cial
in a sparse context. The training time complexity
of its implementation consists of calculating a vec-
tor of feature weights for each class and results in
O(m) time.

The multivariate event model de�nes the con-
ditional probability as

p(x|y) =

m∏
j=1

p(xj |y)xj (1− p(xj |y))(1−xj).

Theoretically, this event model excellently lends it-
self to binary data: a feature is present with probab-
ility p(xj |y) and absent with probability 1−p(xj |y).
However, since the absence of features is explicitly
modeled, its implementation is not naturally tailored
to sparse data. Therefore, an e�cient sparse imple-
mentation presented by Junqué de Fortuny et al.
(2013) is used. This implementation takes advant-
age of the assumption that the features are binary
and transforms Equation 1 into

log p(y|x) ∝ log p(y) +
∑

j|xj=1

log p(xj = 1|y) +

∑
j|xj=0

log(p(y)− p(xj = 1|y)).

This transformation results in a O(m̄ ·n) time com-
plexity in contrast to O(m · n) with m̄ the number
of active elements.

A.2 Logistic Regression

In logistic regression, the target function, h(x) =
(wTx), is transformed with the use of the logistic
function with w a vector of weights corresponding
to the dimensions of X. This transformation mod-
els a probabilistic estimate as to whether a test in-
stance belongs to the positive class. The logistic
regression model is thus de�ned as

p(y|x) =
1

1 + e−ywTx
.

When training the logistic regression model, the
function

min
w

R+ C

n∑
i=1

log(1 + e−yiw
Txi), (2)

is optimized, where R is the regularization term
to prevent over�tting. With L1 regularization, the
value of R equals ||w||1, with L2 regularization,
R is 1

2
||w||22. The former regularization parameter

zeroes out low-valued coe�cients which results in
natural feature selection (Ng, 2004). The latter, in
contrast, favors very small, non-zero weight values.
This regularization is controlled by a parameter C
which models a trade-o� between the complexity
of the model (�rst term) and minimization of the
training error (second term). Extremely minimizing
the training error might result in a complex model
with lower generalizability which the regularization
parameter C attempts to correct.

In the search for an optimal w, Equation 2
can be solved with Newton's methods batch gradi-
ent descent (LR-BGD variants) or with stochastic
gradient descent (LR-SGD variants) (Bottou, 2010).
The Liblinear package implements logistic regres-
sion with a trusted region Newton method (Fan
et al. 2008; Lin et al. 2008). Iteratively, a subset of
the region of the objective function is approximated
and subsequently expanded or shrinked depending
on the quality of the approximation. This is done
in O(m̄ · c) time where c is the number of itera-
tions needed until convergence. Stochastic gradient
descent is scalable towards larger dimensions since
it approximates the true gradient of w by calcu-
lating the gradient over one random training in-
stance. This approximation is seen as a proxy for
the real gradient and is used in subsequent steps of
the algorithm. While the execution time decreases,
clearly, convergence towards an optimum value will
be slower. Vowpal Wabbit, a widely used analysis
tool for big data, solves the LR-SGD variants with
stochastic gradient descent in O(n) time (Langford
et al., 2007).

A.3 Support Vector Machine

The support vector machine (SVM) (Cortes and
Vapnik, 1995) is a discriminative binary classi�er
that is very suitable for high-dimensional data. An
SVM �nds a hyperplane that maximally separates
the closest points of each of two classes, called sup-
port vectors (SV). In maximally separating the SVs,
the SVM aims for high generalizability and low
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variance. If the data is separable, the hard margin
SVM seeks a hyperplane of the form

wTx + b = 0,

with w the weight vector normal to the hyperplane
and b a bias. New test points are classi�ed on one
of the sides of this hyperplane, i.e.{
wTxi + b ≥ +1 if yi = +1,

wTxi + b ≤ −1 if yi = −1.

When faced with non-linearly separable data, a non-
linear function θ(x), called a kernel, is used to pro-
ject the data points to a high-dimensional feature
space where the points are linearly separable. In
general, the goal of the support vector machine is
to solve the objective function

min
w

b, ξ R+ C

n∑
i=1

ξi,

s.t. yi(w
T θ(xi + b)) ≥ 1− ξi,

ξi ≥ 0,

with C once again a trade-o� parameter between
complexity (�rst term) and error rate (second term)
and ξi (i = 1, ..., n) slack variables representing the
loss function. In words, the goal is to minimize the
training error (second term), while allowing for mis-
classi�cations (�rst term), regulated by the trade-
o� parameter C. Three parameters are to be de�ned
in the above equation, i.e. the regularization para-
meterR, the loss function ξi and the kernel function
θ.

The �rst parameter can be de�ned following L1
or L2 regularization. In the �rst case, R = ||w||1
and in the second case, R is equal to 1

2
||w||22. As

mentioned before, L1 regularization results in sparse
outputs. For the loss function ξ, the L1-norm and
the L2-norm are considered here. Selecting the L1-
norm as loss function ξ, the sum of the absolute
di�erences is minimized: ξi = max (0, 1− yiwTxi).
When using the L2-norm as loss function ξ, the
square of the errors is minimized and can be de�ned
as follows: ξi = max (0, 1− yiwTxi)2. Since the se-
cond loss function attempts to minimize the squared
errors, it is more sensitive to outliers. Regarding
the kernel, two options are explored: a linear ker-
nel and an RBF kernel. A linear SVM uses a linear
function as the kernel θ(x). It is often stated in lit-
erature that with high-dimensional data a projec-
tion to a higher-dimensional feature space to �nd a
hyperplane will come at too high a computational
cost and will not improve classi�cation perform-
ance (Hsu et al. 2003; Yu et al. 2010). RBF-SVM,
on the other hand, uses a non-linear kernel and is
capable of capturing complex interactions in the
data (Chang and Lin, 2011). An RBF-SVM oper-
ates with a Gaussian kernel and takes the form

K(xi,x
′
j) = e−γ||xi−x′

j
||2 ,

with xi and x′j two samples of which the Gaus-
sian kernel determines the similarity in the new
high-dimensional space guided by parameter γ. The
parameter γ controls the standard deviation of the
Gaussian at each point: the higher a value for γ,

the lower the in�uence of the SVs which decreases
bias, but increases variance. The Liblinear pack-
age (Fan et al., 2008) is used for the implement-
ations of the di�erent variants of linear SVM (i.e.
LS-SVM-L2, LS-SVM-L1, LA-SVM-L2). It uses a
coordinate gradient descent method solving the op-
timization problem in O(n) time. For the RBF-
SVM, the Libsvm package (Chang and Lin, 2011)
is used which leads to a training time complexity
that scales between O(n2) and O(n3).

A.4 Relational Classi�cation with Pseudo

Social Networks

In this approach, the data is transformed to a simil-
arity network (pseudo social network, PSN) between
the instances (Stankova et al. 2014; Martens et al.
2016). The network is denoted `pseudo' as no true
social network is implied: two instances are con-
nected if they are similar regarding behaviors they
have engaged in. Based on this similarity, predic-
tions are made using traditional relational classi-
�ers. Concretely, �rst, weights are calculated with
a top-node function for each feature based on its
degree (Stankova et al., 2014). We employ the tan-
gens hyperbolicum which de�nes the weight sm for
a feature m as

sm = tanh(
1

dm
),

with dm the degree of node m such that features
with a low degree receive a higher weight. Then,
the pseudo social network is built by connecting in-
stances, weighing their edges based on their shared
features. The feature weights are aggregated into
edge weights wij between nodes i and j through
an instance node function. The sum of shared nodes
function simply sums the feature weights sm of the
shared features of instances i and j as

wij =
∑

m∈N(i)∩N(j)

sm,

with N(i) the features demonstrated by instance i.
Now, relational classi�ers are used. These classi�-
ers infer unknown labels through network structure
and labels of connected nodes. We use the weighted-
vote relational neighbour classi�er (Macskassy and
Provost, 2007), which labels a node through a weighted
probability estimation using the known labels of
connected nodes. Formally, the classi�er calculates

P (li = c|N(i)) =
1

Z

∑
j∈N(i)

wijP (lj = c|N(j)), (3)

with li the label of node i, N(i) the instance nodes
connected to node i and Z the number of connected
nodes. In Stankova et al. (2014), a highly-scalable
version of the combination of the sum of shared
nodes instance node function with the weighted-
vote relational classi�er is deduced resulting in a
fast linear model over the feature nodes, referred
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to as SW-transformation. This fast, scalable vari-
ant with O(m) runtime complexity lends itself ex-
cellently in the context of sparse, high-dimensional
data and translates Equation 3 into

P (li = c|N(i)) =
1

Z

∑
m|xim 6=0

nsm × sm,

where nsm = |xjm = 1 and yj = 1| and sm is
the weight of top node m and N(i) the instance
nodes connected to node i. For a full account of
this method, we refer to Stankova et al. (2014).

A Python implementation of the SW-transformation
is available21.

B Learning Curves

21 https://github.com/SPraet/

SW-transformation/

https://github.com/SPraet/SW-transformation/
https://github.com/SPraet/SW-transformation/
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Figure 8: Learning curves in the instance dimension.
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Figure 9: Learning curves in the feature dimension (random feature selection).
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Figure 10: Learning curves in the feature dimension (intelligent feature selection).
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Figure 11: Learning curves in the instances dimension.
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Figure 12: Learning curves in the instances dimension.



34 De Cnudde et al.

 2^4  2^5  2^6  2^7  2^8  2^9 2^10 2^11 2^12 2^13
50

55

60

65

70

75

80

85

90

Sample size

A
U

C
MovieLens (action, binary)

 2^4  2^5  2^6  2^7  2^8  2^9 2^10 2^11 2^12 2^13
50

55

60

65

70

75

80

85

90

Sample size

A
U

C

MovieLens (action, numeric)

 2^4  2^5  2^6  2^7  2^8  2^9 2^10 2^11 2^12 2^13
50

55

60

65

70

75

80

85

90

Sample size

A
U

C

MovieLens (comedy, binary)

 2^4  2^5  2^6  2^7  2^8  2^9 2^10 2^11 2^12 2^13
50

55

60

65

70

75

80

85

90

Sample size
A

U
C

MovieLens (comedy, numeric)

 2^4  2^5  2^6  2^7  2^8  2^9 2^10 2^11 2^12 2^13
50

55

60

65

70

75

80

Sample size

A
U

C

MovieLens (crime, binary)

 2^4  2^5  2^6  2^7  2^8  2^9 2^10 2^11 2^12 2^13
50

55

60

65

70

75

Sample size

A
U

C

MovieLens (crime, numeric)

 2^4  2^5  2^6  2^7  2^8  2^9 2^10 2^11 2^12 2^13
50

55

60

65

70

75

80

85

90

95

Sample size

A
U

C

MovieLens (horror, binary)

 2^4  2^5  2^6  2^7  2^8  2^9 2^10 2^11 2^12 2^13
50

55

60

65

70

75

80

85

90

95

Sample size

A
U

C

MovieLens (horror, numeric)

 2^4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Sample size

A
U

C

Internet Advertisement

 

 

PSN

NB−MV

NB−MN

LS−SVM−L1

LA−SVM−L2

LS−SVM−L2

LR−BGD−L1

LR−BGD−L2

LR−SGD−L1

LR−SGD−L2

Figure 13: Learning curves in the instances dimension.
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Figure 14: Learning curves in the instances dimension.
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Figure 15: Learning curves in the features dimension (random feature selection).
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Figure 16: Learning curves in the features dimension (random feature selection).



38 De Cnudde et al.

 2^4  2^5  2^6  2^7  2^8  2^9 2^10 2^11 2^12 2^13 2^14 2^15 2^16
50

55

60

65

70

75

80

85

90

Sample size

A
U

C
MovieLens (action, binary)

 2^4  2^5  2^6  2^7  2^8  2^9 2^10 2^11 2^12 2^13 2^14 2^15 2^16
50

55

60

65

70

75

80

85

90

Sample size

A
U

C

MovieLens (action, numeric)

 2^4  2^5  2^6  2^7  2^8  2^9 2^10 2^11 2^12 2^13 2^14 2^15 2^16
50

55

60

65

70

75

80

85

90

Sample size

A
U

C

MovieLens (comedy, binary)

 2^4  2^5  2^6  2^7  2^8  2^9 2^10 2^11 2^12 2^13 2^14 2^15 2^16
50

55

60

65

70

75

80

85

Sample size
A

U
C

MovieLens (comedy, numeric)

 2^4  2^5  2^6  2^7  2^8  2^9 2^10 2^11 2^12 2^13 2^14 2^15 2^16
50

55

60

65

70

75

80

Sample size

A
U

C

MovieLens (crime, binary)

 2^4  2^5  2^6  2^7  2^8  2^9 2^10 2^11 2^12 2^13 2^14 2^15 2^16
50

55

60

65

70

75

Sample size

A
U

C

MovieLens (crime, numeric)

 2^4  2^5  2^6  2^7  2^8  2^9 2^10 2^11 2^12 2^13 2^14 2^15 2^16
50

55

60

65

70

75

80

85

90

95

Sample size

A
U

C

MovieLens (horror, binary)

 2^4  2^5  2^6  2^7  2^8  2^9 2^10 2^11 2^12 2^13 2^14 2^15 2^16
50

55

60

65

70

75

80

85

90

95

Sample size

A
U

C

MovieLens (horror, numeric)

 2^4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Sample size

A
U

C

Internet Advertisement

 

 

PSN

NB−MV

NB−MN

LS−SVM−L1

LA−SVM−L2

LS−SVM−L2

LR−BGD−L1

LR−BGD−L2

LR−SGD−L1

LR−SGD−L2

Figure 17: Learning curves in the features dimension (random feature selection).
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Figure 18: Learning curves in the features dimension (random feature selection).
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Figure 19: Learning curves in the features dimension (intelligent feature selection).
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Figure 20: Learning curves in the features dimension (intelligent feature selection).
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Figure 21: Learning curves in the features dimension (intelligent feature selection).
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Figure 22: Learning curves in the features dimension (intelligent feature selection).
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