
This item is the archived peer-reviewed author-version of:

An evaluation of DEVS simulation tools

Reference:
Van Tendeloo Yentl, Vangheluwe Hans.- An evaluation of DEVS simulation tools
Simulation - ISSN 0037-5497 - (2016), p. 1-37
Full text (Publishers DOI): http://dx.doi.org/doi:10.1177/0037549716678330

Institutional repository IRUA

http://anet.uantwerpen.be/irua

An Evaluation of
DEVS simulation tools

Journal Title
XX(X):1–37
c©The Author(s) 0000

Reprints and permission:
sagepub.co.uk/journalsPermissions.nav
DOI: 10.1177/ToBeAssigned
www.sagepub.com/

Yentl Van Tendeloo1 and Hans Vangheluwe1,2,3

Abstract
DEVS is a popular formalism for modelling complex dynamic systems using a
discrete-event abstraction. Due to its popularity, and simplicity of the simulation
kernel, a number of tools have been constructed by academia and industry. But
each of these tools has distinct design goals and a specific programming language
implementation. Consequently, each supports a specific set of formalisms, combined
with a set of features. Performance differs significantly between different tools. We
provide an overview of the current state of eight different DEVS simulation tools:
ADEVS, CD++, DEVS-Suite, MS4 Me, PowerDEVS, PythonPDEVS, VLE, and
X-S-Y. We compare supported formalisms, compliance, features, and performance.
This paper aims to help modellers on deciding which tool to use to solve their
specific problem. It further aims to help tool builders, by showing the aspects of
their tool that could be extended in future versions of their tool.

Keywords
DEVS, Tools, Functionality, Performance

Received: 09-Sep-2015

Revised: 25-Jul-2016

Accepted: 17-Oct-2016

1University of Antwerp, Belgium
2Flanders Make, Belgium
3McGill University, Montréal, Canada

Corresponding author:
Yentl Van Tendeloo
Department of Mathematics and Computer Science
Middelheimlaan 1
2020 Antwerpen, Belgium
Email: Yentl.VanTendeloo@uantwerpen.be

Prepared using sagej.cls [Version: 2015/06/09 v1.01]

2 Journal Title XX(X)

Introduction

DEVS is a popular formalism for modelling complex dynamic systems using
a discrete-event abstraction. In fact, it can serve as a simulation “assembly
language” to which models in other formalisms can be mapped [1]. A number of
tools have been constructed by academia and industry that allow the modelling
and simulation of DEVS models. Each of these tools was developed for a specific
application domain, resulting in different design goals.

Since there is no common DEVS format, used by all tools, modellers are tied
to their tool. Switching between tools is far from trivial, as each tool uses its
own API and language for model specification. Porting models between different
tools equates to rewriting the model from scratch. This makes the initial choice
on which tool to use an important choice, as switching comes at an arbitrary
high cost for huge models.

The problem is further aggravated by each tool supporting a different set of
formalisms and features. Even worse, performance between different tools varies
by orders of magnitute, depending on the domain and model. It is therefore
necessary to provide an overview of the current state of different tools. Modellers
get an overview which can help them to decide on which tool to use. Tool builders
get a better idea of how their tool is positioned relative to similar tools.

Previous efforts in comparing different tools are mostly done briefly in “related
work” sections of new contributions [2, 3]. These comparisons only include the
most related tools, and only use criteria relevant to their contribution. Others
do an in-depth analysis, but only for a limited set of simulation tools, and for
a single dimension. For example, there exist in-depth performance comparisons
between two simulation tools [4, 5], or a DEVS compliance check of two tools [6].
Other survey papers compare multiple tools, but don’t go in-depth, nor do they
use an exhaustive set of criteria that was externally validated [7]. End-users
therefore have no complete comparison between different tools, and information
is scattered.

In this paper, we compare a significant number of modern simulation tools
(eight in total, selected according to several criteria), using an exhaustive set
of functionality criteria, a set of DEVS compliance criteria, and a detailed
performance analysis. To guarantee objective criteria selection, we use existing,
independently defined criteria for functionality [8], DEVS compliance [6], and
performance [9]. Only well-argued deviations from these criteria are made.

We will continue by briefly introducing the four main DEVS formalisms
implemented by the tools under study (Section Background), as well as
the simulation tools themselves (Section Simulation Tools). The presented
tools are compared in terms of functionality (Section Functionality) and
performance (Section Performance). Section Conclusion concludes the
paper.

Prepared using sagej.cls

3

Background

This section briefly introduces the four DEVS formalisms used in the remainder
of this paper. This list of formalisms is by no means complete.

Classic DEVS

Classic DEVS [10] is the earliest DEVS formalism, and forms the foundation for
all subsequent variants. Two significant shortcomings were encountered in the
literature: the lack of parallelism [11] and the static structure of systems [12].
In response to these shortcomings, different DEVS variants were created.

Parallel DEVS

Parallel DEVS [11] was introduced to solve the performance problem caused by
the (artificial) select function of Classic DEVS. Parallel DEVS is widely supported
today, and has replaced Classic DEVS in most tools. Parallel DEVS models can be
more easily parallelized than Classic DEVS models, due to the lack of the select
function. The abstract simulator [13] shows parallel potential, by triggering all
transition functions simultaneously. While it is argued that this might not be
the best option in some cases [14], it clearly shows the possibility for parallelism.

Dynamic Structure DEVS

Both Classic DEVS and Parallel DEVS lack support for dynamically changing
models. While it is possible to emulate dynamically changing models (e.g.,
by putting the model structure in the state too), this introduces a significant
amount of accidental complexity. Several Dynamic Structure DEVS variants were
introduced to make structural changes more intuitive, removing the need for
manual “tricks”. Examples are DSDEVS [15, 16] and DynDEVS [17]. These
formalisms provide a mapping from an extended DEVS formalism, supporting
dynamic structure, to the basic DEVS structures, proving their equivalence [12].
Performing such a mapping during simulation is inefficient, so implementations
frequently use shortcuts.

Cell DEVS

Cell DEVS [18] is a combination of DEVS and Cellular Automata. Cellular
Automata use a discrete time base, making them increasingly resource intensive
with increasing time granularity. On the other hand, DEVS uses a discrete event
time base, only taking into account points in time where events are processed
and exchanged. It is not optimized, however, for synchronous communication,
as is the case in Cellular Automata. Cell DEVS merges these two formalisms to
combine a discrete event time base with synchronous communication. A Parallel
Cell DEVS [19] variant was also introduced with the advent of Parallel DEVS.

Quantization [10] can be used to prevent the propagation of insignificant state
changes, thus improving performance. As the definition of “insignificant” varies
from model to model, the user has to define the significance threshold manually.
Using quanitization is a trade-off between accuracy and performance.

Prepared using sagej.cls

4 Journal Title XX(X)

Version Release Language License
ADEVS 2.8.1 2014 C++ FreeBSD
CD++ 2.0-R.45 1999 C++ & custom (unspecified)
DEVS-Suite 2.1.0 2009 Java LGPLv2
MS4 Me 1.5.0 2015 Java & custom Proprietary
PowerDEVS 2.4rev 2015 C++ GPLv3
PythonPDEVS 2.3 2015 Python Apache-2.0
VLE 1.2 2014 C++ & XML GPLv3
X-S-Y 1.0.0 2012 Python LGPL

Table 1. Simulation tools under study

Simulation Tools

This section provides a brief introduction to the DEVS simulation tools under
study. We have selected the tools based on the following criteria:

• Features. Due to the wide variety in simulation software, all tools support
a different set of features. In our evaluation, we consider tools with an
extensive feature set, but also tools with very few, but special features.

• Performance. For large scale simulations, performance is critical. While
we certainly want to include highly optimized simulation tools, we also
want to include tools with a potentially bad performance in case there is
some gain in other dimensions (e.g., more features).

• Popularity. Finally, popularity is an important criteria due to inertia: a
popular tool will still be used as long as there are not enough convincing
arguments to move to an all-round beter tool. There likely is a well-
argumented reason as to why the tool is popular.

A summary of our selected tools is given in Table 1. For each tool, we provide
a brief introduction, an example or screenshot where appropriate, and our
rationale for inclusion of this tool.

ADEVS

ADEVS [20] is a lightweight C++ library, offering DEVS simulation. Both
atomic and coupled models are written in C++ code, which must include the
ADEVS headers. Due to the extensive use of templates, the headers contain
all required source code. The simulation kernel and model are compiled into a
single executable, and must therefore be recompiled after every model edit.

Example As models are pure C++ code, there is nothing to show as an example.
Examples of how the API works can be found in the documentation.

Rationale Because it is lightweight and has significant potential for static
optimization, ADEVS is included for its potential performance. The use of
efficient algorithms [21] and results from previous performance evaluations [4,
7, 22] indicate that it will probably be (one of) the most efficient simulation

Prepared using sagej.cls

5

tools under study. It also offers some interesting features, such as simulation of
hybrid systems and OpenModelica [23] bindings.

CD++

CD++ [24] is a DEVS simulator written in C++. Simulation of Cell DEVS models
is its main feature, though normal DEVS models can be simulated too. DEVS
models can also be coupled to Cell DEVS models. Atomic models are written
in C++ and are linked into the simulation tool. Coupled models are written in
a custom syntax, which is interpreted at simulation-time. Changes to atomic
models require recompilation and linking to the simulation tool. Changes to
coupled models don’t require any recompilation at all, as these are interpreted
during simulation. The complete behaviour of Cell DEVS models is defined
using the custom syntax, which is completely interpreted. A graphical modelling
environment, called CD++Builder [2], can be used to create the models.

Note that every exchanged event has to be a floating point number. Sending
complex events, such as records, requires a workaround by mapping all attributes
to a seperate port.

Example An example of the custom syntax, together with a workaround for
complex events, is shown in Listing 1. Normally, a car is represented as a single
object, and passed as such. In CD++, every attribute gets its own port.

Rationale CD++ is a mature tool and is widely used in the literature for its Cell
DEVS functionality [25–27]. It is included in our evaluation due to its popularity.

Remarks Several versions of CD++ exist, such as N-CD++ [24], PCD++ [19],
and Dynamic Structure CD++ [28]. We decided to use N-CD++ in our
comparison. The authors previously compared the performance between N-
CD++ and PCD++, showing that N-CD++ had a lower overhead [9], and
should thus be faster. N-CD++ is also the one compared to ADEVS by the
authors themselves [5], making us believe that this is the most mature version
of their tool.

DEVS-Suite

DEVS-Suite [29] is the successor of DEVSJava [30]. Both are implemented
in Java. Its features include visualization of coupled model simulation, event
injection during simulation, and simulation tracking.

Both atomic and coupled models are written in Java and are loaded into
the simulation tool through introspection. Changes require recompilation of the
model, but don’t require any action on the simulation tool.

Example Figure 1 shows the SimView visualization of a simple model. At the left,
an overview of the model is given, showing the components of the coupled model.
Each atomic model can be clicked on, revealing further information about the
selected model. Simulation control buttons can be seen below, combined with
sliders to determine the speed of the visualization. At the right, the model is

Prepared using sagej.cls

6 Journal Title XX(X)

Listing 1: Example CD++ coupled model

[top]

components : gen@Generator col@Collector proc@RoadSegment

Link : car_out_id@gen car_in_id@proc

Link : car_out_departure_time@gen car_in_departure_time@proc

Link : car_out_v_pref@gen car_in_v_pref@proc

Link : car_out_v@gen car_in_v@proc

Link : car_out_dv_pos_max@gen car_in_dv_pos_max@proc

Link : car_out_dv_neg_max@gen car_in_dv_neg_max@proc

Link : car_out_d_travelled@gen car_in_d_travelled@proc

Link : car_out_flush@gen car_in_flush@proc

Link : Q_send@gen Q_recv@proc

Link : Q_sack_id@proc Q_rack_id@gen

Link : Q_sack_t_until_dep@proc Q_rack_t_until_dep@gen

Link : Q_sack_flush@proc Q_rack_flush@gen

Link : car_out_id@proc car_in_id@col

Link : car_out_departure_time@proc car_in_departure_time@col

Link : car_out_v_pref@proc car_in_v_pref@col

Link : car_out_v@proc car_in_v@col

Link : car_out_dv_pos_max@proc car_in_dv_pos_max@col

Link : car_out_dv_neg_max@proc car_in_dv_neg_max@col

Link : car_out_d_travelled@proc car_in_d_travelled@col

Link : car_out_flush@proc car_in_flush@col

[gen]

IAT_min : 2.0

IAT_max : 2.0

v_pref_min : 20.0

v_pref_max : 20.0

dv_pos_max : 3.0

dv_neg_max : 5.0

[proc]

l : 10.0

v_max : 18.0

observ_delay : 0.1

visualized, summarizing the most important information for every model, as
well as its couplings. At the bottom, a console is used to print errors.

Rationale Both DEVS-Suite and DEVSJava are frequently used in the
literature [31–33]. It is one of the few simulation tools which includes
visualization and debugging functionality. Therefore it is added both for its
popularity and features.

MS4 Me

MS4 Modeling Environment (MS4 Me) [34] is a DEVS modelling environment
and simulator. It is written in Java and based on the Eclipse framework.

Atomic models are created using a custom, natural language-like language
called DNL, combined with fragments of Java code. Files are automatically
translated to Java code, and subsequently compiled. Coupled models can be
constructed using System Entity Structure (SES) [35–37], which are pruned before
simulation commences.

Prepared using sagej.cls

7

Figure 1. DEVS-Suite SimView example

Example Figure 2 presents DNL notation, used for the construction of atomic
models. It shows the inclusion of Java code and the use of Java types. Figure 3
presents SES notation, used for the construction of coupled models.

Figure 4 presents the SimViewer, used for visualization of model simulation.
Visualization is fairly similar to DEVS-Suite: each model can be inspected
seperately, combined with a graphical representation of the complete model.
The complete content of exchanged events is also visualized. It is possible to
hide the couplings, the ports, or both. Simulation status, such as the current
time and the number of transitions, is shown at the right. At the bottom, a
console is present which logs every transition.

Rationale MS4 Me is included as it tries to move away from the use of
programming languages. Whereas other tools redirect the modeller to a general-
purpose programming language for the atomic models, MS4 Me defines its own
syntax to aid non-programmers. Furthermore, it is a proprietary tool, which will
also give us insight in the state of the art of commercial DEVS simulation tools.

Prepared using sagej.cls

8 Journal Title XX(X)

Figure 2. MS4 Me DNL example

Figure 3. MS4 Me SES example

PowerDEVS

PowerDEVS [38, 39] is a Classic DEVS modelling and simulation environment
implemented in C++. It consists of a graphical modelling environment, an
atomic model editor, and a code generator. The code generator generates C++
code, which can optionally also be handwritten. PowerDEVS offers an intuitive
modelling environment (with user-definable icons for models), combined with a
library of models which can be reused, or used as examples.

Example Figure 5 presents the IDE, with a focus on the graphical coupling
of models. The information shown is quite different from other tools, as
this environment presents a design view, instead of a simulation view.
In a design view, models can be constructed by adding hierarchy, adding
atomic models, coupling models, or configuring simulation parameters. No
information about the state of the models or the simulation is shown, as all
information is independent of simulation execution. Conversely, a simulation
view visualizes the state of models and previously defined hierarchy and
couplings. Modifications are not allowed, as the model is already loaded and
being simulated. Model simulation is done without any kind of visualization.

Prepared using sagej.cls

9

Figure 4. MS4 Me simulation example

Rationale PowerDEVS is very similar to ADEVS, as it also focusses on
simulation of hybrid systems, and uses C++ as its implementation language.
Contrary to ADEVS, PowerDEVS offers a modelling environment that aids the
modeller in creating valid DEVS models with a lesser degree of coding required.
PowerDEVS is more aimed at non-programmers, while still offering the potential
for high performance. It is thus included for both its potential performance, and
its various features.

Prepared using sagej.cls

10 Journal Title XX(X)

Figure 5. PowerDEVS graphical modelling environment.

PythonPDEVS

PythonPDEVS [22] is a DEVS simulator written in Python. Due to its
implementation in Python, an interpreted, dynamically typed language, fast
prototyping of models becomes possible. Despite its interpretation-based nature,
PythonPDEVS attempts to achieve high performance. Both atomic and coupled
models are written in Python, making (re)compilation unnecessary.

PythonPDEVS is used as the simulation kernel in several other tools. For
example, DEVSimPy [40] offers a graphical modelling environment for coupled
models, combined with an experimentation environment. A debugging front-
end [41] offers a graphical modelling environment for atomic and coupled models
alike, including advanced debugging capabilities.

Example As models are pure Python code, there is nothing special to show as
an example. For examples of the debugging extension [41] or DEVSimPy [40],
we refer to the documentation of the respective tools.

Rationale PythonPDEVS has a focus on performance, despite its implemen-
tation in an interpretation-based language [22, 42]. We therefore included

Prepared using sagej.cls

11

PythonPDEVS for its potential performance, but also for its set of supported
features.

VLE

The Virtual Laboratory Environment (VLE) [43] is a multi-modelling and
simulation platform written in C++. It includes an IDE for model development
and experimentation. Models are combined in “projects”, which are managed
by an automatically created CMake script.

Atomic models are written in C++ and thus require recompilation of the
models after changes. The simulation kernel and IDE do not need to be
recompiled. Coupled models are created using either the graphical environment
(called GVLE), or by manually writing the XML files.

VLE is the simulation kernel, with several bindings and “apps” to add
functionality, such as an IDE (GVLE), distributed simulation using MPI
(MVLE), Python bindings (PyVLE), and R bindings (RVLE).

Example Similar to PowerDEVS, VLE only offers a modelling environment
without a simulation view. This environment is provided by GVLE, shown in
Figure 6.

Rationale VLE comes close to PowerDEVS in terms of supported features, as
both offer a full modelling interface which generates a model for simulation by
a (seperate) simulator. Its use of C++ might also indicate that performance is
one of the concerns to the developers.

X-S-Y

X-S-Y [44] is a DEVS simulator written in Python. Its distinguishing feature is
the verification of FD-DEVS (Finite and Deterministic DEVS) models. A small
command line interface is provided, allowing for simulation control.

Example As models are pure Python code, there is nothing special to show as
an example.

Rationale X-S-Y offers the unique feature of supporting verification of FD-DEVS
models. As no other tools implement verification, it is interesting to see how it
compares to them.

Remarks During our analysis, we found that X-S-Y uses only about 10-15% of
the available CPU time. Inspection of the source code revealed that a sleep
of 1ms occurs after every simulation step. This sleep was removed for our
performance benchmarks, as it offers a fairer comparison between the used
simulation algorithms.

Functionality

In this section, we will compare the functionality of the previously mentioned
tools. Tools are first evaluated based on generic simulation tool criteria [8].

Prepared using sagej.cls

12 Journal Title XX(X)

Figure 6. GVLE visualization of a coupled model

Prepared using sagej.cls

13

Afterwards, a brief comparison is made based on some DEVS-specific criteria:
which formalisms do they support, and how compliant are to they to them.

General evaluation criteria

The simulation tool evaluation criteria from [8] are used as a basis. Some criteria
were dropped, as they are irrelevant for a DEVS-specific comparison. Others are
added, in case they are deemed necessary to achieve a better distinction between
the different tools.

Table 2 shows an overview of our evaluation results. A feature is either present
(marked as a green “Y”), not present (marked as a red “N”), or only supported
partially, with manual coding, or through the use of extensions (marked as
yellow “M”). Normally, such a comparison is made using scores and weights, as
in [45]. But as scoring is highly dependent on the needs of the end-user, we omit
this part.

Vendor Concerning the vendor pedigree, MS4 Me is the clear winner. RTSync
is a spin-off of ACIMS, the creators of DEVS-Suite. ACIMS is headed by Dr.
Bernard Zeigler, the founder of DEVS. RTSync, however, is still relatively young,
and MS4 Me is still in beta. Other tools are developed by different research
groups, specialized in DEVS simulation. Despite them being stable and usable,
they are to be considered prototypes.

Documentation and sample models are provided by all tools. DEVS-Suite
has the least documentation of all, as there is no user’s guide beyond installation
and running of the tool. PowerDEVS has limited documentation too: the user’s
guide link in the help menu doesn’t respond, and the online manual is only
partially filled in. However, the tool and its interface is fairly straightforward,
even without documentation. Note that some parts of the CD++ documentation
require registration at their website.

For support, MS4 Me is again the clear winner, as it is the only one
offering tuition and consulting services. On a commercial level, this is a crucial
advantage.

Model and Input CD++ and MS4 Me are the only tools providing an online
library of models. But the size and reusability of these models is a different
matter. CD++ offers a sizable repository of models, containing a mix of reusable
and stand-alone models. MS4 Me offers a relatively small model store, mostly
containing example models instead of reusable models. PowerDEVS comes
bundled with a small (offline) library too, though most models are oriented
towards hybrid systems.

All tools involve coding to a certain degree. CD++, PowerDEVS, and VLE
require coding at the level of atomic models, while offering a user-friendly format
for the construction of coupled models. MS4 Me goes one step further, and
presents a custom language for atomic models too. It is possible to manually
write Java code, which will be included in the generated code. This allows the
combination of the best of both worlds: basic conditionals and states using DNL,
but data structure manipulations using Java.

Prepared using sagej.cls

14 Journal Title XX(X)

A
D

E
V

S

C
D

+
+

D
E

V
S

-S
u

it
e

M
S

4
M

e

P
o
w

er
D

E
V

S

P
yt

h
o
n

P
D

E
V

S

V
L

E

X
-S

-Y

Vendor Pedigree N N N Y N N N N
Documentation Y Y N Y M Y Y Y
Support N N N Y N N N N

Model Library N Y N Y Y N N N
and input Coding Y M Y M M Y M Y

Input M Y Y Y M M N M
Execution Speed control N M Y Y Y Y N Y

Multiple runs Y Y N N Y Y Y Y
Batch runs Y Y N N Y Y Y N
Parallel Y Y N N N Y Y N
Distributed N Y N N N Y Y N
Executable models Y N N N Y N N N
Termination condition Y N N N N Y N N

Animation Time Next N N Y Y N M N N
State N Y Y Y N M N N
Messages N N Y Y N M N N
Transitioning N N N Y N M N N
Sequence N N N Y N N N N

Testing Tracing Y Y Y Y Y Y Y Y
and Step function Y N Y Y Y M N Y
Efficiency Verification N N N N N N N Y

Backward clock N N N N N M N N
Interaction Y Y Y Y M Y N Y
Multitasking Y Y Y Y Y Y Y Y
Breakpoints N N N N N M N N

Output Delivery Y Y Y Y Y Y Y Y
Graphics N Y Y Y M N N N

User Orientation N M N M M N N N
Financial Y Y Y N Y Y Y Y

Table 2. General evaluation, based on [8, 45]

Prepared using sagej.cls

15

Most tools allow user input during simulation, though differences exist
in the kind of input. ADEVS requires the user to manually implement this
functionality in the model and experiment. CD++ reads input from a file, which
is injected into the simulation at the desired time. DEVS-Suite and MS4 Me
support graphical injection of events during simulation. PowerDEVS can take
user input through the use of an input port. PythonPDEVS do not support
user input, except during realtime simulation∗. The PythonPDEVS debugging
front-end [41], adds this feature for all kinds of simulation. VLE does not support
input at all. X-S-Y reads its input from standard input, so the user either has
to manually input the events, or write a wrapper script.

Execution Some tools include speed control, which is the option to run
simulation using either scaled wall clock time (realtime simulation), or analytical
time (as-fast-as-possible simulation). ADEVS and VLE are the only tools that
don’t support speed control by default. For CD++, the extended RT-CD++ [47]
is required for realtime simulation.

Multiple runs, each with different parameters, are widely supported, but
might require some coding from the user (i.e., writing the loop and the
parameter variation). DEVS-Suite and MS4 Me don’t support this at all, as
these are GUI-only tools, and their GUI doesn’t offer this function.

Batch runs are similar, except for X-S-Y, which waits for user input before
terminating the simulation.

Parallel simulation is supported by ADEVS, CD++, PythonPDEVS and
VLE. ADEVS allows this through the use of conservative synchronization, where
each core is at a different point in simulated time. CD++, PythonPDEVS,
and VLE offer distributed simulation, which can also be used for parallel
simulation by hosting multiple nodes at the same machine. This generally
imposes additional overhead due to the use of more general algorithms.

Many differences exist in terms of distributed simulation. CD++,
and in particular PCD++, supports distributed simulation using different
synchronization methods, provided by the Warped library [48]. PythonPDEVS
uses Time Warp optimistic simulation, with MPI as the middleware. VLE does
not support model distribution, but experiment distribution. A single model is
not split up and distributed over multiple nodes, but the same model can be
executed at different nodes simultaneously, using varying parameters. While this
is fine when simulating multiple scenario’s, a single model cannot be distributed
or parallelized.

ADEVS and PowerDEVS support executable models, as they compile both
the simulation tool and model into a single executable. All other simulators have
models as files that are loaded by the simulator.

Termination conditions are included as an additional criteria. It
determines how the modeller can specify when simulation terminates. Three
different options were found: (1) step count, as found in DEVS-Suite and MS4

∗In realtime simulation, simulation time is synchronized with the wallclock time, creating a
linear relation between them [46].

Prepared using sagej.cls

16 Journal Title XX(X)

Me; (2) simulation time, as found in the others; and (3) termination condition,
as found in ADEVS and PythonPDEVS.

With step counting, simulation halts after a predetermined number of
simulation steps. Steps are unrelated to the simulation time, making it difficult
for the user to predict exactly when simulation will terminate. The use of
simulation time is more common, where simulation will halt at a predetermined
point in the simulation. It has the advantage that it is closer to the problem
domain. Should the model change (e.g., different parameters), simulation will
still run up to the same point in simulated time. A termination condition is
even closer to the problem domain, and allows the user to specify a termination
state. As soon as this state is reached, simulation will terminate. This can be
useful in design space exploration, where specific states in simulation are known
to be unacceptable. Thus it becomes possible to quickly prune these branches,
even before the usual termination time is reached.

Animation For animation, we deviate from the criteria due to these criteria not
being distinguishing for our tools under study. We specify which part of the
simulation algorithm is visualized. Message sequence visualization, to allow for
manual dependency analysis, is another of our criteria. PythonPDEVS does not
support any of these features, though its debugging extension does. As it is an
extension, these entries are marked with an “M” even if they are fully present.
The features that we selected for visualisation correspond to the different stages
seen in the abstract simulator.

The first step of DEVS simulation is finding out which models are triggered
at what time. DEVS-Suite and MS4 Me offer this with their simulation viewer:
each model is anotated with the time remaining until internal transition, or the
absolute time of its next transition.

The second step is state visualisation. Again, DEVS-Suite and MS4 Me
support this by showing the name of the current state. CD++ can output a
grid of floating point numbers, indicating the state of the cells in Cell DEVS
simulation. After simulation, these values can be visualized with the “drawlog”
tool that is provided with CD++.

The third step is message visualisation. DEVS-Suite allows the visualization
of the type of message exchanged (e.g., “Car”), but does not show the content.
MS4 Me additionally visualizes event attributes (e.g., current velocity, maximal
speed, or color).

The final step is transitioning model visualisation, optionally distinguishing
between internal, external, and confluent transitions. DEVS-Suite does not
support this, though it can be infered by manually following the exchanged
messages. MS4 Me visualizes models that perform their transition by
highlighting them, but makes no distinction between transition types. In
PythonPDEVS, models executing their internal, external, or confluent transition
are highlighted in distinct colors.

Additionally, MS4 Me allows simulation visualization with a sequence
diagram. This sequence diagram visualizes exchanged messages, allowing for
simple causality analysis.

Prepared using sagej.cls

17

Testing and Efficiency All tools support tracing, though there is a distinction
between textual, graphical, or both. Most textual output can be parsed, to allow
for visualization with a different tool.

Simulation stepping is possible with several tools. ADEVS supports it,
but the user must manually implement it. DEVS-Suite and MS4 Me offer
support stepping through the simulation, combined with visualization. They
also support stepping for a certain number of steps with a specified realtime
scale. PowerDEVS only supports to execute a model for a specific number of
steps. For PythonPDEVS, the debugging front-end can be used for stepping,
as well as for visualization. X-S-Y allows stepping through its command line
interface.

Verification is only supported by X-S-Y, but only for FD-DEVS models.

Backward clock, or stepping back, is only supported by the PythonPDEVS
debugging extension.

All tools, apart from VLE, support simulation interaction. Different tools
support different degrees of interaction: from high-level simulation control (e.g.,
pausing and resuming), to low-level state modification (e.g., the modification of
model states at simulation-time).

Multitasking is supported by all tools, as they operate on text files instead
of binary files. Multiple instances of a tool can be executed, allowing for multiple
concurrent simulation executions. Models can be altered during simulation,
using a text editor.

Breakpoints are only supported by the PythonPDEVS debugging extension.

Output All tools deliver some output, though often textual. Of special interest
are CD++, DEVS-Suite, and MS4 Me, which can create graphics of the
simulation. PowerDEVS can make graphical output too, though this requires the
use of built-in blocks from the library. Other tools require additional software
to create graphical output.

For CD++, these graphics are heatmap-like figures, which show the
simulation state. For DEVS-Suite and MS4 Me, the graphics are simulation
state traces, which show the simulation times at which some attribute of interest
has changed.

User Due to the use of general-purpose programming languages, all tools are
developer-oriented. An exception is MS4 Me, which uses a natural language-
like specification, combined with methods written in Java. This allows domain
experts to work using DNL, while developers write utility functions in Java.
CD++ is also noteworthy, as Cell DEVS models can be completely specified
using a custom language. With CD++Builder, it is also possible to use the
DEVS-Graph formalism [2], which allows graphical construction of atomic DEVS
models. A graphical front-end for PythonPDEVS also exists [49], which uses a
neutral language. Although it still relies on writing code, the used language is
specific to DEVS and can filter out illegal constructs, such as state modifications
in the output function. All other tools require the modeller to write code in a
general purpose programming language.

Prepared using sagej.cls

18 Journal Title XX(X)

A
D

E
V

S

C
D

+
+

D
E

V
S

-S
u

it
e

M
S

4
M

e

P
o
w

er
D

E
V

S

P
yt

h
o
n

P
D

E
V

S

V
L

E

X
-S

-Y

Formalisms Parallel DEVS Y M Y Y N Y Y N
Classic DEVS N Y N N Y Y N Y
Dynamic Structure Y M N N N Y Y N
Cell DEVS N Y N N N N Y N

Compliance Translation functions M N N N N Y N N
Event modularity N M N N N M N N
Positive time Y N N M N Y Y N
Select function - N - - M Y - N
Confluent Y - Y N - Y Y -

Table 3. DEVS-specific evaluation, loosely based on [6]

Financially, all tools are open-source and freely available, except for
MS4 Me, which is proprietary and requires a paid license. Installation and
maintenance costs should also be considered, though these are difficult to
estimate. Familiarity of the modellers with the used language is also of
importance, as otherwise a significant amount of training is required.

DEVS-specific evaluation criteria

Some additional criteria were added to check for strict conformance to the DEVS
formalism, based on a previously defined set of criteria [6]. Several were dropped,
whereas some were added to extend the criteria to Parallel DEVS.

First, the supported formalisms of all tools are compared. Only the four
previously introduced DEVS formalisms are considered here. Some tools support
additional formalisms. An overview is shown in Table 3.

The remainder of this paper will not present examples and performance
results of either Cell-DEVS or Dynamic Structure DEVS, as these are not widely
supported by the tools under study. Similarly, we do not go deeper into
some other aspects of DEVS simulation, such as hybrid simulation and HLA-
compliance: most tools under study have only limited (if at all) support for both.
A comparison detailing any of these aspects, either through detailed features or
performance analysis, would require a different set of tools under study to make
a fair comparison.

Supported formalisms Each simulation tool sets out to support a different set of
formalisms. Parallel DEVS, the successor of Classic DEVS, is supported in all
tools, except for CD++, PowerDEVS, and X-S-Y. For CD++, this is because we
used N-CD++ instead of PCD++, which is a Classic DEVS simulator instead of
a Parallel DEVS simulator. For X-S-Y and PowerDEVS, no Parallel DEVS version
is available at the moment.

Prepared using sagej.cls

19

Classic DEVS is used in those tools that don’t support Parallel DEVS.
PythonPDEVS supports both Parallel DEVS and Classic DEVS. The former for
performance, and the latter for support for legacy models.

On top of the previously defined DEVS formalisms, some tools offer dynamic
structure. Due to the variety of dynamic structure formalisms, such as
DSDEVS [12] and DynDEVS [17], we have grouped all of these under a
common term. A modified version of CD++ [28] exists, which supports dynamic
structure.

Finally, CD++ and VLE have specific modelling and simulation options for
Cell DEVS models.

DEVS compliance Our first criteria is the presence of the translation function,
which is the function denoted by the Zi,j in the formal definition. It translates
event from output-to-input, output-to-output, and input-to-input ports. Despite
the arguments in favor of this function, only PythonPDEVS implements
this function. For ADEVS, it is possible to overload the routing mechanism,
introducing message modification there.

DEVS is a modular formalism: models can only communicate through event
exchange. There is no way to read or change the state of another model, except
through the exchange of an event which causes the model to alter its own state.
While breaking modularity allows for improved performance [50], modularity is
a necessity in DEVS as it is the basis of its closure under coupling. Due to the
use of general-purpose programming languages in the models, several ways to
break modularity exist. While some limitations can be imposed (e.g., preventing
the passing of pointers or references in events), there is always the possibility
to abuse language constructs (e.g., global variables). PythonPDEVS partially
enforces modularity by making deep copies of exchanged events. CD++ also
enforces modularity in this respect. Though, this is mainly caused by restriction
of events, which can only be floating point values. Some work has been done
on using static analysis of models, using a neutral language, to prevent such
constructs [49].

A third requirement is for the Time Advance function to be non-
negative. As a negative time advance is clearly impossible in reality, this is
disallowed in a DEVS model as well (though a time advance of 0 is allowed).
Most tools do not check this, assuming that the user follows the formalism,
and can therefore give incorrect simulation results. A notable case is MS4 Me:
statically detectable negative time advances are flagged as modelling errors,
though there is no run-time check for dynamically obtained values.

A fourth requirement is the presence of a select function, which only applies
to Classic DEVS models. The select function determines the model to execute in
case multiple models are scheduled to execute an internal transition function at
the same time. Of the four tools supporting Classic DEVS, only PythonPDEVS
allows users to define the select function explicitly. PowerDEVS allows the
definition of a priority list, though it is not possible to define arbitrary functions.
CD++ and X-S-Y implicitly use a hard-coded select function, such as selecting
the first model after alphabetic sorting on model name.

Prepared using sagej.cls

20 Journal Title XX(X)

Our final requirement is the presence of a confluent transition function,
which only applies to Parallel DEVS models. The confluent transition function
is triggered in case both the internal and external transition should fire at
exactly the same point in time. All of the Parallel DEVS simulators support
this requirement, except for MS4 Me, where a default is assumed. Other tools
often provide the same default, though the user can override this default.

Performance

With the growing demand for computing resources by modern simulation
applications, the need for efficient simulators increases. Parallel and Distributed
Simulation (PaDS) thus becomes necessary to allow multiple computers to
cooperatively work on a single simulation. Distribution and parallelism do
not solve all problems though, as some problems are inherently difficult to
parallelize. Efficient sequential algorithms therefore stay relevant, as parallel
and distributed synchronization algorithms are a layer on top of sequential
algorithms.

As not all of our tools under study support parallel or distributed simulation
— and even those that support it, use very different synchronization protocols,
making a fair comparison difficult — we have opted to only study sequential
performance.

All simulations were performed on a system with an Intel i5-4570 (3.2 GHz)
with 16GB of DDR3-1600 main memory, running Gentoo Linux with kernel
version 3.18.22. We used the following software versions: GCC 4.9.3, OpenJDK
IcedTea6 1.13.9, Python 2.7.10, and PyPy 2.6.0. All tools were compiled with the
optimizations defined in their Makefile. For ADEVS, we had to make a Makefile
ourself, where we opted for the compiler flag “-O2”. MS4 Me was benchmarked
on the same machine, but using Windows 7 Enterprise SP1.

All of the source code used for this paper (i.e., all models, benchmarks, and
a copy of the tools used where possible) can be found at http://msdl.cs.

mcgill.ca/people/yentl/DEVS/tools.tgz.
Tools written in Python were benchmarked using both CPython† (the

reference implementation) and PyPy‡ (an alternative implementation using
JIT compilation). As most of the inefficiency of Python code is caused by its
interpreted nature, we can partially mitigate this with PyPy, which uses just-
in-time compilation. While PyPy can be used in cases where performance is
important, most users will prefer to use CPython as it is installed by default
on most Linux distributions. We have opted to include both: CPython for the
average user, who is unconcerned about performance, but also PyPy, for power
users. As PyPy is (almost) a drop-in replacement for CPython, it is possible
to develop and prototype using CPython, but perform the actual long-running
simulations using PyPy.

†https://www.python.org/
‡http://pypy.org/

Prepared using sagej.cls

21

ProcessorGenerator Processor Processor

Figure 7. “Queue” model: every output port is connected to the input port of the
previous model. Shown for 3 models (excluding the generator).

We present the benchmark, their results, and discuss the results.

Benchmarks

Three different benchmark models are used, offering insight in the performance
of different aspects of the simulation algorithms. Of these three, two are
synthetic, and one is more realistic, though still fairly simple.

For the synthetic benchmarks, we looked into the DEVStone [9] benchmark
for inspiration. DEVStone defines 4 kinds of models: (1) LI: models without a
lot of interconnection, (2) HI: models with a lot of interconnection, (3) HO: HI
models with lots of outputs, (4) HOmod: models with an exponential level of
coupling and outputs. The transition functions of each model contains artificial
computation, in the form of Dhrystones.

We found some limitations to the default DEVStone models, such as all
atomic models triggering their external (and possibly internal) transition
simultaneously, which is unlikely in realistic DEVS models. The execution of
Dhrystones during the transition functions doesn’t fit our desired analysis
either: some of our tools are written in different programming languages, each
with distinct performance characteristics. As the operations in the transition
functions are time-bounded, a more complex (i.e., more computation) model is
executed in efficient programming languages. For a fair comparison, we would
like all tools to simulate an identical model, that is, without any computation
in the transition functions. Overhead of the simulation is no longer computable,
as there is no longer any “theoretical simulation time”, as was the case in the
original definition [9]. We can, however, compare total execution times for a
specific model in a specific configuration. By minimizing the amount of model
computation, execution times maximally show the time taken by the simulation
kernel.

The use of deep hierarchy is not considered in our benchmarks, as models
that are hundreds of levels deep are unrealistic. Additionally, modern simulation
tools often provide automatic flattening, creating a single coupled model with
all atomic models as its direct children. This situation closely mimics the models
of our proposed benchmarks. Note that, whereas flattening as a positive effect
on most realistic models, it is not necessarily always an optimization: depending
on model structure, the flattening overhead might be significant compared to
the small gain.

There is no doubt that the benchmark implementations, for all simulation
tools, can be improved for both code efficiency, simulation performance, and
conciseness.

Prepared using sagej.cls

22 Journal Title XX(X)

Model

Model

Model

Model

Figure 8. “High Interconnect” model: every output port is connected to every input port
of a different model. Shown for 4 models.

Queue model The “Queue” is a simple model, where a single generator
periodically creates output and sends it to the first processor. Each processor
sends the output to exactly one other processor, called its successor. There are
no loops in the connections, thus forming a single line of processors, as shown
in Figure 7. If a processor receives a new event while processing an event, the
event is placed in a FIFO queue. After processing an event, the processor will
check its queue and pop an event to process.

Our Queue model bears similarity to the HI DEVStone model, in the sense
that models are connected to their successors, but also to the LI DEVStone
model, as model output is only connected to a single other model. We did not
completely take over the HI model, as otherwise all models would receive input
at the exact same time, thus triggering all external transitions (and later on,
their internal transitions) simultaneously. This is an unnatural occurence in
DEVS, which specifically uses a continuous time-base. On the other hand, a
benchmark model with a low number of inter-model connections is necessary.
The Queue model is the result of this merge.

It is still interesting to analyse the behaviour of the simulation kernel when
transition functions are triggered simultaneously (called collisions from now on).
We allow for either a “full collision” model or a “no collision” model, by defining
the time advance function as either fixed (to 1) or random (uniformly distributed
between 0 and 2), respectively. If the time advance function always returns a
fixed number, all models will transition at exactly the same time. Otherwise,
the time advance function returns a random number, preventing most collisions.

High Interconnect model The “High Interconnect” model is similar to the queue,
but has a lot of connections. Every model is connected to every other model,
as shown in Figure 8. Each model outputs an event, which is routed to all
other models. Upon the reception of an event, the models trigger their external
transition function, which simply ignores the message.

This model is a more complex form of the HI DEVStone model, where instead
of only 1 outgoing connection, multiple outgoing (and incoming) connections are
made. The number of connections, and consequently of exchanged events, scales
quadratically.

This not only benchmarks the performance in the presence of a high number
of connections, but also of routing a single event to a multitude of receivers. A
parameter is again provided to define whether or not collisions should happen.

Prepared using sagej.cls

23

Q_send
Q_rack

car_out

Generator

Q_send
Q_rack

car_out

RoadSegment

Q_recv
Q_sack

car_in

Q_send
Q_rack

car_out

RoadSegment

Q_recv
Q_sack

car_in car_in

Collector

Figure 9. “Traffic” model, shown for 2 segments.

In case collisions happen, the bag merging algorithms of Parallel DEVS are
benchmarked too, as every model outputs an event to every other model. All
events then need to be merged into a single bag.

Despite that this model might seem totally unrealistic, it was added
to monitor the efficiency of simulation algorithms in case many events
were exchanged and processed simultaneously. Whereas other, more realistic,
benchmarks could be conceived to monitor this, they would go further away
from the core aspects that are to be monitored: event exchange. By only keeping
the actual aspects to be monitored, performance results are less cluttered with
other aspects of the model. Additionally, while such models might be ill-suited
for DEVS, sometimes DEVS is used for compatibility reasons, as argued in [1].
Whether or not DEVS is the ideal formalism for this part of the model is then
less relevant: it needs to be used to interact with other models, and even then,
high performance is very relevant.

Traffic model The “Traffic” model is a more realistic model [51]. It resembles
the Queue model without collisions, though more realistic communication and
computation patterns occur.

It consists of a generator, some road segments, and a collector, as shown in
Figure 9. After a randomly sampled time, a car is generated by the generator.
The generator outputs the car and sends it to the connected road segment. Every
road segment processes the car for a certain time (depending on the velocity),
after which it is sent to the next road segment. A car can accelerate or decelerate,
depending on their prefered speed, the speed limit of the road segment, and the
cars in front of them. To prevent car collisions, road segments communicate
with each other through the use of queries and acknowledgements. As soon as
a road segment receives a new car, it sends a query to the next road segment,
requesting whether the next road segment is free. It gets an acknowledgement
back, stating how long it will take for the road segment to become available.
The car at the current road segment will adjust its speed accordingly, depending
on the maximal acceleration and deceleration values. If a road segment does not
receive an acknowledgement in time, the car goes on to the next road segment
without adjusting its speed. At the end of the road segments, a collector receives
all cars and computes average velocity and average deviation from the prefered
velocity. These statistics are used to test the correct implementation of the
model in the various simulation tools.

Prepared using sagej.cls

24 Journal Title XX(X)

A
D

E
V

S

C
D

+
+

D
E

V
S

-S
u

it
e

M
S

4
M

e

P
o
w

er
D

E
V

S

P
yt

h
o
n

P
D

E
V

S

V
L

E

X
-S

-Y

Queue 178 169∗ 152 113∗ 234 94 150∗ 104
Highly connected 112 103∗ 113 57∗ 182 64 73∗ 76
Traffic 609 672∗ 498 380∗ 473 345 599∗ 359

Table 4. Lines of code for the benchmarks. ∗ indicates that this is excluding the
experiment file and coupled models.

Source code size

For every tool and every benchmark, Table 4 shows the lines of code used
to implement the model. This number includes the atomic models, coupled
models, and experiment file. Entries marked with a ∗ only count the size of the
atomic models, as other parts are constructed graphically (VLE), or using a
verbose syntax (CD++, MS4 Me). DEVS-Suite models do not contain code for
experiment setup, as this is done manually by the user.

This analysis does not go much further than the differences already
known [52]: the same behaviour in C++ requires more lines of code than in
Java, which still requires more than in Python. Recall that MS4 Me uses a
natural language-like language. This has a significant impact on the total size
of the models, though it seems that Python still requires less lines of code. In
essence, the natural language is very concise, though the total number of lines of
code is still this high due to the use of some Java code in the model. As such, it
is more appropriate to compare MS4 Me to DEVS-Suite, as DEVS-Suite models
are written completely in Java.

PowerDEVS has the highest number of lines of code, which is due to
the (helpful) comments that are included by default in all models. As these
benchmark models are relatively small, their overhead becomes significant. For
the traffic benchmark though, the overhead is negligible, resulting in a smaller
codebase. CD++ has the most verbose code for the Traffic model, since complex
events are expanded: all event attributes are passed seperately over their own
ports, resulting in more verbose code.

A complete usability study is outside of the scope of this paper, so we limit
ourself to the size of the model. As most tools resort to programming for atomic
models, it is best to chose a simulation environment that uses a language which
the modeller is familiar with. If the modeler is unfamiliar with any programming
language, MS4 Me provides the simplest language to express model behaviour.

Prepared using sagej.cls

25

Remarks

Due to the comparison of different tools, each with their own design decisions
(e.g., about implementation language and required input format), some remarks
are required on how these results should be interpreted.

First, different representations are used for coupled models. Tools such
as ADEVS use programming language constructs to create a set of models
and couple them. This is highly efficient and allows modellers, familiar with
programming techniques, to create arbitrary constructions. Tools such as VLE
use a graphical environment to create the models. Coupled models are no
longer represented with programming language constructs, but using a custom
syntax. This custom syntax, like XML in VLE, induces additional overhead
during simulation, as it needs to be parsed. The overhead is only required
during initialization, though it imposes an overhead compared to the other
tools. Our results include this initialization overhead, as it is required at every
simulation run. Tools using compiled models do not have their compilation time
included, as compilation is only required once. Compilation times are negligible
in long-running simulations, or when a single (compiled) model is used in various
settings. During prototyping, compilation times of several seconds, as is the case
with ADEVS, offset the higher simulation performance. Some tools also perform
some preprocessing of the model, such as direct connection [53]. Whether or
not the compilation and initialization overhead is tolerable, compared to the
simulation time, is a decision that has to be left to the end-user.

Second, DEVS-Suite and MS4 Me do not provide a command line interface,
so we are unable to benchmark them automatically. Results for these simulators
were obtained by manually starting and stopping the simulation, while
measuring the time. As a result, these measurements have a lower accuracy
and precision. Being purely graphical, they continously update their GUI with
simulation information (e.g., current simulation time and number of processed
transitions). We disabled as much of these visualizations as possible to obtain
our results, though a significant overhead is to be expected due to this animation.

Third, MS4 Me has low performance in all simulation benchmarks. This
is possibly caused by the tool still being in beta status, meaning that some
functionality is still missing or not completely implemented, or just that
development effort is currently not focussed on performance optimization.
For example, all transitions are logged to the console, inducing a significant
overhead. A more significant problem is that simulation performance seems
efficient at first, but quickly grinds to a halt. Our analysis shows that this is
caused due to high memory usage, resulting in very frequent garbage collection,
finally even causing out-of-memory errors. This could indicate the presence of a
memory leak. Through some undocumented options§ it was possible to avoid this
out-of-memory error and significantly increase the performance. Nonetheless,
the results that were included here are using this trick, but still performance

§Manually invoking the generated Java files instead of running them through the GUI.

Prepared using sagej.cls

26 Journal Title XX(X)

is significantly lower than other DEVS simulation tools. As a result of these
problems, results for MS4 Me are likely to change significantly in the future.

Fourth, as there was a huge variety in simulation performance, we plotted all
tools on a logarithmic scale, and the fastest few on a linear scale.

Fifth, results when using PyPy might seem strange in comparison to the
other results. This is caused by the JIT, which requires some warm-up first.
For small models, the total simulation time is dominated by the interpretation
phase and the JIT compiler compiling the code. Therefore, these results are
fairly inaccurate for short simulations.

Sixth, CD++, PowerDEVS, and X-S-Y are Classic DEVS simulation tools,
whereas the others use Parallel DEVS. Despite identical model behaviour,
both formalisms mandate different simulation algorithms, causing differences in
simulation performance. We argue that they are still comparable, since they are
equally expressive, and no simulation tool (except for PythonPDEVS) supports
both at the same time. This means that users are stuck with the formalism of
the tool they chose.

Queue Results

Results for the Queue benchmark are shown in Figure 10. The results indicate
that ADEVS is fastest in both cases, with PowerDEVS coming extremely close.

For a random time advance, as in the left part of Figure 10, no collisions
occur. For the fixed time advance, as in right part of Figure 10, collisions always
occur. Several important differences can be seen when comparing the two.

First, DEVS-Suite is a lot faster with collisions than without collisions. There
can be several reasons for this. One option is that their main simulation loop is
inefficient (e.g., due to GUI updating), as far fewer simulation steps are executed
if all models collide.

Second, PythonPDEVS outperforms VLE in the presence of collisions. This
can be explained due to the activity-based data structures implemented in
PythonPDEVS [54]. As a list-based scheduler would be better in case lots of
collisions occur [22], the data structure modifies itself to a list-based one. VLE
and ADEVS have a static, heap-based, scheduler, which is not optimized for
this situation.

Third, using PyPy instead of CPython has a significant impact on
both PythonPDEVS and X-S-Y. With CPython, X-S-Y is far slower than
PythonPDEVS, though they come much closer when using PyPy. This indicates
that much of the performance of PythonPDEVS with CPython is gained due to
CPython-aware optimizations (e.g., expensive function calls), which are largely
mitigated using PyPy (e.g., using JIT inlining).

Fourth, ADEVS and PowerDEVS come very close. This likely indicates
that they implement similar algorithmic optimizations, and that the compiler
optimizes out most implementation details.

Prepared using sagej.cls

27

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 0 50 100 150 200 250 300

C
P

U
 t
im

e
 (

s
)

models

Queue (random TA)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250 300

C
P

U
 t
im

e
 (

s
)

models

Queue (random TA)

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 0 50 100 150 200 250 300

C
P

U
 t
im

e
 (

s
)

models

Queue (fixed TA)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 50 100 150 200 250 300

C
P

U
 t
im

e
 (

s
)

models

Queue (fixed TA)

adevs
CD++

DEVS-Suite
MS4Me

PyPDEVS (CPython)

PyPDEVS (PyPy)
vle

X-S-Y (CPython)
X-S-Y (PyPy)
PowerDEVS

Figure 10. Benchmark results for the “Queue” benchmark. Top figures use a logarithmic
scale, bottom figures are zoomed in on the fastest tools and uses a linear scale.

Prepared using sagej.cls

28 Journal Title XX(X)

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0 50 100 150 200 250 300

C
P

U
 t
im

e
 (

s
)

models

High Interconnect (random TA)

 0

 1

 2

 3

 4

 5

 6

 0 50 100 150 200 250 300

C
P

U
 t
im

e
 (

s
)

models

High Interconnect (random TA)

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 0 50 100 150 200 250 300

C
P

U
 t
im

e
 (

s
)

models

High Interconnect (fixed TA)

 0

 1

 2

 3

 4

 5

 6

 0 50 100 150 200 250 300

C
P

U
 t
im

e
 (

s
)

models

High Interconnect (fixed TA)

adevs
CD++

DEVS-Suite
MS4Me

PyPDEVS (CPython)

PyPDEVS (PyPy)
vle

X-S-Y (CPython)
X-S-Y (PyPy)
PowerDEVS

Figure 11. Benchmark results for the “High Interconnect” benchmark. Top figures use a
logarithmic scale, bottom figures are zoomed in on the fastest tools and uses a linear
scale.

Prepared using sagej.cls

29

High Interconnection Results

Results for the High Interconnection benchmark are shown in Figure 11. Again,
ADEVS is clearly the fastest, with PowerDEVS coming close in case of a random
time advance.

For PowerDEVS, the reason for this slower performance mostly lies with the
use of Classic DEVS, where other tools (except CD++ and X-S-Y) use Parallel
DEVS. In the presence of simultaneous events, Classic DEVS models trigger their
select function, selecting a single model. For n colliding models, as is the case
with a fixed time advance, this causes n seperate lookups in the scheduling
data structures, explaining the difference. This same occurence is aggrevated
here, as every model needs to trigger its external transition once for every
other model. Each external transition is called n times more in Classic DEVS
simulation kernels due to the formalism. As external transitions contain nearly
no computation, this effect is not clearly visible. Because this was not the case
in the previous benchmark, the difference between Classic DEVS and Parallel
DEVS was relatively small.

VLE performs much slower than expected, even slower than X-S-Y (using
PyPy), certainly in the absence of simultaneous events. With simultaneous
events, the same behaviour can be seen, though VLE is now much closer to X-
S-Y, and PythonPDEVS further distinguishes itself from the others. We expect
this low performance to be due to the high number of connections, which need
to be parsed at simulation time.

DEVS-Suite again shows better results in the presence of simultaneous events,
just like in the previous benchmark.

Traffic Results

Figure 12 shows the results of the Traffic benchmark. Results are very similar to
those for the “Queue” model, as the basic principles are the same. Once again,
ADEVS and PowerDEVS are tied, followed by VLE. Some differences are visible
because the transition functions are now more complex, and more event passing
happens.

Conclusions on performance

Our analysis has shown that ADEVS is currently the fastest for Parallel DEVS,
and PowerDEVS for Classic DEVS. Their performance is unmatched in any kind
of model we have tried, leaving competitors behind by a fair margin. However,
this performance comes at the cost of functionality and debugability. Debugging
ADEVS models, written in C++, combined with ADEVS’s meager debugging
capabilities, is significantly more work than with other simulation tools. For
example, there is no tracing functionality included by default. PowerDEVS
includes a minimal simulation tool in the model, but at least contains a
debugging feature which traces the methods being invoked.

VLE comes fairly close in more realistic models, but loses terrain when
the model has many connections. While this is a fairly uncommon case, it

Prepared using sagej.cls

30 Journal Title XX(X)

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 0 50 100 150 200 250 300

C
P

U
 t
im

e
 (

s
)

Road segments

Traffic

 0

 1

 2

 3

 4

 5

 0 50 100 150 200 250 300

C
P

U
 t
im

e
 (

s
)

Road segments

Traffic

adevs
CD++

DEVS-Suite
MS4Me

PyPDEVS (CPython)

PyPDEVS (PyPy)
vle

X-S-Y (CPython)
X-S-Y (PyPy)
PowerDEVS

Figure 12. Benchmark results for the “Traffic” benchmark. The left figure uses a
logarithmic scale, whereas the right figure is zoomed in on the fastest tools and uses a
linear scale.

is remarkable that this simulation kernel falls that far behind in this specific
configuration. The performance gap with ADEVS is most likely caused by the
use of an XML-based language for coupled models, which needs to be parsed at
simulation time.

PythonPDEVS comes in third for the Queue model, and clearly profits from
its activity-based scheduler, as it comes quite close to VLE for models with
many collisions. For models with a high number of connections, it comes in
second due to the suddenly degraded performance of VLE. Combined with the
use of an interpreted language, thus not needing compilation, PythonPDEVS is
useful for prototyping, even of large scale models. Simulation using CPython is
clearly slower than using PyPy, though even simulation using CPython is not
amongst the slowest.

X-S-Y comes in fourth, though sometimes falls behind due to the use of Classic
DEVS. The performance gap between CPython and PyPy is much bigger than
it was for PythonPDEVS. PythonPDEVS has many optimizations built-in that
avoid slow paths in CPython, reducing the potential speedup of PyPy. Such
optimizations are still important, as many users will use CPython instead of
PyPy. This is certainly true for users who don’t seek maximal performance.

Prepared using sagej.cls

31

CD++ comes in fifth, even though it is implemented in C++. A likely
explanation is the use of a custom language for coupled models, which is parsed
at simulation time.

DEVS-Suite seems to be inefficient in a few situations, though fairly efficient
in some others. These results are likely related to the GUI, which was constantly
updating the textual values, even with the graphical simulation view disabled.
Other simulation tools do not provide the same level of detail on the running
simulation, nor do they offer visualization of the running simulation.

Lastly, MS4 Me could only be used for relatively small models, due to low
performance. Without fixing the memory leak issue, even these relatively small
models were unable to be simulated until their termination time.

Conclusion

We have shown that many differences exist between DEVS simulators.
Differences ranged not only between functionality and performance, but
also between the programming languages used for modelling. The lack of a
standardized DEVS representation, in a programming language-independent
form, causes models to be incompatible between simulators. Due to the
arbitrary cost of porting models between different simulation tools, and different
programming languages, simulation tool lock-in can occur. This makes the initial
choice of tooling an important decision. Our comparison aims to aid in this
important decision.

The final decision on which is the “best” tool is dependent on the requirements
set out by the team that will be using the tool. Performance analysis showed
the expected results: low-level simulation tools achieve significantly higher
performance, at the cost of reduced readability and (debugging) functionality.
We briefly summarize each tool, and give a recommended target audience:

• ADEVS offers a limited set of features, but allows for very efficient
simulation of Parallel DEVS models. It is however difficult to use by
non-programmers as it boils down to programming in C++. We would
recommend the use of ADEVS for modellers that are familiar with C++
and wish to obtain every bit of performance, at the cost of functionality.

• CD++ is mainly specialized in the simulation of Cell DEVS models by non-
programmers. While Classic DEVS models are also supported, extensions
such as CD++Builder are recommended for non-programmers. We would
recommend the use of CD++ for the development of Cell DEVS models,
or in combination with CD++Builder.

• DEVS-Suite presents a nice simulation environment that provides much
insight in the semantics of Parallel DEVS models. Because of its additional
features, performance is rather slow, making it unsuited for large scale
simulations. We would recommend the use of DEVS-Suite for educational
purposes, where the steps of DEVS simulation needs to be thoroughly
explained.

Prepared using sagej.cls

32 Journal Title XX(X)

• MS4 Me provides an intuitive modelling and simulation environment that
tries to hide programming at the level of both atomic and coupled models.
The availability of consulting options distinguishes it from the rest, though
it is still in beta and performance is insufficient for any reasonably sized
model. We would recommend the use of MS4 Me only as soon as the tool
has stabilized in terms of performance, after which it is a tool appropriate
for non-programmers.

• PowerDEVS offers an integrated modelling environment, though it still
relies on the modeller writing C++ code. Its performance is often on par
with ADEVS, though it only supports Classic DEVS, despite Parallel DEVS
being the more popular formalism nowadays. We would recommend the
use of PowerDEVS for modellers familiar with C++, but not so familiar
with DEVS itself, or those seeking to use DEVS for the simulation of hybrid
systems.

• PythonPDEVS provides users with a DEVS simulator in Python, offering
features that are relevant to beginning users of DEVS. While performance
is decent compared to most other tools, it is vastly outperformed by other
efficient simulation tools. We would recommend the use of PythonPDEVS
for educational purposes (due to its close compliance to the formalism), or
for prototypes (due to its relatively efficient implementation in Python).

• VLE provides an integrated modelling environment similar to
PowerDEVS, but remains at a more basic level. There is, however,
more support for the creation of experiments and execution on multiple
machines. We would recommend the use of VLE when a single environment
is desired for every operation: from writing utility functions in C++ to
running experiments with various configurations.

• X-S-Y is unique in that it offers support for a verifiable subset of DEVS,
implemented in Python. Performance is lacking though, making it unfit
for large scale models. We would recommend the use of X-S-Y if model
verification is important.

Some parts were left out of our comparison, such as an analysis of parallel and
distributed simulation performance, or a more detailed performance comparison
(e.g., memory usage). Usability evaluation of the tools is an important aspect
that we did not tackle. Our intuition tells us that graphical tools can make up
for their low performance, by significantly reducing required training and model
development time. The same goes for debugability: tools offering advanced
debugging capabilities are orders of magnitude slower, though model errors
are likely found earlier. In the future, performance analysis of the parallel and
distributed simulation should be considered, as well as usability evaluation of
these tools.

Prepared using sagej.cls

33

Acknowledgement

This work was partly funded with a PhD fellowship grant from the Research
Foundation - Flanders (FWO). This research was partially supported by
Flanders Make vzw.

References

[1] Vangheluwe H. DEVS as a common denominator for multi-formalism
hybrid systems modelling. In IEEE International Symposium on Computer-
Aided Control System Design. pp. 129–134.

[2] Bonaventura M, Wainer G and Castro R. Graphical modeling and
simulation of discrete-event systems with CD++Builder. SIMULATION
2013; 89(1): 4–27.

[3] Vicino D, Niyonkuru D, Wainer G et al. Sequential PDEVS Architecture.
In Proceedings of the 2015 Spring Simulation Multiconference. pp. 906–913.

[4] Gutierrez-Alcaraz M and Wainer G. Experiences with the DEVStone
Benchmark. In Proceedings of the 2008 Spring Simulation Multiconference.
pp. 447–455.

[5] Wainer G, Glinsky E and Gutierrez-Alcaraz M. Studying performance
of DEVS modeling and simulation environments using the DEVStone
benchmark. SIMULATION 2011; 87(7): 555–580.

[6] Li X, Vangheluwe H, Lei Y et al. A testing framework for DEVS
formalism implementations. In Proceedings of the 2011 Spring Simulation
Multiconference. pp. 183–188.

[7] Franceschini R, Bisgambiglia PA, Touraille L et al. A survey of
modelling and simulation software frameworks using Discrete Event System
Specification. In 2014 Imperial College Computing Student Workshop.
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, pp. 40–49.

[8] Nikoukaran J, Hlupic V and Paul RJ. Criteria for simulation software
evaluation. In Proceedings of the 1998 Winter Simulation Multiconference.
pp. 399–406.

[9] Glinsky E and Wainer G. DEVStone: a benchmarking technique for
studying performance of DEVS modeling and simulation environments.
In Proceedings of the 2005 9th IEEE/ACM International Symposium on
Distributed Simulation and Real-Time Applications. pp. 265–272.

[10] Zeigler BP, Praehofer H and Kim TG. Theory of Modeling and Simulation.
2nd ed. Academic Press, 2000.

[11] Chow ACH and Zeigler BP. Parallel DEVS: a parallel, hierarchical,
modular, modeling formalism. In Proceedings of the 1994 Winter
Simulation Multiconference. pp. 716–722.

Prepared using sagej.cls

34 Journal Title XX(X)

[12] Barros FJ. Dynamic structure discrete event system specification: a new
formalism for dynamic structure modeling and simulation. In Proceedings
of the 1995 Winter Simulation Multiconference. pp. 781–785.

[13] Chow ACH, Zeigler BP and Kim DH. Abstract simulator for the parallel
DEVS formalism. In AI, Simulation, and Planning in High Autonomy
Systems. pp. 157–163.

[14] Himmelspach J and Uhrmacher AM. Sequential processing of PDEVS
models. In Proceedings of the 3rd European Modeling & Simulation
Symposium. pp. 239–244.

[15] Barros FJ. Modeling formalisms for dynamic structure systems. ACM
Transactions on Modeling and Computer Simulation 1997; 7: 501–515.

[16] Barros FJ. Abstract simulators for the DSDE formalism. In Proceedings of
the 1998 Winter simulation Multiconference. pp. 407–412.

[17] Uhrmacher AM. Dynamic structures in modeling and simulation: a
reflective approach. ACM Transactions on Modeling and Computer
Simulation 2001; 11: 206–232.

[18] Wainer G and Giambiasi N. Discrete event modeling and simulation
technologies. chapter Timed cell-DEVS: modeling and simulation of cell
spaces. Springer-Verlag New York, Inc., 2001. pp. 187–214.

[19] Troccoli A and Wainer G. Implementing Parallel Cell-DEVS. In Proceedings
of the 2003 Spring Simulation Symposium. pp. 273–280.

[20] Nutaro JJ. adevs. http://www.ornl.gov/~1qn/adevs/, 2015.

[21] Muzy A and Nutaro JJ. Algorithms for efficient implementations of
the DEVS & DSDEVS abstract simulators. In 1st Open International
Conference on Modeling and Simulation (OICMS). pp. 273–279.

[22] Van Tendeloo Y and Vangheluwe H. The modular architecture of the
Python(P)DEVS simulation kernel. In Proceedings of the 2014 Spring
Simulation Multiconference. pp. 387–392.

[23] Fritzson P, Aronsson P, Lundvall H et al. The OpenModelica Modeling,
Simulation, and Software Development Environment. Simulation News
Europe 2005; 44: 8–16.

[24] Wainer G. CD++: a toolkit to develop DEVS models. Software: Practice
and Experience 2002; 32(13): 1261–1306.

[25] Muzy A and Wainer G. Comparing simulation methods for fire spreading
across a fuel bed. In Proceedings of AIS’2002. pp. 219–224.

Prepared using sagej.cls

35

[26] Shang H and Wainer G. A model of virus spreading using Cell-DEVS. In
Computational Science ICCS 2005, Lecture Notes in Computer Science,
volume 3515. Springer Berlin / Heidelberg, 2005. pp. 145–201.

[27] Wainer G and Giambiasi N. Application of the Cell-DEVS Paradigm for
Cell Spaces Modelling and Simulation. SIMULATION 2001; 76(1): 22–39.

[28] Kgwadi M, Shang H and Wainer G. Definition of dynamic DEVS models:
Dynamic Structure CD++. In Proceedings of the 2008 Spring Simulation
Multiconference. pp. 10:1–10:4.

[29] Kim S, Sarjoughian HS and Elamvazhuthi V. DEVS-Suite: a simulator
supporting visual experimentation design and behavior monitoring. In
Proceedings of the 2009 Spring Simulation Multiconference. pp. 161:1–
161:7.

[30] Sarjoughian H and Zeigler B. DEVSJava: Basis for a DEVS-based
Collaborative M&S Environment. SIMULATION 1998; 30: 29–36.

[31] Chezzi CM, Tymoschuk AR and Lerman R. A Method for DEVS
Simulation of e-Commerce Processes for Integrated Business and
Technology Evaluation (WIP). In Proceedings of the 2013 Spring
Simulation Multiconference. pp. 13:1–13:6.

[32] Palaniappan S, Sawhney A and Sarjoughian HS. Application of the
DEVS Framework in Construction Simulation. In Proceedings of the
38th Conference on Winter Simulation. Winter Simulation Conference, pp.
2077–2086.

[33] Ferayorni AE and Sarjoughian HS. Domain driven simulation modeling for
software design. In Proceedings of the 2007 Summer Computer Simulation
Conference. pp. 297–304.

[34] Seo C, Zeigler BP, Coop R et al. DEVS modeling and simulation
methodology with MS4Me software. In Proceedings of the 2013 Spring
Simulation Multiconference. pp. 33:1–33:8.

[35] Kim T, Lee C, Christensen E et al. System entity structuring and model
base management. IEEE Transactions on Systems, Man and Cybernetics
1990; 20(5): 1013–1024.

[36] Zeigler BP, Seo C, Coop R et al. Creating Suites of Models with System
Entity Structure: Global Warming Example. In Proceedings of the 2013
Spring Simulation Multiconference. pp. 32:1–32:8.

[37] Zeigler B, Seo C and Kim D. System entity structures for suites of
simulation models. International Journal of Modeling, Simulation, and
Scientific Computing 2013; 4: 3:1–3:11.

Prepared using sagej.cls

36 Journal Title XX(X)

[38] Bergero F and Kofman E. PowerDEVS: a tool for hybrid system modeling
and real-time simulation. Simulation 2011; 87: 113–132.

[39] Kofman E, Lapadula M and Pagliero E. PowerDEVS: A DEVS-Based
Environment for Hybrid System Modeling and Simulation. Technical
report, School of Electronic Engineering, Universidad Nacional de Rosario,
2003.

[40] Capocchi L, Santucci JF, Poggi B et al. DEVSimPy: A collaborative python
software for modeling and simulation of DEVS systems. In Workshop
on Enabling Technologies: Infrastructure for Collaborative Enterprises. pp.
170–175.

[41] Van Mierlo S, Van Tendeloo Y, Barroca B et al. Explicit Modelling of a
Parallel DEVS Experimentation Environment. In Proceedings of the 2015
Spring Simulation Multiconference. pp. 860–867.

[42] Van Tendeloo Y and Vangheluwe H. PythonPDEVS: a distributed
Parallel DEVS simulator. In Proceedings of the 2015 Spring Simulation
Multiconference. pp. 844–851.

[43] Quesnel G, Duboz R, Ramat E et al. VLE: a multimodeling and
simulation environment. In Proceedings of the 2007 Summer Simulation
Multiconference. pp. 367–374.

[44] Hwang MH. X-S-Y. https://code.google.com/p/x-s-y/, 2012.

[45] Tewoldeberhan TW, Verbraeck A, Valentin E et al. An evaluation and
selection methodology for discrete-event simulation software. In Proceedings
of the 2002 Winter Simulation Multiconference. pp. 67–75.

[46] Fujimoto RM. Parallel and Distribution Simulation Systems. 1st ed. New
York, NY, USA: John Wiley & Sons, Inc., 1999.

[47] Glinsky E and Wainer G. Definition of Real-Time Simulation in the CD++
Toolkit. In Proceedings of the 2002 Summer Simulation Multiconference.

[48] Martin D, McBrayer T, Radhakrishan R et al. Time warp parallel
discrete event simulator. Technical report, Computer Architecture Design
Laboratory. University of Cincinnati. USA, 1997.

[49] Barroca B, Mustafiz S, Van Mierlo S et al. Integrating a Neutral Action
Language in a DEVS Modelling Environment. In Proceedings of the 8th
International ICST Conference on Simulation Tools and Techniques. pp.
19–28.

[50] Sun Y and Hu X. Partial-modular DEVS for improving performance of
cellular space wildfire spread simulation. In Proceedings of the 2008 Winter
Simulation Multiconference. pp. 1038–1046.

Prepared using sagej.cls

37

[51] Posse E. Modelling and simulation of dynamic structure discrete-event
systems. PhD Thesis, School of Computer Science, McGill University, 2008.

[52] Ousterhout JK. Scripting: Higher-Level Programming for the 21st Century.
Computer 1998; 31(3): 23–30.

[53] Chen B and Vangheluwe H. Symbolic flattening of DEVS models. In
Proceedings of the 2010 Summer Simulation Multiconference. pp. 209–218.

[54] Van Tendeloo Y and Vangheluwe H. Activity in PythonPDEVS. In
Proceedings of ACTIMS 2014. pp. 2:1–2:10.

Author Biographies

Yentl Van Tendeloo is a PhD student at the University of Antwerp, Department

of Mathematics and Computer Science, Antwerp, Belgium.

Hans Vangheluwe is a full professor at the University of Antwerp, Department of

Mathematics and Computer Science, Antwerp, Belgium. He is also an adjunct professor

at McGill University, School of Computer Science, Montréal, Canada, where he was a

full professor before.

Prepared using sagej.cls

