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F, Saint-Étienne 42023, France

3Department of Electromechanical Engineering, University of Antwerp,

Groenenborgerlaan 171, Antwerp 2020, Belgium

(Dated: 31 January 2019)

1



JASA

The structural intensity on plates or shells can provide insights on how the vibrational1

energy is transmitted throughout a sample. Its assessment via experimental deflec-2

tions are widely documented in the case of plates, which just requires the computation3

of spatial derivatives of out-of-plane displacements or velocities and a knowledge of4

the sample’s material properties. However, if the structural intensity is to be as-5

sessed on arbitrary shells, a more elaborate data processing is required. The in-plane6

displacements become relevant terms and the spatial derivatives along a predefined7

local coordinate system need to be computed. Here, a method from which experi-8

mental data is interpolated on a finite element mesh is proposed. Firstly, the global9

displacements and shape of a sample’s outer-surface are measured. These data are10

then projected on a quadratic mesh, where the Kirchhoff plate theory is invoked for11

the individual elements. The data differentiation is computed via quadratic shape12

functions, from which the strains and structural intensity are estimated. Through13

the obtained vibrational energy results on the basis of measured displacement and14

shape data and by validating the method via a numerical simulation, the proposed15

work has shown to be a reliable tool to assess energy transmission on irregular shells.16
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I. INTRODUCTION17

The structural intensity (SI) analysis describes the magnitude and direction of vibrational18

energy being transported by elastic waves in a structure. Such tool was widely used to19

analyze dominant transmission paths, energy dissipation and source localization in both20

experimental and numerical studies.21

When experimental data of plate-like structures are analyzed, it is convenient to invoke22

the Kirchhoff-Love postulates (Miguel and Feit, 1986), so the SI can be assessed in terms of23

the out-of-plane and full-field displacements or velocities and a priori knowledge of the sam-24

ple’s material properties. The quality of the computed energy transmission strongly depends25

on the signal-to-noise ratio of the experimental deflections, on the amount of measurement26

points and the employed differentiation technique to estimate the strains and generalized27

forces.28

All these aspects have been improved since the pioneering works regarding the SI assess-29

ments via the use of accelerometers during the 70’s (Noiseux, 1970; Pavić, 1976). Later on,30

non-contact measurement techniques permitted the deflections’ assessment on denser grids.31

Examples of reported methods to analyze the vibrational energy are the laser Doppler32

vibrometry (Arruda and Mas, 1998; Morikawa et al., 1996; Pascal et al., 2002, 2006;33

Roozen et al., 2015; Schmidt, 2009; Vuye, 2011; Zhang and Mann III, 1996), acoustic-34

holography (Pascal et al., 1990; Saijyou, 2007), electronic speckle interferometry (Eck and35

Walsh, 2012), holographic interferometry (Pascal et al., 1996) and digital stroboscopic36

holography (Pires et al., 2018).37
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The differentiation of the experimental data has been performed mainly by the finite38

difference method (Arruda and Mas, 1998; Schmidt, 2009) or by processing and filtering the39

data in its corresponding wavenumber domain (Arruda, 1992; Lopes et al., 2006; Morikawa40

et al., 1996; Pascal et al., 1996, 2002, 2006). Such approaches to assess the required spatial41

derivatives in combination with the described measuring techniques provided meaningful42

insights in the field, which includes the analysis of plates with peculiar features, such as plates43

with ribs or joints (Pascal et al., 2006; Semperlotti and Conlon, 2010; Zhang and Mann III,44

1996), with cracks (Schmidt, 2009) and with orthotropic material properties (Lamberti and45

Semperlotti, 2013).46

Apart from the SI assessment via experimental data, the use of numerical simulations47

has also proven to be a useful tool. This approach was not just used to analyze the energy48

transmission on plates but also on general structures with irregular shapes. The geometries49

of interest are mainly developed as finite element (FE) models by using solid (Hambric and50

Szwerc, 1999; Shepherd et al., 2012; Xu et al., 2004a) or shell elements (Gavrić and Pavić,51

1993; Hambric, 1990; Lee et al., 2006; Li and Lai, 2000; Liu et al., 2005; Petrone et al., 2016;52

Xu et al., 2004b). A variety of works were reported in literature, such as the SI study on53

cracks present in ships or off-shore platforms (Cho et al., 2010; Tian et al., 2017), of locally54

resonant metamaterials (Al Ba’ba’a et al., 2018; Al Ba’ba’a and Nouh, 2017) and of stiffened55

or ribbed plates (Cho et al., 2017; Schaal et al., 2016; Xu et al., 2005). Other numerical56

examples have been also developed to assess the SI on plates containing geometrical or57

constitutive heterogeneities, such as the case of stepped thickness plates (Cho et al., 2016)58
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and samples with orthotropic material properties (Lamberti and Semperlotti, 2013; Petrone59

et al., 2016; Tran et al., 2007; Xu et al., 2004b).60

However, in spite of the advancements in this field, just a few studies regarding the SI on61

shell-like structures have been developed (Saijyou, 2007; Williams, 1991). Moreover, the SI62

terms from such samples are conveniently formulated if a set of curvilinear coordinate system63

is chosen to represent the shell’s behavior from its mid-surface (Gavrić and Pavić, 1993). If64

this approach is chosen, then the spatial derivatives along these very coordinates need to be65

carried out, so the strains and, in turn, the SI vector components can be retrieved. From66

these requirements, it can be noted that the definition of these local coordinates depend67

on the shape of the analyzed sample. Since the in-plane displacement components are no68

longer negligible (Cho et al., 2010; Gavrić and Pavić, 1993; Romano et al., 1992, 1990; Zhang,69

1993), full-field experimental data along three orthonormal directions need to be measured.70

Such demands were not present for the case of plates, whose analysis were just based on the71

measurement of out-of-plane displacement or velocity fields and whose differentiation could72

be carried out along a predefined Cartesian coordinate system. Besides, the attempts made73

so far to analyze the SI on the basis of curvilinear coordinates were restricted to analytical74

ones, such as the cylindrical or the spherical coordinates (Romano et al., 1990; Saijyou, 2007;75

Williams, 1991; Zhang, 1993).76

Apart from these limitations, the standard non-contact measurement techniques cited77

above are just able to extract data from a sample’s outer-surface. Since the displacements78

may vary with respect to a shell’s thickness, extra steps and proper assumptions need to79
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be taken into account, so the information at the mid-surface can be estimated from the80

provided data at the sample’s outer-surface.81

It is the aim of this paper to present a method that tackles the mentioned issues regarding82

the SI assessment on irregular shells by projecting the experimental data to a FE mesh (Avril83

et al., 2009; Feng and Rowlands, 1991). The chosen non-contact measurement technique was84

the Digital Image Correlation (DIC) (Schreier et al., 2009), since it computes both data of85

interest for this application, i.e., the spatial coordinates describing the shape of the sample’s86

outer-surface and associated displacement data in all three orthonormal directions.87

By invoking proper assumptions and approximations, the projected displacements are88

represented on the basis of a local coordinate system, so all necessary differentiations are89

computed by choosing proper FE shape functions. The processed data from the outer-surface90

were then used as input to identify the fields on the mid-surface and the SI was assessed.91

All computed SI results showed energy transmission paths that were expected from the92

analyzed sample. The assessed vector fields of vibrational energy strongly converged to a93

region on the sample where a viscous damper was installed. Additionally, the accuracy of the94

data processing proposed in this paper was also tested with the results of a FE shell model.95

The SI outputs that were acquired via the proposed method and the one provided by the96

numerical simulation showed similar energy transmission patterns both in magnitude and97

direction. Due to these findings and by validating this work via a simulation, it is suggested98

that the current method can handle the major difficulties regarding the SI assessment on99

arbitrary shells.100
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II. THEORY101

A. Structural intensity102

It is the aim of this work to assess and visualize the energy paths taking place on ir-103

regular shells. This data is defined as the product of the vibration particle velocity and104

stress tensor (Morse and Feshbach, 1946; Zhang, 1993), which are quantities that are not105

directly measurable on general structures. However, these 2 terms can be related to the106

displacements, rotations and generalized forces by making assumptions. By invoking the107

Kirchoff-Love postulates (Miguel and Feit, 1986), the time-averaged and active SI per unit108

length [W m−1] of a shell under harmonic motion is109

I = IQ + IM + IN , (1)

where110

IQ = −(πf)



Im{Q1u
∗
3}

Im{Q2u
∗
3}

0


, (2)

111

IM = −(πf)



Im{M11a
∗
1 +M12a

∗
2}

Im{M21a
∗
1 +M22a

∗
2}

0


, (3)
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112

IN = −(πf)



Im{N11u
∗
1 +N12u

∗
2}

Im{N21u
∗
1 +N22u

∗
2}

0


. (4)

Here, f is the frequency at which the structure vibrates, the superscript “∗” is the complex113

conjugate symbol and “Im{}” indicates that only the imaginary part of the referred term114

should be taken into account. The 1st and 2nd rows of the vectors IQ, IM and IN [Eqs. (2-4)]115

point at directions that are always tangent to the surface of the analyzed shell, while the116

3rd row indicates the normal direction of the surface.117

Besides, the subscripts “1” and “2” in these equations indicate the directions of the118

2 tangent coordinates and the subscript “3” indicates the perpendicular one. The defined119

triad (“1” to “3”) correspond to an orthogonal and local coordinate system, which is defined120

here as (e1, e2, e3). Hence, the unit vectors e1 and e2 are always tangent to the shell’s surface121

and the vector e3 is aligned with the through-thickness coordinate.122

The terms related to u are the scalar components of the displacements on the mid-surface;123

and a refers to the rotations about the normals to that very surface. The parameters124

indicated with the letters Q, N and M are referenced here as the generalized forces taking125

place on the shell and are the scalar components of the shear force Q, the membrane force126

N and the bending moment M, respectively. The development of the equations that relate127

the generalized forces with displacements or rotations can acquire convenient forms if proper128

assumptions are used. The next section (Section II B) presents these simplifications, from129

which Q, M and N are derived.130
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B. Kirchhoff-Love plate model131

As it is evident from the experiment described in Section III, the only recorded informa-132

tion from the sample are its shape and displacement fields on its outer-surface. The energy133

transmission shown in Eqs. (1-4), on the other hand, are defined on a shell’s mid-surface.134

The relation between the data described in both surfaces depends on the assumtions de-135

scribing the analyzed sample. To this end, it is assumed that the shell under study can be136

represented as an assembly of elements whose mid-surfaces are planar and whose behavior137

can be predicted by the Kirchhoff plate theory.138

Since the individual elements are considered to be flat, their curvatures are set to zero139

and the second and third fundamental forms vanish from the equations relating the displace-140

ments and rotations with the strains (Chapelle and Bathe, 2010). Moreover, the Kirchhoff141

plate theory permits the rotation to be estimated directly from the outer-surface, since this142

parameter is assumed to be independent from the through-thickness coordinate. The as-143

sumed theory also permits the relations between the data from the outer-surface and energy144

transmission from the mid-surface to be conveniently developed, since the displacements145

and strains vary linearly with respect to the shell’s normal direction. Due to all these sim-146

plifications, the generalized forces acquire relatively simpler forms and can be estimated on147

the basis of data recorded from a sample’s outer-surface.148
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1. Kinematics of shells149

The equations supporting the proposed data processing of this work are entirely based on150

the Kirchhoff-Love plate model for shells; which, in turn, obeys the Kirchhoff-Love postu-151

lates (Miguel and Feit, 1986). By recalling the assumption that the shell’s normal direction152

undergo no change in length during deformation (Kraus, 1967), one can state that the153

displacement has a linear distribution in its normal direction (Bischoff and Ramm, 1997;154

Büchter et al., 1994) and the following relation holds:155

uh/2 = u +
h

2
a, (5)

where u is the displacement vector field at the mid-surface of the shell, a is the rotation156

about the normal to that very surface, h is the thickness value of the shell and the uh/2 is157

the displacement on the outer-surface.158

As it was the case for Eq. (1), the scalar components of uh/2, u and a also correspond to159

the orthogonal coordinate system (e1, e2, e3). Hence,160

uh/2 =



u
h/2
1

u
h/2
2

u
h/2
3


, u =



u1

u2

u3


, a =



a1

a2

0


, (6)

where the in-plane directions of the displacements and rotations are indicated by the sub-161

script “1” and “2”; and the subscript “3” indicates the scalar field along the out-of-plane162

direction.163

By recalling the assumptions of the Kirchhoff-Love plate model once again, one can relate164

the linearlized Green-Lagrange strain on the outer-surface εh/2 as a function of the membrane165
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and bending strains (Chapelle and Bathe, 2010), i.e.,166

εh/2 = γ +
h

2
χ, (7)

where γ is the membrane strain and χ is the bending strain linearly varying over the shell’s167

thickness. The scalar components of the vectors in Eq. (7) are168

εh/2 =



ε
h/2
11

ε
h/2
22

ε
h/2
12


, γ =



γ11

γ22

γ12


, χ =



χ11

χ22

χ12


, (8)

By knowing that the elements describing the assembly are planar, the strains εh/2 and χ169

can be interpreted as functions of the displacement and rotation being differentiated along170

the local coordinates e1 and e2. Hence,171

ε
h/2
ij =

1

2
(u

h/2
i,j + u

h/2
j,i ), for i, j = {1, 2}, (9)

and172

χij =
1

2
(ai,j + aj,i), for i, j = {1, 2}, (10)

where the subscripts “, i” or “, j” indicate that the fields are differentiated along the direc-173

tions “i” or “j”, respectively.174

2. Generalized forces175

Since the strains’ formulations are available, the non-negligible stress components can176

be defined as functions of the strain varying linearly with respect to the through-thickness177
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coordinate ζ and the shell’s material properties. Therefore, it follows that178

σζ = Ωεζ , (11)

where Ω is the stiffness matrix, σζ is the stress as a function of the through-thickness179

coordinate ζ and εζ is the Green-Lagrange strain as a function of ζ. These parameters are180

defined as181

Ω =
E

1− ν2



1 ν 0

ν 1 0

0 0 1− ν


, (12)

182

σζ =



σζ11

σζ22

σζ12


, εζ =



εζ11

εζ22

εζ12


, (13)

By integrating Eq. (11) with respect to the through-thickness coordinate ζ, the general-183

ized forces related to the membrane strain γ and the bending strain χ can be computed:184

185

N = hΩγ, (14)

186

M =
h3

12
Ωχ, (15)
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being the components of the membrane force N and bending moment M defined as187

N =



N11

N22

N12


, M =



M11

M22

M12


, (16)

and where188

M21 = M12, N21 = N12, (17)

from (Novozhilov, 1959) and by considering the current case of a Kirchhoff-Love plate189

model (Chapelle and Bathe, 2010).190

The internal forces related to the shear force Q are assessed by analyzing the equilib-191

rium conditions of a differential element and by taking into account that the shell is being192

represented by an assembly of plates. Through the equilibrium conditions, the shear force193

acquires the following form (Ventsel and Krauthammer, 2001):194

Q =


Q1

Q2

 =


M11,1 +M12,2

M12,1 +M22,2

 , (18)

It can be noted from Eq. (18) that the shear force is dependent on the spatial derivatives195

of the bending moment. If the scalar components of Eq. (15) are differentiated, it holds that196

197

Mii,i =
h3

12

E

1− ν2
(χii,i + νχjj,i), for i, j = {1, 2}, (19)

198

Mij,i =
h3

12

E

1 + ν
χij,i, for i, j = {1, 2}. (20)
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The derivatives of χij in Eqs. (19, 20) can be acquired by differentiating the bending199

strain χ in Eq. (10):200

χij,i =
1

2
(ai,ij + aj,ii), for i, j = {1, 2}, (21)

where χij,i is a scalar component of χ,i. From the derivations shown in Eqs. (18-21), it is clear201

that in order to access Q, the 2nd order derivatives of the rotation (presented throughout202

this work as a,ij) are required.203

3. Assessment of data on the mid-surface204

The equations provided so far are given to support the processing from the data available205

at the outer-surface of a sample, i.e., the terms uh/2 and a from Eq. (5); and εh/2 and χ206

from Eq. (7). By analyzing the SI scalar components in Eqs. (2-4), it can be noted that the207

terms related to the displacement on the mid-surface u would still be missing. Moreover,208

the membrane force N can not be directly estimated, since it is formulated as a function of209

the membrane strain γ, which is also a parameter from a shell’s mid-surface.210

The approach used to assess both the displacement u and the membrane strain γ was211

simply to isolate these very terms from Eqs. (5, 7). By assuming that one has a previous212

knowledge of all other terms, the displacement and strain on the mid-surface can be recovered213

from214

u = uh/2 − h

2
a, (22)

and215

γ = εh/2 − h

2
χ. (23)

14



JASA

If the term χ,i is also at hand, all generalized forces (N, M and Q) can be assessed from216

Eqs. (14, 15, 18-20) and it is possible to estimate the SI on the basis of Eqs. (1-4).217

By adopting the Kirchhoff-love plate model to represent a real sample, one can also218

state that such an assembly can be treated as a FE mesh, whose local Degrees of Freedom219

(DoFs) are the displacement u and rotation a [Eq. (5)]. By choosing proper shape functions,220

these DoFs can be differentiated along the directions e1 and e2 [Eqs. (9, 10, 21)] and the221

generalized forces can be assessed.222

However, as it will be pointed out in Section III, the experimental displacements from223

the outer-surface that are exported from the developed set-up are defined on a Cartesian224

coordinate system (ex, ey, ez) (defined throughout this work as U
h/2
exp). Moreover, the spatial225

coordinates of the FE mesh’s nodes are usually not equal in number or position with the226

coordinates from which the experimental data U
h/2
exp is recorded.227

Due to these 2 issues, the measurements need to be first projected from the dense ex-228

perimental point cloud to the nodes of a mesh and then a transformation of coordinate229

systems needs to take place. Both issues are addressed in detail in Sections II C and II E,230

respectively.231

C. Data projection on a finite element mesh232

It can be noted from Section II B 2 that in order to assess Q, N and M; 1st order233

derivatives of u [Eq. (9)] and 2nd order derivatives of a [Eq. (21)] need to be computed. This234

work proposes the processing of these spatial derivatives via FE shape functions.235
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It follows that a generalized vector field ψ̂ can be calculated at any position x within an236

element by interpolating the information stored at its nodes and predefined shape functions237

N . Therefore, it holds that238

ψ̂(x) =
c∑
b=1

Nb(x) · ψ̃b, (24)

being “c” the total number of nodes present in an FE element, ψ̃ is a generalized DoF stored239

on the mesh’s nodes and the subscript “b” depicts the node numbering of the field ψ̃ and240

the shape function N .241

The approach used to perform the projection of experimental data on a mesh was the242

global least-squares minimization via FE shape functions (Avril et al., 2009; Avril and243

Pierron, 2007; Feng and Rowlands, 1991) over the whole sample’s measurement domain.244

The minimization problem is defined as245

min
d∑
a=1

∣∣ψ̂(xa)−ψ(xa)
∣∣2, (25)

where ψ refers to a generalized experimental data and d is the total number of evaluated246

points of ψ. By substituting ψ̂ with the right-handed terms of Eq. (24) and by considering247

Φ, Ψ̃ and Ψ the assembled matrices of N(xa), ψ̃(xa) and ψ(xa), respectively; Eq. (25) can248

be represented in its assembled matrix form as249

Ψ̃ =
[[

ΦTΦ
]−1

ΦT
]
Ψ. (26)

From here, it becomes evident that the measured full-field data Ψ, their corresponding250

spatial coordinates xa and defined basis functions N(xa) are sufficient inputs to solve the251

minimization problem. At the end of this process, one has access to the assembled data Ψ̃252

at the nodal points of a FE mesh.253
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In the current work, the experimental displacements Uh/2
exp and related spatial coordinates254

x on the outer-surface are the data that will be projected on the mesh. If these 2 terms are255

available, one has all the necessary inputs of Eq. (26), so the projection procedure can take256

place on the mesh. By substituting Ψ with Uh/2
exp in Eq. (26), it is concluded that257

Ũ
h/2

=
[[

ΦTΦ
]−1

ΦT
]
Uh/2
exp. (27)

being Ũ
h/2

the displacements of the outer-surface and stored on the mesh’s nodes.258

D. Assessment of rotations259

Since the Kirchhoff plate theory is being imposed on the shell’s elements, the rotation260

at each node can be computed by subtracting the normal directions of the mesh under its261

deformed configuration with the ones in the reference configuration (Bischoff and Ramm,262

1997; Murthy and Gallagher, 1986; Wagner and Gruttmann, 1994). Moreover, due to the263

assumption stating that the normal direction of the mid-surface remains perpendicular to264

that very surface after deformation, the subtraction’s result becomes independent from the265

local coordinate ζ. Hence, this operation can be done at ζ = h/2, which is the region where266

the experimental data are extracted from.267

By assuming that the term Ũ
h/2

and the mesh are at hand, the rotation corresponding268

to the stationary Cartesian coordinate system (Ã) can be assessed. This is achieved by269

subtracting the normal directions of the mesh at its deformed state (ndef ) from its reference270

state (e3). The deformed state of the mesh is computed by translating the nodes at the271

direction provided by the displacements Ũ
h/2

. The unit vectors ndef are then computed and272
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the subtraction can take place. Therefore, it holds that273

Ã = ndef − e3. (28)

By accomplishing this step, each node of the FE mesh should have 6 DoFs that are aligned274

with (ex, ey, ez): 3 scalar components of Ũ
h/2

and other 3 of Ã.275

E. Coordinate system transformation & data differentiation276

As pointed out in Section II B 3, the computation of Eqs. (2-4) requires that the displace-277

ment and rotation be aligned with the local triad (e1, e2, e3). With a previous knowledge of278

these coordinates, the orthonormal basis representing Ũ
h/2

and Ã are rotated accordingly279

in each element and their components in the local coordinates are obtained. These terms280

are denoted here as ũh/2 and ã and are also stored on the mesh’s nodes.281

It was stated previously that 2nd order derivatives of a need to be computed to access282

the shear forces [Eq. (18-21)]. Therefore, the Kirchhoff-Love plate model requires at least283

quadratic shape functions, so this higher-order differentiation can be processed.284

The proposed work makes use of triangular elements to develop the FE mesh, since it285

is the most popular element for estimating in-plane related variables (Dhatt et al., 1986)286

and is capable of discretizing arbitrary shells efficiently. By applying quadratic shape func-287

tions on this assembly, it holds that the FE mesh is build upon a collection of 6-noded288

triangules (Zienkiewicz et al., 1977), i.e., linear-strain triangular elements (LST).289
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By defining that each element has 6 nodes and by substituting ψ̃ for either ũh/2 or ã in290

Eq. (24), it holds that291

ûh/2(x) =
6∑
b=1

Nb(x) · ũh/2b , â(x) =
6∑
b=1

Nb(x) · ãb, (29)

where ûh/2 and â are the displacement and rotation being evaluated at the position x inside292

an element.293

For the purpose of this work, it was decided to evaluate the shell’s behavior at the294

barycentric coordinates of the FE mesh’s elements. Hence, by defining N̄ to be the shape295

functions being evaluated at these very coordinates and by substituting them into Eq. (29),296

297

uh/2 =
6∑
b=1

N̄b · ũh/2b , a =
6∑
b=1

N̄b · ãb. (30)

being uh/2 and a the terms present in Eq. (5).298

As it is the case for the left-handed terms of Eq. (30), their spatial derivatives are also299

estimated on the barycenter of the elements. It could be seen from Eqs. (9, 21) that 1st
300

order derivatives of uh/2 and 2st order derivatives of a are required for the SI assessment301

Eqs. (2-4).302

By differentiating the shape functions terms in Eq. (30) to the demanded differentiation303

orders, it holds that304

u
h/2
,i =

6∑
b=1

N̄b,i · ũh/2b , (31)

305

a,i =
6∑
b=1

N̄b,i · ãb, a,ij =
6∑
b=1

N̄b,ij · ãb, (32)
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where the terms u
h/2
,i ; a,i and a,ij are spatial derivatives along the local directions “i” or “j”306

and which are present in Eqs. (9, 10, 21). By making use of the Eqs.(30-32), the strains and307

related derivatives εh/2, χ and χ,i [Eqs. (9, 10, 21)] can be also assessed. From these terms,308

the fields related to the element’s mid-surfaces u and γ are estimated via the Eqs. (22, 23)309

and from which all generalized forces [Eqs. (14, 15, 18-20)] and, in turn, the SI [Eqs. (1-4)]310

can be computed.311

III. MATERIALS312

The measurement of full-field displacements and subsequent data processing was per-313

formed on a circular membrane made of silicon, whose boundaries were fixed (FIG. 1). Its314

Young’s modulus E was estimated to be 8 MPa through a tensile test, its Poisson’s coef-315

ficient ν was assumed to be 0,3; and its thickness and diameter were 1 mm and 12 cm,316

respectively.317

The device that disturbed this specimen was a loudspeaker (TOA Corporation, TU-650,318

Tokyo, Japan). The delivered excitation pressure was set to a single frequency, while a319

full-field displacement measurement was being performed. Since it was desired to visualize320

energy paths of the SI on the silicon membrane, a strip of a synthetic viscoelastic urethane321

polymer (Thorlabs, SB12B Sorbothane Sheet, NJ, USA) was fixed from one of its extreme322

sides with the center of the membrane, so the the power being provided by the loudspeaker323

would be absorbed on that region (depicted as “damper” in the cross-section view of FIG. 1).324

The region between the loudspeaker and the membrane was isolated in a chamber to ensure325

that most of the delivered power would be directed to the specimen.326
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Since the final aim of this work is to process displacement and shape data on irregular327

shells, the manipulation of the membrane’s shape was accomplished by moving the other328

extreme end of the polymer strip. By pulling this material, the membrane would gradually329

obtain a curved-conical shape in its reference configuration.330

To avoid the presence of pre-strains in the resting position by excessively pulling the331

damper, the membrane’s boundaries were clamped in such a way that membrane would not332

be stretched at first, leaving it loose and with ”wrinkles”. Afterwards, the viscous polymer333

was attached to the membrane’s surface from the chamber’s interior.334

The polymer was then carefully pulled from the its free end and from inside the chamber.335

The pulling of the damper would stop at the moment where the membrane’s ”wrinkles”336

would cease to exist. This qualitative and visual calibration would indicate that the specimen337

would be on the verge of having residual strains if the damper would be further pulled. At338

the end of this process, the free end of the polymer was fixed and the curved-conical shape of339

the membrane would be acquired. Moreover, the outer-surface of the membrane was sprayed340

on with a black-acrylic ink and a fine speckle pattern was drawn on its surface.341

The measurement of membrane’s spatial coordinates at its resting configuration (x) and342

densely distributed displacement measurements on that surface were obtained via the DIC343

technique (Schreier et al., 2009). For this aim, a Q-400 digital 3D image correlation system344

provided by Dantec/Limess was used. The membrane’s dynamic behavior was captured by345

two high-speed camera’s (see FIG. 1) and the images’ evaluation was carried out by the346

Istra4D software provided by the system.347
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The normalization of the displacement and processed data was calculated by using the348

excitation pressure as references. This parameter was measured by a probe microphone349

(Brüel & Kjær, Type 4182, Nærum, Denmark), which was installed inside the chamber.350

The device was fixed near the membrane and the distance between its tip and the specimen351

was approximately 2 mm.352

The computation of the shape’s spatial coordinates and normalized displacement were353

carried out under several excitation frequencies. To ensure that the harmonic excitation354

pressure would be uniform throughout the membrane’s surface, it was decided to perform355

the dynamic analysis on low excitation frequencies only (ranging from 60 Hz up to 170 Hz).356

As it was already mentioned, second order spatial derivatives of the data need to be357

computed and the quality of these differentiations are highly dependent on the signal-to-358

noise ratio of the measured displacement fields. Therefore, it has been decided to filter359

the displacement fields to ensure that the influence of noise is diminished before the data360

projection on a mesh. The chosen approach for this work was to apply an in-house Gaussian361

filter with a standard deviation of 1 on every displacement field. From now on, these362

filtered global displacement fields are referenced here as the term Uh/2
exp, which was cited in363

Section II C and in Eq. (27).364

After performing the measurements on the circular membrane, the terms Uh/2
exp and x are365

obtained. These two groups of experimental parameters were then used to assess the SI366

under different excitation frequencies. The procedure from which the energy transmission367

paths are computed from Uh/2
exp and x are described in the following section (Section IV).368
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FIG. 1. Set-up configuration (color online)

IV. METHODS369

A. Measurements via the Digital Image Correlation technique370

After preparing the set-up described in Section III, the circular membrane was disturbed371

by the loudspeaker under several excitation frequencies ranging from 60 Hz to 170 Hz.372

The high-speed camera’s captured the membrane’s motion and the recorded images were373

correlated with the support of the Istra4D software.374

The spatial coordinates of the membrane in its resting configuration x could then be gen-375

erated and full-field displacements Uh/2
exp of that sample were computed in several frequencies.376

At the end of this step, both groups of data were exported for further processing.377

B. Mesh generation & definition of the local coordinate system378

By possessing the data x, it is feasible to create a mesh whose shape would overlap379

the original spatial coordinates of the membrane. As it was pointed out in Section II E,380
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the current application requires at least quadratic elements to be the constituents of the381

developed mesh and it was decided to use triangular elements for the whole domain.382

A considerable number of these experimental points need to be projected on each element383

of the mesh, so the interpolated coefficients (located at the nodes) could have trustworthy384

results. Based on this concept, the elements should be big enough to encompass a significant385

amount of data points. On the other hand, the mesh should be fine enough to ensure386

that the geometry’s shape and curvatures are preserved. Therefore, it can be noted that387

the generation of the elements’ size heavily depends on how many measuring points were388

recorded with the DIC set-up.389

After creating a mesh based on the density of experimental data, it was defined that the390

local coordinates e1 and e2 would be the principal curvature directions of the generated shell.391

These vector fields were computed via a multi-scale curvature estimation method (Panozzo392

et al., 2010) and with the support of an open-source library for geometry processing named393

as LIBIGL (Jacobson et al., 2017). The computation of the third direction e3 was obtained394

by computing the normal direction of each element. At the end of this procedure, the local395

basis of unit vectors (e1, e2, e3) was defined.396

C. Assessment of the global displacements & rotations397

Not just the terms Uh/2
exp and x should be available at this point, but the spatial coordinates398

of the nodes of the mesh and the quadratic shape functions are also known. With all these399

terms at hand, one has all inputs of Eq. (27) and the global degrees of freedom related to the400

displacement Ũ
h/2

can be computed. Afterwards, the normal direction of the mesh under401
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its deformed state ndef was estimated with the purpose of extracting the missing global402

rotation Ã through Eq. (28).403

After storing the fields Ũ
h/2

and Ã at the nodes of the mesh and by having a priori404

knowledge of the local coordinates (e1, e2, e3) of the shell, a change of basis vectors can be405

computed for each element as described in Section II E. By performing the change of basis406

of unit vectors, the fields ũh/2 and ã are made available.407

D. Data differentiation, mid-surface terms, generalized forces & structural inten-408

sity409

The terms ũh/2 and ã in combination with the quadratic shape functions are then used to410

compute these very fields and the required spatial derivatives at the elements’ barycentric411

coordinates [Eqs. (30-32)]. The terms u
h/2
,i and a,i are then used as inputs in Eqs. (9, 10) to412

assess the strains εh/2 and χ, while the term a,ij is used to compute χ,i [Eq. (21)]. At the413

end of this process, the terms εh/2, χ and χ,i are available.414

All terms at the right-hand side of the Eqs. (22, 23) should be available at this point and415

the displacement u and strains γ can be computed, if a priori knowledge of the sample’s416

thickness is known.417

Since γ, χ, χ,i and the material properties of the membrane are at hand, Eqs. (14, 15, 18-418

20) can be used to access the generalized forces (Q, M and N). Finally, since the displace-419

ment u, rotation a and generalized forces Q, M and N are present; and by knowing the420

frequency in which the membrane is being excited, it is possible to compute and visualize421

the SI from Eqs. (1-4).422
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Apart from processing the displacements of a real structure, the validation of the proposed423

method was also tested on a FE-Method model and is presented in the Appendix of this424

paper. The SI intensity results that are directly acquired from the model were compared425

with the energy transmission that is obtained by following the proposed method.426

V. RESULTS427

A. Measurements via the Digital Image Correlation technique428

After preparing the set-up described in the Section III and setting the loudspeaker to429

excite the sample with harmonic excitations ranging from 60 Hz to 170 Hz, the spatial430

coordinates x and related global displacements Uh/2
exp were processed by the Istra4D software.431

A total of 24.250 measurement points were correlated for every excitation frequency and a432

representation of this point cloud can be seen in FIG. 4 (a).433

As pointed out, the term Uh/2
exp is dependent on the frequency at which the sample was434

excited. Since the same displacement processing described in Section IV is repeated for435

every frequency, the intermediate steps towards the SI assessment are displayed next just436

for the recorded data at 130 Hz. At the end of this section, the computed SI vector fields of437

that very frequency and others within the mentioned range are also displayed.438

B. Mesh generation & definition of the local coordinate system439

Since the DIC system provided the spatial coordinates of the membrane’s outer-surface,440

it is feasible to develop a mesh, whose shape resemble the original surface. As explained in441
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Section IV, quadratic basis functions were used to describe the elements of the mesh, which,442

in turn, were chosen to be of the triangular type. Since a significant amount of data points443

were recorded, it was feasible to develop a mesh with elements that were relatively small444

but would still enclose a significant amount of data points. It was decided to build a mesh445

whose elements would encompass approximately 12 data points each, a number that would446

also ensure that the membrane’s shape was preserved.447

A mesh containing 3.964 nodes and 1.906 LST elements was generated, which can be448

seen in FIG. 2. It can also be noted from the same figure that the mesh was developed only449

on the regions where the shell theory is applicable, i.e., the free-zones of the sample where450

no thickness or stiffness heterogeneities are to be found.451

FIG. 2. FE mesh resembling the shape of the circular membrane (1.906 quadratic and flat elements

and 3.964 nodes). The points depicted on the figure represent the nodes, where the DoFs are stored.
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After creating the mesh, one can define the local coordinates, whose directions were used452

to compute the fields’ spatial derivatives. By computing the principal curvature directions453

of the mesh with the LIBIGL library (Jacobson et al., 2017), the basis vectors (e1, e2, e3)454

were extracted. FIG. 3 presents the tangent local coordinates, which are the guidelines for455

the spatial differentiations.456

FIG. 3. Representation of the shell’s tangent local coordinates e1 (a) and e2 (b)

Lastly, the quality of the developed mesh was tested on the basis of a shell model, which457

is shown in the Appendix. From this validation, it was concluded that the developed mesh458

that follows the Kirchhoff-Love postulates was able to reproduce the SI results of the model.459

With this validation at hand, the FE mesh was used for further processing.460
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C. Computation of global displacements & rotations461

With the quadratic mesh, the displacement Uh/2
exp and related positions x at hand, Eq. (27)462

could be used to projected the experimental data on the nodes of the mesh and the global463

displacement denoted as Ũ
h/2

was computed. FIG. 4 displays the magnitude of the global464

displacement before (|Uh/2
exp|) and after (|Ũh/2|) the projection. The three global components465

of Ũ
h/2

are also displayed separately in FIG. 5.466

FIG. 4. Projection of data from the dense point cloud to the quadratic mesh. FIG. (a) displays

the term |Uh/2
exp| on 24.250 measured points. FIG. (b) displays the projected displacements |Ũh/2|

on the nodes of the mesh (color online).

Since Ũ
h/2

has been computed, one can calculate ndef of the mesh under its deformed467

configuration, so the global rotation Ã can be assessed through Eq. (28). The magnitude468

and relative phase of the components of this term are presented in FIG. 6.469
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FIG. 5. Components of the global displacement Ũ
h/2

in the directions ex [(a),(d)], ey [(b),(e)] and

ez [(c),(f)]. The 1st row [(a)-(c)] presents the absolute value of these components, while the 2nd

one [(d)-(f)] displays their relative phase with respect to the pressure excitation (color online).

FIG. 6. Components of the global rotation Ã in the directions ex [(a),(d)], ey [(b),(e)] and

ez [(c),(f)] (color online)
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D. Data processing470

At this step, the mesh contains 6 global degrees of freedom (Ũ
h/2

and Ã) on each of its471

nodes (shown in FIG. 5 and FIG. 6) and the local coordinates (e1, e2, e3) are also at hand472

(FIG. 3). By following the description shown in Section II E, the mentioned terms can be473

used to compute the local displacement and rotation, i.e., ũh/2 or ã.474

The estimation of these terms and their spatial derivatives are then computed at the475

barycentric coordinates of each element Eqs. (30-32). At the end of this process, the terms476

uh/2, u
h/2
,i or a, a,i and a,ij are available and, in turn, the Green-Lagrange strain at the477

outer-surface εh/2 [Eqs. (9)], bending curvature χ [Eqs. (10)] and its first-order derivative478

χ,i [Eqs. (21)] can also be assessed.479

The last step consists in using the Eqs. (22, 23) to assess the displacement u and mem-480

brane strain γ on the shell’s mid-surface. All terms from both equations are presented in481

FIG. 7 [terms of Eq. (22)] and FIG. 8 [terms of Eq. (23)] with respect to the local coordinate482

e1 as examples.483
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FIG. 7. Representation of the terms of Eq. (22) from the direction e1 after data processing. The

displayed scalar data are u
h/2
1 [(a),(d)], h

2a1 [(b),(e)] and u1 [(c),(f)] (color online).

FIG. 8. Representation of the terms of Eq. (23) from the direction e1 after data processing. The

displayed scalar data are ε
h/2
11 [(a),(d)], h

2χ11 [(b),(e)] and γ11 [(c),(f)] (color online).
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By having a priori knowledge of the membrane’s material properties, the strains and484

related derivatives (γ, χ and χ,i), all terms at the right-hand side of Eqs. (14, 15, 18) are485

present and the shell’s generalized forces (Q, N and M) are accessible. Moreover, since the486

terms u and a are also available, one has all the necessary components to compute the SI487

I from Eqs. (1-4). As examples, the magnitude of the individual SI contributions (IQ, IM488

and IN) are presented in FIG. 9.489

FIG. 9. Individual contributions of the energy transmission taking place on the circular membrane

at 130 Hz: The presented data are the normalized values of |IN | (a), |IM | (b), and |IQ| (c) (color

online).

The processing of the shape and displacement data described above was repeated for490

the terms Uh/2
exp recorded under all other excitation frequencies. FIG. 10 displays the total491

SI vector field from displacement data, which were recorded at 60 Hz, 80 Hz, 130 Hz and492

170 Hz.493
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FIG. 10. Structural Intensity vector fields [Eq. (1)] taking place on the circular membrane at

60 Hz (a), 80 Hz (b), 130 Hz (c) and 170 Hz (d)

34



JASA

VI. DISCUSSION & CONCLUSIONS494

From FIG. 10, it can be noted that the all SI vector fields contain energy transmission495

patterns that are qualitatively consistent with the built set-up. It can be noted that a496

strong vector field convergence occurs on the region were the viscous polymer was installed.497

Interestingly, it is also worth noting that this convergence takes place through different498

transmission paths, which shows the strong dependence between the SI results and the499

excitation frequency.500

By analyzing the individual contributions of energy transmission from the generalized501

forces at 130 Hz (FIG. 9), it could be seen that the component related to the membrane502

force was not just non-negligible, but it was, by far, the most important term for the energy503

transmission. The strong relation between the total SI and individual power contribution504

of the membrane force N was present in all recorded frequencies and corroborates with the505

statement that axial waves need to be taken into account when irregular shells are being506

analyzed (Ventsel and Krauthammer, 2001).507

Even though just experimental data from a sample’s outer-surface are available, the508

proposed method could estimate SI results from the sample’s mid-surface by invoking as-509

sumptions based on the Kirchhoff-Love postulates and approximations regarding the mesh.510

Moreover and to the authors’ knowledge, the only works describing the SI assessement on511

shells require the principle curvatures of the sample to be alligned with analytical coordinate512

systems, such as the study on a cylindrical shell presented in (Williams, 1991). This is not513

the case for the strategy described in this work, which is appicable on shells with arbitrary514
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shape configurations. Moreover, the data differentiation via FE basis functions was not515

common in works related to the study of energy flow. The most well-known techniques516

to compute spatial derivatives are either through the finite difference method (Arruda and517

Mas, 1998; Schmidt, 2009) or by processing the fields in the wavenumber domain (Arruda,518

1992; Lopes et al., 2006; Morikawa et al., 1996; Pascal et al., 1996, 2002, 2006).519

The proposed method showed reliable results when the energy transmission paths and520

their quantitative contributions were compared with the SI presented in a shell model (shown521

in the Appendix). It is also worth noting that the mentioned model was based on the522

Mindlin-Reissner theory, while the proposed method is built upon the Kirchhoff-Love plate523

model. Even though the latter neglects the curvatures and shear strains for the individual524

elements, the estimated SI converged towards the real numerical solution as it can be noted525

in FIG. 12 (c,d) and FIG. 13.526

By knowing that the proposed approach preserves the information regarding the SI, it can527

be stated that this procedure is reliable to estimate the strains and the energy transmission528

on the mid-surface just with the displacements on the outer-surface at hand. Therefore,529

due to the validation of this work via a shell model and to the results shown in FIG. 9530

and FIG. 10, it can be said that the strategy to project experimental data via the FE531

approximation in combination with data differentiation via quadratic shape functions showed532

to be a meaningful approach to assess transmission paths of arbitrary shells.533

36



JASA

ACKNOWLEDGMENTS534

Financial support for this work was supplied by the Research Foundation of Flanders535

(FWO), (grant No. G049414N).536

37



JASA

APPENDIX: VALIDITY OF THE STRUCTURAL INTENSITY ASSESSMENT537

A shell model that follows the Mindlin-Reissner theory was created in a FE-Method soft-538

ware (COMSOLR© Multiphysics 5.2 a, Burlington, Massachusetts, USA) and is represented539

in FIG. 11. The geometry was generated on the basis of the point cloud x shown in FIG. 4540

(a).541

Since the purpose of this model is to validate the method described in Section IV, it was542

decided to export the numerical displacement data in such a way that it would resemble the543

experimental Uh/2
exp described in Section V A. To mimic the densely populated measurement544

points, a refined mesh containing 19.615 nodes was generated over the geometry shown in545

FIG. 11.546

The nodes located at the circumference of this model were clamped, a viscous damper of547

1 N · s/m was applied at the center of the membrane to simulate the viscous effects of the548

polymer strip (blue elements shown in FIG. 11) and an uniform and harmonic pressure at549

100 Hz was applied on the geometry’s free-zones to mimic the harmonic excitation. Lastly,550

the material properties and thickness of the shell model were set to be the equal to the ones551

provided in the Section III.552

The results provided by the model are shown in the 1st column of FIG. 12. FIG. 12 (a)553

displays the numerical displacement located at the nodes of the mesh and FIG. 12 (c)554

shows the related SI vector fields. From here, one can compare the original SI results of555

FIG. 12 (c) with the energy transmission that can be estimated through the process described556

in Section IV.557
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Firstly, the global displacements located at the nodes of this model [FIG. 12 (a)] were558

exported and Eq. (27) was used to project the global displacement field on the mesh shown in559

FIG. 2. A representation of this projection can be seen in FIG. 12 (b). By following the data560

processing shown in Section IV, the total SI could be assessed and visualized [FIG. 12 (d)].561

By comparing the energy transmission of the model [FIG. 12 (c)] and the processed SI from562

the proposed method [FIG. 12 (d)], it can be noticed that both vector fields have similiar563

paths over the geometry’s domain.564

The SI contributions of the membrane forces IN , bending moments IM and shear forces565

IQ of the model can also be analyzed separately. The 1st row of FIG. 13 displays the absolute566

value of these vector fields. The 2nd row of the same figure displays these very values from567

the SI shown in FIG. 12 (d), i.e., the energy flow computed via the proposed method.568

By comparing the fields that were directly computed from the COMSOL model [FIG. 13 (a-569

c)] with the ones calculated on the basis of the Kirchhoff-Love plate model [FIG. 13 (d-f)],570

it can be noted that they are quantitatively consistent with each other. Due to this compar-571

ison, it can be stated that the proposed method not just computes the energy paths taking572

place on a shell [FIG. 12 (d)], but also preserves the SI magnitudes [FIG. 13 (d-f)], despite573

the stronger assumptions being imposed on the Kirchhoff-Love plate model.574
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FIG. 11. Representation of the model’s geometry developed for validation (color online)
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FIG. 12. Representation of displacement data [(a)-(b)] and SI [(c)-(d)]. The terms displayed on

the 1st column [(a),(c)] were obtained from the FE software and are directly acquirable after the

simulation’s conclusion. The 2nd column [(b),(d)] displays the same terms that can be visualized

on the basis of the method presented in Section IV (color online).
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FIG. 13. Individual contributions of the energy transmission taking place on the model: The

presented data are values of |IN | (a,d), |IM | (b,e), and |IQ| (c,f). The 1st row displays these fields

that were computed via the COMSOL model. The 2nd row shows the SI contributions, which were

processed via the proposed mehtod (color online).
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