
This item is the archived peer-reviewed author-version of:

Efficiently mining cohesion-based patterns and rules in event sequences

Reference:
Cule Boris, Feremans Len, Goethals Bart.- Eff iciently mining cohesion-based patterns and rules in event sequences
Data mining and know ledge discovery - ISSN 1384-5810 - 33:4(2019), p. 1125-1182
Full text (Publisher's DOI): https://doi.org/10.1007/S10618-019-00628-0
To cite this reference: https://hdl.handle.net/10067/1613030151162165141

Institutional repository IRUA

https://repository.uantwerpen.be

Noname manuscript No.
(will be inserted by the editor)

Efficiently Mining Cohesion-based Patterns and Rules in Event
Sequences1

Boris Cule2 · Len Feremans2 · Bart Goethals2,3

Received: date / Accepted: date

Abstract Discovering patterns in long event sequences is an important data mining task.
Traditionally, research focused on frequency-based quality measures that allow algorithms
to use the anti-monotonicity property to prune the search space and efficiently discover the
most frequent patterns. In this work, we step away from such measures, and evaluate pat-
terns using cohesion — a measure of how close to each other the items making up the pattern
appear in the sequence on average. We tackle the fact that cohesion is not an anti-monotonic
measure by developing an upper bound on cohesion in order to prune the search space. By
doing so, we are able to efficiently unearth rare, but strongly cohesive, patterns that existing
methods often fail to discover. Furthermore, having found the occurrences of cohesive item-
sets in the input sequence, we use them to discover the representative sequential patterns
and the dominant partially ordered episodes, without going through the computationally
expensive candidate generation procedures typically associated with sequential pattern and
episode mining. Experiments show that our method efficiently discovers important patterns
that existing state-of-the-art methods fail to discover.

Keywords Cohesive Itemsets, Sequential Patterns, Episodes, Association Rules

1 Introduction

Pattern discovery in sequential data is a well-established field in data mining. The earliest
attempts focused on the setting where data consisted of many (typically short) sequences,
where a pattern was defined as a (sub)sequence that re-occurred in a high enough number of
such input sequences (Srikant and Agrawal 1996). The first attempt to identify patterns in a
single long sequence of data was proposed by Mannila et al. (1997). The presented Winepi

1 A preliminary version appeared as “Efficient Discovery of Sets of Co-occurring Items in Event Se-
quences“ (Cule et al. 2016). Sections 2.4 and 3.6 are based on “Mining Association Rules in Long Se-
quences” (Cule and Goethals 2010).
2 University of Antwerp, Antwerp, Belgium,
3 Monash University, Melbourne, Australia
E-mail: {boris.cule, len.feremans, bart.goethals}@uantwerpen.be

2 Boris Cule et al.

method uses a sliding window of a fixed length to traverse the sequence, and a pattern is
then considered frequent if it occurs in a high enough number of these sliding windows. The
paper describes algorithms for mining various pattern types — parallel episodes, which are
essentially itemsets (with the possibility of some items re-occurring), serial episodes, which
are equivalent to sequential patterns, and general episodes, which are partially ordered
patterns. Here, we use the term pattern when we talk of any pattern type, and use more
specific terms when appropriate.

An often-encountered critique of this method is that the obtained frequency is not an
intuitive measure, since it does not correspond to the actual number of occurrences of the
pattern in the sequence. For example, given sequence axbcdbya, and a sliding window length
of 3, the frequency of itemset {a, b} will be equal to 2, as will the frequency of itemset {c, d}.
However, itemset {a, b} occurs twice in the sequence, and itemset {c, d} just once, and while
the method is motivated by the need to reward c and d for occurring right next to each
other, the reported frequency values remain difficult to interpret.

Laxman et al. (2007) attempted to tackle this issue by defining the frequency as the
maximal number of non-overlapping minimal windows of the pattern in the sequence. In
this context, a minimal window of the pattern in the sequence is defined as a contiguous
subsequence of the input sequence that contains the pattern, such that none of its smaller
contiguous subsequences also contains the pattern. However, while the method uses a rel-
evance window of a fixed length, and disregards all minimal windows that are longer than
the relevance window, the length of the minimal windows that do fit into the relevance
window is not taken into account at all. For example, given sequence axyzbcd, with a rele-
vance window larger than 4, the frequency of both itemset {a, b} and itemset {c, d} would
be equal to 1, which would not reflect that the items making up the second pattern occur
much closer to each other than those making up the first pattern.

Cule et al. (2014) proposed an amalgam of the two approaches (Marblesw), defining the
frequency of a pattern as the maximal sum of weights of a set of non-overlapping minimal
windows of the pattern, where the weight of a window is defined as the inverse of its length.
However, this method, too, struggles with the interpretability of the proposed measure. For
example, given sequence axbcdbya and a relevance window larger than 3, frequency of {a, b}
would be 2/3, while frequency of {c, d} would be 1/2. Additionally, as the input sequence
grows longer, the sum of these weights will grow, and the defined frequency can take any
real positive value, giving the user no idea how to set a sensible frequency threshold.

All the techniques mentioned above use frequency measures that satisfy the so-called
Apriori property (Agrawal and Srikant 1994). This property implies that the frequency of
a pattern is never smaller than the frequency of any of its superpatterns (in other words,
frequency is an anti-monotonic measure). While this property is computationally very de-
sirable, since large candidate patterns can be generated from smaller frequent patterns,
the undesirable side effect is that larger patterns, which are often more useful to the end
users, will never be ranked higher than any of their subpatterns. On top of this, all these
methods focus solely on how often certain items occur near each other, and do not take
occurrences of these items far away from each other into account. Consequently, if two items
occur frequently, and through pure randomness often occur near each other, they will form
a frequent itemset, even though they are, in fact, in no way correlated.

In another work, Cule et al. (2009) proposed a method that steps away from anti-
monotonic quality measures, and introduce a new interestingness measure that combines

Efficiently Mining Cohesion-based Patterns and Rules in Event Sequences 3

the coverage of an itemset with its cohesion. Cohesion is defined as a measure of how near
each other the items making up an interesting itemset occur on average. However, the
authors defined the coverage of an itemset as the sum of frequencies of all items making up
the itemset, which results in a massive bias towards larger patterns instead. Furthermore,
this allows for a very infrequent item making its way into an interesting itemset, as long as
all other items in the itemset are very frequent and often occur near the infrequent item.
As a result, the method is not scalable for any sequence with a large alphabet of items,
which makes it unusable in most realistic data sets.

In this work, we use the cohesion introduced by Cule et al. (2009) as a single measure
to evaluate cohesive itemsets. We consider itemsets as potential candidates only if each
individual item contained in the itemset is frequent in the dataset. This allows us to filter
out the infrequent items at the very start of our algorithm, without missing out on any
cohesive itemsets. However, using cohesion as a single measure brings its own computational
problems. First of all, cohesion is not an anti-monotonic measure, which means that a
superset of a non-cohesive itemset could still prove to be cohesive. However, since the
search space is exponential in the number of frequent items, it is impossible to evaluate
all possible itemsets. We solve this by developing an upper bound on the maximal possible
cohesion of all itemsets that can still be generated in a particular branch of the depth-first-
search tree. This bound allows us to prune large numbers of potential candidate itemsets,
without having to evaluate them. Furthermore, we present an efficient method to identify
the minimal windows that contain a particular itemset, which is necessary to evaluate its
cohesion.

Having discovered the cohesive itemsets, we move on to the problem of finding cohesive
sequential patterns and partially ordered episodes. Due to the combinatorial explosion, the
number of possible candidate patterns that potentially must be generated and evaluated
quickly becomes prohibitive for typical sequential pattern or episode mining algorithms. We
avoid this problem by taking the already discovered cohesive itemsets as a starting point,
and then only evaluating those total and partial orders that actually occur in the data.
More concretely, each discovered minimal window of an itemset represents one or more
possible sequential patterns, so all we need to do is go through the list of such windows and
update the frequency of each encountered sequential pattern. Once that is done, we report
the representative sequential patterns and the dominant episodes (which we obtain simply
by intersecting the discovered sequential patterns).

Finally, we show that cohesive itemsets can also form a basis for mining association rules
between items. A cohesive itemset tells us that the items forming the itemset occur close to
each other on average, but in some cases it may happen that an occurrence of a particular
item implies, with a high probability, that some other items will occur nearby, but the
implication may not hold in the other direction. For example, it is possible that item a always
occurs near item b, but not vice versa (i.e., there may be many occurrences of item b far from
any occurrence of item a). In this case, itemset {a, b} would not be very cohesive, but an
association rule {a} ⇒ {b} would still be informative. We present an efficient algorithm that
generates such rules starting from the discovered cohesive itemsets, using a cohesion-based
confidence measure. Unlike the traditional frequency-based approaches, which need all the
frequent itemsets to be generated before the generation of association rules can begin, we
are able to generate rules in parallel with the interesting itemsets. Furthermore, we present

4 Boris Cule et al.

an important mathematical property that allows us to very quickly compute the confidence
of most association rules, without having to revisit the data at all.

Our experiments show that our method discovers important patterns that existing meth-
ods struggle to rank highly, while dismissing obvious patterns consisting of items that co-
occur frequently, but are not at all correlated. We further show that we achieve these results
quickly, thus demonstrating the efficiency of our algorithm.

The remainder of the paper is organised as follows. In Sect. 2 we formally describe the
problem setting and define the patterns we aim to discover. Sect. 3 provides a detailed
description of our algorithms, while in Sect. 4 we present a thorough experimental evalua-
tion of our method, in comparison with a number of existing state-of-the-art methods. We
present an overview of the most relevant related work in Sect. 5, before summarising our
main conclusions in Sect. 6.

2 Problem Setting

The dataset consists of a single event sequence S = (e1, . . . , en). Each event ek is represented
by a pair (ik, tk), with ik an event type (coming from the domain of all possible event types)
and tk an integer time stamp. For any 1 < k ≤ n, it holds that tk > tk−1. We use S[j,l],
with j < l, to denote subsequence (ej , ej+1, . . . , el−1, el). The length of sequence S, denoted
|S|, is equal to tn− t1 + 1, and the length of a subsequence S[j,l], denoted |S[j,l]|, is equal to
tl − tj + 1. For simplicity, we omit the time stamps from our examples, and write sequence
(e1, . . . , en) as i1 . . . in, implicitly assuming that the time stamps are consecutive integers
starting with 1. In further text, we refer to event types as items, and sets of event types as
itemsets.

2.1 Frequent Cohesive Itemsets

For an itemset X = {i1, . . . , im}, we denote the set of occurrences of items making up X
in a sequence S by N(X) = {t | (i, t) ∈ S, i ∈ X}. For an item i, we define the support of i
in an input sequence S as the number of occurrences of i in S, sup(i) = |N({i})|. Given a
user-defined support threshold min sup, we say that an itemset X is frequent in a sequence
S if for each i ∈ X it holds that sup(i) ≥ min sup.

To evaluate the cohesiveness of an itemset X in a sequence S, we must first identify
minimal occurrences of the itemset in the sequence. More specifically, for each occurrence of
an item in X, we will look for the minimal window within S that contains that occurrence
and the entire itemset X. Formally, given a time stamp t, such that (i, t) ∈ S and i ∈ X,
we define the size of a minimal occurrence of X around t as

Wt(X) = min{|S[s,e]||ts ≤ t ≤ te ∧ ∀i ∈ X ∃(i, t′) ∈ S : ts ≤ t′ ≤ te}.

We further define the size of the average minimal occurrence of X in S as

W (X) =

∑
t∈N(X)Wt(X)

|N(X)|
.

Efficiently Mining Cohesion-based Patterns and Rules in Event Sequences 5

Finally, we define the cohesion of itemset X, with |X| > 0, in a sequence S as

C(X) =
|X|

W (X)
.

If |X| = 0, we define C(X) = 1.
Given a user-defined cohesion threshold min coh, we say that an itemset X is cohesive

in a sequence S if it holds that C(X) ≥ min coh.
Note that the cohesion is higher if the minimal occurrences are smaller. Furthermore, a

minimal occurrence of itemset X can never be smaller than the size of X, so it holds that
C(X) ≤ 1. If C(X) = 1, then every single minimal occurrence of X in s is of length |X|.

The cohesion of a single item is always equal to 1. For singletons, therefore, our approach
is equivalent to discovering frequent items. Since we are interested in mining frequent co-
hesive itemsets, we will from now on consider only itemsets consisting of 2 or more items.
Formally, we say that an itemset X is a frequent cohesive itemset if

1. |X| > 1,
2. ∀i ∈ X : sup(i) ≥ min sup,
3. C(X) ≥ min coh.

An optional parameter, max size, can be used to limit the size of the discovered patterns.
Cohesion is not an anti-monotonic measure. In other words, a superset of a non-cohesive

itemset could turn out to be cohesive. For example, given sequence abcxacbybac, we can see
that C({a, b}) = C({a, c}) = C({b, c}) = 6/7, while C({a, b, c}) = 1. While this allows us to
eliminate bias towards smaller patterns, it also brings additional computational challenges
which will be addressed in Sect. 3.

Finally, note that the definition of cohesion makes it potentially sensible to outliers.
For example, if two items a and b are strongly correlated, just one random occurrence of
an a far from any b could very negatively affect the cohesion of itemset {a, b}. However,
this is somewhat mitigated by the fact that a and b must be frequent items to begin with,
so it is unlikely that there would be an occurrence of either item arbitrarily far from all
occurrences of the other one. Additionally, the more occurrences there are, the less of an
effect one outlier will have on the average window size. Nevertheless, in data known to
contain outliers, a user could avoid this risk by dividing the input sequence into segments
(overlapping or not), and then mining cohesive itemsets in each segment. A single outlier
would then affect the value of a pattern in one segment, but the pattern would still be
ranked highly in all other segments where it is present.

2.2 Representative Sequential Patterns

In this section, we show how frequent cohesive itemsets can be used as a basis for discovering
representative sequential patterns in the data, while avoiding computationally expensive
candidate generation steps typical for sequential pattern mining. Since we use cohesive
itemsets as a starting point, we are only able to find sequential patterns in which no event
can re-occur. This is an inherent cost of choosing for simplicity of itemset mining over
the complexity of sequential pattern mining. Naturally, this does mean our method is not
suitable for data where important patterns often contain multiple instances of the same

6 Boris Cule et al.

item (such as, for example, DNA sequences, where the number of distinct items is limited).
We define the necessary concepts below and present our mining algorithm in Sect. 3.4.

Given a frequent cohesive itemset X = {i1, . . . , in}, we can generate a sequential pattern
sp = s1s2 . . . sn from X if sk ∈ X, for k ∈ {1, . . . , n}. In this case, we call X the underlying
itemset of sp, denoted Xsp. Having found the minimal occurrences of a frequent cohesive
itemset, our goal here is to find in which order do the items making up the itemset most
often occur in those minimal occurrences. Any such frequently occurring order uniquely
defines a sequential pattern.

Given a sequence S = (e1, . . . , em), we say sequential pattern sp = s1s2 . . . sn occurs in
S, denoted sp ⊆ S, if there exist integers 1 ≤ k1 < . . . < kn ≤ m, such that sj = ekj for
j ∈ {1, . . . , n}.

We define the set of occurrences of sp in an input sequence S as

occse(sp) = {t ∈ N(Xsp)|∃j, k : j ≤ t ≤ k, sp ⊆ S[j,k], |S[j,k]| = Wt(Xsp)}.

Note that this formal definition corresponds to the above intuition, and says that a sequen-
tial pattern sp is considered to occur at time stamp t if its occurrence around time stamp
t is as long as the minimal occurrence of its underlying itemset Xsp around time stamp t.

Finally, we define the occurrence ratio of sp within the occurrences of Xsp as

occ ratiose(sp) =
|occse(sp)|
|N(Xsp)|

.

Intuitively, the occurrence ratio of a sequential pattern sp measures the likelihood that the
items making up its underlying itemset Xsp appear in a minimal occurrence of Xsp in the
order defined by sp. Given a user-defined minimal occurrence ratio threshold min or, we
say a sequential pattern sp is representative if occ ratiose(sp) ≥ min or.

It is interesting to note that multiple sequential patterns can be contained within
the same minimal occurrence of their underlying itemset Xsp. For example, given item-
set X = {a, b, c, d} and input sequence abcbd, we can see that the entire sequence is a
minimal occurrence of X, and it contains occurrences of sequential patterns abcd and acbd.
In this case, both abcd and acbd would have an occurrence ratio of 1. Moreover, a minimal
occurrence of an itemset at a given time stamp is not necessarily unique. For example, in an
input sequence abcda, at time stamp 2, the minimal occurrence of itemset {a, b, c, d} could
be both S[1,4] and S[2,5]. In this case, sequential patterns abcd and bcda both occur at time
stamp 2, and at time stamps 3 and 4, but only one of them occurs at time stamps 1 and 5.
As a result, in this example, both abcd and bcda would have an occurrence ratio of 4/5, or
0.8.

2.3 Dominant Episodes

The approach described above can also be extended to finding dominant partial orders, or
episodes, within the occurrences of frequent cohesive itemsets. In episode mining literature,
an episode is typically represented by a directed acyclic graph G = (V (G), E(G)). Here
V (G) = (v1, . . . , vm) is the set of nodes, where each node vi corresponds to an item, and
E(G) is the set of directed edges between items, where an edge (vi, vj) means that item vi

Efficiently Mining Cohesion-based Patterns and Rules in Event Sequences 7

occurs before item vj in any occurrence of G. We say an episode G is transitively closed if
for any vi, vj , vk ∈ V (G) it holds that if (vi, vj) ∈ E(G) and (vj , vk) ∈ E(G) then (vi, vk) ∈
E(G). To avoid redundancy, we only consider transitively closed episodes. However, in our
examples and illustrations, we omit the edges whose presence is implied by other edges.

Formally, given a sequence S = (e1, . . . , en) and an episode G we say that G occurs in
S, denoted G � S, if there exists a map f mapping each node vi ∈ V (G) to an index in
{1, . . . n}, such that vi = ef(vi) for i = {1, . . . ,m}, and that if there is an edge (vi, vj) in
E(G), then we must have tf(vi) < tf(vj).

As with sequential patterns, we use frequent cohesive itemsets as a starting point (as
a result, no item can re-occur in any episode we discover). Given an itemset X, we can
generate episode G from X if V (G) = X. Again, in such a case, we call X the underlying
itemset of G, denoted XG. For two episodes, G1 and G2, with XG1 = XG2 , we say G1 is
a subepisode of G2, denoted G1 ⊆ G2, if E(G1) ⊆ E(G2). Given a sequential pattern sp,
we denote its equivalent episode Gsp, whereby V (Gsp) = Xsp, and E(Gsp) imposes a total
order on the items as defined by sp.

We define, as above, the set of occurrences of G in an input sequence S as

occpo(G) = {t ∈ N(X)|∃j, k : j ≤ t ≤ k,G � S[j,k], |S[j,k]| = Wt(XG)}.

Finally, we define the occurrence ratio of G within the occurrences of XG as

occ ratiopo(G) =
|occpo(G)|
|N(XG)|

.

Intuitively, occ ratiopo(G) measures the likelihood that the items making up the underlying
itemset XG will appear in a minimal occurrence of XG in the order defined by G.

Naturally, given an itemset X, the episode with the highest occurrence ratio will always
be the itemset itself (i.e., the episode with V (G) = X and E(G) = ∅), since it will, per
definition, occur in every minimal occurrence of X. In fact, the occurrence ratio is an anti-
monotonic measure, in the sense that if G1 ⊆ G2 then occ ratiopo(G1) ≥ occ ratiopo(G2). As
a result, the episodes with the highest occurrence ratio will arguably be the least interesting
ones (those with no edges will score the highest, followed by those with a single edge,
etc.). We therefore choose to search for interesting episodes differently from our approach
outlined for sequential patterns above. We propose to discover exactly one episode for each
frequent cohesive itemset, namely, the most specific episode (i.e., as many edges as possible)
that describes a sufficient number of occurrences of the itemset itself, given a user-defined
minimal occurrence ratio threshold min por. We conclude this section by formalising the
above concepts.

Given a set of episodes {G1, . . . , Gn}, with V (Gi) = X for i ∈ {1, . . . , n}, we define
the intersecting episode of {G1, . . . , Gn}, denoted

⋂
i∈{1,...,n}Gi, as the episode with nodes

V (
⋂
i∈{1,...,n}Gi) = X and edges E(

⋂
i∈{1,...,n}Gi) =

⋂
i∈{1,...,n}Ei. Given a frequent co-

hesive itemset X, we define its dominant episode as

dpoX =
⋂

Xsp=X
occ ratiose(sp)≥y

Gsp,

8 Boris Cule et al.

Fig. 1 Example of a cohesive itemset, a representative sequential pattern and a dominant episode.

with

y = max {z ∈ [0, 1]|occ ratiopo(
⋂

Xsp=X
occ ratiose(sp)≥z

Gsp) ≥ min por}.

In other words, we generate the dominant episode of an itemset X by taking the intersection
of the minimal necessary number (as guaranteed by the value y above) of the top ranked
sequential patterns (with respect to the occurrence ratio) generated from X. In practice,
as will be discussed in detail in Sect. 3.5, we keep on adding the top sequential patterns
until the occurrence ratio of the resulting intersection becomes high enough to satisfy the
min por threshold. Here, too, our main goal is to provide a simple, quick, method, based
on cohesive itemsets and avoiding the high computational cost of generating exponentially
many partial orders and then comparing them all to each other using some interestingness
measure, that can still produce very satisfactory results. However, due to the simplicity of
the approach, there is an inherent risk that some interesting partial orders may be missed.

We illustrate the above concepts with a simple example, shown in Fig. 1. Consider input
sequence abc . . . acdb . . . adcb. In this case, X = {a, b, c} is a cohesive itemset with cohesion
C(X) = 3

33
9

≈ 0.818. Sequential pattern sp = acb has an occurrence ratio occ ratiose(acb) =
6
9 = 2

3 . Episode G, shown in the figure, and indicating that event a occurs first, followed by
events b and c in unspecified order, however, has an occurrence ratio of 1. If the min por
threshold was set higher than 2/3, G would be the dominant episode of itemset X, otherwise
Gsp would be the dominant episode. For generation of the dominant episode G we would
start with sequential patterns sp1 = acb, with occ ratiose(sp1) = 2

3 , and sp2 = abc, with
occ ratiose(sp2) = 1

3 . Then we convert both sequential patterns to their equivalent episodes
E(Gsp1) = {a→ c, c→ b, a→ c} and E(Gsp2) = {a→ b, b→ c, a→ c} where we added one
edge to both episodes by computing the transitive closure. The intersection is then given
by E(Gsp1) ∩ E(Gsp2) = {a→ b, a→ c}.

Efficiently Mining Cohesion-based Patterns and Rules in Event Sequences 9

2.4 Association Rules

Finally, we are also able to use the frequent cohesive itemsets as a basis for discovering
association rules in this setting. The aim is to generate rules of the form if X occurs, Y
occurs nearby, where X ∩ Y = ∅ and X ∪ Y is a frequent cohesive itemset. We denote such
a rule by X ⇒ Y , and we call X the antecedent of the rule and Y the consequent of the
rule. Intuitively, the closer Y occurs to X on average, the higher the value of the rule. In
other words, to compute the confidence of the rule, we must now use the average length of
minimal windows containing X ∪ Y , but only from the point of view of items making up
itemset X. We therefore define this new average as

W (X,Y) =
∑

t∈N(X)W (X∪Y, t)
|N(X)| .

We define the confidence of the association rule as

c(X ⇒ Y) =
|X ∪ Y |
W (X,Y)

.

Note that if Y always occurs right next to a fully cohesive itemset X, the average
minimal window will be exactly equal to the size of itemset X ∪ Y , and the confidence of
the rule X ⇒ Y will be equal to 1. Intuitively, the inverse of the confidence tells us how
large the average minimal window containing X ∪Y for each occurrence of X is, compared
to the minimal possible window (the size of X ∪ Y), as illustrated in the example below. A
rule X ⇒ Y is considered confident if its confidence exceeds a given threshold, min conf,
i.e., if c(X ⇒ Y) ≥ min conf.

Consider, for example, input sequence abcabdbxyzb. We can see that every a has a b right
next to it, but not the other way around. As a result, itemset X = {a, b} has a cohesion of
C(X) = 2/3, which is high, but far from perfect. However, if we look at the two possible
association rules between the two items, we can gain more insight into the data. For the
two occurrences of item a, the minimal occurrence of itemset X nearby is always of size
2. Therefore, c({a} ⇒ {b}) = 1. However, for the four occurrences of item b, the minimal
occurrences of X are of size 2, 2, 4 and 8, respectively, with an average of 4. Therefore,
c({b} ⇒ {a}) = 0.5. From this information, we can conclude that if we encounter item a,
we can be quite certain that item b will occur nearby, while the inverse implication is less
likely.

Just like the cohesion of an itemset, the confidence of an association rule can also be
sensitive to outliers in the data. Again, if two items a and b are strongly correlated, just
one random occurrence of an a far from any b could negatively affect the confidence of rule
{a} ⇒ {b}. However, in this case, the confidence of rule {b} ⇒ {a} would not be affected.
Once again, to reduce the effect of outliers, data could be divided into segments and rules
discovered to hold in many segments could be considered to be the most reliable.

3 Algorithm

In this section we present a detailed description of our algorithms. We first show how
we generate candidates in a depth-first manner, before explaining how we can prune large
numbers of potential candidates by computing an upper bound of the cohesion of all itemsets

10 Boris Cule et al.

that can be generated within a branch of the search tree. Next we provide an efficient method
to compute the sum of minimal windows of a particular itemset in the input sequence.
Finally, we discuss algorithms for finding representative sequential patterns and dominant
episodes, as well as confident association rules based on cohesive itemsets.

3.1 Depth-First-Search

The main routine of our FCIseq algorithm is given in Algorithm 1. We begin by scanning
the input sequence, identifying the frequent items, and storing their occurrence lists for
later use. We then sort the set of frequent items on support in ascending order (line 2),
initialise the set of frequent cohesive itemsets FC as an empty set (line 3), and start the
depth-first-search process (line 4). Once the search is finished, we output the set of frequent
cohesive itemsets FC, representative sequential patterns FCseq, dominant episodes FCepi
and association rules FCrules (line 5), that are computed depending on the status of the
parameters findSeq, findEpi and findRule.

Algorithm 1: FCIseq(min sup, max size, min coh, findSeq, min or, findEpi, min por,
findRule, min conf) finds cohesive itemsets, representative sequential patterns, domi-
nant episodes and confident association rules in a single sequence

1 FI = all items i where N({i}) ≥ min sup;
2 sort FI on support in ascending order;
3 FC = FCseq = FCepi = FCrules = ∅;
4 DFS(∅,FI,max size,min coh, findSeq,min or,findEpi,min por,findRule,min conf);
5 return 〈FC,FCseq ,FCepi,FCrules〉

The recursive DFS procedure is shown in Algorithm 2. In each call, X contains the
candidate itemset, while Y contains items that are yet to be enumerated. In line 1, we
evaluate the pruning function Cmax(X,Y) to decide whether to search deeper in the tree or
not. This function will be described in detail in Sect. 3.2. If the branch is not pruned, there
are two possibilities. If we have reached a non-leaf node (line 3) and there are more items
to be enumerated, we pick the first such item a (line 4) and make two recursive calls to
the DFS function — the first with a added to X (this is only executed if X ∪ {a} satisfies
the max size constraint), and the second with a discarded. Alternatively, if a leaf node is
encountered (line 9), we add the discovered cohesive itemset to the output (provided its
size is greater than 1). We then call Find Sequential patterns (discussed in Sect. 3.4)
to find sequential patterns based on X, if either findSeq or findEpi is true (note that we
need the sequential patterns in order to find the dominant episodes, even if we do not
need to output the sequential patterns themselves). We report the representative sequential
patterns if findSeq is true, and then call Find Dominant Episode (discussed in Sect. 3.5)
to find the dominant episode based on X if findEpi is true. Finally, we also find and report
association rules based on X by calling Find Rules (discussed in Sect. 3.6) if findRule is
true.

Efficiently Mining Cohesion-based Patterns and Rules in Event Sequences 11

Algorithm 2: DFS(X,Y , max size, min coh, findSeq, min or, findEpi, min por, find-
Rule, min conf) depth-first search to find cohesive itemsets, representative sequential
patterns and dominant episodes, and confident association rules

1 if Cmax(X,Y) < min coh then
2 return;
3 else if Y 6= ∅ then
4 a = first(Y);
5 if |X ∪ {a}| ≤ max size then
6 DFS(X ∪ {a}, Y \

{a},max size,min coh, findSeq,min or,findEpi,min por,findRule,min conf);

7 end
8 DFS(X,Y \ {a},max size,min coh, findSeq,min or,findEpi,min por,findRule,min conf);

9 else
10 if |X| > 1 then
11 FC = FC ∪ {X};
12 if findSeq or findEpi then
13 sps← Find Sequential patterns(X);
14 if findSeq then
15 for sp ∈ sps do
16 if occ ratiose(sp) ≥ min or then
17 FCseq ← FCseq ∪ sp;
18 end

19 end
20 if findEpi then
21 G← Find Dominant Episode(X, sps,min por);
22 FCepi ← FCepi ∪G;

23 end

24 end
25 if findRule then
26 rules← Find Rules(X,min conf);
27 FCrules ← FCrules ∪ rules;

28 end

29 end

30 end

3.2 Pruning

At any node in the search tree, X denotes all items currently making up the candidate
itemset, while Y denotes all items that are yet to be enumerated. Starting from such a
node, we can still generate any itemset Z, such that X ⊆ Z ⊆ X ∪ Y and |Z| ≤ max size.
In order to be able to prune the entire branch of the search tree, we must therefore be certain
that for every such Z, the cohesion of Z cannot satisfy the minimum cohesion threshold.

In the remainder of this section, we first define an upper bound for the cohesion of all
itemsets that can be generated in a particular branch of the search tree, before providing a
detailed proof of its soundness. Given itemsets X and Y , with |X| > 0 and X ∩ Y = ∅, the
Cmax(X,Y) pruning function used in line 1 of Algorithm 2 is defined as

Cmax(X,Y) =
|X ∪ Ymax||N(X ∪ Ymax)|∑

t∈N(X)Wt(X) + |X ∪ Ymax||N(Ymax)|
,

12 Boris Cule et al.

where

Ymax = {Yi| max
Yi⊆Y,

|Yi|≤ max size−|X|

|N(Yi)|}. (1)

For |X| = 0, we define Cmax(X,Y) = 1. Note that if Y = ∅, Cmax(X,Y) = C(X), which is
why we do not need to evaluate C(X) before outputting X in line 4 of Algorithm 2.

Before proving that the above upper bound holds, we will first explain the intuition
behind it. When we find ourselves at node 〈X,Y 〉 of the search tree, we will first evaluate
the cohesion of itemset X. If X is cohesive, we need to search deeper in the tree, as supersets
of X could also be cohesive. However, if X is not cohesive, we need to evaluate how much
the cohesion can still grow if we go deeper into this branch of the search tree. Logically,

starting from C(X) = |X|
W (X)

= |X||N(X)|∑
t∈N(X)Wt(X) , the value of this fraction will grow maximally

if the numerator is maximised, and the denominator minimised. Clearly, as we add items
to X, the numerator will grow, and it will grow maximally if we add as many items to X as
possible. However, as we add items to X, the denominator must grow, too, so the question
is how it can grow minimally. In the worst case, each new window added to the sum in the
denominator will be minimal (i.e., its length will be equal to the size of the new itemset),
and the more such windows we add to the sum, the higher the overall cohesion will grow.
Note that the worst case from the point of view of our pruning capability actually refers to
the highest-scoring candidate that could yet be produced, and therefore corresponds to the
best case in terms of pattern discovery.

For example, given sequence acb and a cohesion threshold of 0.8, assume we find our-
selves in node 〈{a, b}, {c}〉 of the search tree. We will then first find the smallest windows
containing {a, b} for each occurrence of a and b, i.e., W1({a, b}) = W3({a, b}) = 3. Note
that we do this by going through the lists of time stamps of a and b, and not by revisiting
the entire input sequence. In other words, to compute the upper bound of the cohesion of
all itemsets that can still be generated from this node, we can only use the information
about the occurrences of a and b. It turns out that C({a, b}) = 2×2

3+3 = 2
3 , which is not

cohesive enough. However, if we add c to itemset {a, b}, we know that the size of the new
itemset will be 3, we know the number of occurrences of items from the new itemset will
be 3, and the numerator will therefore be equal to 9. For the denominator, we have no such
certainties, but we know that, in the worst case, the windows for the occurrences of a and
b will not grow (i.e., each smallest window of {a, b} will already contain an occurrence of
c), and the windows for all occurrences of c will be minimal (i.e., of size 3). Indeed, when

we evaluate the above upper bound, we obtain Cmax({a, b}, {c}) = 3×(2+1)
6+3×1 = 9

9 = 1. We

see that even though the cohesion of {a, b} is 2
3 , the cohesion of {a, b, c} could, in the worst

case, be as high as 1. And in our sequence acb, that is indeed the case. The above example
also demonstrates the tightness of our upper bound, as the computed value can, in fact,
turn out to be equal to the actual cohesion of a superset yet to be generated.

We now present a full formal proof of the soundness of the proposed upper bound. In
order to do this, we will need the following lemma.

Lemma 1 For any six positive numbers a, b, c, d, e, f , with a ≤ b, c ≤ d and e ≤ f , it holds
that

1. if a+c+e
b+e < 1 then a+c+e

b+e ≤
a+d+f
b+f ,

Efficiently Mining Cohesion-based Patterns and Rules in Event Sequences 13

2. if a+c+e
b+e ≥ 1 then a+d+f

b+f ≥ 1.

Proof We begin by proving the first claim. To start with, note that if a+c+e
b+e < 1, then

a
b < 1. It follows that a+e

b+e < 1, and for any positive number f , with e ≤ f , it holds that
a+e
b+e ≤

a+f
b+f . Subsequently, it holds that a+c+e

b+e ≤
a+c+f
b+f . Finally, for any positive number

d, with c ≤ d, it holds that a+c+f
b+f ≤ a+d+f

b+f , and therefore a+c+e
b+e ≤

a+d+f
b+f . For the second

claim, it directly follows that if a+c+e
b+e ≥ 1, then a+c

b ≥ 1, a+d
b ≥ 1, and a+d+f

b+f ≥ 1. �

Theorem 1 Given itemsets X and Y , with X ∩ Y = ∅, for any itemset Z, with X ⊆ Z ⊆
X ∪ Y and |Z| ≤ max size, it holds that C(Z) ≤ Cmax(X,Y).

Proof We know that C(Z) ≤ 1, so the theorem holds if |X| = 0. Assume now that |X| > 0.

First, recall that C(Z) = |Z|
W (Z)

= |Z||N(Z)|∑
t∈N(Z)Wt(Z) . We can rewrite this expression as

C(Z) =
(|X|+ |Z \X|)(|N(X)|+ |N(Z \X)|)∑

t∈N(X)Wt(Z) +
∑
t∈N(Z\X)Wt(Z)

.

Further note that for a given time stamp in N(X), the minimal window containing Z must
be at least as large as the minimal window containing only X, and for a given time stamp
in N(Z \X), the minimal window containing Z must be at least as large as the size of Z.
It therefore follows that ∑

t∈N(X)

Wt(Z) ≥
∑

t∈N(X)

Wt(X),

∑
t∈N(Z\X)

Wt(Z) ≥ |Z||N(Z \X)|,

and, as a result,

C(Z) ≤ |X||N(X)|+ |Z \X||N(X)|+ |Z||N(Z \X)|∑
t∈N(X)Wt(X) + |Z||N(Z \X)|

.

Finally, we note that, per definition,

|Z \X| ≤ min(max size, |X ∪ Y |)− |X|,

and, since Z is generated by adding items from Y to X, until either the size of Z reaches
max size or there are no more items left in Y ,

|N(Z \X)| ≤ |N(Ymax)|.

14 Boris Cule et al.

At this point we will use Lemma 1 to take the proof further. Note that, per definition,

C(X) = |X||N(X)|∑
t∈N(X)Wt(X) ≤ 1. We now denote

a =|X||N(X)|,

b =
∑

t∈N(X)

Wt(X),

c =|Z \X||N(X)|,
d =(min(max size, |X ∪ Y |)− |X|)|N(X)| = |Ymax||N(X)|,
e =|Z||N(Z \X)|,
f =|X ∪ Ymax||N(Ymax)|.

Since a, b, c, d, e and f satisfy the conditions of Lemma 1, we know that it holds that

1. if |X||N(X)|+|Z\X||N(X)|+|Z||N(Z\X)|∑
t∈N(X)Wt(X)+|Z||N(Z\X)| < 1 then

|X||N(X)|+|Z\X||N(X)|+|Z||N(Z\X)|∑
t∈N(X)Wt(X)+|Z||N(Z\X)| ≤ |X||N(X)|+|Ymax||N(X)|+|X∪Ymax||N(Ymax)|∑

t∈N(X)Wt(X)+|X∪Ymax||N(Ymax)| ,

2. if |X||N(X)|+|Z\X||N(X)|+|Z||N(Z\X)|∑
t∈N(X)Wt(X)+|Z||N(Z\X)| ≥ 1 then

|X||N(X)|+|Ymax||N(X)|+|X∪Ymax||N(Ymax)|∑
t∈N(X)Wt(X)+|X∪Ymax||N(Ymax)| ≥ 1.

Finally, note that
|X||N(X)|+|Ymax||N(X)|+|X∪Ymax||N(Ymax)|∑

t∈N(X)Wt(X)+|X∪Ymax||N(Ymax)| =

|X∪Ymax|(|N(X)|+|N(Ymax)|)∑
t∈N(X)Wt(X)+|X∪Ymax||N(Ymax)| = Cmax(X,Y).

From the first claim above, it follows that if |X||N(X)|+|Z\X||N(X)|+|Z||N(Z\X)|∑
t∈N(X)Wt(X)+|Z||N(Z\X)| < 1, then

C(Z) ≤ Cmax(X,Y). From the second claim, it follows that if |X||N(X)|+|Z\X||N(X)|+|Z||N(Z\X)|∑
t∈N(X)Wt(X)+|Z||N(Z\X)| ≥

1, then Cmax(X,Y) ≥ 1, and since, per definition, C(Z) ≤ 1, it follows that C(Z) ≤
Cmax(X,Y). This completes the proof. �

Since an important feature of computing an upper bound for the cohesion of all itemsets
in a given branch of the search tree is to establish how much cohesion could grow in the
worst case, we need to figure out which items from Y should be added to X to reach this
worst case. As has been discussed above, the worst case is actually materialised by adding
as many as possible items from Y , and by first adding those that have the most occurrences.
However, if the max size parameter is used, it is not always possible to add all items in Y
to X. In this case, we can only add max size −|X| items to X, which is why we defined
Ymax as we did in Equation 1. Clearly, if |X ∪ Y | ≤ max size, Ymax = Y . If not, at first
glance it may seem computationally very expensive to determine |N(Yi)| for every possible
Yi. However, we solve this problem by sorting the items in Y on support in descending
order. In other words, if Y = {y1, . . . , yn}, with sup(yi) ≥ sup(yi+1) for i ∈ {1, . . . , n− 1},
then we can compute |N(Ymax)| as

|N(Ymax)| =
∑

i∈{1,..., max size−|X|}

|N({yi})|.

As a result, the only major step in computing Cmax(X,Y) is that of computing
∑
t∈N(X)Wt(X),

as the rest can be computed in constant time. The procedure for computing
∑
t∈N(X)Wt(X)

Efficiently Mining Cohesion-based Patterns and Rules in Event Sequences 15

is explained in detail in Sect. 3.3. We end this section with an example illustrating our
pruning technique. Given an input sequence acdebbfgha and thresholds min coh = 0.8 and
max size = 3, assume we are visiting the 〈X,Y 〉 node of the search tree, with X = {a, b} and
Y = {c, d, e, f, g, h}. At this point, we will compute the sizes of the minimal occurrences of
itemset {a, b} for time stamps 1, 5, 6 and 10, and find that they all equal 5. As a result, the
cohesion of {a, b} will be equal to 0.4. However, we cannot be certain if we can prune this
branch of the tree unless we know that none of the itemsets that can be generated within
it cannot be cohesive. Therefore, we need to evaluate our upper bound for the cohesion of
all such itemsets, Cmax(X,Y). We first compute

Ymax = {Yi| max
Yi⊆Y,

|Yi|≤ max size−|X|

|N(Yi)|} = {c}.

As discussed above, by sorting the items in Y on frequency, we know that Ymax can be ob-
tained by picking items in order from Y until we have either reached the max size constraint
(as in this case) or run out of items. We then compute

Cmax(X,Y) =
|X ∪ Ymax||N(X ∪ Ymax)|∑

t∈N(X)Wt(X) + |X ∪ Ymax||N(Ymax)|

=
|{a, b, c}||N({a, b, c})|∑

t∈N(X)Wt(X) + |{a, b, c}||N({c})|
=

3× 5

20 + 3× 1
=

15

23
≈ 0.65.

In other words, no itemset that can be generated within this branch of the search tree can
have a cohesion higher than 0.65, and since the cohesion threshold is set to 0.8, we can
safely prune the entire branch.

3.3 Computing the Sum of Minimal Windows

The algorithm for computing the sum of minimal windows is shown in Algorithm 3. For a
given itemset X, the algorithm keeps a list of all time stamps at which items of X occur
in the positions variable. The nextpos variable keeps a list of next time stamps for each
item, while lastpos keeps a list of the last seen occurrences for each item. Since we need
to compute the minimal window for each occurrence, we keep on doing this until we have
either computed them all, or until the running sum has become large enough to safely stop,
knowing that the branch can be pruned (line 7). Concretely, by rewriting the definition of
Cmax(X,Y), we know we can stop if we are certain that the sum will be larger than

Wmax(X,Y) =
|X ∪ Ymax||N(X)|+ |N(Ymax)|(1−min coh)

min coh
.

When a new item comes in, we update the working variables, and compute the first and
last position of the current window (line 18). If the smallest time stamp of the current
window has changed, we go through the list of active windows and check whether a new
shortest length has been found. If so, we update it (line 24). We then remove all windows
for which we are certain that they cannot be improved from the list of active windows (line
26), and update the overall sum (line 27). Finally, we add the new window for the current
time stamp to the list of active windows (line 31).

16 Boris Cule et al.

Algorithm 3: Sum Min Wins(X,Y) sums minimal windows of X

/* Maintain last, current and next visited position for each item */

1 smw← 0; index← 0;
2 positions← positions for every item in X;
3 nextpos← {positions[i1][0], positions[i2][0], positions[i3][0], ...};
4 lastpos← {−∞,−∞,−∞, ...};
5 prev min← −∞; active windows← ∅;

/* Main loop over each occurrence */

6 while index < |N(X)| do
/* Abandon if running sum is already too high to be cohesive */

7 if smw + (|N(X)|+ |active windows| − index)× |X| > Wmax(X,Y) then
8 return ∞;
9 end

/* Update last and next position of next item */

10 current pos←∞;
11 current item← ∅;
12 for i in X do
13 if current pos > nextpos[i] then
14 current pos← nextpos[i];
15 current item← i;

16 end

17 end
/* Compute current window */

18 lastpos[current item]← current pos;
19 nextpos[current item]← next(positions[current item], current pos);
20 minpos←min(lastpos); maxpos←max(lastpos);

/* If new minimum in current window */

21 if minpos 6= −∞ and minpos > prev min then
/* Inner loop over previous occurrences for non-final windows */

22 for window ∈ active windows do
/* Update window size */

23 newwidth← maxpos−min(minpos,window.pos) + 1;
24 window.width←min(window.width,newwidth);

/* Make window final */

25 if window.pos < minpos or window.width == |X| or
window.width < (maxpos− window.pos+ 1) then

26 active windows← active windows \ {window};
27 smw← smw + window.width;

28 end

29 end

30 end
31 active windows← active windows ∪ {window(current pos,maxpos−minpos + 1)};
32 prev min← minpos; index← index + 1;

33 end
34 smw← smw+sum(window.width|window ∈ active windows);
35 return smw;

Note that the sum of minimal windows is independent of Y , the items yet to be enu-
merated. Therefore, if the branch is not pruned, the recursive DFS procedure shown in
Algorithm 2 will be called twice, but X will remain unchanged in the second of those calls
(line 9), so we will not need to recompute the sum of windows, allowing us to immediately
evaluate the upper bound in the new node of the search tree.

Efficiently Mining Cohesion-based Patterns and Rules in Event Sequences 17

We illustrate how the algorithm works on the following example. Assume we are given
the input sequence aabccccacb, and we are evaluating itemset {a, b, c}. Table 1 shows the
values of the main variables as the algorithm progresses. As each item comes in, we up-
date the values of nextpos and lastpos (other variables are not shown in the table). In
each iteration, we compute the current best minimal window for the given time stamp
as max(lastpos)−min(lastpos)+1. We also update the values of any previous windows that
might have changed for the better (this can only happen if min(lastpos) has changed), using
either the current window above if it contains the time stamp of the window’s event, or the
window stretching from the relevant time stamp to max(lastpos). Finally, before proceeding
with the next iteration, we remove all windows for which we are certain that they cannot
get any smaller from the list of active windows.

Table 1 Computation of minimal windows.

t item nextpos lastpos w1 w2 w3 w4 w5 w6 w7 w8 w9 w10

0 - (1, 3, 4) (∞,∞,∞) - - - - - - - - - -
1 a (2, 3, 4) (1,∞,∞) ∞ - - - - - - - - -
2 a (8, 3, 4) (2,∞,∞) ∞ ∞ - - - - - - - -
3 b (8, 10, 4) (2, 3,∞) ∞ ∞ ∞ - - - - - - -
4 c (8, 10, 5) (2, 3, 4) 4 3 3 3 - - - - - -
5 c (8, 10, 6) (2, 3, 5) - - - - 4 - - - - -
6 c (8, 10, 7) (2, 3, 6) - - - - 4 5 - - - -
7 c (8, 10, 9) (2, 3, 7) - - - - 4 5 6 - - -
8 a (∞, 10, 9) (8, 3, 7) - - - - 4 5 6 6 - -
9 c (∞, 10,∞) (8, 3, 9) - - - - - 5 6 6 7 -
10 b (∞,∞,∞) (8, 10, 9) - - - - - 5 4 3 3 3

In the table, windows that are not active are marked with ‘-’, while definitively deter-
mined windows are shown in bold. We can see that, for example, at time stamp 4, we have
determined the value of the first four windows. Window w1 cannot be improved on, since
time stamp 1 has already dropped out of lastpos, while the other three windows cannot be
improved since 3 is the absolute minimum for a window containing three items. At time
stamp 8, we know that the length of w5 must be equal to 4, since any new window to come
must stretch at least from time stamp 5 to a time stamp in the future, i.e., at least 9.
Finally, once we have reached the end of the sequence, we mark all current values of still
active windows as determined.

Note that the goal of this algorithm is to determine whether we can prune a branch
of the search tree or not. We know that a branch can be pruned if the computed sum of
windows is large enough. Therefore, we optimise the algorithm to stop computing minimal
windows once the running sum is already large enough, since, in that case, we can prune
without computing the exact sum.

3.4 Representative Sequential Patterns

In this section we describe our algorithm for discovering representative sequential patterns
based on frequent cohesive itemsets. For example, when mining patterns consisting of words

18 Boris Cule et al.

used in the On the Origin of Species by Means of Natural Selection by Charles Darwin (see
Sect. 4 for more details about the dataset) we discover that itemset {tierra, del, fuego}
has a cohesion of 1. However, we also find that sequential pattern tierra del fuego has an
occurrence ratio of 1 within the occurrences of its underlying itemset {tierra, del, fuego}.
In other words, in every minimal occurrence of itemset {tierra, del, fuego}, the word tierra
occurs before the word del, followed by fuego. In this section we describe how, starting
from a frequent cohesive itemset and its minimal occurrences, we discover representative
sequential patterns.

3.4.1 Computing minimal windows for sequential patterns

Computing the number of occurrences of sequential patterns, as defined in Sect. 2.2, brings
with it additional complexity. So far we were only interested in the size of the minimal win-
dow at each occurrence. However, at first glance, given a cohesive itemset X = {i1, . . . , in},
we must now count each occurrence of up to n! sequential permutations in the worst case.
In order to compute the number of occurrences correctly we must also deal with the fact
that more than one sequential pattern can occur within one minimal occurrence of the
itemset. For example, given sequence aba we need to take into account that both sequential
patterns ab and ba occur at time stamp 2 since the occurrences of both are equally long
as the minimal occurrence of itemset {a, b}. Algorithm Sum Min Winsseq for computing
the minimal windows for sequential patterns is shown in Algorithm 4. This algorithm is an
adaptation of Algorithm 3, and we therefore omit unmodified code for brevity. The main
difference is that we now return a list of minimal windows, where for each occurrence t we
maintain possibly multiple instances of the minimal windows at each occurrence. The list
of final windows is first initialised (line 2) and returned (line 30) together with the sum of
minimal windows. As a result, within the inner loop we now not only update the minimal
width of active windows, but maintain, where necessary, multiple instances of windows with
the same minimal length (lines 9 to 17). If a new window is found with a lower minimal
width, we reset the instances of active windows (line 12). If a new window is found with
the same minimal width, we add that window to the instances (line 15). For example, given
sequence . . . bxaba . . ., for itemset {a, b}, we will find one minimal window for the two oc-
currences of a, and the first occurrence of b, but we will find two minimal windows for the
second occurrence of b. Note that, compared to Algorithm 3, we omitted the condition of
removing windows where window.width == |X| from the list of active windows (line 17),
because we now want to enumerate all instances of the minimal window.

3.4.2 Finding Representative Sequential Patterns

We now describe the algorithm Find Sequential Patterns, shown in Algorithm 5, which
returns the set of all sequential patterns that occur within the minimal windows of underly-
ing itemset X. In the main algorithm (see Algorithm 2) we only report sequential patterns
that occur often enough, that is, we remove sequential patterns where the occurrence ratio
is lower than min or. Remark that we have to deal with multiple permutations within the
same window caused by duplicate items. For example, given itemset {a, b, c, d} and a mini-
mal window abcbd, both sequential patterns abcd and acbd occur within the same minimal

Efficiently Mining Cohesion-based Patterns and Rules in Event Sequences 19

Algorithm 4: Sum Min Winsseq(X,Y) adaptation of Algorithm 3 for maintaining
possibly multiple minimal windows at each occurrence of X

/* Maintain last, current and next visited position for each item */

1 . . .
2 final windows← ∅;

/* Main loop over each occurrence */

3 while index < |N(X)| do
/* Abandon if running sum is already to high to be cohesive */

4 . . .
/* Update last and next position of next item */

5 . . .
/* Compute current window */

6 . . .
/* If new minimum in current window */

7 if minpos 6= −∞ and minpos > prev min then
/* Inner loop over previous occurrences for non-final windows */

8 for window ∈ active windows do
/* Update window size and maintain 1 or more instances of minimal windows at

each occurrence */

9 newwidth← maxpos−min(minpos,window.pos) + 1;
10 if newwidth < window.width then
11 window.width← newwidth;
12 window.instances = {instance(minpos,maxpos)};
13 end
14 if newwidth == window.width then
15 window.instances = window.instances ∪ {instance(minpos,maxpos)};
16 end

/* Make window final */

17 if window.pos < minpos or window.width < (maxpos− window.pos+ 1) then
18 active windows← active windows \ {window};
19 final windows← final windows ∪ {window};
20 smw← smw + window.width;

21 end

22 end

23 end
24 curr window← window(current pos,maxpos−minpos + 1, instance(minpos,maxpos));
25 active windows← active windows ∪ {curr window};
26 prev min← minpos; index← index + 1;

27 end
28 smw← smw+sum(window.width|window ∈ active windows);
29 final windows← final windows ∪ active windows;
30 return 〈smw,final windows〉;

window since b occurs more than once. In general, our algorithm should discover any per-
mutation of |X| elements. A näıve approach would enumerate all |X|! candidate sequential
patterns and check for each minimal window of X if the candidate occurs. Our algorithm,
however, only generates candidate sequential patterns that occur in at least one window,
making the method feasible even if |X| is large.

Find Sequential Patterns starts by defining an empty multiset (line 2) which is
returned (line 23) and updated with the discovered sequential patterns in each window
(line 21). The idea here is that we count each permutation that occurs at each occurrence,
and return this multiset, for example returning {abcd : 5, acbd : 4}. The outer loop (lines 3

20 Boris Cule et al.

Algorithm 5: Find Sequential Patterns(X) finds sequential patterns based on
cohesive itemset X
1 〈smw,min windowsseq〉 ← Sum Min Winsseq(X, ∅);
2 sps← multiset();

/* Main loop over each occurrence. */

3 for win ∈ min windowsseq do
4 win occurrences← ∅;

/* Inner loop over each minimal window instance */

5 for win ins ∈ win do
6 positions← {〈i, t〉| i ∈ X ∧ win ins.min ≤ t ≤ win ins.max};

/* Remove positions not relevant for enumerating sequential patterns. */

7 for n = 1;n < |positions|;n = n+ 1 do
8 〈in, tn〉 ← positions[n];
9 〈in+1, tn+1〉 ← positions[n+ 1];

10 if in = in+1 or in = i0 or in = i|positions| then
11 positions← positions \ positions[n];

12 end
/* Enumerate sequential patterns using the cartesian product of positions. */

13 for i ∈ X do
14 posi ← {〈i, t〉 | 〈i, t〉 ∈ positions};
15 end
16 cart prod← pos1 × pos2 × . . .× pos|X|;

/* Update occurrences in window */

17 for Xpos ∈ cart prod do
18 win occurrences← win occurrences ∪ to sequence(Xpos);
19 end

20 end
/* Update total occurrences in sequence. */

21 sps← sps] win occurrences;

22 end
23 return sps;

to 21) loops over all occurrences of the itemset. We create an empty set (line 4) to count
any distinct sequential pattern found within the current occurrence. Note that adding each
sequential pattern directly to the multiset would result in potentially doubly counting a
sequential pattern occurrence. Next, in the inner loop (lines 5 to 19) we loop over possi-
bly multiple minimal window instances at each occurrence. In the inner loop we generate
sequential patterns occurring within each minimal window instance. We first fetch the po-
sitions for each item of X within the window (line 6) from the input sequence and retrieve
a list of 〈i, t〉 positions. Next we filter out positions that are not relevant for generating
candidate sequential patterns: For the boundary items at the minimal and maximal posi-
tions, we know (by definition of a minimal window) that no other position of those items
will result in a smaller window, thus each sequential pattern must start with the item found
at the left boundary and end with the item on the right boundary. Therefore, we can safely
ignore any other positions of the boundary items within the minimal window (line 11). We
also remove any position where two or more occurrences of the same item directly follow
each other (line 11). Next we enumerate all possible permutations using a cartesian product
(line 16) of the filtered position lists of each item. In the simplest case, all elements will
occur just once, and the cartesian product will result in exactly one sequential pattern.
If we do have multiple positions for some items, the cartesian product will combine them

Efficiently Mining Cohesion-based Patterns and Rules in Event Sequences 21

with positions of other items and generate multiple sequential patterns. We then add these
sequential patterns to the current set of already discovered sequential patterns within the
window.

3.4.3 Example

In order to illustrate Find Sequential Patterns we provide an example. Assume an
itemset X = {a, b, c, d} and input sequence

a z b1 c1 b2 z b3 c2 d.
1 2 3 4 5 6 7 8 9

Note that, in this case, the entire input sequence is also a minimal window of X. The
position list is then {〈a, 1〉 〈b1, 3〉 〈c1, 4〉 〈b2, 5〉, 〈b3, 7〉, 〈c2, 8〉 〈d, 9〉}. We filter out b2 since it
it is directly followed by b3. We then take the cartesian product of the position lists of each
item, thereby generating all candidate sequential patterns within this window:

a × b × c × d
1 3 4 9

7 8 =

a× b× c× d
1 3 4 9
1 7 4 9
1 3 8 9
1 7 8 9

=

to sequence
a b c d
a c b d
a b c d
a b c d

We then convert the result of the cartesian product trivially into distinct sequential patterns,
that is abcd and acbd, and increment the support for both sequential patterns.

For a second example, assume X = {b, c} and the input sequence is the same as above.
Sum Min Winsseq would then generate a minimal window at t ∈ {3, 4, 5, 7, 8} of length
2 and two minimal window instances at t = 4, namely b1, c1 and c1, b2. We find two
sequential patterns, sp1 = 〈b, c〉 occurring at t ∈ {3, 4, 7, 8} and sp2 = 〈c, b〉 occurring at
t = {4, 5}. Given a minimal occurrence ratio threshold min or = 0.8, we conclude that sp1
is representative, and sp2 is not.

3.5 Dominant Episodes

In this section we describe our algorithm for finding dominant episodes within the minimal
occurrences of cohesive itemsets. In the previous section, given an itemset X, we enumerated
all representative sequential patterns. Here we find the single most dominant episode (or
partial order) of X. We take a more direct approach, and compute the intersection of the
top-k sequential patterns (or total orders) of X. The value of k is specific to a particular
itemsetX, and is determined by iteratively using more sequential patterns until the resulting
episode satisfies the minimal occurrence ratio threshold min por.

Find Dominant Episode, our algorithm for finding the dominant episode of a frequent
cohesive itemset, is shown in Algorithm 6. Three parameters must be provided: a cohesive
itemsetX, a set of sequential patterns sps that is computed using Find Sequential Patterns,
and the minimal occurrence ratio threshold min por. We start by computing the absolute
minimal support required (line 1). Then we sort the sequential patterns on descending sup-
port. Next we initialise the candidate episode with all nodes of itemset X, and no edges.

22 Boris Cule et al.

We then start our main loop (lines 5 to 23) by generating candidate episodes based on the
intersection of the top k total orders (or sequential patterns). For each sequential pattern,
we compute the transitive closure of the total order. For the first sequential pattern we then
initialise the candidate episode with this set of edges (line 14). For the remaining sequen-
tial patterns we iteratively take the intersection (line 16) with the previous partial order,
thereby keeping only the edges between items that hold for top-2, top-3 and finally top-k
sequential patterns. As we remove edges, based on the intersection, the occurrence ratio of
the resulting episode grows (or remains unchanged). We return the candidate episode if its
occurrence ratio has reached the required minimal occurrence ratio (line 22). Note that if
the set of edges becomes empty, we break the main loop (line 18) and return the itemset
itself (an episode that imposes no order at all on its events).

Algorithm 6: Find Dominant Episode(X, sps,min por) finds dominant episode
based on cohesive itemset X
1 min sup G← d|N(X)| ×min pore;
2 sort sps descending on occurrence ratio;
3 G← G(X, ∅);
4 support G← 0;

/* Main loop: generates candidate episodes by iteratively taking the intersection of

total orders of the top k sequential patterns */

5 for k = 1; k ≤ |sps|; k = k + 1 do
6 sp← sps[k];
7 Gsp ← G(X, ∅);

/* compute transitive closure current total order */

8 for i← 1 to |sp| − 1 do
9 for j ← i+ 1 to |sp|) do

10 E(Gsp)← E(Gsp) ∪ 〈sp[i], sp[j]〉;
11 end

12 end
13 if E(G) = ∅ then
14 E(G)← E(Gsp);
15 else
16 E(G)← E(G) ∩ E(Gsp);
17 end
18 if E(G) = ∅ then
19 break;

20 support G← Compute Support Episode(G);
21 if support G ≥ min sup G then
22 break;
23 end

24 end
25 return 〈G, support G〉;

To compute the support of an episode based on minimal windows of an itemset X,
we use the Compute Support Episode procedure shown in Algorithm 7. We first loop
over each occurrence (or minimal window) and then over each minimal window instance.
As discussed in the previous section, it is important to loop over multiple minimal window
instances since there can be more than one minimal window instances for a single occurrence
of an item. We optimise our computation in two cases: When any edge is not covered by

Efficiently Mining Cohesion-based Patterns and Rules in Event Sequences 23

Algorithm 7: Compute Support Episode(X,G) compute support of candidate
episode in sequence, based on minimal windows of itemset X

1 〈smw,min windowsseq〉 ← Sum Min Winsseq(X, ∅);
2 support G← 0;
3 for win ∈ min windowsseq do

/* Test if partial order holds in current minimal window */

4 covers window ← false;
5 for win ins ∈ win do
6 covers instance← true;
7 positions← {〈i, t〉| i ∈ X ∧ win ins.min ≤ t ≤ win ins.max};
8 for 〈i1, i2〉 ∈ E(G) do
9 covers edge← ∃〈i1, t1〉, 〈i2, t2〉 ∈ positions : t1 < t2;

10 if not covers edge then
11 covers instance← false;
12 break;

13 end

14 end
15 if covers instance then
16 covers window ← true;
17 break;

18 end

19 end
20 if covers window then
21 support G← support G+ 1;
22 end

23 end
24 return support G;

the current instance (line 12) we do not check remaining edges for the current instance, and
when an instance is covered we do not check other instances (line 17).

3.5.1 Example

In order to illustrate Find Dominant Episode we provide the following example. Suppose
we have a cohesive itemsetX = {a, b, c} and input sequence abc . . . abc . . . acb. Find Sequential
Patterns(X) finds two sequential patterns: sp1 = abc occurs 6 times, and sp2 = acb occurs
3 times. Next we execute Find Dominant Episode(X, sps = {abc : 6, acb : 3},min por =
0.8). We first compute the transitive closure Gsp1 = G(X, {a → b, b → c, a → c}) which
is our first candidate G1. support(G1) = 6 which is less than 0.8 × 9. Next we compute
Gsp2 = G(X, {a → c, c → b, a → b} and compute the intersection to get our second candi-
date G2 = G(X, {a → b, b → c, a → c} ∩ {a → c, c → b, a → b}) = G(X, {a → b, a → c}).
We find that support(G2) = 9, and we have thus found our dominant episode, in which a
occurs before b and c, but no order is imposed between b and c, with occ ratiopo(G2) = 1.

3.6 Association Rules

We conclude this section with an algorithm for efficiently discovering confident association
rules based on cohesive itemsets. Before presenting the algorithm, we introduce a theorem

24 Boris Cule et al.

that we use to compute the confidence of rules Y ⇒ X \ Y , with Y ⊂ X and |Y | ≥ 2,
without additional dataset scans.

3.6.1 Efficiently computing confidence

When discovering a cohesive itemset X, we need to compute the exact minimal window
Wt(X) containing X for each time stamp t at which an item x ∈ X occurs. In fact, we
compute the sum of all such windows for each x ∈ X in Sum Min Wins, before adding
them up into the overall sum needed to compute C(X). With these sums still in memory,
we can easily compute the confidence of all association rules of the form x⇒ X \ {x}, with
x ∈ X, that can be generated from itemset X. Formally, the confidence of such a rule is
equal to

c(x⇒ X \ {x}) =
|X|

W ({x}, X \ {x})
,

where

W ({x}, X \ {x}) =

∑
t∈N({x})Wt(X)

|N({x})|
,

and these are precisely the sums of windows we have already computed when discovering
itemset X itself. We now show that, in practice, it is sufficient to limit our computations
to rules of precisely this form (i.e., rules where the antecedent consists of a single item), as
the confidence of all rules Y ⇒ Z, with |Y | ≥ 2, can be derived from the confidence values
of rules of this form.

Theorem 2 Given a frequent cohesive itemset X and its two disjunct subsets Y and Z
(i.e., X = Y ∪ Z and Y ∩ Z = ∅), such that |Y | ≥ 2 and |Z| ≥ 1, it holds that

c(Y ⇒ Z) =
|N(Y)|∑

y∈Y
|N({y})|

c({y}⇒Z∪Y \{y})

.

Proof We begin the proof by noting that∑
t∈N(Y)Wt(Y ∪ Z) =

∑
y∈Y

∑
t∈N({y})Wt(Y ∪ Z).

A trivial mathematical property tells us that the sum of some numbers is equal to their
average multiplied by their quantity, and therefore∑

t∈N({y})Wt(Y ∪ Z) = W ({y}, Z ∪ Y \ {y})|N({y})|.

As a result, we can conclude that

W (Y, Z) =
∑

t∈N(Y)Wt(Y ∪Z)

|N(Y)| =
∑

y∈Y W ({y},Z∪Y \{y})|N({y})|
|N(Y)| ,

which in turn implies that

c(Y ⇒ Z) = |Y ∪Z|
W (Y,Z)

= |Y ∪Z||N(Y)|∑
y∈Y W ({y},Z∪Y \{y})|N({y})| .

Meanwhile, from the definition of confidence, we can derive that

Efficiently Mining Cohesion-based Patterns and Rules in Event Sequences 25

c({y} ⇒ Z ∪ Y \ {y}) = |Y ∪Z|
W ({y},Z∪Y \{y}) ,

and therefore it holds that

W ({y}, Z ∪ Y \ {y}) = |Y ∪Z|
c({y}⇒Z∪Y \{y}) ,

from which it directly follows that

c(Y ⇒ Z) =
|N(Y)|∑

y∈Y
|N({y})|

c({y}⇒Z∪Y \{y})

.

�

As a result, once we have evaluated all the rules of the form x⇒ X \ {x}, with x ∈ X,
we can then evaluate all other rules Y ⇒ X \ Y , with Y ⊂ X and |Y | ≥ 2, without further
dataset scans.

3.6.2 Finding association rules

The algorithm for discovering association rules is shown in Algorithm 8. First, we compute
the confidence of all rules where the left-hand-side consists of a single item, and cache this
result in memory (lines 1 to 12). Then we generate the powerset of X (line 14) and for each
proper subset Y of X we compute the confidence based on Theorem 2 (lines 15 to 21). We
return all rules that exceed the min conf threshold (line 23). Note that, unlike traditional
approaches, which first find all frequent itemsets and only then start generating association
rules, we generate rules in parallel with the cohesive itemsets as shown in Algorithm 2.

Finally, remark that the pseudocode of Algorithms 5, 7 and 8 begins by computing the
minimal windows of itemset X. While this is included for the sake of formal completeness,
this line is not actually executed at this point. These minimal windows are computed already
when evaluating Cmax(X,Y) in line 1 of Algorithm 2, and are then stored and reused later
in Algorithms 5, 7 and 8.

3.7 Parameter tuning and top-k mining

Given the exponential nature of the itemset candidate space, FCISEQ can take a very long
time to complete, depending on the parameters. It is therefore crucial to set the parameters
sensibly. This is especially the case for the cohesion threshold (min coh), which determines
whether parts of the search space can be pruned or not. Here we provide some insight into
how a user could come up with a good parameter setting.

First, we remark that setting min sup might be done by a domain expert, for example
by looking at the possibly long tail of infrequent items, and deciding if itemsets consisting
of these infrequent items are worth exploring. The max size parameter is optional, since
normally no dataset will contain any cohesive patterns longer than a certain size due to data
characteristics (we show this experimentally in Sect. 4.4), but if a user is only interested
in shorter patterns, this parameter can be set according to personal choice (it can also be
used to reduce runtimes, if necessary).

26 Boris Cule et al.

Algorithm 8: Find Rules(X,min conf) returns all confident association rules gen-
erated from itemset X
1 〈smw,min windows〉 ← Sum Min Wins(X, ∅);

/* Compute confidence of rules i→ X \ {i} where i is a single item. */

2 conf items← ∅;
3 for i ∈ X do
4 positionsi ← {t|〈i, t〉 ∈ S};
5 smwi ← 0;
6 for win ∈ min windows do
7 if win.pos ∈ positionsi then
8 smwi ← smwi + win.width;
9 end

10 end

11 conf items[i]← |X|
smwi/|N({i})| ;

12 end
13 rules← ∅;
14 pset← powerset(X);

/* Main loop that generates candidate rules of form Y → X \ Y */

15 for Y ∈ pset do
16 if |Y | > 0 and |Y | < |X| then

/* Compute confidence Y → X \ Y based on conf items */

17 smwY ← 0;
18 for i ∈ Y do
19 smwY ← smwY + |N({i})|/conf items[i];
20 end
21 confY ← |N(Y)|/smwY ;
22 if confY ≥ min conf then
23 rules← rules ∪ {Y → X \ Y };
24 end

25 end

26 end
27 return rules;

However, if no domain expert is available, we propose the following procedure for setting
each parameter. The idea of the procedure is to start with parameter values that only require
a short time, typically minutes, to mine patterns. New parameter settings can be explored
in small steps, thereby lengthening the runtime gradually to re-run FCISEQ to find more
patterns. We start with a relatively high value of min sup (depending on the size of the
dataset), a small value for max size, e.g., 4, and a high value of min coh, e.g., 0.9. or 1. This
first run should execute very fast, with high potential for pruning, and a limited candidate
space. After this initial run, the user can incrementally decrease min coh, in steps of 0.1,
until a sufficient number of patterns is found. After this step, min sup can be decreased to
smaller values to see if any new patterns involving less frequent items appear high in the
ranking. We remark that, unlike frequent pattern mining, low values for min sup do not
seem to significantly increase runtime in our experiments (see Sect. 4.2). This is because
patterns consisting of low-frequent items are often easily pruned, as the mean minimal
window size of supersets consisting of other low-frequent and high-frequent items are often
large, allowing us to effectively prune most candidates. Similarly, max size can be increased
to see if any new large patterns appear high in the ranking. The user can stop decreasing

Efficiently Mining Cohesion-based Patterns and Rules in Event Sequences 27

min sup and increasing max size if no new interesting patterns are found or if the runtimes
become prohibitive.

The two occurrence ratio thresholds, used for mining sequential patterns and episodes,
should be set high, since the idea is to discover representative total and partial orders
that capture most of the itemset’s occurrences. If the occurrence ratio is low, the order of
items (total or partial) can hardly be considered representative. Similarly, the confidence
threshold should be set high in order to produce reliable association rules.

Finally, we remark that our algorithm can quite easily be adapted to allow the mining
of top-k most cohesive patterns without the need to set min coh in advance. To do this, we
could maintain a heap of patterns during depth-first search. We would only add patterns to
the heap if fewer than k patterns are in the heap, or if the cohesion of the current candidate
pattern is higher than the minimal cohesion of a pattern currently in the heap (in which case
the pattern with minimal cohesion would be removed from the heap). After k candidates
are added, we can use the minimal value of cohesion in the heap of current candidates
as a dynamic value for min coh and use it for pruning using Cmax(X,Y) as before. As
more patterns are discovered, the lowest value for cohesion in the heap increases, thereby
pruning more candidates. Moreover, using this dynamic value as an increasing threshold
for the upper bound would satisfy the invariant that at each step all pruned candidates
are safely pruned using Cmax(X,Y) < min heap, and thus have a lower cohesion than the
pattern with the minimal cohesion the in final top-k set of patterns.

4 Experiments

In this section we compare our method with related state-of-the-art mining algorithms that
take a single event sequence as input — Winepi, Laxman1, Marblesw and Compact
Minimal Windows (CMW) (Tatti 2014). As discussed in Sect. 1, these algorithms use a
variety of frequency-based quality measures to evaluate the patterns, or, in the case of
CMW, re-rank the output according to the difference, or leverage, between actual and
expected minimal window lengths.

Since the available implementations2,3 were made with the goal of discovering partially
ordered episodes, we had to post-process the output in order to filter out only itemsets.
Additionally, in some cases, we had to slightly amend the implementations to generate not
only closed, but all frequent patterns. Therefore, making any kind of runtime comparisons
would be unfair on these methods, since general episode mining requires the generation of
many more candidate patterns than itemset mining. Consequently, in this section we limit
ourselves to a qualitative analysis of the output.

In Sect. 4.1 we use a Hidden Markov Model-based generator (Zimmermann 2014) to
create several synthetic data sets4. We use this generator to reproduce the benchmark study
of Zimmermann (2014) thereby creating synthetic sequences and embedded patterns under

1The algorithm was given no name by its authors.
2The implementations of Winepi, Laxman and Marblesw are available at

http://users.ics.aalto.fi/ntatti/software/closedepisodeminer.zip.
3The implementation of CMW was kindly provided by the author, but is not publicly available.
4The implementation of the generator is available at https://zimmermanna.users.greyc.fr/software.

html

http://users.ics.aalto.fi/ntatti/software/closedepisodeminer.zip
https://zimmermanna.users.greyc.fr/software.html
https://zimmermanna.users.greyc.fr/software.html

28 Boris Cule et al.

different assumptions. We then compare the performance of the state-of-the-art methods
with FCISEQ, by reporting the rank of the discovered embedded patterns. In Sect. 4.2 we
use different real-world datasets and compare the top-k episodes of different state-of-the-
art methods from a quality perspective. In Sect. 4.3 we compare the mining of association
rules on real-world datasets. In Sect. 4.4 we end the experimental section with a performance
analysis of FCISEQ. We remark that our implementation, datasets and experimental scripts
are all publicly available5.

4.1 Synthetic Data

4.1.1 Varying noise probability

For the first experiment we investigate the effect noise probability has on discovering a
single embedded pattern in a synthetic sequence. The synthetic sequence has a length of
5000 events consisting of 20 different events. The maximum delay between two events is
between 0 and 20. We embed a single serial episode with 4 elements. We then generate 10
variations, while varying the chance of a random event between each pattern embedding,
that is p, between 0.05 and 0.95 in steps of 0.1. More details can be found in the original
work of Zimmermann (2014).

For FCISEQ we set max size to 5 and min coh to a value lower than the cohesion of the
embedded pattern. For Winepi, Laxman, Marblesw and CMW we set the window to be
large enough for any pattern embedding, that is 50. For Winepi, Laxman, Marblesw and
CMW we set the threshold small enough that at least thousands of patterns are reported
in a reasonable time, that is t = 80 for Winepi, t = 5 for Laxman and CMW (which uses
Laxman for episode generation), and t = 1 for Marblesw. In addition, we set alpha, that
controls the scaling of the ranking based on compactness of window sizes, to 0.5 for CMW,
and split the sequence in two equal parts: one for training and candidate generation, and
one for testing if patterns are significant as done in the original paper (Tatti 2014).

We run two variations: in the first we assume that noise events and delays between
both pattern and noise events are sampled using a uniform distribution, and for the second
variation we generate noise events based on the Poisson distribution. The average rank of
the discovered pattern within a synthetic sequence with varying noise probability is shown
in Fig. 2. Note that if an embedded pattern is not ranked within the top-1000 or is not
found at all, we cap the rank to 1000, which is why we do not show these scores on the
plots, as they would be misleading).

Due to the inherent randomness of the Zimmermann generator, we run each experiment
5 times, and report the rank of the discovered episode(s) averaged over these 5 runs. We see
that FCISEQ consistently outperforms the other methods and always ranks the embedded
patterns very highly, while other methods underperform in the presence of noise.

4.1.2 Varying the size of alphabet

In the second experiment, we investigate the effect of an increasing number of event types,
denoted by M . We vary M between 4 and 40 in steps of 4. The synthetic sequences have a

5The implementation of FCISEQ is available at https://bitbucket.org/len_feremans/fci_public

https://bitbucket.org/len_feremans/fci_public

Efficiently Mining Cohesion-based Patterns and Rules in Event Sequences 29

0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95

Noise probability

0

200

400

600

800
A
ve
ra
ge

ra
nk

di
sc
ov
er
ed

ep
is
o
de

FCISEQ

Winepi

Laxman

Marblesw

CMW

(a)

0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95

Noise probability

0

200

400

600

800

A
ve
ra
ge

ra
nk

di
sc
ov
er
ed

ep
is
o
de

FCISEQ

Winepi

Laxman

Marblesw

CMW

(b)

Fig. 2 Impact of varying noise on the discovery of a single episode in synthetic data. (a) Uniformly
distributed noise. (b) Poisson-distributed noise.

length of 5000 events, and the maximum delay between two events is uniformly between 0
and 20. We also embed a single serial episode with 4 elements. The uniform noise probability
is fixed to 0.5. For mining the patterns we use the same parameters as in our previous
experiment.

The average rank of the embedded pattern for varying alphabet size is shown in Fig.
3. For a second variation of this experiment, we generate noise that is distributed using
the Poisson distribution. Once again, we see that our algorithm outperformed the other
methods on every single experiment.

4 8 12 16 20 24 28 32 36 40

Alphabet size

0

20

40

60

80

100

120

140

A
ve
ra
ge

ra
nk

di
sc
ov
er
ed

ep
is
o
de

FCISEQ

Winepi

Laxman

Marblesw

CMW

(a)

4 8 12 16 20 24 28 32 36 40

Alphabet size

0

20

40

60

80

100

120

A
ve
ra
ge

ra
nk

di
sc
ov
er
ed

ep
is
o
de

FCISEQ

Winepi

Laxman

Marblesw

CMW

(b)

Fig. 3 Impact of varying alphabet size on the discovery of a single episode in synthetic data. (a) Uniformly
distributed noise. (b) Poisson-distributed noise.

4.1.3 Varying probability of omissions

In the third experiment, we vary the probability that a source event of the embedded pattern
is not included, in order to mimic this type of failure that occurs in real-world datasets.
We vary the failure probability o between 0 and 0.9 in steps of 0.1. As before, the synthetic

30 Boris Cule et al.

sequences have a length of 5000 events consisting of 20 different events, the maximum delay
between two events is distributed uniformly between 0 and 20, we embed a single serial
episode with 4 elements, and the uniform noise probability is 0.5. For mining patterns we
use the same parameters as in our previous experiments.

The average rank of the pattern embedding for varying the probability of omissions
is shown in Fig. 4. Here, too, we perform a second variation of the experiment where the
noise is distributed using the Poisson distribution. We see that our algorithm is not affected
much by the omission probability, while all other methods begin to struggle as the omission
probability rises.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Omission probability

0

200

400

600

800

A
ve
ra
ge

ra
nk

di
sc
ov
er
ed

ep
is
o
de

FCISEQ

Winepi

Laxman

Marblesw

CMW

(a)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Omission probability

0

200

400

600

800

A
ve
ra
ge

ra
nk

di
sc
ov
er
ed

ep
is
o
de

FCISEQ

Winepi

Laxman

Marblesw

CMW

(b)

Fig. 4 Impact of varying the probability of omitting events of source episodes, on the discovery of a single
episode in synthetic data. (a) Uniformly distributed noise. (b) Poisson-distributed noise.

4.1.4 Varying maximum time delay

In the fourth experiment we study the effect of a larger time delay between consecutive
events, and we therefore vary the maximal delay g between 20 and 100 in steps of 10. We
vary this delay both for regular sequence events, and for the events belonging to pattern
embeddings. For other generator parameters we use the same settings as before, that is a
sequence length of 5000, alphabet size of 20, noise probability of 0.5, omission probability of
0 and a single serial episode with 4 elements. We also use the same parameters for mining
as above, except for window which we increase to 100.

The average rank of the pattern embedding for varying the maximal time delay is shown
in Fig. 5. For a second variation we generate noise that is distributed using the Poisson
distribution. As discussed in Zimmermann (2014), we also consider a third variant where the
maximum delay between two consecutive events of an embedded pattern is not constrained
by g. As in the previous experiments, FCISEQ consistently discovers the embedded pattern
in the top-10. Unlike the previous experiments the performance of CMW is also comparable.

4.1.5 Varying the number of patterns

In our fifth and final variation we study the effect of increasing the number of patterns, and
we therefore vary the number of patterns n between 1 and 5. All other parameters (both

Efficiently Mining Cohesion-based Patterns and Rules in Event Sequences 31

20 30 40 50 60 70 80 90 100

Maximum time delay

0

200

400

600

800
A
ve
ra
ge

ra
nk

di
sc
ov
er
ed

ep
is
o
de

FCISEQ

Winepi

Laxman

Marblesw

CMW

(a)

20 30 40 50 60 70 80 90 100

Maximum time delay

0

200

400

600

800

A
ve
ra
ge

ra
nk

di
sc
ov
er
ed

ep
is
o
de

FCISEQ

Winepi

Laxman

Marblesw

CMW

(b)

20 30 40 50 60 70 80 90 100

Maximum time delay

0

20

40

60

80

100

120

140

A
ve
ra
ge

ra
nk

di
sc
ov
er
ed

ep
is
o
de

FCISEQ

Winepi

Laxman

Marblesw

CMW

(c)

Fig. 5 Impact of varying maximum time delay on the discovery of a single episode in synthetic data.
(a) Uniformly distributed noise. (b) Poisson-distributed noise. (c) Uniformly distributed noise, with no
maximum delay between pattern events.

for sequence generation and pattern mining) were set as in the previous experiments. The
average rank for the discovered patterns is shown in Fig. 6. In addition to experimenting
with both uniformly and Poisson-distributed noise, we also consider two other variations
(assuming uniformly distributed noise) where embedded episodes are interleaved (occur-
rences of two episodes may overlap) and events are shared (two embedded patterns may
contain the same event) (Zimmermann 2014). We see that the number of different embed-
ded patterns affects the performance of our algorithm more adversely than the parameters
discussed previously, but FCISEQ still outperforms all other methods by quite a margin.

4.1.6 Discussion

When looking at the results of the above experiments we can conclude that, on the Zim-
mermann benchmark, FCISEQ clearly outperforms the state-of-the-art methods. Cohesion
seems to be a more robust measure to a variety of artificially induced types of noise that
occur in real-world settings. Compared to the frequency-based methods, this is not sur-
prising, since frequency is a poor proxy for interestingness. While CMW seems to perform
generally better than frequency-based methods, it also seems far less robust to the different
types of variation than FCISEQ.

32 Boris Cule et al.

1 2 3 4 5

Number of episodes

0

200

400

600

800
A
ve
ra
ge

ra
nk

di
sc
ov
er
ed

ep
is
o
de

FCISEQ

Winepi

Laxman

Marblesw

CMW

(a)

1 2 3 4 5

Number of episodes

0

200

400

600

800

A
ve
ra
ge

ra
nk

di
sc
ov
er
ed

ep
is
o
de

FCISEQ

Winepi

Laxman

Marblesw

CMW

(b)

1 2 3 4 5

Number of episodes

0

200

400

600

800

A
ve
ra
ge

ra
nk

di
sc
ov
er
ed

ep
is
o
de

FCISEQ

Winepi

Laxman

Marblesw

CMW

(c)

1 2 3 4 5

Number of episodes

0

200

400

600

800

A
ve
ra
ge

ra
nk

di
sc
ov
er
ed

ep
is
o
de

FCISEQ

Winepi

Laxman

Marblesw

CMW

(d)

Fig. 6 Impact of varying the number of episodes, and the discovery of them in synthetic data. (a) Uniformly
distributed noise. (b) Poisson-distributed noise. (c) Interleaved embedded episodes. (d) Embedded episodes
with shared events.

While it would be tempting to conclude FCISEQ is superior on any dataset, we also ac-
knowledge that our method has drawbacks. More specifically, when we consider the different
parameters of the Zimmermann generator, we see two parameters, for which FCISEQ would
have trouble with respect to recovering patterns. The first parameter r controls if event
types are repeated in an embedded pattern. Since FCISEQ first mines itemsets, we do not
generate any patterns containing repeating items. A consequent issue is that we are unable
to differentiate different, more complex, patterns, if the alphabet size is very small, e.g.,
given a DNA sequence with only 4 distinct items. A second parameter s controls if events
are shared between multiple source episodes. Since we always consider the minimal window
length at each item occurrence, having two (or more) embedded patterns share the same
item will result in some occurrences of the shared item being far from the occurrences of
other items in both patterns, and therefore in smaller values for cohesion for both patterns.
As a consequence, the subset of the embedded patterns without the shared item would have
a larger value for cohesion, and it is possible that the full pattern would not be recovered.

Efficiently Mining Cohesion-based Patterns and Rules in Event Sequences 33

4.2 Real-world data

4.2.1 Datasets

We selected two text datasets in which the discovered patterns can be easily discussed
and explained. Species contains the complete text of On the Origin of Species by Means
of Natural Selection by Charles Darwin6. Trump contains all tweets of president Trump7

between January 1, 2017 and March 1, 2018. We preprocessed both sequences using the
Porter Stemmer, removed stop words, transformed words to lower case, and removed any
special characters. Since the Trump dataset consists of many short sequences, we appended
all tweets to create a single long sequence. In addition we also removed HTML content,
such as URLs and entities. After preprocessing, the Species dataset has a sequence length
of |S| = 85 447 and contains 5 547 distinct items. For Trump the single sequence length is
|S| = 27 837 and contains 4 061 distinct items.

4.2.2 Cohesive Itemsets

For each of the existing methods, we set the frequency threshold low enough in order to
generate thousands of patterns. For FCISEQ, we did the same with the cohesion thresh-
old. We then sorted the output on the respective quality measures — the sliding window
frequency for Winepi, the non-overlapping minimal window frequency for Laxman, the
weighted window frequency for Marblesw, the leverage-based score for CMW, and cohe-
sion for FCISEQ. For FCISEQ, we used the sum of support of individual items making up
an itemset as the second criterion for ranking. For other methods pattern size is used as a
second criterion for ranking. Finally, we use alphabetical order of patterns to break ties in
all four methods. The frequency threshold was set to 30 for Winepi, 5 for Laxman, and 1
for Marblesw in both datasets, with the sliding window size set to 15. For CMW we set
alpha to 0.5 and split the sequence in two: the first half is used for discovering patterns while
the second half is used for testing whether patterns are significant (Tatti 2014). CMW uses
the frequent episodes produced by Laxman as input. We run FCISEQ with the cohesion
threshold set to 0.015 for Species and 0.02 for Trump, and we set the support threshold
to 5 for both datasets. Since none of the state-of-the-art methods produced any itemsets
consisting of more than 6 items, we set the max size parameter to 6 to reduce runtimes.

The top 5 patterns discovered by the different methods are shown in Table 2. We can see
that there are clear differences between the patterns discovered by FCISEQ and CMW, and
those discovered by the frequency-based methods, which produce very similar results. First
of all, the patterns ranked first and second in our output for the Species dataset are of size
3, which would be theoretically impossible for Winepi and Marblesw, and highly unlikely
for Laxman, since all three use anti-monotonic quality measures. Second, we observe that
the patterns we discover are in fact quite rare in the dataset, but they are very strong,
since all occurrences of these patterns are highly cohesive. Concretely, the phrase tierra del
fuego occurs seven times in the book, and none of these words occur anywhere else in the
book. The value of this pattern is therefore quite clear — if we encounter any one of these

6http://www.gutenberg.org/
7http://www.trumptwitterarchive.com/

http://www.gutenberg.org/
http://www.trumptwitterarchive.com/

34 Boris Cule et al.

three words, we can be certain that the other two can be found nearby. A similar argument
holds for the expression “Natura non facit saltus”, Latin for “nature does not make jumps”,
of which “non” is considered a stopword, and removed during preprocessing. CMW also
discovers interesting, albeit different itemsets. CMW ranks tierra del fuego 32nd and natura
facit saltus 27th.

Table 2 Top 5 itemsets discovered by the different methods.

FCISEQ Winepi Laxman Marblesw CMW

del, fuego,
tierra

natur, select natur, select natur, select absenc, island, mammal,
ocean, terrestri

facit, natura,
saltum

speci, varieti form, speci speci, varieti altern, glacial, north, period,
south

Species del, fuego form, speci speci, varieti distinct,
speci

bat, island, mammal, ocean,
speci, terrestri

del, tierra natur, speci natur, speci form, speci bat, island, mammal, ocean,
terrestri

facit, saltum distinct,
speci

distinct,
speci

condit, life cross, fertil, hybrid, mongrel,
offspr, varieti

puerto, rico fake, new fake, new fake, new ab, japan, minist, prime
hunt, witch cut, tax cut, tax cut, tax high, hit, market, stock,

time
Trump harbor, pearl america,

great
america,
great

america,
great

abc, cnn, fake, nbc, new

lago, mar great, make great, peopl america,
make

alabama, big, luther, strang,
vote

arabia, saudi america,
make

great, make great, make lowest, market, stock, unem-
ploy, year

The top pattern of CMW relates to chapter XIII in the book, with a subsection titled
“absence of bathracians and terrestrial mammals on oceanic islands”. FCISEQ is unable
to find this pattern, as the cohesion is very low overall since absence, terrestri, mammal,
ocean, island co-occur infrequently together in the book. If we would however segment this
very long book, and run FCISEQ on each individual chapter, the cohesion, local to chapter
XIII, would also be high for this itemset.

In the Trump dataset the top-5 patterns produced by FCISEQ all have a cohesion of 1,
which indicates that they always occur next to each other in tweets, in this case in 27, 23,
8, 7 and 7 tweets, respectively. Like tierra del fuego, these are examples of itemsets that
are highly correlated, but occur too infrequently to rank highly in existing state-of-the-art
methods. For example pearl harbor, saudi arabia and mar (a) lago do not occur in the
top-300 of the existing state-of-the art methods.

We conclude that in order to find less frequent, but strongly correlated patterns such
as tierra del fuego or mar (a) lago with existing state-of-the-art methods, the user would
need to wait a long time before a huge output was generated, and would then need to trawl
through thousands of itemsets in the hope of finding them. FCISEQ, on the other hand, ranks
them at the very top. From the perspective of the frequency-based methods, top patterns
typically consist of words that occur very frequently in the dataset, regardless of whether
the occurrences of the words making up the itemset are correlated or not. The top patterns

Efficiently Mining Cohesion-based Patterns and Rules in Event Sequences 35

reported by CMW also seem very interesting, but quite different from those produced by
FCISEQ. A disadvantage of CMW is that only half of the sequence is available for training,
causing the method to miss out on any patterns that only occur in the test part. A second
disadvantage are the so-called free-rider episodes where an item added independently to an
existing high-leverage episode also has a high score. For a more complete picture, we provide
the top-25 itemsets discovered by all five methods in both datasets in the Appendix.

While the top patterns are different, there is still some overlap between the output
generated by the various methods. For example, the pattern natur(al) select(ion), ranked
first in the Species dataset by the existing methods, was ranked 16th by FCISEQ, which
shows that our method is also capable of discovering very frequent patterns, as long as they
are also cohesive. Table 3 shows the size of the overlap between the itemsets discovered by
FCISEQ and those discovered by the other methods. We compute the size of the overlap
within the top k itemsets for each method, for varying values of k.

Table 3 Overlap in the top k itemsets discovered by FCISEQ and other methods.

k Winepi Laxman Marblesw CMW

100 12 13 11 2
Species 500 28 35 25 2

1 000 45 53 38 4

100 15 14 16 0
Trump 500 37 47 34 18

1 000 54 67 50 30

4.2.3 Representative Sequential Patterns

For evaluating representative sequential patterns we show the top-5 sequential patterns
discovered by FCISEQ with findSeq set to true, min coh = 0.015 (0.02 for Trump), min sup
= 5 and max size = 6, and compare the discovered representative sequential patterns with
total orders reported by state-of-the-art methods. We additionally set the occurrence ratio
threshold for sequential patterns, min or, to 0.7, and thus only report sequential patterns
for itemsets where the sequential pattern occurs in at least 70% of itemset occurrences.
The results for FCISEQ for Species are shown in Table 4. The patterns are first sorted
on cohesion, then on occurrence ratio, then on support, and finally alphabetically, if all
other measures are equal. These results show that the items making up the most cohesive
itemsets always occur in a specific order. Therefore, when this is the case, the representative
sequential patterns form a more informative way to represent the most interesting patterns.

For FCISEQ, Winepi, Laxman, Marblesw and CMW the top-5 sequential patterns
are shown in Table 5 for both datasets. Due to the min or threshold of 0.7, we only report
a representative sequential pattern for those itemsets that actually have one. In fact, out of
the 1 130 discovered cohesive itemsets in Species, only 21 have a representative sequential
pattern, for all others there is no single specific order that would be representative for the
occurrences of the itemset. In Trump, only 22 out of 16 372 itemsets had a representative
sequential pattern. For both Species and Trump, the top-5 sequential patterns had an

36 Boris Cule et al.

Table 4 Top 5 sequential patterns discovered by FCISEQ for Species with values for both cohesion and
support of the underlying cohesive itemset X, and the occ ratiose of the representative sequential pattern
sp for X.

C(X) sup(X) occ ratiose sp

1.0 21 1.0 tierra, del, fuego
1.0 18 1.0 natura, facit, saltum
1.0 14 1.0 del, fuego
1.0 14 1.0 tierra, del
1.0 12 1.0 facit, saltum

occ ratiose of 1, indicating that all occurrences of the underlying itemset came in the
order defined by the sequential pattern, clearly demonstrating the usefulness of outputting
these patterns. Conversely, for itemsets where the order is not important, our method
outputs no sequential pattern at all. Unlike FCISEQ, the frequency-based methods again
rank many spurious patterns highly. Note, for example, that all three methods output both
variety speci(es) and speci(es) variety in the top-10. This clearly demonstrates that, while
the two words often co-occur due to them both being very frequent, there is no sequential
relationship between them. Furthermore, similarly to itemsets, we remark that the top-1000
of all frequency-based methods contained very few (< 5%) sequential patterns consisting
of more than two items, and none of them ranked sequential patterns tierra del fuego
and natura (non) facit saltum in the top-1000. On the other hand, the most interesting
sequential patterns found by the frequency-based methods are ranked highly by FCISEQ,
too. For example, natur(al) select(ion), fake new(s) and tax cut(s) can all be found in our
top-20 sequential patterns for the respective dataset.

For sequential patterns, we see that the re-ranking of CMW for sequential patterns
candidates generated by Laxman, produces a more interesting set of patterns. The top
sequential pattern struggl(e) (for) exist(ence) geometr(ic) ratio (of) increas(e) appears in
chapter III. FCIFCI does not rank this pattern highly, since struggle also co-occurs often with
life, or on its own as verb, causing large minimal windows for these occurrences. Likewise, the
word increase (or variants like increasing with the same stem) are very common, and occurs
frequently in chapter III, without any instance of the other words nearby. Accordingly, the
interestingness of this pattern is very low concerning our proposed cohesion measure. In
Species, CMW also reports both tierra del fuego and natura (non) facit saltum in the top-
25. For Trump, the situation is different, in that some top patterns found by FCISEQ are
ranked rather low by CMW, e.g. pearl harbor is ranked 9921st.

4.2.4 Dominant Episodes

To discover dominant episodes we run FCISEQ with findEpi set to true, min coh = 0.015
(0.02 for Trump), min sup = 5 and max size = 5. Furthermore, we set the minimum occur-
rence ratio for episodes, min por, to 0.7, and thus only report episodes G = (V (G), E(G))
for itemsets X, where V (G) = X and the partial order defined by E(G) occurs in at least
70% of itemset occurrences. In Species, the dominant episode for 658 out of 1 130 cohesive
itemsets was either a sequential pattern (a total order) or the itemset itself (no order). For
the remaining 472 itemsets, the dominant episode was a partial order. Note that for item-

Efficiently Mining Cohesion-based Patterns and Rules in Event Sequences 37

Table 5 Top 5 sequential patterns discovered by the different methods.

FCISEQ Winepi Laxman Marblesw CMW

tierra, del,
fuego

natur, select natur, select natur, select struggl, exist, geometr, ratio,
increas

natura, facit,
saltum

varieti, speci varieti, speci distinct,
speci

variat, superven, earli, ag,
inherit

Species del, fuego speci, varieti speci, form varieti, speci form, life, chang, simultan,
world

tierra, del distinct,
speci

speci, varieti condit, life variat, superven, earli, in-
herit, ag

facit, saltum speci, form form, speci speci, varieti steril, speci, cross, hybrid,
offspr

puerto, rico fake, new fake, new fake, new stock, market, hit, time,
high

witch, hunt tax, cut tax, cut tax, cut job, stock, market, time,
high

Trump pearl, harbor america,
great

america,
great

america,
great

greatest, witch, hunt, histori

mar, lago make, amer-
ica

make, great make, amer-
ica

stock, market, hit, high

saudi, arabia make, great make, amer-
ica

unit, state presid, moon, south, korea

sets of size 2, the only possible episodes represent either an itemset or a sequential pattern.
As a result, all the partial orders of interest consisted of three or more items. We therefore
exclude itemsets and sequential patterns from the episode output.

The results of FCISEQ for Species are shown in Table 6. Note that the episodes are
ranked on cohesion of the underlying itemset, after filtering. The episodes containing {hexagon(al),
prism, pyramid, rhomb, sphere} are due to a section in the book discussing the making of
the honeycomb structure of bees, while the episode containing {leptali(s), ithomia,mimick}
is due to a section where the similarities of these two butterfly species are discussed. While
the specific semantics are less of interest in text datasets, what is interesting is that these
are partial orders that hold for more than 70% of occurrences.

Episodes reported by state-of-the-art methods on Species are shown in Table 7. Here,
too, we omit episodes defining either a total order or no order at all. While the episode
output of FCISEQ and CMW provides additional information about partial orders present
in the occurrences of itemsets that have no representative sequential pattern, the three
frequency-based methods produce various combinations of very frequent items, which is
not very informative. Finally, note that by using the min por threshold, we ensure that
we produce a single dominant episode per underlying itemset, which is representative of
the occurrences of that itemset. Other methods produce many partial orders for the same
itemset which can result not only in spurious patterns being discovered, but also in an
undesirably large output size (e.g., for CMW the top-100 episodes all consist of variations
(with different edges) of the two underlying itemsets of episodes shown in Table 7).

38 Boris Cule et al.

Table 6 Five dominant episodes discovered by FCISEQ for Species with values for cohesion, support and
occ ratiopo for dominant episodes G.

C(X) sup(X) occ ratiopo G

0.096 20 0.75

0.022 38 0.92

0.021 44 0.86

0.020 4666 0.76

0.020 29 0.86

Table 7 Top 5 episodes discovered by state-of-art methods on Species.

Winepi Laxman Marblesw CMW

4.3 Association rules

4.3.1 Text Datasets

Using FCISEQ with findRule set to true, we generate association rules for both datasets
with the confidence threshold min conf set to 0.7, and parameters min coh, max size
and min sup as defined in the previous section. We again compare rules with Winepi,
marblesw, and with marblesm, which uses a confidence measure based on non-overlapping
minimal windows (as defined by Laxman). CMW is only used for re-ranking episodes, not
mining association rules. We set min conf = 0.7 for the state-of-art methods, and the
frequency threshold to 40 for Winepi, 10 for Marblesm, and 1 for Marblesw in both
datasets, with the sliding window size set to 15.

Efficiently Mining Cohesion-based Patterns and Rules in Event Sequences 39

We slightly adjusted the underlying implementation of the state-of-art methods, namely
closepi, and made the modified code publicly available in our repository. Since closepi
mines general episodes, instead of only parallel episodes, or itemsets, and then generates
rules with potentially both general episodes on the left- and right-hand side, this causes an
order-of-magnitude more rules, and requires additional computing resources. Therefore, we
made sure that parallel episodes, closed by a partial episode, are not removed, and instead
removed all non-parallel episodes before mining association rules.

The top-5 rules for Species and Trump for all methods are shown in Table 8. Rules were
ranked first on the confidence measure related to each method, and then on support of the
antecedent to break ties. For Species and Trump the top-5 rules for FCISEQ have a confi-
dence of 1.0. Most of these top rules consist of itemsets that are fully cohesive, meaning that
if one of the items occurs, the others always occur next to them. Only migrat(ation)→ chain
is different, since the underlying itemset is not fully cohesive, but the association rule with
migrat(ation) as antecedent is fully confident. Interestingly, Marblesw and Marblesm
also report rules of fully cohesive itemsets ranked in the top-5, such as tierra del fuego
and natura facit saltum. Unlike itemsets ranked on frequency, the ranking on confidence
produces quite different results between all methods, especially between the three different
frequency-based approaches. While all methods find very interesting rules, a disadvantage
of the three state-of-the-art methods is that they often rank rules with frequent items such
as speci(es), natur(al) or select(ion) as the consequent very highly, when this is, in most
cases, due to these items accidentally occurring in the vicinity of the antecedent, and not
due to an actual association. On the other hand our method fails to discover rules such
as divis(ion), kingdom → anim(al). The phrase “division of the animal kingdom” occurs
about 10 times in Species. FCISEQ does not report the itemset or any subset or resulting
rules, because when we consider all occurrences of items in the antecedent — both kingdom
and divis(ion) — and then compute the average minimal window lengths, in this instance,
cohesion is very low (< 0.001), or, in other words, the majority of the occurrences of the
three items do not co-occur anywhere. Once again, we provide the top-25 rules of both
datasets in the Appendix.

4.3.2 Character Sequence Datasets

As a second experiment we run association rule mining on text split on each character.
We are interested in finding association rules between letters that are specific within each
language — in this case, English, French and Dutch. We use the complete text of David
Copperfield by Charles Dickens6 in English and translations in French and Dutch. We re-
moved special characters, transformed words to lower case, tokenised the text on individual
characters and added the ‘ ’ symbol to denote spaces between words. We limited the three
sequences to the first |S| = 500 000 characters. The dictionary consists of 26 letters and ‘ ’
.

We run FCISEQ with min coh = 0, max size = 4, minsup = 50 and min conf = 0.3. In
Table 9 we show the top-5 rules discovered for each language, split into three categories. We
first show rules consisting of two letters, then rules consisting of three letters, and, finally,
rules containing the space between words, or ‘ ’. We see that some reported patterns are
common in all three languages, and some patterns are discriminative for a specific language.
For example q → u is a typical combination found in all three languages, as q is almost

40 Boris Cule et al.

Table 8 Top 5 rules, ranked on confidence, discovered by the different methods.

FCISEQ Winepi Marblesm Marblesw

fuego, tierra →
del

divis, kingdom
→ anim

hive → bee divis, kingdom
→ anim

del, fuego →
tierra

averag, genera
→ speci

mivart → mr fuego, tierra →
del

Species del, tierra →
fuego

cuckoo, lai, nest
→ egg

case, select,
structur →
natur

independ, ordi-
nari → view

facit, natura →
saltum

varieti, zone →
intermedi

candol → de natura, saltum
→ facit

natura, saltum
→ facit

genera, present,
varieti → speci

case, organ,
select → natur

inherit, superven
→ earli

puerto→ rico hit, stock→
market

cut, reform→
tax

honor, minist→
prime

rico→ puerto high, hit,
stock→ mar-
ket

puerto→ rico confer, joint→
press

Trump hunt→ witch bill, reform,
tax→ cut

rico→ puerto immigr, merit→
base

witch→ hunt biggest, cut,
histori→ tax

witch→ hunt greatest, hunt→
witch

migrat→ chain ab, prime→
minist

hunt→ witch donald,
proclaim→
trump

always followed by a u. A typical Dutch rule is j → i, where ij is a very common combination
of letters, while rule j → e is very specific for French. Rule y → is typical for English
and Dutch, where y often occurs either at the start or at the end of a word, and rarely in
the middle. The same holds for j → in French, where j is mostly found at the start of
the word. This experiment confirms that our method finds valuable association rules, and
tends not to rank spurious rules highly.

4.4 Performance Analysis

We tested the behaviour of our itemset mining algorithm when varying the cohesion, sup-
port and size thresholds on the two text datasets (findSeq, findEpi and findRule were all set
to false). The results are shown in Fig. 7. As expected, we see that the number of patterns
increases as the cohesion and support thresholds are lowered. In particular, when the cohe-
sion threshold is set too low, the size of the output explodes, as even random combinations
of frequent items become cohesive enough. However, as the support threshold decreases, the
number of patterns stabilises, since rarer items typically only make up cohesive itemsets
with each other, so only a few new patterns are added to the output (when we lower the
support threshold to 2, we see another explosion as nearly the entire alphabet is considered
frequent).

In all settings, it took no more than a few minutes to find tens of thousands of patterns.
Note that with reasonable support and cohesion thresholds, we could even set the max size
parameter to∞ without encountering prohibitive runtimes, allowing us to discover patterns

Efficiently Mining Cohesion-based Patterns and Rules in Event Sequences 41

Table 9 Top 5 rules, ranked on confidence, for different types of character associations in English, French
and Dutch. The input dataset is David Copperfield.

Category English French Dutch

c(q → u) = 0.984 c(q → u) = 0.980 c(q → u) = 0.661
c(v → e) = 0.686 c(j → e) = 0.609 c(j → i) = 0.625

Two letters c(x→ e) = 0.616 c(g → e) = 0.589 c(b→ e) = 0.605
c(r → e) = 0.432 c(d→ e) = 0.542 c(n→ e) = 0.603
c(z → e) = 0.416 c(r → e) = 0.540 c(g → e) = 0.594

c(q → i, u) = 0.524 c(q → u, e) = 0.678 c(q → i, u) = 0.667
c(q → u, e) = 0.520 c(b→ a, e) = 0.357 c(q → i, n) = 0.626

Three letters c(q → t, u) = 0.399 c(q → u, i) = 0.348 c(q → u, n) = 0.576
c(v → a, e) = 0.362 c(l→ a, e) = 0.346 c(q → u, e) = 0.485
c(q → i, e) = 0.357 c(v → a, e) = 0.346 c(q → r, e) = 0.483

c(y →) = 0.918 c(j →) = 0.924 c(y →) = 0.979
c(w →) = 0.863 c(q → u,) = 0.906 c(q →) = 0.894

Letters near c(d→) = 0.835 c(q →) = 0.824 c(x→) = 0.846
word boundary c(q → , u) = 0.794 c(d→) = 0.790 c(z →) = 0.800

c(b→) = 0.790 c(q → u, e,) = 0.785 c(m→) = 0.781

of arbitrary size (in practice, the size of the largest pattern is limited due to the character-
istics of the data, so output size stops growing at a certain point). Since the methods we
compare with use a relevance window, defining how far apart two items may be in order
to still be considered part of a pattern, they can never find patterns of arbitrary size. For
example, using a window of size 15 implies that no pattern consisting of more than 15 items
can ever be discovered.

In a second performance experiment we vary the maximum size of patterns, and report
the number of candidates visited by the main DFS routine (Algorithm 2) versus the number
of candidates that is theoretically possible. Given an alphabet of |Ω| items, the number of

itemsets of length 2 up to max size that is theoretically possible is given by
∑max size
k=2

(|Ω|
k

)
.

We run FCISEQ on Species and set min sup to 5, resulting in |Ω| = 5547 different words,
and set min coh to 0.5. In Table 10, we report the number of candidates visited versus the
number of possible candidates for varyingmax size. Remark that running up tomax size =
48 took only 41 minutes on a laptop. We conclude that pruning on cohesion is effective in
narrowing the search in an otherwise intractable search space.

The runtime of additionally mining representative sequential patterns, dominant episodes
and association rules is shown in Fig. 8. Since sequential pattern, episode and association
rule mining is triggered for each cohesive itemset, additional runtime costs for mining other
types of patterns is relative to the number of reported cohesive itemsets. If the number
of cohesive itemsets is small, such as for Species with 1 339 itemsets, the additional time
required for finding sequential patterns or episodes is small, compared to the time for only
mining cohesive itemsets. For Trump the number of itemsets is larger, that is 16 393, and the
additional time needed for finding sequential patterns is naturally higher, and even higher
for dominant episodes (note, however, that episode mining requires the execution of the
sequential pattern mining phase, even if sequential patterns are not required for output).
For mining rules, the additional runtime cost for mining confident rules based on cohesive
itemsets is relatively small for both datasets. This is mainly due to the efficient computation

42 Boris Cule et al.

Table 10 Impact of varying max size on the number of candidates enumerated (with pruning) by FCISEQ
versus the theoretically possible number of candidates (without pruning). Experiment run on Species with
parameters min sup = 5 (|Ω| = 5547) and min coh = 0.5.

max size Number of candi-
dates visited by
FCISEQ

Theoretically pos-
sible number of
candidates

8 4.8× 106 1.3× 1022

16 5.0× 106 1.3× 1040

24 5.4× 106 2.4× 1056

32 8.0× 106 2.8× 1071

40 2.3× 107 4.4× 1085

48 1.3× 108 1.3× 1099

of confidence, as described in Sect. 3.6. We conclude that our algorithms perform efficiently
in a variety of settings.

5 Related Work

We have examined the most important related work in Sect. 1, and experimentally compared
our work with the existing state-of-the-art methods in Sect. 4. Here, we place our work into
the wider context of sequential pattern mining.

At the heart of most pattern mining algorithms is the need to reduce the exponential
search space into a manageable subspace. When working with an anti-monotonic quality
measure, such as frequency, the Apriori property can be deployed to generate candidate
patterns only if some or all of their subpatterns have already proved frequent. This ap-
proach is used in both breadth-first-search (BFS) and depth-first-search (DFS) approaches,
such as Apriori (Agrawal and Srikant 1994), Eclat (Zaki 2000) and FP-growth (Han
et al. 2004) for itemset mining in transaction databases, GSP (Srikant and Agrawal 1996),
SPADE (Zaki 2001), BIDE (Wang and Han 2004) and PrefixSpan (Pei et al. 2004) for
sequential pattern mining in sequence databases, or Winepi (Mannila et al. 1997) and
Marbles (Cule et al. 2014) for episode mining in event sequences.

For computational reasons, non-anti-monotonic quality measures are rarely used, or
are used to re-rank the discovered patterns in a post-processing step. Tatti proposed a
way to measure the significance of an episode by comparing the lengths of its occurrences
to expected values of these lengths if the occurrences of the patterns’ constituent items
were scattered randomly (Tatti 2014). In a later work, Tatti introduced the EpiRank
algorithm (2015) to re-rank episodes in a dataset consisting of multiple sequences based
on leverage (Webb 2010). Both methods, however, use the output of an existing frequency-
based episode miner (Tatti and Cule 2012), and then compute the new measures for the
discovered patterns. In this way, the rare patterns, such as those discussed in Sect. 4, will
once again not be found. Our FCIseq algorithm falls into the DFS category, and the proposed
quality measure is not anti-monotonic, but rather than evaluating it in a post-processing
step, we rely on an alternative pruning technique to reduce the size of the search space.
We believe the additional computational effort to be justified, as we manage to produce

Efficiently Mining Cohesion-based Patterns and Rules in Event Sequences 43

intuitive results, with the most interesting patterns, which existing state-of-the-art methods
sometimes fail to discover at all, ranked at the very top.

Petitjean et al. (2016) proposed an alternative measure of interestingness for ranking
sequential patterns, which does not satisfy the anti-monotonicity property either, and an
algorithm (Skopus) to directly enumerate candidate sequential patterns satisfying the in-
terestingness measure. This measure, like EpiRank, is based on leverage and compares
the support against the expected support assuming independence. Unlike our approach,
Skopus takes as input a database of many, typically short, sequences, rather than a single
sequence.

Feremans et al. (2018) proposed an alternative interestingness measure for evaluating
sequential patterns in a single long sequence. They evaluate what percentage of the pattern’s
minimal occurrences are small enough, where small enough is defined by multiplying a user-
defined parameter with the size of a pattern. For example, if this parameter is set to 2, a
window of size 6 will be small enough for a pattern of size 3, but not for a pattern of
size 2. However this method takes the sizes of the minimal windows of a pattern not into
account, as long as they are small enough. For example, if any window of size 10 or smaller
is considered small enough, then a window of size 2 will score just as much as a window of
size 9.

In other related work, various authors incorporated temporal constraints in pattern
mining (Méger and Rigotti 2004; Pei et al. 2007). Two types of constraints are either a
maximal window constraint, i.e., the maximum elapsed time between the first and last event
of an occurrence of the pattern, and a maximal gap constraint, i.e., the maximum elapsed
time between any two consecutive events in each occurrence. The main difference between
our work and these approaches is that we always consider all event occurrences, instead
of counting only pattern occurrences satisfying the temporal constraints. Furthermore, we
do not only count occurrences, but use the window length of each occurrence as a weight
used in ranking the top patterns. Finally, we remark that a recent benchmarking study
that compared different episode miners (Zimmermann 2014), whose framework we follow in
Sect. 4.1, reported experimental results of the gap constraint techniques, and these results
were considerably worse than the results of FCISEQ with respect to recovering patterns
embedded in the data.

Multiple authors have also stepped away from mining all frequent patterns, and rather
tried to reduce the number of patterns often based on information theoretic approaches such
as the Minimal Description Length (Grünwald 2007), thereby producing a smaller set of
patterns that covers the sequence, or, in most cases, a database of many sequences. Methods
such as SQS (Tatti and Vreeken 2012), GoKrimp (Lam et al. 2014), and ISM (Fowkes
and Sutton 2016) follow this approach. These methods take a database of typically short
sequences as input, which is different from our approach. Another key difference is that
rather than enumerating as few candidates as possible and then selecting the best candidates
according to an interestingness measure, they employ heuristic search to incrementally build
a set of non-redundant patterns, instead of trying to enumerate an exact set of patterns,
based on a definition of interestingness.

Finding interesting pairs (or n-grams) of co-occurring words in natural language has
also been extensively studied by the Natural Language Processing community (Manning
and Schütze 1999). Here the goal is to find collocations, that is co-occurring words that are
typical in a corpus, such as strong tea or the rich and the famous. Specific to the Natural

44 Boris Cule et al.

Language domain, collocations are also characterised by the semantic concept of limited
compositionality, that is the meaning of the collocation of words is only weakly related to
the meaning of the individual words, e.g., strong has a different meaning in the phrase strong
tea than in strong man. In the context of mining collocations, different methods start with
counting all frequent bi-grams or n-grams within a fixed window, after filtering words based
on part of speech tags (Justeson and Katz 1995). Different authors have proposed ranking
collocations based on various statistics, such as mean and variance of word distances, and
based on various hypothesis tests, such as the t test, χ2 test, and likelihood ratios, or using
pointwise mutual information (Church and Mercer 1993; Manning and Schütze 1999). In
essence, the different methods are frequency-based methods using fixed windows with re-
ranking based on different statistics. Beside the domain-specific analysis of this problem,
there are major technical differences with our approach. We are also interested in mining
co-occurrences of potentially larger sets of items efficiently, while the focus by the NLP
community is more on defining interestingness measures on bi-grams (or smaller sets of
items). We remark that, for mining smaller sets of items within a small fixed window, it
is relatively straightforward to design an algorithm that generates all possible n-grams in
reasonable time. However, for larger itemsets and window sizes any algorithm would need
to at least prune the search space of possible candidates in some way, to overcome the
combinatorial explosion induced by larger itemsets and window sizes.

6 Conclusion

In this paper, we present a novel method for finding valuable patterns in event sequences.
First of all, we evaluate the quality of the discovered itemsets using cohesion, a measure
of how far apart the items making up the itemset are on average. In this way, we reward
strong patterns that are not necessarily very frequent in the data, which allows us to discover
patterns that existing frequency-based algorithms fail to find. Since cohesion is not an anti-
monotonic measure, we rely on an alternative pruning technique, based on an upper bound
of the cohesion of candidate patterns that have not been generated yet. We show both
theoretically and empirically that the method is sound, the upper bound tight, and the
algorithm efficient, allowing us to discover large numbers of patterns reasonably quickly.

Based on the discovered cohesive itemsets, we then search for representative sequential
patterns and dominant episodes, which offer additional information about the order in which
the items making up the itemsets occur. If no order is representative of the occurrences of an
itemset, we report no sequential pattern or partial order. Furthermore, we mine association
rules, with a confidence measure based on the cohesion of the antecedent and consequent,
rather than the frequency-based definition common in literature. We integrate the mining
process of all four pattern types into a single efficient algorithm.

Experimental results demonstrate that our approach produces a more intuitive ranking
of patterns than existing frequency-based state-of-the-art methods. For all pattern types, we
rank interesting patterns highly, while avoiding spurious patterns that consist of unrelated
items that often co-occur purely because they all occur very frequently. For sequential
patterns and, particularly, episodes, we limit the number of patterns that can be generated
from a single itemset, thus avoiding a pattern explosion common for existing algorithms.

Efficiently Mining Cohesion-based Patterns and Rules in Event Sequences 45

Our experiments confirm both the high quality of our output and the efficiency of our
algorithm.

Acknowledgements

The authors would like to thank the VLAIO SBO HYMOP project for funding this research.

References

Rakesh Agrawal and Ramakrishnan Srikant. Fast algorithms for mining association rules.
In International Conference on Very Large Data Bases, pages 487–499, 1994.

Kenneth W Church and Robert L Mercer. Introduction to the special issue on computational
linguistics using large corpora. Computational linguistics, 19(1):1–24, 1993.

Boris Cule and Bart Goethals. Mining association rules in long sequences. In Pacific-Asia
Conference on Knowledge Discovery and Data Mining, pages 300–309. Springer, 2010.

Boris Cule, Bart Goethals, and Céline Robardet. A new constraint for mining sets in
sequences. In Proceedings of the 2009 SIAM International Conference on Data Mining,
pages 317–328, 2009.

Boris Cule, Nikolaj Tatti, and Bart Goethals. Marbles: Mining association rules buried
in long event sequences. Statistical Analysis and Data Mining: The ASA Data Science
Journal, 7(2):93–110, 2014.

Boris Cule, Len Feremans, and Bart Goethals. Efficient discovery of sets of co-occurring
items in event sequences. In European Conference on Machine Learning and Principles
and Practice of Knowledge Discovery in Databases, pages 361–377. Springer, 2016.

Len Feremans, Boris Cule, and Bart Goethals. Mining top-k quantile-based cohesive se-
quential patterns. In Proceedings of the 2018 SIAM International Conference on Data
Mining, pages 90–98. SIAM, 2018.

Jaroslav Fowkes and Charles Sutton. A subsequence interleaving model for sequential
pattern mining. In Proceedings of the 22nd ACM SIGKDD international conference on
knowledge discovery and data mining, pages 835–844. ACM, 2016.

Peter D Grünwald. The minimum description length principle. MIT press, 2007.
Jiawei Han, Jian Pei, Yiwen Yin, and Runying Mao. Mining frequent patterns without

candidate generation: A frequent-pattern tree approach. Data Mining and Knowledge
Discovery, 8(1):53–87, 2004.

John S Justeson and Slava M Katz. Technical terminology: some linguistic properties and
an algorithm for identification in text. Natural language engineering, 1(1):9–27, 1995.

Hoang Thanh Lam, Fabian Mörchen, Dmitriy Fradkin, and Toon Calders. Mining compress-
ing sequential patterns. Statistical Analysis and Data Mining: The ASA Data Science
Journal, 7(1):34–52, 2014.

Srivatsan Laxman, PS Sastry, and KP Unnikrishnan. A fast algorithm for finding fre-
quent episodes in event streams. In Proceedings of the 13th ACM SIGKDD international
conference on Knowledge discovery and data mining, pages 410–419. ACM, 2007.

Heikki Mannila, Hannu Toivonen, and A Inkeri Verkamo. Discovery of frequent episodes in
event sequences. Data Mining and Knowledge Discovery, 1(3):259–289, 1997.

46 Boris Cule et al.

Christopher D Manning and Hinrich Schütze. Foundations of statistical natural language
processing. MIT press, 1999.

Nicolas Méger and Christophe Rigotti. Constraint-based mining of episode rules and optimal
window sizes. In European Conference on Machine Learning and Principles and Practice
of Knowledge Discovery in Databases, pages 313–324. Springer, 2004.

Jian Pei, Jiawei Han, Behzad Mortazavi-Asl, Jianyong Wang, Helen Pinto, Qiming Chen,
Umeshwar Dayal, and Mei-Chun Hsu. Mining sequential patterns by pattern-growth:
The prefixspan approach. IEEE transactions on knowledge and data engineering, 16(11):
1424–1440, 2004.

Jian Pei, Jiawei Han, and Wei Wang. Constraint-based sequential pattern mining: the
pattern-growth methods. Journal of Intelligent Information Systems, 28(2):133–160,
2007.

François Petitjean, Tao Li, Nikolaj Tatti, and Geoffrey I Webb. Skopus: Mining top-k
sequential patterns under leverage. Data Mining and Knowledge Discovery, 30(5):1086–
1111, 2016.

Ramakrishnan Srikant and Rakesh Agrawal. Mining sequential patterns: Generalizations
and performance improvements. In International Conference on Extending Database
Technology, pages 1–17. Springer, 1996.

Nikolaj Tatti. Discovering episodes with compact minimal windows. Data Mining and
Knowledge Discovery, 28(4):1046–1077, 2014.

Nikolaj Tatti. Ranking episodes using a partition model. Data Mining and Knowledge
Discovery, 29(5):1312–1342, 2015.

Nikolaj Tatti and Boris Cule. Mining closed strict episodes. Data Mining and Knowledge
Discovery, 25(1):34–66, 2012.

Nikolaj Tatti and Jilles Vreeken. The long and the short of it: summarising event sequences
with serial episodes. In Proceedings of the 18th ACM SIGKDD international conference
on knowledge discovery and data mining, pages 462–470. ACM, 2012.

Jianyong Wang and Jiawei Han. Bide: Efficient mining of frequent closed sequences. In
IEEE international conference on data engineering, pages 79–90, 2004.

Geoffrey I Webb. Self-sufficient itemsets: An approach to screening potentially interesting
associations between items. ACM Transactions on Knowledge Discovery from Data, 4
(1):3, 2010.

Mohammed J. Zaki. Spade: An efficient algorithm for mining frequent sequences. Machine
Learning, 42(1-2):31–60, 2001.

Mohammed Javeed Zaki. Scalable algorithms for association mining. IEEE transactions
on knowledge and data engineering, 12(3):372–390, 2000.

Albrecht Zimmermann. Understanding episode mining techniques: Benchmarking on di-
verse, realistic, artificial data. Intelligent Data Analysis, 18(5):761–791, 2014.

Efficiently Mining Cohesion-based Patterns and Rules in Event Sequences 47

Appendix

Top-25 patterns

Tables 11 and 12 show the top-25 itemsets for Species and Trump, Tables 13 and 14 show
the top-25 sequential patterns, and Tables 15 and 16 the top-25 association rules. Note that,
as discussed in Sect. 4, FCIseq produced fewer than 25 sequential patterns per dataset, due
to the usage of the minimal occurrence ratio threshold. A lower threshold would naturally
result in more patterns, but we argue that these patterns are better omitted from the
output, since they are in fact not representative of the occurrences of the underlying itemset.
Patterns for FCIseq in bold are not reported by any other state-of-the-art method in the
top-1000, likewise, patterns in bold for other methods are not reported by FCIseq in the
top-1000. Note that since we only produce fewer than 25 sequential patterns, nearly all of
the patterns found by other methods are in bold.

48 Boris Cule et al.

Table 11 Top 25 itemsets for Species.

FCIseq Winepi Laxman Marblesw CMW

del, fuego,
tierra

natur, select natur, select natur, select absenc, island, mammal,
ocean, terrestri

facit, natura,
saltum

speci, varieti form, speci speci, varieti altern, glacial, north, pe-
riod, south

del, fuego form, speci speci, varieti distinct, speci bat, island, mammal,
ocean, speci, terrestri

del, tierra natur, speci natur, speci form, speci bat, island, mammal,
ocean, terrestri

facit, saltum distinct, speci distinct, speci condit, life cross, fertil, hybrid, mon-
grel, offspr, varieti

facit, natura gener, speci gener, speci natur, speci differ, endow, incident,
special, steril

fuego, tierra differ, speci differ, speci anim, plant ag, earli, inherit, success,
superven, variat

natura,
saltum

case, speci case, speci genu, speci glacial, northern, period,
southern, temper

ithomia, lep-
tali

condit, life case, natur differ, speci ag, earli, inherit, period,
superven, variat

leptali, mim-
ick

genu, speci natur, organ be, organ inhabit, island, mainland,
nearest, relat

ithomia, lep-
tali, mimick

anim, plant select, speci group, speci fertil, mongrel, offspr,
univers, varieti

ithomia,
mimick

group, speci group, speci gener, speci cross, fertil, mongrel, off-
spr, varieti

hexagon,
sphere

number,
speci

number,
speci

genera, speci mountain, northern,
southern, temper

forcep,
urchin

case, natur genera, speci cross, speci ag, earli, inherit, super-
ven, variat

rufescen,
sanguinea

genera, speci charact,
speci

individu,
speci

absenc, island, ocean, ter-
restri

pyramid,
rhomb

cross, speci plant, speci case, speci crop, fantail, pouter, tail

natur, select be, organ form, varieti alli, speci cross, differ, incident, sys-
tem, unknown

sur, tom close, speci anim, plant number,
speci

exist, geometr, increas,
ratio, struggl

natur, speci charact,
speci

form, natur form, life absenc, mammal, ocean,
terrestri

prism, pyra-
mid, rhomb

descend,
speci

condit, life descend,
speci

connect, exist, intermedi,
lesser, number, varieti

busk, chela individu,
speci

natur, variat alli, close fittest, man, natur, select,
surviv

form, speci form, varieti organ, speci case, natur absenc, island, mammal,
terrestri

gener, speci natur, variat individu,
speci

exist, speci altern, glacial, north, pe-
riod

matthew, vol natur, organ natur, select,
speci

close, speci cross, differ, incident, re-
product, system

saint, sur select, speci anim, speci produc,
speci

endow, incident, special,
steril

Efficiently Mining Cohesion-based Patterns and Rules in Event Sequences 49

0.10 0.05 0.02 0.01

min_coh (log scale)

101

102

103

104

105

#
p
a
tt

e
rn

s
(l

o
g
 s

ca
le

)

101

102

103

104

ru
n
ti

m
e
 (

lo
g
 s

ca
le

)

#patterns

runtime (s)

(a)

0.10 0.05 0.02 0.01

min_coh (log scale)

100

101

102

103

104

105

106

107

#
p
a
tt

e
rn

s
(l

o
g
 s

ca
le

)

101

102

103

104

ru
n
ti

m
e
 (

lo
g
 s

ca
le

)

#patterns

runtime (s)

(b)

512 128 32 8 2
min_sup (log scale)

100

101

102

103

104

105

#p
at

te
rn

s (
lo

g
sc

al
e)

100

101

102

103

ru
nt

im
e

(lo
g

sc
al

e)

#patterns
runtime (s)

(c)

512 128 32 8 2
min_sup (log scale)

100

101

102

103

104

105

#p
at

te
rn

s (
lo

g
sc

al
e)

100

101

102

103

ru
nt

im
e

(lo
g

sc
al

e)

#patterns
runtime (s)

(d)

2 4 8 16 32 ∞
max_size (log scale)

100

101

102

#
p
a
tt

e
rn

s
(l

o
g
 s

ca
le

)

100

101

102

103

104

ru
n
ti

m
e
 (

lo
g
 s

ca
le

)

#patterns

runtime (s)

(e)

2 4 8 16 32 ∞
max_size (log scale)

101

102

103

104

105

106

#
p
a
tt

e
rn

s
(l

o
g
 s

ca
le

)

100

101

102
ru

n
ti

m
e
 (

lo
g
 s

ca
le

)

#patterns

runtime (s)

(f)

Fig. 7 Impact of various thresholds on output size and runtime. (a) Varying min coh on Species, min sup
= 5, max size = 4. (b) Varying min coh on Trump, min sup = 4, max size = 5. (c) Varying min sup on
Species, min coh = 0.02, max size = 4. (d) Varying min sup on Trump, min coh = 0.02, max size = 5. (e)
Varying max size on Species, min sup = 350, min coh = 0.02. (f) Varying max size on Trump, min sup =
150, min coh = 0.02.

50 Boris Cule et al.

Species Trump
Dataset

0

100

200

300

400

500

600

Ru
nt

im
e

(s
)

Runtime per pattern type

itemsets
+ sequential
 patterns
+ episodes
+ rules

Fig. 8 Impact on runtime of mining different types of patterns and rules. For Species, parameters were
min coh = 0.015, min sup = 4, max size= 5, min or= 0.5, min por= 0.5 and min conf = 0.7. For Trump,
parameters were min coh= 0.02, min sup= 4, max size= 5, min or= 0.5, min por= 0.5 and min conf = 0.7.

Efficiently Mining Cohesion-based Patterns and Rules in Event Sequences 51

Table 12 Top 25 itemsets for Trump.

FCIseq Winepi Laxman Marblesw CMW

puerto, rico fake, new fake, new fake, new ab, japan, minist, prime
hunt, witch cut, tax cut, tax cut, tax high, hit, market, stock,

time
harbor, pearl america, great america, great america, great abc, cnn, fake, nbc, new
lago, mar great, make great, peopl america, make alabama, big, luther,

strang, vote
arabia, saudi america, make great, make great, make lowest, market, stock, un-

employ, year
jong, kim great, peopl great, job state, unit base, immigr, merit, sys-

tem
davo, switzer-
land

america, great,
make

countri, great great, honor high, hit, job, market,
stock

davo, wef great, job great, todai korea, north abc, cb, cnn, fake, new
davo,
switzerland,
wef

great, honor america, make great, job greatest, histori, hunt,
witch

switzerland,
wef

countri, great great, tax america, great,
make

alabama, great, luther,
state, strang

unga, us-
aatunga

fake, media great, state great, peopl high, hit, market, stock

prstrong, ri-
cardorossello

great, state big, great media, new donald, presid, proclaim,
trump

rex, tillerson state, unit great, new hard, work korea, moon, presid,
south

fake, new great, tax america, great,
make

fake, media bail, compani, democrat,
insur

minist, prime great, todai great, honor market, stock fail, fake, media, new, ny-
tim

christma,
merri

great, work great, work great, state high, market, stock, un-
employ

korea, north media, new fake, media hous, white abc, cnn, nbc, new
cut, tax great, new cut, great republican,

senat
high, job, market, stock,
time

america, make dai, great great, presid countri, great alabama, luther, strang,
vote

chain, migrat big, great american,
great

dai, great high, market, record,
stock, time

great, peopl hard, work great, year great, new big, luther, senat, strang
market, stock korea, north dai, great great, meet court, state, suprem, unit
america, great fake, media,

new
great, repub-
lican

great, todai cnn, fail, fake, new, nytim

fake, great,
new

cut, great cut, great,
tax

cut, reform high, market, stock, time

america, great,
make

american,
great

fake, great minist, prime alabama, great, luther,
senat, strang

52 Boris Cule et al.

Table 13 Top 25 sequential patterns for Species.

FCIseq Winepi Laxman Marblesw CMW

tierra, del, fuego natur, select natur, select natur, select struggl, exist, geometr,
ratio, increas

natura, facit,
saltum

varieti, speci varieti, speci distinct,
speci

variat, superven, earli,
ag, inherit

del, fuego speci, varieti speci, form varieti, speci form, life, chang, si-
multan, world

tierra, del distinct,
speci

speci, varieti condit, life variat, superven, earli,
inherit, ag

facit, saltum speci, form form, speci speci, varieti steril, speci, cross, hy-
brid, offspr

natura, facit form, speci speci, natur organ, be wide, diffus, speci,
larger, genera, vari

tierra, fuego condit, life natur, speci speci, genu success, variat, super-
ven, earli, inherit

natura, saltum speci, natur distinct,
speci

speci, form inhabit, island, near-
est, mainland

natur, select speci, genu speci, gener form, speci chapter, geolog, suc-
cess, organ, be

vol, matthew natur, speci case, speci individu,
speci

varieti, exist, lesser,
number, intermedi

avicularia, vi-
bracula

organ, be gener, speci close, alli glacial, period, north,
south

eject, foster,
brother

speci, gener speci, differ speci, natur incident, differ, re-
product, system

eject, foster differ, speci differ, speci anim, plant natur, system, genea-
log, arrang

oviger, frena speci, differ speci, case group, speci tierra, del, fuego
movabl, zooid case, speci condit, life speci, genera seiz, place, economi,

natur
inter, se speci, genera select, natur alli, speci superven, earli, ag,

inherit
sphere, prism gener, speci speci, dis-

tinct
differ, speci natura, facit, saltum

foster, brother individu,
speci

number,
speci

form, life instinct, slave, make,
ant

sown, mix group, speci speci, genu speci, gener varieti, exist, lesser,
number, connect

sphere,
hexagon, prism,
rhombic

number,
speci

speci, genera natur, speci direct, action, extern,
condit

hexagon, prism speci, dis-
tinct

group, speci speci, differ ocean, island, terrestri,
mammal

anim, plant speci, group number,
speci

natur, select, extinct,
diverg, charact

alli, speci case, natur speci, group exist, geometr, ratio,
increas

speci, group charact,
speci

fresh, water revers, long, lost, char-
act

speci, case individu,
speci

case, speci form, naturalist, rank,
distinct, speci

Efficiently Mining Cohesion-based Patterns and Rules in Event Sequences 53

Table 14 Top 25 sequential patterns for Trump.

FCIseq Winepi Laxman Marblesw CMW

puerto, rico fake, new fake, new fake, new stock, market, hit,
time, high

witch, hunt tax, cut tax, cut tax, cut job, stock, market,
time, high

pearl, harbor america,
great

america,
great

america,
great

greatest, witch, hunt,
histori

mar, lago make, amer-
ica

make, great make, amer-
ica

stock, market, hit,
high

saudi, arabia make, great make, amer-
ica

unit, state presid, moon, south,
korea

kim, jong make, amer-
ica, great

great, peopl make, great presid, donald, trump,
proclaim

davo, switzerland unit, state make, amer-
ica, great

great, honor fake, new, fail, nytim,
cnn

switzerland, wef great, honor great, job north, korea market, hit, time, high
usaatunga, unga fake, media great, honor make, amer-

ica, great
stock, market, time,
high

ricardorossello,
prstrong

great, job peopl, great new, media stock, market, hit,
time

rex, tillerson great, peopl great, state stock, market stock, hit, time, high
fake, new new, media fake, media fake, media massiv, tax, cut, re-

form
prime, minist north, korea great, coun-

tri
white, hous healthcar, tax, cut,

reform
merri, christma stock, market great, tax work, hard fake, new, cnn, abc
north, korea great, state unit, state great, job republican, senat,

work, hard
tax, cut fake, new,

media
tax, great great, peopl radic, islam, terror

chain, migrat white, hous great, todai great, state fake, new, cnn, nbc
stock, market work, hard great, work republican,

senat
new, media, fail, nytim

luther, strang great, coun-
tri

countri,
great

prime, minist make, america, great,
fake, new

fake, media tax, reform north, korea tax, reform greatest, witch, hunt
berni, sander peopl, great great, amer-

ica
fake, new,
media

joint, press, confer

radic, islam republican,
senat

great, ameri-
can

crook, hillari prime, minist, ab

great, tax great, presid cut, reform behalf, flotu, melania
great, ameri-
can

new, great great, coun-
tri

stock, market, hit,
high, great

great, meet new, media men, women m, gang, member

54 Boris Cule et al.

Table 15 Top 25 rules for Species.

FCIseq Winepi Marblesm Marblesw

fuego, tierra → del divis, kingdom →
anim

hive → bee divis, kingdom →
anim

del, fuego → tierra averag, genera →
speci

mivart → mr fuego, tierra → del

del, tierra → fuego cuckoo, lai, nest →
egg

case, select, struc-
tur → natur

independ, ordinari
→ view

facit, natura →
saltum

varieti, zone → in-
termedi

candol → de natura, saltum → facit

natura, saltum → facit genera, present,
varieti → speci

case, organ, select
→ natur

inherit, superven →
earli

facit, saltum →
natura

cape, hope → good distinct, rank, vari-
eti → speci

accumul, act, natur
→ select

fuego → del accumul, act, natur
→ select

breed, rock → pi-
geon

rang, vari → speci

del → fuego inherit, superven →
earli

diverg, select →
natur

economi, seiz →
place

tierra → del fuego, tierra → del wallac → mr ag, inherit, super-
ven → earli

del → tierra differ, genera, vari-
eti → speci

humbl → bee exist, select, theori
→ natur

fuego → del, tierra genu, greater →
speci

function, select →
natur

inherit, superven,
variat → earli

tierra → del, fuego select, structur,
theori → natur

independ, select →
natur

act, natur, sole →
select

del → fuego, tierra genera, smaller,
varieti → speci

life, physic → con-
dit

newli, varieti →
form

facit → saltum independ, ordinari
→ view

charact, secondari
→ sexual

exist, varieti, zone
→ intermedi

saltum → facit charact, secondari,
speci → sexual

favour, select, speci
→ natur

ask, distinct →
speci

natura → facit creat, independ,
view → speci

select, speci, theori
→ natur

ag, inherit, super-
ven, variat → earli

facit → natura inherit, superven,
variat → earli

charact, diverg,
select → natur

bottom, rest → side

natura → facit,
saltum

genera, larger,
number → speci

malai →
archipelago

end, mean → gain

facit → natura,
saltum

exist, select, theori
→ natur

genu, manner →
speci

rang, vari, wide →
speci

saltum → facit,
natura

action, diverg,
natur → select

genu, produc →
speci

incident, reproduct
→ differ

prism → hexagon action, diverg, se-
lect → natur

fittest → surviv english, face →
short

fuego → tierra natura, saltum → facit incipi, varieti →
speci

economi, natur,
seiz → place

tierra → fuego ag, inherit, super-
ven → earli

cell, hive → bee larger, relat → gen-
era

natura → saltum rang, vari → speci genera, larger, vari-
eti → speci

manner, mivart →
mr

saltum → natura bird, cuckoo, lai,
nest → egg

fritz → muller life, organ, physic
→ condit

Efficiently Mining Cohesion-based Patterns and Rules in Event Sequences 55

Table 16 Top 25 rules for Trump.

FCIseq Winepi Marblesm Marblesw

puerto → rico hit, stock → market cut, reform → tax honor, minist →
prime

rico → puerto high, hit, stock →
market

puerto → rico confer, joint →
press

hunt → witch bill, reform, tax →
cut

rico → puerto immigr, merit →
base

witch → hunt biggest, cut, histori
→ tax

witch → hunt greatest, hunt →
witch

migrat → chain ab, prime → minist hunt → witch donald, proclaim →
trump

pearl → harbor abc, fake → new great, white →
hous

hit, record, stock →
market

harbor → pearl honor, minist →
prime

high, market →
stock

immigr, merit, sys-
tem → base

merri → christma behalf, melania →
flotu

cut, dem → tax law, offic → enforc

saudi → arabia hit, stock, time →
market

cut, pass → tax liyuan, madam →
peng

arabia → saudi massiv, reform, tax
→ cut

biggest, cut → tax donald, presid, pro-
claim → trump

lago → mar abc, cnn, fake →
new

market, record →
stock

chain, visa → mi-
grat

mar → lago confer, joint →
press

alabama, strang →
luther

great, honor, min-
ist → prime

kim → jong immigr, merit →
base

suprem → court high, hit, record,
stock → market

jong → kim abc, fake, nbc →
new

great, prime →
minist

cut, massiv, work
→ tax

sander → berni high, hit, stock,
time → market

great, minist →
prime

great, high, stock
→ market

usaatunga → unga biggest, reform →
tax

great, puerto →
rico

histori, witch →
hunt

rex → tillerson biggest, reform →
cut

hous, tax → cut jame, leak → comei

switzerland → davo biggest, reform →
cut, tax

cut, hous → tax bill, massiv, tax →
cut

wef → davo hit, record, stock →
market

fake, nytim → new famili, thought →
prayer

davo → switzerland biggest, reform, tax
→ cut

big, cut, great →
tax

men, protect →
women

switzerland →
davo, wef

biggest, cut, pass
→ tax

birthdai → happi jone, pelosi, puppet
→ schumer

switzerland, wef →
davo

biggest, cut, reform
→ tax

xi → china great, job, market
→ stock

wef → davo,
switzerland

immigr, merit, sys-
tem → base

premium → oba-
macar

american, cut, mas-
siv → tax

switzerland → wef alabama, big,
strang → luther

great, strang →
luther

high, stock, unem-
ploy → market

davo, switzerland
→ wef

budget, cut → tax north, presid →
korea

anthem, great,
stand → nation

	Introduction
	Problem Setting
	Algorithm
	Experiments
	Related Work
	Conclusion

