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Abstract Silica is an essential element for marine life and plays a key role in the biogeochemistry of
the ocean. Glacial activity stimulates rock weathering, generating dissolved silica that is exported to
coastal areas along with meltwater. The magnitude of the dissolved silica export from large glacial areas
such as the Greenland Ice Sheet is presently poorly quantified and not accounted for in global budgets.
Here we present data from two fjord systems adjacent to the Greenland Ice Sheet which reveal a large
export of dissolved silica by glacial meltwater relative to other macronutrients. Upscaled to the entire
Greenland Ice Sheet, the export of dissolved silica equals 22 ± 10 Gmol Si yr�1. When the silicate-rich
meltwater mixes with upwelled deep water, either inside or outside Greenland's fjords, primary
production takes place at increased silicate to nitrate ratios. This likely stimulates the growth of diatoms
relative to other phytoplankton groups.

1. Introduction

Glacial meltwater forms an important source of freshwater to high-latitude coastal areas [Bamber et al., 2012].
However, the nutrient export accompanying meltwater release from large glacial systems, such as the
Greenland Ice Sheet (GrIS), and its effects on high-latitude coastal ecosystems is as yet poorly quantified.
Glaciers play potentially an important role in global biogeochemical cycles, as physical and chemical weath-
ering by glaciers releases large quantities of dissolved and particulate matter to the coastal zone [Anderson,
2007; Hawkings et al., 2015]. Still it is presently uncertain whether these nutrient inputs are important for the
marine ecosystems surrounding the GrIS, as little data are available on the macronutrient delivery along with
these meltwater inputs, let alone their downstream effect on the productivity of fjordic and coastal systems
around Greenland.

Among the macronutrients, dissolved silica (DSi) stands out, as it forms the major end product of silicate rock
weathering by glaciers. DSi plays an important role in marine biogeochemical cycling, since it is an essential
macronutrient for diatoms, a key group of primary producers in marine ecosystems. Riverine input and
submarine groundwater discharge are the dominant supply pathways of DSi to the surface ocean
[Dürr et al., 2011; Tréguer and De La Rocha, 2011]. This supply of DSi from terrestrial environments is essential
to sustain the diatom-fueled carbon pump in the ocean, compensating for the burial of biogenic silica (BSi) on
continental shelves and in abyssal plains [Tréguer and De La Rocha, 2011]. In the Arctic region, large rivers that
drain the Siberian and Canadian plateaus supply high loads of DSi (around 0.33 Tmol Si yr�1 or ~ 5% of global
riverine DSi input while representing 10% of total riverine discharge), thus leading to elevated silicate
concentrations on the inner shelves [Carmack et al., 2004].

Glacial weathering of the GrIS could form another source of DSi to the Arctic marine environment, but
presently, the DSi export from the GrIS has not been quantified. As a consequence, the impact of the GrIS
on the ecosystem productivity in adjacent coastal areas is presently poorly understood. Here we present
hydrographic and geochemical data from two fjord systems adjacent to the GrIS, supplemented with nutrient
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data frommeltwater rivers around Greenland. We utilize this data set to quantify the DSi export from the GrIS
and to assess the importance of this DSi export for biogeochemical cycling within the downstream fjord
ecosystems.

2. Methods
2.1. Sampling Sites

Samples were collected in two fjords in Greenland which have been monitored intensely by the
Greenland Ecosystem monitoring program. Godthåbsfjord (64°10′N, 51°44′W) is a fjord system located
in southwest Greenland with a length of ~190 km covering an area of 2013 km2 (Figure 1). Meltwater
input into the fjord originates from three marine-terminating and three land-terminating glaciers from
the Greenland Ice Sheet. Recent hydrological simulations estimate the annual freshwater input to
Godthåbsfjord to be ~25 km3 yr�1 as meltwater runoff and ~10 km3 yr�1 as solid ice discharge in the

Figure 1. Overview map of (a) Godthåbsfjord, SW Greenland and (b) Young Sound, NE Greenland indicating the loca-
tion of sampling stations. (c,d) Salinity in the upper 40 m of the water column in (c) Godthåbsfjord and (d) Young
Sound along a transect from the glaciers (right) to the shelf area (left). (e, f) The distributions of DSi concentration
(μM) in Godthåbsfjord (e) and Young Sound (Figure 1f). (g, h) The turbidity (NTU) in Godthåbsfjord (Figure 1g) and
Young Sound (Figure 1h). The white dashed line indicates the mouth of the fjord.
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period 2010–2012 [Mortensen et al., 2013; Van As et al., 2014]. Young Sound (74°18′N, 20°18′W) is a fjord
in northeast Greenland with an area of 390 km2 and a length of ~ 90 km (Figure 1). Three major glacial
rivers discharge into the fjord with a combined discharge of ~1.0 km3 yr�1 [Rysgaard et al., 2003].

2.2. Sample Collection and Analysis

During an oceanographic cruise in August 2013, samples were collected in Godthåbsfjord at 26 stations
along a length transect covering the fjord and shelf area (Figure 1). Combined CTD and Niskin sampling
was carried out at 10 stations, while at the other 16 stations only CTD measurements were performed.
The presence of a dense ice mélange in August made sampling upstream of station GF15 impossible.
The data set was further complemented by monthly sampling at one station in the inner fjord (GF10)
from January to December 2013 to describe the seasonal dynamics and the importance of glacial
melting. Sampling was conducted in Young Sound in August 2012 at 30 stations covering the fjord
and open sea (10 CTD+Niskin and 20 CTD only). The sampling program was identical in both fjords.
At each station and time point, a CTD instrument (Seabird SBE19plus) equipped with additional sensors
for fluorescence (Chlorophyll Fluorometer, Seapoint) and turbidity (Seapoint) recorded salinity and
temperature depth profiles. Water samples from discrete depths were collected using 5 L Niskin bottles
(KC Denmark research Equipment) at eight water depths (1, 5, 10, 20, 30, 40, 100, and 400m) with higher
resolution in the upper 40m where the main biological activity occurs [Juul-Pedersen et al., 2015]. The
data set was further supplemented by sampling in glacial rivers in August (Godthåbsfjord, SW
Greenland; Hobbs Gletscher, E Greenland). Additionally, solid ice samples were collected in spring and
summer (2013–2014) in the inner part of Godthåbsfjord (station GF10 to glacier terminus). Samples
for nutrient analysis in solid ice were obtained by sealing small pieces of ice (approximately 1 kg)
allowing the ice to melt at room temperature. All water samples (10mL) for nutrients were filtered
through 0.45 μm filters (Q-Max GPF syringe filters) and frozen until further analysis. Nitrate and
phosphate concentrations were determined using standard colorimetric methods on a Seal QuAAtro
autoanalyzer. DSi concentrations were analyzed on a Thermo iCAP6300 Duo-ICP with a detection limit
of 0.03 μM. Samples collected in Young Sound were analyzed using a spectrophotometric approach
for phosphate and silicate [Grasshoff et al., 2009] and by vanadium chloride reduction for nitrate and
nitrite [Braman and Hendrix, 1989]. Biogenic Silica (BSi) analysis in Godthåbsfjord was performed on
200–500mL water samples, filtered through 0.45 μm cellulose nitrate filters and air dried at 20°C.
Subsequently, concentrations of BSi were analyzed using a wet chemical digestion method, with filters
in 0.1M Na2CO3 for 1 h and subsequent analysis of the DSi concentration on a continuous flow analyzer
(Skalar SAN CFA). Water samples for chlorophyll a analysis (0.5–1 L) were filtered through 25mm GF/F
filters (Whatman, nominal pore size 0.7 μm). Filters were placed in 10mL 96% ethanol for 18 to 24 h
and chlorophyll fluorescence in the filtrate was analyzed using a fluorometer (TD-700, Turner Designs)
before and after addition of 200 μL 1M HCl solution.

Samples for phytoplankton community composition analysis were collected from Niskin bottles at 5, 10, 20,
and 30m in Godthåbsfjord and at 5, 20, and 30m depth (determined by chlorophyll maximum) in Young
Sound. Additionally, at station GF3 in Godthåbsfjord, triplicate vertical hauls were taken monthly from
2007 to 2013 from 60m to the surface using a 20μmmesh net as part of the Greenland Ecosystem
monitoring program. All samples were stored in amber glass bottles and preserved with Lugol's iodine to
a final concentration of 1%. Subsamples were studied using plate-counting chambers using an inverted
microscope. The samples were routinely rinsed, cleansed of organic material (using hydrogen peroxide),
and mounted in Naphrax® for an accurate identification of species using a light microscope and scanning
electron microscope. To eliminate observer bias the same person always identified cells to species level.
Cell counts were converted into carbon biomass density using biovolume estimates based on species
composition and cell sizes [Leblanc et al., 2012].

All processing of data was done in the open-source programming language R [R Core Team, 2013]. In order to
investigate the effect of DSi fluxes to the inner part of Godthåbsfjord, we calculate fluxes derived from melt-
water runoff, subglacial meltwater, andmelting calved icebergs. Calculation of DSi fluxes is provided in the sup-
porting information. The freshwater inventory in upper 40m of the water column was calculated as

FW content ¼
X40m

z¼0m

Sref � S
Sref

using the reference salinity (Sref) of 35.
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3. Results and Discussion

Young Sound (NE Greenland) is a sill fjord system affected by meltwater inflow solely derived from land-
terminating glaciers, while Godthåbsfjord (SW Greenland) receives meltwater from both land-
terminating and marine-terminating glaciers (Figures 1a and 1b). Oceanographic surveys carried out in
summer, when glacial meltwater runoff is strongest, reveal a shallow surface layer of low salinity and
a strong halocline between 5 and 10m water depth (Figures 1c and 1d), confirming the substantial
imprint of glacial meltwater on both fjord systems during the summer months [Mortensen et al., 2013;
Bendtsen et al., 2014]. Alongside this input of freshwater, a plume with elevated DSi concentrations is
apparent in the surface waters of both fjord systems (Figures 1e and 1f). In Young Sound, DSi concen-
trations are highest within the inner part of the fjord where glacial meltwater enters the fjord system
(DSi ~15 μM at salinity< 5). DSi concentrations gradually diminish downstream but remain elevated until
the surface water reaches the sill region (Figure 1e). In contrast, high DSi concentrations at depth are
only observed at the innermost station of Young Sound (YS8), which receives highly turbid waters from
glacial rivers, thus suggesting DSi release from settling sediment of glacial origin (Figures 1f and 1h). A
similar pattern is observed in the surface waters of Godthåbsfjord, where surface DSi concentrations
reach ~30 μM at salinity< 5 in the inner part of the fjord. Yet, while Young Sound is only subject to sur-
face meltwater runoff from land-terminating glaciers, Godthåbsfjord is also characterized by subglacial
meltwater discharge from marine-terminating glaciers. This subglacial meltwater discharge explains
the secondary increase in DSi (~6–8 μM) at 20–40m depth, which forms a subsurface DSi plume that
extends far into the fjord (~50 km, Figure 1e). Buoyant meltwater plumes entrain large volumes of deep
fjord water, typically 10 to 30 times the volume of the rising meltwater plume [Mortensen et al., 2013].
These subglacial meltwater plumes form a second supply route of both silicate and other macronutri-
ents (nitrate and phosphate) to the surface layer, as bottom water is upwelled close to the glacier ter-
mini [Bendtsen et al., 2015]. The upwelling of clear, deep fjord water also explains why the subsurface
DSi plume in Godthåbsfjord is not correlated with increased turbidity levels (Figure 1g). Finally, melting
icebergs, calved from the marine-terminating glaciers, form a third supply route for DSi in
Godthåbsfjord. Melting of icebergs represents around 22% of the total meltwater input into
Godthåbsfjord [Van As et al., 2014]. Nutrient samples collected from icebergs in Godthåbsfjord reveal
large variability in DSi concentrations, ranging from below the detection limit in clear ice samples up
to 18 μM in debris-rich ice samples. A two-end-member mixing model yields a mean DSi concentration
of 13 μM for the bulk ice (supporting information). To assess the importance of these three pathways, we
constructed a silicate budget for the surface layer in the inner part of Godthåbsfjord (supporting infor-
mation). This shows that surface meltwater runoff forms the main source of silicate contributing 79%,
while solid ice discharge and subglacial freshwater discharge only account for, respectively, 9 and
12% to the total DSi input into Godthåbsfjord. It should be noted that surface and subglacial discharge
provide direct inputs of DSi near the glacier termini, while the DSi that is locked in icebergs can be
transported over large distances.

Elevated silicate concentrations, reflecting meltwater derived silicate input, are not restricted to the two
fjords examined here but can be observed in glacial rivers all around the GrIS. A compilation of data from dif-
ferent meltwater rivers in Greenland (Table 1) shows a range of DSi concentrations in glacial rivers from 5 to
280μM, where rivers draining granitic and gneissic rocks have lower concentrations (5–50μM) and basaltic
rocks, such as those at Kuannersuit Kuussuat (Disko Bay), are associated with far higher DSi loadings
(~280μM) [Yde et al., 2005]. Hence, DSi concentrations in glacial meltwater strongly depend on source rock
lithology and the interaction time between ice or subglacial water and bedrock [Aciego et al., 2015]. Based
on our data compilation (Table 1), we were able to derive a DSi budget for the GrIS. The largest fraction of
the meltwater flux from the GrIS (~600 km�3 yr�1) derives from calving of icebergs and the remaining part
(~400 km�3 yr�1) is due to subglacial and surface runoff [Bamber et al., 2012]. Using these discharge estimates
and employing the DSi concentrations for each of the supply routes as resulting from our data compilation,
we estimate a total DSi export of 22 ± 10Gmol Si yr�1 from the GrIS (Table 1 and supporting information).
Given the GrIS area of 1.710.000 km2, this translates into a DSi yield of 7–17mmol Sim�2 yr�1, which is similar
to yields from the Siberian Arctic [Dürr et al., 2011]. Note that these are conservative estimates as the GrIS
drains large areas with basaltic rock formations that are likely associated with higher DSi concentrations
[Yde et al., 2005; Henriksen et al., 2009]. Our export estimate of 22Gmol Si yr�1 represents around 7% of
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riverine DSi flux to the Arctic [Holmes et al., 2012] and corresponds to 0.3% of the global DSi input to the
ocean [Tréguer and De La Rocha, 2011]. Overall, the DSi export from the GrIS is comparable to some large
Arctic rivers (Yukon, Mackenzie) [Holmes et al., 2012].

Unlike large Canadian and Siberian rivers, which discharge onto wide continental shelves, the silicate input
from the GrIS is delivered into confined fjords. Accordingly, the question arises whether the DSi input from
glacial meltwater has any effect on the primary production and/or phytoplankton composition in the fjords
and coastal waters around Greenland? It has been speculated that glaciers may export significant quantities
of nutrients to the Arctic Ocean, thus potentially stimulating primary production in the downstream
ecosystems [Hawkings et al., 2015, 2016]. The majority of nitrogen and phosphorus input is however
associated with particulate matter rather than dissolved phases, and so the bioavailability is likely not high
[Hodson et al., 2004]. Our measurements from the Saqqap Sermersua glacially fed river in Godthåbsfjord
reveal maximum concentrations of 0.31μM PO4

3� and 2.5μM NO3
�, thus providing a Si:N:P ratio of

112:8:1, which deviates strongly from the standard stoichiometry (Si:N:P = 15:16:1) of diatoms. Data from
other meltwater rivers (Table 1) suggest a similar imbalanced input of macronutrients. This imbalanced input
of nutrients is further confirmed by the surface water chemistry of the inner fjords in summer. While surface
DSi concentrations were elevated near the glacier termini (~30μM in Godthåbsfjord and ~15μM in Young
Sound), nitrate concentrations were low in the surface waters close to glacial discharge points (<1.0μM in
Godthåbsfjord and <0.1μM in Young Sound). Moreover, compared to upwelled coastal seawater, the
concentrations of phosphate (PO4

3�) and nitrate (NO3
�) are low in glacial meltwater, so meltwater cannot

be an important source of nitrate and phosphate to coastal ecosystems [Hopwood et al., 2016].

These low nitrate concentrations indicate nitrogen limitation of primary production and suggest that the
summer meltwater discharge will not stimulate primary production within the surface layer of the fjords.
This hypothesis is corroborated by our biogeochemical field data from Young Sound. The inner part of the
Young Sound fjord showed high DSi and low NO3 concentrations accompanied by low chlorophyll a values
in the meltwater-impacted surface layer (Figures 2d and 2f), indicating that phytoplankton productivity was
low. The DSi concentration gradually diminished downstream coinciding with the decrease in freshwater
content of the surface layer (Figure 2d), suggesting that DSi enriched meltwater was conservatively mixed
with DSi depleted saline water, and biological uptake of DSi was marginal in the inner fjord [Rysgaard
et al., 1999]. As a result, the utilization of DSi by phytoplankton occurs further downstreamwhere the outflow-
ing surface water reaches the entrance of the fjord, where higher chlorophyll a values indicated elevated pri-
mary production (Stations YS1 to YS3, Figure 2f). Strong tidal mixing near the sill region brings up bottom
water that is low in silicate but high in nitrate (Si:N:P = 9:11:1). This increased availability of DSi in the surface
layer resulting from glacial meltwater input could compensate for the DSi deficit of bottom water, thus
potentially explaining the observed dominance of diatoms over other primary producers (Stations YS1 to
YS3, Figure 2f). Hence, by enriching the surface water of Greenland fjords with silicate relative to nitrate,
DSi export from the GrIS appears to favor diatom growth relative to other phytoplankton taxa, when
nitrate-rich but low-silicate deep water is upwelled. In contrast to Young Sound, summer chlorophyll a values
were high close to the tidewater glaciers in Godthåbsfjord. Upwelling of nutrient-rich water due to subglacial
freshwater discharge fuels a sustained intense phytoplankton bloom within the inner fjord [Arendt et al.,
2011], as seen in the Chla and BSi concentrations (Figures 2a, 2c, and 2e). Deep fjord water upwelled through
subglacial discharge was high in nitrate but low in DSi (Si:N:P = 10:15:1), while DSi was highly enriched in sur-
face water (Si:N:P = 112:8:1). Diatoms accounted for up to 95% of the biomass close to the glaciers (Figure 2e)
[Calbet et al., 2011], and production occurred at the interface between the surface and upwelled water
masses, at elevated Si:N ratios (between 1 and 20), which is relatively high compared to the Si:N ratio
(0.67) of the upwelling deep fjord water (supporting information). The nonconservative behavior of DSi from
the surface layer indicates DSi uptake by diatoms, which suggests that meltwater derived DSi is utilized and
thus could play a regulating role in the phytoplankton composition.

Although the DSi of the upwelled deep fjord water is low (Si:N ~ 0.67), one cannot conclude a priori that this
concentration is insufficient to sustain diatoms. Future experiments are needed to verify the hypothesis that
summer blooms of diatoms are indeed reliant on meltwater derived DSi. However, the likely importance of
glacial meltwater as a DSi source for diatoms is illustrated by seasonal data of Godthåbsfjord (Figure 3)
recorded at stations GF10 (in the inner fjord close to the glaciers) and GF3 (in the mouth). The start of the
spring bloom in April invokes a rapid consumption of nutrients in surface waters mainly by diatoms
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(Figure 3). High silicate concentrations in the early phase of the spring bloom allowed diatoms to dominate,
but as the bloom progressed, DSi decreased below 2μM, which is a typical threshold value for Si limitation of
diatom growth [Egge and Aksnes, 1992]. Concurrent with the depletion of nutrients (DSi and nitrate) in the
upper water layer, a shift in the species composition occurred and diatoms became less abundant
(Figure 3). The same temporal pattern is observed in the interannual phytoplankton succession at station GF3
(Figure 3) which consistently shows a succession from diatoms to haptophytes in spring, coinciding with a
decrease of DSi in surface water [Juul-Pedersen et al., 2015; Krawczyk et al., 2015] (Figure 3). In summer,
new nutrients are resupplied to the surface layer through subglacial freshwater discharge (Figure 3).
Concurrent with the high input of DSi from surface runoff, a second diatom bloom is stimulated close to
the tidewater glaciers, and diatoms remain the dominant species throughout the summer (Figure 3).

4. Conclusion

With an estimated total meltwater discharge of ~1000 km3 yr�1 (including both runoff and solid ice dis-
charge) released in a narrow time span of only a fewmonths, the coastal areas around Greenland are strongly
impacted by the input of glacial meltwater [Bamber et al., 2012]. This large meltwater runoff strongly enriches

Figure 2. (a, b) Conceptual model on the link betweenmeltwater runoff rich in silicate and diatom blooms in a fjord system
impacted by marine- and land-terminating glaciers. (c,d) Integrated concentrations in the upper 40m along a length
transect in August from the inner fjord (right) to the open shelf area (left) in (c) Godthåbsfjord and (d) Young Sound. For
Godthåbsfjord both dissolved silica (DSi, black) and biogenic silica (BSi, blue) are shown alongside the freshwater content
(FW, red). The green dashed line indicates the mouth of the fjord. (e, f) The integrated chlorophyll a concentration (in
gm�2) and diatom biomass (in g Cm�2) in the upper 40m for Godthåbsfjord (Figure 2e) and Young Sound (Figure 2f).
Note the different scaling for chlorophyll and diatoms biomass between Young Sound and Godthåbsfjord.
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Figure 3. (a) Surface (at 1m depth) salinity and silicate (μM), (b) surface nitrate and phosphate concentration (in μM), (c)
DSi (in μM), and (d) chlorophyll a (in μg L�1) based on regular sampling during the year 2013 in station GF10 located
near to the glaciers in Godthåbsfjord. (e) Species composition during early spring (March–April), late spring (May–June),
and summer (July–August) at station GF10 during 2013 and (f) the evolution of the contribution of diatoms to the phyto-
plankton (relative abundances) averaged over the period 2007–2011 from station GF3 in the mouth of Godthåbsfjord.
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the surface waters of Greenland's fjords with silicate. Until now large ice sheets and glaciers have been con-
sidered inactive in global silicate cycle budgets [Dürr et al., 2011], but accelerated mass loss of the GrIS is cur-
rently occurring and is predicted to further increase in coming decades. Research at the Leverett glacier (West
Greenland) shows that DSi fluxes scale with meltwater discharge [Hawkings et al., 2015]. Consequently, based
on model projections of mass loss from the GrIS, we project an increase in DSi supply to coastal areas of 20 to
160% by the end of the 21st century, which is higher compared to nonglaciated areas in the Canadian Arctic
[Moosdorf et al., 2011] (supporting information). As an essential nutrient for diatom growth, our data suggest
that this DSi export impacts coastal biogeochemistry. Bottom water measurements indicate that DSi concen-
trations are limiting for diatom growth in Greenland coastal waters [Jensen et al., 1999], and consequently, an
increased DSi input may induce changes in the phytoplankton community structure, with an anticipated
trend toward increased diatom abundance which can impact carbon cycling and sequestration in coastal
areas adjacent to the GrIS.
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