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We discuss the feasibility of detecting magnetic transitions with focused electron vortex probes,
suggested by selection rules for the magnetic quantum number. We theoretically estimate the dichroic
signal strength in the L2,3 edge of ferromagnetic d metals. It is shown that under realistic conditions, the
dichroic signal is undetectable for nanoparticles larger than ∼1 nm. This is confirmed by a key
experiment with nanometer-sized vortices.

& 2013 The Authors. Published by Elsevier B.V. All rights reserved.
1. Introduction

After the publication of three seminal papers [1–3], electron
vortex beams have attracted considerable interest [4–10]. Vortex
beams are free electrons carrying orbital angular momentum
(OAM). Their potential ranges from probing chiral specimens with
elastic or inelastic scattering over the manipulation of nanoparti-
cles [8], clusters and molecules to the study of magnetic proper-
ties. Experimental evidence of the detection of chirality in
electronic transitions [3] led to the suggestion [11] that electrons
with topological charge are better probes for such experiments
than the plane waves in the scattering geometry for detecting
energy loss magnetic chiral dichroism (EMCD) [12].

However, care must be taken when comparing vortices to plane
wave electron probes. Results depend sensitively on the experi-
mental parameters such as convergence and collection angles,
position of the holographic mask, etc. Here, we discuss the dichroic
L2,3 dipole transitions in 3d ferromagnets—a standard for EMCD
experiments in the electron microscope [12–15]—mediated by an
incident electron with topological charge.
2. Interaction between a vortex and an atom in its center

The most dominant contributions to the electron energy loss
spectrometry (EELS) signal are electric dipole transitions. Higher
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multipole transitions have low transition amplitudes contributing
less than 10% at the scattering angles of o20 mrad relevant in
EELS [16–18].

In case of an L edge dipole transition which changes the
magnetic quantum number of an atom located at the vortex center
by μ, an incident electron ψmðrÞ ¼ eimφf ðrÞ with topological charge
m transforms into an outgoing wave [19]

ψm;μðrÞ ¼ eiðmþμÞφr f μðrÞf ðrÞ; ð1Þ

where φr is the azimuthal angle, and

f μ rð Þ ¼ iμ

2π
q1�jμj
E

Z 1

0

q1þjμjJjμjðqrÞ〈j1ðQ Þ〉ELSj
Q3 dq; ð2Þ

with 〈j1ðQ Þ〉ELSj the matrix element of the spherical Bessel function
between initial and final radial atomic wave functions [12,13], and
Q2 ¼ q2 þ q2E . Here, q is the transverse scattering vector that relates
to the experimental scattering angle θ as q¼ k0θ, and ℏqE is the
scalar difference of linear momenta of the probe electron before
and after inelastic interaction, also known as the characteristic
momentum transfer in EELS [20].

When there are several transition channels at the same energy,
the outgoing probe electron is in a mixed state, described by a
reduced density matrix. The total intensity is a sum over inten-
sities in the respective channels

ImðrÞ ¼∑
μ
jψm;μðrÞj2: ð3Þ

The dichroic signal is measured in the diffraction plane. It can readily
be calculated via Fourier transforming Eqs. (3) and (1). According to a
well-known theorem for the Fourier-Bessel transform of a function
reserved.
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Fig. 1. Left column: Incident m¼1 vortex with ring radius of 0.9 nm and displaced atoms (green disks: 0, 0.2, 0.6, 1, and 2 nm from the vortex center). Middle and right
columns: Energy-filtered diffraction patterns of atomic chiral transitions with μ¼�1 for incident waves with m¼1 (middle) and m¼�1 (right) in the Fe L edge. The values
in the right bottom corners give the respective scaling factors for the intensities. The intensities in the lowermost panels are about 90 times weaker than those in the middle
panels. The panels map scattering angles of 710 mrad. (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this
article.)
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of azimuthal variation eimφ, one has

~ψm;μ qð Þ ¼ imþμ

2π
eiðmþμÞφq

Z 1

0
f μ rð Þf rð ÞJmþμ qrð Þr dr: ð4Þ

The outgoing electron has topological charge mþ μ. The radial
intensity profiles j ~ψm;μðqÞj2 of the inelastically scattered vortex
with m¼1 in the diffraction plane for transition channels μ¼ 71
in the Fe L3 edge are shown in Fig. 1. The figure shows how chiral
transitions in ferromagnetic specimens can be selected with a
collection aperture subtending the innermost region. Note that
this region corresponds to the characteristic momentum transfer
for Fe L, 0.24 at.u. (equivalent to a scattering angle of ∼2:5 mrad at
200 keV incident electron energy). For an atom centered in the
vortex, these profiles closely resemble those of helical waves with
winding number mþ μ. This is the basis for probing magnetic
transitions with vortex electrons.
3. Interaction between a vortex and a decentered atom

When the excited atom is at a distance R from the vortex
center, the incoming wave must be expanded into cylindrical
eigenfunctions over the atom position. In [21], an incident Bessel
beam was assumed and expanded according to the addition
theorem of Bessel functions [22].

However, in the experiment, the vortex impinging on the atom
is not a Bessel beam but rather an aperture-limited convergent
spherical wave (here corresponding to a convergence semi-angle
α¼ 1:2 mrad) with topological charge m¼ 71. In this case, it is
more convenient to expand the wave function into cylindrical
harmonics around the atom center.1 Upon angular momentum
expansion [24], we obtain a Fourier series in the azimuthal
angle φr ,

ψmðr�RÞ ¼∑
l
aml ðrÞeilφr ; ð5Þ

where the coefficients are functions of the convergence semi-
angle α and the atomic displacement R, aml ðrÞ ¼ aml ðα;R; rÞ. We note
in passing that the largest coefficient will be that for l¼mþ μ, and
that in the limit R-0, all other coefficients vanish. Eq. (5) shows
clearly that the outgoing electron wave is a coherent superposition
of angular momentum eigenstates. This is a consequence of the
uncertainty relationship for OAM and angular position [24]: the
interaction restricts the outgoing, inelastically scattered electron
to the extension rz of the atomic orbitals implied in the electronic
transition. Seen from the vortex center, this translates into an
uncertainty of the azimuthal angle δφ≈2rz=R, and δLz≥δφ�1.
It follows that Lz is not a constant of motion any more. This is an
important difference to optical absorption spectroscopy where the
selection rules are governed by the transfer of spin angular
momentum (SAM) which is position independent. In EELS, how-
ever, they are governed by the transfer of OAM which is position
dependent.2

Application of Eq. (4) to the Fourier coefficients am;μ
l results in

the diffraction plane representation

~ψm;μ qð Þ ¼∑
l

il

2π
eilφq ~am;μ

l qð Þ ð6Þ
1 Any function can be expanded into Bessel functions [23] and then the
addition theorem can be applied.

2 This can be understood from the parallel axis theorem; the angular momen-
tum depends on the reference frame. The quantity that is independent of the
reference frame is the vorticity [10] which cannot be measured with the present
experimental setup.
with

~am;μ
l ðqÞ ¼

Z ρ

0
am;μ
l ðrÞf μðrÞJlþμðqrÞr dr: ð7Þ

Numerically, the upper integration limit is determined by the
extension ρ of the atomic function f μðrÞ. For the following calcula-
tions, we assumed a rather large interaction radius ρ¼ 10 at.u.
where f μ is sufficiently small to be used as a cutoff for the Fourier
transform. Results for different displacements of the atom from
the vortex center (ring radius 0.9 nm, corresponding to a conver-
gence semi-angle of 1.2 mrad at 200 keV beam energy) are shown
in Fig. 1.

It is evident that the symmetry breaking responsible for the
EMCD effect survives only up to displacements below 1 nm.
Beyond that value, the diffraction patterns for left- and right-
handed chiral vortices (middle and right columns) are practically
indistinguishable. It must be noted that the atoms close to the
vortex center (which show the highest difference) contribute the
faintest signals because limr-0f ðrÞ ¼ 0.
Fig. 2. EMCD signal for an Fe L edge assuming a collection semi-angle of 1.2 mrad
as a function of scattering angles and atom displacements (up to 2.5 nm). The
isolines trace an increase of 20% each. The lower panel is a zoomwith isolines every
4% of the EMCD signal.
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4. EMCD signal strength

The EMCD signal is defined as the relative difference of signals
from vortices with m¼ 71

EMCD¼ 2 � Iþ1�I�1

Iþ1 þ I�1
: ð8Þ
Fig. 3. Integrated EMCD signal for an Fe L edge assuming a convergence semi-angle
of 1.2 mrad for disk-like nanoparticles (up to 5 nm diameter) which are centered in
the vortex, as a function of the collection angle. The isolines trace increments of 2%.
At a diameter of 3 nm, the EMCD signal has dropped below 2% for zero
collection angle.

Fig. 4. Experiment investigating the feasibility of EMCD detection: (a) electron vortices a
centers of the vortices and the total signals are labeled, (c) raw spectra and the respective
intensities and the respective differences.
The independent variables have been omitted for clarity. For fully
spin-polarized systems, one has

Im ¼∑1
μ ¼ �1C

μ
mjψmμj2

where Cμ
m are derived from the Clebsch–Gordan coefficients [25,26].

When a homogeneous specimen is illuminated, all atoms will
contribute incoherently with their respective signals. The expected
energy filtered diffraction pattern will then be radially symmetric.
It is obtained as the integral of the radial θ�traces over all
azimuths and all displacements R. Defining the collection semi-
angle β of the detector, the signal from a vortex with charge m is

ImðβÞ ¼
Z β

0

Z Rmax

0
ImðR; θÞ d2R θ d θ ð9Þ

with

Im R; θð Þ ¼ 1
2π

Z 2π

0
I R; θ;φθ

� �
dφθ : ð10Þ

Im is shown in Fig. 2 for varying displacements and scattering
angles. It is the average contribution to the EMCD signal of an
atom displaced from the vortex center by R, independent of its
azimuth.

Fig. 2 is consistent with Fig. 1: for displacements larger than
0.5 nm, the diffraction patterns start to be indistinguishable, and
this is also where the EMCD signal drops below noise level. More
precisely, as shown in the lower panel, it drops below 4% for
displacements as small as 0.6 nm, even for the smallest scattering
angles. Interestingly, for scattering angles larger than about
3 mrad, the EMCD signal changes sign. This can be understood
from the contrast inversion in the angular scattering profiles of the
centered atom in Fig. 1. Larger collection angles should therefore be
avoided, in order to avoid diminishing the signal. The integrated
fter passing the sample and the SEA, (b) raw spectrum image of the Fe-L2,3 edge. The
differences of the vortex centers and (d) raw spectra summing over the total vortex
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EMCD signal of a nanoparticle of diameter d as a function of
collection angle, obtained from Eq. (9), is shown in Fig. 3.

Even for zero collection angle (where the EMCD effect is
strongest), the signal drops below 2% for particles larger than
∼2:5 nm. The best signal-to-noise ratio was calculated to be at
collection semi-angles of about 3 mrad, again to be understood
from Fig. 1: at this β, the difference signal for the centered atom is
largest. With this setup, an EMCD signal of 45% (which is a
realistic threshold for detection) can only be detected for particles
smaller than 1.5 nm.
5. Experimental results

Several experiments were performed with a variety of vortex
diameters and materials, but none of them showed an EMCD
signal. Shown here as an example is an experiment using an
electro-chemically etched iron specimen of 80 nm thickness. The
vortices were created using a convergence semi-angle of 1.2 mrad.
The collection semi-angle was chosen to be 2.8 mrad. The electron
vortices passed through the specimen into the 2 mm spectrometer
entrance aperture (SEA)— Fig. 4a—and were subsequently deflected
by the magnetic prism of a GATAN GIF Tridiem attached to a FEI
TECNAI F20 forming a spectrum image— Fig. 4b. Finally, the raw
spectra (without any background subtraction or intensity normal-
ization) was compared. No EMCD effect was detected, as shown in
Fig. 4c and d.
6. Conclusions

In conclusion, we find theoretically and experimentally that
EMCD with incident focused vortex electrons [11] is ineffective for
particles larger than a couple of nanometers. The signal drops
rapidly below 2% even for the smallest collection angles. With
present instruments, it is therefore virtually impossible to detect
chiral dichroism in the discussed scattering geometry. The situa-
tion is probably more favorable for atom-sized vortices which have
the additional advantage of channeling along the atomic columns
[7,10,27], but this discussion is beyond the scope of the
present paper.

Experimental evidence of EMCD spectroscopy with electron
vortex beams reported previously [3] was based on a different
geometry, namely an incident converging wave and a strong
defocus of the holographic mask sitting below the objective lens.
This mask acted as a discriminator for the outgoing electrons. This
work, however, deals with the feasibility of performing EMCD
experiments with vortex beams, i.e., with an incident beam carry-
ing OAM. The observations reported here pose severe limits to
medium scale EMCD in this geometry, but they do not exclude the
possibility of EMCD with vortex probes of atomic scale, or with a
different geometry.
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