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Abstract

Nonregular fractional factorial experimental designs offer flexibility in terms of run size as well as the
possibility to estimate partially aliased effects. For this reason, there is much interest in finding good
nonregular designs and in orthogonal blocking arrangements of these designs. In this contribution, we
address the problem of finding orthogonal blocking arrangements in scenarios with two crossed blocking
factors. We call these blocking arrangements orthogonal row-column arrangements. We propose two
strategies to find row-column arrangements of given two-level orthogonal treatment designs such that
the treatment factors’ main effects are orthogonal to both blocking factors. The first strategy involves
a sequential approach which is especially useful when one blocking factor is more important than the
other. The second strategy involves a simultaneous approach for situations where both blocking factors
are equally important. For the latter approach, we propose three different optimization models, so that,
in total, we consider four different methods to obtain row-column arrangements. We compare the per-
formance of the four methods by looking for good row-column arrangements of the best two-level 24-run
designs in terms of the G-aberration criterion. We compare the methods in terms of computing time and
in terms of solution quality. We then apply the best approaches to 64- and 72-run orthogonal designs,
and end the paper with a conclusion.

KEY WORDS: Aliasing; Confounding; Generalized Word-Length Pattern; Integer Linear Programming;
Crossed Blocking Factors; Row-Column Design.

1 Introduction

Factorial experiments involve two or more treatment factors whose effects are of primary interest to the
experimenter. They are often conducted under heterogeneous conditions. For instance, some experiments
span multiple days or require different batches of material. In these cases, there is day-to-day variation or
batch-to-batch variation. The technique recommended to deal with such sources of variation is blocking (Wu
and Hamada, 2009) and the factor that defines the heterogeneous conditions is called a blocking factor. In
the presence of one or more blocking factors, the experimental runs are grouped, each group is called a block
and corresponds to a different level of a blocking factor. The goal of blocking is to minimize the dependence
of the treatment factors’ effect estimators on the differences between the blocks.

Blocking plays an important role in pharmaceutical, agricultural, food technology, and bioprocessing ex-
periments. For example, the glasshouse experiment in Williams and John (1996) consists of six replicates of
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a design with two treatment factors along with a four-level and an eight-level blocking factor. The treatment
factors were salt-irrigation level and seed lot. The two blocking factors were crossed and corresponded to the
physical arrangement of the experimental units. The pastry dough experiment described by Gilmour and
Trinca (2003) required seven days, and, within a day, the runs were performed at four different times. There-
fore, the pastry dough experiment also involved two crossed blocking factors. Goos and Donev (2006a,b)
mention a valve wear experiment, where the two crossed blocking factors are the valve position and the
engine, and a food additives experiment, where the two crossed blocking factors are the enzyme supplier and
the batch of wheat. Typically, experimental designs with two crossed blocking factors are called row-column
designs, where the rows and the columns represent the levels of the first blocking factor and the levels of the
second blocking factor, respectively.

Row-column designs for factorial experiments have been studied extensively. Jacroux and SahaRay
(1990), for example, proposed a design construction method for two-level designs, which involve two settings
for all the factors. They arranged either a full factorial design or a regular fractional factorial design involving
m+n factors in 2m rows and 2n columns so that the resulting designs can be used to estimate all main effects
independently of the block effects. Williams and John (1996) proposed a computer algorithm to construct
row-column arrangements of factorial designs which allow a precise estimation of main effects, while ignoring
the interaction effects.

Based on weighted mean efficiency factors, Gilmour and Trinca (2003) proposed an algorithm for creating
factorial row-column designs for quantitative factors and a response surface model. Their construction
involves an interchange algorithm (Jones and Eccleston, 1980), and treats the block effects (i.e., the row and
column effects) as fixed. Goos and Donev (2006a,b) proposed a point-exchange algorithm to construct D-
optimal row-column designs when the block effects are either treated as random or as fixed. The approaches
of Gilmour and Trinca (2003) and Goos and Donev (2006a,b) are, however, not suitable for screening
experiments with large numbers of factors and a limited number of runs, where the interest is in all main
effects and all interaction effects. As a matter of fact, for these design approaches to be feasible, the number
of experimental runs has to be large enough to estimate all effects of interest.

Based on the estimation capacity criterion, Cheng and Mukerjee (2003) provided a methodology to
construct sn−k fractional factorial designs in sr rows and sc columns. Their methods have two major
limitations. First, the number of runs and the number of rows and columns must be powers of s. Second,
because they use regular designs, the resulting row-column designs involve completely aliased effects.

In order to overcome these limitations, Vo-Thanh et al. (2016) proposed a general method to search
for non-regular row-column designs with two-level treatment factors, starting from complete catalogs of
non-isomorphic orthogonal arrays of the type OA(N, a × b × 2n, t), where N , a, b, n, and t represent the
run size, the number of levels of the first blocking factor (corresponding to the rows of the row-column
design), the number of levels of the second blocking factor (corresponding to the columns of the row-column
design), the number of two-level treatment factors, and the strength of the design. An orthogonal array is of
strength t if, for any given subset of t factors, all combinations of levels occur equally often. Unfortunately,
for run sizes larger than or equal to 32, it is computationally infeasible to generate and explore complete
catalogs of non-isomorphic orthogonal arrays of the type OA(N, a × b × 2n, 2). Therefore, searching for
optimal row-column arrangements of orthogonal arrays of the type OA(N, 2n, 2) using the methods of Vo-
Thanh et al. (2016) is not feasible for N ≥ 32. For this reason, for larger run sizes, Vo-Thanh et al. (2016)
instead explore catalogs of strength-3 orthogonal arrays of the type OA(N, a × b × 2n, 3). However, the
usefulness of this approach is limited because it requires both the full row-column design and the two-level
treatment design to be of strength 3. This requirement is too strict because experimenters are generally not
interested in interactions between the blocking factors and the treatment factors. Therefore, it is sufficient
for the full row-column design to have strength 2, while the treatment design has strength 3. At present, no
methodology is available for enumerating all possible ways in which all non-isomorphic strength-3 treatment
designs of the type OA(N, 2n, 3) can be embedded in a row-column design of the type OA(N, a× b× 2n, 2).
Consequently, it is unknown how to optimally arrange, for example, the runs of the large number of attractive
two-level treatment designs of strength 3 identified by Schoen and Mee (2012) in rows and columns to create
row-column designs.

In the present paper, we cope with this void in the literature by taking a given orthogonal array of the
type OA(N, 2n, t) with good statistical features and arranging it in a rows and b columns such that the
complete row-column design is an orthogonal array of the type OA(N, a× b× 2n, 2). To this end, we extend

2



the approach of Sartono et al. (2015, SSG), who propose a mixed integer linear programming approach
for adding a single blocking factor to a two-level non-regular design. More specifically, we adapt their
method to deal with two crossed blocking factors. Our main goal is to find row-column arrangements which
allow the independent estimation of all main effects and block effects, and the estimation of as many two-
factor interaction effects as possible. We consider two possible scenarios when searching for arrangements of
two-level orthogonal designs in rows and columns. Both scenarios impose orthogonality between the main
effects and the effects of the two blocking factors, corresponding to the rows and the columns. In Scenario
1, without loss of generality, we consider the rows to be more important than the columns, in the sense
that the confounding of the interactions with the rows is more problematic than the confounding with the
columns. Therefore, in Scenario 1, we minimize the confounding of two-factor interactions with the rows
first, and, subject to this, we minimize the confounding of the interactions with the columns. In Scenario
2, we consider the rows and the columns to be equally important, in the sense that the confounding of the
interactions with the rows is as problematic as the confounding with the columns.

The rest of this paper is structured as follows. In Section 2, we introduce the notation and the main
concepts used. Next, in Section 3.1, we embed the mixed integer linear programming approach of SSG in a
two-stage procedure for Scenario 1. More specifically, we arrange two-level treatment designs in rows first,
and then in columns. We refer to this two-stage procedure as the sequential approach. In Section 3.2, we
propose three different optimization models for Scenario 2, to arrange the two-level designs in rows and
columns simultaneously. In Section 4, we apply the four approaches to construct 24-run row-column designs,
compare the designs found with those from the literature, and study the computing times. This allows
us to select the most appropriate approaches to search for row-column arrangements of 64- and 72-run
treatment designs. In Section 5, we investigate whether using the row-column arrangement produced by the
sequential approach as a starting solution for the simultaneous approach improves the computing time for
the simultaneous approach. A discussion in Section 6 concludes the paper.

2 Preliminaries

In this section, we introduce the notation and the concepts used in the optimization models needed to arrange
regular or nonregular two-level treatment designs in rows and columns. Following the literature on blocked
experiments, we assume that there are no interactions between the first blocking factor (corresponding to
the rows) and the second blocking factor (corresponding to the columns), and that there are no interactions
between the blocking factors and the treatment factors. Therefore, only additive effects are required for the
blocks (i.e., the rows and the columns) in the statistical model for the data obtained from the experiment.
Also, since experimenters using two-level screening designs are generally only interested in main effects and
two-factor interaction effects, we restrict our attention to these effects.

2.1 Notation

We denote a given two-level factorial treatment design involving N runs and q1 factors by the N × q1 matrix
X. We denote the two levels of each treatment factor by −1 and +1. Every column of X is a main-effect
contrast column. Every treatment design matrix X has a corresponding (N × q2)-dimensional two-factor
interaction contrast matrix W, where q2 = q1(q1 − 1)/2 represents the number of two-factor interaction
effects. The matrix W is obtained by element-wise multiplication of all pairs of main-effect contrast vectors
in X. We denote the element in the ith row and jth column of W by wij .

Our primary goal is to arrange any given treatment design X in rows and columns so that we can
estimate a model containing all main effects, the block effects (corresponding to the rows and the columns),
and as many two-factor interaction effects as possible. In addition, we desire the main-effect estimates to be
independent from the block effects. To achieve these goals, (i) the main effects of the design X have to be
orthogonal to the blocks effects (i.e the row and the column effects), (ii) the row and the column blocking
factors have to be orthogonal to each other, and (iii) the confounding between two-factor interaction effects
and block effects needs to be minimized.

We denote the number of levels of the row factor by a, and the number of levels of the column factor by
b. The assignment of the treatments to the rows is represented by the (N ×a)-dimensional binary matrix A.
An element aij of A takes the value 1 when the ith run of the treatment design X is assigned to the jth row,
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and 0 otherwise. The assignment of the treatments to the columns is represented by the (N ×b)-dimensional
matrix B. An element bij of B takes the value 1 when the ith run of X is assigned to the jth column, and
0 otherwise.

We quantify the confounding of the two-factor interaction effects with the rows using the (q2 × a)-
dimensional matrix SA = WTA and the confounding of the two-factor interaction effects with the columns
using the (q2 × b)-dimensional matrix SB = WTB. We denote the elements of SA and SB by sAij and sBij ,

respectively. An element sAij measures the extent to which the ith two-factor interaction is confounded with
the jth level of the first blocking factor (i.e., with the jth row of the row-column arrangement). An element
sBij measures the extent to which the ith two-factor interaction is confounded with the jth level of the second

blocking factor (i.e., with the jth column of the row-column arrangement). Ideally, all sAij and sBij values
are zero, in which case there is no confounding of the treatments factors’ second-order interactions with
the blocks. The more positive or negative the sAij and sBij values, the more substantial is the confounding
with the blocks (i.e., the rows and the columns). Finally, we denote the maximum absolute elements of the
matrices SA and SB by sA and sB , respectively.

2.2 Quality measures for row-column two-level orthogonal designs

A row-column design includes two kinds of factors, treatment factors and blocking factors. We first review
commonly used quality criteria for two-level treatment designs. Next, we discuss criteria for evaluating
designs involving blocking factors.

2.2.1 Two-level treatment designs

In this paper, we focus on orthogonal two-level treatment designs derived from orthogonal arrays. There may
be many treatment designs with N runs, n factors and strength t. Designs that can be obtained from each
other by row permutations, column permutations and sign switches in the columns are statistically equivalent
and belong to the same isomorphism class. We denote a collection in which a single representative of every
isomorphism class is included by OA(N, 2n, t), and we call this set the set of non-isomorphic designs with
parameters N , n and t. Similarly, we denote by OA(N, a× b× 2n, t) the set of non-isomorphic designs with
N runs, n two-level factors, an extra factor with a levels, an extra factor with b levels and a strength of t.

For run sizes N ≥ 32, it is computationally infeasible to generate and explore complete catalogs of
non-isomorphic orthogonal arrays of the type OA(N, a × b × 2n, 2) (see Schoen et al., 2010). Instead, we
want to select good candidate treatment designs to be used as input to our methodology. One of the best-
known criteria for selecting a good two-level design is the G-aberration criterion originally proposed by
Deng and Tang (1999). Using this criterion requires calculating the so-called Jk-characteristics of k-factor
interaction contrast vectors, and involves the composition of frequency vectors describing the severity of
the aliasing among main effects, two-factor interactions, three-factor interactions, etc. The minimum G-
aberration treatment design is the one that sequentially minimizes the entries of the frequency vectors, so
that the least desirable kinds of aliasing are avoided as much as possible.

Tang and Deng (1999) proposed an alternative to the G-aberration criterion which they called the G2-
aberration criterion. This criterion ranks designs based on the generalized word length pattern, W =
(A1, A2, . . . , An). For treatment designs based on orthogonal arrays, A1 = A2 = 0. The entry A3 quantifies
the extent to which main effects are aliased with two-factor interactions, the entry A4 quantifies the extent to
which two-factor interactions are aliased with other two-factor interactions, etc. A minimum G2-aberration
design sequentially minimizes the generalized word length pattern. As experimenters’ interest is usually only
in main effects and two-factor interaction effects, it is common to consider only the A3 and A4 values when
selecting an appropriate treatment design.

2.2.2 Row-column designs

When a treatment design has to be blocked, the first concern is to avoid confounding of the main effects
with the block effects. Therefore, the main effects have to be orthogonal to the blocks. The second concern
is to ensure that the two-factor interaction effects are confounded as little as possible with blocks. One
measure of the confounding of the treatment factors’ interactions with the blocks is based on the mixed-
type word count introduced in the literature by Cheng and Wu (2002) for finding blocking schemes in
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scenarios involving a single blocking factor. The mixed-type word count was also used by Schoen et al.
(2013) for problems involving one blocking factor only, and by Vo-Thanh et al. (2016) who identified row-
column arrangements of small treatment designs using a complete enumeration approach. When focusing
on orthogonal blocking patterns, the most important mixed-type word counts quantify the confounding of
the two-factor interactions with the first blocking factor (i.e., with the rows) and with the second blocking
factor (i.e., with the columns). We denote these words counts by Ar

3 and Ac
3. In this paper, we use the sum

Ar,c
3 = Ar

3 + Ac
3 as a measure of the total amount of confounding between the two-factor interactions and

the blocks. Row-column designs with low Ar,c
3 values are preferred, because, for these designs, there is little

confounding between the interactions and the two blocking factors. Ideally, the Ar,c
3 value is zero, in which

case the two-factor interactions are orthogonal to both blocking factors.
One important issue with the Ar

3 and Ac
3 values is that they are hard to embed in a linear program:

they are not linear functions of the decision variables aij and bij . In contrast, the elements of the matrices
SA and SB are linear functions of aij and bij . For this reason, in this paper, we quantify the confounding
between the two-factor interactions, on the one hand, and the rows and columns, on the other hand, using
the matrices SA and SB . Row-column arrangements for which SA and SA are zero matrices have zero Ar

3 and
Ac

3 values, and vice versa. Similarly, row-column arrangements for which the entries of SA and SA are small
in absolute value generally have small Ar

3 and Ac
3 values. The methods we use to identify good row-column

arrangements in this paper minimize the absolute values of all entries of SA and SA. More specifically, we
first minimize the maximum absolute value of the elements of these matrices. Next, we minimize the sum
of the absolute values of their elements. In doing so, we prioritize the avoidance of any severe confounding
between the treatment factors’ interactions and the blocks. Next, we try to minimize the remaining, less
severe, confounding.

To illustrate the relationship between the Ar
3 and Ac

3 values, on the one hand, and the SA and SB

matrices, on the other hand, consider a 24-run four-factor two-level design arranged in four rows and three
columns. That arrangement is suitable if the first blocking factor has four levels, while the second blocking
factor has three levels. In total, there exist 28,591 non-isomorphic orthogonal arrangements of four-factor
two-level designs in four rows and three columns. This can be verified by enumerating all non-isomorphic
arrays of the type OA(24, 4 × 3 × 24, 2) using the algorithm in Schoen et al. (2010). Forty-five of these
arrangements have an Ar

3 value of 2/3 and an Ac
3 value of zero. These 45 designs minimize the mixed-type

word count Ar
3 + Ac

3 and are optimal in terms of this count. One of these designs is shown in Table 1.
Because of the zero Ac

3 value, the design allows the interaction effects to be estimated independently from
the second blocking factors’ effects, i.e., the column effects. The nonzero Ar

3 value means that the interaction
effects are confounded with the first blocking factors’ effects, i.e., the row effects.

The SA and SB matrices of the row-column arrangement of the treatment design in Table 1 are shown in
Table 2. The SB matrix is a zero matrix, confirming that the two-factor interactions are orthogonal to the
second blocking factor. All entries of the SA matrix equal ±2, indicating that the two-factor interactions are
partially confounded with the first blocking factor. The sA and sB values of the row-column arrangement
under consideration are 2 and 0, respectively. The sum of all absolute sAij values is 48, whereas that of all

absolute sBij values is zero.

3 Methodology

In this section, we propose two different strategies to search for row-column arrangements of a given two-level
factorial treatment design X. Regardless of the strategy, the row-column arrangements should possess the
following characteristics:

1. The main effects of the treatment factors should be orthogonal to the rows.

2. The confounding of the two-factor interactions with the rows should be minimal.

3. The main effects of the treatment factors should be orthogonal to the columns.

4. The confounding of the two-factor interactions with the columns should be minimal.

5. The rows and columns should be orthogonal to each other.
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Table 1: A four-factor two-level treatment design with 24 runs arranged in four rows and three columns.
Row Column X W

0 0 1 −1 −1 1 −1 −1 1 1 −1 −1
0 0 −1 −1 −1 −1 1 1 1 1 1 1
0 1 1 1 1 −1 1 1 −1 1 −1 −1
0 1 1 1 1 −1 1 1 −1 1 −1 −1
0 2 −1 1 −1 −1 −1 1 1 −1 −1 1
0 2 1 −1 1 1 −1 1 1 −1 −1 1
1 0 −1 −1 1 1 1 −1 −1 −1 −1 1
1 0 1 −1 1 −1 −1 1 −1 −1 1 −1
1 1 1 1 −1 1 1 −1 1 −1 1 −1
1 1 −1 1 −1 −1 −1 1 1 −1 −1 1
1 2 1 1 1 −1 1 1 −1 1 −1 −1
1 2 −1 −1 −1 1 1 1 −1 1 −1 −1
2 0 −1 1 −1 1 −1 1 −1 −1 1 −1
2 0 −1 1 1 −1 −1 −1 1 1 −1 −1
2 1 1 −1 −1 −1 −1 −1 −1 1 1 1
2 1 1 −1 1 1 −1 1 1 −1 −1 1
2 2 1 1 −1 1 1 −1 1 −1 1 −1
2 2 −1 −1 1 −1 1 −1 1 −1 1 −1
3 0 1 1 −1 −1 1 −1 −1 −1 −1 1
3 0 1 1 1 1 1 1 1 1 1 1
3 1 −1 −1 −1 1 1 1 −1 1 −1 −1
3 1 −1 −1 1 −1 1 −1 1 −1 1 −1
3 2 −1 1 1 1 −1 −1 −1 1 1 1
3 2 1 −1 −1 −1 −1 −1 −1 1 1 1

Table 2: Confounding matrices SA and SB of the two-factor interaction contrasts of the design X in Table 1
with the rows and columns.

SA SB

−2 2 −2 2 0 0 0
2 2 −2 −2 0 0 0
2 −2 2 −2 0 0 0
2 −2 −2 2 0 0 0

−2 −2 2 2 0 0 0
2 −2 −2 2 0 0 0
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The strategies extend the mixed integer linear programming approach of SSG in two different ways. The
first strategy is a sequential approach suitable when the confounding of the two-factor interactions with
one of the two blocking factors is of a greater concern than the confounding with the other blocking factor.
Without loss of generality, we assume that the blocking factor corresponding to the rows of the row-column
design is the factor of greater concern. The second strategy is a simultaneous approach to find row-column
arrangements when the confounding with both blocking factors is of equal concern.

3.1 Sequential approach

3.1.1 Step 1

In the first step of the sequential approach, we arrange the given two-level treatment design X in a rows
using the mixed integer linear programming approach of SSG, which was intended for finding orthogonal
blocking arrangements for problems involving one blocking factor. The resulting arrangement satisfies the
goals (1) and (2).

To minimize the aliasing of the two-factor interactions with the rows, the approach of SSG sequentially
minimizes the maximum absolute value of all elements of SA,

sA = max{
∣

∣sAik
∣

∣ , i = 1, . . . , q2, k = 1, . . . , a},

and the sum of the absolute values of all elements of SA,

γ =

q2
∑

i=1

a
∑

k=1

∣

∣sAik
∣

∣ .

The sequential minimization of sA and γ is intended to ensure that no two-factor interaction is strongly con-
founded with the rows, and that, subsequently, all remaining confounding between the two-factor interactions
and the rows is minimized.

Since linear programming approaches cannot deal with absolute values, we define the auxiliary non-
negative variables sA+

ik and sA−

ik for each element sAik of SA. The variable s
A+
ik equals sAik if sAik is positive, and

zero otherwise. The variable sA−

ik equals −sAik if sAik is negative, and zero otherwise. Therefore, the variables

sA+
ik and sA−

ik satisfy the equality

sAik = sA+
ik − sA−

ik .

When expressed in terms of sA+
ik and sA−

ik , the secondary objective, γ, is

γ =

q2
∑

i=1

a
∑

k=1

(sA+
ik + sA−

ik ).

Sequentially minimizing two objectives is known as pre-emptive goal programming or lexicographic goal
programming in operations research. We implement our sequential minimization using the big-M method,
where our primary objective, sA, receives a large weight, M , and our secondary objective, γ, receives a
weight of one. This leads to the following linear optimization model for Step 1 of our sequential approach:

min f = MsA + γ = MsA +

q2
∑

i=1

a
∑

k=1

(sA+
ik + sA−

ik ), (1)

subject to

N
∑

j=1

wjiajk − sA+
ik + sA−

ik = 0, i = 1, . . . , q2; k = 1, . . . , a, (2)

0 ≤ sA+
ik ≤ sA, i = 1, . . . , q2; k = 1, . . . , a, (3)

0 ≤ sA−

ik ≤ sA, i = 1, . . . , q2; k = 1, . . . , a, (4)

XTA = 0q1×a, (5)
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1T
NA = (N/a)1T

a , (6)

A1a = 1N , (7)

aij ∈ {0, 1}, i = 1, . . . , N ; j = 1, . . . , a. (8)

In the linear optimization model, Constraints (2)–(4) define the variables sA+
ik , sA−

ik and sA required to
calculate the weighted objective function in Equation (1), using linear expressions. Constraint (5) states
that only orthogonal blocking arrangements are allowed, i.e., blocking arrangements in which the treatment
factors’ main effects are orthogonal to the rows. Constraint (6) ensures that each of the a columns of A
contains N/a treatments (in other words, that each row of the row-column arrangement has N/a runs),
and Constraint (7) ensures that every treatment is assigned to exactly one row. In these constraints, the
vectors 1N and 1a are vectors of ones of dimension N and a, respectively. Finally, the binary nature of the
matrix A, which assigns the treatments to the rows, is imposed by Constraint (8), in which aij represents
the element in the ith row and jth column of A.

All decision variables in this linear optimization model are integer for two-level treatment designs, so
that the model belongs to the class of integer linear programming models. The first goal we try to achieve,
goal (1), is enforced by Constraint (5). Goal (2), is achieved by minimizing the linear program’s objective
function in Equation (1).

3.1.2 Step 2

Step 2 of the sequential approach starts from the optimal arrangement of the treatment design X in a rows
produced by Step 1 and arranges the treatment design X in b columns as well, while leaving the arrangement
in rows unchanged. Apart from one additional constraint, the linear optimization model in Step 2 has exactly
the same structure as that in Step 1. The additional constraint in Step 2 ensures that the two blocking factors
(i.e., the row factor and the column factor) are orthogonal to each other. This is necessary for the blocking
factors to be crossed.

Denoting the elements of the confounding matrix SB between the treatment design X and the columns
by sBik, the maximum absolute value of all elements by sB , and the auxiliary variables corresponding to
each element sBik by sB+

ik and sB−

ik , the optimization model needed in Step 2 of the sequential approach is as
follows:

min f = MsB +

q2
∑

i=1

b
∑

k=1

(sB+
ik + sB−

ik ), (9)

subject to

N
∑

j=1

wjibjk − sB+
ik + sB−

ik = 0, i = 1, . . . , q2; k = 1, . . . , b, (10)

0 ≤ sB+
ik ≤ sB , i = 1, . . . , q2; k = 1, . . . , b, (11)

0 ≤ sB−

ik ≤ sB , i = 1, . . . , q2; k = 1, . . . , b, (12)

XTB = 0q1×b, (13)

AT
opt

B = (N/ab)Ja×b, (14)

1T
NB = (N/b)1T

b , (15)

B1b = 1N , (16)

bij ∈ {0, 1}, i = 1, . . . , N ; j = 1, . . . , b, . (17)

The linear optimization model in this step clearly also utilizes pre-emptive goal programming. This time,
this is to prioritize the minimization of sB . Constraints (10)–(12) define all the variables needed to calculate
the objective function value in Equation (9). Constraint (13) ensures that the main effects of the treatment
factors are all orthogonal to the columns. Constraint (14) is the new constraint which guarantees that the
row blocking factor and the column blocking factor are orthogonal to each other. In that constraint, the
matrix Aopt corresponds to the optimal row arrangement identified in Step 1, and the matrix Ja×b represents
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the unit matrix of dimension a × b. Constraints (15)–(17) ensure that the matrix B is binary, that every
treatment is assigned to exactly one column of the design and that every column of the design contains N/b
treatments. In Constraint (17), bij represents the element in row i and column j of the matrix B.

Note that, in Step 2 of the sequential approach, the matrix Aopt, which indicates how the treatments are
assigned to the a rows of the row-column design, is given. So, in the linear program defined by Equations (9)–
(17), the elements of Aopt are input parameters rather than decision variables, and all constraints are linear
in the decision variables.

3.2 Simultaneous approach

In this section, we propose three different optimization models to construct row-column designs when the
confounding of the two-factor interactions with the two blocking factor is of equal concern. The first two of
these models directly aim at optimizing the assignment matrices A and B for the given treatment design X.
This necessitates an additional constraint that enforces the orthogonality between the rows and the columns
of the row-column arrangement. The first optimization model involves a quadratic constraint that ensures the
orthogonality between the rows and the columns. The second optimization model involves a linearization
of the quadratic constraint. The third optimization model avoids the extra orthogonality constraint by
redefining the row-column arrangement problem as a permutation problem. In that model, the blocking
structure is predefined, so that alternative row-column arrangements are represented as permutations of the
treatment design X. All three optimization models constitute a simultaneous approach that tackles the goals
(1)–(5) at the same time.

3.2.1 Simultaneous approach 1: A quadratic model

In this section, we describe our first optimization model to find row-column arrangements when the con-
founding with both blocking factors is of equal concern. The main goal is to find the two blocking matrices
A and B that result in minimal confounding between the two-factor interaction effects, on the one hand,
and the rows and the columns, on the other hand. A technical constraint when seeking the optimal A and
B matrices is that these two matrices should be orthogonal to each other.

Achieving the goals (1), (3) and (5) is ensured by entering them as constraints in the optimization model.
The goals (2) and (4) are dealt with in the optimization model’s objective function. In the three models
we present for the simultaneous approach, the objective function expresses our intention to make the two
confounding matrices SA and SB as small as possible simultaneously. In order to achieve this goal, we first
minimize the maximum absolute value of all elements of the matrices SA and SB ,

sAB = max{
∣

∣sAij
∣

∣ ,
∣

∣sBik
∣

∣ , i = 1, . . . , q2, j = 1, . . . , a, k = 1, . . . , b}.

Next, we also minimize the sum of the absolute values of all elements of the matrices SA and SB ,

γAB =

q2
∑

i=1

a
∑

j=1

∣

∣sAij
∣

∣+

q2
∑

i=1

b
∑

k=1

∣

∣sBik
∣

∣ .

As in the sequential approach in Section 3.1, we implement the sequential minimization of sAB and γAB

using pre-emptive goal programing. Also, we again use the auxiliary variables sA+
ik , sA−

ik , sB+
ik and sB−

ik to
deal with the absolute values of the elements of SA and SB . We therefore calculate the sum of all of the
absolute values of the elements of SA and SB as

γAB =

q2
∑

i=1

a
∑

k=1

(sA+
ik + sA−

ik ) +

q2
∑

i=1

b
∑

k=1

(sB+
ik + sB−

ik )

in our simultaneous optimization model:

min f = MsAB + γAB = MsAB +

q2
∑

i=1

a
∑

k=1

(sA+
ik + sA−

ik ) +

q2
∑

i=1

b
∑

k=1

(sB+
ik + sB−

ik ), (18)
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subject to

N
∑

j=1

wjiajk − sA+
ik + sA−

ik = 0, i = 1, . . . , q2; k = 1, . . . , a, (19)

N
∑

j=1

wjibjk − sB+
ik + sB−

ik = 0, i = 1, . . . , q2; k = 1, . . . , b, (20)

0 ≤ sA+
ik ≤ sAB , i = 1, . . . , q2; k = 1, . . . , a, (21)

0 ≤ sA−

ik ≤ sAB , i = 1, . . . , q2; k = 1, . . . , a, (22)

0 ≤ sB+
ik ≤ sAB , i = 1, . . . , q2; k = 1, . . . , b, (23)

0 ≤ sB−

ik ≤ sAB , i = 1, . . . , q2; k = 1, . . . , b, (24)

XTA = 0q1×a, (25)

XTB = 0q1×b, (26)

ATB = (N/ab)Ja×b, (27)

1T
NA = (N/a)1T

a , (28)

1T
NB = (N/b)1T

b , (29)

A1a = 1N , (30)

B1b = 1N , (31)

aij ∈ {0, 1}, i = 1, . . . , N ; j = 1, . . . , a, (32)

bij ∈ {0, 1}, i = 1, . . . , N ; j = 1, . . . , b. (33)

Constraints (19)–(24) define all the variables needed to calculate the objective function value in Equa-
tion (18). Constraints (25) and (26) ensure that the main effects of the treatment factors are all orthogonal to
the rows and the columns, respectively. Constraint (27) ensures that the row blocking factor and the column
blocking factor are orthogonal to each other. Constraints (28) and (29) ensure that every row contains N/a
treatments and that every column contains N/b treatments. Constraints (30) and (31) ensure that every
treatment is assigned to exactly one row and to exactly one column, and Constraints (32) and (33) ensure
that the matrices A and B are binary.

In the optimization model defined by Equations (18)–(33), Constraint (27) is quadratic, because it
involves products of decision variables, namely the elements of the binary matrices A and B. This is in
contrast with Constraint (14) in Step 2 of the sequential approach, where the matrix A was fixed after the
sequential approach’s Step 1 and the matrix B was the only one to be optimized.

3.2.2 Simultaneous approach 2: The linearized quadratic model

Generally, solving optimization models involving quadratic constraints takes more computing time than
solving models involving only linear constraints. It is, therefore, useful to try to replace quadratic constraints
with linear ones.

In the case of Constraint (27), where the decision variables are binary, it is indeed possible to replace
the quadratic expression with several linear constraints. To see this, note first that the original quadratic
constraint is equivalent to

N
∑

k=1

akibkj =
N

ab
,

for each row i and each column j of the row-column design. In the second simultaneous approach, we replace
this quadratic expression by a new constraint,

N
∑

k=1

cijk =
N

ab
, (34)
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Table 3: Creation of the new variable cijk from aki and bkj by using Inequalities (35)–(38).

aki bkj aki + bkj − 1 cijk
0 0 −1 0
0 1 0 0
1 0 0 0
1 1 1 1

for each row i and each column j. The new constraint involves a new decision variable cijk, which we define
as

cijk = akibkj .

The new decision variable is a product of two binary variables aki and bkj . Consequently, it should also be
binary. More specifically, cijk should take the value 1 if both aki and bkj are 1, and zero otherwise. Now,
instead of calculating cijk as a product of aki and bkj , it can also be determined by using the following set
of linear inequality constraints:

cijk ≤ aki, i = 1, . . . , a; j = 1, . . . , b; k = 1, . . . , N, (35)

cijk ≤ bkj , i = 1, . . . , a; j = 1, . . . , b; k = 1, . . . , N, (36)

cijk ≥ aki + bkj − 1, i = 1, . . . , a; j = 1, . . . , b; k = 1, . . . , N, (37)

cijk ≥ 0, i = 1, . . . , a; j = 1, . . . , b; k = 1, . . . , N. (38)

Given that cijk is non-negative, Inequalities (35) and (36) ensure that cijk takes the value zero when aki or
bkj are zero. Inequality (37) ensures that cijk takes the value one when aki and bkj are both one. The crucial
role played by the sum aki + bkj − 1 in Inequality (37) is clarified in the final column of Table 3. That table
shows all possible combinations of aki and bkj values, as well the corresponding values of aki + bkj − 1 and
cijk. The table allows us to verify that Constraints (35)–(38) do a good job at reproducing the value of the
product cijk = akibkj , even though they do not involve products of aki and bkj values.

It is clear that replacing the quadratic constraint in Equation (27) by Constraints (34)–(38) in the
optimization model defined by Equations (18)–(33) results in a new optimization model that has the same
optimal solution. A key difference between the new model and the original one is that the former only
involves linear constraints, which is generally considered to be an advantage, despite the fact that the new
formulation involves a larger number of constraints as well as a larger number of decision variables.

3.2.3 Simultaneous approach 3: A permutation-based model

In this section, we reformulate the problem of finding an optimal row-column arrangement as a permutation
problem. Rather than optimizing the binary blocking matrices A and B from scratch, while ensuring
that the corresponding blocking structure (the pattern of the rows and the columns) is orthogonal, the
permutation problem formulation considers the blocking structure as given. Finding an optimal row-column
arrangement of a treatment design then comes down to assigning the N treatments to the N positions in
the predefined blocking structure. Therefore, we have to find a permutation of all N treatments, where the
treatment appearing first in the permutation is assigned to the first position in the blocking structure (first
experimental run at the first level of the first blocking factor and the first level of the second blocking factor),
the treatment appearing second is assigned to the second position, etc. The treatment appearing last in the
permutation is assigned to the last position in the blocking structure (last experimental run at the ath level
of the first blocking factor and the bth level of the second blocking factor).

Every permutation of a set of N objects can be represented by a permutation matrix P, i.e., an N -
dimensional binary square matrix, involving exactly one entry of 1 in every row and in every column. For
a given treatment design X with interaction contrast matrix W and a given orthogonal blocking structure
[A B], the confounding matrices SA and SB can be expressed in terms of the permutation matrices as
well: SA = WTPA and SB = WTPB. Similarly, the conditions that the main effects of the treatment
factors should be orthogonal to the rows and the columns of the row-column design can be reformulated as
XTPA = 0q1×a and XTPB = 0q1×b, respectively. We denote the element in row i and column j of the
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permutation matrix P by pij . This element takes the value 1 if the ith treatment in X is assigned to the jth
position in the blocking structure. The integer linear programming model based on the permutation matrix
is then as follows:

min f = MsAB + γAB = MsAB +

q2
∑

i=1

a
∑

k=1

(sA+
ik + sA−

ik ) +

q2
∑

i=1

b
∑

k=1

(sB+
ik + sB−

ik ), (39)

subject to

N
∑

j=1

(

N
∑

m=1

wmipmj

)

ajk − sA+
ik + sA−

ik = 0, i = 1, . . . , q2; k = 1, . . . , a, (40)

N
∑

j=1

(

N
∑

m=1

wmipmj

)

bjk − sB+
ik + sB−

ik = 0, i = 1, . . . , q2; k = 1, . . . , b, (41)

0 ≤ sA+
ik ≤ sAB , i = 1, . . . , q2; k = 1, . . . , a, (42)

0 ≤ sA−

ik ≤ sAB , i = 1, . . . , q2; k = 1, . . . , a, (43)

0 ≤ sB+
ik ≤ sAB , i = 1, . . . , q2; k = 1, . . . , b, (44)

0 ≤ sB−

ik ≤ sAB , i = 1, . . . , q2; k = 1, . . . , b, (45)

XTPA = 0q1×a, (46)

XTPB = 0q1×b, (47)

P1N = 1N , (48)

1T
NP = 1T

N , (49)

pij ∈ {0, 1}, i, j = 1, . . . , N. (50)

The objective function in the new formulation is exactly the same as that in the two other models for
the simultaneous approach in Sections 3.2.1 and 3.2.2. Constraints (40)–(45) in the new formulation define
the various components of the objective function. The differences between these constraints and those in the
previous formulations is that Constraints (40) and (41) now make use of the elements of the permutation
matrix, and that A and B are now given matrices defining two blocking factors that are orthogonal to each
other rather than matrices with decision variables. More specifically, A = Ia⊗1N/a andB = 1a⊗Ib⊗1N/(ab),
where Ia and Ib are identity matrices of dimension a and b, respectively. Constraints (46) and (47) ensure that
the treatment factors’ main effects are orthogonal to the rows and columns, respectively. Finally, constraints
(48)–(50) define the technical properties of the permutation matrix P. The final constraint enforces P to be
a binary matrix, and Constraints (48) and (49) ensure that there is a one in every row and in every column
of the permutation matrix.

A key difference between the optimization model defined by Equations (39)–(50) and the models in
Sections 3.2.1 and 3.2.2 is that the elements of the matrices A and B are given, so that the permutation-
based approach does not involve quadratic constraints.

4 Computational results

In this section, we apply the four optimization models, one for the sequential approach from Section 3.1
and three for the simultaneous approach from Section 3.2, to three different kinds of problem. First, we
study the arrangement of 24-run orthogonal two-level treatments designs in four rows and three columns.
Next, we study the arrangement of 64-run orthogonal two-level designs in four rows and four columns.
Finally, we study arrangements of 72-run orthogonal two-level designs in three rows and three columns. We
selected these three specific kinds of problem because benchmark results are available from the literature. In
particular, Vo-Thanh et al. (2016) used a complete enumeration to identify good row-column arrangements of
strength-2 24-run two-level designs and strength-3 64- and 72-run two-level designs. The approach presented
here is much more generally applicable than the complete enumeration approach of Vo-Thanh et al. (2016),
but we believe that demonstrating that the sequential and simultaneous optimization approaches produce
the same quality of designs as the complete enumeration approach will convince the reader of their power.
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In all our comparisons, we pay attention to the quality of the row-column arrangements produced as well
as the required computing time. For all of the cases studied, we set the value of M in the pre-emptive goal
programming to 10,000. We performed all computations under Windows 7 (64-bit) on a Intel core i7-3770
PC with a 3.4GHz CPU for the 24-run designs and with a 2.6GHz CPU for the other designs, and an internal
memory of 16 GB, using MATLAB 2012b along with CPLEX version 12.6.1. We used a time limit of 10,000
seconds for each approach for each problem tackled.

Following Vo-Thanh et al. (2016), we assume in the comparisons we make in this section that the
confounding of two-factor interactions with the row factor and with the column factor is of equal concern
to the experimenter. Therefore, our evaluation of the different optimization approaches is based on the
objective function in Equation (18) (which is identical to that in Equation (39)). It should be pointed out,
however, that Vo-Thanh et al. (2016) used different objective functions, based on the mixed-type words
counts mentioned in Section 2.2.2.

4.1 24-run designs

For our computational experiments involving 24-run two-level designs, we use the two-level treatment designs
from theW2- andW3-optimal row-column arrangements identified by Vo-Thanh et al. (2016). This is because
these designs perform very well in terms of the G- or G2-aberration criterion, and because we can use the
row-column arrangements of Vo-Thanh et al. (2016) as benchmarks. In total, we consider 17 different two-
level treatment designs. The smallest design involves four factors, while the two largest designs involve 13
factors. The four-factor design is the one shown in Table 1.

The objective function values of the row-column arrangements of the 24-run designs obtained by the
four optimization approaches from Section 3 are listed in Table 4. The table’s first column identifies the
designs arranged in rows and columns. The designs’ IDs are of the form q1.i, where q1 denotes the number
of two-level treatment factors and i is a label distinguishing designs with the same numbers of factors. The
next three columns show the objective function values produced by the sequential approach, the computing
time that approach required, and the Ar,c

3 value quantifying the confounding between the treatment factors’
interactions and both blocking factors. The next column shows the objective function values produced by
the quadratic programming model, the linearized quadratic programming model and the permutation-based
model, and the Ar,c

3 value of the corresponding row-column arrangement. Remarkably, each of the three
models for the simultaneous approach resulted in the same value for the objective function and the same
Ar,c

3 value except for treatment design 10.2. Coincidentally, the Ar,c
3 value for the row-column arrangement

of treatment design 10.2 obtained from the quadratic model and from the permutation-based model is 16.17,
while the Ar,c

3 value obtained from the linearized quadratic model is 16.61. All of the objective function
values are optimal, because the linearized quadratic model and the permutation-based model were both
solved to optimality well within the computing time limit of 10,000 seconds for each treatment design
studied. The quadratic model returned the same objective function values as the other models. In nine of
the 17 cases tackled with the quadratic model approach, CPLEX confirmed the optimality of the row-column
arrangement. In the other eight cases, the computing time limit was reached before the CPLEX solver was
able to confirm the optimality of the solution. The computing times for the three simultaneous optimization
models are shown in Table 4 as well. The table’s final column shows the objective values of the benchmark
designs, i.e., the W2- and W3-optimal row-column arrangements identified by Vo-Thanh et al. (2016).

The results for treatment design 4.1 in the first line of the table correspond to the row-column arrangement
in Table 1 and the SA and SB matrices in Table 2. The maximum absolute value of an element of SA and
SB for that row-column arrangement is 2, and, in total, there are 24 occurrences of the values +2 or −2,
resulting in an objective function value of 2× 10, 000 + 24× 2 = 20, 048.

The three simultaneous optimization models result in the best possible objective function value for each
two-level treatment design considered. That is not always the case with the sequential approach: for eight-
and nine-factor treatment designs, and for the designs 7.1, 10.2 and 11.1, the sequential approach results in a
larger value for the objective function. For treatment designs 7.1, 10.2 and 11.1, the objective function values
obtained from the sequential approach are only 24, 16, and 24 units larger, respectively, than those obtained
from the simultaneous approach. This indicates that the maximum absolute elements of the matrices SA

and SB are the same for both approaches, and that only the sum of the absolute elements, γAB , differs
to some extent. For treatment designs 8.1, 8.2, 9.1 and 9.2, the objective function value obtained from

13



the sequential approach is about 20, 000 = 2 × M units larger than that obtained from the simultaneous
approach. This indicates that the maximum absolute element of the matrices SA and SB is different for both
approaches: regardless of the exact model used, the simultaneous approach was able to identify row-column
arrangements whose sAB values are two units smaller than those of the row-column arrangements produced
by the sequential approach. For all treatment designs with 4–6, 12 and 13 factors, the sequential approach
identifies row-column arrangements with the same values for the objective function as the simultaneous
approach.

That the sequential approach does not always match the results produced by the simultaneous approach
is logical: the sequential approach prioritizes the arrangement of the treatment design in rows, and, therefore,
it may result in a poorer subsequent arrangement of the treatment design in columns. It should be pointed
out, however, that the sequential approach is faster than the simultaneous approach (regardless of the model
used), and that it produces competitive designs, with an sAB value that is at most two units larger than
that produced by the simultaneous approach. When comparing the designs from the sequential approach
with the benchmark designs, we can see that their objective function values are alike, so that they possess
the same sAB values for each treatment design considered.

Comparing the row-column arrangements produced by the simultaneous approach and the benchmark
row-column arrangements, we can see that their objective function values are identical for seven of the 17
treatment designs studied. For treatment designs 10.1, 10.2, 11.1, 11.2 and 13.2, the benchmark designs
have a slightly higher objective function value. This indicates that the maximum absolute elements of the
matrices SA and SB are the same for the designs produced by the simultaneous approach and the benchmark
designs, and that only the sum of the absolute elements, γAB , differs to some extent. For treatment designs
7.1, 8.1, 8.2, 9.1 and 9.2, the differences in objective function values are about 20,000, indicating a difference
of 2 in the value of sAB for the row-column arrangements produced by the simultaneous approach and the
benchmark row-column arrangements. It is clear, however, that the simultaneous approach leads to row-
column arrangements with properties at least similar to those of the benchmark designs produced by the
complete enumeration approach of Vo-Thanh et al. (2016).

To support this conclusion, we show the Ar,c
3 values of the row-column arrangements produced using our

optimization approaches and the benchmark arrangements in Table 4. These values quantify the extent to
which two-factor interaction effects are confounded with the rows and the columns. The benchmark designs
score best in terms of the Ar,c

3 value, because they were selected based on that criterion. For ten of the
17 treatments designs, however, the simultaneous optimization models lead to row-column arrangements
with the optimal Ar,c

3 value. The sequential approach produces row-column arrangements with an optimal
Ar,c

3 value for 13 of the 17 treatment designs. For eight-factor and nine-factor treatment designs, there is a
substantial difference in Ar,c

3 value between the benchmark row-column arrangements and those produced
by the simultaneous approach. So, for eight- and nine-factor treatment designs, the difference between the
optimization criterion used in the present paper and the criteria used in Vo-Thanh et al. (2016) is largest.

Of the three models we compared for the simultaneous approach, the linearized quadratic model is
the fastest for the 17 treatment designs considered. The quadratic programming model is the slowest for
each treatment design under consideration. For eight treatment designs, the quadratic programming model
was unable to confirm that the solution it returned was indeed optimal. Allowing for more than 10,000
seconds of computing time would remedy this problem. However, the linearized quadratic model did not
suffer from this problem and established the optimality of its solutions well within 10,000 seconds. Except
for one case, this is also true for the permutation-based model. For this reason, we recommend against
using the quadratic model, even though it involves fewer decision variables than the other two simultaneous
optimization approaches, fewer constraints than the linearized quadratic programming approach and about
as few constraints as the permutation-based approach. The numbers of decision variables and the numbers
of constraints in the three simultaneous optimization models are shown in the columns labeled “Var” and
“Con” in Table 4.

As a conclusion, our application of the sequential and simultaneous optimization approaches in the
24-run case has shown that the linearized quadratic model is the best simultaneous optimization model,
followed by the permutation-based model. The quadratic programming model is not competitive in terms of
computing time. Remarkably, in terms of solution quality, the sequential approach performs very well too
for the smallest numbers of treatment factors and the largest numbers of treatment factors, even though that
approach prioritizes one blocking factor over the other and the comparison we make in this section assumes
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Table 4: Results obtained when arranging 24-run two-level treatment designs involving 4–13 factors in four rows and three columns using the sequential
approach and the three models for the simultaneous approach. Obj: objective function value; CT: computing time in seconds; Ar,c

3 : Ar
3 + Ac

3; Var:
number of decision variables (simultaneous approach only); Con: number of constraints (simultaneous approach only); QM: quadratic model; LQM:
linearized quadratic model; PM: permutation-based model.

ID
Sequential Simultaneous approach

Benchmark
approach

Obj A
r,c

3

QM LQM PM
CT Obj A

r,c

3
CT Var Con CT Var Con CT Var Con Obj A

r,c

3

4.1 0.25 20048 0.67 20048 0.67 447.32 253 217 7.27 541 1069 26.55 661 202 20048 0.67
5.1 0.53 40112 1.78 40112 1.78 10000 309 307 28.78 597 1159 69.59 717 293 40112 1.78
6.1 0.58 40168 2.67 40168 2.67 6358.49 379 418 22.06 667 1270 72.88 787 405 40168 2.67
6.2 0.59 40176 2.83 40176 2.83 1896.77 379 418 14.15 667 1270 36.77 787 405 40176 2.83
7.1 1.16 60304 5.44 60280 5.50 4635.45 463 550 11.84 751 1402 66.19 871 538 80280 5.11
7.2 0.44 40248 4.00 40248 4.00 3923.00 463 550 5.51 751 1402 38.47 871 538 40248 4.00
8.1 0.72 80392 7.06 60388 8.61 1939.83 561 703 10.47 849 1555 50.90 969 692 80392 7.06
8.2 0.78 80368 6.61 60412 9.67 10000 561 703 35.62 849 1555 162.49 969 692 80368 6.28
9.1 0.83 80520 10.33 60540 13.00 10000 673 877 15.58 961 1729 98.62 1081 867 80552 10.00
9.2 0.72 80480 9.11 60524 12.11 289.26 673 877 7.54 961 1729 36.47 1081 867 80496 8.78
10.1 0.80 80664 13.00 80664 13.00 10000 799 1072 277.96 1087 1924 346.60 1207 1063 80680 13.00
10.2 1.05 80720 16.00 80704 16.17/16.61 10000 799 1072 18.55 1087 1924 58.30 1207 1063 80744 16.00
11.1 1.22 80896 20.00 80872 20.67 10000 939 1288 20.19 1227 2140 53.15 1347 1280 80912 20.00
11.2 8.56 80992 25.00 80992 25.00 10000 939 1288 1551.49 1227 2140 2046.94 1347 1280 81000 25.00
12.1 11.39 81200 30.00 81200 30.00 10000 1093 1525 2171.92 1381 2377 10000 1501 1518 81200 30.00
13.1 0.77 81040 20.00 81040 20.00 110.78 1261 1783 1.50 1549 2635 8.80 1669 1777 81040 20.00
13.2 0.69 81056 20.00 81056 20.00 30.58 1261 1783 1.00 1549 2635 6.52 1669 1777 81080 20.00
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Table 5: Results obtained when arranging 64-run two-level treatment designs of strength 3 involving 6–12
factors in four rows and four columns using the sequential approach, the linearized quadratic model and the
permutation-based model. Obj: objective function value; CT: computing time in seconds; LQM: linearized
quadratic model; PM: permutation-based model.

ID
Sequential Simultaneous approach
approach LQM PM

CT Obj CT Obj CT Obj
6.1 2.29 0 482.14 0 3922.96 0
7.1 0.73 0 227.34 0 21.40 0
8.3 0.31 0 3.71 0 4.26 0
9.1 0.37 0 8.10 0 15.27 0
9.2 0.36 0 109.04 0 14.98 0
10.1 0.28 0 3.56 0 14.81 0
11.1 0.59 0 13.34 0 9.84 0
11.2 80.25 40064 10.89 0 8.03 0
11.3 0.20 0 3.40 0 10.23 0
11.4 107.31 40128 12.46 0 13.04 0
12.1 40.01 40128 2.57 0 7.89 0
12.2 94.69 40192 12.95 0 8.44 0

that the confounding of two-factor interactions with either blocking factor is of equal concern. Due to its
speed, we also recommend the sequential approach for small and large numbers of treatment factors.

4.2 64-run designs

In this section, we study the arrangement of 12 strength-3 64-run two-level treatment designs in four rows
and four columns, using the sequential approach, the linearized quadratic model and the permutation-based
model. We disregarded the quadratic model due to its poor computing times. We focus on scenarios where
the optimal value of the objective functions for the sequential approach and the simultaneous approach is
known to be zero. So, we study scenarios in which all main effects and all two-factor interaction effects can
be made orthogonal to the two blocking factors. The optimal row-column arrangements for these scenarios
correspond to the strength-3 64-run mixed-level orthogonal designs of the type OA(N, 42 × 2q1 , 3) identified
by Vo-Thanh et al. (2016). All these row-column arrangements involve up to 12 treatment factors.

For eight of the 12 treatment designs considered, the sequential approach, the linearized quadratic model
and the permutation-based model lead to an optimal row-column arrangement, with a zero objective function
value. For the four remaining treatment designs, the simultaneous optimization models also produce an
optimal row-column arrangement, but the sequential approach does not. So, in these cases, the sequential
approach is unable to arrange the rows and the columns orthogonally to all main effects and all two-factor
interactions. The treatment designs for which the sequential approach does not result in a zero objective
value are all optimally arranged in rows and columns in less than 13 seconds by the linearized quadratic
model approach, and in less than 14 seconds by the permutation-based approach. As a result, these particular
treatment designs are not very hard to arrange in rows and columns. The exact objective function values and
the required computing times for the twelve 64-run treatment designs are shown in Table 5. The permutation-
based approach is faster than the linearized quadratic model approach in five of the 12 cases. For treatment
design 6.1, however, the permutation-based approach is very slow compared to the linearized quadratic model
approach. In terms of the computing time, the linearized quadratic model and the permutation-based model
are close competitors for the 64-run designs.

4.3 72-run designs

In this section, we study the arrangement of seven strength-3 72-run two-level treatment designs in three
rows and three columns. We again focus on scenarios where the optimal values of the objective functions
for the sequential approach and the simultaneous approach are known to be zero. In particular, the optimal
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Table 6: Results obtained when arranging 72-run two-level treatment designs of strength 3 involving 6–12
factors in three rows and three columns using the sequential approach, the linearized quadratic model and the
permutation-based model. Obj: objective function value; CT: computing time in seconds; LQM: linearized
quadratic model; PM: permutation-based model.

ID
Sequential Simultaneous approach
approach LQM PM

CT Obj CT Obj CT Obj
6.1 1.09 0 60.37 0 1941.45 0
7.1 88.67 0 10000 40016 10000 40104
8.1 10000 40048 573.37 0 10000 40328
9.1 1.11 0 135.88 0 5712.54 0
10.1 0.92 0 14.62 0 6280.68 0
11.1 1.09 0 52.57 0 43.41 0
12.1 0.25 0 104.68 0 48.39 0

row-column arrangements for these scenarios correspond to the strength-3 72-run mixed-level orthogonal
designs of the type OA(N, 32×2q1 , 3) identified by Vo-Thanh et al. (2016). These row-column arrangements
involve up to 12 treatment factors.

For five of the seven treatment designs, the sequential approach, the linearized quadratic model approach
and the permutation-based model approach succeeded in identifying an optimal row-column arrangement,
with an objective function value of zero. In all of these cases, the sequential approach is the fastest. For
treatment design 7.1, the simultaneous approach did not produce an optimal row-column arrangement within
10,000 seconds, while the sequential approach was able to find one in about 89 seconds. For treatment
design 8.1, the sequential approach and the permutation-based model fail to find an optimal row-column
arrangement within 10,000 seconds, while the linearized quadratic model does manage to identify one in less
than 600 seconds. In total, the simultaneous approach fails to find two optimal row-column arrangements
when the permutation-based model is used. The permutation-based model approach is therefore the poorest
of the three approaches investigated in this section in terms of the solution quality for the 72-run designs.
For treatment designs 6.1, 9.1, and 10.1, it is also very slow compared to the other two models. Whenever
the permutation-based model yields an optimal row-column arrangement fast, the other two methods do not
require much computing time either. The exact objective function values and the required computing times
for the seven 72-run treatment designs are shown in Table 6.

5 Using the sequential approach to create a starting solution for

the simultaneous approach

The sequential approach’s speed and its excellent performance in terms of the quality of the row-column
arrangements suggest that using the row-column arrangement produced by the sequential approach as a
starting solution for the simultaneous approach may lead to optimal row-column arrangements in less com-
puting time. This is because many algorithms converge to good solutions more rapidly when provided with
a high-quality starting solution. For all the designs problems considered earlier, we explored whether using
the output of the sequential approach as input for the simultaneous approach indeed leads to computing
time savings. Tables 7, 8 and 9 show our results for the treatment designs involving 24, 64 and 72 runs,
respectively. The objective function values for the 24-run arrangements in Table 7 are not shown, because
they are the same as those in Table 4.

Comparing the computing times in Table 7, obtained using the output of the sequential approach as
input for the simultaneous approach, with those in Table 4 shows that the computing time of the linearized
quadratic model goes down for only seven of the 17 treatment designs. For design 12.1, the better starting
solution leads to a drop in computing time of more than 12 minutes. In one case, the starting design led
to an increase in computing time from about 36 seconds to about 147 seconds. Overall, the changes in
computing time for the linearized quadratic model are minor. For the permutation-based approach, the
better starting solution led to an improvement in computing time for nine of the 17 treatment designs. The
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Table 7: Computing times for the linearized quadratic model (LQM) and the permutation-based model (PM)
when arranging 24-run two-level treatment designs involving 4–13 factors in four rows and three columns
when using the output of the sequential approach as a starting solution.

ID LQM PM
4.1 12.32 65.10
5.1 23.21 99.45
6.1 28.64 60.98
6.2 11.11 24.24
7.1 10.25 61.22
7.2 5.68 23.57
8.1 13.54 40.75
8.2 147.33 174.92
9.1 15.08 123.44
9.2 10.34 32.81
10.1 224.42 281.94
10.2 21.11 96.35
11.1 25.44 84.23
11.2 1448.41 2073.64
12.1 1401.90 4019.71
13.1 2.20 9.59
13.2 1.78 5.40

largest improvement is again obtained for the treatment design with 12 factors. The original simultaneous
approach based on the permutation-based model (without high-quality starting solution) was unable to
confirm the optimality of the row-column arrangement it found for treatment design 12.1 within 10,000
seconds, while the permutation-based approach involving the better starting solution does establish the
optimality of the row-column arrangement in about 4,000 seconds. Comparing the linearized quadratic
model with the permutation-based model in Table 7, we can see the former is faster than the latter in all
cases.

Comparing the computing times for the 64-run designs in Table 8 with those in Table 5 shows that
the computing times for both the linearized quadratic model and the permutation-based model go down
for eight of the 12 treatment designs considered . In each of these cases, the sequential approach obtained
the optimal solution within a few seconds and the linearized quadratic model and the permutation-based
model only need a few fractions of a second extra to confirm the optimality of the solution in terms of
the objective function in Equations (18) and (39). For the remaining four treatment designs, the sequential
approach fails to find solutions that are optimal in terms of the objective function in Equations (18) and (39)
and it uses substantially more computing time. For each of these four cases, the computing times for the
linearized quadratic model and the permutation-based model deteriorate much when using the output of the
sequential approach as a starting solution. Comparing the linearized quadratic model with the permutation-
based model in Table 8, we can see the former is faster than the latter in all but one case (treatment design
12.2).

Comparing the computing times for the 72-run designs in Table 9 with those in Table 6 shows that the
computing times of both the linearized quadratic model and the permutation-based model drop substantially
(usually by at least one order of magnitude) for six of the seven 72-run treatment designs considered. Again,
in each of these cases, the sequential approach obtained the optimal solution within a few seconds, and the
linearized quadratic model and the permutation-based model only need a few fractions of a second extra to
confirm the optimality in terms of the objective function in Equations (18) and (39). For treatment designs
9.1 and 10.1, the use of the starting solution reduced the computing time for the permutation-based model
from about 6,000 seconds to about 1.5 seconds. For treatment design 7.1, the improvement is even more
spectacular: the starting solution allows the linearized quadratic model and the permutation-based model
to find an optimal row-column arrangement in less than 89 seconds (whereas these models did not allow
the simultaneous approach to find the optimal solution within the computing time limit when not using
the starting solution provided by the sequential approach). For the remaining treatment design 8.1, the
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Table 8: Computing times and objective function values for the linearized quadratic model (LQM) and the
permutation-based model (PM) when arranging 64-run two-level strength-3 designs involving 6–12 factors
in four rows and four columns when using the output of the sequential approach as a starting solution. CT:
computing time in seconds; Obj: objective function value.

ID
LQM PM

CT Obj CT Obj
6.1 2.34 0 2.45 0
7.1 0.78 0 1.08 0
8.3 0.36 0 0.64 0
9.1 0.42 0 0.75 0
9.2 0.41 0 0.78 0
10.1 0.33 0 0.78 0
11.1 0.66 0 1.22 0
11.2 84.57 0 88.90 0
11.3 0.28 0 0.80 0
11.4 109.34 0 112.65 0
12.1 44.80 0 46.85 0
12.2 107.25 0 102.06 0

Table 9: Computing times and objective function values for the linearized quadratic model (LQM) and the
permutation-based model (PM) when arranging 72-run two-level strength-3 designs involving 6–12 factors
in three rows and three columns when using the output of the sequential approach as a starting solution.
CT: computing time in seconds; Obj: objective function value.

ID
LQM PM

CT Obj CT Obj
6.1 1.12 0 1.29 0
7.1 88.70 0 88.92 0
8.1 13018.32 0 20000 40048
9.1 1.17 0 1.47 0
10.1 1.00 0 1.59 0
11.1 1.17 0 1.90 0
12.1 0.31 0 1.12 0
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sequential model fails to converge to optimality within 10,000 seconds. Using its output after 10,000 seconds
as input for the linearized quadratic model results in an optimal solution after 3,000 more seconds. With
the same input, the permutation-based model fails to find an optimal solution within the computing time
limit.

6 Discussion

In this paper, we proposed several integer programming approaches to arrange a given orthogonal two-level
treatment design in rows and columns. This is useful for experiments involving two crossed blocking factors.
A major advantage of using integer programming is that, unless the solver is stopped prematurely by the
user, it guarantees an optimal solution.

The first approach we presented is a sequential approach, which we originally intended to be used when
the confounding of the two-factor interactions with one of the two blocking factors is more of a concern than
the confounding with the other blocking factor. However, our computational results show that, for small and
for large numbers of treatment factors, the row-column arrangements produced by the sequential approach
are also optimal when the confounding of the two-factor interactions with both blocking factors is of equal
concern, and that the sequential approach is generally very fast.

The second approach we present is a simultaneous approach which assumes that we are concerned about
the confounding of the two-factor interactions with the first blocking factor as much as we are concerned
about the confounding of the interactions with the second blocking factor. We describe three variants of
the simultaneous approach, one of which, involving a quadratic programming model, requires considerably
more computing time than the other two. The latter two variants do not involve quadratic constraints. The
so-called linearized quadratic modeling variant is in most cases faster than the permutation-based model.
The simultaneous approach outperforms the sequential approach in terms of solution quality for moderate
numbers of factors.

We also explored a third kind of approach, in which we use the row-column arrangement produced by
the sequential approach as input for the simultaneous approach. This led to very fast computing times for
both the linearized quadratic model and the permutation-based model, provided that the sequential approach
produces a solution within seconds. Whenever the sequential approach requires 10 seconds or more, using its
output as an input for the linearized quadratic model and the permutation-based model slows the solution of
these optimization models down. For a few treatment designs, it even causes the solution of the two models
to hit the computing time limit.

In the event we are concerned about the confounding of the two-factor interactions with the first blocking
factor as much as we are concerned about the confounding of the interactions with the second blocking factor,
our recommendation is to use the following procedure for configurations similar to ours:

1. Find a row-column arrangement for the treatment design under consideration using the sequential
approach.

2. If the sequential approach produces an optimal solution within 10 seconds, use that solution as input
for the linearized quadratic model.

3. If the sequential approach does not finish within 10 seconds, run the linearized quadratic model from
scratch, without using a starting solution as input.

We end up recommending the linearized quadratic model rather than the permutation-based model, because
the latter occasionally fails to converge to optimality within 10,000 seconds, even though it performs very
well in the vast majority of the cases (especially when a high-quality solution from the sequential approach
is used as input).

In this article, we applied the various optimization models to sets of 24-run, 64-run and 72-run designs,
because high-quality benchmark row-column arrangements exist for these run sizes. We would like to em-
phasize, however, that both our sequential approach and our simultaneous approach are much more broadly
applicable than demonstrated here. More specifically, the high-quality benchmark arrangements were ob-
tained by searching through a complete enumeration of OA(N, a × b × 2n, t), while the new approaches
presented here work on any single treatment design. This is especially attractive when high-quality treat-
ment designs are readily available, while at the same time a complete enumeration of orthogonal arrays of
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the type OA(N, a × b × 2n, t) is infeasible. For example, minimum G-aberration designs of strength 3 are
known for 32, 40 and 48 runs. However, catalogs of orthogonal arrays of the type OA(N, a × b × 2n, 3) for
these run sizes only cover the following cases: (a) OA(32, 4× 4× 2n, 3) for n ≤ 4, (b) OA(48, 4× 3× 2n, 3)
for n ≤ 4 and (c) OA(48, 6 × 4 × 2n, 3) for n ≤ 2. Any strength-2 catalog for N ≥ 32 is computationally
infeasible. Therefore, in these cases, it is attractive to start with a minimum G-aberration design and use
our methodology to obtain a good row-column arrangement.

Finally, while we focused on two-level treatment designs here, it is not very difficult to generalize the
sequential and simultaneous approaches to deal with multi-level designs and mixed-level designs.
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