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Abstract: The recent proliferation of big data sources has given rise to a data deluge. Network theory 

has become the standard methodology to frame, develop and analyze such massive datasets. In line 

with the critique of Schwanen (2016), we argue in this paper that initiatives confronting network-

based insights with (qualitative) location- and domain-specific insights are necessary in 

understanding, discussing and advancing the role network analysis can play in geography. By 

iterating a community detection algorithm to achieve different levels of communities and quantifying 

the borders between them through damping values (as proposed in Grauwin et al., 2017), we show 

how to derive the hierarchical structure within the logistics buyer-supplier network in Belgium. This 
allows for a richer geography, which has been missing in current big data studies. 

1. Introduction 

Over the last decade, a long list of big data sources have emerged that give rise to a true 

data deluge when it comes to capturing spatial economic systems. Recent advances in 
information technologies now allow for the continuous, positional tracing of a multitude 
of objects. GPS technologies can equip and trace almost any object, from watches to 
airplanes, revealing the true extent of worldwide connectedness. Online social networks 

and smartcard data capture the movement of large-scale populations, credit card 
transactions enable to follow up on low-level economic transactions within and between 
territories, and mobile phone data are capable of capturing large-scale communication 

patterns.  

Obviously, the availability of such big data sources has revolutionized the study of 
movement and interaction in spatial economic systems. A common demeanor in studies 
integrating these new data sources is their reliance on network theory as both a 
methodological and conceptual framework. With applications ranging from the mere 

description of structural network properties to the simulation of complex dynamics, it is 
more than fair to state that network methodologies have widely advanced the empirical 
understanding of massive datasets describing spatial economic systems. Advancements, 
for instance, have been made in understanding the structure of air transportation 
networks and their potential role in global epidemics (Colizza et al., 2006; Guimerà et al., 

2005); in detecting statistical properties of large-scale human mobility and elaborating 
their use in predictive models (Gonzalez, Hidalgo, & Barabasi, 2008; Simini, González, 
Maritan, & Barabási, 2012; Song, Koren, Wang, & Barabási, 2010); or in uncovering the 
spatial extent of interacting communities, hereby challenging existing delineations of 
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space (Blondel et al., 2010; Ratti et al., 2010; Sobolevsky et al., 2013; Thiemann et al., 
2010). 

Despite the progress made, there has been a growing critique on the empiricist, positivist 
nature of big data and the related use of network analysis in geography (Graham & 
Shelton, 2013; Kitchin, 2013; Kwan, 2016). With respect to big data and network analysis 
in Transport Geography, Schwanen (2016) states that: “These methodological 
developments are to be welcomed because of … their generative character… . At the same 
time, caution needs to be exercised for epistemological reasons. There is a risk that 
generality – regularities, laws, basic principles, … - comes to trump particularity in the 
form of place and time specificity, uniqueness, singularity and also local knowledge 
again.” (Schwanen, 2016, p2) 

In this work we deem this critique to be valid. We discuss how current network 

methodologies are erasing the heterogeneity between observations and are pushing 
findings to be considered from a ‘network internal perspective’ only. Although we reckon 
that interdisciplinary discussion might be leading recent developments in network 
analysis to increasingly incorporate aspects of space, context and hierarchy, we argue that 
initiatives confronting network-based insights with (qualitative) location- and domain-

specific insights, which Miller (2017) terms mesogeography, are necessary in 
understanding, discussing and advancing the role network analysis can play in 
(transport) geography.  

Specifically, we attempt to demonstrate how fruitful the confrontation between local 
knowledge and network-based insights can be. Therefore we adhere to a recently 
developed network analysis tool as proposed by (Grauwin et al., 2017) that allows, for 
each node in a network and given a chosen community detection algorithm, the 
identification of its local, regional and national role and related connectivity. We show 

how the calculation of damping values in this method can be used to facilitate the 
confrontation with local insights and, by means of a case study on the Antwerp region, 
how relevant such knowledge can be for understanding, in this case, logistics systems. 

Ultimately, we believe in the benefits of establishing clear touching points between 

network methodologies and the typical local, spatial and qualitative knowledge of 
(transport) geography. Our proposed methodology offers a first step in the development 
of one such touching point, while pushing the discussion on the applicability of 

community detection in (transport) geography. It is our argument that confrontations like 
this are beneficial for understanding, discussing, and advancing the role network analysis 
can play in transport geography. 

2. The popularity of the network paradigm in geographical big data studies 

The critique on the empirical and positivist nature of current big data practices, including 
network approaches, relates to a long history of reflection and debate on quantitative 

approaches within the geographical discipline (Graham & Shelton, 2013; Kitchin, 2013; 
Kwan, 2016; Schwanen, 2016), ranging from Haggett’s reflection on his own pioneer book 
‘Locational Analysis in Human Geography’ (Johnston & Sidaway, 2015), to numerous 
debates on the quantitative revolution, positivist approaches and, more recently, the role 
of GIS and the algorithmic treatment of big data (Goodchild, 1992; Graham & Shelton, 
2013; Kwan, 2016). In other words, the rise of big data and the revival of network theory 
in transport geography do not necessarily represent entirely new ‘threats’. Rather one 
can consider them as a next wave of quantitative analyses; this time being fueled by the 



emergence of new, different and bigger datasets, and the technical and methodological 
capabilities to treat them.   

There is a lot to be said about the way this big data research and network analysis is 
integrating in current geographic scholarship, ranging from paradigm development to 
data-access inequality. However, one observation from Schwanen (2016) seems 
extremely relevant for this paper and, more in general, the field of transport geography. 
It is the observation that network science tends to erase heterogeneity and proposes 
differentiation solely based on characteristics of the network. Although explanations can 
be “imported from the outside” (for example by linking contextual information with 
connectivity measures), this approach heavily encourages explanations to be based on 
the network itself, leaving other perspectives sidelined. As such, the application of 

network science in transport geography is creating a reinforcing system that is “nudging 
geographers and transport researchers into adopting the internal network perspective” 
(Schwanen, 2016, p6). 

This critique is easily illustrated by two widely used applications of network analysis in 
transportation geography: the analysis of degree distributions and the application of 
community detection algorithms, but is similarly relevant for other network applications 

and big data analytics that can be equally prone to the domination of an internal 
perspective 

A first illustration of our critique is in the analysis of degree distributions. Many real-
world networks, including economic, transport, mobility and communication networks, 
are found to have power-law like distributions. Their study has allowed the identification 
of scaling in networks, which in turn implies the presence of a hierarchical structure, i.e. 
with nodes of different importance (Barabasi & Albert, 1999; Jiang, 2013; Levy & 
Solomon, 1997; Pumain, 2006). Degrees themselves, however, are merely (aggregated) 

connectivity measures, or thus structural properties of the network. This means that they 
possess little to no information about local context, except for the relative one defined in 
the network. As such, a large part of the heterogeneity amongst nodes is simply not 

considered which, consequently, makes it hard to approach the prevalence of degrees 
from another perspective than the network one. Insights from local context and 
processes, geographical differences, or spatial relations are hence all sidelined in favor of 

a, both methodological and conceptual, internal network perspective like, for instance, 
the popular preferential attachment growth model (Barabasi & Albert, 1999). 

Second, the use of community detection algorithms forms a second illustration of our 
critique. Community detection on spatial interaction networks (be it transport, economic, 
mobility or communication networks) has gained popularity ever since it was shown to 
allow for empirical regionalization. Although initially surprising, it has now been well 

established that in many spatial interaction networks communities tend to form spatially 
homogenous and contiguous groups, highlighting the spatial component of their linkages 
(Blondel et al., 2010; Nelson & Rae, 2016; Ratti et al., 2010; Thiemann et al., 2010). The 
implicit erasing of heterogeneity in community detection algorithms, however, lies in the 
assumption that all links in the networks (often expressed as the aggregated intensity of 
interaction between locations) are equal, no matter their context of occurrence in real life. 

Additionally, the primarily retrieved information from community detection exists of 
which node was classified in which community often revealing little to no information on 
which roles individual nodes have played in the detection process, which position they 
take in the entire network, or the attributes that distinguish between them, either in the 
network or in reality.  



It is rather easy to remark that both these elements stimulate false interpretations of 
homogeneity within detected communities, and of comparability between whatever 
interactions make up the links in the network. Moreover, and with respect to the typical 
spatially homogenous communities found in interaction networks, both elements 
contribute to the imposition of an internal network perspective that promotes the 
intensity of interaction (or thus the structure of the network) to be the (only) driver of 
regionalization. This is a very restrictive, even false, perspective as intensity of interaction 
is simply not the main driver of regionalization, nor is it the reason for the existence of 

empirically observed communities or does it explain the complex organizations of such 
communities. Here again, the point is that alternative reasoning is easily excluded from 
both the methodological and conceptual setup of the network approach.  

The question then becomes how, as a transport geography research field, to overcome the 
imposition of an internal network perspective when adhering to network analysis. We 
distinguish two possible ways, although more probably exist. 

A first way is to stimulate the integration of geographical elements, like space, context and 
hierarchy in network methodologies. By now, such developments are well underway. To 
name a few, there is an expanding research field on spatial networks integrating spatial 

aspects like distance and position in network analysis (Barthelemy, 2010), multilayer, 
and especially multiplex networks, are allowing to differentiate between nodes and links 
on several levels instead of only one (Kivelä et al., 2014), and community detection 

algorithms have been well advanced to allow for overlapping communities and 

hierarchical structures (Fortunato & Hric, 2016). Somehow, however, it remains an open 
question whether these developments are influenced by interdisciplinary discussion 
between (transport) geography and network science, or rather from a next step in 
advancement of the latter. In other words, it remains to be seen to which degree the 

methodological developments in network science allow for enough depth to be applied to 
research questions and themes in transport geography. 

A second way is for the field of transport geography to strive to confront, assess, reconcile 

and eventually appropriate elements of network analysis in its knowledge production. 
Appropriation done this way offers possibilities to critically asses network 
methodologies, challenge the hegemony of the internal network perspective and direct 

insights to themes that are of explicit interest in transport geography; all of which would 
advance the discussion on the role of network analysis in transport geography. To allow 

for confrontation in the first place, however, clear touching points between network 
methodologies and the typical local, spatial and qualitative knowledge base of transport 
geography need to be established. This requires, currently rare, case studies to be 
elaborated that embrace the inner workings of network analysis and show how their 
information can be coupled back to geographical knowledge.  

Specifically, our interest in Grauwin et al.’s (2017) method lies in the possibility to extract 
information about the relation of all nodes to different hierarchical levels in the network. 
As such, information on hinterlands, the strength of borders, and the roles and relations 
with respect to the wider network can be retrieved for all individual locations. We 
consider such information a huge opportunity to be confronted with (qualitative) location 

and domain-specific knowledge and elaborate our point based on a case study of a 
logistics buyer-supplier network in Belgium, with a focus on Antwerp. 

3. Methodology 



Recently, Grauwin et al. (2017) proposed a network methodology to improve spatial 
interaction models, like the well-known gravity or radiation models. Their improvement 
exists in the replacement of continuous distance with a discrete distance denoting only 
the transgression of “hierarchical borders”. The prediction of flows between locations 
hence depends on the number of transgressions that needs to be made between two 
locations with each transgression diminishing the predicted amount of interactions. 
Interestingly, in their framework the rate at which each transgression diminishes the 
predicted interaction, or thus the strength of each border, is a network-based measure 

called “damping value” that is unique for each location. In other words, Grauwin et al. 
(2017) show how, at least for communication networks in different countries, a spatial 
interaction model that is based on a discrete, yet location dependent description of 

distance, outperforms standard interaction models.  

Relating to the description of two possible ways to overcome the internal network 
perspective in previous sections, Grauwin et al.’s (2017) work clearly classify under 
developments in network methodologies that incorporate elements of geography, in this 

case being the heterogeneous experience of distance by different locations. Although the 
construction of damping values and their proof of usability in spatial interaction models 
is a remarkable feat, in this paper we are not looking to replicate the methodology to 
another case. Rather, we are interested in the way damping values, and their network-

based calculation of individual locations, can be confronted with local geographical 
knowledge in order to stimulate discussion on their interpretational value. As such, our 
work classifies under the second possible way described earlier; in which confrontation 

of insights is facilitated. 

3.1 Calculating damping values 

To calculate hierarchical borders, Grauwin et al. (2017) iterate a standard community 

detection algorithm on a given network. As each iteration groups tightly connected nodes 
in communities, the classification of a node in one community installs a border with all 
nodes classified in other communities. As such, in a first iteration, L3-communities are 

defined based on the entire network. Next, a second iteration of the community detection 
algorithm is run, this time within each of the previously defined L3-communities, resulting 
in a set of L2-communities. Finally, a third iteration of the community detection algorithm 

is performed on the network of each of the created L2-communities, resulting in a set of 
L1-communities. In other words, the iterative community detection provides for a multi-

level spatial delineation of the given network resulting in a set of L1, L2, L3-community 
borders specific to each node in the network that we will continue to call ‘hierarchical 
borders’. Having defined the hierarchical borders of a network, we can start to assess the 
importance of each hierarchical border for each node. To do so, Grauwin et al. (2017) 
propose a measure called damping value:  

𝑞𝑖
ℎ =  

𝑇𝑖
ℎ+1

𝑊𝑖
ℎ+1  

𝑊𝑖
ℎ

𝑇𝑖
ℎ  

with h representing the set of nodes that are at a hierarchical distance h of node i. The 
hierarchical distance between two nodes h is 1 if both nodes are located in the same L1 

region, 2 if they are in different L1 regions but the same L2 region, 3 if they are in different 

L2 regions but the same L3 and 4 if they are located in different L3 regions. 𝑇𝑖
ℎ the total 

amount of linkages from node i to all zip codes at distance h and 𝑊𝑖
ℎ the total amount of 

linkages from nodes within hierarchical distance h from node i (Grauwin et al., 2017). 
Interested readers may have noticed we flipped the terminology of the levels compared 



to the original authors. This mainly to ease understanding but also because it allows for 
more flexibility and comparability in case more than three levels will be identified in 
another study. 

The interpretation of the calculation of the damping value 𝑞𝑖
ℎ is rather straightforward. 

As each node is located in a specific L1, L2 and L3 community, the importance of each 
hierarchical border (for each node) can be easily characterized by comparing the relative 

strength of a node in a certain hierarchy level, i.e. 𝑇𝑖
ℎ 𝑊𝑖

ℎ⁄ , with its relative importance 

one level up the hierarchy, i.e. 𝑇𝑖
ℎ+1 𝑊𝑖

ℎ+1⁄ . As a consequence, a low 𝑞𝑖
ℎ value indicates a 

strong border between two hierarchical levels, meaning that a change from hierarchical 
level h to the next h+1 is, for the investigated location i, a relevant change in its 

importance. Viewed from the hinterland perspective, low 𝑞𝑖
ℎ values hence indicate that 

the investigated location is relatively more important in the hinterland at level h 

compared to the hinterland at level h+1. Consequently, a high 𝑞𝑖
ℎ  value implies the 

contrary indicating a gain in importance of the investigated location i when transgressing 
to the next hierarchical level. The different levels and damping values are summarized for 
an example zip code in Figure 2. 

Remark that the definition of low and high damping values is a relative concept. Logically, 
damping values are expected to be below 1 as transgressing to a next hierarchical level 
implies a growing number of other localities (or in the hinterland metaphor, an extension 
of the hinterland) against which the locality under consideration is compared in order to 
determine its ‘importance’. Currently, Grauwin et al. (2017) is the only research that has 
calculated damping values and this for large networks of mobile phone communication in 
different countries. The average damping values they calculated differ slightly from 

country to country but remain within the 0.10-0.25 range. Most remarkably, however, 
they found distributions of damping values to be similar for all different hierarchical 
borders (so for each hierarchical level h = 1,2,3) within each country.  

3.2 K-means clustering 

To understand the variation in damping values between nodes, we perform a k-means 

clustering on all nodes using their set of damping values for the three hierarchical levels 

as attributes. The chosen algorithm does not take the location of the nodes explicitly into 
account, which makes any resulting geographical image the outcome of the spatiality 

inherent to the original network. In our case, k is defined in an informal way by plotting 
the within-group sum of squares for a range of k’s choosing the partition that coincides 
with the bending point in the resulting graph, i.e. where an additional class has less impact 
on the within-group variation (Everitt & Hothorn, 2010). This approach is similar to the 
scree-plot used in factor analysis. 

3.3 Community detection 

Remark that in our case, we apply the ‘Louvain method’ community detection algorithm 
proposed by Blondel et al. (2008), contrary to Grauwin et al. (2017) who use the ‘Combo’ 
algorithm proposed in Sobolevsky et al. (2014). We recourse to the ‘Louvain method’ 
because of its widespread application in literature, its strong performance in a 

comparative analysis (Lancichinetti & Fortunato, 2009) and because of the familiarity due 
to earlier publication with the same dataset further used in this paper (Beckers et al., 
2015). Comparison of the results between Louvain and Combo on our dataset showed 
little differences in obtained communities for all iterations and, as such, little differences 
in calculated damping values for both approaches.   



Two known limitations of the Louvain method might be relevant for our case. Firstly, 
being a modularity-optimization approach, the detection of communities tend to operate 
at a coarse level preventing the formation of small communities (Fortunato & Barthelemy, 
2006). An adapted Louvain algorithm to cope with this resolution limit exists, but 
demands prior knowledge on the network structure (Delvenne et al., 2013). In this paper 
however, we aim to detect various hierarchical levels without privileging one of them, 
finding smaller communities within larger ones, hereby partly bypassing the resolution 
problem. Secondly, the Louvain method has a dependency on the order of the input 

(network) data. To avoid this problem 100 random iterations were averaged into a final 
set of communities for the different levels with a membership value for each node (see 
Figure 1)  

Ultimately, one can wonder why an iterative application of a standard community 
detection algorithm is preferred over hierarchical community detection algorithms 
and/or methods that allow for overlapping communities (Fortunato & Hric, 2016). The 
first reason is that our goal is to identify geographical hierarchy, which, as the results 

show, is inherently different and thus independent from the network hierarchy that 
emerges from the latter algorithms. The second reason is that neither application and 
interpretation of these methods is trivial, thus requiring a more methodological 
discussion which is outside the scope of this paper. It remains, however, future work to 

investigate the definition of, and differences between, damping values based on these 
approaches. 

4. Case study: logistics network in Antwerp, Belgium 

For the case study, we use a large dataset of micro-economic buyer-supplier linkages in 
Belgium as provided by the National Bank of Belgium. Each link captures the financial 
transaction between two companies of which at least one has to be involved in logistics 

activities. One example is the financial compensation for logistics services where the 
buyer may be a construction firm and the supplier a logistics carrier. 

With over 800,000 observed linkages and the availability of nearly 170,000 unique firms 
(of which more than 83,000 logistic companies) the dataset represents a spatial 

expression of the Belgian logistic system in terms of service provision (value added, not 
transported goods) and enables for applied network analysis. The database spans the 
year 2011, and aggregates for privacy reasons the total number of buyer-supplier 

linkages between companies at zip code level. The final network consists of 1155 nodes 
(zip codes) and the total number of buyer-supplier linkages as weighted, undirected 
connections between them. 

One shortcoming of the dataset is that it includes only linkages for which both the buyer’s 

and supplier’s headquarters are situated in Belgium. This probably diminishes the 
relative importance of some zip codes, especially in major economic centers and border 
regions. Secondly, the attribution of firms to zip codes is based on headquarter location, 
which might overemphasize the importance of the economic centers. However, with a 
strong presence of small and medium sized companies in the dataset, we are confident 
that the distortion between headquarter location and actual activities is limited and does 

not compromise the demands for our analysis. 

In previous work, Beckers et al. (2015) use community detection analysis on this dataset 
to link the observation of co-location of logistics companies with higher local intensities 
of logistics buyer-supplier linkages. This in order to test the occurrence of the assumed 
Marshallian advantages in logistics clusters (Martin & Sunley, 2003; Porter, 1998). The 



application of a community detection algorithm on the buyer-suppliers network resulted 
in seven spatially homogeneous communities, displayed in figure 1A. The majority of 
these communities center around important industrial hot spots, like Antwerp, Brussels 
or Ghent and are interpreted as their hinterlands. 
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Figure 1: Communities (left) and node degree (right) of the buyer-supplier linkages (Beckers et al., 2015) 

Although the authors conduct a first attempt to find the drivers of the community 
delineation by calculating the within-module degrees and participation coefficients as 

proposed by Guimerà and Amaral (2005), the rich variety (both in size as in geography) 
of the node degrees observed in figure 1B is neglected in the community detection. 

The comparison of figures 1A and 1B illustrates the limitations of two commonly used 
network approaches, as already mentioned in the introduction. Community detection, 
although rendering spatially homogenous communities, does not provide information on 
the local level, and as such, stimulates false interpretations of homogeneity within 
communities, as has been seen in other work. Second, the degree characteristics provide 
information on the variety of the nodes in the network, but ignore the spatial relations. 
The Antwerp community in blue for example has a strong internal heterogeneity with the 
port as the major economic hub but is surrounded by locations with different logistics 
importance. In addition, despite being classified in different communities, companies in 
the Antwerp community have many buyers and suppliers around the country. This 
information is important since our goal is to understand the buyer-supplier hierarchical 

structure within the country, but is addressed in neither of the two examples provided in 
Figure 1. 

In what follows we apply Grauwin et al.’s (2017) methodology described in section 3 on 
the logistics buyer-supplier system in Belgium. First we display the results of the iterative 

runs of the community detection algorithm after which we focus on the communities and 
damping values of the Antwerp case. In the discussion we elaborate on the factors that 
contribute to the geographical and hierarchical variance of the damping value. The 
different levels and damping values explained above, are summarized for the example zip 
code in Figure 2 (city of Lier). 



 

Figure 2: Hierarchical levels and corresponding damping values (qh) 

 

5. Results 

Applying iterative community detection to the buyer-supplier network of Belgian 
logistics renders L1 and L2 communities as displayed in figure 3 (the L3 communities are 
shown in figure 1A). A total of 1155 zip-codes were attributed to 7 L3-communities, 40 L2-
communities and 81 L1 communities, rendering three hierarchical borders for each 

individual zip code. Remark that we found almost all defined communities to be spatially 
contiguous, even though no explicit spatial criterion was introduced by the community 
detection algorithm. This interesting property aligns with findings in literature based on 
mobile phone and commuting data (Blondel et al., 2010; Grauwin et al., 2017; Ratti et al., 
2010; Sobolevsky et al., 2013; Vanhoof, Smoreda, & Ratti, 2015) and suggests that 
geography matters, also in logistics buyer-supplier systems. From the point of view of 
each individual node iterative community detection on the network thus results in a 
spatial pattern where its closest hinterland is defined by its L1-community, extending into 
a wider hinterland defined by its according L2 community and a widest hinterland made 
up by its L3-community before entering the scope of the entire spatial network. This can 
also be observed in Figure 2. 

 

L3 
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Figure 3: L2 (left) and L1 (right) communities in Belgium. Greyscale is used to differentiate the communities. 

The distributions of the damping values for the hierarchical borders at level 1, 2 and 3 for 

all zip codes is given in figure 4. Distributions are more or less normally shaped but 
apparently hierarchical borders at different levels have different strengths in the Belgian 
logistics system with average damping values being 0.32 for the L1 level, 0.55 for the L2 
level and 0.21 for the L3 level. This contrasts with findings by Grauwin et al. (2017) where 
for mobile phone networks in different countries, damping values tended to have similar 

distributions for the different hierarchical levels. 

 

Figure 4: Distribution of different damping values 

In order to understand how the definition of damping values at different hierarchical 
levels can lead to an increased interpretation of the particular context of individual zip 
codes we focus on the case of one L3 community, the Antwerp community. The Antwerp 
community results from the first iteration of the community detection algorithm on the 
buyer-suppliers network. Figure 5 provides a zoom on the Antwerp L3 community which 
corresponds to the blue area in figure 1A. The core of the community is the city of Antwerp 
of which the center is indicated with a star. The city is surrounded by a ring road and has 

a large port (purple) located north along both banks of the river Scheldt. Most economic 
activities outside the city are situated to the south, following the E19 and A12 highways 
towards Brussels, along the Albert canal towards the east and on the left bank in the west 



where one finds the most recent developed port areas. The northeastern part of the 
community is more suburban and even rural. A more detailed description of the location 
of logistics activities in Antwerp can be found in Verhetsel et al. (2015). In total, the 
community consists of 55 zip codes or thus 55 nodes in the analyzed logistics buyer-
supplier network. 

 

Figure 5: Situating the case of Antwerp 

The L2 and L1 communities relating to the L3 Antwerp community are mapped in figure 6. 
At the L2 level one can recognize the central city with the old port to its north. The 
industrial port with its chemical cluster northwest of the city at the fringe of the L3 
community, and the newest port developments on the left bank show up as individual L2 
communities as well. Further our community detection iteration identifies the southern 

metropolitan area and the more residential/rural northeast. While all detected L2 
communities contain at least two different zip codes, some zip codes form a community 
of their own at the L1 level. This is due to strong internal loops in the concerned zip codes, 

meaning that buyer-supplier linkages within the own zip code are prominent. 
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Figure 6: L2 (A) and L1 (B) communities for Antwerp L3 Community (figure 1). Greyscale is used to differentiate 

the communities 



Apart from observing spatially contiguous communities, the question arises to what 
extent an hierarchical structure is present within these communities. In other words, 
what exactly are the damping values related to these hierarchical borders, what kind of 
spatial patterns appears and what do they tell us about the role of individual zip codes? 

Figure 7 plots the q1, q2, q3 values for all zip codes in the Antwerp community. These 
values represent the strength of the L1, L2, and L3 borders respectively. Overall the 
damping values show strong geographical variance at each level as well as over the 
different levels. Although the damping values are normally distributed around an 
average, figure 7 clearly shows that summarizing this information in one damping value 
for all levels over the entire study area as proposed by Grauwin et al (2017) in his search 
for a universal model, comes with a neglect of their spatial variance.  

The variance of damping values points out the unique positions that each zip code holds 

in the overall network, depicting different relations to different borders at different levels. 
For example, the high damping values for the L1 level obtained for the Antwerp port area 
(see figure 7B) indicate a smaller importance of this level for those zip-codes. Likewise, 
in figure 7C a group of zip codes in the southeast show significantly higher damping values 
at the L2 border compared to the L1 and L3 ones, suggesting the relative insignificance of 

their L2 level. Remark that, given their definition, the construction of damping values for 
a zip code is independent from its absolute number of buyer-supplier linkages as can be 
observed by comparing the spatial pattern of node degrees in figure 7A with the spatial 

patterns of the damping values in figure 7B,C,D.  
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Figure 7:A: Node degrees, B: damping values L1, C: damping values L2 D: damping values L3 values for Antwerp 
community 

Clearly, the analysis of damping values counters the suggestion of similarity between zip 

codes that is implied by the discrete, spatially homogenous result of community detection. 
Indeed, each zip code has its own characteristics when it comes to positioning in the 
proposed L1, L2 and L3 communities and resultantly, a richer geography is detected. Still, 

some spatial grouping seems to emerge from figure 7, with adjoining zip codes depicting 
similar damping values over different hierarchy levels.  

To more formally investigate such similarities and the related spatial pattern, we applied 

a k-means clustering of the damping values. Figure 8 indicates three clusters as the ideal 
solution, which are mapped in figure 9 and, they too, are spatially quite contiguous but 
differ rather strongly from the presented L2 or L1 communities in figure 6, meaning that a 
different kind of characterization took place compared to standard community detection. 
In other words, compared to the network hierarchy resulting from the iterative 

community detection, we now observe the geographical hierarchy within the region. The 
applied k-means clustering yields three different classes of zip codes. Their average 

damping values for the different hierarchical borders are shown in figure 9A, together 
with the average damping values for all zip codes in Belgium.  



 

Figure 8: Within-cluster sum of squares for different number of clusters. 

Several insights can be derived from the properties of the k-means clustering based on 

damping values as shown in Figure 7.  

Firstly the damping values obtained for the L3 community borders are not differentiating 

the different clusters. Interestingly, compared to the Belgian average, q3 damping values 
of the zip codes in the Antwerp community are significantly higher, demonstrating the 
importance of the nodes in the Antwerp community for the entire Belgian logistic system.  

Secondly, it shows that zip codes attributed to cluster 1 and 2 (Figure 9) do not 
differentiate amongst themselves with relation to damping values for the q1 and q3 
borders. Rather, it is the q2 border that separates their profiles from each other. A rather 
high damping value at the L2 border for zip codes in cluster 2 suggests the difference 
between L2 and L3 communities to be less relevant compared to the other zip codes in the 
Antwerp community. The zip codes attributed to cluster 1 show extremely low damping 
values, indicating their peripheral role in the wider logistics network. Crosschecking 
figures 9 and 5 reveals the division between clusters 1 and 2 results from the distinct 
geography in both regions. Cluster 1 comprises the most rural zip codes while cluster 2 
consists mostly of small cities and residential areas within Antwerp. In the remainder of 

this paper we will speak of the rural and residential clusters respectively. 

Thirdly, it is clear that the lowest hierarchical border, q1, is differentiating zip codes 
attributed to cluster 3 in the k-means algorithm. The zip codes in cluster 3 include the 
economic areas in the port and city center and will be called economic cluster from here 
on. Despite their large amount of internal linkages (some of them form an L1 community 
on their own), their relative importance is significantly higher at their L2 community level 
compared to their L1 level. Interestingly, for these zip codes, the distinction between L2 
and L3 communities is similar to the average Belgian zip code, indicating the relevance of 

this second hierarchical level (figure 6A), even for these important nodes. Since these 
second level communities correspond to the different port areas, the strong q2 indicates 

the relative important difference between the left bank, the old port and the industrial 
port. While in previous work they were classified in one Antwerp logistics cluster, we now 
observe the existence of the sub clusters, proving the presence of an important 
geographical hierarchy in the network. 
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Figure 9: A: Damping profile of each k-means cluster. B: Geographical pattern of k-means clusters. 

 

6. Discussion 

In this work we introduced a geographical perspective on Grauwin et al.’s (2017) 
methodology to delineate hierarchical levels and define the strength of their borders in 
large networks. Our approach provides an empirical way to include the role of each 

individual location while assessing their relationships, a combination which has been 
overlooked in recent network applications in (transport) geography.  

When applying our approach to a network of logistics buyer-supplier linkages in Belgium, 
the results clearly show that nodes located in the same community can exhibit strongly 
differing relations with different hierarchical levels. This is due to a strong geographical 
and hierarchical variation of the distributions of links in space for different nodes.  



In our methodology, we showed how one can capture such geographical and hierarchical 
variation for each node individually by calculating its damping values. One of our main 
findings is a high diversity among damping values calculated for buyer-supplier linkages, 
both between nodes and between hierarchical levels (figure 4). This in contrast to the 
findings for mobile phone communication networks where damping values show similar 
distributions at different hierarchical levels (Grauwin et al., 2017). This variation 
indicates the need for better insights both on the local context of individual nodes as on 
the existence of hierarchies when interpreting or even modelling  linkages.  

A second important finding is that despite their high variety, damping values for logistics 
buyer-supplier linkages show spatial patterns at the regional level (figure 7). Performing 
a simple k-means cluster algorithm based on the calculated damping values unveils the 

underlying geography of the Antwerp community (figure 9). The fact the regions obtained 
by clustering damping values differ from the communities produced by (iterative) 
community detection points to the presence of an important hierarchical structure and 
results in a renewed insight in regional differences now based on the relation of individual 

nodes over hierarchical levels. These clusters can then be interpret by combining expert, 
i.e. geographical, knowledge and a detailed study of the damping value profiles. 

The analysis of the different cluster profiles in figure 9 allows us to understand how 
hierarchical levels are experienced differently for each cluster. Given its rather complex 
definition, the disadvantage of damping values in this perspective is that their 

interpretation is not always trivial.  

Concerning the low q1 damping values for the rural and residential clusters, for example, 
it is worthwhile to understand that we observe the main driver to be the expansion of the 
set of considered zip codes. Indeed, when climbing an hierarchical level and given that the 
added zip codes show similar network characteristics, the W in the definition of damping 

values will increase, triggering a decrease of the damping values.  

To demonstrate this we can take the example of a zip code attributed to the residential 

cluster (city of Lier, zip code 2500, see figure 7). The low damping value for the q1 border 

results out of 𝑇2500
1 ≈ 𝑇2500

(2)
 while 𝑊2500

2 ≫ 𝑊2500
1  (table 1). The diminishing importance 

of this zip code at the L2 level is due to the L2 level being a merge of several zip codes with 
similar node degree (size of logistics activities) and linkages distribution (diversity of its 

network). In the L1 community each zip code has a share amongst 4 to 10 similar zip codes 
and in the L2 community they are joined by more or less 20 other similar zip codes, 
decreasing the relative importance of a single zip code, like Lier, which translates in an 
important damping between the two levels.  

Table 1:Absolute flows and damping value over each hierarchy for one zip code per cluster 

 Lier (zip 2500) 

Level Th Wh qh 

L1  460 19253 0,24 

L2 437 75959 0,97 

L3 1715 306934 0,41 

Belgium 3088 1332829   

 

If, when scaling up, added zip codes do not show similar characteristics, the observed 
damping values become the result of a complex interplay of relative gains in importance 
and connectivity at the higher hierarchical level, despite the enlargement of the set of 



considered zip codes. This is the case for the residential cluster where transferring from 
level 2 to level 3 means adding zip codes that are either very important (port areas) or 
less significant (northeastern rural areas), resulting in a more complex construction of 
damping values and thus a less trivial interpretation. The q2 for the city of Lier in the 
residential cluster is a good example. Adding the port area at the L3 level results in a 

higher 𝑊2500
(3)

 due to the many buyer-supplier linkages at the port. In the meantime the 

port is an important buyer and supplier for the city as well, increasing 𝑇2500
(3)

. The extend 

of this connectivity, enforced by the lower connectivity of the zip codes from the 
northeastern rural areas that were also added at the L3 level results in a rather high 

damping value for the city, even though 𝑊2500
(3)

 went significantly up by adding highly 

connected zip codes like the port area to the equation.  

In summary, the profiles of the rural and residential clusters demonstrate the mechanics 

that are behind the calculation of damping values and that make their interpretation non-
trivial. The main premise, however, stands: the absolute damping value depends on how 
important a node is within its Lh community compared to the joining communities at Lh+1. 
The more important it is (in terms of flows and connectivity) the lower your damping 
value will be. 

An understanding of these mechanics allows for an interpretation of the different 
obtained clusters. Clearly, the rural and residential clusters are locally well embedded 
with their zip codes having a higher importance at lower scale levels. For the former, this 
loss of importance is constant when transgressing all hierarchical levels meaning that 

increasing hierarchy implicates decreasing importance for the involved zip codes. This is 

not surprising given the rural nature of the involved zip codes.  

The residential cluster, on the other hand, does not display constant damping values for 
all hierarchical levels and has a remarkable high damping value for q2. The clear gain of 
importance in the L3 level is due to two factors. First, the L3 level introduces a strong 

relation between the central zip codes of the residential cluster and the port area. 
Secondly, at the L1 level, the central zip codes contrast with the less important zip codes 
from the rural cluster, both of which add to the importance of the residential one at the 

level of the Antwerp community. All of this yields an interpretation of the residential 
cluster being a set of zip codes that have similar characteristics and are rather locally 

focused, but as a group play an important role at the level of the Antwerp community.  

Finally, the economic cluster is the most interesting case. The extremely high q1 value 
indicates the high within-community links at the L2 hierarchical level (which are the three 
different parts of the port) compared to the L1 level (which are the different zip codes of 
the port individually). In addition, the higher than Belgian average value for q2 implicates 
the zip codes in the economic cluster are extremely well linked within the L3 level too. 
This pattern is indicative for the zip codes in the economic cluster being the glue of the 
Antwerp community. They can be perceived as economic hubs at the center of their 

region, which is not difficult to imagine when one evaluates their location within the 
central business district and the port area. 

Even without assessing the absolute number of buyer-supplier linkages it is easy to 
understand that, in traditional community detection algorithms (like deployed to arrive 
at the L3 level) it are the zip codes of the economic cluster that are most important in 
delineating the Antwerp community. However, as the zip codes in the two other clusters 

constitute the largest share of the overall network, it becomes clear how typical 



applications of community detection do not tap into a significant part of the available 
information that emergent large datasets provide.  

7. Conclusions and future research 

In this paper we apply three iterations of the Louvain community detection algorithm to 

uncover the hierarchical structure in the logistics buyer-supplier network in Belgium. By 
applying the methodology proposed by Grauwin et al. (2017), we receive second and third 
level communities within the ones previously defined for the whole Belgium scale 
(Beckers et al., 2015). Similarly to the high level communities and community 
delineations in other studies (Blondel et al., 2010; Kung et al., 2014; Nelson & Rae, 2016; 
Ratti et al., 2010; Vanhoof et al., 2015), the second and first level communities exhibit a 

strong spatial contiguity. Next, like Grauwin and his colleagues, we calculate three 
damping values for each node in the network, providing information on the strength of 

the borders between each hierarchical level. This strength represents the in- or decrease 
of the relative importance of a node amongst its peers when transitioning a level. To 
better understand the spatial patterns of damping values in our case study, we apply a 
simple k-means clustering, which yields three distinct regions and allows for a better 
understanding of the forces behind the community delineations. 

To our knowledge, creating spatial patterns from hierarchical characteristics in networks 
has not yet been performed in previous work. Our approach therefore could enhance 
studies like Ratti et al. (2010) or Nelson and Rae (2016) that try to redraw the map of the 
UK or recreate the US economic geography by one-level community detection algorithms 
only. The problem our approach solves is that, as we discuss for the Antwerp community, 
high-level communities delineated by using one iteration of community detection are 
mostly based on the delineation of the strongest nodes hereby concealing the influence 
and relations of less important nodes. Given that less important nodes often constitute a 

considerable share of the overall network, many of the community detection applications 
overlook a significant part of their data hereby grasping only a small portion of the 
overwhelming potential the new big datasets provide. A critique that has also been posed 

by Schwanen (2016) and Kwan (2016), who notice the lack of attention for the local 
context in current big data analysis. 

Furthermore, we find that damping values calculated on the buyer-supplier linkages 
display a strong geographical and hierarchical variance, highlighting the difference 

among individual nodes within the dataset. Especially the large hierarchical variance of 
damping values is in contrast with previous work where findings of constant damping led 
to a generalising predictive model of mobile phone communication (Grauwin et al., 2017). 
We can conclude that for logistics such a model will probably not hold meaning that 
insights on the local context and existence of hierarchies are necessary to understand the 

complex relations of buyer-supplier linkages in logistics, rather than generalizing 
principles. 

In our case study, the k-means clustering of nodes based on their damping values serves 
well in relating these values to a local context and facilitated the detection of a 
geographical hierarchy that contrasts the network hierarchy. While we argue that our 

methodology directs attention to the specific nodes in the network, we acknowledge that 
our attempt is merely a first step on one of plausibly multiple pathways that can reconcile 
network-based insights and more qualitative, localized insights. It has, in other words, not 
been in the scope of this paper to fully integrate localized qualitative insights with 
damping values. Rather, we showed the potential is there. Yet, it would be an 



overestimation of our experiences to propose a clear path how to do so. What we can 
state, however, is that if we were to fully exploit the potential of network-based big data 
analysis for transport geography, the combination of qualitative insights and quantitative 
analysis should eventually lead to theorization or relevant input for decision making.  

Potential ideas, and thus suggestions for future research, are to link the resulting 
geographical hierarchy to consecutive steps in a hub-and-spoke structured supply chain, 
in which case different regions demand different zonal planning, although additional 
input from logistics stakeholders would be necessary.  Or, to elaborate a comparison of 
the k-means clusters over the country to allow the identification of over- and 
underperformers from a logistics perspective. Understanding the drivers of the observed 
differences and the comparison with previously identified key factors influencing the 

location decision of logistics companies (e.g. Verhetsel et al., 2015) could potentially allow 
for new insights in the latter. Similarly, the application of the used methodology on public 
transport data may help to identify missing links between some regions and overcapacity 
on other connections when comparing resulting hierarchical communities with, for 

example, delineations of daily urban systems. Although in these examples our proposed 
methodology can lead to more advanced geographical insights, hence aiding in reaching 
the level of mesogeography Miller (2017) advocates, they all demand that extra step of 
integrative qualitative analysis that we believe now forms the next step to address. 
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