
Optimizing Expectation with Guarantees in POMDPs

Krishnendu Chatterjee, Petr Novotný
IST Austria, Klosterneuburg, Austria

krishnendu.chatterjee@ist.ac.at, pnovotny@ist.ac.at

Guillermo A. Pérez,* Jean-François Raskin
Université Libre de Bruxelles, Brussels, Belgium

jraskin@ulb.ac.be, gperezme@ulb.ac.be

Dorde Žikelić
University of Cambridge, Cambridge, UK

dz277@cam.ac.uk

Abstract

A standard objective in partially-observable Markov decision
processes (POMDPs) is to find a policy that maximizes the
expected discounted-sum payoff. However, such policies may
still permit unlikely but highly undesirable outcomes, which is
problematic especially in safety-critical applications. Recently,
there has been a surge of interest in POMDPs where the goal is
to maximize the probability to ensure that the payoff is at least
a given threshold, but these approaches do not consider any
optimization beyond satisfying this threshold constraint. In
this work we go beyond both the “expectation” and “threshold”
approaches and consider a “guaranteed payoff optimization
(GPO)” problem for POMDPs, where we are given a threshold
t and the objective is to find a policy σ such that a) each
possible outcome of σ yields a discounted-sum payoff of at
least t, and b) the expected discounted-sum payoff of σ is
optimal (or near-optimal) among all policies satisfying a). We
present a practical approach to tackle the GPO problem and
evaluate it on standard POMDP benchmarks.

1 Introduction

The de facto model for decision making under uncer-
tainty are partially-observable Markov decision processes
(POMDPs) (Littman 1996; Papadimitriou and Tsitsiklis
1987), and they have been applied in diverse applica-
tions ranging from planning (Russell and Norvig 2010),
to reinforcement learning (Kaelbling, Littman, and Moore
1996), to robotics (Kress-Gazit, Fainekos, and Pappas 2009;
Kaelbling, Littman, and Cassandra 1998). One of the clas-
sical and fundamental payoff function for POMDPs is the
discounted-sum payoff that aggregates the rewards of the
transitions as a discounted sum. The traditional objective
in POMDPs has been to obtain policies that maximize the
expected discounted-sum payoff.

One crucial drawback of the traditional objective (that asks
for expectation maximization) is that it allows for undesirable
events that can happen with low probability. For example,
consider a policy σ1 that with probability 1/2 achieves pay-
off 100 and with probability 1/2 achieves payoff 0, and a
different policy σ2 that achieves payoff 20 with probability 1.

*Author supported by an F.R.S.-FNRS Aspirant fellowship.
Copyright © 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

If payoff values below 10 are undesirable, then the first pol-
icy, though better for expected payoff, allows undesirable
events with significant probability, and hence the second pol-
icy is preferable. Hence, there has been a recent interest to
study objectives where, instead of maximizing the expected
payoff (Hou, Yeoh, and Varakantham 2016), the goal is to
maximize the probability that the payoff is above a threshold.

A drawback of the approach to maximize the probability
that the payoff exceeds a threshold is that it ignores the opti-
mization aspect of maximizing the expectation. In this work
we consider an objective for POMDPs where both aspects are
present. More precisely, we consider a “guaranteed payoff
optimization (GPO)” problem for POMDPs, where given a
threshold t, the goal is to maximize the expectation while
ensuring that the payoff is at least t.

As a concrete motivation for the GPO problem, consider
planning under uncertainty (e.g., self-driving cars) where cer-
tain events are catastrophic (e.g., crashes), and in the model
they are assigned low payoffs. Such catastrophic events must
be avoided even at the expense of expected payoff. That
is, policies must maximize the expected payoff, ensuring
the avoidance of catastrophic events. Hence, for planning in
safety-critical applications the GPO problem is natural.

In this work, our main contributions are as follows:
1. We study the GPO problem for POMDPs, and present

a practical solution approach for the problem. In particu-
lar, given a POMDP with the GPO problem, we present
a transformation to a different POMDP where it suffices
to solve the traditional expectation objective. Our solu-
tion approach first constructs a representation of all strate-
gies that satisfies item a) of the GPO problem, and then
we extend the partially-observable Monte Carlo planning
(POMCP) approach to obtain optimal policies w.r.t. expec-
tation among the above strategies.

2. We present experimental results on several classical
POMDP examples from the literature to show how our
approach can efficiently solve the GPO problem for
POMDPs.

Due to lack of space, we omit formal proofs for some of our
claims in this article. We refer the interested reader to the full
technical report (Chatterjee et al. 2016).

Related Works. Works studying POMDPs with dis-
counted sum range from theoretical results (see, e.g., (Pa-

Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence (AAAI-17)

3725



padimitriou and Tsitsiklis 1987; Littman 1996)) to prac-
tical tools (e.g. (Kurniawati, Hsu, and Lee 2008; Silver
and Veness 2010)). Recent works focus on extracting poli-
cies which ensure that, with a given probability bound,
the obtained discounted-sum payoff is above a thresh-
old (see, e.g., (Hou, Yeoh, and Varakantham 2016)). The
problem of ensuring the payoff is above a given thresh-
old while optimizing the expectation has been considered
for fully-observable MDPs and the long-run average and
stochastic shortest path objectives (Bruyère et al. 2014;
Randour, Raskin, and Sankur 2015); and also with prob-
abilistic thresholds for long-run average payoff (Chatter-
jee, Komárková, and Kretı́nský 2015). As for POMDPs,
we mention constrained POMDPs (Undurti and How 2010;
Poupart et al. 2015), where the aim is to maximize the ex-
pected payoff while ensuring that the expectation of some
other quantity is bounded. In contrast, our constraints are
hard, i.e. they must hold always, not just on average. The
work probably closest to ours is (Santana, Thiébaux, and
Williams 2016) that also considers maximizing expected pay-
off among all policies satisfying a given constraint, but there
are two key differences from our work: they consider finite
horizon POMDPs, while we consider infinite horizon ones,
and more importantly, their constraints are state-based, i.e.
their policy must ensure that the execution of the POMDP
does not go through certain “violating” states. In contrast,
our “threshold constraint” is execution-based: whether a ex-
ecution yields payoff at least t cannot be determined solely
by looking at the set of states appearing in the execution,
but the whole infinite execution has to be considered. This
requires very different techniques. To our best knowledge,
the GPO problem has never been considered for POMDPs
with discounted sum.

2 Preliminaries

Throughout this work, we follow standard (PO)MDP nota-
tions from (Puterman 2005; Littman 1996).

2.1 POMDPs

We denote by D(X) the set of all probability distributions
on a finite set X , i.e. all functions f ∶ X → [0,1] such that
∑x∈X f(x) = 1. For f ∈ D(X) we denote by Supp(f) the
support of f , i.e. the set {x ∈X ∣ f(x) > 0}.

Definition 1 POMDPs. A POMDP is defined as a tuple
P = (S,A, δ, r,Z,O, λ) where S is a finite set of states,
A is a finite alphabet of actions, δ ∶ S × A → D(S) is a
probabilistic transition function that given a state s and an
action a ∈ A gives the probability distribution over the suc-
cessor states, r ∶ S × A → R is a reward function, Z is a
finite set of observations, O ∶ S → D(Z) is a probabilistic
observation function that maps every state to a distribution
over observations, and λ ∈ D(S) is the initial belief. We
abbreviate δ(s, a)(s′) by δ(s′∣s, a),

Remark 1 (Deterministic observation function)
Deterministic observation functions of type O ∶ S → Z are
sufficient in POMDPs (see Remark 1 in (Chatterjee et al.

2014)). Informally, the probabilistic aspect of the observation
function can be encoded into the transition function and, by
letting the product of the states and observations be the new
state-space, we obtain a deterministic observation function.
Thus, without loss of generality, we will always consider
observation functions of type O ∶ S → Z , which greatly
simplifies the notation.

Plays & Histories. A play (or an infinite path) in a POMDP
is an infinite sequence ρ = s0a0s1a1s2a2 . . . of states and
actions such that s0 ∈ Supp(λ) and for all i ≥ 0 we have
δ(si, ai)(si+1) > 0. We write Ω for the set of all plays. A
finite path (or just path) is a finite prefix of a play ending with
a state, i.e. a sequence from (S ⋅ A)∗ ⋅ S. A history is a finite
sequence of actions and observations h = a0o1 . . . ai−1oi ∈
(A ⋅ Z)∗ such that there is a path w = s0a0s1 . . . ai−1si with
oj = O(sj) for each 1 ≤ j ≤ i. We write h = H(w) to
indicate that history h corresponds to a path w. The length of
a path (or history) w, denoted by len(w), is the number of
actions in w, and the length of a play ρ is len(ρ) = ∞.

Beliefs. A belief is a distribution on states (i.e. an element
ofD(S)) indicating the probability of being in each particular
state given the current history. The initial belief λ is given
as part of the POMDP. Then, in each step, when the history
observed so far is h, the current belief is bh, an action a ∈ A
is played and an observation z ∈ Z is received, the updated
belief bh′ for history h′ = hao can be computed by a standard
formula (Cassandra 1998).

Infinite-horizon Discounted Payoff. Given a play ρ =
s0a0s1a1s2a2 . . . and a discount factor 0 ≤ γ < 1, the infinite-
horizon discounted payoff Discγ of ρ is:

Discγ(ρ) = ∑
∞
i=0 γ

ir(si, ai).

We also define a discounted payoff of a finite path w as
Discγ(w) = ∑

len(w)−1
i=0 γir(si, ai).

Policies. A policy is a blueprint for selecting actions based
on the past history of observations and actions. Formally,
it is a function σ which assigns to a history a probability
distribution over the actions, i.e. σ(h)(a) is the probability
of selecting action a after observing history h (we often
abbreviate σ(h)(a) to σ(a ∣ h)).

Consistent Plays. A play or a path w is consistent with a
policy σ if it can be obtained by extending its finite prefixes
using σ. Formally, w = s0a0s1a1 . . . is consistent with σ if
for each 0 ≤ i ≤ len(w) there is action a such that σ(a ∣
H(s0a0 . . . ai−1si)) > 0 and δ(si+1 ∣ si, a) > 0. A history h
is consistent with σ if there is a path w consistent with σ such
that h =H(w).

Expected Value eValP of Policies. Given a POMDP P ,
a policy σ, a discount factor γ, and an initial belief λ, the
expected value of σ from λ is the expected value of the

3726



t1

t′1

t2
t′2

mndfail fin∗,0

m2,0

m1,0

sense,0

sense,0

∗,100

∗,0

∗,0

m1,0

m2,0

ms,0

ms,0
∗,0

Figure 1: Illustrative POMDP. We assume a discount factor
γ = 1

2
. Gray rectangles represent observations. The only

probabilistic branching occurs when ms is played in t1 or
t2, and for both i ∈ {1,2} we have δ(mnd ∣ ti,ms) = 3

5
and

δ(ti ∣ ti,ms) = 2
5

. The initial belief λ assigns 9
10

to state t1
and 1

10
to t2. Asterisks denote that a transition is performed

under any action.

infinite-horizon discounted sum under policy σ when starting
in a state sampled from λ: eValP (σ) = E

σ
λ[Discγ]. This

definition can be formalized by a standard construction of a
probability measure induced by σ over the set of all plays,
which also gives rise to the expectation operator E

σ
λ (see,

e.g., (Puterman 2005)).

Worst-Case Value wValP of Policies. The worst-case
value of a policy σ from belief λ is wValP (σ) =
infρDiscγ(ρ), where the infimum is taken over the set of
all plays that are consistent with σ and start in a state sam-
pled from λ.

Example 1 Figure 1 shows a toy POMDP: A mining robot
has to mine ore, which can be of two types (states t1 and
t2). The exact type is unknown, but t1 is more likely to occur
(initial belief λ). The goal is to reach the “ore mined” (mnd )
state, in which a lump-sum reward is received. The robot can
use several mining modes: safe mode (action ms), which suc-
ceeds with probability 0.6 and does not do anything if it fails,
or type-specific mining modes (m1 and m2) which succeed if
applied on the correct type but result in a catastrophic failure
if used on a wrong type. It can also use a sensor to accurately
determine the type (after which a type-specific action can be
safely used), at a cost of a one-step delay.

An exhaustive analysis of possible policies reveals that the
expected value is maximized by any policy σ which selects
m1 in the first step (we then have eValP (σ) = 45). However,
the worst-case value of such a policy is 0, as it can result
in entering fail after the first step. On the other hand, a
policy σ′ which plays sense in the first step has eValP (σ) =
wValP (σ) = 25.

Main Computational Questions. The standard POMDP
planning problem asks to compute (or approximate) the pol-
icy maximizing the expected value. In online POMDP plan-

ning, instead of computing the whole policy we have to com-
pute, in each time step, the best action in the current situation.
In other words, we must compute a good local approximation
of a (near-)optimal policy. (Ross et al. 2008). In contrast,
in the threshold planning problem we are asked to compute
a policy maximizing the worst-case value and thus provide
strict guarantees on the performance of the system (Zwick
and Paterson 1996). In this paper, we combine these two
approaches and study the guaranteed payoff optimization
(GPO) problem, where we are given a POMDP P and a
threshold t ∈ R and we have to compute a policy σ such that
a) σ satisfies a threshold constraint: wValP (σ) is at least t.
b) Let gValP (t) denote the best expected value obtain-

able while ensuring a worst-case payoff of at least t, i.e.
gValP (t) ∶= sup{eVal(π) ∣ wValP (π) ≥ t}. Among all
policies that satisfy item a), σ has ε-maximal expected
value, i.e. eValP (σ) ≥ gValP (t) − ε.

To efficiently tackle the GPO problem we aim to compute,
in an online fashion, a local approximation of policy σ above.
However, we do not relax requirement a). Approximations
notwithstanding, the online planning algorithm we seek is
such that given t, the discounted payoff of every single play
that can be produced by the algorithm is at least t.

Example 2 Take the POMDP in Figure 1 and a threshold
t = 5. As shown in Example 1, a policy σ′ playing sense in the
first step satisfies wValP (σ′) ≥ t. However, there are better
(w.r.t. the expected value) policies satisfying this constraint.
The best such policy is a policy σ′′ which twice plays ms
and then plays sense. This policy satisfies eValP (σ′′) = 37
and wValP (σ′′) = 6.25. (Also note that the optimal policy
to maximize the expected payoff plays m1 at the very start.
However, with non-zero probability, this strategy violates the
worst-case threshold t = 5.)

3 Policies for GPO Problem

We first show the GPO problem is different from the classical
expectation maximization.

Example 3 (Beliefs are not sufficient for GPO.) It is
known that beliefs form a sufficient statistic of history for
achieving the optimal expected value, i.e. there is always a
deterministic belief-based policy σ — that is, a policy such
that for each history h the distribution σ(h) is Dirac and
determined solely by the belief after observing h — with
optimal expected value (Sondik 1971). However, beliefs are
not a sufficient statistic for the GPO problem, as witnessed
by Example 2: suppose that we use policy σ′′ and consider
histories h = (ms , o,ms, o) and h̄ = (ms , o), where o is the
observation received in t1 and t2. The beliefs bh and bh̄ are
identical, and yet σ′′(h) ≠ σ′′(h̄), i.e. σ′′ is not belief-based.

Overview of Policy Representation. We show (in Corol-
lary 1) that a sufficient statistic for solving the GPO problem
is a tuple (bh, remt

γ(h)), where bh is the belief after history
h and remt

γ(h) is the “remaining” distance to the threshold

3727



which we need to accumulate in the future. Formally,

remt
γ(h) = (t −min{Discγ(w) ∣H(w) = h}) /γ

len(h).

This is similar to other (PO)MDP planning problems that
work with thresholds (White 1993; Hou, Yeoh, and Varakan-
tham 2016). However, we prove more: we obtain a precise
local characterization of policies that satisfy the threshold
constraint. More precisely, we show that for each history h,
there is a set of allowed actions Allow t

γ(h) such that a policy
σ satisfies wValP (σ) ≥ t if and only if for each history h it
holds Supp(σ(h)) ⊆ Allow t

γ(h). We show that the function
Allow t

γ can be finitely represented and, for any history h, its
value can be computed algorithmically. This permits us to
split the solution of the GPO problem into two separate parts:
1.) We compute the function Allow t

γ , and 2.) we use it to
restrict a standard online planning algorithm so that it always
returns an action allowed for the current history.

Allowed Actions Allow t
γ . Intuitively, an action a should

be allowed after some history h only if the payoff we are
guaranteed to accumulate using a in the current step (i.e.
mins∈Supp(bh) r(s, a)) plus the best payoff which we can
guarantee from the next step onward is at least remt

γ(h). To
formalize the “best payoff guaranteed from the next step on”
we define the future value of any history h as

fVal(h) = supσ wVal
P [bh](σ),

where P [bh] is a POMDP identical to P except for having
initial belief bh and the supremum is taken over all policies
in P [bh].

Belief Supports Suffice for the Worst Case. The crucial
observation is that the future value of a history h is deter-
mined only by the support of bh.

Lemma 1 If histories h,h′ in a POMDP P are such that
Supp(bh) = Supp(bh′), then fVal(h) = fVal(h′).

Intuitively, this is because the worst-case value of a policy
(and thus also a future value of a history) does not depend
on any transition probabilities. In a slight abuse of notation,
we sometimes treat fVal as a function from 2S to R, i.e.
fVal(B), for B ⊆ S, is equal to fVal(h) for all histories h
such that Supp(bh) = B.

Ψ as an Approximation of fVal . Since computing
fVal(B) exactly can be inefficient in practice, we often need
to work with approximations of fVal(B), without relaxing
the threshold constraint. We thus introduce a notion of a Ψ-
allowed action. Let Ψ∶2S → R be a function assigning num-
bers to belief supports. We say that an action a is Ψ-allowed
for t ∈ R after history h, and write it a ∈ Ψ-Allow t

γ(h), if for
all states s ∈ Supp(bh) and all observations o ∈ Z such that
hao is a history it holds that

r(s, a) + γ ⋅Ψ(Supp(bhao)) ≥ rem
t
γ(h). (1)

If Ψ is the function fVal , we write simply a ∈ Allow t
γ(h). We

typically aim at computing a lower bound on fVal , i.e. a func-
tion Ψ such that Ψ(B) ≤ fVal(B) for each B ∈ 2S . Then, as
shown below, playing Ψ-allowed actions still guarantees that
the threshold t is eventually surpassed.

Correctness of the Approximation. The correctness of
the definition is summarized in the following proposition. We
say that a policy σ is Ψ-safe for t ∈ R if for each history h
consistent with σ it holds that Supp(σ(h)) ⊆ Ψ-Allow t

γ(h).

Proposition 1 Let Ψ∶2S → R be a function such that
Ψ(B) ≤ fVal(B) for each B ∈ 2S . Then any policy σ that is
Ψ-safe for t satisfies wValP (σ) ≥ t. Moreover a policy π is
fVal -safe for t if and only if wValP (π) ≥ t.

Corollary 1 Assume that there is a policy σ with
wValP (σ) ≥ t. Then there is also a policy π such that
wValP (π) ≥ t and eValP (π) = gValP (t), and moreover, π
is belief-and-payoff, based, i.e. for all histories h,h′ such that
(bh, rem

t
γ(h)) = (bh′ , rem

t
γ(h

′)) it holds π(h) = π(h′).

From (1) we see that to compute Allow t
γ(h) we have

to keep track of remt
γ(h) (which can be easily done on-

line) and to compute fVal(Supp(bh)) (or a suitable under-
approximation thereof). In the next section we show how to
do the latter.

Example 4 Consider the POMDP from Figure 1 with a
threshold t = 6.25. Then fVal({fin}) = fVal({fail}) = 0,
fVal({t1, t2}) = 25, fVal({t′1}) = fVal({t′2}) = 50, and
fVal({mnd}) = 100. Initially, for the empty history, we
have rem6.25

0.5 (⋅) = 6.25 and therefore the only allowed
actions are ms and sense because for all i ∈ {1,2} we
have r(ti,m3−i) + γfVal({fail}) < rem6.25

0.5 (⋅). Suppose
that ms is played and that the next observation witnessed
is O(t1) = O(t2) (thus, the belief is the same as be-
fore). We have rem6.25

0.5 (msO(t1)) = 12.5. In this case, the
only allowed action is sense because for all i ∈ {1,2}
r(ti,ms) + γfVal({t1, t2}) < rem6.25

0.5 (msO(t1)) and m1

and m2 are still not allowed (since we have not accumulated
any payoff and have the same belief as before). Hence, sense
is played and consequently we obtain a payoff of 25 (because
of discounting). We remark that 25 is, as required, above the
threshold t = 6.25.

4 Computing Future Values

The threshold constraint in the GPO problem is global, i.e. it
talks about all runs compatible with a policy. Hence, solving
the GPO problem is unlikely to be amenable to purely online
methods, which compute only local approximations of poli-
cies. In this section we show how to compute future values in
an offline pre-processing step. Although this requires a global
analysis of a POMDP, the pre-processing step can be done
efficiently since computation of future values only requires
working with belief supports rather than beliefs.

3728



Belief Supports & Valid Belief Supports VBelSup. A
belief support B ⊆ 2S is valid if either B = Supp(λ) or
there is a history h such that B = Supp(bh). Only valid
supports can be encountered during the planning process
and thus we only need to compute future values thereof. We
denote by VBelSup(P ) the set of valid belief supports of
POMDP P ; the set can be computed by a simple iterative
procedure.

Observable Rewards. We present efficient computation
of future values under the assumption that rewards are
observable. This holds for many real-world applications,
see, e.g. examples in (Hou, Yeoh, and Varakantham 2016;
Chatterjee et al. 2015). Formally, POMDP P has observable
rewards if r(s, a) = r(s′, a) whenever O(s) = O(s′). From
a theoretical point of view, observability of rewards is nec-
essary since without it, the computation of future values is
at least as hard as solving a long-standing open problem in
algebraic number theory. More precisely, if the rewards of a
given POMDP are not observable, the computation of future
values is at least as hard as solving the target discounted sum
problem, a long-standing open problem in automata theory
related to other open problems in algebra (Boker, Henzinger,
and Otop 2015). However, for POMDPs with unobservable
rewards we can at least obtain an under-approximation Ψ of
fVal , and hence our framework is also applicable to them.

Lemma 2 If rewards in P are observable, then for each B ∈
VBelSup(P ) and each s, s′ ∈ B,a ∈ A it holds r(s, a) =
r(s′, a).

We thus define r(B,a) as r(s, a) for some s ∈ B.

Future Value Characterization. We start by providing a
characterization of future values. A successor of a belief
support B under action a and observation o is a belief sup-
port Δ(B,a, o) = o ∩ ⋃s∈B Supp(δ(s, a)). Consider the
following system of max-min equations with variables xB ,
B ∈ VBelSup(P ):

xB =max
a∈A

min
o∈Z

Δ(B,a,o)≠∅

r(B,a) + γ ⋅ xΔ(B,a,o). (2)

(Each B ∈ VBelSup(P ) appears on the LHS of exactly one
equation in the system.)

Proposition 2 The system (2) has a unique solution
{x̃B}B∈VBelSup(P ), and it satisfies x̃B = fVal(B).

Game Perspective for the Worst Case. Hence, it suffices
to find a solution to system (2). But the form of the sys-
tem is identical to the one characterizing optimal values in
2-player zero-sum discounted games (Zwick and Paterson
1996). These games can be imagined as fully-observable
MDPs in which the outcomes of actions are not resolved
by a random choice but by a malicious adversary. The sys-
tem (2) per se corresponds to a game where elements of
VBelSup(P ) are the states, actions are the same as in P , and
possible effects of actions are given by the function Δ.

Algorithms to Compute Future Values. Hence, to com-
pute future values in practice we can employ one of sev-
eral efficient algorithms for solving discounted-sum games
(e.g. (Brenguier 2016)). A simple yet efficient approach
is to use the standard value iteration for games: we com-
pute a sequence f (0)f (1)f (2) . . . of functions of type
VBelSup(P ) → R such that f (0)(B) = 0 for each B, and for
i ≥ 1 we inductively define

f (i)(B) =max
a∈A

min
o∈Z

Δ(B,a,o)≠∅

r(B,a)+γ ⋅ f (i−1)(Δ(B,a, o)).

From (Zwick and Paterson 1996) it follows there is always
j such that for all B ∈ VBelSup(P ) we have f j(B) =
f j−1(B), i.e. f j(B) is the solution to (2), and moreover j ≤
3+ log2(max(s,a)∈S×A ∣r(s, a)∣)+

1
2
⋅ (∣S∣+3)2 ⋅

log2(den(γ))
1−γ

,
where den(γ) is a denominator of γ in its reduced form.
Hence, the value iteration converges in at most exponentially
many steps.1

Theorem 1 Future values of all valid belief supports in P
can be computed in time exponential in the size of P .

Although the theoretical bound is exponential, there are
several reasons for the method to work well in practice:
(1.) In a concrete instance, the number of valid supports
can be significantly smaller than exponential. (2.) Reach-
ing the fixed-point of the value iteration may also require
significantly smaller number of steps than the theoretical
upper bound suggests. (3.) One can show that for each
i ≥ 0, f (i) ≤ fVal . Hence, even if reaching the fixed point
takes too much time, we can set up a suitable timeout af-
ter which the value iteration is stopped, say at iteration
i. Then, by Proposition 1 any policy that is f (i)-safe for
t has worst-case value ≥ t. (4.) Value iteration is a sim-
ple and standard algorithm for which efficient implemen-
tations exist (see, e.g., (Littman, Dean, and Kaelbling 1995;
Spaan and Vlassis 2005)).

Important note on Ψ: generally, Ψ ≤ fVal does not guar-
antee that a Ψ-safe policy exists, which is necessary to apply
Proposition 1. The following lemma resolves this.

Lemma 3 For any i ≥ 0 the following holds for the functions
f (i) produced by game value iteration: if f (i)(Supp(λ)) ≥ t,
then there exists a policy σ which is f (i)-safe for t.

In particular, if fVal(Supp(λ)) ≥ t then a fVal -safe pol-
icy for t exists, irrespective of the way in which fVal is
computed.

5 Solving the GPO problem

We solve the GPO problem by modifying the partially-
observable Monte Carlo planning (POMCP) algorithm (Sil-
ver and Veness 2010).

1Since the number 1
1−γ

can be exponential in the bitsize of γ.

3729



Figure 2: Plots of results obtained from simulating (1.) a RockSample benchmark, (2.) the POMDP from Example 1, and (3.) a
hallway benchmark with probabilistic spinning (a.k.a. traps), all with increasing worst-case thresholds (until fVal(Supp(λ))).
Each circle with coordinates (x, y) corresponds to a simulation of G-POMCP, ran with worst-case threshold x, that obtained y as
accumulated payoff. The vertical bars show the mean and standard deviation per worst-case threshold. (We have plotted at least
100 data-points per worst-case threshold for the RockSample benchmark; 1000 for Example 1; 20 for the hallway benchmark.)

POMCP. POMCP is an online planning method which in
each decision epoch aims to select the best action given the
current history h. In each epoch, POMCP performs a number
of finite-horizon simulations starting from belief bh in order
to compute a local approximation of the optimal expected
value function: each simulation extends history h by selecting
actions according to certain rules until the horizon is reached.
The payoff of the produced path is then evaluated, and the
result is used to update the optimal value approximation.
After all the simulations proceed, the best action according to
the estimated values is played, a new observation is received,
and the process continues as above.

POMCP data-structure. POMCP stores the information
gained in past simulations in a search tree, in which each
node corresponds to some history h′ and contains belief bh′ ,
the number Nh′ of times the history has been observed in
previous simulations, and an approximation of the optimal
expected value from bh′ . The search tree is used to guide sim-
ulations: each step in which the current history corresponds to
an internal node of the tree is treated as a multi-armed bandit
with parameters determined by numbers stored in children
of this node, which balances exploration of new branches
and exploitation of previous simulations (akin to the UCT
algorithm for MDPs (Kocsis and Szepesvári 2006)). Once the
simulation runs out of the scope of the search tree, it enters a
rollout phase, where a fixed policy (e.g. selecting actions at
random) is used to extend paths.

G-POMCP: Adapting POMCP for GPO. We propose an
augmentation of POMCP, which we call G-POMCP (guar-
anteed POMCP), specified as follows: First we enrich the
nodes of the search tree so that a node corresponding to a his-
tory h additionally includes the set Bh = Supp(bh) and the
number Rh = rem

γ
t (h). When adding a new node to a search

tree by extending history h with action a and observation
o, these attributes for the new node are updated as follows:
Bhao = Δ(Bh, a, o) and Rhao = (rem

γ
t (h) − r(Bh, a))/γ.

Note that updating Bh to Bhao requires just discrete set oper-

ations; as a matter of fact, the function Δ is computed already
during the off-line computation of future values, after which
it can be stored and used to efficiently update Bh during G-
POMCP execution. In particular, updating Bh is independent
of updating bh, which is important so as not to compromise
the threshold constraints with issues of belief precision and
particle deprivation.

G-POMCP: playing safe. The execution of G-POMCP
then proceeds in almost the same way as in POMCP, with a
crucial exception: Whenever G-POMCP is to select a (real or
simulated) action it selects only among those in Allow t

γ(h),
where h is the current history. Note that checking whether
an action is allowed is easy for histories within the search
tree, since the necessary information (Bh and Rh) is stored in
nodes of the tree. Out of the scope of the search tree, we need
to update the current belief support and remaining payoff
online, as the simulation proceeds. While this somewhat
increases the complexity of rollouts, as current belief supports
must be kept updated (POMCP only keeps track of the current
state and of payoff won so far), as noted above, updating
belief supports is easier than updating beliefs. Moreover,
this increase in complexity is only an issue in the initial
steps of the algorithm, where rollout steps dominate over tree
traversal. Previous sections yield the following result:

Theorem 2 For each threshold t ≤ fVal(Supp(λ)) the fol-
lowing holds: for each play ρ = s0a0s1a1 . . . resulting from
using G-POMCP on P ad infinitum it holds Discγ(ρ) ≥ t.
This holds independently of how precisely the algorithm ap-
proximates beliefs.

So unless it is impossible to satisfy the threshold constraint
at all, it can be surely satisfied by using G-POMCP.

Convergence. Another question is the one of convergence.
An algorithm is said to be convergent in the limit if, assum-
ing precise belief representation, the local approximation of
optimal value converges to true optimal value (in our case

3730



No. states act. obs. pre. proc. avg. lat.
tiger 7 4 6 < 0.001s < 0.009s
r.sample 10207 7 168 184s 0.816s
hallway 2039 3 18 2.02s 1.308s

Table 1: Latency of G-POMCP with planning horizon of 1K

to gValP (t)) as the number of simulations and their depth
increases. The limit convergence of G-POMCP can be proved
by a straightforward adaptation of the limit convergence proof
of POMCP (Silver and Veness 2010): we map executions of
G-POMCP on POMDP P to the executions of UCT on a
tree-shaped MDP P ′, whose states are histories of P (with
the empty history as root) and where finite paths correspond
to extending histories in P by playing allowed actions.

6 Experiments

We tested our algorithm on two classical sets of benchmarks.
The first, Hallway, was introduced in (Littman, Cassandra,
and Kaelbling 1995). In a hallway POMDP, a robot navigates
a gridworld with walls and traps. We have considered variants
in which traps cause non-recoverable damage and another
in which they just “spin” the robot — making him more
uncertain about his current location in the grid. Additionally,
we have run our algorithm on RockSample POMDPs. The
latter corresponds to the classical scenario described first
in (Smith and Simmons 2004). (We use a slight adaptation
with a single imprecise sensing action.) Our experimental
results are summarized in Figure 2 and Table 1.

Test Environment Specifications: (1.) CPU: 6-Core Intel
Zeon, 3.33 GHz, 6 cores; (2.)Memory: 256 KB of L2 Cache,
12 MB of L3 Cache, 32 GB; (3.) OS: Mac OS X 10.7.5.

Worst-Case vs. Expected Payoff. In Figure 2 we have
plotted the results of running our G-POMCP algorithm on
several benchmarks. In all three graphics, the trade-off be-
tween worst-case guarantees and expected payoff is clearly
visible: In the left figure, the expected payoff stays around
15.7 for worst-case thresholds between 0 and 6; then drops
to 11.3 for threshold values above 6.5. In the center figure,
the expected payoff is ∼44.7 when the worst-case threshold
is 0; stays around 36 for thresholds between 1 and 12 (with a
slightly negative slope); then drops to 25 for threshold values
above 12.5. Finally, in the right figure, the expected payoff
steadily decreases for increasing worst-case threshold values.
In particular, for threshold 0 the expected payoff is ∼7137
while for threshold 5150 it is ∼6161.

Latency. In Table 1 we show the latency — the amount
of time it takes to determine, at each epoch, which action to
play next — of G-POMCP on three of the benchmarks we
considered. (Though we have run the tool on several others,
these are the biggest.) Observe that, even for relatively big
POMDPs, the average latency is in the order of seconds. Also,
note that the pre-processing step is not too costly.

Tool Availability. Our implementation of the
G-POMCP algorithm can be fetched from
https://github.com/gaperez64/GPOMCP.

7 Discussion

In this work we have given a practical solution for the GPO
problem. Our algorithm, G-POMCP, allows to obtain a pol-
icy which ensures a worst-case discounted-sum payoff value
while optimizing the expected payoff. We have implemented
G-POMCP and evaluated its performance on classical fami-
lies of benchmarks. Our experiments show that our approach
is efficient despite the exact GPO problem being fundamen-
tally more complicated.

Acknowledgements

The research leading to these results was supported by the
Austrian Science Fund (FWF) NFN Grant no. S11407-N23
(RiSE/SHiNE); two ERC Starting grants (279307: Graph
Games, 279499: inVEST); the Vienna Science and Tech-
nology Fund (WWTF) through project ICT15-003; and the
People Programme (Marie Curie Actions) of the European
Union’s Seventh Framework Programme (FP7/2007-2013)
under REA grant agreement no. [291734].

References

Boker, U.; Henzinger, T. A.; and Otop, J. 2015. The Target
Discounted-Sum Problem. In LICS, 750–761.
Brenguier, R. 2016. A solver for Mean Payoff Games, based
on gain and bias equations and the Z3 SMT solver. https:
//github.com/romainbrenguier/MeanPayoffSolver. Accessed
date: 2016-08-07.
Bruyère, V.; Filiot, E.; Randour, M.; and Raskin, J.-F. 2014.
Meet Your Expectations With Guarantees: Beyond Worst-
Case Synthesis in Quantitative Games. In Mayr, E. W.,
and Portier, N., eds., STACS, volume 25 of LIPIcs, 199–213.
Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik.
Cassandra, A. 1998. Exact and approximate algorithms
for partially observable Markov decision processes. Brown
University.
Chatterjee, K.; Chmelik, M.; Gupta, R.; and Kanodia, A.
2014. Optimal Cost Almost-sure Reachability in POMDPs.
CoRR abs/1411.3880.
Chatterjee, K.; Chmelik, M.; Gupta, R.; and Kanodia, A.
2015. Optimal Cost Almost-sure Reachability in POMDPs.
In AAAI. AAAI Press.
Chatterjee, K.; Novotný, P.; Pérez, G. A.; Raskin, J.-F.; and
Dorde Žikelić. 2016. Optimizing expectation with guarantees
in pomdps (technical report). CoRR abs/1611.08696.
Chatterjee, K.; Komárková, Z.; and Kretı́nský, J. 2015. Uni-
fying Two Views on Multiple Mean-Payoff Objectives in
Markov Decision Processes. In LICS, 244–256. IEEE Com-
puter Society.
Hou, P.; Yeoh, W.; and Varakantham, P. 2016. Solving Risk-
Sensitive POMDPs With and Without Cost Observations. In
Schuurmans, D., and Wellman, M. P., eds., AAAI, 3138–3144.
AAAI Press.

3731



Kaelbling, L. P.; Littman, M. L.; and Cassandra, A. R. 1998.
Planning and acting in partially observable stochastic do-
mains. Artificial intelligence 101(1):99–134.
Kaelbling, L. P.; Littman, M. L.; and Moore, A. W. 1996.
Reinforcement learning: A survey. Journal of Artificial Intel-
ligence Research 4:237–285.
Kocsis, L., and Szepesvári, C. 2006. Bandit Based
Monte-Carlo Planning. In Fürnkranz, J.; Scheffer, T.; and
Spiliopoulou, M., eds., ECML, volume 4212 of LNCS, 282–
293. Springer.
Kress-Gazit, H.; Fainekos, G. E.; and Pappas, G. J. 2009.
Temporal-Logic-Based Reactive Mission and Motion Plan-
ning. IEEE Transactions on Robotics 25(6):1370–1381.
Kurniawati, H.; Hsu, D.; and Lee, W. 2008. SARSOP:
Efficient Point-Based POMDP Planning by Approximating
Optimally Reachable Belief Spaces. In Robotics: Science
and Systems, 65–72.
Littman, M. L.; Cassandra, A. R.; and Kaelbling, L. P. 1995.
Learning Policies for Partially Observable Environments:
Scaling Up. In ICML, 362–370.
Littman, M. L.; Dean, T. L.; and Kaelbling, L. P. 1995. On
the Complexity of Solving Markov Decision Problems. In
Besnard, P., and Hanks, S., eds., UAI, 394–402. Morgan
Kaufmann.
Littman, M. L. 1996. Algorithms for Sequential Decision
Making. Ph.D. Dissertation, Brown University.
Papadimitriou, C. H., and Tsitsiklis, J. N. 1987. The com-
plexity of Markov Decision Processes. Mathematics of Oper-
ations Research 12:441–450.
Poupart, P.; Malhotra, A.; Pei, P.; Kim, K.; Goh, B.; and
Bowling, M. 2015. Approximate Linear Programming for
Constrained Partially Observable Markov Decision Processes.
In AAAI, 3342–3348. AAAI Press.
Puterman, M. L. 2005. Markov Decision Processes. Wiley-
Interscience.
Randour, M.; Raskin, J.-F.; and Sankur, O. 2015. Variations
on the Stochastic Shortest Path Problem. In D’Souza, D.; Lal,
A.; and Larsen, K. G., eds., VMCAI, volume 8931 of LNCS,
1–18. Springer.
Ross, S.; Pineau, J.; Paquet, S.; and Chaib-draa, B. 2008.
Online Planning Algorithms for POMDPs. J. Artif. Intell.
Res. (JAIR) 32:663–704.
Russell, S. J., and Norvig, P. 2010. Artificial Intelligence - A
Modern Approach (3. internat. ed.). Pearson Education.
Santana, P. H. d. R. Q. e. A.; Thiébaux, S.; and Williams,
B. C. 2016. RAO*: An Algorithm for Chance-Constrained
POMDP’s. In AAAI, 3308–3314. AAAI Press.
Silver, D., and Veness, J. 2010. Monte-Carlo Planning in
Large POMDPs. In Lafferty, J. D.; Williams, C. K. I.; Shawe-
Taylor, J.; Zemel, R. S.; and Culotta, A., eds., Advances in
Neural Information Processing Systems 23. Curran Asso-
ciates, Inc. 2164–2172.
Smith, T., and Simmons, R. 2004. Heuristic search value
iteration for POMDPs. In UAI, 520–527. AUAI Press.

Sondik, E. J. 1971. The Optimal Control of Partially Observ-
able Markov Processes. Stanford University.
Spaan, M. T. J., and Vlassis, N. A. 2005. Perseus: Random-
ized Point-based Value Iteration for POMDPs. J. Artif. Intell.
Res. (JAIR) 24:195–220.
Undurti, A., and How, J. P. 2010. An online algorithm for
constrained POMDPs. In Robotics and Automation (ICRA),
2010 IEEE International Conference on, 3966–3973. IEEE.
White, D. 1993. Minimizing a Threshold Probability in
Discounted Markov Decision Processes. Journal of Mathe-
matical Analysis and Applications 173(2):634–646.
Zwick, U., and Paterson, M. 1996. The Complexity of Mean
Payoff Games on Graphs. Theoretical Computer Science
158(1–2):343–359.

3732




