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Abstract

An implementation of updating techniques similar to finite element updating in structural
dynamics is developed for thermal material inspection using adaptive response surfaces to ap-
proximate experimental parameters. In general, thermal models contain high non-linearities in
their parameters which influences updating accuracies. This is further investigated in this work.
Several adaptive response surface regression methods are compared: interpolation, piecewise
spline and polynomial regression functions. Next, the influence of the choice of optimisation pa-
rameters is discussed and compared with several global and local optimisation routines. Finally, a
well-suited regression technique is investigated which transforms the dataset to a smaller, focused
response model in each optimisation loop and delivers a proper regression accuracy. This results
in data-reduction for the model to be optimised.
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1. Introduction

Computer simulation is an economic and quick way to determine and simulate material be-
haviour. The use of Finite element analysis (FEA) in the design of large structures is exponentially
growing, but in uttermost cases the use of FEA remains in the design stage. Two of the largest
drawbacks of the use of FEA beyond the design stage are the approximated material property
parameters and the high computational cost to build an accurate FE model of the full structure.
Finite element model updating (FEMU) could deliver a solution for these two disadvantages
by updating with non-destructive testing data. These methods are widely used in modal vibra-
tion inspection [1–5], but their use is limited in thermal conductivity optimisation problems
for problems with non-linear convection and radiation boundaries [6]. Inverse methods for the
first-order partial differential equation (PDE) of the standard heat transfer problem containing
conduction is described in details in [7]. The inverse problem of heat transfer functions with
different mixed-boundary constrains are challenging to implement in FEMU routines due to the
lack of an explicit relation between the model and the experimental measurements. Furthermore,
after production of the structure, there is often no link between the material properties in the FE
model and the real material characteristics. The FE models can be updated to the real state of the
structure with a properly defined FEMU strategy based on an optimisation method.

FEA has been applied as a verification tool in a number of applications involving infrared
thermography for Non-destructive evaluation (NDE) applications [8–11], but the use of FEMU on
thermal radiation for active thermography is relatively original. There are a few differences with
well-known modal optimisation for the reasons that the physical equation is a first order partial
differential equation and that thermal modes are described differently from vibration modes [12].
This results in a different manner of defining the objective function and solver choice described
in Section 3.3. Besides, an extreme non-linear behaviour of the response to limited parameter
differences and a large dependency on the absolute temperature of the parameter influence are
common in thermal FEMU but rare in structural dynamics.

Thermography is a growing evaluation technique and has become a widely used NDE tech-
nique for damage detection in metallic structural elements [13], as well as CFRP (Carbon fiber
reinforced polymer) and GFRP (Glass fiber reinforced polymer) composites [14]. Especially
with the increasing application of composite laminates such as CFRPs and GFRPs, the thermal
conductances inside the components becomes anisotropic and quantitative prediction becomes
complex. The generally used form of active thermography makes use of heat pulses emitted
to the surfaces and is called Pulsed thermography (PT) [15]. There are countless advantages
of thermography, these include the fact that it is a non-contact inspection and measurement
technique, it can be performed in-situ, it can cover large areas and it is a quantitative method
[16]. The problem of signal processing is essential in the field of active thermography. With the
assistance of dedicated developed image and signal processing algorithms, it is possible to detect
minuscule (µm) discontinuities inside structures. By reducing the amount of data and optimising
the experimental setup, the process is speeded up, but a certain decrease in accuracy has to be
kept in mind.

In this paper, the best optimisation strategy is searched based on the adaptive response surface
method developed for modal analysis of a vibration problem in [17]. Due to the different parameter
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behaviour in the thermal models, the best FEMU methodology will differ from the one in structural
dynamics as compared in [18]. In this paper, a robust, efficient method is searched to build an
accurate FE model by using FEMU with reduced PT data. Therefore, a comparison is made
between different optimisation strategies modified from structural dynamics FEMU methods to
compare the behaviour with literature on Structural Dynamics. In order to reduce the optimisation
time, the method developed by Peeters et al. of [19] makes use of a regression model. Within this
work, at both the level of regression model and the level of optimisation strategy, a comparison
will be made with modified state-of-the-art techniques meant for structural dynamics to further
improve the results in [19]. The three utmost used regression methods in recent literature are
n-dimensional piecewise spline models, piecewise polynomial models and n-dimensional linear
interpolation. Most of these techniques are used in vision applications or statistical modelling
instead of FEMU routines [20, 21]. As the use of machine learning techniques like neural networks
needs a large training step which should be repeated for each FE iteration in the analysis, this
method is not included in the comparison [18, 22, 23]. Not all optimisation routines are applicable
for FEMU due to the limited amount of initial points in the design space [5]. The selection of
the tested optimisation methods is based on the results of the comparison in [18] for structural
dynamics. A comparison is made between the best gradient-based method of [19] (a least-squared
non-linear curve fitting algorithm based on the trust-region method) and three non-gradient based
methods: a Nelder-Mead simplex method, a particle swarm evolutionary optimization method
and a genetic algorithm as shown in [18] to be promising techniques for FEMU.

The paper is organised starting with a description of the test case, containing the experimental
measurements and the definition of the FE model in Comsol Multiphysics 5.0. Afterwards, the
optimisation method based on an adaptive response surface method, described in [19] is adapted
and the influence of the chosen parameters is discussed. A comparison is made between different
response surface fitting techniques, for all the FE mesh points. These response surfaces are used
with multiple optimisation solvers and several broadly used optimisation algorithms. The results
are verified using a sensitivity analysis and a uniqueness study. Finally, the modification of the
experimental parameters of the FE model to the realistic values of the test sample are feasible.

2. Description of the test case

In section 3, the optimisation routine is described based on a specific thermographic experi-
ment, widely used for validation of modern PT NDE algorithms. The goal is to retrieve an FE
model with the same thermal response as measured with the experimental validation.

2.1. Experimental measurements
Test sample. Flat bottom hole plates are widely used to simulate the temperature impedance of
delamination failures in composite materials. In this research, the used material is a homogeneous
Poly vinyl chloride (PVC) test plate where it is impossible to retrieve by accident unforeseen
delamination failures. The chosen test case delivers a bypass methodology for false positive mea-
surements. In this study, the behaviour of the material properties of the test plate is approximated
as being isotropic [24].
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Figure 1: Technical drawing of the Flat Bottom Hole plate. Figure 2: Experimental setup in an anechoic cham-
ber.

Experimental setup. The PVC plate as shown in Figures 1 and 2 is heated by two heat sources of
1 000 W electrical power each orientated to the test plate. The sources are positioned straight to
the plate as shown in Figure 2. A Xenics Gobi 640 microbolometer camera is used with a detector
wavelength range of 8-14 µm, a Noise equivalent temperature difference (NETD) of ≤ 50mK and
a frame size of 640x480 pixels [25, 26]. The camera is placed on the centre-to-centre distance
between both heat sources as shown in Figure 2. The heating stage is a 1 sec flash heating and
the cooling is monitored for 100 seconds. The camera and heat sources are located at a distance
of 1 m. The atmospheric conditions are held stable and the measurements are performed in a
climatically isolated environment. The dimensions of the test sample and the sizes of the flaws
inside the PVC test sample are shown in Figure 1. The experimental measurements are used to
update the initial verification model with respect to the method described by [19] and further
explained in Section 3.

Fundamentals of Pulsed Thermography. The PT measurements are used to validate the optimisa-
tion routines. This active-thermography NDE technique is based on the response analysis of the
surface temperature of the structure to an emitted thermal wave initiated by an excitation pulse
[27]. In this study, the reflective mode [11] is used whereby defective areas appear with a local
higher temperature related to the thermal diffusivity of the defect. The thermal data are stored
for several time steps which delivers a 3D matrix with in the XY-direction the temperature of
each pixel and in the Z-direction each time frame [11, 28]. Local material properties, thickness
or experimental setup parameters such as excitation power and distance can be defined [11].
The measurement accuracies are dependent on the ambient parameters: ambient temperature,
emissivity, reflecting temperature and humidity. These parameters should be included in the
optimisation routine if they are not controllable. The accuracy of the thermography measurement
can be increased by image processing of the data using PPT (Pulsed phase thermography), or by
other methods described in [11, 27, 29].

4



Figure 3: Schematic view of the experimental setup with the PVC plate

2.2. FE model
The model is built and simulated in the commercial FE multiphysics software COMSOL

Multiphysics 5.2 and a constant, Newtonian non-linear method is used with a modernised
implementation of the Differential algebraic equation (DAE) solver which uses backwards differ-
entiation formulas [30]. There is made use of 2940 triangular linear Lagrange elements with a
maximal growth rate of 1.3. To simulate the time dependent heat radiation from an external source
to the inspected surface and the emitted response of the surface [31]. A schematic representation
of the simulated model is shown in Figure 3. The centres of the defects, projected on the sample
surface are the evaluated points for the comparison between experimental validation and the
numerical model. It should be noted that the experiments and FE model are similar to those in
[19], but for convenience of the reader the setting is repeated in the following section.

Governing Physics.

ρCp
∂T
∂ t

+∇.(−κ∇T ) = Q with T (x,y,z,0) = T∞ = 292.88 [K] (1)

The governing differential equation is a conductive heat transfer with an external heat source,
formulated in Eq. (1) where ρ is the density, Cp is the material heat capacity at constant pressure,
T is the absolute surface temperature in Kelvin, κ is the material thermal conductivity, t is the
time and Q(t) is the time-dependent heat source [28, 32]. The air between the lamps and the
surface is neglected. Nearly all boundary conditions are defined according to reference [12, 31]
only the boundary condition of the front and back surfaces should receive special attention. The
boundary condition of the front (and back) surface:

−κ
∂T
∂x

=−κ
∂T
∂y

= h(T −T∞)+σε
(
T 4−T 4

∞

)
; t > 0; 0 < x < H; 0 < y < L; (2)
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Table 1: Material Properties [40, 41].

PVC

Heat source power P [W] 1000
Heat Capacity Cp [J/(Kg.K)] 1050
Density ρ [Kg/m3] 1445
Surface Emissivity 0.92

The depth of an occurring defect can be found using the known diffusion length µ as widely
validated in [33–36], which can be estimated from the following equation:

z =C1

√
α

π · fb
=C1 ·µ with α = κ/Cpρ (3)

Here α is the thermal diffusivity, L, H and d are respectively the length, the height and thickness
of the plate in (m), h is the convective heat transfer coefficient, σ is the Stephan-Boltzmann
constant, fb the blind frequency, C1 a constant typically equal to 1.82 [33] and ε is the emissivity in
function of θ , the angle between the ray and the normal vector as defined in [37]. The convective
heat transfer coefficient is calculated according to [38] from the knowledge that it is a vertical
plate considering natural convection with a vertical length of the plate equal to H. The ambient
temperature T∞ equals 292.88 K. The numerical solution can be considered sufficiently accurate
for thermographic NDE applications as described in [39].

Q(t) = ε
(
P(t)+F∞σT 4

∞−σT 4)+h · (T∞−T ) with
{

P(t) = P f or t ≤ 5
P(t) = 0 f or t > 5

}
(4)

The external heat source has a non-linear characteristic as defined in Eq. (4) where, F∞ is the
field of view factor of the ambient reflections, and P is the power of the heat source [32]. A few
simplifications are made:

• The air velocity is assumed to be 0 (due to the laboratory characteristics).

• The thermal conductivity κ of PVC is isotropic [24].

• The test sample is opaque and behaves equal to an ideal grey body which makes ε indepen-
dent of θ [37].

The fixed parameters of the numerical model, which are not used within the optimisation routine,
are described in Table 1. The field of view factor is computed automatically within the numerical
simulation software [31].

3. Methodology

The developed optimisation routine makes use of an adaptive response surface regression to
use a limited initial amount of FE models to feed an optimisation routine which is specifically
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designed for general thermal problems where parameters linked to the general heat equation can
be optimised or estimated using experimental input data. The algorithm uses a pan and zoom
function to move through the design space and delivers faster predictions with fewer iterations
than standard updating routines [17, 19].

3.1. Adaptive response surface method (ARSM)
The adaptive response surface optimisation routine is used to optimise numerical models with

lots of data points and the time reducing by the algorithm increases as the number of parameters
rises [5]. The ARSM methodology is initially mentioned by G. Wang [42] and simultaneously
further developed by multiple researchers [5, 43–48]. The routine is designed to handle multiple-
output time series data [19]. The optimisation procedure can be divided into the following steps
and is shown schematically in Figure 4:

1. Starting reference simulation points is running and a correct objective function is built of
the difference between the FE model and the target value (experiment or validation model).

2. The FE model is replaced by a meta-model of response surfaces.
3. The optimisation routine is run on a specific objective function.
4. The estimated parameter values are used as input parameters for an improved FE model

that corrects the response model.
5. Only the points closer to the minimum are used to form the response surface.

As a benefit of step two, the optimisation time decreases without making the model less accurate.
It is possible to use multiple objective functions or build an objective function related to multiple
outputs within the third step. The main algorithm is originally published in [19], further details
are repeated for convenience of the reader.

The response model which is optimised is not built from a pre-defined number of design
experiments, but is adapted and refined during the optimisation routine by the pan and zoom
command [19]. The method automatically calculates the parameter influence sensitivity and
sequentially resolves multiple sets with first the major influencing parameters with fixed parameter
values for the minor influencing parameters. Succeeding, the second parameter set is optimised
and finally an influence check is performed for all parameter sets until the results converge. The
selected optimisation parameters for this comparison are chosen to provide a heterogeneous
parameter set with different non-linear response sensitivities across the time steps. The parameter
set, symbolised by vector ϑ , is defined by:

• Pulse start time Tpulse(sec), which has major influences on the first 10 time steps and controls
the amount of heat energy exposed to the test sample.

• Convective heat transfer coefficient h(W/m2K), whose influences increases over time and is
dependent on the temperature difference between the test sample and the ambient, making
the parameter time dependent and implicitly related to the first parameter.

• Thermal conductivity k(W/m·K), which has a major impact on the heat distribution over
time and is related to both the general PDE as shown in Eq.1 as to the boundary conditions
as shown in Eq.2.
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Figure 4: Schematical overview of the adaptive response surface optimisation routine.
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The presence of a defect can be found by a local decrease of the thermal conductivity k with
respect to the global parameter evaluation. As this manuscript is intended to compare the different
optimisation solvers and regression techniques, only a global set of parameters is chosen. The
objective function is defined identical for all optimisation solvers and response surface alternatives
to deliver an objective comparison. The objective function is described in Eq.5 and consists of
the difference between numerical estimated temperature and experimental temperature for all
compared points distributed over the test sample.

`(ϑ) = Tmodel(ϑ)−TEx (5)

3.2. Response surface alternatives
In this paper a comparison is made between three different response surface strategies in the

time domain: a polynomial fitting, a scattered linear interpolation and a piecewise spline fitting,
based on the ARESlab toolbox from [49].

Piecewise polynomial approximation. The first used regression technique is a multidimensional
piecewise polynomial fitting, based on [17]. For all time steps, a regressive second-order polyno-
mial model is made of the relative temperature on each time step versus the different optimisation
parameters. This results in an n+m-dimensional response surface where n is the number of
parameters and m the amount of time steps. This regression method delivers fast to evaluate
response surfaces which have an overall accurate value for which it is mostly used for structural
dynamics FEMU [17]. Major drawbacks are that the function value is non-local, which results in
a sensitivity to approximations far from the specific function value and that it is an approximate
method where the functions won’t pass through the evaluation points itself [17, 42].

N-dimensional scattered linear interpolation. The second tested regression technique is a multi-
dimensional linear interpolation of scattered data using the previous performed FE simulations
within the design space [50]. A significant advantage is an exact fit of the data to the evaluation
points and the fast local evaluation process. The drawback to linear behaviour can be that the
global minimum is missed if a strong local minimum is already found before [51].

N-dimensional spline approximation. In this paper use is made of a piecewise least-squares spline
fitting, based on the ARESlab toolbox from [49]. For every time step, a regressive spline model is
made of the mean temperature of the plate surface versus the different optimisation parameters.
It is ensured that the fit exactly goes through all evaluation points and a mix between linear,
second-order and third-order polynomials is made between automatically defined control points.
The changing of the number of control points is a drawback [51]. If the amount of control points
remains fixed, the fit cannot be made optimal for all iterations. If the amount of control points
changes through the iterations the multiple output accuracies are reduced and this reduces the
speed of the method.

3.3. Optimisation solver
Four different optimisation solvers are used. The first one is a gradient-based non-linear least

squares solver, specially adapted for curve fitting with multiple outputs (lsqcurvefit) [19, 51].
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Table 2: Parameter boundary conditions [24, 40].

Lower bound (lb) Upper bound (ub)

Pulse start time Tpulse (sec) 0 2
Convective heat transfer coefficient h (W/m2 ·K) 1 20
Thermal Conductivity κ (W/m ·K) 0.3 1.5

The other three are nongradient-based methods, described in [18] as best suitable for FE model
updating in structural dynamics: The Nelder-Mead Simplex method, a particle-swarm evolutionary
strategy and a genetic algorithm. All solvers are adapted to respect boundary values as shown in
Table 2.

Gradient based non-linear least square curve fitting. The gradient-based optimiser is designed for
non-linear, continuous problems with a continuous first derivative and is chosen for its stability
and robust objective function adaptation and excellent results as shown in [19].

The first optimisation routine is an adaptation of the well-known non-linear least-squares
strategy specially designed for curve fitting problems [51], defined in Eq.(6), where lb and ub are
respectively the lower and upper bound of the parameter set ϑ and the summation is performed
over all spatial points X and all time steps t until tend . Hereby the objective function delivers
predictions of the temperature values instead of the error function as described in Eq.(5).

argmin
ϑ

tend

∑
t=0

X

∑
i=1

(TFE,i(ϑ , t)−TEx,i)
2 with lb 6 ϑ 6 ub (6)

Within this optimiser, the Trust-region-reflective algorithm is used, based on the Gauss-Newton
method. The Trust-region-reflective is especially adapted for the use of bound constraints and
gave superior results than the Levenberg-Marquardt algorithm. Further information about the
algorithms can be found in [51–54].

Simplex. The Nelder-Mead Simplex method is a non-gradient-based optimisation routine inten-
tionally developed to optimise unconstrained optimisation problems using non-linear function
evaluations [18]. It is known for its robust optimisation for low-dimensional global optimisation
problems [55]. The basic Simplex algorithm is adapted for improved optimisation of constrained
problems [56]. The gradient is numerical approximated by a bounded version of:

`i(ϑ , t) = `0(ϑ , t)+
a

n
√

2
·
(√

n+1+n−1
)
· ei +

n

∑
k=1 6=i

[
a

n
√

2
·
(√

n+1−1
)]
· ek with i = 1,n

(7)
where e is the unit base vector and the simplex dimension a is initiated around the initial value of
the objective function `.

According to [18], the convergence is measured using the following inequality:√√√√n+1

∑
i=1

(
fi− f̄

)2

n
< τ with f̄ =

1
n+1

n+1

∑
i=1

fi (8)
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where τ is a small positive scalar, computed using f̄ . Drawbacks are the lack of precise
convergence theory, many iterations with insignificant improvement before convergence and
numerical failure can occur for even smooth functions [18]. The main advantages are [18]:

• Major progress occurs in the initial iterations, which gives rapidly acceptable results;

• A single or double function evaluation is involved in each iteration, separately from a shrink
transformation;

• An excellent decrease in function value results by using comparatively less function evalua-
tions;

• Simplicity to interpret.

In this way, it is less expensive in terms of function calls than an expensive n-dimensional search
[55].

Evolutionary strategy. The particle swarm evolutionary strategy is inspired by the model of
flocking behaviour seen by birds [18]. The algorithm has a few major advantages such as automatic
handling of variables scaling and the global search character [18]. The major disadvantage can
be the premature convergence [18]. The covariance matrix adaptation version (CMA-ES) used
in this manuscript is seen as one of the strongest updating routines for FEMU of single and
multi-objective problems in structural dynamics [57]. This algorithm has the advantage to
self-adapt the mutation distribution which makes the algorithm invariant against order-preserving
transformations of the fitness function value [57]. The method should be able to give superior and
sturdier results than the Simplex method as the amount of function evaluations raises far above
30 ·N where the algorithm is specially designed for [58]. The used implementation is originally
described in [58].

Genetic algorithm. A Genetic algorithm optimisation routine is a widely used probabilistic
optimisation technique, inspired by the natural evolution theory of Darwin where the survival of
the fittest theory is applied to populations to optimise a function [18]. The speed of convergence is
the main drawback of the method. In contrary, the significant advantages are the high probability
of global minimum detection and the ability to fit non-smooth objective functions. As the heat
pulse is discrete in nature by turning the source on and off, the temperature distribution over time
has a non-smooth time step where the heat source is switched off. We have chosen to perform
grey encoding to avoid fictive boundaries between consecutive values [59]. For further specific
information on the implementation is referred to the specific literature: [51, 59–61].

3.4. Uniqueness & Sensitivity
The uniqueness of the optimisation routines is checked by performing an ill-possedness

analysis. A global minimum of the objective function can be found and results in a unique solution
in the region specified by the parameter limits. The stability of the convergence of the optimisation
solutions is difficult to prove. Using the ARSM method as defined in section 3.1, a global solution
of the results is achieved by starting from the four different corners of the initial central composite
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design together with the central coordinate of the parameter set, built from the parameter boundary
values as shown in Table 2. If at least three of the initial starting points deliver the same result, it
is used further in the optimisation routine [19].

By Peeters et al. in [19], a simulation validation is performed to investigate if for a known
parameter set the found result converge to the same parameter set by using a simulation target
model. Due to the use of an heuristic methodology and the missing exact analytical solution, to
the authors their knowledge it is not possible to better validate the stability of the solution. The
sensitivity of the problem on the different parameters is investigated for all different regression
models and optimisation solvers using a global and local sensitivity for each parameter as described
by Cannavo in [62]. The global sensitivity has been found for all equal to 1, which means that
the global answer is only sensitive to the parameters which are implemented in the optimisation
routine. The sensitivity for each parameter is computed using the first order sensitivity coefficients
based on the FAST (Fourier amplitude sensitivity test) methodology described by Cukier et al.
[63]. The results of the FAST sensitivity analysis are provided in section 4.3.

4. Results

The results section first gives an overview within each regression technique of the performance
of the different optimisation solvers in section 4.1. The number of iterations, iteration time and
accuracy are evaluated by comparing it with the experimental data with known parameters in the
target values of each parameter. The target error is the threshold error value. The comparison
is made for the first iteration which reaches the threshold value. The optimisation routine is
continued to further evaluate the stability of the optimisation process. When available, the first
iteration which crosses the error threshold is taken in the comparison tables. In the second part, a
comparison is made between the accuracy over the different regression techniques for the most
efficient optimisation routine in section 4.2. The initial guess is chosen fixed for all optimisation
routines with random values: Pulsestart = 0.8sec, (convective) Heat transfer coefficient = 10
(W/m2K) and Thermal conductivity = 0.5 (W/m·K). All calculations are performed with an
Intel R©CoreTM i7-3930K CPU @ 3.20 GHz with 32 GB RAM.

4.1. Optimisation solver comparison
Piecewise polynomial regression. In contrast to what we expect from the knowledge of structural
dynamics updating, we notice that the regression model built with a polynomial regression model
does not properly converge for all optimisation routines. It is clearly seen in Table 3 and Figure
5 that the polynomial regression cannot optimise parameters with different influence degrees
properly. The least influential parameter (Heat transfer coefficient) remains fixed until the two
other parameters converge. Afterwards, the optimisation routine holds these two parameters
stable and optimises the second parameter. This is shown in Figure 5 by the instantaneous error
increase above 1000 calculation seconds. The reason for this behaviour is the approximation
of the regression model which does not fit accurately the known FE simulation points in the
regression model. It can also be seen that the Simplex method starts to oscillate close after the
algorithm changes to optimise only the second parameter. Within these steps, the regression model
encounters large local changes to finer estimate the global minimum. The Genetic algorithm has
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Table 3: Comparison algorithms with Piecewise polynomial regression.

Description Target LCFTRR Simplex CMA-ES GenAl

Pulse start time (s) 1.000 9.798e-1 1.022e-1 8.508e-1 9.796e-1
Heat transfer coefficient (W/m2K) 8.5 1.1e1 1.1e1 1.1e1 1.1e1
Thermal conductivity (W/m·K) 9.630e-1 9.104e-1 9.244e-1 9.211e-1 9.105e-1
Iterations / 270 331 293 271
Error ∑E (t)2 2.360e-2 2.352e-2 2.345e-2 2.356e-2 2.343e-2
Time (s) / 8.541e3 5.962e3 5.625e3 9.226e3
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Figure 5: Comparison of all optimisation routines with
the use of a piecewise polynomial regression.
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Figure 6: Comparison of all optimisation routines with
the use of a scattered linear interpolation regression.

far fewer oscillations as this technique has a superior global approach character. As a threshold
value to compare the different optimisation solvers, a stopping criterion of ∑E (t)2 = 2.360e−2
is used.

N-dimensional scattered linear interpolation. By comparing the different optimisation routines
with a linear interpolation regression as shown in Table 4, one sees that there is an exceptional
approximation possible. One of the major reasons is the exact fit through the FE points within the
regression. When we compare the different optimisers against each other, we clearly notice that
the approximation of the first and the third parameter are closer than the second due to the unequal
importance of the parameters within the investigated temperature interval, but it can be seen that
even the second parameter is estimated precisely. It is shown in Figure 6 that the Simplex and
GenAl optimisations give the fastest results. It should be remarked that the Genetic algorithm
needs the lowest number of iterations, accordingly the least amount of FE simulations, but the
iteration time is over ten times larger than the iteration time of the Simplex method due to the
larger amount of iterations used inside the genetic algorithm to find the minimum in the regression
model. For this particular case this results in the best performance of the Simplex method due to
the relatively simple FE model, but for more time-consuming FE models the Genetic algorithm
will deliver faster results. In Figure 6 can also be seen that the CMA-ES largely oscillates before
it starts to converge. As a threshold value to compare the different optimisation solvers, a stopping
criterion of ∑E (t)2 = 2.000e−5 is used.
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Table 4: Comparison algorithms with n-dimensional scattered linear interpolation.

Description Target LCFTRR Simplex CMA-ES GenAl

Pulse start time (s) 1.000 1.000 9.996e-1 9.994e-1 9.998e-1
Heat transfer coefficient (W/m2K) 8.5 8.4 8.4 8.4 8.4
Thermal conductivity (W/m·K) 9.630e-1 9.624e-1 9.626e-1 9.626e-1 9.622e-1
Iterations / 511 260 399 120
Error ∑E (t)2 2.000e-5 1.770e-5 1.732e-5 1.712e-5 1.812e-5
Time (s) / 1.737e4 5.667e3 9.140e4 6.893e3

Table 5: Comparison algorithms with n-dimensional spline based regression

Description Target LCFTRR Simplex CMA-ES GenAl

Pulse start time (s) 1.000 1.014 1.000 9.758e-1 1.015
Heat transfer coefficient (W/m2K) 8.5 7.6 6.6 8.0 8.8
Thermal conductivity (W/m·K) 9.630e-1 9.711e-1 9.730e-1 9.623e-1 9.675e-1
Iterations / 668 152 208 68
Error ∑E (t)2 4.000e-3 3.707e-3 3.239e-3 5.751e-3 2.543e-3
Time (s) / 9.598e2 7.316e2 3.168e3 3.413e3

N-dimensional spline regression. By comparing the optimisers for the n-dimensional spline
regression, we receive similar results as with the linear interpolation, as shown in Table 5. There
are a few differences we need to remark: First of all the global accuracy is almost ten times less
than for the linear interpolation with the same amount of iterations. Secondly, the time used
to converge is approximately ten times smaller than with the linear interpolation. This results
mainly in a less accurate estimation of the second parameter, but in a faster global result. Only the
Genetic algorithm has an equal distributed error between the three different parameters. Thereby
is shown that the Genetic algorithm parameter estimation is relatively independent of the influence
of the parameter, which makes it an interesting optimisation routine for white box estimation
of unbalanced parameters in FEMU. Similar to the linear interpolation regression it is shown in
Figure 7 and Table 5 that the Simplex method delivers the fastest results, but the Genetic algorithm
delivers superior results for all parameters in fewer iterations which will make it interesting to
use for more time-consuming FE simulations. Besides, Figure 7 also shows that the Genetic
algorithm delivers the precisest results before one of its termination criteria are achieved. It
needs to be remarked that the termination criteria are set equal for all compared optimisation
routines. As a threshold value to compare the different optimisation solvers, a stopping criterion
of ∑E (t)2 = 4.000e−3 is used.

4.2. Response surface approximation comparison
The results of the different regression techniques are compared with respect to an equal

accuracy in Table 6. As out of the three previous paragraphs can be concluded that for this test

14



10
3

10
4

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

LCFTRR

Simplex

CMA-ES

GenAl

Threshold

Figure 7: Comparison of all optimisation routines with
a spline regression.

10
3

10
4

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

10
2

PolySimplex

InterpolSimplex

SplineSimplex

Threshold

Figure 8: Comparison of all regression techniques using
the Simplex optimisation routine.

Table 6: Comparison regression types to an error threshold of 4.000e-3 for the Simplex optimiser.

Description Polynomial Interpolation Spline

Pulse start time (s) 1.011 9.955e-1 1.000
Heat transfer coefficient (W/m2K) 8.5 7.0 6.6
Thermal conductivity (W/m·K) 9.516e-1 9.567e-1 9.730e-1
Iterations 1239 174 152
Error ∑E (t)2 3.998e-3 3.714e-3 3.239e-3
Time (s) 2.197e4 3.733e3 7.316e2

case the Simplex method delivers the best results independent of the used regression technique.
Figure 8 shows that due to the non-perfect fit through the FE simulation points, the polynomial
regression delivers the least accurate results. We can even conclude that an exact fit through
the FE simulation points within the regression model is a mandatory constraint for updating of
thermal problems for NDE applications. The choice between interpolation and spline regression is
complex as both of them have advantages. Spline regression delivers faster results until a certain
accuracy in contrast to linear interpolation which solves longer but delivers stable and accurate
improvements. This is shown in Figure 9 where the results of Figure 8 are plotted versus the
iteration number instead of time. As a threshold value to compare the different response surface
approximations, a stopping criterion of ∑E (t)2 = 4.000e−3 is used.

4.3. Sensitivity analysis
The sensitivity analysis based on the FAST method initiated by Cukier et al [63] is shown

in Table 7. It can be seen that globally there are no significant differences between the different
regression models and optimisation solvers. The sensitivities to the different parameters are
different with a major influence of parameter 1 in contrast to the two other parameters, as already
explained in section 3.1. The only remark are the combination of the interpolation regression
with the Genetic algorithm and the least square optimisation solver for the first parameter. A clear
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explanation could not be found for it. Perhaps, this is the result of an initial parameter choice
which is close to the target value. Thereby the influence of the parameter is lower due to a flat
propagation of the response function for this parameter.

Conclusions

In this work, we demonstrated that the implementation of well-known FEMU routines when
applied to a physically varying problem results in varying performances. The implementation
in thermal NDE applications requires an exact fit through the known FE output values in the
regression stage to successfully estimate the different parameters in a non-linear problem. Ad-
ditionally, an overview is presented of the different possible optimisation routines and their
predictive abilities of thermal NDE model updating. To summarise the results, it is shown that
the Simplex method in combination with a spline regression performs ideal for less computation
intensive FE models. However, the Genetic algorithm in combination with a linear interpolation
regression model performs better for complex FE models. The results of this work can be used to
choose the broadest applicable combination of optimisation routine and regression model for FE
model updating of multiphysics problems and deliver an extra added value to the state of the art
of model updating in structural dynamics. The presented results open perspectives for a broader
usage of model updating, for example, to improve the probability of defect detection in active
thermography or efficiency improvement in sequential inspection routines.
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