Universiteit
Antwerpen

Faculteit Toegepaste Ingenieurswetenschappen
Elektronica-ICT

A Contract-Based Approach for
Multi-Viewpoint Consistency in the
Concurrent Design of Cyber-Physical
Systems

Proefschrift voorgelegd tot het behalen van de graad van
doctor in de toegepaste ingenieurswetenschappen
aan de Universiteit Antwerpen te verdedigen door

Ken Vanherpen

Prof. Dr. Paul De Meulenaere
Prof. Dr. Hans Vangheluwe Antwerpen, 2018

Jury

Chairman
Prof. Dr. Peter Hellinckx, University of Antwerp, Belgium

Supervisors
Prof. Dr. Paul De Meulenaere, University of Antwerp, Belgium
Prof. Dr. Hans Vangheluwe, University of Antwerp, Belgium

Members

Prof. Dr. ing. Joachim Denil, University of Antwerp, Belgium
Prof. Dr. ir. Pieter J. Mosterman, MathWorks, USA

Dr. ir. Klaas Gadeyne, Flanders Make, Belgium

Contact

Ken Vanherpen

CoSys-Lab, Faculty of Applied Engineering, University of Antwerp
Groenenborgerlaan 171, 2020 Antwerpen, Belgium

M: ken.vanherpen@Quantwerpen.be

T: 4323265 1866

Copyright © 2018 Ken Vanherpen
All rights reserved.

Acknowledgments

I almost finished my master degree when one day Paul asked me if I would be interested in
pursuing a PhD. Although I considered it as an honor to be given this opportunity, there was some
doubt. After all, I did not had the ambition to pursue an academic career. A few weeks later, Paul
introduced me to Hans who overwhelmed me with his enthusiasm. I guess a lot had to do with
the fact I did some modeling in my master’s project. Combined with Paul’s vision on how a PhD
can be useful in industry I finally agreed. As I experienced myself, the road towards obtaining a
PhD title is typed by highs and lows. Fortunately, I was surrounded with two supervisors who,
in a subtle way, always encouraged me to push my boundaries. Thank you Paul and Hans for
giving me this opportunity, to believe in me, and to support my business interests (that sometimes
interfered with my research).

During the past years, I have had the chance to discuss my research with numerous people. In
particular, I would like to thank former and current members of the CoSys-Lab research group, of
the AnSyMo/MSDL research group, and of the IDLab research group. A special thanks goes to
Joachim who always found the time to organize some memorable brainstorm sessions. I would
also like to thank the people of Atlas Copco, Dana, Van de Wiele, Picanol, Siemens PLM Software,
Tenneco, and Verhaert to provide me some industrial insights.

As with every PhD dissertation, this work has also been accepted by the scientific community.
Thank you Peter Hellinckx, Paul De Meulenaere, Hans Vangheluwe, Joachim Denil, Pieter J.
Mosterman, and Klaas Gadeyne for being part of my jury. It was a pleasure to answer your
questions and to read your suggestions. In a constructive way they have contributed to the final
result of this dissertation.

This PhD would not have been possible without financial means. As such, I would like to thank
the Flanders Innovation & Entrepreneurship agency (VLAIO) and Flanders Make vzw to support
the MBSE4Mechatronics project (grant nr. 130013) and the CSE_Codesign_ICON project (grant
nr. HBC.2017.0391). In particular, I would like to thank project managers Gregory Pinte, Maarten
Witters, and Davy Maes to give me the opportunity to gain experience in both research and
industry.

My family and friends have been of a tremendous value during the past four years. One way
or another they have contributed to the successful journey I have made so far. I will always be
grateful to my parents for their unconditional support.

Last but not least, thank you Sandrine for being a great girlfriend who I always can rely on. Thank
you for your love, your support, your believe in me, and to take care of our lovely daughter
Zita. Although Zita is only nine months old, her unstoppable smile and energy encouraged me in
finalizing this dissertation. Sandrine and Zita, this work is dedicated to you!

Ken Vanherpen
August 2018
Antwerp, Belgium

Abstract

The exponential rate at which Cyber-Physical Systems evolve, while getting increasingly complex,
poses new challenges in terms of their design. Already, engineers practice a Model-Based Systems
Engineering approach, in which models are used to support their requirements engineering, design,
verification, and validation activities. Because of the heterogeneity of these systems, the design
of Cyber-Physical Systems is often allocated to a multidisciplinary team combining expertise
in different engineering areas (e.g., control logic, embedded systems design, and mechanics).
Hence, Multi-Paradigm Modeling as a method is practiced enabling engineers to model each
aspect of the system explicitly at the most appropriate level(s) of abstraction using the most
appropriate formalism(s), while modeling the development process(es) explicitly. Typically, this
well-defined development process comprises three main phases: a common architectural phase,
a domain-specific implementation phase and an integration phase. Often, the different domains
enact the implementation phase concurrently to each other so that the time to market and design
costs are reduced.

Unfortunately, we observe that the enactment of the process is characterized by costly, iterative
design cycles partly due to the involvement of various engineering disciplines, each with a
different viewpoint on the system under design. This heterogeneity often leads to inconsistent
decisions on shared design parameters, causing unexpected behaviors while integrating the system.
Contract-Based Design as a method has already been proposed to preserve consistency between
different design artifacts. Therefore, a contract consisting of a set of assumptions and guarantees
is defined between engineers prior to the design phase. The assumptions and guarantees describe
the conditions under which a system promises to operate while satisfying desired properties. The
method, however, appears to be only applicable when reasoning about consistency within one and
the same viewpoint. Focusing on the interactions between control and embedded viewpoints, this
dissertation extends the current method by combining the principles of Contract-Based Design
with ontological reasoning to ensure consistency across viewpoints.

The proposed method, and in particular the notion of ontological reasoning, not only ensures
multi-viewpoint consistency but enables the automatic translation of design parameters from one
domain to another. This appears to be extremely important since engineers lack in the ability

to reason about each others domain. As such, model simulations, used to verify and validate
different aspects of the system throughout the implementation, do not correctly represent the
behavior of the integrated system. We propose a Round-Trip Engineering method allowing for a
semi-automatic annotation of simulation models, incorporating properties from domains that may
influence its behavior.

As contracts are defined prior to the design of the system, contracts constrain the design space
to a finite set of possible implementations and integrations. As such, Design-Space Exploration
techniques can be applied to assist engineers while designing and integrating the system. We
elaborate on how contracts enable Design-Space Exploration and initiate a pattern catalog cat-
egorizing the embedding of different Design-Space Exploration techniques in a Model-Based
Systems Engineering context.

The complexity of multi-viewpoint design process and the practicalities of our methods are tackled
by means of an academic case study. We also demonstrate how our methods and techniques can be
integrated in concurrent design processes for Cyber-Physical Systems. Although this dissertation
focuses on the interactions between control and embedded engineering, the presented methods
and techniques can be applied to any multi-domain engineering process.

Nederlandstalige Samenvatting

De exponentiéle groei in de evolutie van cyber-fysische systemen en hun toenemende complexiteit
zorgt voor nieuwe uitdaging tijdens hun ontwerp. Daar wordt reeds gekozen voor een Model-
Based Systems Engineering-aanpak waarbij modellen worden gebruikt ter ondersteuning van het
ontwerpproces gaande van het opstellen van de systeemvereisten tot het ontwerpen, verifiéren
en valideren van het systeem. Door de heterogeniteit van cyber-fysische systemen worden
meestal ingenieurs uit verschillende domeinen (zoals controlelogica, embedded systemen en
mechanica) samengevoegd in een ontwerpteam. Tijdens het ontwerp maakt men vaak gebruik van
de Multi-Paradigm Modeling-methode om alle aspecten van een systeem te modelleren op het
(de) meest geschikte abstractieniveau(s), gebruikmakende van de meest geschikte modeleertaal of
set van modeleertalen, en waarbij het (de) gevolgde ontwerpproces(sen) expliciet wordt (worden)
gemodelleerd. Dit ontwerpproces bestaat uit drie fasen: een gezamenlijke architecturale fase, een
domein-specifieke implementatie fase en een integratiefase. Om de ontwerptijd en ontwerpkosten
te reduceren zal men bovendien opteren voor een parallel ontwerpproces waarbij de verschillende
ingenieursdomeinen in parallel (een deel van) het systeem implementeren.

Helaas merken we dat het ontwerpproces wordt gekenmerkt door dure, iteratieve ontwerpcycli,
deels vanwege de betrokkenheid van verschillende ingenieursdisciplines die elk een andere
zienswijze hebben op het te ontwerpen systeem. Deze heterogeniteit leidt vaak tot inconsistente
ontwerpbeslissingen op gedeelde ontwerpparameters wat leidt tot onverwacht gedrag van het
geintegreerde systeem. In de literatuur wordt de Contract-Based Design-methode voorgesteld om
consistentie tussen verschillende ontwerpartefacten te garanderen. Daartoe wordt een contract
tussen verschillende ingenieurs gedefinieerd voorafgaand aan de ontwerpfase. Het contract bestaat
uit een verzameling van aannames en garanties die beschrijven onder welke voorwaarden een
systeem zal voldoen aan een verzameling van gewenste eigenschappen. De Contract-Based
Design-methode blijkt echter enkel consistentie te kunnen garanderen wanneer de betrokken
ingenieurs eenzelfde zienswijze op het systeem hanteren. In de context van co-design tussen het
controle domein en het embedded domein, breidt deze dissertatie de huidige methode uit door de
principes van de Contract-Based Design-methode te combineren met het ontologisch redeneren
zodat consistentie tussen verschillende zienswijzen gegarandeerd kan worden.

De voorgestelde methode zorgt niet alleen voor consistentie tussen ingenieurs met een verschil-
lende zienswijze op het systeem, maar maakt het ook mogelijk om ontwerpparameters te vertalen
tussen ingenieursdomeinen. Dit blijkt nuttig aangezien ingenieurs vaak moeite hebben om te
redeneren over elkaars domein. Dit kan als gevolg hebben dat simulatiemodellen, gebruikt
om de verschillende aspecten van het systeem te verifiéren en te valideren, het gedrag van het
geintegreerde systeem niet correct voorstellen. Wij stellen de Round-Trip Engineering methode
voor die een halfautomatische annotatie van de simulatiemodellen mogelijk maakt, zodat eigen-
schappen die hun oorsprong hebben in een ander domein en een invloed kunnen hebben op het
systeemgedrag mee in rekening kunnen worden genomen.

Aangezien contracten worden gedefinieerd in een onderhandelingsfase voorafgaand aan de (par-
allelle) implementatie van het systeem, beperken zij de ontwerpruimte tot een eindig aantal
mogelijke implementaties en integraties. Aldus kunnen Design-Space Exploration-technieken
worden toegepast om ingenieurs te ondersteunen bij het ontwerpen en integreren van het systeem.
In deze dissertatie zullen wij dan ook aantonen hoe contracten Design-Space Exploration mogelijk
maken. Verder wordt een aanzet gegeven naar een catalogus van patronen waarin verschillende
Design-Space Exploration-technieken, gebruikt in een Model-Based Systems Engineering context,
worden gecategoriseerd.

De complexiteit van ontwerpprocessen waarbij ingenieurs een verschillende zienswijze hebben
op het te ontwerpen systeem en de praktische aspecten van onze methoden worden aangetoond
aan de hand van een academisch voorbeeld. We tonen ook aan hoe onze methoden en technieken
kunnen geintegreerd worden in parallelle ontwerpprocessen van cyber-fysische systemen. We
focussen ons in deze dissertatie enkel op de interacties tussen de controle en embedded ingenieurs-
domeinen. De gepresenteerde methoden en technieken kunnen echter worden toegepast in elk
ontwerpproces waarbij meerdere domeinen, elk met een verschillende zienswijze op het systeem,
moeten samenwerken.

List of Publications

The following list of peer-reviewed papers and technical reports, where I was a co-author, serve as
a basis of this dissertation:

— Ken Vanherpen, Joachim Denil, Paul De Meulenaere, and Hans Vangheluwe. Ontological
Reasoning as an Enabler of Contract-Based Co-design. In 6th International Workshop
on Cyber Physical Systems. Design, Modeling, and Evaluation (CyPhy), pages 101-115,
2017. The idea of using contracts was proposed by Ken and Joachim after some great,
yet intensive, brainstorm session. It was further refined by Ken who also wrote the paper.
Hans, Paul and Joachim commented on the work and reviewed the draft of the paper.

— Ken Vanherpen, Joachim Denil, Istvan David, Paul De Meulenaere, Pieter Johannes Moster-
man, Martin Térngren, Ahsan Qamar, and Hans Vangheluwe. Ontological Reasoning
for Consistency in the Design of Cyber-Physical Systems. In Ist International Workshop
on Cyber-Physical Production Systems (CPPS), pages 1-8, 2016. The idea of relating
design parameters to ensure consistent design originates from Ken and was further refined
during discussions with Hans, Paul, Joachim, Martin, Ahsan. Ken defined the foundational
patterns and wrote the majority of the paper. Joachim and Istvan assisted in writing. Hans
commented on the work and reviewed the draft of the paper.

— Ken Vanherpen, Joachim Denil, Hans Vangheluwe, and Paul De Meulenaere. Model
Transformations for Round-Trip Engineering in Control Deployment Co-Design. In
Proceedings of the 5th International Workshop on Model-driven Approaches for Simulation
Engineering (Mod4Sim) as part of the Spring Simulation Multi-Conference (SpringSim),
pages 820-827, 2015. As the presented technique builds upon earlier work of Joachim,
he proposed the idea. Ken implemented the technique, while attention was being paid in
terms of speed optimization, and wrote the paper. Paul, Hans and Joachim commented on
the work and reviewed the draft of the paper.

— Ken Vanherpen, Joachim Denil, Paul De Meulenaere, and Hans Vangheluwe. Design-Space
Exploration in Model-Driven Engineering: an Initial Pattern Catalogue. In Proceedings of
the Ist International Workshop on Combining Modelling with Search- and Example-Based

Approaches (CMSEBA) co-located with 17th International Conference on Model Driven
Engineering Languages and Systems (MODELS 2014), CEUR Workshop Proceedings, vol.
1340, pages 42-51, 2014. Based on Ken’s exploratory work on Design-Space Exploration,
and in particular constraint-based approaches using Alloy, Hans and Joachim proposed
the idea. It was refined during discussions between Ken and Joachim. Ken implemented
the constraint-based approach and wrote the majority of the paper. Joachim implemented
the genetic algorithm and rule-based approach while assisting in writing. Hans and Paul
commented on the work and reviewed the draft of the paper.

— Ken Vanherpen, Joachim Denil, Paul De Meulenaere and Hans Vangheluwe. Design-
Space Exploration in Model-Driven Engineering: an Initial Pattern Catalogue. School
of Computer Science, McGill University, Technical Report, SOCS-TR2014.4,2014. Ken
extended the workshop paper with the case study. He was assisted by Joachim for the
implementation of the case study. Joachim commented and reviewed the report.

The following list of peer-reviewed papers and technical reports, where I was a co-author, are not
included within this dissertation:

— Istvan Ddavid, Bart Meyers, Ken Vanherpen, Yentl Van Tendeloo, Kristof Berx, and
Hans Vangheluwe. Modeling and Enactment Support for Managing Inconsistencies in
Heterogeneous Systems Engineering Processes. In Proceedings of the 2nd International
Workshop on Collaborative Modelling in MDE (COMMitMDE) co-located with ACM/IEEE
20th International Conference on Model Driven Engineering Languages and Systems
(MoDELS), CEUR Workshop Proceedings, vol. 2019, pages 145-154, 2017.

— Istvan Dévid, Eugene Syriani, Clark Verbrugge, Didier Buchs, Dominique Blouin, Antonio
Cicchetti, and Ken Vanherpen. Towards Inconsistency Tolerance by Quantification of
Semantic Inconsistencies. In Proceedings of the 1st International Workshop on Collabora-
tive Modelling in MDE (COMMitMDE) co-located with ACM/IEEE 19th International
Conference on Model Driven Engineering Languages and Systems (MoDELS), CEUR
Workshop Proceedings, vol. 1717, pages 35-44, 2016.

Contents

1 Introduction 1
1.1 Context o e 2
1.2 Motivation e e e 4
1.3 Challenges and Contributions 5
1.4 Delimitations and Assumptions 7
1.5 CaseStudies e 8

1.5.1 ThePower Window 8
1.5.2 The Hybrid Hydraulic Vehicle 10
1.6 Outline of the Dissertation 13

2 Background 15

2.1 Techniques 16
2.1.1 Modeling Languages 16
2.1.2 Model Transformations 17
2.1.3 Design-Space Exploration 17
2.1.4 Formalism Transformation Graph and Process Model 18

2.2 Methods 20
2.2.1 Model Based Systems Engineering 20
2.2.2 Contract-Based Design 26
2.2.3 Ontologies 30

2.3 Tools e 32
2.3.1 Eclipse EMF 32
2.3.2 TCore 32
2.3.3 Protégé Desktop 32
234 SymPy 33
23,5 Simulink 33
2.3.6 Massif 33
2.3.7 MAST e e e 34

3

4

Design Contracts Enabling Consistency in Multi-Viewpoint Design Processes 35
3.1 Introduction 36
3.2 RelatedWork 38
3.3 Design Contracts Supporting Multi-Viewpoint Design Processes 41
3.4 Applicability of Contract-Based Design in Multi-Viewpoint Processes 43
3.5 Multi-Viewpoint Consistency through Ontological Reasoning 48
3.5.1 Foundations of Ontological Reasoning 49
3.5.2 Ontological Reasoning in Multi-Viewpoint Design Processes 57
3.6 Contract-Based Co-Design Driven Multi-Viewpoint Design Processes 58
3.6.1 Combining Assume/Guarantee Contracts with Ontologies 58
3.6.2 Contract-Based Co-Design Method 60
3.7 An Integrated Framework Supporting the Contract-Based Co-Design Method 66
3.7.1 Defining a Scalable and Reusable (Upper) Ontology 67
3.7.2 Defining Viewpoint-Specific Architectures 71
3.7.3 Defining Contracts e 74
3.7.4 Executing Analysis, 74
3.8 Conclusion 76

A Round-Trip Engineering Method Supporting Contract-Based Co-Design Driven

Processes 79
4.1 Introduction 80
4.2 RelatedWork 80
4.3 The Round-Trip Engineering Method 81
4.4 The Round-Trip Engineering Method Applied on the Power Window Example 85
4.5 The Round-Trip Engineering Method for Common Design Processes 90
4.6 Conclusion 93

Design-Space Exploration Supporting Contract-Based Co-Design Driven Processes 95

5.1 Introduction 96
52 RelatedWork e 96
5.3 An Initial Pattern Catalog for Design-Space Exploration 97
5.3.1 Model Generation Pattern 98
5.3.2 Model Adaptation Pattern, 100
5.3.3 Model Transformation Pattern 102
5.3.4 Exploration Chaining Pattern 104

5.4 The Pattern Catalog Applied in Contract-Based Co-Design Driven Design
Processes 105

5.4.1 Design-Space Exploration Supporting the Embedded Domain 105
5.4.2 Design-Space Exploration Supporting the Control Domain. 109
5.5 Conclusion 113

6 The Integrated Framework Applied in a Contract-Based Co-Design Driven Devel-

opment Process 115
6.1 Introduction e 116
6.2 RelatedWork 116
6.3 Designing a Hybrid Hydraulic Vehicle Using a CBCD Driven Design Process 117
6.3.1 PreliminaryDesign, 117

6.3.2 Contract Negotiation 120

6.3.3 Concurrent Detailed Design 122

6.4 Conclusion 126

7 Conclusion 129

Bibliography 150

List of Figures

1.1

1.2
1.3
1.4
1.5

2.1
2.2
23
24
2.5
2.6
2.7

3.1
32
33

34
3.5
3.6
3.7

3.8
3.9

Conceptual overview of the relationship between stakeholder, property, viewpoint,
and view, basedon [ISO11]
Functional control architecture of the power window system
Conceptual overview of the Hybrid Hydraulic Drivetrain, based on [RR13]
Driving modes of the Hybrid Hydraulic Vehicle, based on [SM12, GY 14, Nas14]

Functional control architecture of the hybrid hydraulic vehicle system

Example of a FTG+PM for generating code from a control model
Conceptual overview of commonly used MBSE design processes
Possible enactment of a sequential design process using a MBSE approach
Conceptual overview of the V model for parallel design activities
Possible enactment of a parallel design process
Decomposition of the power window control architecture
Introductory example of anontology L.

Overview of the Contract-Based Co-Design Method
V model for consistent parallel design as proposed by Derler et al. in [DLTT13] .
Possible enactment of a by contracts support design process as proposed by Derler

etal. in [DLTTI13] e
Embedded architecture of the power window system
Linguistic versus ontological models, based on [BKV14]
Linguistic and ontological relationships for the Multi-Semantics pattern
Multi-Semantics pattern example—model of the power window controller and its

ontology e e e
Linguistic and ontological relationships for the Multi-Abstraction pattern
Multi-Abstraction pattern example—refined model of the power window con-

troller and its ontology

3.10 Linguistic and ontological relationships for the Multi-Viewpoint pattern

10
11
13

19
21
22
24
25
26
31

37
41

3.12
3.13

3.14

3.15
3.16
3.17
3.18
3.19

3.20

321

3.22
3.23

4.1
42
43
4.4
4.5
4.6
4.7

4.8

5.1
5.2
53
54
5.5
5.6
5.7

Multi-Viewpoint pattern example—control and mechanical viewpoint of the power
window and their respective ontologies
Ontologies related to the design process of the power window
Conceptual representation of semantic interoperability between viewpoint-specific
contracts (left-hand side) using an upper ontology (right-hand side)
Possible enactment of a co-design process using the Contract-Based Co-Design
method
Detail of the negotiation process
Example of a negotiated mapping contract and its derived viewpoint contracts . .
Architectural overview of the CBCD framework
Ontology—example of the Platform domain ontology
Ontology—upper ontology for Control-Platform Co-Design of a Cyber-Physical

CBCD framework—metamodel for the architectural description of the control
domain, basedon [HSB1]
CBCD framework—metamodel for the architectural description of the embedded
domain
CBCD framework—mapping contracts for the power window system
CBCD framework—decision tree to determine the viewpoint-specific contracts

Parametrized model transformationrule
Overview of the Round-Trip Engineering (RTE) method
The RTE method complementing the CBCD method
Architectural overview of the CBCD framework, including RTE support
Result of a model transformation
Simulation results for operating the passenger window
Detail of the simulation results—upper: naive simulation; lower: after in-place

transformation L. oL

The Round Trip Engineering Method applied in a common design process

Model Generation Pattern L
Model Adaptation Pattern
Model Transformation Pattern
Exploration Chaining Pattern
Examples of an allocation problem,
Metamodel used for allocating software components on a hardware architecture .

Architectural overview of the CBCD framework, including DSE support

5.8
5.9
5.10

6.1

6.2
6.3
6.4

6.5
6.6

Example of an electronic filter L. 110
Metamodel used for exploring a passive electronic filter 110
LPFBodeplot. e 111

Process model for designing a Hybrid Hydraulic Vehicle using a CBCD driven

design process e e 118
System contract for the HHV case study 119
Architecture of the control viewpoint for the HHV case study 120
Negotiated Driverintention and High-Level Control mapping contract for the

HHVcasestudy e 121
Exported control viewpoint for the HHV casestudy 123

Software configuration of the platform for the HHV case study 125

List of Tables

2.1
22
23
24
2.5

3.1
32
33

5.1
5.2
53

6.1

Electrical (E) and Timing (T) viewpoint contract for the Debounce component . . 28
Contract for the Debounce component 28
Contract for the Control Exclusion component 29
Contract for the refined Signal Processing component 29
Contract for the (abstract) Signal Processing component 30
Power window system—top-level resource agnostic contract 44
Power window system—top-level resource aware contract 46
Power window system—resource aware subcontracts 47
Results Allocation Problem, 108
Predefined component values when exploring using the Model Generation Pattern 112
Results Electronic Filter e 112

MiL simulation result for the HHV casestudy 124

List of Acronyms and Abbreviations

A/IG Assume/Guarantee

ADL Architecture Description Language
API Application Program Interface
AUTOSAR AUTomotive Open System ARchitecture
B2B Back-to-Back

CAN Controller Area Network

CAS Computer Algebra System

CBCD Contract-Based Co-Design

CBD Contract-Based Design

Co-Design Concurrent Design

CPS Cyber-Physical System

CPSs Cyber-Physical Systems

CWA Closed World Assumptions

DSE Design-Space Exploration

DSL Domain-Specific Language

ECU Electronic Control Unit

ECUs Electronic Control Units

EMF Eclipse Modeling Framework
FTG+PM Formalism Transformation Graph and Process Model
GUI Graphical User Interface

HHD Hybrid Hydraulic Drivetrain

HHV Hybrid Hydraulic Vehicle

HiL Hardware-in-the-Loop

HPF High Pass Filter

HPP High Performance Processor

HRC Heterogeneous Rich Components

HVAC Heating, Ventilation and Air Conditioning
ICE Internal Combustion Engine

IoT Internet of Things

IPL Integration Property Language

IT Information Technology

LHS Left-Hand Side

LPF Low Pass Filter

LPP Low Performance Processor

LTM Linguistic Type Model

MA Multi-Abstraction

MARTE Modeling and Analysis of Real-Time and Embedded systems
Massif MATLAB Simulink Integration Framework
MBSE Model-Based Systems Engineering

MDE Model-Driven Engineering

MiL Model-in-the-Loop

MOEA Multi-Objective Evolutionary Algorithm
MPM Multi-Paradigm Modeling

MS Multi-Semantics

MV Multi-Viewpoint

NAC Negative Application Condition

NEDC New European Driving Cycle

NSGA Non-dominated Sorting Genetic Algorithm
OEM Original Equipment Manufacturer

0S Operating System

OSLC Open Services for Lifecycle Collaboration
OT™™ Ontological Type Model

OWA Open World Assumptions

OWL Web Ontology Language

PBD
PiLL
PM
PN
PSA
pv
PWC
PWM
RDF
RHS
RTE
RTOS
SBO
SD
SDLC
SiLL
StA
SwcC
SWCs
SysML
TRL
UML
W3C
WCET
WCRT
XMI

Platform-Based Design
Processor-in-the-Loop
Process Model

Petri-Net

Peugeot Société Anonyme
performance values

Power Window Control
Pulse-Width Modulation
Resource Description Framework
Right-Hand Side

Round-Trip Engineering
Real-Time Operating System
Search-Based Optimization
Semantic Domain

Software Development Life Cycle
Software-in-the-Loop
Sampling-to-Actuation
Software Component
Software Components
Systems Modeling Language
Technology Readiness Level
Unified Modeling Language
World Wide Web Consortium
Worst-Case Execution Time
Worst-Case Response Time

XML Metadata Interchange

CHAPTER 1

Introduction

CHAPTER 1. INTRODUCTION

1.1 Context

For over 230 years, our society has been confronted with some (r)evolutions that have profoundly
changed the manufacturing industry. These (r)evolutions are known as the three Industrial
Revolutions. The first dates from the end of the 18" century where mechanical production
machines were powered by water and steam. At the end of 19" century the second Industrial
Revolution allowed for mass production by using electric powered assembly lines. In the late
60s of the previous century electronics and Information Technology (IT) enabled the third, and
currently last, Industrial Revolution by automating the manufacturing process. Today, Cyber-
Physical Systems (CPSs) are considered as one of the enablers of the upcoming fourth Industrial
Revolution (i.e., Industry 4.0) by turning today’s factories into smart factories [LFK'14]. As
its name implies, CPSs are characterized by the integration of Cyber and Physical components,
where the Cyber part relates control algorithms deployed on a (distributed) processing platform.
These embedded systems are tightly coupled to the physical processes, often using feedback loops.
Through this interaction, Cyber and Physical components influence each other which must be
taken into account when designing the system. Besides being an enabler of the fourth industrial
revolution, CPSs can already be found in a plethora of applications nowadays, such as automotive
systems, aerospace, telecommunication, healthcare, energy distribution, climate control, robotics,
etc. Given the expected revolutions in the field of manufacturing, Internet of Things (IoT), and
autonomous systems, CPSs tend to take an even more prominent role in our daily lives.

The exponential rate at which CPSs evolve, while getting increasingly complex, poses new
challenges in terms of their design. To tackle the increasing complexity, engineers already practice
a Model-Based Systems Engineering (MBSE) methodology [Est08], in which models are used
to support their requirements engineering, design, verification, and validation activities of a
system beginning in the conceptual design phase and continuing throughout development and
later life cycle phases [INCO7]. These models typically operate at the same or different levels of
abstraction within a single viewpoint. In literature, these abstraction levels are called horizontal
and vertical abstraction, respectively [SPHP02, GNNS10]. Model transformations can be applied
to manipulate models from one abstraction to another. They are typically used for code synthesis,
integration, analysis, simulation, and optimization purposes. Multi-Paradigm Modeling (MPM)
as a method consolidates these modeling methods and techniques, enabling engineers to model
each aspect of the system explicitly at the most appropriate level(s) of abstraction using the most
appropriate formalism(s), while modeling the development process(es) explicitly [MV04].

The heterogeneous nature of a Cyber-Physical System (CPS), however, requires a collaboration of
teams with expertise in a particular engineering domain (e.g., control logic, embedded system
design, and mechanics). In that respect, each team is considered as a stakeholder that has a
particular interest, also called concern, in the system under design. For example, a team of control
engineers is concerned about the response time of the designed control algorithm while a team
of embedded engineers is concerned about the processor load. In this dissertation we refer to

1.1. CONTEXT

these concerns as properties. They need to be satisfied by a (set of) design parameters that are
defined when designing a domain-specific implementation of (a part of) the system. Continuing
the example, the response time property can be satisfied by defining a control algorithm with a
reasonable settling time while the processor load property is satisfied by choosing an appropriate
sample rate for the software tasks running the control algorithm. Both settling time and sample
rate are design parameters of the control and the embedded domain, respectively. In a MBSE
context, a (set of) model(s) is used for designing, interpreting, and analyzing the particular
view(s) that addresses a stakeholder’s concern(s). In doing so, each stakeholder follows a set of
guidelines, specific to its domain, that includes information on languages, notations, modeling
methods, and analysis techniques used during the design process. This set of guidelines is
formalized by the ISO/IEEE 42010 standard [ISO11] as a viewpoint and is adopted by the
literature in [TQB* 14, BLTT12]. Inferred from the description in [ISO11], Figure 1.1 illustrates
how the concepts stakeholder, property, viewpoint, and view are related to each other.

System-of-
Interest

1

A has interests in

1.7

Stakeholder

1.
¥ has

1.

Property

1. 4 addresses
A frames

1. 1.
governs b

Viewpoint View

¢ <

1.0 1.0
governs b

Model Kind _ Model

¥ has

1.0

Parameter

Figure 1.1: Conceptual overview of the relationship between stakeholder, property, viewpoint,
and view, based on [ISO11]

CHAPTER 1. INTRODUCTION

The overview indicates that different viewpoints may exist within one single engineering domain.
For example, within the embedded domain one viewpoint may be concerned with the architecture
while another viewpoint is concerned with end-to-end timing. Within the scope of this dissertation,
however, we focus on relationship between viewpoints of different engineering domains and,
in particular, the inconsistencies that can arise between viewpoints. After all, requirements,
representing the behavior of the real world system in a certain context, are —often implicitly—
implemented by multiple stakeholders so that their respective properties (that needs to be satisfied
by a set of domain-specific design parameters) are also related. Unawareness of these relationships
may eventually lead to an inconsistent system.

We experience this in current CPS design processes in which engineers of both the control and
the embedded domain derive properties that should hold for their view on a system with an
implicit knowledge of each others domain. For a control engineer it is, for example, important to
control a step motor with a precision of 0.5 degree. In this case, precision is a property for the
control domain while degree is a design parameter. On the other hand, the embedded engineer
might be concerned about the cost (a property) so that a processor with a limited Pulse-Width
Modulation (PWM) resolution (a design parameter) is chosen. Because of the limited knowledge
of the control engineers with respect to the embedded domain, they may overestimate available
hardware resources such as the resolution of the PWM or, even worse, may not be aware of
floating point approximations on the hardware platform. This might lead to a lower precision than
what was assumed by the control engineer. As a result, integration of both viewpoints affects the
performance of the system.

1.2 Motivation

The introductory example in the previous section demonstrates how both engineering domains
(stakeholders) use incomplete assumptions of each other’s view. Shared properties are not (fully)
taken into account, such that consistency between design parameters cannot be guaranteed. Con-
sistency means the absence of inconsistencies: situations where multiple views imply conflicting
values for common properties that may be derived from them. This results in iterative, time
consuming design processes where inconsistencies are resolved, in turn possibly creating new
ones.

Similar to the different levels of abstraction, (in)consistency is classified as horizontal (in)-
consistency or vertical (in)consistency. Horizontal consistency pertains to models at the same
(horizontal) level of abstraction. An example is the modeling of an electrical motor subsystem.
Electrical and mechanical views exist for this system. These are considered at a same level of
abstraction if they allow reasoning about exactly the same set of parameters (such as power). To be
consistent, analysis of both models must always yield identical values for each of these parameters.
On the contrary, the notion of vertical inconsistency refers to models, and related parameters, at a

1.3. CHALLENGES AND CONTRIBUTIONS

different (vertical) level of abstraction. In this case, there might be no straightforward relation
between the domain-specific parameters as they might be reasoning over the satisfaction of a
different property or set of properties. For example, during the modeling of a control algorithm,
a state machine is used at a higher level of abstraction to explore the possible states in which
the control algorithm may operate. At a lower level of abstraction, behavior may be added to
these states by defining some control logic. Vertical consistency should be maintained during the
refinement process so that the satisfaction of (behavioral) properties of the abstract control model
are maintained after refinement. As such, transactions between the different states might not be
changed or added at the lower abstraction level.

Different techniques exist enabling engineers to manage (in)consistencies. They can be classi-
fied as techniques that () detect and resolve inconsistencies or (z¢) avoid inconsistencies. For
the former, the design process should be explicitly modeled so that it can be restructured by
some consistency management tool if inconsistencies occur [DDGV16, DMV*17]. For the
latter, Contract-Based Design (CBD) as a method [BCF08, BCN™12, BCN*15a, BCNT15b]
has been proposed to avoid inconsistencies between design artifacts (i.e., design parameters)
prior to the detailed design phase of a design process, by allocating contracts to design compo-
nents [SVDP12, DLTT13, TQBT14]. A contract classifies (domain-specific) design parameters
as a set of assumptions and guarantees. They can be regarded as preconditions and postconditions
of a component, respectively, defining under which conditions a system promises to operate satis-
fying desired parameters. When combining components, each typed by a contract, well-defined
contract operators can be used to combine their respective contracts.

Contracts are defined during a negotiation phase prior to the implementation of the system in
which domain-specific design parameters are balanced against each other, keeping in mind the
stakeholder’s concerns [DLTT13]. As such, CBD is considered as an enabler of Concurrent
Design (Co-Design), guaranteeing both horizontal and vertical consistency during implementa-
tion.

1.3 Challenges and Contributions

When restricting to (¢) viewpoints in a single domain (e.g., the behavioral and safety viewpoint
when modeling a control algorithm) or (¢7) multiple domains operating at the same level of
abstraction while sharing a single viewpoint (e.g., the interaction between the model of the control
algorithm and the model of the physics), CBD can indeed be applied as a method to avoid
inconsistencies between design parameters. Designing CPSs involves, however, multiple domains
each with their own viewpoint(s) on the system under design while operating at different levels of
abstraction. In this case, the current CBD method, and associated theory, lacks in the ability to
reason about consistency, limiting its use in heterogeneous (co-)design processes.

As discussed before, engineers operating in different domains, using different viewpoints, have

5

CHAPTER 1. INTRODUCTION

limited aids in estimating the impact of their design choices. Often they are not aware of the
implicit relationships that exist between design parameters originating from different domains.
As a consequence, it is infeasible for engineers to reason about consistency when negotiating
contracts. The following research questions can therefore be formulated:

RQ1 Az what level of abstraction can we relate different domains, and their related design
parameters, to enforce consistent design of CPSs?

RQ2 What is the most appropriate formalism to represent these relations?

In the current state of the art it is already shown that contracts can be negotiated in a preliminary
design phase [DLTT13] and that contract operators can be used to combine contracts [BCN™ 15a].
It is yet unclear, however, how contracts should be used in concurrent design processes to ensure
inter-domain consistency. When applying the current state of the art in such design processes, it
becomes clear that there is no strict relation between what is guaranteed by one domain and what
should be assumed by another domain. This raises the following research questions:

RQ3 How should contracts be used to ensure consistency between heterogeneous viewpoints,
that is, viewpoints related to different domains)?

RQ4 How should contracts syntactically and semantically be interpreted by different engi-
neering domains?

By definition, contracts ensure consistent design of a system by negotiating the design parameters
prior to its (concurrent) implementation. As such, the minimum and maximum boundaries of
design parameters are known beforehand. Often, non-functional requirements (e.g., cost or energy)
impose restrictions on the possibly infinite set of implementations. Knowing that Design-Space
Exploration (DSE) techniques can be used to (semi-)automatically optimize the design and/or
deployment of a system with respect to a (set of) non-functional requirement(s), the following
research question remains:

RQS5 Can contracts be used as an input for design and/or deployment optimization methods?

A plethora of DSE techniques already exist to search for an optimal design, such as evolutionary
algorithms, constraint satisfaction, and (Mixed Integer) Linear Programming. It is, however, not
obvious for engineers to select the most appropriate technique for a given optimization problem.
As such, the following research question is formulated:

RQ6 How can we structurally organize the plethora of DSE methods to assist engineers in
the evaluation of the most appropriate method for a given optimization problem?

This dissertation addresses the listed research questions resulting in the following contribu-
tions:

— A method supporting a contract-based design approach for heterogeneous design processes.
This includes the negotiation of a (set of) common contract(s), ensure consistency between

1.4. DELIMITATIONS AND ASSUMPTIONS

negotiated design parameters and automatically deriving viewpoint-specific contracts to
enable concurrent design. Therefore, the method relies on the syntactic and/or semantic
translation of design parameters from one viewpoint to another.

— Methods and techniques supporting engineers in the interpretation of the derived viewpoint-
specific contracts and the (semi-)automatic exploration of an optimal design implementa-
tion.

— An initial pattern catalog categorizing the plethora of DSE techniques using a well-defined
structure similar to software design patterns.

— An integrated framework enabling consistent concurrent design processes. The framework
supports specifying domain architectures and contracts while model transformations can
be used to create domain-specific views in dedicated tools. Its modular approach makes it
possible to extend the framework for other domains and/or tools.

— Demonstration of the applicability of the methods and techniques, and the supported
integrated framework, within a concurrent design process using an academic case study.

1.4 Delimitations and Assumptions

The listed contributions of this dissertation are achieved by limiting the research scope. We
therefore list the assumptions that are made throughout the course of the research:

— Although the methods, techniques, and integrated framework presented in this dissertation
can be applied to any multi-domain design problem, we only focus on the synergies
between the control and embedded domain. As a design decision in one of these domains
affects the intended behavior/implementation of the other domain, while using thoroughly
different terminology, we consider that focusing on these domains is representative for a
broad range of multi-domain design problems.

— With respect to control-embedded co-design, we focus on timing-related issues that may
emerge when integrating the system, leading to unintended behavioral changes. We there-
fore make use of a task-driven, processor-based computation platform using a single core
to execute the deployed system. The Real-Time Operating System (RTOS) is configured
to schedule tasks using the fixed-priority preemptive scheduling algorithm.

— As part of the method, an ontology is used to explicitly model the domain knowledge. A
significant amount of effort has been spent to correctly model the embedded domain so
that it can be used in an industrial setting. A rather academic approach has been chosen to
model the control domain; e.g., only one viewpoint is modeled. We therefore acknowledge
that the modeled control knowledge requires some rework before being usable on an

CHAPTER 1. INTRODUCTION

industrial scale.

— Some of the techniques that have been developed during the course of this research
use and/or extend previous work of members of the CoSys-Lab and MSDL research
groups. The framework, integrating the presented method and techniques, is solely used to
demonstrate the usability of our fundamentally new approach in an academic context. It is
therefore inevitable that the framework should be refactored to achieve a sufficiently high
Technology Readiness Level (TRL) [Man95, Man09] so that it can be used in an industrial
context.

1.5 Case Studies

Throughout this dissertation, the power window is used as an academic case study to demonstrate
the feasibility of the presented method and techniques. Their integration within the framework,
and as such the scalability of our fundamentally new approach, is demonstrated using the Hybrid
Hydraulic Vehicle (HHV) as a sufficiently complex industrial case study.

1.5.1 The Power Window

Power window systems are typically found in automobiles enabling an occupant to lower and raise
a window by pressing a button or switch. Although the primary operation and implementation
was rather simple, additional features have been added by automotive manufacturers to improve
occupants’ comfort and security. In addition, a number of (deadly) incidents [BBR'06] have led
to stricter safety regulations imposed by various government agencies [Dep09]. For example,
the automatic reversal of the upward movement when an object gets stuck between the window
and the door frame. This resulted in increasingly complex systems, forcing manufactures to use
software to enable the operation of such systems. Based on the set of functional requirements
described in [PMO04], combined with safety regulations of [Dep11], we define the requirements
for the power window case study as follows:

1. A window shall start moving within 200 ms after a command is issued.

2. A window shall automatically move to a final position when the up or down command is
issued for less than 500 ms.

3. A window shall be fully opened or closed within 4.5 s.
4. When closing a window, a force of no more than 100 N may be present.

5. The detection of an object when closing a window should result in lowering the window by
approximately 12.5 cm.

1.5. CASE STUDIES

6. The operations of the driver have priority in case a passenger window is simultaneously
operated by the driver and a passenger.

In this dissertation we consider a power window system containing two windows, one at the driver
side and one at the passenger side. Its functional control architecture is shown in Figure 1.2. As
mechanical buttons tend to generate an unstable signal when pressed, input signals from the driver
(drvCmd) and the passenger (psgCmd) are debounced by the Debounce component. Using a bus,
the debounced signals are transferred to the Power Window Control (PWC) component of the
driver or to a control exclusion component. The latter ensures that the driver’s operations have
priority over those of the passenger. Both PWC components, one for each window, contain the
control logic to determine the operation of the window. To detect a pinched object, the motor’s
requested power is measured using a current sensor; i.e., due to reactive force of the pinched
force on a closing window, the requested power will increase. An end of range detection (EODR)
detects that the closing window slides into the rubber at the top of the door, such that the control
logic may ignore the higher current request (i.e., the reactive force). Note how each component
contains a trigger input port to indicate that the component is periodically executed.

A power window system is an elementary illustration of a CPS: a window (physical component)
actuated by software running on an processing device (cyber component). Using a feedback loop
between the physical and cyber component (not shown in Figure 1.2), safety related information
about the operation of the window can be taken into account by the software. As there are
often multiple power windows in today’s vehicles, a communication channel is used to transmit
information from the various controllers used to sense and actuate the windows. Given the limited,
yet sufficient, complexity of the system, the power window system is considered as an excellent
academic case study [MV04, PM04, Denl13, LDMH17].

Debounce PWC_DRV

!W\

VIVVYIVIVY

ControlExclusion|

PWC_PSG

>
e

Figure 1.2: Functional control architecture of the power window system

CHAPTER 1. INTRODUCTION

1.5.2 The Hybrid Hydraulic Vehicle

The HHYV industrial case study is based on a concept that has been devised by Peugeot Société
Anonyme (PSA) for the development of a Hybrid Hydraulic Drivetrain (HHD) for a small passen-
ger car (e.g., Citroén C3). The topology of the drivetrain, reverse engineered from available PSA
patents [RR13], consists of two different power sources: () a conventional Internal Combustion
Engine (ICE) and (%) a hydraulic system. A schematic overview of the complete HHD and its
components is given in Figure 1.3. The mechanical part of the drivetrain is illustrated in blue on
the right-hand side, while the hydraulic components are shown in orange on the left-hand side.

(22)

(24.)

0

(28| (27.)) ¢

1.) Hydro motor 11.) Sun gear
1
1
1
) First intermediate shaft & i1 1

(21.) Low pressure control valve
(
(
(
(
) Second intermediate shaft & i2 (1
(
(
(
(

2.) Hydro motor shaft Planet gear 22.) Hydraulic accumulator

3.) Synchronizer shaft Sync. final drive

Second intermediate shaft & i4

(21)

(22)

(23.) Hydraulic reservoir
) Sync. hydraulic transmission (24.) High pressure control valve
Second intermediate shaft & i3 (25.) Disc brakes

(26.) Handbrake
Sun gear shaft & i7 (27.) Pressure line A
) Drive shaft to wheels 1 (28.)
1 (29.)

2

28.) Pressure line B

4.

5.

6.

7.) Differential 1
8. Hydraulic pump shaft
9.

) Internal Combustion engine Hydraulic pump

)

)

)

)

)

) Sync. planetary transmission
)

)

) 29.) Sync hydraulic pump
)

(1
(2.
(3.
(4.
(5,
(6.
(7.
(i 8.
(9.
(0.

10.) Ring gear Sun gear lock

Figure 1.3: Conceptual overview of the Hybrid Hydraulic Drivetrain, based on [RR13]

According to PSA [SM12], this type of topology has a great potential to (¢) optimize the operation
of the ICE, (i¢) reduce the fuel consumption and as such (z¢7) reduce a car’s emissions. In order to
achieve these improvements, a control algorithm must ensure that the ICE is operating within its
optimum efficiency region [SM12, GY 14]. Depending on the requested torque and the speed of

10

1.5. CASE STUDIES

Mode
Requested Torque

Quadrant Il Quadrant | 1. Park
2. Neutral

3. Hydraulic Only
4. Combined
5. Gasoline 1
6. Gasoline 2

7. Mixed Braking
mode 12 - 14

8. Regenerative Braking

9. Thermic Braking

Vehicle Speed |, 1\ drauiic Only
mode 7 -9
11. Combined

12. Regenerative Braking

13. Mixed Braking

mode 10 - 11

14. Thermic Braking

Quadrant Il Quadrant IV

Figure 1.4: Driving modes of the Hybrid Hydraulic Vehicle, based on [SM12, GY 14, Nas14]

the vehicle, 14 driving modes can be distinguished. They are categorized by four quadrants as
shown in Figure 1.4. Quadrant I and quadrant IV categorize the forward driving modes, while
quadrant IT and III categorize the backward driving modes. In this dissertation, we limit ourselves
to the forward operating modes. We distinguish four main modes in which the HHV can operate
in forward driving, namely:

— Hydraulic mode—transmits the energy stored in the accumulator via the hydraulic motor
and is typically used for urban driving (where low torque and low speed is required).

— Combined mode—uses power-split technology where a fraction of the power is transmitted
through the hydraulic circuit and the remaining power through the mechanical parts. This
mode is used when higher torque is requested by the driver, typically for acceleration and
uphill driving. The ICE’s power is distributed in two directions: () directly to the wheels
(differential) and (¢7) to the hydraulic motor passing through the hydraulic system.

— Conventional mode—power to the wheels is provided by the ICE, operating at lower engine
speed in order to optimize fuel efficiency. Therefore, two conventional working modes
(mode 5 and 6) are defined, where the only difference between the two is the gear ratio.
Depending on the requested torque, the mode is selected for which the engine operates in
its most efficient region so that fuel consumption is minimized.

— Braking mode—Xkinetic energy is stored in the accumulator while decelerating. If necessary,
the thermal brakes can be activated to reduce the braking distance (e.g., in case of an
emergency stop).

11

CHAPTER 1. INTRODUCTION

Based on the descriptions of PSA in [SM12, RR13, RG14, GY14], we define the requirements
for the HHV case study as follows:

1. The HHV must achieve preset performance needs
(a) A top speed of 180 km/h

(b) A 0-100 km/h acceleration time of maximum 12.4 s (with a minimum acceleration of
2m/s?)

(c) Throttle response must be less than 0.5 s
(d) Braking distance for 100-0 km/h must be lower than 54 m
2. The HHV must achieve preset autonomy specifications

(a) A minimum range of 700 km with a full gasoline tank (New European Driving Cycle
(NEDC) [Uni])

(b) Able to accelerate for 10 s on maximum hydraulic power only
3. The HHV must operate within the 4 quadrants of the Torque-Speed curve of Figure 1.4
(a) Stand still in park mode
(b) Ability to drive forward and backward
(c) Capable of regenerative braking
(d) Able to drive in hydraulic mode, combined mode, or ICE only mode

Figure 1.5 illustrates the functional control architecture that models the behavior of the HHV
system. We distinguish between four main control components: Driver Intention, High-Level
Control, Low-Level Control and Dashboard. The Driver Intention component determines the
quadrant in which the driver intents to operate and how much torque is requested. Based on this
input, the High-Level Control component, in which the graph of Figure 1.4 is modeled, determines
the mode number and how much power is requested from the hydraulic motor and/or the ICE. The
final actuation of the HHD components is orchestrated by the Low-Level Control component. The
Dashboard component visualizes vehicle information which is relevant for the driver. Again, each
component contains a trigger input port to indicate that the component is periodically executed.

As with the power window, the HHV contains all the elements of a CPS: a drivetrain (physical
component) connected to a controller (cyber component) using a feedback loop such that the
software is able to determine the most appropriate operating mode. Given the complexity of
the system, a distributed hardware architecture is opted in which multiple controllers transmit
information using a communication channel.

12

1.6. OUTLINE OF THE DISSERTATION

di_Direction di_RequestedTorque hlc_Power hlc_DrivingMode llc_HDDActuation

Pedals E Driver Intention High-Level Control Low-Level Control
RPM E
Actual_Speed E :E
SoC IE E
o E " ’ Dashboard
Trig_di Trig_hlc Trig_llc
>
Telemetry Trig_d l}

Figure 1.5: Functional control architecture of the hybrid hydraulic vehicle system

1.6 Outline of the Dissertation

The remainder of the dissertation systematically elaborates on our contributions. We illustrate the
applicability of contributions by mean of the power window case study in Chapters 3 to 5, while
the HHV case study is used in Chapter 6.

Chapter 2 gives a short overview of techniques, methods, and tools that are necessary to understand
the novel method and techniques discussed in this dissertation.

Chapter 3 aims to answer RQ1, RQ2, and RQ3. The current state of the art regarding CBD,
and its applicability in Co-Design processes, is discussed by means of the power window case
study. The foundational concepts of our proposed method are introduced while we elaborate on
explicitly modeling domain knowledge and how the method facilitates multi-viewpoint design
processes.

Chapter 4 addresses RQ4 by supporting the proposed method with a technique that (semi-)auto-
matically augments the modeled control algorithm with timing-related deployment information
stemming from the embedded domain.

Chapter 5 elaborates on RQS5 by exploring how contracts may guide the search for an optimal
design using DSE techniques. Furthermore, RQ6 is addressed by initiating an initial pattern
catalog categorizing different DSE techniques.

Chapter 6 illustrates how the integrated framework, consolidating the presented methods and
techniques introduced in Chapters 3 to 5, can be used throughout the design process of a CPS;
that is, a Hybrid Hydraulic Vehicle.

Finally, Chapter 7 concludes our contributions and elaborates on potential future research direc-
tions.

13

CHAPTER 2

Background

CHAPTER 2. BACKGROUND

Contributions in the scientific domain often rely on a set of state-of-the-art techniques and methods.
In what follows we elaborate on the techniques and methods, and their supported tools, that are
relevant within the scope of this dissertation. Note that the descriptions are based on the cited
sources.

2.1 Techniques

2.1.1 Modeling Languages

For the development of CPSs, engineers increasingly rely on models to represent different aspects
of the system. In that respect, a model is an abstraction of (a part of) the real world system to be
developed. These models enable engineers to verify and validate the properties of a system in
a virtual environment using simulation techniques. In other words, engineers are able to verify
whether requirements are met even before the system is built. When models are consistently
used throughout the engineering process for verification and validation purposes, a Model-Driven
Engineering (MDE) process is practiced in which each aspect of the system is explicitly modeled
at the most appropriate level(s) of abstraction using the most appropriate formalism(s), while
modeling the development process(es) explicitly. In the literature, this modeling approach is
referred to as MPM [MV04] in which engineers rely on a Domain-Specific Language (DSL) to
model (a part of) the system.

Each model in an engineering process is characterized by three main aspects [VSB04, Kle07]:
its abstract syntax, its concrete syntax, and its semantics. The concrete syntax of a modeling
language describes how a model is represented [CDLOP02, VTVMMV 17]. This can either be
visually (using icons), textually (using characters), by means of audio, or a combination of them.
The abstract syntax preserves the essence of the concrete syntax. It defines how a modeling
language is structured by means of a metamodel [Kiih06] or a grammar for visual or textual
languages, respectively. An instance of the modeling language (i.e., a model) is said to conform
to the metamodel of the language. The semantics of a modeling language describes the meaning
of a model [HRO4]. In the literature, a distinction is made between operational (how a model
is executed) and denotational semantics (how a model is represented in another language). A
semantic mapping function explicitly describes how each model element is mapped onto an
element of the semantic domain. In case of operational semantics, a mapping function might map
a model to a (set of) behavioral trace(s). For denotational semantics, the mapping function maps
every model element to another model element.

In this dissertation, the abstract syntaxes are described by means of a metamodel using class
diagrams [RJB04]. For the concrete syntaxes both visual and textual representations are used. For
the former, we opted for a connection-based syntax [CDLOPO02] in which icons are connected
to each other using lines. For the textual representation, a geometric-based syntax [CDLOPO02]

16

2.1. TECHNIQUES

is used in which textual characters are spatially arranged. With respect to the semantics of the
models, both operational and denotational semantics are used.

2.1.2 Model Transformations

Model transformations play a key role in MDE to manipulate models and are even regarded as the
“heart and soul of model-driven software and system development” [SKO03]. They are typically
used for code synthesis, integration, analysis, simulation, and optimization purposes.

Transformations are defined between the metamodels of a source model and the target model. If
the source metamodel is different from the target metamodel, the transformation is classified as an
exogenous transformation. If not, it is called an endogenous transformation. While transformations
are defined at a higher abstraction level (i.e., the meta-level), they are executed at the model
level where a distinction is made between in-place and out-place transformations. The former
classification refers to a transformation that is executed within the model. If the result of a
transformation is a new model, it is classified as an out-place transformation. A more detailed
taxonomy of model transformations can be found in [MGO06].

Different approaches can be taken to specify model transformations. Czarnecki and Helsen
classify them by means of a feature model in [CHO6]. At the top-level they distinguish between
model-to-text and model-to-model transformation approaches. Although Czarnecki and Helsen
detail the different approaches for each category, we elaborate on the approaches used throughout
this dissertation. For both model-to-text and model-to-model transformations, a template-based
approach is used. A template contains a set of rules, each of them typed by a Left-Hand Side
(LHS) and Right-Hand Side (RHS). The LHS contains logic to read model elements of the source
model, while the RHS consists of string patterns to construct the target model. The rule can
optionally be extended with a Negative Application Condition (NAC) that constrains the LHS.
The order in which the rules are executed is made explicit, resulting in operational transformations.
With respect to model-to-model transformations, this dissertation complements the operational
transformations with a declarative approach for which graph transformations are used [Sch95].
In that respect, both LHS and RHS of the transformation rule are expressed as a graph. When a
match is found between the graph of the model and the LHS, the model’s graph is transformed
according to the graph structure defined in the RHS of the rule. The benefit of this approach is
that the graph structures of the rule can be rendered in the modeling language. It allows users to
define transformation rules without the need for expert transformation knowledge.

2.1.3 Design-Space Exploration

Model transformation are often used to explore a (possibly infinite) design space for an optimal
solution for a particular design problem. DSE is an automatic process where possible alternatives

17

CHAPTER 2. BACKGROUND

of a particular design problem are explored. The exploration is guided with imposed constraints
and optimality criteria on the different candidate solutions.

Depending on the optimization problem, different search techniques can be used. For rather
small problems, often an exhaustive search technique is used that explores the entire design
space for feasible solutions. A less computationally intensive variant is the random search
technique that only creates a predefined set of solutions of which the best one is selected. Using
(meta-)heuristics, hill climbing searches for a more optimal solution, with respect to a given goal
function, by incrementally modifying a single solution. Hill climbing techniques often require
users to translate the problem to a generic search model. Using graph based rules, rendered in the
user’s modeling language, a set of model transformation patterns can be scheduled to optimize an
original model. Again, meta-heuristics can be used to guide the model transformation schedule.
As one may notice, exploring design spaces often requires one to balance between computational
time and finding the optimal solution. In [Den13] a DSE technique is presented that prunes the
design space more efficiently by combining multiple DSE techniques.

Within the scope of this dissertation the multitude of DSE techniques are further explored and
categorized to assist engineers in selecting the most appropriate technique for their problem.
Furthermore, the hill climbing technique is used the explore for the optimal deployment of a set
of software components on a hardware platform.

2.1.4 Formalism Transformation Graph and Process Model

As already stated, MPM intends to model everything explicitly at the most appropriate level(s) of
abstraction using the most appropriate formalism(s), while modeling the development process(es)
explicitly [MVO04]. In that respect, the Formalism Transformation Graph and Process Model
(FTG+PM) is proposed in [LMD™ 12, LMD™13] as a language for modeling the workflow of a
design process. The language enables one to explicitly model the used formalisms and how they
are related to each other. As the name implies, the FTG+PM consists of two parts. The FTG part
models all the involved formalisms (rectangles) and their relations using model transformations
(circles). These can be either manual or (semi-)automatic transformations. The PM part models
the workflow of the design artifacts (rectangles) and how they are processed throughout the design
process (rectangles with rounded corners).

An example of an FTG+PM, describing the (partial) process of generating code from a control
model, is shown in Figure 2.1. The FTG part is shown on the left-hand side of the FTG+PM, while
the PM part is shown on the right-hand side. Given a set of requirements, often expressed in a
textual formalism, the process starts by defining the specifications of the control algorithm. These
specifications allow control engineers to model the control algorithm in their preferred (set of)
formalism(s). The closed loop behavior of the control model is verified by means of Model-in-the-
Loop (MiL) simulation, that requires a model of the physical system (i.e., a plant model). Often,

18

2.2. METHODS

TexttualRequirements

i System
i ‘TextualRequirements
3 :DefineSpecifications

! ﬁpecifcationsj
3
| [Plant :PlantDSL :ModelControl)
§ Control :ControlDSL
PlantDSL ControlDSL | | ‘MiLSimulation)

1
|
|
3 :DiscretizeControlModel
! ControlF'S :ControlDSL
; - Y <
3 ("GenerateCode [Trace |
1 C-Code
1 :SiLSimulation
|
|
|
|
|
|

FTG i

Manual . (Semi-)Automatic 3 PM

Transformation Transformation | 1 || :Artifact | (_:ManualActivity) (:(Semi-)AutoActivity)

—> Consume / Produce Formalism i —> Control Flow Data Flow
|
|

Figure 2.1: Example of a FTG+PM for generating code from a control model

control engineers prototype their control algorithms in the continuous-time domain. However,
code is executed at a certain clock frequency, requiring control engineers to discretize their control
algorithm. Once code is generated from the discretized model, a Software-in-the-Loop (SiL)
simulation is executed in which the generated code is connected to the plant model. It is used to
verify whether the logic of the code satisfies the specifications [MPEO4].

Note that there exists a relation between the FTG and PM part. Artifacts and activities defined in
the PM part are typed by the formalisms and transformations defined in the FTG, respectively.
Also note that transformation and activities can be either manual or (semi-)automatic indicated
by the grey or yellow colors, respectively. A more exhaustive use of the FTG+PM has been
demonstrated by Mustafiz et al. [MDLV 12] by means of a deployment case study in the automotive
domain.

Within the scope of this dissertation, the FTG+PM is used to explicitly model the interactions
between the control and embedded domain when designing cyber-physical systems. Furthermore,
the FTG+PM is used to support the categorization of the different DSE techniques.

19

CHAPTER 2. BACKGROUND

2.2 Methods

2.2.1 Model Based Systems Engineering

Due to the ever increasing complexity of systems, engineering activities are shifting from a
document-centric to a model-centric process in which models are used as an integral part of
the technical baseline that includes the requirements, analysis, design, implementation, and
verification of a capability, system, and/or product throughout the acquisition life cycle [Mod11].
We refer to the term MBSE if these models are used to support system requirements, design,
analysis, verification, and validation activities of a system beginning in the conceptual design
phase and continuing throughout development and later life cycle phases [INCO7].

As designing complex systems involves engineers from various disciplines, engineers follow a set
of guidelines to ensure a product implements the given system requirements. The order in which
the guidelines are followed is called the design process. Inspired by the software engineering
community, that has defined Software Development Life Cycle (SDLC) models over the past
decades [Rup10], we distinguish three models that are commonly used when designing CPSs: the
waterfall model, the V model, and the agile model. They are conceptually shown in Figure 2.2.

The waterfall model is typed by a sequence of design steps in which a step can only be started
if the previous is finished. Therefore, this model is considered when the project is not subject
to changes. Otherwise, the design process must start over which may be costly in large engi-
neering projects. Similar to the waterfall model, the V model is typed by a sequential design
process. However, the V model distinguishes between design and verification & validation steps,
respectively on the left-hand side and right-hand side of the V model, while keeping them tightly
coupled as illustrated by the horizontal dashed lines. While going from high-level requirements to
a low-level implementation, the specifications of the design are verified by executing acceptance
tests, ranging from low-level unit tests to high-level system tests. Ultimately, at the top of the
V model, it is validated whether the system satisfies the requirements. Although the verification
steps are executed while designing the system so that late detection of implementation errors can
be avoided, a changing product requirement still requires one to redesign (parts of) the system
which, again, may be costly. Using an iterative design process, agile design processes avoid these
costly redesigns. Their process model is typed by so called sprints (i.e., design iterations) in
which a finalized product is delivered at the end of each cycle. Subsequent design cycles extend
the previous prototype by implementing more requirements. As such, agile design processes
are suitable when requirements are subject to change. On the downside, the lack of a thorough
system analysis may result in a more complex, more expensive, design process. In general, we
can conclude that each design process is typed by:

20

2.2. METHODS

Waterfall Model V Model

Requirements Requirements |« ————————————————————— .| Acceptance
Testing
Functional
Specifications
— > System
Architectural o 1/7 . Testing
Design } MiL 3
1 Simulation ;

Detailed
Design

i i
Implementation e *‘\ Simulation |
__»| Detailed _ Unit _
Testing Vg Design Testing AN
—_— e ___ —
Y T ~__ s
| Simulation J"‘ ~ ™1 Simulation !

Deployment
Implementation

Agile Model

Functional
Specifications
Architectural
Design
Detailed
Design

Deployment

Figure 2.2: Conceptual overview of commonly used MBSE design processes

1. A specification phase: the set of system requirements is refined to a set of technical
requirements called specifications.

2. A design phase: implementation of the specifications by the engineer(s).

3. An integration phase: integration of the implementation(s) and/or components in order to
construct the system.

4. A verification/validation phase: executed during both the design phase and integration
phase to verify whether specifications and requirements are met.

Nevertheless, in the context of designing (large) complex systems using a MBSE approach, the
V model is widely accepted as the industry standard for designing and testing a CPS [Est08]. As
such, we provide an example of a (possible) enactment of its conceptual representation (at the

21

CHAPTER 2. BACKGROUND

yoeoxdde gSgIA ® Sursn ssooo1d uSisop [enuonbas € Jo Juouorud 9[qISSod ¢ I3

MOI4eleq — — —— MO|4 10BU0D <« —
RiAmyoIny(-wes):) (_AIAIVEnten: BEIY:
puaba

1581 Wa)sAS:

wajshg

josu0Q pazieay

Siojenpy JUSWUOIIAUT
B B 0:

e N w, . . \

SIo)eNoY sIosusg
WISI9PON: WIS|9PON:

\\\\\\\\\ -] A

JUSWIUOIIAUT
WISISPON:

18POW [04U0D

1ePOW 1l

~—--d ainjpajyoy
w|56w.£8<:9_:oor\\- m:cmo

SINeIV: peppequis | Suoneoyoads: y

suoneoyoadgauleq:

SEMEI ENE NS

22

2.2. METHODS

top right in Figure 2.2) by means of the Process Model (PM) shown at the right-hand side of
Figure 2.3 while representing how the design process relates to the conceptual evolution of the
system (left-hand side of Figure 2.3).

The design process starts off with a set of system requirements. Given these system requirements,
the multi-disciplinary engineering team defines a set of technical requirements called functional
specifications. They continue by discussing a global architecture whereby the models and
peripherals (sensors, actuators, and environment) are considered as black-boxes so that signal
interfaces can be defined. Subsequently, viewpoint-specific architectures, being subsets of the
global architecture, are deduced. Viewpoints are typically associated to an engineering domain,
so that there exist as many architectures as there are engineering domains. Focusing on control
and embedded design in this dissertation, an embedded and control architecture are deduced from
the global architecture. The viewpoint-specific architectures are used by each engineering domain
while designing (a part of) the system. For example, the embedded architecture is used by the
embedded engineer to configure the Electronic Control Unit (ECU) while the control architecture
is used by the control engineer to design the control algorithm.

The implementation of the system typically starts with the design of the control algorithm.
Therefore, control engineers rely on a plant model (i.e., a model of the physics) such that the
behavior of the modeled control algorithm can be verified through a MiL simulation. In other
words, a MiL simulation is executed to verify whether the specifications are met. If this is not
the case, the control engineer will have to (partially) redesign the control algorithm. For reasons
of simplicity, this decision is not shown in the PM. In case the simulation results fulfill the
specifications, the control algorithm is handed over to the embedded engineer who prepares the
control algorithm for deployment. This includes selecting a fixed-step solver, a sample rate and,
optionally, converting floating-point representations to fixed-point. Given the final configuration
details, code is generated from the modeled control algorithm and verified by executing a SiLL
simulation. Prior to the deployment, a Processor-in-the-Loop (PiL) simulation is often executed to
verify the compiler and to test the linker and loader [MPE(O4]. Again, a (partial) redesign and/or
reconfiguration may be necessary if specifications are not met (not shown in the PM). Once the
specifications are met, the embedded engineer configures the ECU. This includes the configuration
of the drivers, the AUTomotive Open System ARchitecture (AUTOSAR) stack, the RTOS, the
communication matrix describing the messages on a communication medium, etc. Subsequently,
a model-to-text transformation generates code from the modeled control algorithm so that it can
be deployed on the ECU. Before interacting with the physical world, the ECU running the control
algorithm is connected to a real-time platform executing the plant model so that a Hardware-
in-the-Loop (HiL) simulation can be executed [MPEO4]. Ultimately, the hardware operates in
its intended environment controlling the physical system. By executing an acceptance test, one
verifies whether the initial requirements are met.

Due to faster time to market and lower development costs demands, however, engineering teams
tend towards the parallelization of design activities. To support these design processes, the

23

CHAPTER 2. BACKGROUND

e e Acceptance
Functional |_ ___________________ System
Specifications Testing
WML Lo
Architectural
Design

Simulation ’< -

1
Parallel H'L !

Design

_» Detailed Unit e~ _
Design Testing \\

} Wi NN SCT
L§'m5'at@n - =71 Simultion |

Figure 2.4: Conceptual overview of the V model for parallel design activities

VDI 2206 guideline [GMO03, VDI04, Ise08] was issued that formalizes the necessary adaptions
to the V model so that concurrent design can be enabled. As conceptually shown in Figure 2.4,
viewpoint-specific workflows are parallelized once a high-level architecture is defined. This is
denoted by the parallel arrows in Figure 2.4. As a viewpoint is typically associated with a certain
engineering domain (e.g., control, embedded, mechanical), engineering activities are parallelized
according to the involved engineering domains.

Again, we provide an example of a (possible) enactment of the parallel V model by means of the
PM shown in Figure 2.5. As one may notice, the detailed design and implementation activities
of the V model are situated between the subgraphs Define Architecture and Realize System. In
contrast to a sequential design process, the development of the control model and the configuration
of the ECU are conducted in parallel. A first synchronization between parallel design activities
takes place once the control model is discretized and the ECU is configured. Given the final ECU
configuration details, code is generated from the modeled control algorithm and verified using a
SiL. simulation. Afterwards, the software is cross compiled and verified on the target processor by
executing a PiLL simulation. If these simulation satisfy the specifications, the code is deployed by
the embedded engineer who links the generated code with the ECU configuration. In parallel with
the previous described design activities, a HiL. simulation setup is configured. In that respect, the
mechanical engineer prepares the plant model to run on a real-time target. Once the parallel design
activities are finalized, a HiL simulation is executed to verify if the integrated system satisfies
the initial specifications. Finally, the hardware operates in its intended environment controlling
the physical system. By executing a system test, it is validated if the initial requirements are
met.

24

i :SystemRequirements

:DefineSpecifications
= Specifications |

Embedded :Architecture

——>| Control :Architecture
1 Plant :Architecture

Define
Architecture

Environment :Architecture

7 -
[:ModelSim [:ModelSim :ModelSim)
Environment Sensors Actuators

2.2. METHODS

v
~{ Sensors :ControlDSL

| v =

| MiLEnvironment :ControlDSL ” B ~
|

|

Control :ControlDSL |- |

“MiLSimuiation)~ -

ControlFS ControlDSL

GenerateCode | -

:ConfigureHiL :Configurel iC
Environment Sensors

[

Environment :HiLDSL

Sensors HILDSL

“HiLSimulation

Realize
System

Legend

:Artifact :ManualActivity) (:(Semi-)AutoActivity)

—> Control Flow ———— Data Flow

Figure 2.5: Possible enactment of a parallel design process

25

CHAPTER 2. BACKGROUND

2.2.2 Contract-Based Design

Engineers intend to avoid inconsistencies within the same or between different domains, by
defining an architecture prior to the (concurrent) design of the system. The architectural description
outlines the design components implementing functional specifications, the interfaces between
those components, value ranges and units of the interfaces, etc. When designing complex systems,
however, components are often implemented by different engineers and combined/integrated at
later stages, even within the same domain. During the design of a complex algorithm, for example,
a component-based approach is mostly used in which the algorithm is divided into self-containing
components implementing a well-defined functionality. We illustrate this by means of Figure 2.6
in which the design of the control algorithm for the power window, introduced in Section 1.5.1,
is decomposed in terms of components. Note that we consider all the button signals as a single
bus signal. As a benefit of this component-based approach, components can be designed by
different engineers and stored in a library for later reuse. Although the architecture defines
interfaces between components, a more formalized document is necessary that describes what a
self-containing component may expect at its inputs and, given these conditions, what it should
guarantee at its outputs. Hence, Contract-Based Design was introduced to formalize components
in terms of Assume/Guarantee (A/G) reasoning.

Power window system

! |
S| »l
> B Sinet processing P — 3 >
EODR C, PWC |
Abstraction Level L P 'SP = c —_— ——
Pinch A Pinch Pwe |
= 7 N > |
- ~. |
[< ________ N _______)
Refinement i Ny
Signal Processing i >
T o e e e e e e
|
. . buttonSignals Debounce buttonSignals_deb Control Exclusion processedButtonSignals |
Abstraction Level L-1 f—oaunppl = > S ——
i > Cpeb = = Cex > I
|
|
,,, i
Electrical View b/ \d Timing View
Debounce Debounce
e T |
i : !
© buttonSignals Debounce_Elec buttonSignals_deb | | buttonSignals Debounce_Timing buttonSignals_deb |
! oE = il » of = i
I Deb il Deb i
i i !
| |

Figure 2.6: Decomposition of the power window control architecture

According to the CBD theory, formally described by Benveniste et al. in [BCNT15a], a con-
tract C consists of a set of assumptions A and guarantees G describing the preconditions and
postconditions of a system in terms of its set of design variables VAR, respectively. Or more
formally:

C = (VAR, A, G) @2.1)

26

2.2. METHODS

In the example of the decomposed control algorithm, each component M can be typed by such a
contract C in which their input variables are captured as a set of contract assumptions, while the
output variables are expressed as a set of contract guarantees. Each component M is said to satisfy
a contract C, formulated as M = C, whenever it fulfills the set of guarantees under the given set
of assumptions. Using set theory, this can be formally written as [BCN ™ 15a]:

MECifandonlyif MNACG (2.2)

A contract is said to be consistent if its set of implementations is nonempty (M #) and
compatible if its set of environments E is nonempty (E # (). Note that F is an environment of C'
if and only if £ C A. A consistent contract, however, does not imply a consistent design. In case
component M interfaces with component M’, for example, consistency can only be guaranteed if
variables belonging to the set of guarantees of component M equals the variables belonging to the
set of assumptions of component M.

When the final control algorithm is composed by integrating several interfacing components into
one single component, as shown in Figure 2.6, one must ensure that their respective contracts are
correctly consolidated to a single (top-level) contract. To do so, the CBD theory defines three
operators: the conjunction operator A, the composition operator ®, and the abstraction/refinement
operator <. In what follows, we briefly describe these operators by means of the power window
example (Figure 2.6). We therefore rely on the theory and examples described in [BCNT12,
BCN*15a].

The top-level Signal Processing component in Figure 2.6 is decomposed in two components
implementing a single functionality: Debounce for debouncing the input signals and ControlEx-
clusion to provide priority to driver’s signals. At the bottom of Figure 2.6, it is shown that there
exist two viewpoints on the Debounce component, namely, an electrical viewpoint and a timing
viewpoint. Each viewpoint-specific implementation is typed by a (viewpoint) specific contract;
that is Cgeb and CEeb. They are formally described in Table 2.1.

According to the theory of [BCN™ 15a], contracts that relate to different aspects that may exist on
a single component can be combined using the conjunction operator A. These different aspects
relate to the different concerns stakeholders have with respect to the component under design.
Examples of such concerns (i.e., viewpoints) are: functionality, safety, quality of service, resource
utilization, etc. Let ¢’ = (A’,G’) and C" = (A", G") be contracts related to the implementation
of two different viewpoints on a single component M, then the resulting contract C = C' A C”,
can be obtained as follows [BCN*15a]:

A= (AUA" 03
o .

(G'NG")

27

CHAPTER 2. BACKGROUND

. Inputs: x
Variables:
Outputs: 'y

CE . Types: x,ye€ R,
Deb- .

Assumptions: 0V <x <10V
Guarantees: 0V <y<S5V

. Inputs: x
Variables:
Outputs: 'y

CTD X Types: x,y € Ry
¢ Assumptions: True
Guarantees: ty < 5ms

Table 2.1: Electrical (E) and Timing (T) viewpoint contract for the Debounce component

. Inputs: X
Variables:
Outputs: 'y

Types: x,y € Ry
Chep: Assumptions: 0V <x <10V
0OV<y<5V

Guarantees:
ty < 5ms

Table 2.2: Contract for the Debounce component

In the example of the power window, Cgeb A Cgeb results in contract Cpy, as described in
Table 2.2.

Note that a conjunction of contracts relaxes the assumptions and enforces the guarantees. As
such, if there exists an implementation M that satisfies the conjunction of two contracts, the
implementation satisfies either contracts as well. This is formally written as [BCN™ 15a]:

If M = C' A C” then M k= C’ and M = C” 2.4)

Complex systems often consist of different components that are interconnected through their
interfaces. An example is shown at abstraction level L-1 of Figure 2.6 where the Debounce
component is connected to the Control Exclusion component. Again, each component its imple-
mentation is typed by a contract shown in Table 2.2 and Table 2.3, respectively. In this case, the
composition operator ® is proposed by [BCN™15a] to combine contracts. Let now C' = (A’ G")
and C" = (A”,G") be the contracts of two connected components M’ and M”, respectively.

28

2.2. METHODS

. Inputs: x
Variables:
Outputs: 'y

Types: xye R,
Assumptions: 0V <x <5V
Guarantees: 0V <y <3V

Ceg:

Table 2.3: Contract for the Control Exclusion component

. Inputs:
Variables:
Outputs: vy

Types: x,y € Ry
Clszlgfi Assumptions: 0V <x <10V
0V<y<3Vv

Guarantees:
ty <5ms

Table 2.4: Contract for the refined Signal Processing component

Then the composition C' = C’ @ C” can be obtained as follows [BCN*15a]:

A=A NnA"YU-G NG")
G=(G'naG" 23
In the example of the power window, Cp .,y ® C results in contract Cléf,f as described in Table 2.4.

In the previous, the components Debounce and Control Exclusion, and their associated contract,
are related to each other through their interfaces. We therefore say that these components are
operating at the same (horizontal) level of abstraction; hence the term horizontal (in)consistency.
However, components may also be hierarchically structured. In that case, components operating
at abstraction level L-1 are considered as a refinement of the parent component operating at
abstraction level L. Let now C' = (A4, G) and C' = (A’, G’) be the contract of the component
operating at abstraction level L and L-1, respectively. Then the refinement of C' by C’, formulated
as C'" = C, is defined as follows [BCN*15a]:

ACA

2.6
GG 20

For the power window example, the combined implementation of Debounce and Control Exclusion,
and the resulting contract Cls}e,f (Table 2.4), is a refinement of the Signal Processing component.
For the latter, its implementation is typed by the contract Cgp, as formally described in Table 2.5.

29

CHAPTER 2. BACKGROUND

. Inputs: x
Variables:
Outputs: 'y

Types: xye Ry

Cqp: Assumptions: 0V <x<5V
ovV<y<s5V
Guarantees:
ty < 5ms

Table 2.5: Contract for the (abstract) Signal Processing component

Note that the assumptions of the refined component are more relaxed while guarantees are
enforced. As a result, any implementation M; of contract C’ is an implementation of C' as well,
or more formally [BCN*15a]:

If M; = C"and C' < Cthen M; = C 2.7)
The same reasoning can be defined for the environment in which they operate [BCN™15a]:

IfEECandC’ < Cthen E =’ (2.8)

For a more detailed description of the Contract-Based Design theory and more extensive examples
we refer to [BCFT08, BCNT12, BCN™15a, BCN*'15b].

2.2.3 Ontologies

An ontology enables one to represent the shared knowledge in a domain of discourse using
a common language [Gru93]. It enables one to explicitly define the concepts of a domain of
discourse, properties of each concept describing various features and attributes of the concept,
and restrictions on these properties. An ontology together with a set of individual instances of
concepts constitutes a knowledge base [NMO1].

Figure 2.7 illustrates an example of a knowledge base in which real world persons are classified
in an ontology as being a Project Manager, Supervisor, or PhD Student concept. Ontological
concepts and real world instances are related to each other through a satisfaction relationship.
As such, each classification divides the instances of the real world as being satisfied (C) or
not satisfied (— C) by the concept. In addition, there may be an undefined relationship (DK_C)
between concepts in the ontological world and instances in the real world. Ontologies are therefore
regarded as Open World Assumptions (OWA) models. Properties between ontological concepts
are represented as arrows and are applicable to all the individuals belonging to the related concepts.
Note that concepts are represented as sets such that binary operations (i.e., set theory[Can74]) can

30

2.2. METHODS

. Reports to
‘- -
~"" Project Manager
3 |
2

Supervisor 7

Ontological World

HV PDM KV

Legend

I . PR Ontologically
@ Classification Q Concept Individual —— Property > Conforms to
C Satisfies the concept “C Does not satisfies the concept DK_C Do not know if it satisfies the concept

Figure 2.7: Introductory example of an ontology

be applied to the concepts.

Defining an ontology starts by choosing an appropriate ontology language. They can be divided
into two categories [SI02]: traditional and web-based ontologies. The former category refers
to languages based on first-order logic [Smu68], frame logic [KL89a, KL89b], and description
logic [BCM™03]. The latter, and more recent, category refers to languages based on the World
Wide Web Consortium (W3C) standard for the Web of linked data (i.e., the Semantic Web) [Wor].
Besides these two categories, there also exist languages that combine the best of both worlds. An
important criterion in the selection of the ontology language is its expressiveness (in function of
the application). A language is more expressive if it is able to () express Individuals, (i7) relate
Concepts (e.g., intersection), and/or (¢¢7) characterize Roles (e.g., transitivity).

As ontologies are modeled using OWA, dedicated reasoners can be used that infer logical conse-
quences from a set of explicitly asserted facts or axioms in the modeled ontology and typically
provides automated support for reasoning tasks such as classification, debugging, and query-
ing [DCtTdK11]. Note, however, that the expressiveness of a language is inversely proportional
to its reasoning abilities. Among the large number of reasoning engines available [Abb12], well
known reasoners are: Pellet [SPGT07], FACT++ [THO06], and HermiT [SMHO08, GHM T 14].

Within the scope of this dissertation, we have opted to use the W3C’s standardized Web Ontology
Language (OWL) (i.e., OWL 2) [HPSvHO03, Bec09] to model our ontologies. In OWL 2, the
terms Classes, Properties, Instances, and Data Values are used to construct the ontology and
are synonyms for the general terms Concepts, Roles, Individuals, and Data Values, respectively.

31

CHAPTER 2. BACKGROUND

Different flavors of the OWL exist: OWL Lite, OWL DL, and OWL Full. The difference lies
in the expressiveness of the language, with OWL Lite being the least expressive. We have
opted to use OWL DL as it enables one to express an ontology using description logic. In this
dissertation the SHZ Q(D) description logic is used. As syntactic and semantic interoperability
is of importance within the scope of our contributions, we defined a so called upper ontology
for CPSs that subsumes viewpoint-specific ontologies and relates them using a common set of
Classes and Properties.

2.3 Tools

2.3.1 Eclipse EMF

The Eclipse Modeling Framework (EMF) [Theb] is a modeling framework and code generation
facility for building tools and other applications based on a structured data model. From a
model specification described in XML Metadata Interchange (XMI), EMF provides tools and
runtime support to produce a set of Java classes for the model, along with a set of adapter classes
that enable viewing and command-based editing of the model, and a basic editor. The EMF is
considered as the core of an extensible modeling environment enabling interoperability between
technologies, defined as plugins, addressing a certain modeling concern. An example of such a
plugin is Epsilon [KPPOS8], enabling one to define and execute model-to-model and model-to-text
transformations.

2.3.2 T-Core

T-core is a framework providing a collection of primitive constructs, defined at the optimal level
of granularity, for the design of model transformation languages [SV10, Syr11, SVL15]. It is not
restricted to any form of specification of transformation units, be it rule-based, constraint- based,
or function-based. It can also represent bidirectional and functional transformations as well as
queries. T-Core modularly encapsulates the combination of these primitives through composition,
reuse, and a common interface. It is an executable module that can be easily integrated into a
programming or modeling language.

2.3.3 Protégé Desktop

Protégé Desktop is a feature rich ontology editing environment with full support for OWL 2,
and direct in-memory connections to description logic reasoners such as HermiT and Pellet. It
supports creation and editing of one or more ontologies in a single workspace via a completely

32

2.3. TOOLS

customizable user interface. Visualization tools allow for interactive navigation of ontology
relationships. Advanced explanation support aids in tracking down inconsistencies. Refactor
operations available include ontology merging, moving axioms between ontologies, renaming
of multiple entities, and more [Stal6, Alal3]. Different formats for exchange are supported,
including the standardized W3C’s expressive Resource Description Framework (RDF), OWL, and
Manchester OWL syntaxes.

2.3.4 SymPy

SymPy is an open source Python library for symbolic mathematics. It aims to become a full-
featured Computer Algebra System (CAS) while keeping the code as simple as possible in
order to be comprehensible and easily extensible. SymPy is written entirely in Python [Sym,
JCMG12].

SymPy supports a wide array of mathematical facilities. These include functions for assuming
and deducing common mathematical facts, simplifying expressions, executing common calcu-
lus operations, manipulating polynomials, pretty printing expressions, solving equations, and
representing symbolic matrices. Other supported facilities include discrete math, concrete math,
plotting, geometry, statistics, sets, series, vectors, combinatorics, group theory, code generation,
tensors, Lie algebras, cryptography, and special functions. SymPy has strong support for arbitrary
precision numerics, backed by the mpmath package. Additionally, SymPy contains submodules
targeting certain specific physics domains, such as classical mechanics and quantum mechanics.
This breadth of domains has been engendered by a strong and vibrant user community. SymPy is
a dependency of many external projects across a wide spectrum of domains [MSPT17].

2.3.5 Simulink

Simulink® is a block diagram environment for multidomain simulation and Model-Based Design.
It supports system-level design, simulation, automatic code generation, and continuous test
and verification of embedded systems. Simulink® provides a graphical editor, customizable
block libraries, and solvers for modeling and simulating dynamic systems. It is integrated with
MATLAB®, enabling one to incorporate MATLAB® algorithms into models and export simulation
results to MATLAB® for further analysis [Mat].

2.3.6 Massif
The MATLAB Simulink Integration Framework (Massif) for Eclipse is an Eclipse-based feature

that supports the easy handling of Simulink® models by providing import and export capabilities
to/from Eclipse EMF. It therefore relies on a generic EMF metamodel that was designed to

33

CHAPTER 2. BACKGROUND

store all information for each Simulink® block and provide the type information as defined in
Simulink® using library links [HSB*]. Importing and exporting is done using the command line
interface of MATLAB®. For this, Massif relies on the Open Services for Lifecycle Collaboration
(OSLC) [Joh13], a specification enabling integration of tools via linked data.

2.3.7 MAST

MAST is an open source suite of tools to execute schedulability analysis of real-time distributed
systems that assesses a rich variety of timing requirements. For this, a textual input model of the
system is used as an input of the analysis tools that calculates the response times, jitter, slack time,
etc. MAST is also able to execute a design-space exploration to find an optimized assignment of
priorities and deadlines. The result of the analysis is presented as a textual output model. Both
input and output models are fully described by metamodels enabling the integration of tools in a
model-driven engineering tool chain [Gon, GGPDO1].

34

CHAPTER

Design Contracts Enabling Consistency in

Multi-Viewpoint Design Processes

Abstract. Designing a Cyber-Physical System requires a multi-disciplinary team to collaborate
such that a rather complex product can be built given certain constraints (e.g., time-related
or resource-related). Key to efficient collaboration among engineering teams is the ability to
understand each others’ domain and, as a consequence, to understand how viewpoints are related
to each other. Despite the many efforts that have been made in defining techniques and methods
for collaborative design of Cyber-Physical Systems, engineers still face inconsistencies when
integrating design artifacts. This leads to time consuming, iterative design processes where
inconsistencies are resolved, in turn possibly creating new ones. Based on the principles of
Contract-Based Design, using Assume/Guarantee contracts, and ontological reasoning, a method
is proposed enabling engineers to reason about inter-viewpoint dependencies prior to the design
of the system. The early detection and avoidance of inconsistencies enables the method to be used
in a concurrent engineering setting while reducing the development time and effort. Hence the
name Contract-Based Co-Design as reference to the approach.

CHAPTER 3. DESIGN CONTRACTS ENABLING CONSISTENCY IN MULTI-VIEWPOINT
DESIGN PROCESSES

3.1 Introduction

Despite the emerging need for intelligent systems to enforce the next industrial revolution (i.e., In-
dustry 4.0) or the next automobile revolution (e.g., full autonomous driving), designing such CPSs
remains a challenge. The integration of mechanical components with control algorithms running
on computational units and the distributed nature of the system requires a multidisciplinary
engineering team to collaborate, each with a different view and set of concerns on the system
under design. As a result, there exist heterogeneous viewpoints on the system under design that
may lead to contradicting design decisions [TQB™14]. This is illustrated in Figure 3.1, where
we focus on the relations between a control and an embedded viewpoint and how a change in the
embedded domain affects the control domain. Engineers in either domain use dedicated tools to
design and evaluate, through simulations and analysis, a part of the system (Figure 3.1.(a)). In our
example, control engineers are concerned about the maximum allowed overshoot of their control
algorithm while embedded engineers are concerned with the maximum response time of the
different tasks. Assume that the configuration of the embedded platform as shown in Figure 3.1.(a)
results in an analysis for which the concerns of both control and embedded engineers are fulfilled.
Because of additional tasks that must be scheduled, embedded engineers may decide to lower the
priority of the task running the control algorithm. This is indicated by a higher priority number
in Figure 3.1.(b). Although the system is schedulable, lowering the priority results in a higher
response time of the task. Because of the inter-viewpoint relationships, illustrated by the graphs
on the right-hand side of each figure in Figure 3.1, the behavior of the control algorithm is affected
so that its overshoot is larger than expected. We illustrate this in Figure 3.1.(c).

As a systems engineer is often aware of these inter-viewpoint relationships, they typically merge
the different viewpoints on a system and execute a tradeoff analysis between the various design
parameters so that consistency between viewpoints is preserved. The increasing systems’ complex-
ity, however, demands for techniques to assist engineers in both the (consistency) tradeoff analysis
and management. In that respect, CBD (Section 2.2.2) is a promising technique in which the
various design parameters are formalized as an agreement (i.e., a contract) between two or more
engineering domains. However, the CBD theory does not support engineers in reasoning about the
inter-viewpoint relationships and, as such, about the content of a contract, while highly focusing
on consistency within one single viewpoint. It thus lacks in its applicability to the (concurrent)
design of CPSs; that is, processes that combine multiple viewpoints.

In particular, contract-based design supported (multi-viewpoint) processes are characterized by a
common engineering phase in which viewpoint-specific architectures are defined and a common
contract is negotiated [DLTT13]. As engineers consider the design from a different viewpoint
they face difficulties in reasoning how design artifacts, and their corresponding design parameters,
originating from different viewpoints are related to each other. As a result, the content of the com-
mon contract may be incomplete or inconsistent. Secondly, once a common contract is negotiated,
it is highly recommended to derive viewpoint-specific contracts, containing information that is

36

3.1. INTRODUCTION

Design Tool 1 Q

>SS

=

Design Tool 1 Q

|2l

=

Overshoot Overshoot

v Julodmaip
v Juiodmaip

suopefal Jujodmain-iejuj
suopejes Jurodmain-rojuy

Design Tool 2 Q) Design Tool 2 Q|
| 21T | 1%
Name | Priority Name Schedulable Name | Priority Name Schedulable
Task 1| 1 Task 1 © < Task1| 4 Task 1 [©) <
Task2| 2 Task 2 Q e\ H Task2| 2 Task 2 @ e \. H
Task3| 3 Task 3 [©) B Task3| 3 Task 3 [©) EY
Response Time ™ ol Time ©
(a) Implicit relations between control and embedded view- (b) Parameter adjustment in the embedded viewpoint
point
. Design Tool 1 Q [g <
Design Tool 1 Q) Overshoot < > S .’i g
| 1T] 2 - 3
[} ? 3 /Contract _%
7
\ 4

suonefal Jujodmain-isjuj
suopefal Julodmain-iojuj

Design Tool 2 Q Design Tool 2 Q
esign Tool
| 2% > &
Name | Schedulable Name | Priority Name | Schedulable
N P
Taasr:j m:my Task1| 4 Task 1 © <
\ 5 Task2| 2 Task 2 © g
Task 2 2 \ g = : B
Task3| 3 R g as| Task 3 © i
Response Time ™ Contract
(c) Changing parameter affects control viewpoint (d) Contracts and knowledge base enabling consistent view-
points

Figure 3.1: Overview of the Contract-Based Co-Design Method

only relevant for a particular viewpoint. This may require translation mechanisms from commonly
negotiated design parameters to viewpoint-specific design parameters.

In this chapter we argue that reasoning over inter-viewpoint relationships can be established by
adding the principles of ontological reasoning (Section 2.2.3) to A/G reasoning. In that respect,
ontologies are used to make the tacit domain knowledge of engineers explicit while simultaneously
linking design parameters to each other. This is illustrated by the database symbol shown in
Figure 3.1.(d). It enables engineers to discuss a consistent mapping between viewpoint-specific
architectures, formalized by a common (set of) mapping contracts, and enforces consistent multi-
viewpoint design by automatically deriving viewpoint-specific contracts. As this is of particular
interest for the concurrent design of CPSs, we introduce a Contract-Based Co-Design (CBCD)
method in this chapter.

37

CHAPTER 3. DESIGN CONTRACTS ENABLING CONSISTENCY IN MULTI-VIEWPOINT
DESIGN PROCESSES

We consider that MBSE can only be successfully achieved when engineers are supported with tools.
We therefore present a Contract-Based Co-Design (CBCD) framework acting as a single point of
truth throughout the (concurrent) design process, supporting engineers in (z) negotiating consistent
mapping contracts, (i1) deriving domain-specific contracts, (i7¢) detecting inconsistencies between
design parameters (during both contract negotiation and design), (¢v) updating the viewpoint-
specific design with information from the other viewpoints (Chapter 4), and (v) exploring different
design alternatives (Chapter 5). Key is the ontology, that is regarded as a knowledge base within
the scope of this dissertation, that relates design parameters as illustrated in Figure 3.1.(d).

3.2 Related Work

Contract-Based Design finds its origin in software engineering where Hoare in 1969 introduced
the Hoare triple PQ R that states that the result R of a program @ is true if the input condition
P is true [Hoa69]. In the late 80’s, Meyer introduced the Eiffel programming language as
an implementation of Hoare logic [Mey88, Mey92]. Using “Require” and “Ensure” clauses,
Eiffel enabled a programmer to annotate a software routine with pre and post requirements
respectively.

It took, however, almost a decade before Contract-Based Design (formerly called design by con-
tract) was associated with model-based design. In 2001, Broy and Stolen introduced the FOCUS
method for the development of software-intensive systems going from requirement specification
to abstract implementation [BSO1]. In their approach, component specifications are expressed
in terms of assumed input streams and, under these conditions, guaranteed output streams, for
which a stream can be regarded as a set of events. This so called A/G paradigm is considered as a
reformulation and generalization of the pre/post style logic of Hoare. In parallel with Broy and
Stolen, de Alfaro and Henzinger [dAHO1] used an automata-based formalism to capture a com-
ponent’s temporal I/O behavior in terms of input assumption and output guarantees respectively
while formalizing the notion of compatibility, composition, and refinement. A few years later,
Damm et al. [Dam05, DVO05] introduced Rich Components that extends traditional component
models with (¢) functional and non-functional information originating from different views on the
system, (¢%) explicit information on what a component guarantees under certain conditions while
(29%) adding classifiers on the environmental conditions (i.e., the assumptions).

The work of Damm et al. and Alfaro and Henzinger served as an input for the results obtained
in the framework of the SPEEDS! project. In [JMMO8, BFMSV08, PDH"09] the definition
of Rich Components was extended by supporting heterogeneous viewpoints (in a single do-
main) on a system. Hence the term Heterogeneous Rich Components (HRC). The scope of the
SPEEDS project resulted in the (first) use of contracts in a component based engineering context.
In [BCFT08], Benveniste et al. present the mathematical foundations of CBD to enable the

! Www.speeds.eu.com

38

3.2. RELATED WORK

combination of contracts for different model components and the combination of contracts for
different viewpoints on the same model component. A few years later, within the scope of the
CESAR? project, the CBD theory was further extended with formal contract definitions, among
them the three basic contract operators (abstraction/refinement, composition, and conjunction),
in [BCNT12, BCN*15a].

A more generic contract framework is shown by Bauer et al. [BDH™ 12], where the relation be-
tween specifications of component behaviors and contracts is shown. Moreover, they demonstrate
that the trace-based contract theory of Benveniste et al. [BCFT08] is an instance of this generic,
specification theory based, contract framework. In [DLTT13], a non-exhaustive classification of
timing contracts is given. Focusing on control-embedded related timing parameters, Derler et al.
demonstrate the feasibility of a contract type for one or both engineering domains.

Besides the theoretical aspects of CBD, its applicability in engineering processes has also been
addressed in the literature. Sangiovanni-Vincentelli et al. address the emergent need of CBD in the
context of system level design in [SVDP12]. They present a design methodology that combines the
concepts of CBD with Platform-Based Design (PBD) as a meet-in-the-middle approach. Related to
the work of Graf et al. [GPQ14], Sangiovanni-Vincentelli et al. demonstrate how contracts may be
dominated when combining subsystems (individually bounded by a contract). Furthermore, a clear
distinction is made between horizontal and vertical contracts when combining the concepts of CBD
with PBD. Similarly, Nuzzo et al. elaborate on the usefulness of CBD, and their formal analysis and
verification methods, in a PBD methodology for Cyber-Physical Systems [NXO* 14, NSVB+15].
Using the design of an aircraft electric power system, they illustrate how a hardware topology
can be independently constructed from the control logic. In [BCN*15b], a method, combining
CBD and AUTomotive Open System ARchitecture (AUTOSAR) [AUT, FNS™16] principles, is
shown for the independent, concurrent, development of a distributed task allocation problem. The
presented method consists of the specification of resource agnostic, functional, contracts and
resource aware contracts that are both decomposed to enable concurrent engineering. In more
recent work, Dal Lago et al. [DLFPF18] present how non-functional requirements (e.g., timing)
of Service Oriented Cyber-Physical Systems can be practically validated using fault injection and
CBD. The authors demonstrate how extensive fault tree analyses can be avoided by breaking the
analysis down to the component level in a similar approach as system-level contracts are refined
into component contracts. If an analysis is proven to be correct at the component level (i.e., if
the analysis satisfies a contract of a component) compositional contract rules are used to verify a
system’s validity.

To avoid inconsistencies between multiple domains, and their respective viewpoints, Bhave
introduces in [Bhal 1] the notion of a common base architecture that provides engineers a single
reference point for multi-domain system models. As mappings are defined between the viewpoint-
specific architectures and the common base architecture, structural consistency can be guaranteed.
The framework has been further extended by Rajhans in [Raj13, RBR*14] so that semantic

Zhttp://www.cesarproject.eu

39

CHAPTER 3. DESIGN CONTRACTS ENABLING CONSISTENCY IN MULTI-VIEWPOINT
DESIGN PROCESSES

consistency can be guaranteed throughout the design process. Therefore, mappings between
heterogeneous semantic domains are formally described and verified during design. With respect
to verification, Ruchkin [RSI" 18] recently introduced the Integration Property Language (IPL)
that enables system engineers to define properties over both behavioral and static semantics. Using
model checking techniques, it is verified whether viewpoint-specific models are consistent.

As already mentioned in Section 3.1, we contribute to the current state-of-the-art of CBD by
explicitly modeling the domain knowledge using an ontology enabling one to relate design
parameters from different engineering disciplines using inter-viewpoint relationships. In that
respect, Torngren et al. describe the different viewpoints involved in the design of mechatronic
systems in [TQB™14]. They show how these viewpoints are interrelated by means of supporting
models at different design levels, namely: () people level, (:7) models level, and (¢i7) tools level.
At each design level, some challenges and solutions (supporting models) are described. For
the contributions of our work, the first two levels are of particular interest. At people level, the
authors point out that each stakeholder, involved in the design of a CPS, should be aware of the
effect of their work on others. The use of design contracts is proposed to enable this awareness.
Moreover, they hint towards the use of assumptions and guarantees as discussed by [SVDP12].
Additionally, at models level, Torngren et al. describe the existence of dependencies between
models implementing certain parts of the overall system requirements. As a possible solution
towards consistency management, a Dependency Modeling Language (DML) and a supporting
Dependency Modeler [Qam13] is suggested to formally capture and manage dependencies.

The benefits of capturing and managing dependencies in the design of CPSs is shown by Gross
and Rudolph in [GR16]. While not explicitly mentioning the term ontology, the authors construct
a graph that relates domain-specific design parameters for the design of a satellite system. It
enables them to execute sensitivity analysis across the entire design space enabling designers to
find a tradeoff between different design decisions. Moreover, the presented ontology facilitates
DSE to find the optimal satellite design satisfying the requirements.

We conclude this section with the work of Persson et al. where the authors characterize model-
based approaches used in the design of CPSs [PTQ*13]. To do so, a clear distinction is made
between views and viewpoints. The former relates to the multitude of abstractions that can be
made of a system while the latter refers to a set of all possible view instances. The authors show
that there exist relations between views, and as such viewpoints, with respect to their content,
process, and operations that are not entirely exclusive to each other.

40

3.3. DESIGN CONTRACTS SUPPORTING MULTI-VIEWPOINT DESIGN PROCESSES

3.3 Design Contracts Supporting Multi-Viewpoint Design
Processes

As described in Section 2.2.1, engineers are challenged to optimize their design processes so that
the time to market is shortened while design costs are reduced. In order to achieve these demands,
viewpoint-specific design activities are already parallelized once a common architecture is defined.
It is often seen, however, that the integration of these different viewpoints fails as requirements,
and as such design parameters, overlap. In other words, due to the lack of consistency management
techniques iterative, time consuming, design loops may be necessary in which inconsistencies are
resolved, in turn possibly creating new ones.

In [DLTT13], Derler et al. suggest the introduction of a negotiation step in (concurrent) design
processes in which the different stakeholders formally define a set of design parameters, and their
expected values, using a (set of) contracts so that consistency throughout the detailed design step
can be assured. Figure 3.2 outlines the proposed design process as an adaptation of the widely
used V model (shown in Figure 2.2). To enable the negotiation of contracts, it is assumed that
the architectural design step is extended to include a preparatory design for each of the involved
viewpoints. This implies that each viewpoint considers a possible (set of) design(s) based on the
given specifications. In case of control-embedded design, for example, the control viewpoint
reasons about a certain control strategy, sample period, etc. As being part of the embedded
domain, the hardware viewpoint reasons about a certain execution platform, communication bus,
etc.

Acceptance
Testing

e System
Testing
Integration
Testing
So
Ad\ Simulation
Contract | __________ N Contract
Design Testing

|
,,,,,,, J
Parallel __ N\ N\ _____
Design
o Detailed _ Unit e~ _
Ve Design Testing AN
N N S LS

MLl S~
Simulation [~ gl

ML 1
1 Simulation *

Architectural
Design

|
1

Implementation

Figure 3.2: V model for consistent parallel design as proposed by Derler et al. in [DLTT13]

41

CHAPTER 3. DESIGN CONTRACTS ENABLING CONSISTENCY IN MULTI-VIEWPOINT
DESIGN PROCESSES

TextualRequirements

System:
F ot ¥ TextualRequirements
Control§p ati 2 fications

:ExtractControl
Specifications

:ExtractPlatform
Specifications

TextualSpecifications

Control: Platform
TextualSpecifications JextualSpecifications

ControlArchitecture PlatformArchitecture

:ControlArchitecture :PlatformArchitecture
b Contract
5 Negotiation B
ntrol :ContractDSL Platform :ContractDSL

:Detailed
ControlDesign

Control :ControlDSL

:Detailed
PlatformDesign

Platform :PlatformDSL

:Inteération
System :EmbeddedDSL
:SystemTest

Boolean

:Boolean

False
True
FTG

- Manual (Semi-)Automatic PM
ormalism OTransformauon O Transformation Attifact | (“:ManualActivity) (:(Semi-)AutoActivity)

—> Consume / Produce Formalism —> Control Flow Data Flow

Figure 3.3: Possible enactment of a by contracts support design process as proposed by Derler et
al. in [DLTT13]

Using a FTG+PM, introduced in Section 2.1.4, Figure 3.3 demonstrates a possible enactment
of the conceptual representation of the by contracts driven design process of Figure 3.2. It
clearly demonstrates how the different viewpoints, in this case the control and platform viewpoint,
are required to negotiate a (set of) contract(s) before detailing their design. During contract
negotiation, engineers are supported by heuristics/domain knowledge, simulation, analysis, and
optimization techniques to achieve a tradeoff between the various design parameters [DLTT13].
Although the suggested methodology states that there may be potential iterations in the contract
negotiation step, it is not clear to what extent consistency between the various design parameters,
and thus between the different viewpoints, is ensured. The outcome of the negotiation step is
a (set of) contract(s) with fixed design parameters. Preferably, viewpoint-specific contracts are
derived from the negotiated set of design parameters. The methodology proposed in [DLTT13],
however, does not discuss how they can be obtained. Additionally, the methodology does not

42

3.4. APPLICABILITY OF CONTRACT-BASED DESIGN IN MULTI-VIEWPOINT PROCESSES

impose a verification step to verify that the implementation, as part of the detailed design step,
satisfies the negotiated contract(s). In the next section, we elaborate on the question whether CBD
as a technique is suitable to tackle these challenges.

3.4 Applicability of Contract-Based Design in
Multi-Viewpoint Processes

To enable concurrent detailed design, the outcome of the negotiation phase must be (a set of)
contract(s) that can be interpreted by the different viewpoints. In what follows we examine in
more detail to which extent the current CBD theory supports this reasoning.

In the literature, some techniques, illustrated by means of a case study, have already been suggested
that address the multi-viewpoint problem [BCNT15b, NXO™ 14, DLFPF18]. In particular, Ben-
veniste et al. defines in [BCN*15b] a four-step approach to design a CPS (i.e., a multi-viewpoint
design) using the principles of CBD:

1. Define a (hardware) resource agnostic top-level contract.

2. (Optional) For each component, decompose the top-level contract into resource-agnostic
subcontracts.

3. Define a resource aware top-level contract.
4. Decompose the resource aware top-level contract into (resource aware) subcontracts.

Similar to the example shown in [BCN™15b], we illustrate the proposed approach for the design
of the power window system (introduced in Section 1.5.1). Note that we only briefly discuss the
approach to validate the applicability of the CBD theory in multi-viewpoint design processes. For
more details, we refer to [BCN™T 15b] where the design of an AUTOSAR compliant Exterior Light
Management System is used as an example.

Step 1 - Define a resource agnostic top-level contract

From a functional, resource agnostic, point of view, the control algorithm of the power window
system consists of a Debounce, ControlExclusion, PWC_DRV and PWC_PSG component as
shown in Figure 1.2. Note that the functional architecture addresses only one viewpoint; that is,
the control viewpoint.

As described in Section 2.2.1, each design process starts by defining a set of specifications from
the given set of system requirements. In that respect, the requirements specified in Section 1.5.1
are refined given domain-specific knowledge. For example, requirement 4 and 5 are further refined
in the spatial and temporal dimension to detail the safety requirement:

43

CHAPTER 3. DESIGN CONTRACTS ENABLING CONSISTENCY IN MULTI-VIEWPOINT
DESIGN PROCESSES

4.1/5.1 Spatial dimension—if a clamped object is detected, the power window may continue
to close for a maximum of 0.2 mm before safety-critical situations occur.

4.2/5.2 Temporal dimension—given the spatial dimensions and the inertia of the system,
safety can be guaranteed if the window lowers within 1 ms.

They are formalized as the third and fourth guarantee of contract CTop, shown in Table 3.1, using
a pattern-based contract specification language as used in [BCNT15b] in which we solely focus
on the assumptions and guarantees. Contract CTop will be further extended by the engineer so
that every requirement, and the derived specifications, listed in Section 1.5.1 is formulated as
a contract entry. For instance, the first and second contract guarantee are derived from the first
requirement. While defining the specifications, certain assumptions regarding the environment in
which the system will operate are made. With respect to the context/environment in which the
power window is operating, for example, it is determined that: () the minimum interval of button
operations is 100 ms and (z¢) the pinch force is not higher than 1000 N. These considerations are
added to the contract as assumptions. For the sake of simplicity, we have limited ourselves to
a subset of the available inputs and outputs in the definition of the resource agnostic top-level
contract Cr,.

(1) drvCmd_drvWindowUp occurs sporadic with a minimum inter-
val of 100 ms.

(2) psgCmd_psgWindowUp occurs sporadic with a minimum in-
terval of 100 ms.

(3) Pinch_DRYV is lower than 1000 N.
(4) Pinch_PSG is lower than 1000 N.

Assumptions

Crop:
P
(1) Delay between drvCmd_drvWindowUp and drvWindowUp
within [0 ms, 200 ms].

(2) Delay between psgCmd_psgWindowUp and psgWindowUp
within [0 ms, 200 ms].

(3) If Pinch_DRYV exceeds 100 N and EODR_DRYV equals 0, delay
between Pinch_DRV and drvWindowDown within [0 ms, 1 ms].
(4) If Pinch_PSG exceeds 100 N and EODR_PSG equals 0, delay
between Pinch_PSG and psgWindowDown within [0 ms, 1 ms].

Guarantees

Table 3.1: Power window system—top-level resource agnostic contract

44

3.4. APPLICABILITY OF CONTRACT-BASED DESIGN IN MULTI-VIEWPOINT PROCESSES

Step 2 - For each component, decompose the top-level contract into resource-agnostic sub-
contracts

In this second step, the resource agnostic top-level contract CTop is decomposed so that each
component of the functional architecture is typed by an individual contract. As the (similar) fourth
step decomposes the top-level resource aware contract, this step is considered optional. Especially
since the third step continues reasoning on the top-level contract. We agree with this reasoning
and illustrate the decomposition in the final step of this approach.

Step 3 - Define a resource aware top-level contract

In order to define a resource aware top-level contract, the approach suggests a system architect
(e.g., an Original Equipment Manufacturer) to reason about a possible hardware and software
architecture for which a distributed computational platform and operating system tasks are
defined, respectively. Figure 3.4 shows such an architecture for the power window system, that
18, a resource aware architecture. As one can observe, the resource aware architecture consists
of two Electronic Control Units (ECUs) connected using a Controller Area Network (CAN)
communication bus. Based on the specifications of the chosen hardware platform and its current
load, it is decided by the system architect that the tasks, denoted by the ovals in Figure 3.4,
executing the implementation of components Debounce and ControlExclusion are allocated to the
Low Performance Processor (LPP). Tasks executing components PWC_DRV and PWC_PSG are
allocated to the High Performance Processor (HPP). For each task, the system architect budgets
deployment related design parameter such as the Worst-Case Execution Time (WCET) indicating
the upper bound on execution times of the software components running on the target hardware.
For this, the system architect relies on heuristics/domain knowledge. In case of the deployed
Debounce component, for example, the system architect specifies that an execution time between
1.5 ms and 2 ms is available for task T4. Once defined, a resource aware top-level contract C%‘)’S,
as shown in Table 3.2, is composed that refines the resource agnostic contract CTop'

(ECU_LPP) CAN ECU_HPP)
drvCmd_dr Jp drvWi i i ignals_DRV PWC_DRV > TG
Debounce indowUp
drvCmd_drvWindowDown | [} EODR_DRV AN » ——
indowDown
drvCmd_psgWindowUp % psgWindowSignals Pinch_DRV _\,
drvCmd_psgWindowDown E ceSignals_PSG Trig_DRV
psgCmd_psgWindowUp % ControlExclusion| cucams
P \’[
sgCmd. WindowDown
POETERS %|§ S WindowSignals_PSG] psgWindowUp
Trig D |, l} ' E psgWindowDown
oK 1oms Tig_CE EODR PSG >
Toik zms
Pinch_PSG %E
Trig_PSG || Toxzn
L L L J

Figure 3.4: Embedded architecture of the power window system

45

CHAPTER 3. DESIGN CONTRACTS ENABLING CONSISTENCY IN MULTI-VIEWPOINT
DESIGN PROCESSES

(1) drvCmd_drvWindowUp occurs sporadic with a minimum in-
terval of 100 ms.

(2) psgCmd_psgWindowUp occurs sporadic with a minimum in-
terval of 100 ms.

(3) Pinch_DRYV is lower than 1000 N.
(4) Pinch_PSG is lower than 1000 N.

Assumptions

Res.
CRes:

(1) exeT(T,) within [1.5ms, 2ms], exeT(T.) within [750 us,
1 ms], exeT(Tcan) = 480 us, exeT(Tyq) within [400 us, 500 us],
exeT(T,,) within [400 ps, 500 p1s].

(2) Delay between drvCmd_drvWindowUp and drvWindowUp
within [0 ms, 200 ms].

Guarantees (3) Delay between psgCmd_psgWindowUp and psgWindowUp
within [0 ms, 200 ms].

(4) If Pinch_DRYV exceeds 100 N and EODR_DRYV equals 0, delay
between Pinch_DRV and drvWindowDown within [0 ms, 1 ms].
(5) If Pinch_PSG exceeds 100N and EODR_PSG equals 0, delay
between Pinch_PSG and psgWindowDown within [0 ms, 1 ms].

Table 3.2: Power window system—top-level resource aware contract

Step 4 - Decompose the resource aware top-level contract into (resource aware) subcon-
tracts

Decomposing the resource aware top-level contract of C%g;
architect to execute a global schedulability analysis to obtain the maximum response time, specified
as Worst-Case Response Time (WCRT) for each task. It defines the maximum allowed time
between the activation of the task and its completion. As such, it further refines the guarantees
of C%g;. For example, the second guarantee of C%f; defining an end-to-end latency between
Oms and 200 ms between drvCmd_drvWindowUp and drvWindowUp is refined into a range
with a lower bound of 9.28 ms and an upper bound of 13.48 ms after analysis. Afterwards, the
resource-aware top-level contract is decomposed into the subcontracts C]§5§ and C}S{Ebp , one for
each ECU. They are shown in Table 3.3. Referring back to the example, one can notice how
the second top-level guarantee is divided into the ranges [8 ms, 12 ms] and [800 us, 1 ms] for
the end-to-end latency on ECU_LPP and ECU_HPP, respectively. Note that a fixed delay of
480 ps (Tcan) needs to be incorporated to obtain the schedulability analysis results (i.e., the range
[9.28 ms, 13.48 ms]). Finally, the system architect assigns each subcontract to a supplier who is in

charge of implementing the given contract.

into subcontracts, requires the system

46

3.4. APPLICABILITY OF CONTRACT-BASED DESIGN IN MULTI-VIEWPOINT PROCESSES

(1) drvCmd_drvWindowUp occurs sporadic with a minimum in-
: terval of 100 ms.

Assumptions . L . .

(2) psgCmd_psgWindowUp occurs sporadic with a minimum in-
LPP terval of 100 ms.
Csup

(1) exeT(T4) within [1.5ms, 2ms], exeT(T.) within [750 us,
1 ms].
(2) Delay between drvCmd_drvWindowUp and drvWindowSignals

Guarantees within [8 ms, 12 ms].
(3) Delay between {drvCmd_drvWindowUp and psgCmd_psgWin-
dowUp} and ceSignals_PSG within [8.75 ms, 13 ms].
(1) WindowSignals_DRYV occurs sporadic with a minimum interval
of 100 ms with jitter within [8.48 ms, 12.48 ms].
(2) WindowSignals_PSG occurs sporadic with a minimum interval

Assumptions | of 100 ms with jitter within [9.23 ms, 13.48 ms].
(3) Pinch_DRYV is lower than 1000 N.
(4) Pinch_PSG is lower than 1000 N.

CHPP. (5) Import Guarantees of Cglll)ll: .
Sub -

(1) exeT(Ty,q) within [400 ps, 500 us], exeT(Ty,,) within [400 ps,
500 ps].

(2) Delay between WindowSignals_DRV and drvWindowUp within
[800 ps, 1 ms].

(3) Delay between WindowSignals_PSG and psgWindowUp within
[800 s, 1 ms].

(4) If Pinch_DRYV exceeds 100N and EODR_DRYV equals 0, delay
between Pinch_DRV and drvWindowDown within [800 us, 1 ms].

(5) If Pinch_PSG exceeds 100N and EODR_PSG equals 0, delay
between Pinch_PSG and psgWindowDown within [800 s, 1 ms].

Guarantees

Table 3.3: Power window system—resource aware subcontracts

Discussion of the approach

When dealing with subcontractors, the approach ensures for a system integrator a schedulable
system when integrating the implemented components received from its suppliers, if and only
if the implementation(s) conforms to the contract(s). From the supplier’s perspective, a team
consisting of at least a control and an embedded engineer is charged with the implementation
of the received (sub)contract. In that respect, they will follow a well-defined design process, as
discussed in Section 2.2.1. To be able to design independently of one another, viewpoint-specific

47

CHAPTER 3. DESIGN CONTRACTS ENABLING CONSISTENCY IN MULTI-VIEWPOINT
DESIGN PROCESSES

contracts need to be derived from the received contract. However, both contracts CIS“EE and Cgﬁf’

are highly focused on guaranteeing timing related design parameters, while control engineers have
limited aids in estimating how their design decisions affect the execution time of a particular task
and, related to that, the total end-to-end delay of a signal. For this reason, control engineers are
unable to guarantee timing related design parameters. Furthermore, the contracts are in a sense
imposed on the subcontractors implementing the system since there is no negotiation between
engineers implementing the system. Consequently, design iterations might still be necessary due
to incorrect resource budgeting of the systems engineer. Therefore, we say that the proposed
approach results in a set of contracts that address only the system viewpoint(s) of the embedded
domain.

Question remains how a contract addressing the control viewpoint can be obtained. Intuitively,
one could argue that the guarantees of contract Clsfg and Cglflf should be considered as the
control engineer’s contract assumptions. Although, this is true, it is still unclear for a control
engineer (¢) how these assumptions should be interpreted or incorporated when designing the
control algorithm and (7) what (design parameters) should be guaranteed under these assumptions.
Note that a similar problem exists when assuming control design parameters in the embedded
contract.

We conclude that the approaches shown in the current literature [BCN ' 15b, NXO* 14, DLFPF18],
and by extension the state of the art in CBD theory, lack in the ability to infer contracts addressing
a single viewpoint, such that multi-viewpoint design cannot be properly supported. As such, there
is a need to derive viewpoint-specific contracts from a common (system) contract while ensuring
that each contract contains parameters that can be interpreted by their respective viewpoint. In
that sense, we consider that a translation between parameters stemming from different viewpoints
is required. It should also be unambiguous what may be assumed by each viewpoint and what
should be guaranteed under these conditions.

3.5 Multi-Viewpoint Consistency through Ontological
Reasoning

Although relating design parameters between viewpoints is key to enable consistent concurrent
design through the use of A/G contracts, translating design parameters from one viewpoint
to another seems to be challenging for engineers and is often done in an ad hoc fashion. To
address this issue and to facilitate the use of A/G contracts, we express these interrelations using
an ontological framework. To build this framework, we make the implicit knowledge of each
stakeholder explicit. During the translation of requirements to specifications in terms of viewpoint-
specific design parameters, each stakeholder keeps in mind certain properties, which we call
ontological properties. For example, a control engineer in charge of designing a control algorithm

48

3.5. MULTI-VIEWPOINT CONSISTENCY THROUGH ONTOLOGICAL REASONING

for the system under development implicitly thinks about control performance and response time
when deciding on modeling design parameters such as sample rate. An embedded engineer is
concerned with embedded design parameters such as processor speed and period of tasks instead
of the behavior of the control algorithm. As such, they reason about schedulability, processor
load, cost, etc.

As some of the requirements are shared among views, it may be clear that viewpoint-specific
design parameters related to those shared requirements should be consistent. Due to the viewpoint-
specific interpretation of the requirements, however, engineers reason about different ontological
properties; e.g., control performance for the control engineer and schedulability for the deployment
engineer. Unintentionally, this leads to inconsistencies between viewpoints. In current design
processes, for example, engineers have limited aids in estimating the impact of their design
choices. Therefore, it is common for a control engineer to assume almost unlimited hardware
resources such that viewpoint-specific design parameters such as computation time and write
time of outputs are underestimated. As a consequence, control performance is verified using a
wrong abstraction of the hardware platform. On the other hand, an embedded engineer strives
for a schedulable system by deploying the control algorithm onto an ECU such that its load is
regarded as safe. As a result, an ECU with enough resources (e.g., processor speed) is selected
such that the system is schedulable without excessive costs. Moreover, the hardware platform’s
resources are typically shared among multiple software tasks. This results in extra time delays
(i.e., WCRT) that where not taken into account by the control engineer.

By making the influence relations between ontological properties explicit in our framework, we
are able to explicitly translate related design parameters used in different viewpoints. Moreover,
reasoning about ontologies (i.e., relating ontological properties) and tracing the properties at the
modeling level to these ontologies allows us to examine current design processes. The processes
can be restructured accordingly to reduce the number of costly design iterations.

3.5.1 Foundations of Ontological Reasoning

Our suggested consistency management approach relies on the concepts of linguistic and onto-
logical (meta-)modeling in which a conformance relationship exists between a metamodel and a
(possibly infinite) set of models that are instances of the metamodel. According to Kiihne [Kiih06]
this conformance relationship can be either linguistic or ontological. Based on the work of Barroca
et al. [BKV14], Figure 3.5 represents these conformance relationships. We clarify the different
types of conformance relationships by means of the power window system. A control algorithm
is modeled by a control engineer using formalisms such as causal block diagrams, statecharts,
and so forth. Each model is typed by a metamodel: there exists a conformance relation between
them. Since we are dealing with languages, this conformance relation is called linguistic and
the metamodel is called a Linguistic Type Model (LTM). The relation has to be strict in the sense
that each structural element of a model must conform to some element in the Linguistic Type

49

CHAPTER 3. DESIGN CONTRACTS ENABLING CONSISTENCY IN MULTI-VIEWPOINT
DESIGN PROCESSES

LTMM — LTMsD =— LTMprop =— LTMcon — bool

A A A A (AN
I I | I -
model — [[model]] — value —> constraint——> sat'slf'ed”
Linguistic World ™~ - Satlsfledlﬁé/
Ontological World ﬁi S ij/ij o 7/‘ o
OTMi OTMn —.——
N s -
Real World (RW) ‘.
— ——-—> Linguistically conforms to = ----------- % Represents —— Checks satisfaction

,,,,,,,,,,,, » Ontologically conforms to Transforms —-—-—-- Conforms to

Figure 3.5: Linguistic versus ontological models, based on [BKV 14]

Model. Semantics is given to a model by defining a Semantic Domain (SD) and a semantic
mapping function (//.]]) that maps a model onto its meaning, an element of the Semantic Domain.
For example, the control model of the power window system can be transformed to a Petri-Net
(PN) model, that linguistically conforms to the PN metamodel, to obtain a reachability graph. A
second transformation is used to retrieve performance values such as liveness and boundedness.
We specify them as linguistic properties (i.e., design parameters) since they are situated in the
linguistic world. Subsequent transformations will check whether a linguistic property satisfies a
constraint using a function that returns a logical value (True or False). The linguistic models are
modeled with Closed World Assumptions (CWA). This means that if a property is not modeled, it
is assumed False.

As stated earlier, each viewpoint interprets (and implements) the requirements keeping in mind
some ontological properties (e.g., Sufficient Control Performance? and Schedulable System?).
We use the question mark to make explicit that these are ontological properties that must be
checked based on the linguistic performance values. As a result, each model is typed by one or
more Ontological Type Model (OTM) representing the implicit knowledge of the engineer. An
Ontological Type Model categorizes or classifies real world entities based on properties (concepts).
These are logically related using some appropriate logic (e.g., description logic). Note that each
ontology also conforms to a Linguistic Type Model as the representation of the ontology must also
be modeled using a language.

In our philosophy of ontological reasoning, ontologies and linguistic models are related to each
other through a satisfaction relationship that must hold between their respective properties. In
other words, each linguistic property stemming from a semantic domain can be linked to an
ontological property. This implies that linguistic properties stemming from different semantic
domains can be related to each other through a common ontology or a set of ontologies. Note that
from an ontological perspective, no strict relation exists between a model and an Ontological Type
Model. 1f a relation does not exist, either within the ontology or with the linguistic type model, we
do not assume that it is False. We could just be unaware of the relation. Ontologies are therefore

50

3.5. MULTI-VIEWPOINT CONSISTENCY THROUGH ONTOLOGICAL REASONING

modeled with Open World Assumptions (OWA).

The described notion of ontological reasoning is regarded as a key enabler of Contract-Based
Co-Design. Designing viewpoint-specific ontologies and combining them is, however, not obvious
and highly depends on the design process. By analyzing different design processes used in industry,
we detected three fundamental reasoning patterns that can be combined to enable ontological
reasoning in any kind of design process: Multi-Semantics (MS), Multi-Abstraction (MA), and
Multi-Viewpoint (MV). Each of these patterns rely on the foundational concepts of Figure 3.5 and
is typed by a Purpose, Structure, and Reasoning about Consistency description.

Multi-Semantics (MS)

Purpose: The first pattern focuses on multiple semantic domains, for a single engineering domain,
to give meaning to one specific viewpoint on the real world system. It is useful when different
performance characteristics can be analyzed from a single model. For example, an electronics
engineer analyzes both the power consumption and heat dissipation of an electronic system-on-
chip. Power consumption and heat dissipation are analyzed in different semantic domains, using a
different semantic mapping.

Structure: Figure 3.6 gives an overview of the relationships between linguistic and ontological
properties. In the first phases of the design process, a written set of requirements formulates
the desired properties of the real world system for a given context. Given these requirements,
the engineer implicitly reasons about ontological properties. The solid oval in the Ontological
World denotes the set of ontological properties covered by the requirements. Examples of such
ontological properties include Safe?, Sufficiently Performant?, Schedulable?, Deadlock Free?,
and so forth.

SDi = LM — SDil

|
performance valuel (pvil)

|
model ——— performance valuell (pvi)

Linguistic World

Real World (RW)
Holds ————> Linguistically conforms to ——— Checks satisfaction .
----------- > Represents Transforms —-—-—-- Conforms to % Requirements

Figure 3.6: Linguistic and ontological relationships for the Multi-Semantics pattern

51

CHAPTER 3. DESIGN CONTRACTS ENABLING CONSISTENCY IN MULTI-VIEWPOINT
DESIGN PROCESSES

As a first step in the design process, the engineer makes an abstraction of the real world system
by means of a model. This model strictly conforms to a Linguistic Type Model. This is denoted
by the conformance relation in Figure 3.6. By mapping the model, using a semantic mapping
function [/.]], to a Semantic Domain a meaning is associated with the model. The model thus
obtained in the semantic domain may allow analysis of some pertinent (linguistic) properties. In
this pattern, multiple semantic mappings to different semantic domains are available to analyze
different linguistic properties. The result of these analyses are called performance values (pv).
They can be expressed in any data type (numeric, boolean, string, etc.).

To check whether a linguistic property satisfies a certain ontological property, we test its related
pv using a function that returns a logical value (True or False).

Reasoning about consistency: Different satisfaction relations can exist between the performance
values and the ontology:

1. The performance values must satisfy two orthogonal properties. The two properties are
orthogonal if they are not ontologically related (even after transitive closure of intermediate
relationships). In this case, there are no consistency issues.

2. Both performance values must satisfy the same ontological property. In this case, the
model is consistent with itself. Otherwise the model is () intra-model inconsistent, (i¢) the
semantic mappings are inconsistent, (¢¢¢) different linguistic properties are checked, or
(7v) the model is infeasible.

3. There are (transitive) relations between the ontological properties that must be satisfied.
According to [DDV15], these relationships can be categorized as being L1, .2, or L.3. L3
relationships are the most precise. They define a precise mathematical relation between
properties (and their related design parameters). L1 relationships are regarded as the lowest
level of precision, expressing the existence of a relationship between properties without
specifying to which extent properties are related to each other. In between, L2 relationships
express the sensitivity between two related properties. Depending on the type and direction
of the relations, the satisfaction relationship will lead to category 1 or 2.

Motivating Example: We clarify the pattern by means of the power window system. The
control model shown in Figure 3.7 illustrates an implementation of one of the PWC components
in Figure 1.2. The model linguistically conforms to the metamodel of Simulink® Stateflow®. On
the one hand, executing a simulation gives semantics to the control model (e.g., in the form of
a simulation trace). From this, we obtain performance values such as the time to reverse the
movement of a window when an object gets stuck between a closing window and the frame.
This is then checked against the Sufficiently Quick Response Time? property. On the other hand,
a transformation to a PN representation can be made to verify the Deadlock Free? property.
Both ontological properties have a relation to the property Safe?. The influence relation between
ontological properties is in this case: Safe? requires Deadlock Free? and Sufficiently Quick

52

3.5. MULTI-VIEWPOINT CONSISTENCY THROUGH ONTOLOGICAL REASONING

[obstacle == 1] [buttonUp == 1]
EMERGENCY [buttonUp == 0] _[OFF
entry: entry:
moveUp = 0; [after(100, ticks)] | moveUp = 0;

moveDown = 1; moveDown = 0;

[buttonDown == 0]

Deadlock Sufficiently Quick
Free? Response Time?

-___.v.—__..

Safe?

DLF=f(Reachability)
N

~

~

Response=f(Traces)
- .

Figure 3.7: Multi-Semantics pattern example—model of the power window controller and its
ontology

Response Time?. Deadlock Free? and Sufficiently Quick Response Time? are orthogonal.

Multi-Abstraction (MA)

Purpose: In the multi-abstraction pattern, an abstraction-refinement relation exists between
the different models. This implies that the abstract model’s performance values must satisfy a
subset of the ontological properties satisfied by the (performance values of the) more refined
model.

Structure: The structure of the pattern is shown in Figure 3.8. As in every design process,
a written set of requirements formulates the real world system demands. Given this set of
requirements, each engineering domain creates a set of ontological properties and relations
between the ontologies that the system should satisfy. Because there is only a single viewpoint,
there exists only one set of ontological properties the system should satisfy. This is denoted by the
solid oval in the Ontological World. Similar to the previous pattern, linguistic properties are tested
for both models by transforming them to a semantic domain. Again, the performance values are
tested, using a function, for satisfaction with the ontological properties.

By definition of abstraction A, for an original model model, only a subset of the ontological
properties satisfied by the performance values (in the Linguistic World) of the original model
have to be satisfied by the performance values of the abstracted model A(model). For each such
ontological property op:

{A(model) = op} = {model = op}

53

CHAPTER 3. DESIGN CONTRACTS ENABLING CONSISTENCY IN MULTI-VIEWPOINT
DESIGN PROCESSES

SDi ——— L™ _ SDii
N

A 18]} A Y L8]} A
| | |
i lA(modeI) ————— performance valueA(M) (pvA(M))
I | s

| |
| |

performance valuem (pvM) <————= model

Linguistic World

Ontological World
Propm=f(pvm)

\;
S
RealWord RW)
Holds ————> Linguistically conforms to ——— Checks satisfaction
- Represents Transforms —_— Conforms to % Requirements

Figure 3.8: Linguistic and ontological relationships for the Multi-Abstraction pattern

(safe
o @:}i;/;l;Nemral) g:ts;gngemeutral [endstop | after(100,ticks)] zms;:gencyDown
**| moveUp = 0; moveUp =0; ;—‘x, moveUp =0;
moveDown =0; moveDown = 0; o moveDown = 1;
[passenger[a]]/rz [passenger[z]]\\
T - . N
/~ [endstop]) | | Q\ [endstop] N\

/
passengerDown /

— - / . (passengerUp — 7
entry: moveDown = 1; |iniPassengerDown 1/ / entry: moveUp = 1; | iniPassengerUp e
exit: moveDown = 0; exit: moveUp = 0;
[passenger(1] v after(100,ticks)

,(""aﬁer(1 00, ticks)| [obstacle]

[passenger[1]]
[passenger[1]] 1 1. [passenger[1]]

Y

\
{ [| Ipassengeriz] J—‘—Upl N
[autoPassengerDownl[passeﬂgefDOWf\ L il autoPassengerUp
7/

4
31\

(driver(3]] 2 lengstop]] || | [endstop] ldriver(z]] |
(driverDown —)/ N (GriverUp i
en}tl'y: movSDown =01; 1/ - \\ en}try:movLeJUp iniDriverUp
exit: moveDown = 0} N exit: move! =
¢ after(100,ticks) [driver[1]] \\\2 P 26 after(100,ticks)
[driver{1]] ,’—1{23\ / [driver{1]] L 2O parveri)
““[oriverDown) | ———{Driverlp] [autoDriverUp]
J [driver[3]] Yy,
P
rope, rtj s
Priority=f(Traces) " » >~ Response=f(Traces)
,~ Deadlock Sufficiently Quick ™~

o / Free? Response Time?
Priority to |

®. -— -
: \
. Driver?
<

Figure 3.9: Multi-Abstraction pattern example—refined model of the power window controller
and its ontology

54

3.5. MULTI-VIEWPOINT CONSISTENCY THROUGH ONTOLOGICAL REASONING

If A(model) satisfies an ontological property, this must imply that model satisfies that same
property.

Reasoning about consistency: If the set of performance values of the refined model do not
satisfy all the properties of the abstracted model, the two models are inconsistent. This case is
called vertical inconsistency in the literature. The designer should mitigate the issue such that the
refined model satisfies all the properties of the abstract model. This could be a redesign of the
abstract or refined model.

Motivating Example: Figure 3.9 shows a refined implementation of the power window controller
and the set of ontological properties it satisfies (via its performance values). Our refined model
still satisfies the ontological properties discussed in the multi-semantics example. However, it also
satisfies a new ontological property: Priority to Driver?. This property denotes that the driver
commands have priority over the commands of the passenger. The model is still deadlock free
and the reversal of the window is still satisfied. Note that we also discovered a new relation in the
ontology. Safe? now also requires the Priority to Driver? property to be satisfied. Our abstract
model however cannot be regarded as Safe? anymore because it has no notion of priority. To keep
the ontology consistent with the different design artifacts, the Safe? property should be moved
from the inner to the outer set of properties.

Multi-Viewpoint (MV)

Purpose: The MV pattern is related to the multiple viewpoints that exist on the real world system
when designing a CPS. It is useful when the view-specific models are somehow related to each
other. For example, during the design of a control algorithm its model is synthesized using a plant
model representing the physical elements of the real world.

Structure: Similar to the previous patterns, Figure 3.10 depicts the structure of the Multi-
Viewpoint pattern. Given the set of requirements describing the behavior of the real world system
for a given context, each viewpoint reasons about certain linguistic properties and their related
ontological properties. These sets are represented by the dashed ovals in Figure 3.10. How-
ever, since some of the requirements are shared among the views, properties will concern both
viewpoints which implies that the ontological sets overlap. A semantic mapping function trans-
forms both models to a semantic domain to test their linguistic properties. Using an appropriate
evaluation function, the performance values are evaluated for satisfaction with the ontological
properties.

Reasoning about consistency: As the ontological properties in the intersection are related to
the same requirement(s), an ontological relationship between them exists by default. Satisfaction
between the performance values and the ontology can occur in two ways: (¢) if the performance
value(s) satisfy one or more of the properties in the intersection or (:¢) if the performance value(s)
satisfy a viewpoint-specific ontological property that has a relation (after transitive closure) with a

55

CHAPTER 3. DESIGN CONTRACTS ENABLING CONSISTENCY IN MULTI-VIEWPOINT
DESIGN PROCESSES

performance valuel (PVI)

Linguistic World 4
Ontological World Y

Propi=f(pvi)
N

Real World (RW)

Holds ——— > Linguistically conforms to ———— Checks satisfaction Requi
--------- -+ Represents Transforms —-—-—- Conforms to % equirements

Figure 3.10: Linguistic and ontological relationships for the Multi-Viewpoint pattern

PowerWindow_control

> speed [m/s]
P pinch > pinch peed [mis]
window_up position [m] ‘

v

v

v

»|down Obstacle !
end of detection range
up

current [A]

v

end of detection range

=

window_down —l—, current sense - ADC value
L down .
pinch deflection force [N] ————
PW_PSG plant "
Pmerﬁes Properyjq

Response=f(Traces) Lowering=f(Traces)

Priority to
Driver?

—e

. " " Sufficiently Quick Sufficient
Efficiency?
Response Time? o

Figure 3.11: Multi-Viewpoint pattern example—control and mechanical viewpoint of the power

window and their respective ontologies

property in the intersection. If for (z) and (i¢) the viewpoint-specific performance values satisfy
the property, the model is consistent with itself. Otherwise, the model is inter-model inconsistent.
When operating at the same level of abstraction, this type of (in)consistency is specified as
horizontal (in)consistency in the literature. Consistency can be guaranteed as well if performance
value(s) satisfy orthogonal properties such that no relation with a property of the intersection

exists.

Motivating Example: We again illustrate this pattern by means of the power window system.
The upper part of Figure 3.11 depicts how the power window controller is connected to a plant
model, while the lower part of Figure 3.11 shows relationships between ontological properties. As
already shown in the previous patterns, the power window controller is modeled using a statechart

56

3.5. MULTI-VIEWPOINT CONSISTENCY THROUGH ONTOLOGICAL REASONING

diagram and satisfies the ontological properties discussed in the multi-abstraction example. On the
other hand, the plant model describes the physical elements of the real world (i.e., the motor and
the window mechanism) using causal-block diagrams. For this view, performance values should
satisfy the properties Sufficient Efficiency?, Lowering?, Safe?, and Sufficiently Quick Response
Time?. Since lowering the window ensures that a clamped object can be released, a relation
exists between Lowering? and Safe?. From the example in the multi-semantics pattern, we have
shown how Safe? is related to RSufficiently Quick Response Time? for the control view. Since the
properties Safe? and Sufficiently Quick Response Time? are part of the intersection, inter-model
consistency can be guaranteed.

3.5.2 Ontological Reasoning in Multi-Viewpoint Design Processes

While demonstrating the fundamental design operations in the previous subsection, it became
clear no single pattern can be used on its own in a complete design process. This subsection
reflects on the design of the power window system using the fundamental pattern operations,
validating how consistency can be guaranteed during the design of a CPS.

Figure 3.12 shows the ontologies related to the design of the power window system. Centralized
in the figure, one may recognize the MV pattern combined with the MA pattern that where
demonstrated in Figure 3.11 and Figure 3.9 respectively. Both patterns are concurrently used
by the control and mechanical engineer. Note that we have added the ontological property
Performant System? to indicate control engineers reasons about control performance as well
during their design. As already mentioned before, the third stakeholder (i.e., the embedded
engineer) is concerned about the deployment of the control algorithm onto an ECU. For that,
they use a hardware platform that is designed by the same or an additional engineer keeping in
mind ontological properties such as Balanced Processor Load? and Acceptable Cost?. A relation

= Priority to
Driver?

® <€

Schedulable=f(Traces) Response=f(Traces)

L -
\

Performant Sufficiently Quick
System? . Response Time?

Balanced
Processor Load?

Sufficient
Efficiency?

Schedulable
System?

Acceptable
Cost?

Figure 3.12: Ontologies related to the design process of the power window

57

CHAPTER 3. DESIGN CONTRACTS ENABLING CONSISTENCY IN MULTI-VIEWPOINT
DESIGN PROCESSES

between the properties exists since more hardware resources (resulting in a lower load) leads to a
higher cost and vice versa. This is symbolized by an ontology that has a disjoint relation with
the ontologies regarding the design of the control and plant model. To this end, we say that the
viewpoints related to the control and embedded domain are orthogonal.

However, a consistency relationship between the software (control algorithm) and the hardware
(ECU) exists from the ontological property Balanced Processor Load? to Performant System?
through the property Schedulable System?. This latter property refers to the implicit knowledge of
the embedded engineer who strives for a schedulable system in which the load for the ECU and the
control performance is balanced. Since control performance has a consistency relationship with
the property Sufficiently Quick Response Time?, an indirect link between the schedulable system
and the response time (of the control algorithm), to reverse the movement of the window, exists.
Due to this ontological reasoning, a schedulable system implies a system to be safe.

3.6 Contract-Based Co-Design Driven Multi-Viewpoint
Design Processes

Ontological reasoning ensures that semantically different parameters can be related to each other
using an ontology. On the other hand, contracts are used to formally describe a component’s
behavior using a set of assumptions and guarantees over its variables (i.e., design parameters).
To deal with heterogeneous viewpoints on a system, possibly at different levels of abstraction,
an ontology for designing CPSs should be able to relate viewpoint-specific contracts such that
a change in one system viewpoint is propagated to the other system viewpoint. In this section,
we propose a method that combines A/G contracts (Section 2.2.2) with the notion of an upper
ontology (Section 2.2.3). Using a common set of Classes and Properties, the upper ontology
syntactically and semantically relates viewpoint-specific ontologies such that an ontology as
the one in Figure 3.12 is constructed. The proposed method allows engineers to reason about
consistency during contract negotiation so that concurrent design is facilitated. Hence, we name
the method Contract-Based Co-Design.

3.6.1 Combining Assume/Guarantee Contracts with Ontologies

We conceptually illustrate the proposed approach using the example of Figure 3.13. On the
left-hand side, contracts are specified for the control and platform viewpoint of a particular system.
The latter viewpoint relates to the computational platform, combining hardware and software, of
the embedded domain. As a hardware engineer selects a computational platform and a software
engineer configures a RTOS, both are able to influence the WCRT for a particular (software)
component. Consequently, WCRT belongs to the set of parameters that must be guaranteed

58

3.6. CONTRACT-BASED CO-DESIGN DRIVEN MULTI-VIEWPOINT DESIGN PROCESSES

Bling tationdelay-=2504s __ DeadLockFreeOperation?
—
Assumptions Sampling to Actuation delay = 210 us =~ - Safe?
Sample Time =1ms __ N
—— Performant \
Guarantees ‘ #instr <400 _ _ __ _ _ " ~ System?
_____ \ SufficientlyQuick
Control ResponseTime?
CPS
ControlledSystem?
Platform T T T T T NYaneed T
Assumptions | # Instr =400 Performant
Processor?
-
Clock =2MHz — — — — — — — — — — Schedulable
Period=1KHz — — — — — — — — — - System?
Guarantees -

Worst-Case Execution Time = 200 ys — —
I T DY~ —

"
P = ——
Worst-Case Response Time

+
=210 ps

Figure 3.13: Conceptual representation of semantic interoperability between viewpoint-specific
contracts (left-hand side) using an upper ontology (right-hand side)

by the platform (hardware and software engineer). On the other hand, the control algorithm
is highly influenced by the timing related parameters of the hardware platform. In particular,
the WCRT is responsible for a Sampling-to-Actuation (StA) delay, indicating the maximum
duration between sampling an input and actuating an output, of the control algorithm’s component.
Since the control engineer is not able to influence this parameter, the StA delay is part of the set
of parameters that are assumed by the control engineer. To keep these syntactically different,
yet semantically equivalent, design parameters consistent, the upper ontology on the right-hand
side of Figure 3.13 is used. The upper and lower part represent the, rather simplified, domain
ontologies of the control and platform viewpoint, respectively. The middle part represents the,
conceptually simplified, overall CPS ontology that enables one to relate domain ontologies and,
as such, subsumes them. Each node represents an ontological property while a link between
properties denotes a Requires relationship. For example, a controlled CPS requires a system to be
safe, performant, and schedulable. To be able to relate syntactically, and possibly semantically,
different design parameters, there need to exist a Conformance relationship between the evaluation
of the parameter and one or more ontological properties. This implicit domain knowledge is
conceptually made explicit using the dashed lines in Figure 3.13.

Suppose an embedded engineer concludes, after executing a schedulability analysis, that the
WCRT can be refined from an estimated range 0 s - 250 us to a fixed value of 210 ps. Using
the ontological reasoning capabilities it can be deduced which design parameters, from the
same or other viewpoint, may be influenced by this change. Therefore, the directed Requires
relationships are reversed such that they become Influences relationships. As such, it is deduced
that changing the WCRT in the embedded domain influences all three design parameters of the
control domain. Requires/Influences relationships are regarded as the lowest level of precision
(IL1) relationship that can exist between two properties, that is, it is known that there exists a

59

CHAPTER 3. DESIGN CONTRACTS ENABLING CONSISTENCY IN MULTI-VIEWPOINT
DESIGN PROCESSES

semantic relationship between them. They can be elevated to L2 or LL3 relationships. For example,
in the case of Figure 3.13 it is derived that the StA delay has an Equivalent relationship to the
WCRT design parameter as they are semantically equivalent. Other control design parameters
have a Mathematical (i.e., L3) relationship with respect to the WCRT as they are semantically
different from each other.

As it is not the intent to unilaterally strengthen the contract of another viewpoint (i.e., strengthen
the guarantees), but rather refine the other viewpoint’s contract according to definition 2.6 of the
CBD theory, it is concluded to weaken the StA delay assumption such that its value equals the
WCRT guarantee. Suppose, however, that after analysis it would have been concluded that it
is impossible to satisfy the maximum estimated WCRT of 250 ps, then both design parameters
#Instr and Sample Time should be updated so that the platform guarantee can still be met. As
already mentioned, unilaterally strengthening another one’s viewpoint contract is not allowed
such that special action is required. We will further elaborate on contract refinement in the next
subsection where we discuss the CBCD method.

3.6.2 Contract-Based Co-Design Method

So far we elaborated on how ontologies can complement A/G contracts, we deliberately neglected
how viewpoint-related contracts are achieved. Formulating viewpoint-related contracts, and in
particular what should be assumed and guaranteed, is challenging for engineers considering the
fact that they have limited knowledge of each others’ domain and viewpoint on the system under
design. By explicitly modeling both properties and design parameters in the ontology, however,
the here presented Contract-Based Co-Design method enables to derive contracts specific to a
particular viewpoint while ensuring consistency among them.

Inspired by the work of Derler et al. in [DLTT13], as discussed in Section 3.3, the CBCD method
consists of four phases: (¢) defining an architecture for each viewpoint, (i) negotiating a (set of)
contract(s), (#¢¢) deriving contracts and detailing the behavior for each viewpoint, and optionally
(2v) refining/renegotiating the contracts. Focusing on the control-embedded system viewpoints,
Figure 3.14 illustrates by means of an FTG+PM how the CBCD method can be used within a
concurrent design process. Note, however, that the CBCD method in itself does not impose a
design process on the engineers. As such, Figure 3.14 only illustrates a possible enactment of
the design process. To assist engineers in CBCD driven design processes, dedicated tool support
is invaluable for each of the phases of our method. Section 3.7 elaborates on a framework that
integrates those tools while in this subsection we detail the aforementioned four phases of the
CBCD method.

60

3.6. CONTRACT-BASED CO-DESIGN DRIVEN MULTI-VIEWPOINT DESIGN PROCESSES

Phase 1 - Defining an Architecture for each System Viewpoint

As shown in Figure 3.14, a design process typically starts by receiving a set of (textual) sys-
tem requirements from which the viewpoint-related specifications are derived. Based on these,
engineers are able to reason on possible architectures, also referred to as preliminary designs.
For example, a control engineer is able to reason about: a concept for the control strategy and
its related complexity, demarcating control functionality in terms of reusable components, how
these components are related to each other in terms of input/output interfaces, and so forth. With
respect to the platform, the hardware engineer is able to reason about: a set of possible ECUs and
their related processing power, a communication channel to connect multiple ECUs, and so forth.
Optionally, resources may be budgeted by the software engineer. This is particularly useful when
the hardware platform will execute multiple control algorithms originating from different control
engineering teams.

As an example, we refer back to the design of the power window system. Being a control engineer,
it is decided that the control architecture consists of four functional components: Debounce,
ControlExclusion, PWC_DRV, and PWC_PSG (see Figure 1.2). On the other hand, being a
hardware engineer, it is opted for an architecture consisting of a LPP and a HPP connected using
a CAN-bus (see Figure 3.4).

Phase 2 - Negotiating a (Set of) Contract(s)

In parallel with reasoning about the architectures, the textual requirements are translated to entries
belonging to the set of guarantees of a system contract. Along with the architectures, the system
contract serves as the input of the negotiation phase, shown by means of FTG+PM in Figure 3.15,
in which it is decided how both architectures relate to each other, in effect, how the control
architecture can be mapped onto the hardware architecture. As such, one or more mapping
contracts are negotiated that are, in line with the CBD theory of Section 2.2.2, refinements of the
system contract. Continuing the design of the power window system, it may be decided among
the engineers to execute each control component by a dedicated software task. Components that
implement less complex algorithms will run on the LPP while more complex components will
be executed on the HPP. For each of these mapping decisions, a mapping contract is negotiated
containing all design parameters that are of interest for the involved viewpoints. An example of
such a mapping contract is shown in the middle section of Figure 3.16.

Keeping in mind the specifications and the architectural design, engineers estimate the value
(ranges) for each design parameter to be negotiated. They therefore rely on tools to esti-
mate design parameters from their conceptual designs (e.g., WCET analysis from a Simulink®
model [KLFP02]), historical data, and/or domain experience. For example, when deciding that
the software task holding the Debounce component will run on the LPP, the hardware engineers
estimate that a clock speed of 100 KHz is needed to schedule the component. Therefore, negotiated

61

CHAPTER 3. DESIGN CONTRACTS ENABLING CONSISTENCY IN MULTI-VIEWPOINT

DESIGN PROCESSES

TextualRequirements

TextualSpeciications

NéGoid

PlalioqmDbsign

{
ContractDSL

Preliminary Design

[ControlContract |
7]_:ContractosL

(Consistent) Contract Negotiation

“Detalled
ControlDesign

PlatformDesign

Platiorm PlatiormDSL} |-

|
[Control-ContralDSL

Boolean

|
Faiso @

e

Refine.
Contract

RefinedControlContract
ContraciDSL

Ve
Refinement

g

Boolean

False, @

e

Verify
Refinement

False

e

|
RelalsqContract

|
RelsisaCantract

Platform ContraciDSL \
v

Control ContractDSL

i
i

i

|

i

i

i

RefinedPlatiomContract | |
ContactDSL |

i

i

i

|

i

i

Boolean

Faise

Detailed Design & Contract Verification

FTG
[Fomasm] Q) Vel

——> Consume/ Produce Formalism

O (Semiautomati

P
WanaAcTy) ((SemIATOACTTY

|——> Control Flow ——-— Data Flow

Figure 3.14: Possible enactment of a co-design process using the Contract-Based Co-Design

method

62

3.6. CONTRACT-BASED CO-DESIGN DRIVEN MULTI-VIEWPOINT DESIGN PROCESSES

ControlArchitecture TextualSpecifications PlatformArchitecture :

Pl

Control
TextualSpecification [

{
:TextualSpecification
:ExtractControl] [:ExtractPlatform]
Desi Desi

gy ig;

Desig Desig; ' ControlArchitecture ControlParameters PlatformParameters i-P\gﬂcrmAygmtgcturg
:ParameterDSL ParameterDSL
ParameterDSL ;

Contract
‘MappingContracts
ContractDSL

Nggotizte
Mappi tracts
Verify
Consistency
ContractbSL

‘SystemContr
ViewpdintCg
Verify
Refinement
False @
Trie ControlContract
ontractDSL
:Extract
ViewpointContracts
PlatformContract
ContractDSL
®
Fra [pm
Manual (Semi-)Automatic|
Formalism r
L O O ‘Artifact | ("ManualActvity) (i(Semi-)AutoActivity)
——> Consume / Produce Formalism —— Control Flow -~ Data Flow

Figure 3.15: Detail of the negotiation process

DeadLockFreeOperation?

Sampling to Actuation delay < 250 us — — Safe?
Assumptions ~ < Stable?
1ms = Sample Time < 500 ps Performa\nt\ able?
System?
Guarantees #lnstr <200 _ __ T~ _ys o . .
_____ -) SufficientlyQuick
Control ResponseTime?
T N A
1MHz = Processor Clock < 2 MHz
~ —_—
#lInstr <200 — — — — — — —\'_'\'
Assumptions ; s T 500 ~ cPS
ms = Sample Time < gS —
— - N ControlledSystem?
Worst-Case Execution Time < 200 ps S~
Guarantees Sampling to Actuation delay <250 ys .. .--- - T3
""""" Platform
Architecture?
Mapping
T N
Balanced
) ProcLoad?
Assumptions | # Instr =200 Performant
Processor? —
1MHz2Clock<2MHZ — — — — — — — - = P Schedulable
1KHz 2 Period < 2KHzZ — — — — — - - System?
Guarantees W c c . 200 -
orst-Case Execution Time < s— — —a ,
H - MinimalResponseTime?
Worst-Case Response Time < 250 ys — — — — —

Figure 3.16: Example of a negotiated mapping contract and its derived viewpoint contracts

63

CHAPTER 3. DESIGN CONTRACTS ENABLING CONSISTENCY IN MULTI-VIEWPOINT
DESIGN PROCESSES

design parameters must be added to the set of assumed mapping contract values, while guaranteed
design parameters are refinements of the (guaranteed) design parameters belonging to the system
contract. In effect, the latter are requirements that should be guaranteed by the mapping. Note that
a design parameter can be characterized by a range of values instead of one well-defined value.
This can be useful if architectural constraints for certain parameters are known (e.g., the processor
clock) while the final value has not yet been decided.

Although the value (ranges) of the negotiated parameters are estimations they must be consistent
with each other. Only then, consistent parallel design can be guaranteed and, consequently,
successful integration ensured. Consistency in the negotiation phase can be verified using the
predefined upper ontology, conceptually shown at the right-hand side of Figure 3.16. Using
the relationships that exist between ontological properties, parameters can syntactically and
semantically be related to each other. For example, assume in Figure 3.16 the parameters Number
of instructions (# Instr) and ProcessorSpeed are already defined while the parameter WCET is
under negotiation. Although they are semantically different, their mathematical relationship is
known within the ontology, that is, WCET = #Instr * 1/Processor Speed. We here simplify
the calculation of the WCET by estimating the longest path of the conceptual control strategy,
without taking into account the effect of memory, pipelining, and so forth. In case a WCET
of 150us would be decided, a possible inconsistent system may be designed as in some cases
(i.e., when the chosen processorSpeed is lower than 1.33 MHz) the system contract will not be
satisfied. Besides mathematical relationships (i.e., IL3 relationships), IL1 and L2 relationships
defined in the ontology may be used for evaluating design parameters using behavioral (simulation)
traces.

The reader may notice that our definition of a mapping contract has similarities with the resource-
aware contract shown in Table 3.2. Both contracts contain design parameter of multiple domains,
although, their place in the contract differs.

Phase 3 - Detailed Design using the viewpoint contracts

Once the mapping contract is negotiated, domain engineers need to detail their preliminary design:
behavior is added to the control components, parameters of the software/hardware platform are
further detailed, etc. Preferably, these engineering activities are executed in parallel to reduce
design time (and related costs). To facilitate this, contracts addressing only one viewpoint must
be derived from negotiated mapping contracts such that it is clear for engineers implementing a
particular viewpoint what can be assumed and what should be guaranteed.

Deducing on the viewpoint contracts is enabled using the defined upper ontology. Parameters
defined in a mapping contract that are related to a certain architecture become part of the guarantees
of the viewpoint contract related to that architecture. Given the mapping contract in Figure 3.16,
for example, the elements Processor Clock, Sample Time, and WCET are translated as guaranteed

64

3.7. AN INTEGRATED FRAMEWORK SUPPORTING THE CONTRACT-BASED CO-DESIGN
METHOD

parameters of the platform contract. As such, it are the hardware engineers who should take care
of their correct implementation. Likewise, the parameter # Instr is translated as a guaranteed
parameter of the control contract. Indeed, the control engineer is responsible for maintaining this
limited amount of instructions that can be influenced by modifying the complexity of the control
algorithm. Note how design parameters can be (syntactically) translated to the terminology used
within a particular viewpoint. The Sample Time defined in the mapping contract, for example, is
translated to a Period entry for the platform viewpoint.

Deciding upon the assumptions of a viewpoint-specific contract depends on how guarantees
from one viewpoint influence the guarantees of another viewpoint. Therefore, the Requires
relations between ontological properties are used: if there exists an ontological path between
design parameters guaranteed by different viewpoints, then the design parameter at the root of
the path will be considered as an assumption of the other viewpoint. A similar reasoning can be
used if their exists a more precise relationship between design parameters: if a guaranteed design
parameter contains an equation (i.e., a Mathematical relationship) in which one of its terms refers
to a guaranteed design parameter of another viewpoint, then that parameter will be considered
as an assumption by the other viewpoint. For example, the # Instr can be calculated using the
equation WCET x ProcessorSpeed. Since both WCET and ProcessorSpeed are guarantees of
the platform contract, the (control) design parameter # Instr is regarded as an assumption of that
contract. If a design parameter of the mapping contract is related to more than one viewpoint
(e.g., because of an Equivalent relationship), then it is up to the engineers to decide who will
guarantee the parameter. In case of the StA delay, that is equivalent to WCRT, it is decided that
the platform should guarantee the requirement. After all, timing related parameters will highly
depend on the computational power of the platform.

Note that every element of the mapping contract is translated to at least one viewpoint contract
over the ontological relations such that completeness is guaranteed.

Phase 4 - Refining/Renegotiating a (set of) contract(s)

While it is obvious that the detailed design should satisfy the contract related to the viewpoint,
engineers may decide to refine their contract(s) as shown in Section 3.6.1. In doing so, they keep
in mind Equations 2.6 and 2.7 of the CBD theory. If and only if these equations hold, changes
can be pushed to the other viewpoints without further notice. If a change in a contract cannot be
regarded as a strict refinement, the mapping contract should be renegotiated such that the design
process returns to phase 2.

65

CHAPTER 3. DESIGN CONTRACTS ENABLING CONSISTENCY IN MULTI-VIEWPOINT
DESIGN PROCESSES

3.7 An Integrated Framework Supporting the
Contract-Based Co-Design Method

The fact that one has to derive relationships between parameters by means of domain knowledge
stored in an ontology, makes it difficult and time consuming for engineers to manually apply the
proposed method, especially when they are dealing with a large set of parameters. For this reason,
we assert that the applicability of the CBCD method in an industrial context is only feasible
when parts of the CBCD method are automated and/or hidden from the engineers. As such, an
integrated framework as shown in Figure 3.17 is developed to assist engineers in applying our
method in their current design processes. Note that the framework preserves design processes
while acting as a single point of truth in the background of the preferred development chain of
tools and methods. In that respect, the integrated framework is able to interact with third-party
tools that provide an Application Program Interface (API) or that store a model in some kind of
accessible text file. Within the scope of this dissertation, we limit ourselves to interactions with
Simulink® (control domain), MAST (embedded domain), and Protégé (ontology editor). We refer
to Section 2.3 for a detailed description of these tools.

We have opted to build the framework using the EMF, introduced in Section 2.3.1, in combination
with Eclipse Epsilon [Thea], enabling us to define: (i) the (EMF) metamodel for both the control
and embedded domain, (77) the model-to-model transformations such that the architectures can
be exported to, and imported from, third-party tools, and (ii7) the services to verify refinement
and consistency. Using Eclipse Sirius [Thed], a Graphical User Interface (GUI) is created for

CBCD - Integrated Framework

Ontology
Description

Embedded

Architecture \ / J

“} Embedded

Control ‘ View
Architecture
L ‘L ‘L Export

Schedulability Consistency

Timing Analysis Analysis
Information
Control
View
Legend
Import User Activity — > Control Flow
Export Automatic Activity Data Flow

Figure 3.17: Architectural overview of the CBCD framework

66

3.7. AN INTEGRATED FRAMEWORK SUPPORTING THE CONTRACT-BASED CO-DESIGN
METHOD

constructing the architectures, defining the contracts, and initiating consistency analysis. In what
follows, we elaborate on the services the integrated framework provides to its users.

3.7.1 Defining a Scalable and Reusable (Upper) Ontology

Although we have shown how A/G contracts can be complemented with ontologies, it is yet
unclear how to define an (upper) ontology that is scalable and reusable among projects and/or
organizations. In what follows we detail how we defined such an upper ontology that relates the
ontologies of the control and platform viewpoint. For this, we use the W3C’s standardized Web
Ontology Language2 (OWL 2) in combination with Protégé [Stal6] as an ontology editor. In
selecting a semantic reasoner we considered expressiveness and incremental classification as key
features. In light of the design of the CBCD framework, integration with the Java programming
language is a benefit. As such, we have opted to use the Pellet reasoner [SPG107].

In our definition of an ontology, a domain ontology explicitly describes the implicit engineering
knowledge of a particular viewpoint on the system under design in which real world entities are
represented by so called Instances. They are classified by one or more Classes that in turn can be
structured using a superclass-subclass hierarchy in which a superclass subsumes its subclasses.
They are regarded as sets such that binary operations (union, intersection, and so forth) can be
applied to two or more Classes. Properties are used to express binary relationships between
Classes, in effect, on their related Instances, using some appropriate logic (i.e., description logic).
The upper ontology relates the semantically different domain ontologies using generic Classes
that are common across all viewpoints.

Focusing on control-embedded co-design, we identify four domain ontologies, one for each
viewpoint: control, hardware, software, and platform in which the latter subsumes both the
hardware and software viewpoints and their related domain ontologies. As an example of a
domain ontology, Figure 3.18 details the platform domain ontology. Let us now elaborate on
how such a scalable domain ontology is constructed. As discussed in Section 3.5.1 and 3.6.1,
each domain ontology should at least contain a set of (ontological) properties representing the
engineer’s implicit knowledge. Therefore, we have defined a superclass Property (not to be
confused with the Properties term of OWL 2 to express binary relationships) in each domain
ontology to capture these properties. In each domain ontology, the classification of its properties
is preceded by a prefix (e.g., Hw_) to indicate the viewpoint to which the property belongs. This
will be of use when constructing the upper ontology. Binary relations between properties may
exist as well. They are denoted by the Requires relationship in an ontology. For example, in order
to be able to obtain a Hw_PerformantProcessor a HW_AcceptableProcessorLoad is required
(i.e., the load should not exceed a certain threshold). Note that we omitted the question mark (see
Section 3.5.1) to facilitate querying of the ontology.

67

CHAPTER 3. DESIGN CONTRACTS ENABLING CONSISTENCY IN MULTI-VIEWPOINT
DESIGN PROCESSES

® ® ® platformDomain (http://www.kvanherpen.be/contracts/ontologies/platformDomain.owl)

< > @ platformDomain E Search...
Active Ontology x| Entities x| Classes x| Individuals by class x| OWLViz x| OntoGraf x|
Class hierarchy l Class hierarchy (inferred) [Description: ProcessorUtilization [2] (0] =] (]

Class hierarchy: ProcessorUtilization [2](1] 5](x] ISR

"L: o+ @ Asserted E

v owl:Thing SubClass Of
v) PlatformComponent) Equation value "WRT/Period"
v () HardwareComponent
@ ActuatorComponent
» @) CommunicationComponent

@ isClassifiedBy some Hw_PerformantProcessor
) isParameterOf some CPU

v) ComputingComponent @ UtilizationParameter
@ FPGA
v © Microcontroller General class axioms
» @cru
» (@ Devices
») Memory SubClass Of (Anonymous Ancestor)

» @ System_Bus
@ SensorComponent
> () SoftwareComponent
v () PlatformParameter @ processorLoad
v () HardwareParameter
) IOResolution
» () SpeedParameter
» @ TimeParameter
v UtilizationParameter Disjoint With
v () softwareParameter
v () TaskParameter
@ Deadline
) Period
@ Priority
v @ TimeParameter
@ Jitter
@ SchedTime
@ WCET
@ WRT
v @ PlatformProperty
v) HardwareProperty
& Hw_AcceptableProcessorLoad = !
© Hw_AcceptableResolution
& Hw_AcceptableSampleRate
&) Hw_PerformantProcessor
& Hw_ReasonableCommunicationSpeec
© Plat_SchedulableSystem
» () SoftwareProperty

Instances

Target for Key

Disjoint Union Of

To use the reasoner click Reasoner > Start reasoner Show Inferences

Figure 3.18: Ontology—example of the Platform domain ontology

68

3.7. AN INTEGRATED FRAMEWORK SUPPORTING THE CONTRACT-BASED CO-DESIGN
METHOD

In Section 3.5.1 we defined the existence of a Conformance relation between the function that
evaluates the value of a design parameter and a(n) (ontological) property. While the evaluation
function depends on the application, the implicit relation between a design parameter and one
or more properties will remain the same. As such, we have extended each domain ontology
with a superclass Parameter that contains a set of design parameters. Each parameter has an
isClassifiedBy binary relationship with one or more Property classes. For the platform ontology,
for example, the (design) parameter ProcessorUtilization is defined and linked to the property
Hw_PerformantProcessor using an isClassifiedBy binary relationship. Explicitly modeling the
set of design parameters at an ontology level has some additional advantages. First, it enables
one to define more precise relationships between design parameters, in effect, Equivalent and
Mathematical relationships. Secondly, it enables reuse of an overall CPS ontology in different
projects or company settings. However, depending on the tools used or the company setting,
domain engineers may use slightly different parameter terminology in their design than the
classification chosen in the ontology. Using the notion of Instances in Protégé, that are real world
entities belonging to a specific class, a domain ontology can be tailored to a particular setting.
In case of the design parameter ProcessorUtilization, the instance processorLoad is defined to
denote the real world terminology used by the engineer when designing the hardware.

Design parameters enable engineers to specify the behavior of components. To make the ontology
complete, we have added the superclass Component containing a set of components used by the
engineer to construct (part of) the system. Similar to the isClassifiedBy binary relationship, an
isParameterOf relation may exist between a parameter and component (i.e., between their classes).
In Figure 3.18, for example, it is defined that ProcessorUtilization is a parameter of a CPU
component. Again, the taxonomy of the superclass Component classifies design components at a
higher level, while Instances can be created to tailor the classification to a particular engineering
setting (and related terminology).

One may notice that the platform ontology acts as an upper ontology for the hardware and software
domain ontologies. To that end, three superclasses are defined that subsume the equally named
classes of the domain ontologies: Component, Parameter, and Property (each of them preceded
by the prefix Platform). Note how the upper ontology makes use of the MS and MV patterns
described in Section 3.5.1 to relate syntactically and semantically different properties originating
from different viewpoints. As we focus on control-embedded co-design, the platform domain
ontology will be subsumed by the CPS upper ontology in conjunction with the control domain
ontology, as shown in Figure 3.19. Typically, an upper ontology extends the Property superclass
with additional ontological properties such that properties of the subsumed domains can be related
to each other. For the CPS upper ontology, the created CPSProperty is extended with the properties
CPS_ControlArchitecture, CPS_ControlledSystem, CPS_LowCost, and CPS_PlatformArchitecture
to relate properties from the subsumed domain ontologies. In that respect, Requires relationships
are added between (7) the added properties and (i¢) the added properties and the subsumed ones.
Given the set of asserted axioms (i.e., the constructed ontology), a dedicated semantic reasoner

69

CHAPTER 3. DESIGN CONTRACTS ENABLING CONSISTENCY IN MULTI-VIEWPOINT
DESIGN PROCESSES

©® ® ® cps (http://www.kvanherpen.be/contracts/ontologies/cps.owl)
< > @ cps (http://www.kvanherpen.be/contracts/ontologies /cps.owl) [T Search...

Active Ontology x | Entities x| Classes x| Individuals by class x OWLViz x OntoGraf x

Class hierarchy | Class hierarchy (inferred)

Equivalent To

Asserted [0
v ® owl:Thing SubClass Of
v CPSComponent CPSProperty
v (0 CyberComponent requires some Contr_PerformantEnough

»> ControlComponent
> PlatformComponent
v PhysicalComponent requires some CPS_ControlArchitecture
MechanicalComponent requires some CPS_LowCost
v CPSParameter
v CyberParameter
> ControlParameter requires some Plat_SchedulableSystem
> PlatformParameter
v PhysicalParameter
MechanicalParameter
v CPSProperty
CPS_ ControlArchitecture SubClass Of (Anonymous Ancestor)
CPS_LowCost
CPS_PlatformArchitecture
v CyberProperty
A4 ControlProperty Target for Key
Contr_Controlability
Contr_DeadlockFreeOperation
Contr_Observability
Contr_PerformantEnough
Contr_PreciseEnough Disjoint Union Of
Contr_QuickResponseTime = |
Contr_Safe = Mech_Safety
Contr_Stable
v PlatformProperty
A4 HardwareProperty
Hw_AcceptableProcessorlLoad :
Hw_AcceptableResolution
Hw_AcceptableSampleRate
Hw_ PerformantProcessor
Hw_ReasonableCommunicatio
Plat_SchedulableSystem
v SoftwareProperty
Sw_BalancedProcessorLoad =
Sw_MinimalResponseTime
> PhysicalProperty

requires some Contr_Safe
requires some CPS_PlatformArchitecture

General class axioms

Instances

Disjoint With

To use the reasoner click Reasoner > Start reasoner ' Show Inferences

Figure 3.19: Ontology—upper ontology for Control-Platform Co-Design of a Cyber-Physical
System

70

3.7. AN INTEGRATED FRAMEWORK SUPPORTING THE CONTRACT-BASED CO-DESIGN
METHOD

(i.e., Pellet) is used to verify consistency and satisfiability. In addition, a reasoner is able to infer
additional classification and relationships from the asserted ontology.

Typically, the domain ontologies are build by the different domain experts while an upper ontology
(e.g., the CPS ontology) is constructed by a systems engineer who is familiar with the different
subsumed system viewpoints. Note, however, that by classifying parameters and components
in the ontologies while using instances to represent the real world parameters, the ontologies
can easily be tailored to different companies and/or engineers using different terminology while
maintaining the relations. As such, the defined (upper) ontologies can easily be reused. Moreover,
the domain ontologies can be easily extended with additional properties, parameters, and/or
components using the proposed taxonomy. In case an additional viewpoint needs to be added to
the upper ontology, for example the mechanical perspective, a domain ontology is created for that
particular system viewpoint that is then imported into the upper ontology. Additional relations
(e.g., equivalent relations) may need to be added after import.

3.7.2 Defining Viewpoint-Specific Architectures

Our CBCD method requires engineers to prepare a preliminary design, called architecture, before
negotiating contracts. The framework supports this design phase by providing viewpoint-specific
environments for each domain, in which a library of components can be used by the engineers
to create their architectural models. These models conform to the predefined metamodels of the
supported engineering domains (i.e., control and embedded), shown in Figure 3.20 and Figure 3.21.
For the control domain, a Simulink® like environment is provided in which control engineers
are able to model a top-level architecture consisting of subsystem and model reference blocks
connected by single connections or buses. A hardware engineer is able to model a hardware
architecture consisting of single and multi-core ECUs connected using a communication channel
(e.g., CAN). A software engineer can further detail the hardware architecture by assigning an
Operating System (OS), tasks, and runnables to the modeled processors.

As preliminary design architectures may already be modeled using viewpoint-specific tools Model-
to-model transformations, possibly in combination with a tool-specific API, can be used to import
from these dedicated tools. Currently, the framework supports importing models from Simulink®.
To that end, we integrated Massif, as introduced in Section 2.3.6, in the CBCD framework. Using
the command line interface, Massif imports Simulink® models to a model that is an instance of
a Simulink® EMF metamodel. Using model-to-model transformations, the imported model is
transformed to an instance of our control architecture metamodel. Likewise, preliminary design
architectures defined in the framework can be exported to viewpoint-specific tools as well. Also for
exporting architectures, the framework currently supports exporting models to Simulink®.

With respect to the deployment of the control architecture on the embedded architecture, the
framework allows engineers to map the previously defined viewpoint-specific architectures. To

71

CHAPTER 3. DESIGN CONTRACTS ENABLING CONSISTENCY IN MULTI-VIEWPOINT

DESIGN PROCESSES

[, gSH] U0 paseq ‘urewiop [0NUOd Y} Jo UONALIOSIP [BINJOAOIR 3} 10] [SPOWRIdW—IoMdWRY DG 07 € 231

—Euz = 531e153|qeul : BulgeuzuayMSIRYs o _

12198U3,

— 21qeu3

_

PI2H = s23e352|08U3 : Buljgeu3uauANsalels o
Buisry = 2dAp2B61) 2dfl2660) o

126601

woigGuiddew [T 0]

olBuiddew [T

wopaiss (g §

ﬂ i _ 25/8) = UE3|00G] SNGsEINCING = _

Ldl _

iojeainsng § _ _

iopagessng

25/e} = ueajo0dy : 23| dworul o
Buuisy : yiedbuiddew =

To3eansng (10l

Buiddeyyeubissng H

|e207 = iy

=

,
: wopoaypadssng [, 7 _b sinBeLojon m_ _

wequr vodino 5 3lqeuuny : Kgpauuns &
wedwaiy [1g
luodos [17al N 0 £
one = Bumsy : azisdajgpaxny o
Buis3 : uoRN|osaYIEUBISKEW o ojny = 1anj05s4 : lanjosdaspany o
womsuus [1al suompaues Lod Buuys3 uonnjosay eubisu = ajgeuuny : Agpauuns & ojny = 1anjossA ¢ 1anosdajsajgenen o
Buigs3 : anjepjeulisxew o 10552301 : uppaddew & dayspaxyy = adAsanjos : adkanos &
= Guuysy : anjepjeubisu o K|S = UDISUIPF|1) § UDISUAKIPPoW = &
Buinsy : awenaul = W Rquinu 5 Buis3 : SweNPPOWPDUAIRRI L [|
uonauuod B, _ _ Hog B, 7 wayshsans H 7 _ uaizyiEpon 7 7 progonrin By 7
uared (gl fgparuzizpi [17g]
spod [,o fyadoigaigneg — JWIYU =
k ﬁunozumucszm_ 1l Apadoigiabaul — 1|59y —
ANPAYPIYMH : ugpakodap & fpadoigbuuls — Pl -
SR T ABojojuQ : 2npapynyibojoue EF - -
spodul : spejgans IPPOWI0RUOD : ANPaUYRIYioguod EF 2dfyfpadoly 5 S2sGRU &
sueuod [gl _ UNPIUYIYMH : 2INPUUITMY &
Apadoigiug : dosgugopajun IPPOFHOVEA [17e] oine = Buisa : 2zIgdalspaxy o lleJucRUny —
ASYIN = sunosipzdolg : 3unos & o B oqny = 43055 Janosdaispany o JEITHIE TYMHIINT — 1eqoln -
Buuisa i 2nien = shrpadond [gl QY = J3NOSSA ¢ 13N0SHRISIRIRA = Buiey — 50TvIa — padoig —
fypadoigbus = adiyfpadold : 2dfy o dayspaxyy = adA1anjos @ adKianjos & Buisry = HSVN = B3] =
Buuysy i aweu o - > -
l2poionued 2di2BBu) & aunosfyadold 5 Sanaqisinbel 5
fpadog H T

v

buysy : 2weu &

wewgtonuod B,

72

METHOD

3.7. AN INTEGRATED FRAMEWORK SUPPORTING THE CONTRACT-BASED CO-DESIGN

UIBWOP Pappaquuo ay} Jo uondiiosop [eInoo)IydIe ay) I0j [opoweldw—>Iomawely (gD 1€ dnSig

3polad = 20ALUAT : 20 =

73

Buns3 : Bweu = apqedfuns [,~1]
uangiewsz B RSP0l
ﬁ ar Il ot B Il v] el e —
Buinsy i aweu = o
wangpewiapg § Juauodwod2UEMYOS 1 SPIOY &
€ — Buns:

Buug
bums3 :130m =

sng [1°0]

W : wpimpueg

sng By _ Bumiss: Lug = aiqeuuny £

Buinsa M =

Buisy:lam o | SNAEuunyssnae [1]

Buins3 : pers o

2pou [.7g Juauodwodalemyos : spjoy Z7 Buis3 peoIossaod o
apou [1 BuIs3 : uonezipn © 2512y = ueaj00g3 : pauBisseand = | OLPRIENE [0l

124 10083 : P

p—— Sus pels o PSS s Fquoudpaxid = adfLkoudyse] : 2diLfpond =

BUIST : NS UST 152G = Ppafgouabagun : fuoud =

s [1q] Buis3 : UM HsI Bae o aulpea@Teqo|9 pien = adAlaunpeaq : 2dfpupep o

Buinsy s UM WS JsIom = Bus3 : 2upeap o

Supsa: v% Jossboid g 105533014 API0Ug PaNIY = wmnﬁm%mwﬁmm"hnh M Bupisy :popsd =

no3 8 weL g
Jossnaig 5

"pieH = 3dfi2ulpeaq : 2aALulIpep o
f01d Pax4 = 110dBUNNPaSSD : DYodBulnpas =

| o |
T ‘_ iy

| Bumsa iaweu = |
uawEH By _ Tpadeid T, P i wawzEns By _ ol =

1o
Jipeiods -
JenBuls — dddnua) -
sauodwofurwmy Lol IenBay — d4721qndwaaigTuoy —
Jpouad — fuoud pany —
adfpuang 5 difuougise] 5
PPOWI0RUC] : UaWRdW] &
Auadoidio : dosdiugolpayull wayshsans : uzuodwodjanuey £ p——
Bunis3 : anjen = fBoloiuo : ampeyIVAGOIoIIe & B —

fuzdesdBuis = adfifuzdold #dfy o |SPONIONUCD : aINpapIYIonuos el 5 —
Buisy : sweydord o ANPINPIYMH : ANPIPPIYMY & W EERETII HE = U-2RLEE] o
’ ' b aulpEqTEGOI9 T PIEH — fuougTpaxy - 105532014 RUOIG PaKIy =

fedor B 35} = UP2(00gA : 3GEINP3LPS o = = =

Busa peisieqels = adfjaunpeag fiodbulnpausso & 2df1buIss01d 5

_ ainpaywivmd 5

CHAPTER 3. DESIGN CONTRACTS ENABLING CONSISTENCY IN MULTI-VIEWPOINT
DESIGN PROCESSES

do so, engineers explicitly need to relate architectural components using dedicated mapping
connections provided in the available library. For example, a subsystem belonging to the control
architecture is regarded as a Software Component (SWC) by the software viewpoint and can be
allocated to a runnable, belonging to the software architecture, by relating both components using
a Holds SWC mapping connection in the environment of the software engineer. It enables the
framework to automatically verify whether mapped components implement the same negotiated
mapping contract.

3.7.3 Defining Contracts

Using a textual or graphical interface, system and mapping contracts can be specified by the
engineers. The contracts can be automatically populated with the design parameters modeled in
the ontology. To do so, the Protégé API is used to parse the ontology.

An example of a set of mapping contracts is shown in Figure 3.22. Orange colored design
parameters denote the contract’s assumptions while the red colored ones denote the guarantees.
For each design parameter one can specify a (range of) value(s). Once the contracts are defined,
they can be allocated to one or more components belonging to the architectures of the different
viewpoints.

Debouncing ControlExclusion Control

PPN
PPN

4 stADelay: ..250us 4 stADelay: ..15us < stADelay: 15us..30us

Figure 3.22: CBCD framework—mapping contracts for the power window system

Given the mapping contracts, viewpoint-specific contracts are derived, although, not made explicit
to the engineers. Using a decision tree, it is determined which domain should guarantee a
negotiated design parameter. Therefore, the ontology is parsed such that the tool can reason
about the relations between design parameters using the ontological properties (i.e., ontological
reasoning). The decision tree is graphically shown in Figure 3.23.

3.7.4 Executing Analysis
Using a dedicated analysis algorithm, parameters belonging to a negotiated mapping contract

are automatically validated for consistency. For this, the relationships that exists in the ontology
are explored. Remember that there exist three types of parameter relationships: (i) Requires

74

3.7. AN INTEGRATED FRAMEWORK SUPPORTING THE CONTRACT-BASED CO-DESIGN
METHOD

«Does their exist an
equivalent parameter?»

«Does the parameter
contains an equation?»

No

No Parameter is a
guarantee

«Does the path
contains elements of
another domain?y

«ls one of the terms
related to another
domain?»

Parameter is a Parameter is a
Yes No
guarantee guarantee

Parameter is
an assumption

«Does that term have a
relation to this domain?»

v Parameter is a
es
guarantee

No

«ls that term a clear
guarantee of another
domain?»

Parameter is
Yes .
an assumption

«Does there exist an
equivalent parameter for
that term?»

No Parameter is a
guarantee

Yes

«ls that parameter a clea
guarantee of another

No Parameter is a
guarantee

Parameter is
an assumption

Figure 3.23: CBCD framework—decision tree to determine the viewpoint-specific contracts

75

CHAPTER 3. DESIGN CONTRACTS ENABLING CONSISTENCY IN MULTI-VIEWPOINT
DESIGN PROCESSES

relationships specified at the property level, (i¢) Equivalent relationships specified at the parameter
level, and (i¢7) Mathematical relationships specified at the parameter level. For both Equivalent
and Requires relationships it is sufficient to infer the ontology, using the Pellet reasoner, and query
for relations such that a graph, containing both parameters and properties, can be created. Given
the graph, Dijkstra’s algorithm [Dij59] is used to determine the existence of a (shortest) path
between two parameters, so that a same reasoning method is used as discussed in Section 3.6.1.
Requires relationships are elevated to Mathematical relationships if there exists a path between
two or more parameters that are related to each other by means of a mathematical equation. As
we currently limit ourselves to linear equations for defining a mathematical relationship between
parameters, a linear solver can be used to solve the system. However, this only holds if all the
independent variables of an equation are known. Since a contract does not need to be complete, in
such a way that not all parameters belonging to the upper ontology need to be specified, it is likely
that not all independent variables of an equation are known. As a result, linear solvers will not be
able to solve the problem or even return an error message. On the other hand, symbolic solvers
are able to compute mathematical objects symbolically, so that unknown independent variables
remain in symbolic form. As such, we opted to use SymPy, introduced in Section 2.3.4, as a
(symbolic) solver. Furthermore, the framework also validates whether the mapping contract(s)
refines the system contract. To do so, the consistency algorithm implements Equation 2.6 of the
CBD theory. If these consistency analyses turn out to be positive, viewpoint-specific contracts are
automatically deduced as discussed before.

The schedulability of the deployed architectures is verified using dedicated third-party tools
(e.g., MAST). For this, sufficient information about the deployed system should be provided by
the embedded engineer; that is, the priority of the tasks, the WCET, period, and deadline. To enable
the schedulability analysis, a model-to-text transformation is used to transform the deployment
architecture to a textual model that can be used by the third-party tool. Afterwards, the viewpoint-
specific architectures are annotated with the results of the analysis. To do so, ontological reasoning
is again used to verify whether there exist semantically equivalent parameters for certain platform
design parameters. For example, the schedulability analysis returns a value for WCRT, for which
an equivalent design parameter in the control viewpoint exists, that is, the StA delay.

Finally, the framework is also capable of validating whether the implementation of a component
satisfies its contract (Equation 2.2). In case of the deployed architectures, it is validated whether
the schedulability analysis results (e.g., WCRT, processor load, and so forth) satisfy the parameters
defined in the derived viewpoint-specific contracts.

3.8 Conclusion

The application of Contract-Based Design in a concurrent engineering setting with heterogeneous
viewpoints on a system under design is not well supported. Because of syntactic and semantic

76

3.8. CONCLUSION

differences between design parameters of different viewpoints, it is virtually impossible to
negotiate consistent A/G contracts. Moreover, it unclear for engineers what may be assumed from
other viewpoints and what should be guaranteed under these conditions.

In this chapter we suggested to explicitly model the domain knowledge of each viewpoint using
properties in so called domain ontologies. They are combined using general concepts in an upper
ontology. Design parameters are related to one or more ontological properties, that in turn can be
related to each other using Require relationships. This enables ontological reasoning whereby
syntactically and semantically different design parameters are related to each other. As a result,
consistency of negotiated A/G contracts can be validated so that consistent concurrent design is
enabled.

To support engineers in this so called Contract-Based Co-Design process, we introduced a proof
of concept integrated framework in which preliminary design architectures and A/G contracts can
be defined. Given the upper ontology, the framework is able to validate for consistency among
negotiated design parameters specified in the contract(s). In addition, the framework is able
to verify whether parts of the implementation satisfy the viewpoint-specific contracts. As the
framework acts as a single point of truth in the design process, interacting with third-party tools,
these viewpoint-specific contracts are intentionally not made explicit to the engineers.

In summary, we return to the research questions formulated in Section 1.3:

RQ1 Az what level of abstraction can we relate different domains, and their related design
parameters, to enforce consistent design of CPSs?

RQ2 What is the most appropriate formalism to represent these relations?

Using domain ontologies, we explicitly modeled the domain knowledge by means of on-
tological properties. An upper ontology is used to relate these different domains such that
ontological reasoning is enabled.

RQ3 How should contracts be used to ensure consistency between heterogeneous viewpoints?

We have shown a four phased design process in which top-level architectures are defined
for each viewpoint. Defining these architectures enables engineers to reason about a certain
mapping and, as such, discuss mapping contracts. Viewpoint-specific contracts are not made
explicit, although, one can assign negotiated mapping contracts to the components belonging
to the architectures. Using dedicated tool support, consistency, and satisfaction of the contracts
is validated.

77

CHAPTER

A Round-Trip Engineering Method Supporting

Contract-Based Co-Design Driven Processes

Abstract. When implementing a particular viewpoint on a system under design, engineers are
provided an A/G contract that defines what an engineer may assume from other viewpoints and
what they should guarantee under these conditions. Although ontological reasoning already
provides syntactic and semantic transformations, it is often unclear to what extent these assumed
design parameters influence the viewpoint-specific implementations and, as such, the contract
parameters to be guaranteed. To tackle this issue, we propose a Round-Trip Engineering method
allowing a control viewpoint to semi-automatically integrate hardware related assumptions,
corresponding to the deployment, into the control model. The resulting method supports control
and embedded engineers in the tradeoff analysis of design parameters when negotiating contracts
and explicitly models assumed parameters at the most appropriate level of abstraction.

CHAPTER 4. A ROUND-TRIP ENGINEERING METHOD SUPPORTING CONTRACT-BASED
CO-DESIGN DRIVEN PROCESSES

4.1 Introduction

CBCD as a method enables engineers to reason about multi-viewpoint consistency and provides
viewpoint-specific contracts to the engineers in which it is clear what a viewpoint should guarantee
under a given set of assumptions. These assumed design parameters are often semantically and/or
syntactically guaranteed design parameters translated from another viewpoint. As such, there may
exist a circular dependency between the different viewpoints. For example, the software viewpoint
of the embedded domain should guarantee a maximum defined WCRT, that is translated to an
assumed StA delay for the control viewpoint. Vice versa, the control viewpoint should design a
control algorithm with a prenegotiated complexity. Given this assumed complexity, the software
viewpoint is able to reason about a schedulable system so that the WCRT can be guaranteed for
the software task(s) executing the control algorithm.

Although the CBCD method explicitly models the engineering knowledge using an ontology,
engineers are often not aware of these possible circular dependencies. Moreover, given the
viewpoint-specific contract they have limited aids in estimating the impact of the assumed de-
sign parameters on their modeled implementations. It is therefore opportune that the different
viewpoint-specific implementations are (semi-)automatically updated with all the relevant as-
sumptions such that they can be simulated as if they were running on the integrated system. To
demonstrate this, this chapter presents a Round-Trip Engineering (RTE) method [SKO04], in which
the control viewpoint is augmented with software related timing information. Therefore, the
top-level control architecture in Simulink® is updated with extra blocks so that control engineers
can evaluate the behavior of the deployed algorithm at their level of abstraction.

4.2 Related Work

The literature describes multiple scientific contributions to introduce real-time execution behavior
when modeling a CPS. In [EKTO1] a tool is presented that enables engineers to co-simulate the
functional logic of a (modeled) control algorithm with the behavior of the computing system,
combining the view of both control and embedded domain at an appropriate level of abstraction.
Eidson et al. [ELM ™ 12] present the PTIDES design environment as an extension to the Ptolemy
II framework. It allows a control designer to add a notion of physical time without actually
deploying the system. Therefore, PTIDES extends discrete-event systems with a relationship
between model time and physical time at sensors, actuators, and network interfaces. Another
approach is presented by Guerra et al. [GSDAO7] where triple graph transformations are used
to back-annotate original models with analysis results. In [Nad13] Naderlinger demonstrates
how to manipulate the Zero Execution Time (ZET) simulation behavior of Simulink® models to
support real-time execution behavior by introducing building blocks consuming a finite amount of
simulation time. In addition, a more general overview of integrating real-time execution behavior

80

4.3. THE ROUND-TRIP ENGINEERING METHOD

at a functional model level is given by Derler et al. [DLTT13] where a framework of design
contracts is proposed to facilitate interaction between control and embedded integration engineers
designing CPS.

Ciccozzi et al. describe in [CSCS13, CCS13] an approach that is similar to ours. Their round-trip
solution consists of three steps: (¢) the generation of code from a source model, (i¢) monitoring
of extra-functional properties at system level, and (¢77) back annotation of the source model.
However, their back annotation consists of a textual description with implementation related
properties meaning the system developer needs to be aware of these specific technical terms in
order to optimize the deployment. In [MD14, CMDN15] the authors present the T-Res framework
allowing for a co-simulation of the software model and the hardware execution platform. Inspired
by TrueTime [HC;\O3, CHL*03], they introduce kernel and task blocks into the Simulink®
software model (i.e., the control model that is adapted for implementation). More recently, Li et al.
demonstrate in [LMMHY 16] a control-embedded co-simulation framework in which a multi-core
processing architecture is modeled using the SimEvents® software. In their implementation, the
execution of the control algorithm is triggered using the underlying discrete-event execution
engine of SimEvents®.

4.3 The Round-Trip Engineering Method

As stated in Chapter 3, our CBCD method derives viewpoint-specific contracts from a (set of)
negotiated contract(s) without making them explicit to the engineers. This decision has been made
deliberately as engineers often are not aware of circular dependencies between viewpoints and have
limited aids in estimating the impact of the assumed design parameters on their implementations.
The RTE method complements the CBCD method to address these limitations, in particular for
the control viewpoint. To do so, the RTE method replaces the generic export functionality of
Figure 3.17 for the control viewpoint such that a control-specific view in Simulink® is created in
which timing related information of the platform viewpoint (subsuming the hardware and software
viewpoint) is represented using delay blocks.

To enable the RTE method, we rely on the “model transformations for, and in Simulink” technique
introduced by Denil et al. in [DMV 14]. The technique is further refined to enable parametrized
rule-based model transformation. These rules act as a template of a model-to-model transformation,
defining how the control view should be updated with timing related deployment information,
and are created in the design environment of the control engineer (i.e., Simulink®). Figure 4.1
illustrates such a parametrized rule-based model transformation. Each rule consists of a LHS and
a RHS. The LHS of the rule defines the precondition of the control view. As the RTE method
complements the CBCD method, the precondition is an architectural control model consisting
of model reference blocks (or subsystems) followed by some output (i.e., another Simulink®
block). The RHS defines the post-condition of the model. As shown in Figure 4.1, it is defined

81

CHAPTER 4. A ROUND-TRIP ENGINEERING METHOD SUPPORTING CONTRACT-BASED
CO-DESIGN DRIVEN PROCESSES

preModelRef
Outport »
Pre_OutportOfBlock
Model 14
13
(a) LHS
postModelRef
Outport
Post_OutportOfBlock
Model

13
Block Parameters: C

Post_OutportOfBlockl | post_DelayLength

return **DelayLength_C**

post_InitialCondition

return **InitialCondition_C**

post_SampleTime

return **SampleTime_C**

0K | Cancel Help Apply

(b) RHS

Figure 4.1: Parametrized model transformation rule

that the output of a model reference block is now followed by two delay blocks, representing
the WCET (denoted by C as an abbreviation for Computation) and the scheduling time (denoted
by the abbreviation §) of the deployed block. Note that both delays combine the WCRT of a
component.

As illustrated by means of an FTG+PM in Figure 4.2, the RTE method transforms both control
model and parametrized rule to a Himesis graph [Pro05] in which blocks are represented by
nodes and connections by edges. These graph representations are used to create a set of model
transformations for which the asterisks in Figure 4.1.(b) are replaced by timing related deployment
information. Note that the rule creates a model transformation for each output signal of a control
component. Next, the set of transformations is applied on the graph representation of the control
model, resulting in a transformed Himesis graph that is then transformed back to a Simulink®
model.

With respect to its integration in the CBCD method, the timing related deployment information
may have its origin (¢) in the negotiated contracts and/or (i¢) in the results obtained from a
schedulability analysis. In the former case, the RTE provides the control engineer with a top-level
architecture in Simulink® in which the contract assumptions of the embedded domain (i.e., the
software viewpoint) are explicitly modeled at a control engineer’s level of abstraction. When
behavior is added to the exported architecture, during the detailed design phase (Section 3.6.2),
the control engineer is able to evaluate the control algorithm’s behavior as if it were deployed on
the hardware architecture. However, the explicitly modeled assumptions (i.e., the delay blocks

82

4.4. THE ROUND-TRIP ENGINEERING METHOD APPLIED ON THE POWER WINDOW
EXAMPLE

>[__ControlDSL ; I

Creat Graph Creat raph i
! | Control :ControlDSL Rule :ControlDSL

(:CreateModelGraph) (_:CreateRuleGraph)
Himesis
Upaph Updel

TimingDSL ' Model :Himesis Graph :Himesis
g i [t

tions TimingDSL
:Create
Transformations
Transformations
:Himesis
:UpdateGraph
UpdatedModel
:Himesis
:UpdateModel
UpdatedModel
:ControlDSL
@
FTG |
Manual O (Semi-)Automatic| ! PM
Transformation Transformation | | || :Arifact | ((:ManualActivity) (:(Semi-JAutoActivity)
—> Consume / Produce Formalism 3 —> Control Flow Data Flow

Figure 4.2: Overview of the Round-Trip Engineering (RTE) method

representing the WCRT) may be updated during the detailed design phase, which relates to
the second origin of the timing related deployment information. Concurrently to the detailed
control design, the embedded engineers will further detail the embedded architecture by defining
a number of tasks, their priority, period, and deadline. Moreover, as behavior is added to the
control algorithm, timing analysis may reveal a more precise WCET. Once this embedded related
information is defined or obtained, a schedulability analysis is executed to evaluate whether the
system is schedulable. The timing related results of this analysis are provided to the RTE method
such that the initial delays in the control model can be updated.

While Figure 4.3 formalizes how the RTE method complements the CBCD method, Figure 4.4
illustrates how our RTE method extends the main framework of Figure 3.17. The export function-
ality is replaced by a RTE module for the control viewpoint. We rely on a python implementation
of T-Core, introduced in Section 2.3.2, to enable the transformations to and from the Himesis
graph representations. As such, our RTE method is implemented using the Python program-
ming language. For interfacing with Simulink® we rely on its API. However, this results in
considerable time-consuming transformations. Speed optimization can be achieved by accessing
Simulink® diagrams using their xml representation (only applicable if the model is saved as an
slx-file).

83

CHAPTER 4. A ROUND-TRIP ENGINEERING METHOD SUPPORTING CONTRACT-BASED

CO-DESIGN DRIVEN PROCESSES

poylow (DD 2y} Sunuowa[dwod poyrowt g1 YL €'+ o1

mold ereq MOI4 [01}U0D) <——] WSI[EWI04 89NPOidf / SWNSUO) < |

(Rnmpvony(wes):) (CAmmpvienien:) [Temv: |
wal | [orewoinyCies) O pestyird @ N ETETETCE)
RIE]

®
[TSP oM |

UBSaq[0AU00
palelq:

RSl
1BPONPaTEPdn

TEPONGIERAN:

SEOW.
fPoppaIEpdn

SO
SUoRewIOjSUEIL

BT
ojeal):

TBPONBINPAPS.

SUNSOXAIGEINPAUDS
eIpE:

sisAleuyAjIIqeInpaYdS
sinoax3:

BINOBHYRIYIOAUOD
Hodx3:

UOEOBaNIBERUOD:

Jsarenuoy | [7saionuog <

Gusircdl

SIMR)LRIYLLIOREld
auyeq:

BINOBIIYOIYIONUOD
auyeq:

SUoneoypadSenixaL:

WIoeld

SUonEoyedgENXGL

SuonEoPeds
wiope|doenXT:

SUonEooaas
10AUODRBIXT:

Ere ey
T TS

SUBWRINbaYERpeL

84

4.4. THE ROUND-TRIP ENGINEERING METHOD APPLIED ON THE POWER WINDOW

EXAMPLE
CBCD - Integrated Framework
Ontology
Description
Embedded
Architecture \ / J
< Embedded
Control ‘ ‘ View
Architecture
L ¢ ¢ Export
- Schedulability Consistency
Timing Analysis Analysis RTE
Information
Control
View
Legend
Import User Activity — > Control Flow
Export Automatic Activity Data Flow

Figure 4.4: Architectural overview of the CBCD framework, including RTE support

4.4 The Round-Trip Engineering Method Applied on the
Power Window Example

We demonstrate the applicability of our RTE method by means of the power window system
(Section 1.5.1). We go through the relevant phases of a CBCD driven development process and
discuss the evaluation of the control strategy after applying the RTE method.

Architectural Design and Contract Negotiation

Given the set of specifications, it is decided by the control engineer that the control algorithm
consists of five (reusable) components: (¢) an environment component emulating the actions of
driver and passenger, (i¢) a component to debounce the button signals, (zi7) a control exclusion
component prioritizing the driver signals, (¢v) a main control component implementing the power
window logic, and (v) a plant modeling the mechanical behavior of the system. Note that the
debounce and main control component only model the operations for one set of buttons and
window, respectively. As such, for each window a debounce and a main control component is
modeled.

Control components (i7) through (iv) are deployed on a hardware architecture defined by the
embedded engineer. It is decided to use two ECUs connected using a CAN bus: one low-cost Low
Performance Processor (LPP) ECU operating at a low clock frequency and one High Performance
Processor (HPP) ECU operating at a higher clock frequency.

85

CHAPTER 4. A ROUND-TRIP ENGINEERING METHOD SUPPORTING CONTRACT-BASED
CO-DESIGN DRIVEN PROCESSES

Given these architectures, a mapping between the architectures is negotiated. In case of the power
window system, it is decided that the LPP ECU holds both debounce components (one for each
window) and the control exclusion component. The second HPP ECU holds both components
implementing the power window logic. The negotiated design parameters are formalized as a set
of mapping contracts shown in Figure 3.22 (Section 3.7).

Round-Trip Engineering

The architecture and the negotiated contracts serve as an input of the RTE module to create
the control model skeleton in Simulink®, including the timing related deployment information
using delay blocks. To this end, the parametrized rule-based model transformation of Figure 4.1
is defined in Simulink®. After initiating the RTE method, the set of model transformation is
automatically created in which the parameters characterized by an asterisk in the RHS of the rule
(Figure 4.1(b)) are replaced by WCET and schedulability design parameters defined in, or derived
from, the contract. The result of automatically executing the set of transformations on the control
exclusion component is shown in Figure 4.5. As its contract, shown in Figure 3.22, defines a
WCET of 1 ms, the green delay block representing this design parameter is given a value of 1 with
a sample time of 0.001 s. The WCRT equals the WCET implying that the control exclusion will
be given the highest priority on the embedded system. As such, the scheduling time, represented
by the orange delay block, is given a value of 0.

L ContoExdn [] Block Parameters: C_ControlEx_PSG_Up
n usion
Up_DRV Source Value Uppr
Up & Delay length: Dialeg U |

elay length: i ™

—+{Down_DRV C_ControlEx_PSG_Up S_ControlEx_PSG_Up
Initial condition: | Dialog |~]]

—>{Up_PSG

Down N =
;
——»Down_PSG C_ConrolEx_PSG_Down §_ConrolEx_PSG_Down | Algerithm

Input processing: | Elements as channels (sample based) al

ConfrolEx_PSG_Front

Use circular buffer for state

Control
Show enable port

External reset: None | <]

Sample time (=1 for inherited):

0.001

J ok Cancel Help Apply

Figure 4.5: Result of a model transformation

86

4.4. THE ROUND-TRIP ENGINEERING METHOD APPLIED ON THE POWER WINDOW
EXAMPLE

Detailed Control Design

Once an architecture is defined and contracts are negotiated, the earlier defined control com-
ponents (¢) through (iv) are implemented by the control engineer, while (v) is modeled by a
mechanical engineer. In the following, we briefly describe the control strategy for each of these
components.

(7) The environment component emulating the actions of driver and passenger is modeled using
Simulink® Signal Builder. For both driver and passenger a set of up and down signals are
generated. At some points in time, a simultaneous action from driver and passenger is generated
to test the control exclusion requirement.

(i4) Signal debouncing is modeled by the use of Stateflow®. The implementation of the debounce
circuit is trivial: a signal must be in its new state for at least 30 ms before it is forwarded.

(ii7) By using some basic logic gates, a control exclusion circuit is modeled so that driver priority
is obtained when a driver and passenger operate the passenger window simultaneously.

(iv) Based on the work of Prabhu and Mosterman [PM04], which can also be found as a Simulink®
tutorial, the behavior of the main power window control logic is modeled using a Stateflow®
diagram.

(v) For the plant, the behavior of the motor and window mechanism is modeled using causal
block diagrams. The properties of these physical components are explicitly modeled by using
elementary control theory. Note that the external pinch force is determined using a sensor that
measures the requested current of the motor. Therefore, a feed back loop from plant to control
model is present.

Simulation Results

To illustrate the deployment effects on the behavior of the control algorithm, and as such the
applicability of our RTE method, we compare the realistic simulation results with the ones of the
naive simulation in which timing related information is not taken into account. The simulation
results of this naive approach are shown as a solid blue curve in Figure 4.6 and, more detailed, in
the upper part of Figure 4.7, in which the behavior of the passenger window is shown. At certain
time stamps, a command from the driver and/or the passenger is issued. Within the scope of this
discussion, we elaborate on three of them.

At time stamp 1 s the driver initiates an up-command, whereafter the window responds within
50 ms. During this movement, a force of 100 N is detected at time stamp 3.15s. This results in a
revert movement of the window 33 ms after pinch detection. The driver sends a down-command
at time stamp 8 s for a time period longer than 500 ms, resulting in a downward movement of the
window 52 ms after the command is issued. At time stamp 10 s both driver and passenger issue a

87

CHAPTER 4. A ROUND-TRIP ENGINEERING METHOD SUPPORTING CONTRACT-BASED
CO-DESIGN DRIVEN PROCESSES

Passenger Window

1
j A\
/ LSRN
|
/
/
/
0af / i
’-'
/
025} / g
E /
: /
g 02r / 1
2
& A\ f‘}
015} 1\ f g
/A /
/ /
01 '.1 \ 777777777 = ,t' 1
/ \ I
oostf o E
/
!
0 2 4 6 8 10 12 14 16 18 20

Time [s]

Figure 4.6: Simulation results for operating the passenger window

Passenger - Closing window

Passenger - Pinch detection Passenger - Down-command
- S
x 3188 o B
¥:0.1721 035 Y:0.4
0.172 LS 03
o X315 AN £ 009 X8 ¥: 8052 -
To17 Y:0.1707 N\ = Y:0.08972 Y:0.08971 =025
] = \ S = S
g \ £ N\ % 02
8 o / N\ 2 o085 bt 2
\ 015
\
0.169 \ 0.1 X: 10.01
/ 0.089 Y:0.03998
/ \ 0.05 p o
0.166 \
a1 1 32 325 8 B02 B804 BO06 BO8 10 12 14 16
Time [g] Time [s] Time [s]
Passenger - Pinch detection Passenger - Down-Command Passenger - Closing window
0.0896 =
;3227 00894 035 AL
0172 Y:0.171 0.0892 03 /
L] K
T N, E 0.089 X8 X: 8.095 E /
= 07 N = Y:0.08874 |Y:0.08873 £ 025 7
S 1 \ SO008BBL _ g o L ~ 1} ’
g X:3.15 g \ % \ % 02 7
£0.168 v:01872 \ £ 0.0886 \ & .
- N\ 0.0884 \ 015 %
0.166 4 \-\ 0.0882 i 0.1 X:10.02
p N \ Y:0.03901
£) 0.088 | 005\ _ g
0.164 L2 -
31 315 32 325 33 335 8 B.02 8.04 BOG 808 B1 812 10 12 14 16
Time [g] Time [s] Time [s]

Figure 4.7: Detail of the simulation results—upper: naive simulation; lower: after in-place

transformation

88

4.5. THE ROUND-TRIP ENGINEERING METHOD FOR COMMON DESIGN PROCESSES

window command. However, their commands conflict with each other giving it priority to the
driver who issued a short up command. This results in a completely closed window within a time
period of 4.43s.

When evaluating the simulation results of the control algorithm updated by our RTE method,
shown as a dash-dotted red curve in Figures 4.6 and 4.7, we notice some remarkable differences
compared to the naive simulation results (solid blue curve). For example, at time stamp 8s a
response time of 52 ms was derived for the naive simulation. Taken into account the negotiated
timing related deployment information, we notice that the response time is increased to 96 ms,
that is, almost doubled. Nevertheless, the requirements listed in Section 1.5.1 do not appear to be
violated. However, certain requirements may be further refined to comply with (inter)national
safety regulations to prevent safety-critical situations. For example, requirement 4 and 5 are
further refined in the spatial and temporal dimension to detail the safety requirement:

1. Spatial dimension—if a clamped object is detected, the power window may continue to
close for a maximum of 2 mm before safety-critical situations occur.

2. Temporal dimension—given the spatial dimensions and the inertia of the system, safety can
be guaranteed if the window lowers within 50 ms.

These requirements where validated at time stamp 3.15 s where a force of 100 N was detected.
In the naive approach it only took 35 ms to reverse the movement of the window. When taking
into account the delays negotiated in the contract, one can notice that the timespan between
detection and action is increased to 77 ms. Due to this slower response time, the window closes
for an additional 1.4 mm before an action takes place, violating both refinements of the safety
requirement.

The simulation results show that our RTE method, using parametrized model transformations, does
add essential information to the control model so that engineers are able to evaluate their design
while taking into account the impact of the assumed design parameters. Note, however, that the
negotiated design parameters may be overestimated. As guarantees may be refined (e.g., computa-
tion and scheduling time may be lowered), the behavior of the deployed system might be better
than what is simulated during design time. The CBCD method allows these refinement operations
during the concurrent design process, as shown in Figure 3.14, so that viewpoint-specific contracts
can immediately be updated based on information from other viewpoints. By initiating the RTE
method in the framework, refinements in one viewpoint can be pushed to the other viewpoints so
that the views are consistent and up-to-date at all times.

89

CHAPTER 4. A ROUND-TRIP ENGINEERING METHOD SUPPORTING CONTRACT-BASED
CO-DESIGN DRIVEN PROCESSES

4.5 The Round-Trip Engineering Method for Common
Design Processes

Although the RTE method supports our CBCD method so that engineers are able to assess the
impact of the assumed design parameters in their implementations, the RTE method can be made
more generic so that it can be applied in any common design process for CPSs. In these more
common design processes for CPSs, a precedence relation [PTQ™ 13] often exists between control
and embedded design activities. This results in a late detection of conflicting views on the system
under design, that in turn results in multiple iterations to deploy a single control model. The RTE
method attempts to minimize these iterations by augmenting the control algorithm with timing
related design parameters from the embedded domain.

We formalize the integration of the RTE method in these sequential design processes using the
FTG+PM shown in Figure 4.8. We distinguish between three design phases: (z) Control Design,
(2¢) Deployment, and (¢¢¢) Round-Trip Engineering. Note that each of these phases respectively
correspond to one column in both the FTG and PM side of Figure 4.8. As there is no notion
of a contract that formalizes the design parameters and relates them to design components, we
suggest the use of an Architecture Description Language (ADL) to store design information while
executing each design phase and to maintain traceability. For this purpose, formalisms such as
Modeling and Analysis of Real-Time and Embedded systems (MARTE) can be used which is a
Unified Modeling Language (UML) profile to support the specification, design, and validation of
real-time and embedded systems [FBSGO7]. In what follows, we elaborate in more detail on the
different stages of the RTE method applied in a common design process.

Control Design

Given a set of specifications and an architectural model, formally described and stored in an ADL,
a control engineer creates an algorithm to control (part of) the system. A common approach
to specify control logic is by using the causal block diagram formalism, supported by well
established engineering tools such as Simulink®. Control engineers connect plant models to the
control models to verify the behavior of the designed algorithms in the context of the system
with respect to the specifications of the system. The created control models are prepared for
deployment by the control engineers. This involves the discretization of a continuous-time model
to a discrete-time model.

If the output of the control model still meets the predetermined specifications, the model is handed
over to the software engineer. They further process the model such as the modularization of the
control model with respect to the hardware configuration while maintaining traceability. To this
end, the software engineer adds the different components to the component model of the ADL
and models the interactions between the new components and the rest of the system.

90

4.5. THE ROUND-TRIP ENGINEERING METHOD FOR COMMON DESIGN PROCESSES

_1SQIo4u0y:

{PPONP3IEPAN

fPPOWP3IEPUN

SISSWIH:

SuopewIojsUBIL

SiSewiH: qdein

[epopaiepdn:

snm_@wﬁun:_

suonewojsuel |
Qjeal):

ss2001d ug1sep uowwod e ur parjdde poyio]N Sutesurduyg dii], punoy Y[, 8+ N3

SISAWIH: [9PON

ISPOWAV-

IQvi0uoeloULYoes:

PPONBINPAURS:

sinsaxAiIgeinpeuos
JoRIXT:

sishleuyAiqeinpayos
sjnoex3:

1OPONDISEL LY
sjes1:

aveiepdn:

2Injo8)yoIYWIoNeld
auyeq:

Wiopeld

suoneoyoads
wioge|dioenxT:

TBPonSeLoWIL-eoy:

SINORNUPIVUIOREId:

S)INSEYBOUBWLO[IaJI0BNXT:
30el] souewiopad:
sisjeuybuiwi] aynoax3:

UOJJEJaUSH3POD:

TSAIAU0Y: [AU0D

WSI[EULIOS 90NPOId / BWNSUOD <———

oLd

uonew.ojsuel]
[enuepy

Mol ereq MO|4 |OJUOD <«——
oVoIny(-iwes): RATOVIenuBl: P, " o
Wd onewOoINY(-lweg)
JQvJOUOHEIoUUV>IEE:
[SPOJ SoUBWIOHSd:

avioupr

19PO BouBULIOpad

syn: 1ad

L)

9081 S0UBWIO A

ubisaglonuod
oQ:

Javelepdn:

SINBNUOIVIOU0D:

21N}03)1Y2.Y|03U0D
auyeq:

suoneoyeds
[0UODO.IXT:

SusweInbogenxal

TWoISAS

suoneoyadsenixal

SjusWwalinbayenixaL

91

CHAPTER 4. A ROUND-TRIP ENGINEERING METHOD SUPPORTING CONTRACT-BASED
CO-DESIGN DRIVEN PROCESSES

Traceability links link the ADL model to the behavioral models. From the different components,
source code is automatically generated for deployment on the hardware architecture, that is, a set
of ECUs connected using a communication medium such as CAN. Widely available tools such as
Simulink® Coder™ are typically used for generating source code.

Embedded Design

The source code generated from each component, called software components, must be feasibly
and optimally mapped onto an ECU or a set of networked ECUs. Each software component is
allocated to an operating system task while task related parameters are set. Signals originating in
the software components are packed into bus messages for communication between networked
ECUs. To this end, parameters such as message priority are set.

To check whether a configuration is feasible and optimal, the embedded engineer starts by
determining the performance of each software component by executing a timing analysis. For
this purpose, two different methods exist: static and measurement-based method. The former
method makes use of the generated code and a model of the target hardware to analyze the set of
different possible control flow paths. The latter method is also known as profiling and executes
the generated code on the target hardware or on a low-level simulation model to measure the
execution time given a set of inputs. Both methods lead to the (statistical) determination of the
WCET. A detailed overview of the tools and methods involved in obtaining the WCET can be
found in [WMMT08].

To enable our RTE method, the results of the timing analysis are added to the ADL model,
from which a Real-Time Task Model can be derived. This generated model contains software
related information (e.g., WCET), information about the target hardware (e.g., number of ECUs),
mapping information, and information related to the communication channel. The Real-Time Task
Mode enables an embedded engineer to execute a schedulability analysis. Different techniques
such as the one described by Tindell and Clark [TC94] or Palencia and Harbour [PG98] can
be used. As a result, the schedulability analysis provides the embedded engineer with a trace
containing the WCRT for each subsystem. Nowadays, several tools can be invoked to execute a
schedulability analysis resulting in a trace containing the WCRT (e.g., MAST). The results of the
deployment are fed back to the ADL model.

However, the choices made by the embedded engineer when deploying the system onto the
hardware affect the performance of the designed control loop. For example, a signal can be
delayed due to its transmission via a bus or a software component may encounter a longer
execution time due to task related parameters. For this reason, the deployment process is typically
an iterative process in which each iteration attempts to minimize the deployment effects on the
behavior of the control algorithm while maintaining schedulability.

92

4.6. CONCLUSION

This iterative process is not taken into account in the FTG+PM shown in Figure 4.2, but is
demonstrated in the work of Mustafiz et al. in [MDLV12].

Round-Trip Engineering

The results of the (iterative) deployment process are used to create new behavioral models by
updating the Simulink® control model with extra delay blocks. Similar to the implementation
in CBCD driven design processes, these blocks reflect the WCRT, combining the WCET and
scheduling time, as a result of the schedulability analysis. It enables control engineers to evaluate
the behavior of the deployed control algorithm at their level of abstraction, using methods and
techniques they are familiar with. As the WCET depends on the chosen control strategy, the RTE
method also enables control engineers to evaluate to what extent the control algorithm influences
the deployed system. This might be helpful in case a schedulable implementation can only be
achieved by lowering the computation time (i.e., the WCET).

4.6 Conclusion

When designing a system using a contract driven design process, it is often unclear for engineers
how the contract assumptions influence the set of parameters to be guaranteed and, as such,
the viewpoint-specific implementation. To assist engineers in assessing these dependencies,
we proposed a Round-Trip Engineering method that allows control engineers to evaluate the
behavior of their algorithms taking into account timing related deployment assumptions. To
achieve this, a parametrized rule-based model transformation is defined, enabling a Py-T-Core
based implementation to create a set of model transformations based on the negotiated design
parameters. These model transformations enable the control engineer to create a (top-level) control
architecture in a modeling environment such as Simulink® in which delay blocks are introduced
representing negotiated timing related platform design parameters (e.g., WCRT).

Besides enabling control engineers to evaluate the virtually deployed control algorithm at their
level of abstraction, the RTE method can also be used to support control and embedded engineers
in the tradeoff analysis of design parameters in the contract negotiation process. In particular,
it enables engineers to evaluate the control and deployment strategy. The result of the tradeoff
analysis might, for example, indicate that the estimated complexity of the control algorithm is
chosen too high for the amount of slack time available on the processor. This requires that a
(partial) implementation already exists when negotiating the contract(s).

As negotiated parameters may be overestimated during contract negotiation, because of incomplete
or incorrect design estimations, design parameters may be refined while (concurrently) detailing
the design. The RTE method may support engineers in this refinement process by pushing changes

93

CHAPTER 4. A ROUND-TRIP ENGINEERING METHOD SUPPORTING CONTRACT-BASED
CO-DESIGN DRIVEN PROCESSES

made in one viewpoint to the other (related) viewpoints so that behavioral simulations during
design represent the integrated system at all times.

Although focusing on how the RTE method supports the CBCD method, we discussed a generic
RTE approach so that the method can be applied in any design process. The generic approach
consists of three design phases: (z) control design, (i¢) deployment, and (¢77) round-trip engineer-
ing.

To summarize this chapter, we return to the research question formulated in Section 1.3:

RQ4 How should contracts syntactically and semantically be interpreted by different engi-
neering domains?

Using a Round-Trip Engineering method, the control domain, and its related viewpoint, is
provided with a (top-level) architecture in which contract assumptions from the embedded
domain (and its related viewpoints) are modeled at the most appropriate level of abstraction.
While the RTE method currently focuses on supporting the control domain, the method can
easily be extended to assist embedded engineers in estimating the impact of their design
decisions on the behavior of the control algorithm at a higher level of abstraction. As such,
we conclude that the RTE method enables engineers to assess the impact of assumed design
parameters on their viewpoint-specific implementations, using methods and techniques they
are familiar with.

94

CHAPTER

Design-Space Exploration Supporting

Contract-Based Co-Design Driven Processes

Abstract. A designer often has to evaluate alternative designs during the development of a system.
A multitude of Design-Space Exploration (DSE) techniques exist in the literature. Integration of
these techniques into the modeling paradigm is needed when a model-driven engineering approach
is used for designing systems. To a greater or lesser extent, the integration of those different
design-space exploration techniques share characteristics with each other. Inspired by software
design patterns, we introduce an initial pattern catalog to categorize the embedding of different
design-space exploration techniques in a model-driven engineering context. We elaborate on their
use by a literature survey, discuss the consequences of each pattern and illustrate their applicability
on two distinct examples. Finally, we demonstrate how design-space exploration techniques can
be integrated into a contract-based co-design driven (multi-viewpoint) design process.

CHAPTER 5. DESIGN-SPACE EXPLORATION SUPPORTING CONTRACT-BASED
CO-DESIGN DRIVEN PROCESSES

5.1 Introduction

While designing a system, the need often arises to explore different design alternatives for a specific
problem. Design-space exploration is a (semi-)automatic process where possible alternatives of
a particular design problem are explored. The exploration is guided with imposed constraints
and optimality criteria on the different candidate solutions. Design-space exploration techniques
may also be used in the context of CBCD driven design processes to support engineers in their
viewpoint-specific implementations. The degree to which DSE techniques may assist them highly
depends on the maturity of the design team and/or the project. If this is considered low, DSE
techniques can be used to (semi-)automatically define architectures for both the control and
embedded domain. It goes without saying that a library of (validated) components should already
exist to enable these explorations. On the contrary, if the maturity is considered low such that
engineers have to define both contracts and architectures, DSE techniques may still be useful
for exploring an optimal mapping of both architectures. In that respect, the software viewpoint
considers subsystem and model reference blocks defined in the control architecture as software
components. For the latter case, we demonstrate how DSE techniques can be integrated into the
CBCD framework to support engineers in exploring an optimal mapping of control and embedded
architectures, often referred to as a control-embedded allocation problem, for which the processor
load and bus communication should be optimized.

In the literature a multitude of DSE techniques are available to explore a design space, for example
evolutionary algorithms, constraint satisfaction and (Mixed Integer) Linear Programming. In our
experience with embedding DSE in a model-driven engineering context and with a survey of the
literature, we observed the use of different models, expressed using different formalisms, for both
design, exploration, and the modeling of goal functions. Combining the different models, using
transformations, with the multitude of techniques available for searching design spaces revealed
similarities between the models and transformations of the different exploration techniques. To
consolidate this knowledge, we organize these techniques into an initial pattern catalog, inspired
by software design patterns. Each pattern is supported by a well-defined description, including its
intended use. The goal of this effort is to create a more complete pattern catalog for model-driven
engineering approaches for design-space exploration with the support of the community.

5.2 Related Work

The concept of patterns is widely used in Software Engineering. They provide generalized
solutions to common software problems in the form of templates. The templates can be used
by software developers to tackle the complexity in a larger software problem. One of the most
highly cited contributions to pattern catalog in the field of software is the work of the “Gang of
Four” [GHJV95], that presents various design patterns with respect to object-oriented program-

96

5.3. AN INITIAL PATTERN CATALOG FOR DESIGN-SPACE EXPLORATION

ming. Inspired by the Gang of Four, Amrani et al. [ADLT 12] presents a model transformation
intent catalog that identifies and describes the intents and properties that the cataloged transforma-
tions may or must possess. Their catalog can be used for several purposes such as requirements
analysis for transformations, identification of transformation properties, and model transformation
language design. Their presented catalog is a first attempt to introduce the concept of patterns in
MDE.

A more in-depth literature study is integrated in Section 5.3 such that each pattern is illustrated by
known uses. This motivates one to the application of the introduced patterns.

5.3 An Initial Pattern Catalog for Design-Space
Exploration

By definition design patterns are used to formalize problems that recur repeatedly. They help a
designer to evaluate alternatives for a given design problem in order to choose the most appropriate
design. The usefulness of such patterns has already been proven in the Software Engineering
domain where the “Gang of Four” [GHIV95] gave impetus to the creation of a widely accepted
software design patterns catalog. The successful impact of its widespread use is undoubtedly the
well defined structure of each pattern. More specifically, each pattern is typed by: (1) Pattern Name
and Classification, (2) Intent, (3) Also Known as, (4) Motivation, (5) Applicability, (6) Structure,
(7) Participants, (8) Collaborations, (9) Consequences, (10) Implementation, (11) Sample Code,
(12) Known Uses, and (13) Related Patterns. Each of these sections is textually described and
where necessary graphically supported using Class Diagrams, describing structure, and/or Activity
Diagrams, describing the workflow of the pattern. At least one case study demonstrates how the
patterns can be applied in practice.

In accordance to software design patterns, we define a pattern catalog specific to the design-space
exploration domain for which the format of each proposed pattern is as follows:

— Intent: gives a short explanation of the intent of the pattern.
— Structure: describes the general structure of the pattern.
— Consequences: describes the tradeoffs in using the pattern.

— Known Uses: Lists the applications of the pattern in the literature. While this is not
intended to be an exhaustive literature review of all the applications of the pattern, one can
draw inspiration from these examples to apply the pattern.

— Application: gives a short description in which cases this pattern can be useful and how
it can be implemented.

97

CHAPTER 5. DESIGN-SPACE EXPLORATION SUPPORTING CONTRACT-BASED
CO-DESIGN DRIVEN PROCESSES

The Structure is graphically supported by the FTG+PM. The reason for using this supported
formalism is threefold. First, it clearly represents the structure of the approach by connecting the
different formalisms with transformations on the left-hand side of the FTG+PM. The FTG+PM
also shows the workflow of combining the different models and transformations in a process
on the right-hand side. Second, the FTG+PM can be used to (semi-)automatically execute the
defined transformation chains (yellow colored). Manual operations are also possible that allow for
experience based optimization and design (gray colored). Third, different patterns described in
this formalisms are easily connected to each other. This enables the embedding of DSE within the
MDE design of systems.

Executing design-space exploration in a model-driven engineering context can be abstracted in
some steps:

1. A metamodel defines the structural constraints of a valid solution.

2. A DSE tool generates valid candidate solutions conforming to the metamodel. An initial
model adds other structural constraints to the set of candidate solutions.

3. A transformation transforms the set of candidate solutions to an analysis formalism to check
the feasibility of the solution with respect to a set of constraints.

4. If necessary, a second transformation generates a model in a performance formalism to
check the optimality of the solution with respect to certain optimization goals.

5. Depending on the optimization technique, the process is iterated multiple times. Information
from feasibility and performance models is used to guide the exploration.

Depending on the exploration technique, we classify different model-driven engineering ap-
proaches to solve this generic design-space exploration strategy.

5.3.1 Model Generation Pattern

Intent: This pattern transforms the metamodel of a problem space together with constraints to a
constraint satisfaction problem. The exploration of the design consists of the generation of a set of
models that satisfy the structural constraints imposed by the metamodel and the other constraints
provided using a constraint formalism.

Structure: The pattern, shown in Figure 5.1, starts with a metamodel and some constraints. A
transformation transforms these models into a constraint satisfaction problem. By invoking a
solver, an exploration of the design space generates candidate solutions. Each candidate solution
is transformed into an analysis representation. The analysis produces traces of each candidate
solution. Based on the goal function model, the optimal trace is transformed to a solution model.
This solution model can either be expressed in the exploration formalism, the original model
formalism, or a specific solution formalism.

98

5.3. AN INITIAL PATTERN CATALOG FOR DESIGN-SPACE EXPLORATION

[Model Formalism | [Constraint Formalism |

- - :Constraint
:Model Formalism Formalism

:ToExploration

Representation

:Exploration
Formalism
:CreateCandidate
Solution(s)
:Exploration
Eormalism

@EE}
(CExecuteAnalysis J«—————

Solution Formalism

> False

True

:TraceTo
Solution

O)
FTG
Manual i O (Semi—)Automatic PM : _ . _
Transformation Transformation Artifact | (T:ManualActivity) (:(Semi-)AutoActivity)
—> Consume / Produce Formalism —> Control Flow Data Flow

Figure 5.1: Model Generation Pattern

99

CHAPTER 5. DESIGN-SPACE EXPLORATION SUPPORTING CONTRACT-BASED
CO-DESIGN DRIVEN PROCESSES

Consequences: Depending on the used solver, this method may be computationally and memory
intensive because an exhaustive search of the design space is executed. A transformation is
necessary to translate the metamodel with constraints to a model that is usable by the DSE
tool. Domain knowledge can be introduced by adding constraints to the metamodel. Note that
adding extra constraints helps the search for a solution. An initial model, where some choices are
predetermined, adds extra constraints. A less generic alternative is to add the initial model when
evaluating candidate solutions.

Known Uses: Neema et al. [NSKO03] present the DESERT framework used for model-driven
constraint-based DSE. It implements an automated tool that abstracts the Simulink® design
space to generate candidate solutions. In [JKDT10] the FORMULA tool is presented, where
candidate solutions are generated from a metamodel. A similar tool called Alloy is used by Sen
et al. [SBMOS] to automatically generate test models. Saxena and Karsai [SK10] present an
MDE framework for generalized design-space exploration. A DSE problem is constructed of a
generalized constraint metamodel combined with a domain specific metamodel.

Application: Tools implementing this pattern will solve a constraint satisfaction problem that
results in an explosion of the design space. Therefore, this pattern is not recommended when
one searches for an optimal solution out of a large search space without a lot of constraints. On
the other hand, this pattern is very useful to rapidly obtain candidate solutions conforming to the
metamodel.

5.3.2 Model Adaptation Pattern

Intent: This pattern transforms the model or a population of models to a generic search model
used in (meta-)heuristic searches. Depending on the problem and search algorithm, different
search representations can be used.

Structure: As depicted in Figure 5.2, a model or population of models expressed in a certain
formalism is transformed to a specific exploration formalism. Based on the guidance of a
goal function, an algorithm creates new candidate solutions. A (set of) candidate solution(s) is
transformed to an analysis model in order to evaluate. Finally, the result is transformed to a
solution model. This solution model can either be expressed in the exploration formalism, the
original model formalism, or a specific solution formalism.

Consequences: A dedicated search representation must be created as well as manipulation
functions to create alternative designs. This requires an adequate understanding of the problem
and domain knowledge. A translation from the problem domain to the search representation and
vice-versa is required. An initial model, as a constraint, can be added by fixing the generated
solution or by rewriting the functions to create new solutions (cross-over, mutation, and so
forth).

100

5.3. AN INITIAL PATTERN CATALOG FOR DESIGN-SPACE EXPLORATION

Model Formalism
- ToE# gtion
Goal Formalism Rep ation

:Model Formalism

:To Exploration

Representation
:Exploration . -
Eormalism :Goal Formalism
:CreateCandidate
Solution(s)
:Exploration
Formalism

: Exploration
ToAnalysis

:Analysis
Formalism

Trace Formalism
:VerifyAnalysis
:Boolean

False

Trpe

‘TraceTo
Solution

FTG
Manual O (Semi-)Automatic PM

Transformation Transformation Artifact | (“:ManualActivity) (:(Semi-)AutoActivity)
—> Consume / Produce Formalism —> Control Flow Data Flow

3 :Execute Analysis J<—

Figure 5.2: Model Adaptation Pattern

101

CHAPTER 5. DESIGN-SPACE EXPLORATION SUPPORTING CONTRACT-BASED
CO-DESIGN DRIVEN PROCESSES

Known Uses: Williams et al. searched for game character behavior using a mapping to a genetic
algorithm [WPR*11]. Burton et al. solve acquisition problems using MDE [BP13]. Genetic
algorithms are used to create a Pareto front of solutions. A stochastic model transformation
creates an initial population. In [KLW13] Kessentini and Wimmer propose a generic approach
for searching models using Genetic Algorithms. The proposed method is very similar to the
described pattern. It served as an inspiration for combining search-based optimization techniques
with rule-based model transformations in [AVST 14, FTW15].

Application: This pattern is recommended when a design problem can easily be transformed to
an optimal search representation, for example, a list or tree representation. Different operations
on this new representation are implemented in the solution space (usually a generic programming
language). Well-known algorithms, such as genetic algorithms and hill-climbing, implement the
search.

5.3.3 Model Transformation Pattern

Intent: This pattern uses the original model to explore a design space. Model transformations
encode the knowledge to create alternative models. Guidance to the search can be given by
selecting the most appropriate next transformation or by adding (meta-)heuristics to the model
transformation scheduling language.

Structure: Figure 5.3 outlines the structure of this pattern. A model combined with a goal
function is used to create a set of candidate solutions that are expressed in the original model
formalism. These are transformed to an analysis representation to gather some metrics that are
expressed by a trace. Using (meta-)heuristics, a new set of candidate solutions can be generated
according to a goal function. Finally, if required, the optimal solution or set of solutions can be
transformed into a solution model.

Consequences: A high degree of domain knowledge about the problem is required to design
the transformation rules. On the other hand, the rules encode domain knowledge to guide the
exploration. Model-to-model or model-to-text transformations are required to evaluate a candidate
solution. An initial model, as a constraint, can be added by adjusting the metamodel with variation
tags. Similarly to the Model Adaptation Pattern, the initial conditions can also be implemented
as fix operations using model transformations. Model transformations to create new candidate
solutions are computationally expensive because of the subgraph isomorphism problem.

Known Uses: In [HHRV11] a model-driven framework is presented for guided design space ex-
ploration using graph transformations. The exploration is characterized by a so called exploration
strategy that uses hints to identify dead-end states and to order exploration rules. As such, the
number of invalid alternatives is reduced. Denil et al. [DMV 14] demonstrates how Search-Based
Optimization (SBO) techniques can be included in rule-based model transformations.

102

5.3. AN INITIAL PATTERN CATALOG FOR DESIGN-SPACE EXPLORATION

:Model Formalism :Goal Function

CreateCandidate
Solution(s)

CreateCal @ Solution(s)

Model Formalism

:Model Formalism
ModelToAnalysis

:Analysis
Formalism

ExecuteAnalysis
:Trace Formalism
VerifyAnalysis)

:Boolean

Boolean

False

True

‘TraceTo

Solution Formalism Solution

olution

®
Fra Manual (Semi-)A PM
- anual emi-)Automatic
Formalism . - - e . m
O Transformation O Transformation :Artifact | (:ManualActivity) (:(Semi-)AutoActivity)
—> Consume / Produce Formalism —> Control Flow Data Flow

Figure 5.3: Model Transformation Pattern

103

CHAPTER 5. DESIGN-SPACE EXPLORATION SUPPORTING CONTRACT-BASED
CO-DESIGN DRIVEN PROCESSES

Application: The pattern is used when it is challenging to obtain a generic search representation.
Model transformation rules, expressed in the natural language of the engineer, are implemented
using current model transformation tools. Guidance is implemented through the scheduling of the
model transformation rules.

5.3.4 Exploration Chaining Pattern

In order to prune the design space more efficiently, multiple of the proposed patterns can be
chained. This technique is called “Divide and Conquer” and may as well be described by a pattern.
To represent the chaining of multiple FTG+PMs, this pattern is graphically supported by means of
a principle representation.

Intent: This pattern adds multiple abstraction layers in the exploration problem where candidate
solutions can be pruned. High-level estimators are used to evaluate the candidate solutions and
prune out non-feasible solutions and solutions that can never become optimal with respect to the
evaluated properties. Figure 5.4 shows the overall approach of this pattern.

Full Solution Space

~
”
UOIBN[BAS BAISUS]UI 810W
usWauleYy

v

Figure 5.4: Exploration Chaining Pattern

Structure: At each of the abstraction layers an exploration pattern is used to create and evaluate
candidate solutions. Non-pruned solutions are explored further in the next exploration step.

Consequences: Domain knowledge about the problem is required to add levels of abstraction.
High-level estimators are needed at each of the abstraction layers to evaluate a candidate solution.
Because more information is introduced at each of the abstraction layers, the evaluation of a single
candidate solution becomes more complex and usually more computationally intensive. Finally, a
pruning strategy is required to decide what solutions must be pruned at each of the abstraction
layers.

Known Uses: Sen and Vangheluwe add different levels of abstraction in the design of a
multi-domain physics model [SV06]. This numerically constraints the modeler to create only

104

5.4. THE PATTERN CATALOG APPLIED IN CONTRACT-BASED CO-DESIGN DRIVEN
DESIGN PROCESSES

valid models. Kerzhener and Paredis introduce multiple levels of fidelity in [KP10]. Finally,
multiple levels of abstractions for an automotive allocation and scheduling problem are introduced
in [DCBT11].

Application: This pattern provides a solution when memory and time complexity are an issue
during the exploration of the design space. It tackles the complexity by its layered pruning
approach. Therefore, this pattern is preferred when searching for an (set of) optimal solution(s)
in a large search space. Different exploration patterns are chained to create solutions while the
required domain knowledge is often added by the designer. Alternatively, when moving between
abstraction levels (i.e., exploration patterns) the domain expert may guide the search by selecting
an (set of) optimal solution(s).

5.4 The Pattern Catalog Applied in Contract-Based
Co-Design Driven Design Processes

The aforementioned DSE patterns and their corresponding techniques may also be used in the
context of CBCD driven design processes. In particular, they can assist both the control and
embedded domain in detailing their design. Within the scope of this dissertation we implemented a
DSE technique in the integrated CBCD framework that supports the embedded domain in defining
a schedulable system. Nevertheless, this section will also detail how the control domain may be
supported in detailing the control architecture.

5.4.1 Design-Space Exploration Supporting the Embedded Domain

As already mentioned in Section 3.7, the integrated framework allows embedded engineers to
manually allocate components of the control architecture to the runnables defined in the embedded
architecture, consisting of multiple ECUs connected using a communication bus. In that respect,
the software viewpoint considers subsystem and model reference blocks defined in the control
architecture as Software Components (SWCs). This allocation process can be automated by using
an appropriate DSE pattern and corresponding technique.

Let us consider two examples of an allocation problem, shown in Figure 5.5, to examine how
DSE may assist engineers in defining and optimal mapping. The rectangles in Figure 5.5 denote
the SWCs for which a name (N), period (T), and WCET is defined. Arrows between two SWCs
indicate that there exists some communication between them for which the number in the circle
denotes the communication size (e.g., in bits). The rectangles with rounded corners in the lower
parts of both examples represent the ECUs. The line between them represents the communication
bus.

105

CHAPTER 5. DESIGN-SPACE EXPLORATION SUPPORTING CONTRACT-BASED
CO-DESIGN DRIVEN PROCESSES

N: SWC3

T: 0.001
Nowor WCET: 0.020
T:0.001 /@/'
WCET: 0.018 \®\> N: SWC2 : N: SWC4

T: 0.001 T: 0.001
WCET: 0.021 WCET.: 0.026

(a) Basic Allocation Problem

N: SWC7
T: 0.001
WCET: 0.014

N: SWC5
T. 0.001
WCET.: 0.028

N: SWC3
T: 0.001
WCET: 0.020

N: SWC1
T: 0.001 (:) N ez

J T. 0.001
WCET: 0.018 WCET: 0.021

N: SWC8
NS T:0.001

9
e _@/v WCET: 0.012
WCET: 0.026

(b) Extended Allocation Problem

oel o

Figure 5.5: Examples of an allocation problem

The corresponding metamodel for the Allocation problem is shown in Figure 5.6. It contains
multiple SWC typed by a name, a period and a wcet attribute. Two SWC can communicate to each
other using Messages. The size attribute indicates the bitsize of a message. Each SWC can be
mapped onto a single ECU. When a SWC is mapped onto an ECU its load attribute is increased by
the equation wecet/period, in which the values are substituted by the ones defined for the SWC.
Given the size attribute of the communication Message and the period of the sending software
function, a similar calculation is used for determining the load attribute of the Bus. The load on the
Bus only increases when the sending and receiving SWC are mapped onto a different ECU.

Zheng et al. [ZZDNSV07] approach the problem by searching for a mapping where the load
of the different ECUs is below a threshold of 69 % (the schedulability test for rate-monotonic
systems [LL73]). As communication on the bus introduces delays that impact the timing behavior
of the final solution, the goal is to find an optimal mapping for which the communication between
the different ECUs is minimized. In that respect, Equation 5.1 defines the goal-function for the
allocation example. If the threshold of 69 % is not exceeded for an ECU than the sum of the
communication cost between software components mapped onto different ECUs will determine
the score. In the other case, a penalty for infeasibility is added to the score. This ensures that the
optimal solution of our design problem is the one where no ECU exceeds the threshold of 69 %

106

5.4. THE PATTERN CATALOG APPLIED IN CONTRACT-BASED CO-DESIGN DRIVEN
DESIGN PROCESSES

communication

Allocation

components

0.*

SWC 0.” to Message
name: String size: Float
period: Float 1
wcet: Float

ECUs

mapping

1

1 ECU * busCon 1 Bus 0.
name: String load: Float
load: Float

Figure 5.6: Metamodel used for allocating software components on a hardware architecture

and in which there is as little as possible communication between ECUs, resulting in the lowest
possible score.

Score = Effective Communication Cost + Penalty 5.1)

Penalty = (Total Communication Cost x 3) if threshold > 69,3 % 5.2)

We applied each pattern of the catalog introduced in Section 5.3 using different available tools:
Alloy [Jac06] for the Model Generation Pattern, DEAP [FDG™12] for the Model Adaptation
Pattern and Rule-Based [SVL15] (with a Hill Climbing meta-heuristic) for the Model Trans-
formation Pattern. Each experiment is executed three times on a laptop with Intel Core i7 @
2.80 GHz processor and 6 GB memory, running a 64-bit Windows 7 Enterprise operating system.
The experiment results, for both the basic (Figure 5.5.(a)) and extended (Figure 5.5.(b)) allocation
problem, can be found in Table 5.1. We recorded the average (Avg.) exploration time and
score with their corresponding standard deviation (Std. Dev.) and the total number of generated
candidate solutions (# Candidates).

As can be seen from the simulation results, this particular mapping problem does not lend itself
for using the Model Generation Pattern. Although Alloy is able to find a solution in both
experiments, time and memory complexity are increasing when adding more variables, resulting
in a uncompleted exploration of the design space and thus a non-optimal solution. While the
results obtained with the Model Transformation Pattern and the Model Adaptation Pattern are

107

CHAPTER 5. DESIGN-SPACE EXPLORATION SUPPORTING CONTRACT-BASED
CO-DESIGN DRIVEN PROCESSES

Time (s) Score

Tool Exp. Avg. Std. Dev. Avg. Std. Dev # Candidates

Basic 2.21 0.24 3 0 30
Alloy

Extended 986.54 6.79 15 0 27228
DEAP Basic 0.16 0.02 3 0 1780 (avg)

Extended 1.48 0.23 16.66 2.88 23055 (avg)

Basic 0.33 0.04 3.0 0 23 (avg)
Rule-Based

Extended 4.31 0.748 16.66 2.88 53 (avg)

Table 5.1: Results Allocation Problem

comparable, the Model Adaptation Pattern outperforms the other patterns, and corresponding
techniques, in optimization time. Although, it does not necessarily find the optimal solution.
This is because the large influence of the different parameters such as population size, cross-over,
selection, and mutation rate.

As such, we might conclude that this design problem lends itself for using the Exploration
Chaining Pattern, in which the Model Generation Pattern is followed by the Model Adaptation
Fattern. This conclusion is well-founded when exploring an optimal mapping in more common
design processes. However, CBCD driven design processes impose a negotiation phase in which
contracts are defined. As they specify (ranges of) values for different design parameters, contracts
limit the design phase and, as such, provide an initial population for the Model Adaptation Pattern,
thereby eliminating the need for prior use of the Model Generation Pattern.

Our CBCD framework currently integrates the Model Adaptation Pattern for exploring an optimal
mapping of the control on the embedded architecture. To this end, the CBCD framework integrates
the Multi-Objective Evolutionary Algorithm (MOEA) framework [Had], illustrated as a DSE
module in Figure 5.7. A stated in [Had], the MOEA framework supports genetic algorithms,
differential evolution, particle swarm optimization, genetic programming, grammatical evolution,
and more. Although the MOEA framework includes some predefined algorithms, users can
easily implement their own algorithms. Within the scope of this dissertation, we opted to use the
predefined Non-dominated Sorting Genetic Algorithm (NSGA)-II algorithm [DPAMO2] enabling
one to search for an allocation in which processor load allocation is optimized. As the NSGA-II
algorithm supports multi-objective optimization, the CBCD framework also provides support for
optimizing the processor cost.

To enable the exploration, both control and embedded architecture are transformed to a list
representation. Both lists are traversed so that additional component information can be extracted;
that is, the period for each SWC and the WCET, current load, and (optional) cost for each
processor. Depending on where in the design process the optimization is initiated, this information

108

5.4. THE PATTERN CATALOG APPLIED IN CONTRACT-BASED CO-DESIGN DRIVEN
DESIGN PROCESSES

CBCD - Integrated Framework

Ontology
Description
Embedded
Architecture \ / J
T Embedded
Control ‘ ‘ ‘ View
Architecture }
¥ ¢ ¢ Export
. DSE < L5 schedulability — Consistency
Timing Analysis Analysis RTE
Information
Control
. View
Optimization
Criteria
Legend
Import User Activity — > Control Flow
Export Automatic Activity Data Flow

Figure 5.7: Architectural overview of the CBCD framework, including DSE support

can be obtained from the defined contracts or from data obtained throughout the detailed design
phase. In the latter case, engineers refine the negotiated design parameters by detailing the
architectures. For example, by executing a timing analysis the exact WCET can be determined.
The extracted component information is again structured as a list. Combined with the architecture
lists, the genetic algorithm uses an evolutionary strategy to determine a Pareto-optimal front for
the allocation problem. One of these solutions is reflected to the engineers by connecting allocated
components using a mappedOnto relation in the viewpoint of the embedded engineer.

5.4.2 Design-Space Exploration Supporting the Control Domain

Design-space exploration can also support the control domain to search for the optimal imple-
mentation of a particular design problem. We demonstrate this by the design of an electronic
filtering circuit, conceptually shown in Figure 5.8. The surrounding rectangle with rounded
corners represents the filter, and has three nodes located to the left (the input node), to the right
(the output node), and at the bottom (the ground node). The filter connects the input node to
the output node and ground node through a topology of resistors, capacitors, and inductors. The
minus and plus signs on the connections denote the direction of the electric flow. It is assumed
that the input connects an electric source to the system, but it may as well be an output signal of a
preceding electric or electronic circuit. The ground port leads directly to a ground. The filter’s
behavior is measured by inspecting the potential difference at the output port and ground port.

109

CHAPTER 5. DESIGN-SPACE EXPLORATION SUPPORTING CONTRACT-BASED
CO-DESIGN DRIVEN PROCESSES

100 @ 320 mH

Figure 5.8: Example of an electronic filter

ground

! Filter output
input
complLink
Component 0.7 e ,)
. % InputNode
name: String
value: Float 1 ou
inNetwork: Boolean M
! 1
OutputNode
A rOUndL/hk P
| Resistor | | Capacitor | | Inductor | GroundNode 4

Figure 5.9: Metamodel used for exploring a passive electronic filter

We abstract from the design problem by regarding the filter design as a black box with an input,
output, and ground node with some passive electrical components in between that are connected
to each other. The corresponding metamodel is shown in Figure 5.9. A Filter may consist of
multiple components that can be a Resistor, Capacitor, or Inductor. Each Component has a name,
a value (resistance in Ohm, capacitance in Farad, and inductance in Henry) and a boolean attribute
to indicate whether the component is part of the network or whether it can be used in the search
problem. Note that the Component class cannot be instantiated as it is an abstract class, denoted
by the italic font. A filter has exactly one InputNode, one OutputNode and one GroundNode.
Only one Component can be connected to an InputPort and an OutputPort, but more than one
Component can be connected to the ground.

Various configurations of those components may lead to the construction of different types of
filters, for example, a Low Pass Filter (LPF) that passes low-frequency signals and (ideally)
attenuates signals with frequencies higher than the cut-off frequency (w.). On the contrary, a High
Pass Filter (HPF) (ideally) attenuates signals with a frequency lower than the cut-off frequency
and passes high-frequency signals. Other types of passive filters include Band Pass Filter, Band
Stop or Notch Filter, and All Pass Filter. A filter’s expected (first order) behavior is specified

110

5.4. THE PATTERN CATALOG APPLIED IN CONTRACT-BASED CO-DESIGN DRIVEN
DESIGN PROCESSES

Gain (dB)

=40}

=50}

~70 i i i i i i
10° 101 102 103 104 10° 108 107
Frequency (Hz)

Figure 5.10: LPF Bode plot

using a gain-magnitude frequency response, also called Bode plot. The Bode plot of a LPF with
a cut-off frequency of 5kHz is shown in Figure 5.10. At this cut-off frequency, the filter will
attenuate the signal by half of its original power. This corresponds to an attenuation of 3 dB, that
increases by 20 dB each decade. In a CBCD driven design process, these specifications would
be part of the guarantees of a contract. Note, however, that the current implementation does not
allow to specify these more complex (behavioral) constructs.

The goal of the exploration is to find a filter where the Bode plot has a minimal deviation compared
to the expected one shown in Figure 5.10. Therefore, we see the deviation as a difference value
between the expected and measured gain for each frequency point. In that respect, the goal-
function or fitness-function can be formulated by Equation 5.3. A larger deviation will result in
a higher score, while a solution containing fewer components will result in a lower score. This
latter constraint may be needed to reduce the complexity of the implementation and, as such, its
WCET specified in the negotiated contract.

Score = (Deviation * 20) + Number of components (5.3)
As with the allocation problem, the design space is constrained by the negotiated contract in
which the possible values of each component are specified. Table 5.2 lists the constraints we

have imposed while evaluating each pattern of the introduced catalog of Section 5.3. Again, each

111

CHAPTER 5. DESIGN-SPACE EXPLORATION SUPPORTING CONTRACT-BASED
CO-DESIGN DRIVEN PROCESSES

‘ Resistor (R) Capacitor (C) Inductor (L)

Value 1 1002 3 uF 30mH
Value 2 100 Q2 33 uF 320mH
Value 3 1000 ©2 330 uF 3500 mH

Table 5.2: Predefined component values when exploring using the Model Generation Pattern

Time (s) Score
Tool Exp. # Comp. Avg. Std. Deyv. Avg. Std. Dev # Candidates
1 2 168.27 8.55 -36.99 0 402
Alloy
2 3 334491 157.86 -36.99 0 5352
1 18 . . -67. . 4
DEAP 26.43 0.62 67.82 53.42 00 (avg)
2 36 27.15 0.78 -174.28 116.8 400 (avg)
1 18 66.7 52.13 -36.99 0 430 (avg)
Rule-Based
2 36 105.89 70.6 -41.72 4.11 675 (avg)

Table 5.3: Results Electronic Filter

experiment is executed three times on the same laptop used to explore the design space for the
allocation problem. Table 5.3 show the results for exploring a LPF satisfying the Bode plot of
Figure 5.10. We recorded the maximum number of predefined components present in the network
(# Comp.), the average (Avg.) exploration time and score with their corresponding standard
deviation (Std. Dev.) and the total number of generated candidate solutions (# Candidates).

Again, the results clearly demonstrates that the Model Adaptation Pattern finds an optimal solution
in a considerable shorter time span. However, when choosing this pattern one will notice we are
dealing with a design problem that is difficult to transform to a generic search model such as a list
or tree. The most appropriate pattern to implement these types of design problems is by using the
Model Transformation Pattern. It provides average simulations results for exploring the design
space while designers are able to encode their domain knowledge (to guide the search) by creating
a set of model transformation rules at their level of abstraction. These model transformations
rules apply mutation operations on the initial model. Example of such search rules are: adding or
removing serial or parallel connections, adding or removing components, and so forth.

112

5.5. CONCLUSION

5.5 Conclusion

Resulting from our own experiences with DSE and a literature survey, we presented an initial
pattern catalog that categorizes different approaches of Model-Driven Design-Space Exploration.
Inspired by software design patterns, we described each pattern using a well-defined structure in
which its intent, structure, consequences, known uses, and application are described. With respect
to the structure, we made use of an FTG+PM to graphically support the involved formalisms and
their relations using model transformations.

The introduced pattern catalog should not be considered complete. With the support of the
community, it is our ambition to extend this towards a more complete pattern catalog, similar
to the widely available software design patterns used in software engineering. Techniques that
potentially could become a pattern in a new version of the catalog are:

Multiple Objective Multi-objective optimization deals with the decision making process in the
presence of tradeoffs between multiple goal functions. Certain DSE and search algorithms
can deal with multi-objective functions by construction. However, some techniques do not
have this features. Here we give two approaches of dealing with the problem.

— Scalarize the Objective-Function: When scalarizing a multi-objective optimization
problem, the problem is reformulated as a single-objective function. The goal
function model becomes a combination of individual objective functions. A model
defines how the different individual goal function models are combined, for example,
in a linear fashion or other more complex functions.

— Create Variants: In certain cases the designer would like to compare the different
tradeoffs using a Pareto curve. We use the scalarizing pattern to create multiple
variants of the combined objective function. Intermediate results of the exploration
are used to select an appropriate recombination that could potentially add a new
Pareto solution.

Metamodel reduction By using sensitivity analysis of the involved modeling elements and
parameters, the metamodel can be reduced with the elements and parameters that have a

small influence on the result of the goal function. An example of this technique can be
found in [EONT12].

We elaborated on how the pattern catalog can support engineers while defining their detailed
designs in CBCD driven design processes. Embedded engineers are often charged with a bin
packing design problem, that is, they need to find an optimal mapping between the control
architecture and the embedded architecture for which they should optimize processor load and
cost. In common design processes, one would chain different exploration techniques to cover
the design space. As the CBCD driven design processes impose the negotiation of a (set of)
contract(s), the design space is limited so that exploration techniques belonging to the Model

113

CHAPTER 5. DESIGN-SPACE EXPLORATION SUPPORTING CONTRACT-BASED
CO-DESIGN DRIVEN PROCESSES

Adaptation Pattern are highly suitable to find an optimal solution in a reasonable amount of
time. Control engineers search for the optimal implementation of a component with respect to
the expected behavior of a control component and its complexity (expressed in terms of WCET)
defined in the negotiated (set of) contract(s). We demonstrated how contracts may constrain the
design space for these design problems by means of an electronic filtering circuit. As encoding
domain knowledge is of great importance in exploring different control strategies, we concluded
that exploration techniques belonging to the Model Transformation Pattern are highly suitable to
support control engineers in their design decisions.

Finally, we return to the research question formulated in Section 1.3:
RQS Can contracts be used as an input for design and/or deployment optimization methods?

A CBCD driven design process imposes a negotiation phase in which contracts are defined. As
they specify (ranges of) values for different design parameters, contracts limit the design phase
and, as such the exploration space. As contracts are associated with architectural components,
genetic algorithms can be used to explore an optimal mapping of the control on the embedded
architecture. In that respect, contracts provide an initial population for the Model Adaptation
Fattern, thereby eliminating the need for chaining the Model Generation Pattern. When
exploring implementation of a control algorithm exploration techniques belonging to the
Model Transformation Pattern are more suitable. They allow the control engineers (and their
respective viewpoints) to encode their domain knowledge and guide the search so that feasible
solutions are explored.

RQ6 How can we structurally organize the plethora of DSE methods to assist engineers in
the evaluation of the most appropriate method for a given optimization problem?

We have introduced an initial pattern catalog that categorizes different DSE techniques used
in a MDE context. Inspired by software design patterns, we described each pattern using a
well-defined structure in which its intent, structure, consequences, known uses, and application
are described.

114

CHAPTER

The Integrated Framework Applied in a
Contract-Based Co-Design Driven

Development Process

Abstract. Contract-based co-design as a method enables engineers to consistently design a
cyber-physical system in a concurrent setting. To that end, an upper ontology models the implicit
engineering knowledge of each domain so that syntactically and semantically different design
parameters can be related to each other. Round-trip engineering methods and design-space
exploration techniques can assist engineers while enacting these contract-based co-design driven
design processes. The round-trip engineering method annotates domain-specific models with
design parameters of other domains that may be of influence. Given the formulated constraints of
the design space in a contract, design-space exploration techniques can be efficiently employed
to semi-automatically search for an optimal design choice. These novel methods and techniques
can only be successfully applied by an engineering team if they are supported by an integrated
framework that incorporates these methods. The integrated contract-based co-design framework
is proposed to fulfill this requirement. Using the development of a hybrid hydraulic vehicle
we demonstrate how the integrated contract-based co-design framework supports engineers
throughout their contract-based co-design driven design processes.

CHAPTER 6. THE INTEGRATED FRAMEWORK APPLIED IN A CONTRACT-BASED
CO-DESIGN DRIVEN DEVELOPMENT PROCESS

6.1 Introduction

In the previous chapters we discussed a set of methods and techniques to enable consistent
concurrent design of CPSs and demonstrated their applicability using an academic case study.
Throughout the discussion, we also presented the integrated CBCD framework that incorporates
both the CBCD and RTE method, and a DSE technique for optimal deployment given a set of
negotiated contracts.

This chapter intents to detail a holistic view on the concurrent design of CPSs using the overall
integrated CBCD framework, shown in Figure 5.7. In particular, we elaborate on the design
process of the HHV, introduced in Section 1.5.2, going from architectural design down to detailed
design, and discuss where in this process the integrated CBCD framework is able to support
engineers in their decisions. For this, a team covering four disciplines in the design of a CPS is
considered: systems engineering, mechanical engineering, control engineering, and embedded
engineering. The latter discipline covers both the software and hardware design of the system.
Although the mechanical engineer is necessary to model the physical system, we continue to focus
on the interactions between control and embedded engineering. The team is responsible for the
concurrent design of the HHV following industry proven design guidelines and using industry
accepted tools. In this respect, the control engineer uses a MDE approach to design the control
algorithm, while the embedded engineer relies on schedulability analysis techniques to configure
a RTOS so that real-time behavior can be guaranteed.

6.2 Related Work

In the current literature, some frameworks have already been proposed that enable the concurrent
design of CPSs. Being a general-purpose modeling language based on UML [RIB04], Systems
Modeling Language (SysML) [FMS11] provides such a framework by enabling engineers to
explicitly model and relate the structure, composition, interfacing, and behavior of a system. As
such, a common model can be designed, acting as a single point of truth, to ensure consistency
among viewpoints. With respect to real-time embedded systems, more specific UML profiles
such as MARTE [Obj11] and Papyrus [Thec] exist to support engineers in designing complex
systems.

In [MZL'13], a more holistic framework is proposed for the concurrent design of Heating,
Ventilation and Air Conditioning (HVAC) systems. In particular, Maasoumy et al. propose a
framework for the concurrent design of the control algorithm with that part of the hardware
platform that highly affects the sensing accuracy. Therefore, a set of interface variables are
determined and is used by a DSE algorithm to define the optimal design for both the control
algorithm and hardware platform. Based on the FOCUS theory [BSO1], Holzl et al. [HST10,

116

6.3. DESIGNING A HYBRID HYDRAULIC VEHICLE USING A CBCD DRIVEN DESIGN
PROCESS

HF11] and Aravantinos et al. [AVTT15] introduce the AutoFOCUS 3 framework that aims to
support engineers in the complete design process from requirements to code generation using a
MBDE approach. Using traces between the models of the various viewpoints, different analysis can
be executed leading to a consistent integrated system. In particular, they allow assume/guarantee
reasoning at the component level for which it is verified whether the guarantees of one component
fulfill the assumptions of the connected components. Note that the CBCD extends this reasoning
throughout the entire design process, going from contract negotiation to verification while detailing
the design. Similar to the AutoFOCUS 3 framework, Ringert et al. present in [RRW12, RRW13]
the MontiArcAutomaton framework. Focusing on robotic applications, it extends the AutoFOCUS
3 framework so that models of both the architecture and the behavior can be specified. Using the
implemented transformations, engineers are able to analyze their designed system using formal
methods and to generate (deployment) code.

6.3 Designing a Hybrid Hydraulic Vehicle Using a CBCD
Driven Design Process

As already mentioned in Section 2.2.1, engineers follow a well-defined process when designing
complex systems such as a CPS. In Section 3.6.2 a rather generic enactment of a CBCD driven
design process is shown in Figure 3.14. The design process of the HHV extends the generic
enactment and is shown in Figure 6.1. For the sake of simplicity, we limit ourselves to detailing the
process model. In what follows, we discuss in more detail the followed process and elaborate on
where in the process our methods and techniques, and the supporting integrated CBCD framework,
is able to support the engineers.

6.3.1 Preliminary Design

Functional Specifications

Given the set of requirements listed in Section 1.5.2, the design team considers the system to be
designed as a black box and derives the technical requirements called specifications. For the HHV
case study, this includes () determining the conditions for which a driving mode is operational,
(2) exploring the component dimensioning of the drivetrain configuration, (i¢7) estimating the
prerequisites of the embedded hardware and (¢v) determining the environmental conditions under
which the system should operate. The latter is of importance to allow for signal conditioning;
that is, determining the inputs and outputs of the system, their data values, type, and precision
(i.e., resolution). As a running example, we highlight the translation of one requirement to
a set of specifications. System requirement 1.(d), for example, is refined by each domain as
follows:

117

CHAPTER 6. THE INTEGRATED FRAMEWORK APPLIED IN A CONTRACT-BASED
CO-DESIGN DRIVEN DEVELOPMENT PROCESS

Syzem, M
TextualRequirements

(s = =

‘ Blant ‘ ‘ Control ‘ ‘ Platiorm ‘ ‘ ‘System

‘SystemContract
ContractDSL

ﬁ Model Plant

Plant PlaniDSL Contract
Negotiation
PlatiormContract
ContraciDSL
Plant
Reduction [v
E

Control ControlDSL

MiL TraceDSL
g VerifyRefine/Update
Contract(s)
Refinement L Verification
EDDIWO\EEH

False

H verify/Refine/Update
Contract(s)

Verify/Refine/Update
Contract(s)

Execul
HiLSimulation

Verify
SystemContract

False /{5

e
Realize
system ||

System .CPS

Boolean

False

Data Flow

Figure 6.1: Process model for designing a Hybrid Hydraulic Vehicle using a CBCD driven design
process

118

6.3. DESIGNING A HYBRID HYDRAULIC VEHICLE USING A CBCD DRIVEN DESIGN
PROCESS

SystemContractHHV

'7 L ‘ t

stADelay: 0..200ms

< processorLoadLPP: ..69%
< processorLoadHPP: ..69%

&

Figure 6.2: System contract for the HHV case study

— Mechanical domain—the braking torque on both axles should be at least 3500 Nm.
— Embedded domain—braking signal must be processed within 20 ms.

— Control domain—the controller must switch from Drive to Brake (in Forward operation)
when brake is engaged and the actual speed is larger than 0 km/h.

The system to be designed may also be part of a larger system. In that respect, a systems engineer
ensures that possible imposed design constraints are met. The integrated CBCD framework
supports the systems engineer by providing the ability to formalize the imposed design constraints
(i.e., specifications) by means of a system contract. Figure 6.2 depicts such a contract for the
HHYV case study, in which a systems engineer imposes a set of design constraints (in terms of
design parameters) for the control and embedded domain. Orange contract entries denote contract
assumptions, while red ones denote contract guarantees. The latter ones are derived from the
system requirements, that is, the ones that are imposed by, for example, an Original Equipment
Manufacturer (OEM). The system contract’s assumptions are estimates made by the systems
engineer, for each of the domains involved, to fulfill the guarantees. Each entry is characterized
by a (range of) possible value(s). Note that the activity of defining a contract conforms to the blue
user activity block in Figure 5.7.

Architectural Design

Once the specifications for the domain (and their respective viewpoints) are derived, each view-
point defines a high-level architecture describing at the structure of their implementation in terms

119

CHAPTER 6. THE INTEGRATED FRAMEWORK APPLIED IN A CONTRACT-BASED
CO-DESIGN DRIVEN DEVELOPMENT PROCESS

High-Level Control()

——
Low-Level Control) Plant(HHV)

Dashboard)

LA A 4

>
>

Figure 6.3: Architecture of the control viewpoint for the HHV case study

of elements/components, and how they are related to each other (within the same viewpoint). In
order to be able to define such a framework, we presume engineers are able to reason about a
possible (set of) implementations given the set of requirements and specifications.

With respect to the control viewpoint, for example, control engineers are able to determine which
drivetrain elements (Figure 1.3) should be controlled in which driving mode (Figure 1.4). Based
on this reasoning, control engineers decide upon a high-level model architecture enabling them
to reason about: (%) the high-level control strategy consisting of several (reusable) components
implementing a certain functionality and (:7) the interfaces between those functional components.
The integrated CBCD framework supports engineers in this process by providing a library enabling
them to graphically construct their viewpoint-specific architectures within the framework. As
an example, Figure 6.3 depicts the architecture defined by the control viewpoint for the HHV.
However, often engineers opt to construct the high-level architecture using viewpoint-specific
tools they are familiar with (e.g., Simulink® or SystemDesk®). As such, model-to-model
transformations enable the engineers to import these architectures in the framework. Note that
defining functional components as part of an architecture is characteristic for MBSE, that aims
the reuse of models.

For the embedded domain, the integrated CBCD framework provides a library to construct the
architecture of the platform viewpoint, combining both the hardware and software viewpoint of the
system. In that respect, several ECUs can be connected to each other using a CAN communication
medium. Each ECU consists of one or more processing units running a RTOS. In the example
of the HHV, a distributed hardware architecture is decided connecting two single-core ECUSs,
a Low Performant Processor and a High Performant Processor, using a CAN communication
channel.

6.3.2 Contract Negotiation

The viewpoint-specific architectures and specifications combined with the system contract serve
as an input of the contract negotiation phase. In this design phase, that is obligatory to ensure
consistent concurrent design, the control and embedded engineers reason on how their respective
(high-level) architectures can possibly be mapped onto each other and how this mapping restricts

120

6.3. DESIGNING A HYBRID HYDRAULIC VEHICLE USING A CBCD DRIVEN DESIGN

PROCESS
Driverintention High-Level Control
+ +
+ <+
+ <+
+ <+
+ <+
< stADelay: 100us..150us 4 stADelay: 1.6ms..1.8ms
< processorLoadLPP: ..30% <+ processorLoadHPP: ..40%
< Priority: .3 < Priority: ..2

Figure 6.4: Negotiated DriverIntention and High-Level Control mapping contract for the HHV
case study

the viewpoint-specific design parameters. Throughout this process it is recommended to consider
the functional components of the control architecture as SWCs for the software viewpoint. Each
SWC can then be mapped onto a processing unit of the hardware architecture. For each of
these mappings, the integrated CBCD framework enables the engineers to formalize the imposed
parameter restrictions using a (set of) mapping contract(s).

With respect to the HHV case study, four so called mapping contracts are negotiated corresponding
to the number of functional components defined in the control architecture: Driverlntention,
Dashboard, High-Level Control and Low-Level Control. As an example, Figure 6.4 depicts the
negotiated DriverIntention and High-Level Control mapping contract. The integrated CBCD
framework assists engineers in the negotiation phase by evaluating the imposed restrictions
on consistency and provides textual recommendations to resolve detected inconsistencies. As
discussed in Section 3.6, the domain knowledge stored in the ontology is therefore parsed such
that design parameters can be related to each other. If a (chain of) L3 relationship(s) exists, the
symbolic execution engine substitutes the parameters with the negotiated values. The results
of these calculations are used to evaluate the consistency of the negotiated mapping contract(s).
For the DriverIntention contract in Figure 6.4, for example, the consistency analysis module,
shown in Figure 5.7, detects two inconsistencies. One relates to a mismatching maximum
values for the wert and stADelay parameter. The second inconsistency refers to the maximum
value of the samplingFrequency parameter. Because of the L3 relation processorLoad =
wert x sampling Frequency that exists in the ontology, it is determined by our CBCD framework
that the samplingFrequency parameter is defined too low considering the maximum defined
processorLoad and the wcrt.

Similar to the A/G reasoning in AutoFOCUS 3 [HST10, HF11, AVT™15], the integrated CBCD
framework allows engineers to complement the mapping with interface contracts (that are also
defined during the negotiation phase). These contracts restrict design parameters related to
the interfaces between components: signal resolution, minimum and maximum signal value,
etc.

121

CHAPTER 6. THE INTEGRATED FRAMEWORK APPLIED IN A CONTRACT-BASED
CO-DESIGN DRIVEN DEVELOPMENT PROCESS

Note that the negotiated contracts are strict refinements of the earlier defined system contract.
The integrated CBCD framework is able to verify whether the set of interface and mapping
contracts refine the system contract. Again, textual notifications are provided to the engineers if
inconsistencies are detected. It is up to the engineers, however, to resolve or even tolerate these
inconsistencies. In other words, the framework only provides recommendations to resolve the
detected inconsistencies but does not restrict further system development.

6.3.3 Concurrent Detailed Design

Once the contracts are negotiated, low-level details are implemented concurrently to each other
using domain-specific tools and methods. If and only if the detailed design (i.e., the design
parameters) satisfy the negotiated contracts, consistency across domains can be guaranteed. Each
parallel design activity must be considered as a further refinement of the viewpoint-specific
architectures. For each of the domains involved in the design of the HHV, we detail the design
activity and elaborate on how the integrated CBCD framework assists engineers in preserving
consistency. Note that the described concurrent design process is depicted in Figure 6.1.

Mechanical Design

Although we will not focus on the mechanical design, we dedicate a brief paragraph to the
design of the plant model as it is used for various validation purposes, that is, MiL, SiL, and HiLL
simulations.

Given the viewpoint-specific architectural description, the mechanical engineer defines the
necessary components and their dimensioning using mechanical modeling tools such as LMS
AMESim™. Plant modeling enables the mechanical engineer to gain insights in the mechanical
behavior of the system prior to the construction of the real system. Furthermore, the plant model
is used by the other domains to verify the behavior of the control algorithm using MiL simulations
and to execute HiL. simulations to verify the integration of the control and embedded domain. The
plant model for the HHV is an extension of the validated plant model of the conventional Citroén
C3 plant model. As such, the hydraulic components of Figure 1.3 are added to the conventional
plant model.

Control Design

As already stated in Section 3.7, the integrated CBCD framework does not explicitly provide
viewpoint-specific contracts to the engineers. Instead, the framework exports the viewpoint-
specific architectures to domain-specific tools (e.g., Simulink®) while incorporating relevant
design parameters negotiated in the contracts. The framework therefore relies on the RTE method

122

6.3. DESIGNING A HYBRID HYDRAULIC VEHICLE USING A CBCD DRIVEN DESIGN

Driver_lntention_Layer High_Leve| L ayer
B
L o inpus
=] m m
— Driver_Inputs Rate Transition
m m
Rate Transfions
O jmmj
ion|—» 1 |-»| Driver_intention > —{ =
m m m I
WCET_DIL Sches DIL g oo WCET_HLL Sched HLL Rate Tasition3.

jum}
Rate Transtion? =
[[m
Rate Transfion2
DRI_INT HILL

Figure 6.5: Exported control viewpoint for the HHV case study

discussed in Chapter 4. To enable this, however, the control engineer first needs to associate a
mapping and interface contract to one or more functional components and interfaces, respectively,
of the control architecture defined in the framework. As an example, Figure 6.5 shows the
exported Simulink® representation for the HHV case study, that incorporates the negotiated
timing information of Figure 6.4. Note that the timing information is expressed in ps. The green
and orange delay blocks represent the WCET and the scheduling time, respectively. Furthermore,
the RTE method updates the viewpoint-specific parameters of the control architecture and, related
to that, the implementation in Simulink® when (in parallel) the platform is detailed. As such, the
views remain consistent during the detailed design phase.

Given this high-level model framework, the control engineer models the behavior of the control
algorithm. For this, they may rely on a library containing a number of functional units, designed
within the scope of other projects, that can be reused in the current project context. Functional
units designed or modified within the scope of the running project are added to the library for
future reuse. Note that the context in which these functional units are designed is preferably
added to the library as well. This context related information can be used by design-space
exploration techniques to (semi-)automatically search for an optimal implementation. Each
selected or designed functional unit is tested under the environmental conditions derived from the
requirements. Such a simulation is called a unit test.

Once the control algorithm is modeled, a synchronization between the mechanical and control
engineer takes place as the behavior of the control algorithm can only be tested by executing a
MiL simulation. Hence the need for a plant model representing the mechanical behavior. As the
relevant information of the embedded platform is incorporated in the MiL simulation model (see
Figure 6.5), the control viewpoint is able to evaluate the behavior of the control model as if it were
deployed. Table 6.1 gives an overview of the MiL simulation results for both a naive behavioral
simulation and a simulation incorporating platform information. The simulation evaluates whether

123

CHAPTER 6. THE INTEGRATED FRAMEWORK APPLIED IN A CONTRACT-BASED
CO-DESIGN DRIVEN DEVELOPMENT PROCESS

‘ Naive Model Annotated Model
Brake Activation Time [ms] 650 1980
Brake Distance [m] 53.3 278

Table 6.1: MiL simulation result for the HHV case study

the control algorithm meets the specifications and requirements related to the maximum brake
distance when a brake command is issued at a speed of 100 km/h. When evaluating using the naive
implementation the required maximum brake distance of 54 m is being met. When incorporating
the timing information, however, the brake distance increases to 278 m so that the requirement is
violated. Note that the brake activation time also incorporates the delay due to mechanical factors
(e.g., inertia). In the naive case, this amounts to 650 ms.

Typically, control engineers use continuous-time, floating-point, models while designing their
control algorithms. Depending on the chosen hardware platform, however, the processor may not
be able to deal with floating-point numbers. As such, control engineers need to transform the
floating-point numbers to a fixed-point representation in their control model.

Whether or not the hardware platform supports floating numbers, the algorithm is executed at a
certain clock rate once deployed. For this reason, the continuous-time control model is transformed
to a discrete-time (also called fixed-step) control model by selecting an appropriate (fixed-step)
solver and step size. After every conversion, the control engineer executes a Back-to-Back (B2B)
MiL simulation to verify the transformation/conversion such that the distance (i.e., the error)
between the continuous-time floating-point representation and the discrete-time (fixed-point)
representation is within certain margins.

As shown in Figure 6.1, the integrated CBCD framework also supports control engineers through-
out their design process by verifying whether the control model satisfies the negotiated mapping
contracts. For example, after discretizing the control model the framework verifies whether the
chosen step size corresponds to the samplingFrequency defined in the mapping contract. Control
engineers may also decide to update the negotiated mapping contracts. After all, negotiated design
parameters may be misjudged, which may become clear throughout the design process. When
updating design parameters is considered as a strict refinement of the negotiated contract, then the
design parameters of the other viewpoints can be automatically updated. If not, the mapping con-
tracts need to be renegotiated. Note that automatically updating and refining a mapping contract
from the control viewpoint perspective is currently not supported in the framework.

Platform Design

For the embedded domain, the integrated CBCD framework enables the hardware and software
viewpoint to further detail the platform architecture defined in the preliminary design phase. With

124

6.3. DESIGNING A HYBRID HYDRAULIC VEHICLE USING A CBCD DRIVEN DESIGN
PROCESS

respect to configuring the earlier defined ECUs, the software viewpoint is able to allocate a number
of tasks to the RTOS for which a set of design parameters can be defined by the engineer; that is,
period, deadline, priority, and so forth. Each task executes one or more runnables holding exactly
one SWC (i.e., a functional component of the control architecture).

Mapping a SWC onto an ECU and defining the holds relation between a runnable and a SWC, as
shown in Figure 6.6, can either be done manually or automatically using the DSE capabilities of
the integrated CBCD framework. In the former case, it is required that the hardware platform is
configured as described earlier and, more precisely, that the design parameters previously listed
are defined. As such, a schedulability analysis can be executed by the framework that in turn
annotates both control and platform architecture with the results of the analysis. For example,
after analysis each task is annotated with the WCRT information. In case an automatic allocation
is requested by the engineers, it is sufficient to assign a (set of) negotiated mapping contract(s)
to the tasks defined in the platform architecture. Using the Tindell equations [TC94], an optimal
mapping is suggested given the worst case conditions negotiated in the mapping contracts.

As with the control design workflow, the integrated CBCD framework supports embedded engi-
neers throughout their design process by verifying whether the platform configuration satisfies
the negotiated mapping contracts. Note that to enable these consistency analyses it is required
to relate platform components, such as tasks, to a (set of) negotiated mapping contract(s). For
example, the consistency analysis evaluates if the WCRT determined by the schedulability analysis
is within the range specified in the negotiated mapping contract. Using the RTE capabilities, the
framework is able to update the viewpoint-specific parameters of the embedded architecture when
(concurrently) the control architecture (and its implementation) is further detailed. As such, the
viewpoints remain consistent during the concurrent design phase.

The design process of the embedded domain continues by generating code from the discretized,
fixed-point, control algorithm. Therefore, the software engineers typically rely on industry
accepted tools such as Simulink® Coder™. Using PiLL and SiL simulations, the generated code is
compared against the trace obtained from the MiL simulation (using the continuous-time model)

Plant_Measurements B e rntention(HHY)

I Driver_Intention
Driver_Inputs e

hold
executes ol
Taskl Runnablel
Dashboard(HHV)
0s5C
Task2 executes Runnable2 holds

Figure 6.6: Software configuration of the platform for the HHV case study

0S_ProcessorEculLP.1

DRLINP B

125

CHAPTER 6. THE INTEGRATED FRAMEWORK APPLIED IN A CONTRACT-BASED
CO-DESIGN DRIVEN DEVELOPMENT PROCESS

to examine errors introduced by the compiler or linker. Although not supported by the integrated
CBCD framework at the time of writing, the trace obtained from the MiL and SiL can be evaluated
for consistency with (behavioral) design parameters defined in the mapping contracts.

Integration

If the PiL. and SiL simulation traces satisfies the specifications (i.e., the contracts), the generated
code scheduled by a RTOS is deployed on the platform by the embedded engineers. It goes
without saying that they rely on the earlier defined and analyzed platform architecture. A final
HiL simulation enables one to verify whether the system specifications, and the related system
contract, are satisfied. If the suggested CBCD driven design process is strictly followed such
that the domain-specific implementations satisfy, or refine, the negotiated contracts, system
specifications should be met so that the final system can be realized and validated. However, if the
HiL simulation reveals that the integration has failed, the design process must be repeated starting
with renegotiating the contracts.

6.4 Conclusion

Given the novel methods and techniques presented in Chapter 3 through 5, we demonstrated
how the integrated CBCD framework, combining these methods and techniques, can be used
to support engineers through a design process that incorporates contracts to enable consistent
concurrent design. Although the CBCD method and its supported framework does not impose a
design process to the engineers, we explicitly applied our contributions to the concurrent design
process of hybrid hydraulic vehicle. From this case study, we demonstrated that, at the time of
writing, the integrated CBCD framework supports engineers:

— In defining their viewpoint-specific architectures. Engineers are free to specify these
architectures in the framework or in tool of their choice.

— In defining system, mapping, and interface contracts. Using consistency analysis tech-
niques, that rely on the viewpoint-specific knowledge modeled in the upper ontology, it is
verified whether (¢) the design parameters defined in a single contract are consistent and
(¢7) mapping and interface contracts are correct refinements of the system contract.

— In detailing their architectures. In particular the embedded architecture for which DSE
techniques are provided to determine an optimal mapping and schedulability analysis
techniques to verify the feasibility of the mapping.

— In providing a domain-specific view on the system to be developed. In particular, the
control architecture is exported to a Simulink® representation incorporating relevant
platform information at the level of abstraction of the control engineer.

126

6.4. CONCLUSION

— In verifying whether the design satisfies the viewpoint-specific contract. Such a viewpoint-
specific contract is automatically deduced from the negotiated mapping contract, although,
not made explicit to the engineers.

Throughout the enactment of the development process we experienced how the integrated frame-
work accurately indicates the inconsistencies between the different viewpoints, whether delib-
erately introduced or not, both during contract negotiation and detailed design. Moreover, the
framework enabled us to verify whether the mapping contracts correctly refined and implemented
the constraints imposed by the systems engineer (and its related contract). The framework is
also able to deal with derivatives of a particular design parameter (e.g., processorSpeed and pro-
cessorSpeed_LPP) when verifying for consistency. In case the development team uses different
terminology, it is sufficient to extend the instances of the ontology with these synonyms, for
example, clockSpeed as a synonym for processorSpeed. This is particularly interesting from a
business perspective as the underlying consistency relationships (i.e., the upper ontology) do not
require any changes.

However, this case study also revealed a number of shortcomings, in particular for the control
viewpoint. We experienced that the control domain ontology is underspecified so that a limited
number of consistency relations can be verified. Partly because only IL3 relationships are verified,
it is currently not possible to verify the behavioral (simulation) traces of an implementation nor
to execute sensitivity analysis between viewpoints. In that respect, it is also recommended to
extend the expressivity of the contracts with temporal information. Temporal logic seems to be
suitable for these purposes, although, at the cost of user friendliness because of a lower level of
abstraction.

127

CHAPTER 7

Conclusion

CHAPTER 7. CONCLUSION

The design of a Cyber-Physical System (CPS) often requires a multidisciplinary design team to
collaborate, for which each discipline (e.g., control logic, embedded system design, and mechanics)
adopts a different viewpoint on the system under design. As a consequence, requirements,
representing the behavior of the real world system in a certain context, are —often implicitly—
shared among viewpoints due to the overlapping concerns, leading to inconsistent decisions
on shared design parameters. This results in iterative, time consuming design processes where
inconsistencies are resolved, in turn possibly creating new ones.

To avoid inconsistencies between design artifacts (i.e., design parameters) while designing a
system, Contract-Based Design (CBD) has been proposed as a method to detect and avoid
inconsistencies. Therefore, a contract consisting of a set of assumptions and guarantees is
defined between engineers prior to the design phase. The assumptions and guarantees describe
the conditions under which a system promises to operate while satisfying desired properties.
Multi-viewpoint concurrent design processes supported by the CBD theory are characterized
by a common engineering phase in which viewpoint-specific architectures are defined and a
common contract is negotiated. As engineers consider the design from a different viewpoint they
face difficulties in reasoning how design artifacts, and their corresponding design parameters,
originating from different viewpoints are related to each other. As a result, the content of the
common contract may be incomplete or, even worse, inconsistent. In addition to this, deriving
viewpoint-specific contracts, containing information that is only relevant for a particular viewpoint,
is challenging as it requires translation mechanisms from commonly negotiated design parameters
to viewpoint-specific design parameters.

We contributed to contract driven co-design processes by proposing a Contract-Based Co-Design
(CBCD) method that explicitly models the domain knowledge of each viewpoint using properties
in so called domain ontologies. They are combined using general concepts in an upper ontology.
Design parameters are related to one or more ontological properties, that in turn can be related to
each other using Require relationships. This enables ontological reasoning whereby syntactically
and semantically different design parameters are related to each other. As a result, consistency
of negotiated Assume/Guarantee (A/G) contracts can be validated so that consistent concurrent
design is enabled.

To support engineers when dealing with CBCD driven design processes, this work proposed an
integrated CBCD framework in which preliminary design architectures and A/G contracts can be
defined, while interacting with third-party tools that detail the viewpoint-specific implementations.
Given the upper ontology, the framework is able to validate for consistency among negotiated
design parameters specified in a (set of) A/G contract(s). In addition, the framework is able to
verify whether parts of the implementation satisfy the negotiated (contracts).

To assist engineers in their implementation, the integrated CBCD framework is able to derive
viewpoint-specific contracts. They specify what a particular viewpoint should guarantee under a
given set of assumptions. The assumptions of these derived viewpoint-specific contracts are typi-

130

cally design parameters guaranteed by another viewpoint. Although ontological reasoning already
syntactically and semantically transforms design parameters originating from a different view-
point, engineers are often not aware to what extent the assumed design parameters influence the
viewpoint-specific implementations and, as such, the contract parameters to be guaranteed.

In this work, we proposed a Round-Trip Engineering (RTE) method that provides the control
viewpoint a (top-level) control architecture, in a modeling environment such as Simulink®, in
which delay blocks are introduced that represent the assumed timing related design parameters
of the platform viewpoint. As such, the RTE method enables control engineers to evaluate the
behavior of the control algorithm as if it were deployed on the platform, at their level of abstraction
using methods and techniques they are familiar with.

We also discussed how the RTE method can also be used to support control and embedded
engineers in the tradeoff analysis of design parameters in the contract negotiation process. As
negotiated parameters may be overestimated, refinements in one viewpoint can be pushed to the
other viewpoints so that behavioral simulations during design represent the integrated system
at all times. As such, consistency between viewpoints is ensured throughout the entire design
process.

While detailing the design (in a concurrent setting), the need often arises to explore different
design alternatives for a specific problem. For example, embedded engineers are often charged
with a bin packing design problem that requires them to find an optimal mapping between
the control architecture and the embedded architecture while optimizing processor load and
cost. A multitude of Design-Space Exploration (DSE) techniques exist to support engineers in
exploring possible alternatives of a particular design problem. To cover the possibly infinite
design space, we discussed how different exploration techniques may need to be chained in
order to find a (sub-) optimal solution for a particular design problem. However, CBCD driven
design processes impose a negotiation phase in which contracts are defined. As they specify
(ranges of) values for different design parameters, contracts limit the design phase and, as such
the exploration space. As a result, the most suitable exploration technique can be selected to
(semi-)automatically search for an optimal implementation. For the bin packing problem, we
demonstrated how the integrated CBCD framework can be extended such that genetic algorithms
can be used to explore for an optimal mapping between the control and embedded architecture.
Furthermore, we discussed how the framework may assist control engineers in exploring the
optimal implementation of a component with respect to the expected behavior of a control
component and its complexity (expressed in terms of Worst-Case Execution Time) defined in the
negotiated (set of) contract(s).

Nevertheless, due to the numerous exploration techniques available, it is often challenging to
choose the most appropriate (set of) technique(s) for a particular optimization problem. In this
work, we categorized different approaches of Model-Driven Design-Space Exploration techniques
in an initial pattern catalog. Inspired by software design patterns, we described each pattern using

131

CHAPTER 7. CONCLUSION

a well-defined structure in which its intent, structure, consequences, known uses, and application
are described. With respect to the structure, we made use of a Formalism Transformation
Graph and Process Model (FTG+PM) to graphically support the involved formalisms and their
relations using model transformations. The introduced pattern catalog should not be considered
complete. With the support of the community, it is our ambition to extend this towards a more
complete pattern catalog, similar to the widely available software design patterns used in software
engineering.

Finally, we demonstrated how the integrated CBCD framework, incorporating the methods and
techniques presented in this work, can be used throughout the enactment of the development
process of a Hybrid Hydraulic Vehicle (HHV). We experienced: (¢) how the framework accurately
indicated the inconsistencies between the different viewpoints, (¢¢) how the framework enabled
us to verify whether the mapping contracts correctly refined and implemented the constraints
imposed by the systems engineer, (¢i¢) how the framework is able to deal with derivatives of a
particular design parameter, and (¢v) how the (upper) ontology can be tailored for a particular
design team (and its used terminology).

It may be clear that this dissertation has led to a number of contributions that enables engineers
to reasons about consistency prior and during the design of cyber-physical systems. Neverthe-
less, many challenges remain of which the following may significantly contribute to the work
presented.

Traceability

At the time of writing, the CBCD framework provides support to detect inconsistencies between
the prenegotiated mapping contracts and the detailed design or implementation. Therefore, we
explicitly link viewpoint-specific architectures with negotiated contracts in the framework. As
such, a trace is created between the architectures, the contracts, and the (exported) model artifacts.
These tracing capabilities should be further extended such that there is a link between requirements,
functional specifications, architectural design, implementations, and the various verification and
validation steps. It enables one (¢) to verify whether mapping contracts are complete in term of
negotiated design parameters and (i¢) in case validation fails, to trace back to the cause of the
problem. To do so, the requirements and functional specifications need to be translated from
a human language into a language that can be processed by a formal analysis engine. Note
that therefore the contract language also needs to be redefined in order to achieve traceability
throughout the design process.

132

Validity Frames

More and more companies are investing time and money in applying a Model-Based Systems
Engineering (MBSE) approach to deal with the increasing complexity of cyber-physical systems.
One of the basic principles of MBSE is the reuse of models, that are an abstraction of the real
world and are only valid under certain conditions. In literature, experimental/validity frames
are suggested to define these conditions and describe what the model guarantees under these
conditions. Note the link with our CBCD framework where contracts characterize a system using
a set of preconditions and postconditions. Both the content and the formalization of validity
frames are yet unclear to the community. We consider that our contributions can be useful in the
formalization of these validity frames. Moreover, combining validity frames and contracts might
possibly enable engineers to (i) (semi-)automatically define contracts based on a set of selected
models and, vice-versa, (¢7) limit the number of usable models stored in a library when contracts
are defined.

Control-Embedded Co-Simulation

The CBCD framework currently implements the RTE method that changes the behavior of the
control model given the timing information of the deployed model. It enables a control engineer to
evaluate the control performance of an algorithm as if it were deployed on the embedded platform.
The method should be extended such that other relevant embedded details can be incorporated
when evaluating the control algorithm.

A similar co-simulation view should be foreseen for the embedded domain as well, for which the
software and hardware viewpoint are more detailed. As for the control domain, this extension
enables embedded engineers to evaluate the impact of their decisions on the behavior of the
control model. Therefore, a detailed model of the embedded platform should be developed
that triggers the model of the control algorithm. As of today, many tools exist that claim to
model the embedded hardware (processors, caches, communication buses, etc.) and software
(RTOS, AUTOSAR, etc.) at the most appropriate level of abstraction using the most appropriate
formalism [CSCS13, CCS13, MD14, CMDN15, HCA03, CHL103, LMMHY 16, DMDV17].
In most cases, however, these tools cannot be used to co-simulate the model of the control
algorithm and the embedded implementation. Or the tools provide too much/too less detail to the
engineers.

Sensitivity Analysis

Having a detailed model of the embedded platform enables the tool to run sensitivity analyses, able
to detect which control algorithm parameters are sensitive to changes of the embedded platform.
This information can be used to reduce the size of contracts and, related to that, to facilitate

133

CHAPTER 7. CONCLUSION

contract management. The latter refers to the fact that embedded engineers often need to manage
multiple contracts originating from different control engineers (and as such different control
algorithms). It is likely that contracts will be refined or, even worse, need to be renegotiated
as the design process evolves. As the embedded architecture, consisting of multiple controllers
connected to each other via a communication channel, implements multiple control algorithms
(e.g., anti-lock braking, traction control, blind spot detection), embedded engineers need to be
supported in the possible relocation of the control algorithm. Using the sensitivity information,
embedded engineers are provided an overview on how their decisions may affect the behavior of
the control algorithm(s).

Industrial Adoption

The CBCD framework needs to be considered as an academic proof of concept that is used to
validate our research by means of two case studies. As such, its Technology Readiness Level
(TRL) can be qualified at level 3. To enable our methods to be adopted by industry, a tool should
be developed so that our framework becomes (7) scalable, (i7) performant, (i:¢) extendable, and
(2v) customizable. (z) and (4%) relates to the handling of industrial size models and the management
of many contracts, while (zi7) and (¢v) refer to the possible research directions described in this
section.

Furthermore, empirical research should reveal whether the upper ontology is mature enough for
adoption by industry. In that respect, it is very likely that the ontology of the control domain
needs to be revisited. In order to support all the domains involved in the design of CPSs with
the CBCD method, the upper ontology also needs to be further extended with those domain
ontologies.

134

[Abb12]

[ADLT12]

[Alal3]

[AUTI]
[AVST14]

[AVTT15]

[BBR06]

[BCF+08]

Bibliography

Sunitha Abburu. A Survey on Ontology Reasoners and Comparison. Interna-
tional Journal of Computer Applications, 57(17):33-39, November 2012.

Moussa Amrani, Jiirgen Dingel, Leen Lambers, Levi Licio, Rick Salay, Gehan
Selim, Eugene Syriani, and Manuel Wimmer. Towards a Model Transformation
Intent Catalog. In Proceedings of the First Workshop on the Analysis of Model
Transformations, AMT 12, pages 3-8, New York, NY, USA, 2012. ACM.

Emhimed Alatrish. Comparison of Some Ontology Editors. Management
Information Systems, 8(2):018-024, 2013.

AUTOSAR. Automotive open system architecture release 4.3.

Hani Abdeen, Déniel Varré, Houari Sahraoui, Andrds Szabolcs Nagy, Csaba
Debreceni, Abel Hegediis, and Akos Horvath. Multi-objective Optimization in
Rule-based Design Space Exploration. In Proceedings of the 29th ACM/IEEE
International Conference on Automated Software Engineering, ASE * 14, pages
289-300, New York, NY, USA, 2014. ACM.

Vincent Aravantinos, Sebastian Voss, Sabine Teufl, Florian Holzl, and Bernhard
Schitz. AutoFOCUS 3: Tooling Concepts for Seamless, Model-based Devel-
opment of Embedded Systems. In 8th International Workshop on Model-based
Architecting of Cyber-physical and Embedded Systems, volume 1508 of CEUR
Workshop Proceedings, pages 19-26, 2015.

R.G. Branco, D. Broomfield, V. Rampon, P.C.R. Garcia, and J.P. Piva. Accidental
asphyxia due to closing of a motor vehicle power window. Emergency Medicine
Journal: EMJ, 23(4), 2006.

Albert Benveniste, Benoit Caillaud, Alberto Ferrari, Leonardo Mangeruca,
Roberto Passerone, and Christos Sofronis. Multiple Viewpoint Contract-Based
Specification and Design. In Formal Methods for Components and Objects,

BIBLIOGRAPHY

[BCM 03]

[BCNT12]

[BCN*15a]

[BCN*15b]

[BDH*12]

[Bec09]

[BFMSVO08]

[Bhall]

[BKV14]

136

volume 5382 of Lecture Notes in Computer Science, pages 200-225. Springer-
Verlag, Berlin, Heidelberg, 2008.

Franz Baader, Diego Calvanese, Deborah L. McGuinness, Daniele Nardi, and
Peter F. Patel-Schneider. The Description Logic Handbook: Theory, Implemen-
tation, and Applications. Cambridge University Press, New York, NY, USA,
2003.

Albert Benveniste, Benoit Caillaud, Dejan Nickovic, Roberto Passerone, Jean-
Baptiste Raclet, Philipp Reinkemeier, Alberto L. Sangiovanni-Vincentelli,
Werner Damm, Tom Henzinger, and Kim G. Larsen. Contracts for Systems
Design. Technical Report RR-8147, INRIA, 2012.

Albert Benveniste, Benoit Caillaud, Dejan Nickovic, Roberto Passerone, Jean-
Baptiste Raclet, Philipp Reinkemeier, Alberto L. Sangiovanni-Vincentelli,
Werner Damm, Tom Henzinger, and Kim G. Larsen. Contracts for Systems
Design : Theory. Technical Report RR-8759, INRIA, 2015.

Albert Benveniste, Benoit Caillaud, Dejan Nickovic, Roberto Passerone, Jean-
Baptiste Raclet, Philipp Reinkemeier, Alberto L. Sangiovanni-Vincentelli,
Werner Damm, Tom Henzinger, and Kim G. Larsen. Contracts for Systems
Design: Methodology and Application cases. Technical Report RR-8760, IN-
RIA, 2015.

Sebastian S. Bauer, Alexandre David, Rolf Hennicker, Kim Guldstrand Larsen,
Axel Legay, Ulrik Nyman, and Andrzej Wasowski. Moving from Specifications
to Contracts in Component-Based Design. In Fundamental Approaches to
Software Engineering, volume 7212 of Lecture Notes in Computer Science,
pages 43-58, Berlin, Heidelberg, 2012. Springer Berlin Heidelberg.

Sean Bechhofer. OWL: Web Ontology Language, pages 2008—2009. Springer
US, Boston, MA, 20009.

Luca Benvenuti, Alberto Ferrari, Emanuele Mazzi, and Alberto L. Sangiovanni-
Vincentelli. Contract-Based Design for Computation and Verification of a Closed-
Loop Hybrid System. In Hybrid Systems: Computation and Control, volume
4981 of Lecture Notes in Computer Science, pages 58—71. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2008.

Ajinkya Y. Bhave. Multi-View Consistency in Architectures for Cyber-Physical
Systems. PhD thesis, Department of Electrical and Computer Engineering,
Carnegie Mellon University, 2011.

Bruno Barroca, Thomas Kiihne, and Hans Vangheluwe. Integrating Language and
Ontology Engineering. In Proceedings of the 8th Workshop on Multi-Paradigm

[BLTT12]

[BP13]

[BSO1]

[Can74]

[CCS13]

[CDLOP02]

[CHO6]

[CHL*03]

[CMDNI15]

[CSCS13]

BIBLIOGRAPHY

Modeling (MPM), volume 1237 of CEUR Workshop Proceedings, pages 77-86,
2014.

David Broman, Edward A. Lee, Stavros Tripakis, and Martin Torngren. View-
points, Formalisms, Languages, and Tools for Cyber-physical Systems. In
Proceedings of the 6th International Workshop on Multi-Paradigm Modeling,
MPM ’12, pages 49-54, New York, NY, USA, 2012. ACM.

Frank R. Burton and Simon Poulding. Complementing Metaheuristic Search
with Higher Abstraction Techniques. In Proceedings of the 1st International
Workshop on Combining Modelling and Search-Based Software Engineering
(CMSBSE), number 4, pages 45-48, Piscataway, NJ, USA, May 2013. IEEE
Press.

Manfred Broy and Ketil Stolen. Specification and Development of Interactive
Systems. MCS. Springer-Verlag New York, 2001.

Georg Cantor. Ueber eine Eigenschaft des Inbegriffs aller reellen algebraischen
Zahlen. Journal fiir die reine und angewandte Mathematik (Crelle’s Journal),
77(258-262), 1874.

Federico Ciccozzi, Antonio Cicchetti, and Mikael Sjodin. Round-trip support for
extra-functional property management in model-driven engineering of embedded
systems. Information and Software Technology, 55(6):1085-1100, June 2013.

Gennaro Costagliola, Andrea De Lucia, Sergio Orefice, and Giuseppe Polese. A
classification framework to support the design of visual languages. Journal of
Visual Languages & Computing, 13(6):573-600, 2002.

Krzysztof Czarnecki and Simon Helsen. Feature-Based Survey of Model Trans-
formation Approaches. IBM Systems Journal, 45(3):621-645, 2006.

Anton Cervin, Dan Henriksson, Bo Lincoln, Johan Eker, and Karl-Erik Arzén.
How does control timing affect performance? Analysis and simulation of timing
using Jitterbug and TrueTime. IEEE Control Systems, 23(3):16-30, 2003.

Fabio Cremona, Matteo Morelli, and Marco Di Natale. TRES: A Modular
Representation of Schedulers, Tasks, and Messages to Control Simulations in
Simulink. In Proceedings of the 30th Annual ACM Symposium on Applied
Computing, SAC ’15, pages 1940-1947, New York, NY, USA, 2015. ACM.

Federico Ciccozzi, Mehrdad Saadatmand, Antonio Cicchetti, and Mikael Sjodin.
An automated round-trip support towards deployment assessment in component-
based embedded systems. In Proceedings of the 16th International ACM Sigsoft
symposium on Component-based software engineering, CBSE "13, pages 179—
188, New York, NY, USA, 2013. ACM.

137

BIBLIOGRAPHY

[dAHO1]

[Dam05]

[DCB*11]

[DCtTdK11]

[DDGV16]

[DDV15]

[Den13]

[Dep09]

[Depl1]

[Dij59]

[DLFPF18]

138

Luca de Alfaro and Thomas A. Henzinger. Interface Automata. SIGSOFT Softw.
Eng. Notes, 26(5):109-120, September 2001.

Werner Damm. Controlling speculative design processes using rich component
models. In Fifth International Conference on Application of Concurrency to
System Design (ACSD’05), pages 118—119, June 2005.

Joachim Denil, Antonio Cicchetti, Matthias Biehl, Paul De Meulenaere, Romina
Eramo, Serge Demeyer, and Hans Vangheluwe. Automatic Deployment Space
Exploration Using Refinement Transformations. Electronic Communications of
the EASST - Recent Advances in Multi-paradigm Modeling, 50, 2011.

Kathrin Dentler, Ronald Cornet, Annette ten Teije, and Nicolette de Keizer.
Comparison of reasoners for large ontologies in the OWL 2 EL profile. Semantic
Web, 2(2):71-87, 2011.

Istvan David, Joachim Denil, Klaas Gadeye, and Hans Vangheluwe. Engineering
Process Transformation to Manage (In)consistency. In Proceedings of the st
International Workshop on Collaborative Modelling in MDE (COMMIitMDE),
volume 1717 of CEUR Workshop Proceedings, pages 7-16, 2016.

Istvan Dévid, Joachim Denil, and Hans Vangheluwe. Towards Inconsistency
Management by Process-Oriented Dependency Modeling. In Joint Proceedings
of the 3rd International Workshop on the Globalization Of Modeling Languages
(GEMOC) and the 9th International Workshop on Multi-Paradigm Modeling
(MPM), volume 1511, pages 32-41. CEUR Workshop Proceedings, 2015.

Joachim Denil. Design, Verification and Deployment of Software Intensive
Systems - A Multi-Paradigm Modelling Approach. PhD thesis, University of
Antwerp, 2013.

Department of Transportation (DOT). Proposed Rule: Power-Operated Window,
Partition, and Roof Panel Systems. In Federal Motor Vehicle Safety Standards,
number 74 FR 45143. National Highway Traffic Safety Administration (NHTSA),
2009.

Department of Transportation (DOT). Power-Operated Window, Partition, and
Roof Panel Systems. In Code of Federal Regulations, number 49 CFR 571.118.
National Highway Traffic Safety Administration (NHTSA), 2011.

Edsger Wybe Dijkstra. A note on two problems in connexion with graphs.
Numerische Mathematik, 1(1):269-271, Dec 1959.

Loris Dal Lago, Orlando Ferrante, Roberto Passerone, and Alberto Ferrari.
Dependability Assessment of SOA-based CPS with Contracts and Model-Based

[DLTT13]

[DMDV17]

[DMV14]

[DMV*17]

[DPAMO2]

[DVO05]

[EkTO1]

[ELMT*12]

[EONT12]

BIBLIOGRAPHY

Fault Injection. IEEE Transactions on Industrial Informatics, 14(1):360-369,
2018.

Patricia Derler, Edward A. Lee, Stavros Tripakis, and Martin Térngren. Cyber-
Physical System Design Contracts. In Proceedings of the ACM/IEEE 4th Inter-
national Conference on Cyber-Physical Systems, ICCPS ’13, pages 109-118,
New York, NY, USA, 2013. ACM.

Joachim Denil, Paul De Meulenaere, Serge Demeyer, and Hans Vangheluwe.
DEVS for AUTOSAR-based system deployment modeling and simulation. SIM-
ULATION, 93(6):489-513, 2017.

Joachim Denil, Pieter J. Mosterman, and Hans Vangheluwe. Rule-Based Model
Transformation For, and In Simulink. In Proceedings of the Symposium on Theory
of Modeling & Simulation - DEVS Integrative, number 4 in DEVS ’14, pages
1-8, San Diego, CA, USA, 2014. Society for Computer Simulation International.

Istvan David, Bart Meyers, Ken Vanherpen, Yentl Van Tendeloo, Kristof Berx,
and Hans Vangheluwe. Modeling and Enactment Support For Early Detection
of Inconsistencies in Engineering Processes. In Proceedings of MODELS 2017
Satellite Event: Workshops (ModComp, ME, EXE, COMMitMDE, MRT, MULTI,
GEMOC, MoDeVVa, MDETools, FlexMDE, MDEbug), Posters, Doctoral Sympo-
sium, Educator Symposium, ACM Student Research Competition, and Tools and
Demonstrations, volume 2019 of CEUR Workshop Proceedings, pages 145-154,
2017.

Kalyanmoy Deb, Armrit Pratap, Sameer Agarwal, and T. Meyarivan. A fast
and elitist multiobjective genetic algorithm: NSGA-II. /IEEE Transactions on
Evolutionary Computation, 6(2):182-197, Apr 2002.

Werner Damm and Angelika Votintseva. Boosting Re-use of Embedded Auto-
motive Applications Through Rich Components. In Proceedings of Foundations
of Interface Technologies, FIT’05, pages 1-18, 2005.

Jad El-khoury and Martin Térngren. Towards a toolset for architectural design
of distributed real-time control systems. In Proceedings 22nd IEEE Real-Time
Systems Symposium (RTSS 2001) (Cat. No.OIPR1420), pages 267-276, 2001.

John C. Eidson, Edward A. Lee, Slobodan Matic, Sanjit A Seshia, and Jia Zou.
Distributed Real-Time Software for Cyber-Physical Systems. Proceedings of the
IEEE, 100(1):45-59, January 2012.

Bryan Eisenhower, Zheng O’Neill, Satish Narayanan, Vladimir a. Fonoberov,
and Igor Mezi¢. A methodology for meta-model based optimization in building
energy models. Energy and Buildings, 47:292-301, April 2012.

139

BIBLIOGRAPHY

[Est08]

[FBSG07]

[FDGT12]

[FMS11]

[ENS*16]

[FTW15]

[GGPDOL1]

[GHIV95]

[GHM " 14]

[GMO3]

[GNNS10]

[Gonl

140

Jeff A. Estefan. Survey of Model-Based Systems Engineering (MBSE) Method-
ologies. Technical Report Rev. B, INCOSE MBSE Initiative, May 2008.

Madeleine Faugere, Thimothee Bourbeau, Robert De Simone, and Sebastien
Gerard. MARTE: Also an UML Profile for Modeling AADL Applications. In
12th IEEE International Conference on Engineering Complex Computer Systems
(ICECCS), pages 359-364. IEEE, 2007.

Félix-Antoine Fortin, Francois-Michel De Rainville, Marc-André Gardner, Marc
Parizeau, and Christian Gagné. DEAP: Evolutionary algorithms made easy.
Journal of Machine Learning Research, 13:2171-2175, July 2012.

Sanford Friedenthal, Alan Moore, and Rick Steiner. A Practical Guide to SysML:
The Systems Modeling Language. Elsevier Science, 2011.

Felipe R. Franco, Jodo H. Neme, Max M. Santos, Jodo N.H. da Rosa, and
In4cio M. Dal Fabbro. Workflow and toolchain for developing the automotive
software according AUTOSAR standard at a Virtual-ECU. In 25th International
Symposium on Industrial Electronics (ISIE), pages 869—875. IEEE, June 2016.

Martin Fleck, Javier Troya, and Manuel Wimmer. Marrying Search-based
Optimization and Model Transformation Technology. In Proceedings of the First
North American Search Based Software Engineering Symposium. Elsevier, 2015.

Michael Gonzalez Harbour, Jose Javier Gutiérrez Garcia, Jose Carlos Palencia
Gutiérrez, and Jose Maria Drake Moyano. MAST: Modeling and analysis suite
for real time applications. In Proceedings 13th Euromicro Conference on Real-
Time Systems, pages 125-134. IEEE, 2001.

Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design
Patterns: Elements of Reusable Object-oriented Software. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 1995.

Birte Glimm, Ian Horrocks, Boris Motik, Giorgos Stoilos, and Zhe Wang. Hermit:
An owl 2 reasoner. Journal of Automated Reasoning, 53(3):245-269, Oct 2014.

Jirgen Gausemeier and Stefan Moehringer. New Guideline VDI 2206 - A
Flexible Procedure Model for the Design of Mechatronic Systems. In /4th
International Conference on Engineering Design, ICED’03, 2003.

Holger Giese, Stefan Neumann, Oliver Niggemann, and Bernhard Schitz. Model-
Based Integration, volume 6100 of Lecture Notes in Computer Science, pages
17-54. Springer Berlin Heidelberg, Berlin, Heidelberg, 2010.

Michael Gonzalez Harbour. Modeling and Analysis Suite for Real-Time Appli-
cations (MAST). https://mast.unican.es.

[GPQ14]

[GR16]

[Gru93]

[GSDA07]

[GY14]

[Had]

[HCA03]

[HF11]

[HHRV11]

[Hoa69]

[HPSVHO3]

[HRO4]

BIBLIOGRAPHY

Susanne Graf, Roberto Passerone, and Sophie Quinton. Contract-Based Rea-
soning for Component Systems with Rich Interactions, volume 20 of Embedded
Systems, chapter 8, pages 139—154. Springer New York, New York, NY, 2014.

Johannes Gross and Stephan Rudolph. Rule-based spacecraft design space
exploration and sensitivity analysis. Aerospace Science and Technology, 59:162—
171, 2016.

Thomas R. Gruber. A translation approach to portable ontology specifications.
Knowledge Acquisition, 5(2):199-220, 1993.

Esther Guerra, Daniel Sanz, Paloma Diaz, and Ignacio Aedo. A Transformation-
Driven Approach to the Verification of Security Policies in Web Designs. In
Web Engineering, volume 4607 of Lecture Notes in Computer Science, pages
269-284, Berlin, Heidelberg, 2007. Springer Berlin Heidelberg.

Frederic Gourves and Andres Yarce. Powertrain of a Hydraulic Hybrid Vehicle,
Comprising a Free Wheel and a Planetary Gear Train. Patent WO 2014/199064
Al, 2014.

David Hadka. MOEA Framework: A Free and Open Source Java Framework for
Multiobjective Optimization, http://www.moeaframework.org.

Dan Henriksson, Anton Cervin, and Karl-Erik Arzén. TrueTime : Real-time
Control System Simulation with MATLAB / Simulink. In Proceedings of the
Nordic MATLAB Conference, 2003.

Florian Holzl and Martin Feilkas. AutoFocus 3 - A Scientific Tool Prototype for
Model-Based Development of Component-Based, Reactive, Distributed Systems,
volume 6100 of Lecture Notes in Computer Science, pages 317-322. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2011.

Abel Hegediis, Akos Horvith, Istvan Rath, and Ddniel Varré. A Model-driven
Framework for Guided Design Space Exploration. In 26th IEEE/ACM Interna-
tional Conference on Automated Software Engineering (ASE), number ii, pages
173-182. IEEE, 2011.

Charles Antony Richard Hoare. An Axiomatic Basis for Computer Programming.
Commun. ACM, 12(10):576-580, October 1969.

Tan Horrocks, Peter F. Patel-Schneider, and Frank van Harmelen. From SHIQ
and RDF to OWL: the making of a Web Ontology Language. Web Semantics:
Science, Services and Agents on the World Wide Web, 1(1):7-26, 2003.

David Harel and Bernhard Rumpe. Meaningful modeling: what’s the semantics
of “semantics”? Computer, 37(10):64-72, 2004.

141

BIBLIOGRAPHY

[HSB+]

[HST10]

[INCO07]

[Ise08]

[ISO11]

[Jac06]

CMG12]

[JKD*10]

[IMMO08]

[Joh13]

[KL89a]

[KL89b]

142

Abel Hegediis, Rodrigo Rizzi Starr, Marton Biir, Lincoln Nascimento, Rébert
Déczi, Samoel Mirachi, Istvan Rath, and Akos Horvéth. Massif: Matlab simulink
integration framework for eclipse. https://github.com/viatra/massif.

Florian Holzl, Maria Spichkova, and David Trachtenherz. AutoFocus Tool Chain.
Technical report, Institut fiir Informatik der Technischen Universitit Miinchen,
2010.

INCOSE. Systems Engineering Vision 2020. Technical Report INCOSE-TP-
2004-004-02, International Council on Systems Engineering (INCOSE), 2007.

Rolf Isermann. Mechatronic systems—Innovative products with embedded control.
Control Engineering Practice, 16(1):14-29, 2008.

ISO/IEC/IEEE 42010:2011. Systems and software engineering - Architecture
description. Technical report, ISO and IEEE, 2011.

Daniel Jackson. Software Abstractions: Logic, Language, and Analysis. MIT
Press, 2006.

David Joyner, Ondiej Certik, Aaron Meurer, and Brian E. Granger. Open
Source Computer Algebra Systems: SymPy. ACM Commun. Comput. Algebra,
45(3/4):225-234, January 2012.

Ethan K. Jackson, Eunsuk Kang, Markus Dahlweid, Dirk Seifert, and Thomas
Santen. Components, Platforms and Possibilities: Towards Generic Automa-
tion for MDA. In Proceedings of the Tenth ACM International Conference on
Embedded Software, EMSOFT’ 10, pages 39-48, New York, NY, USA, 2010.
ACM.

Bernhard Josko, Qin Ma, and Alexander Metzner. Designing Embedded Systems
using Heterogeneous Rich Components. INCOSE International Symposium,
18(1):558-576, 2008.

Johnson, Dave, and Speicher, Steve. Open Services for Lifecycle Collaboration
Core Specification Version 2.0. Technical report, OSLC Core Specification
Workgroup, 2013.

Michael Kifer and Georg Lausen. F-logic: A Higher-order Language for Rea-
soning About Objects, Inheritance, and Scheme. In Proceedings of the 1989
ACM SIGMOD International Conference on Management of Data, SIGMOD
’89, pages 134-146, New York, NY, USA, 1989. ACM.

Michael Kifer and Georg Lausen. F-logic: A Higher-order Language for Rea-
soning About Objects, Inheritance, and Scheme. SIGMOD Rec., 18(2):134-146,
June 1989.

[Kle07]

[KLFP02]

[KLW13]

[KP10]

[KPP03]

[Kiiho6]

[LDMH17]

[LFK*14]

[LL73]

[LMD*12]

[LMD™*13]

BIBLIOGRAPHY

Anneke G. Kleppe. A Language Description is More than a Metamodel. In
Fourth International Workshop on Software Language Engineering, number 1.
megaplanet.org, 2007.

Raimung Kirner, Roland Lang, Gerald Freiberger, and Peter P. Puschner. Fully
automatic worst-case execution time analysis for MATLAB/Simulink models. In
Proceedings 14th Euromicro Conference on Real-Time Systems. Euromicro RTS
2002, pages 31-40, 2002.

Marouane Kessentini, Philip Langer, and Manuel Wimmer. Searching Models,
Modeling Search: On the Synergies of SBSE and MDE. In Proceedings of the
1st Workshop on Combining Modelling with Search-Based Software Engineering,
pages 51-54, 2013.

Aleksandr A. Kerzhener and Christiaan J.J. Paredis. Combining SysML and
Model Transformations to Support Systems Engineering Analysis. Electronic
Communications of the EASST - 4th International Workshop on Multi-Paradigm
Modeling, 42, 2010.

Dimitrios S. Kolovos, Richard F. Paige, and Fiona A. C. Polack. The Epsilon
Transformation Language. In Theory and Practice of Model Transformations,
volume 5063 of Lecture Notes in Computer Science, pages 46—60, Berlin, Hei-
delberg, 2008. Springer Berlin Heidelberg.

Thomas Kiihne. Matters of (Meta-) Modeling. Software & Systems Modeling,
5(4):369-385, 2006.

Haoxuan Li, Paul De Meulenaere, and Peter Hellinckx. Powerwindow: a Multi-
component TACLeBench Benchmark for Timing Analysis. In Advances on P2P,
Parallel, Grid, Cloud and Internet Computing, pages 779—788, Cham, 2017.
Springer International Publishing.

Heiner Lasi, Peter Fettke, Hans-Georg Kemper, Thomas Feld, and Michael
Hoffmann. Industry 4.0. Business & Information Systems Engineering, 6(4):239—
242,2014.

Chung Laung Liu and James W. Layland. Scheduling Algorithms for Multipro-
gramming in a Hard- Real-Time Environment. Journal of the ACM, 20(1):46-61,
1973.

Levi Licio, Sadaf Mustafiz, Joachim Denil, Bart Meyers, and Hans Vangheluwe.
The Formalism Transformation Graph as a Guide to Model Driven Engineering.
SOCS-TR-2012.1, McGill University, 2012.

Levi Liicio, Sadaf Mustafiz, Joachim Denil, Hans Vangheluwe, and Maris Jukss.
FTG+PM: An Integrated Framework for Investigating Model Transformation

143

BIBLIOGRAPHY

[LMMHY16]

[Man95]

[Man09]

[Mat]
[MD14]

[MDLV12]

[Mey88]

[Mey92]

[MGO06]

[Mod11]

[MPE04]

144

Chains. In SDL 2013: Model-Driven Dependability Engineering, volume 7916
of Lecture Notes in Computer Science, pages 182202, Berlin, Heidelberg, 2013.
Springer Berlin Heidelberg.

Wei Li, Ramamurthy Mani, Pieter J Mosterman, and Teresa Hubscher-Younger.
Simulating a Multicore Scheduler of Real-time Control Systems in Simulink.
In Proceedings of the Summer Computer Simulation Conference, SCSC ’16,
pages 11:1-11:7, San Diego, CA, USA, 2016. Society for Computer Simulation
International.

John C. Mankins. Technology readiness levels: A White Paper. Technical report,
NASA, Washington, DC, 1995.

John C. Mankins. Technology readiness assessments: A retrospective. Acta
Astronautica, 65(9):1216 — 1223, 2009.

MathWorks. Simulink Website. https://www.mathworks.com/products/simulink.

Matteo Morelli and Marco Di Natale. Control and Scheduling Co-design for
a Simulated Quadcopter Robot : A Model-Driven Approach. In Simulation,
Modeling, and Programming for Autonomous Robots, volume 8810 of Lecture
Notes in Computer Science, pages 49—61, Cham, 2014. Springer International
Publishing.

Sadaf Mustafiz, Joachim Denil, Lucio Levi, and Hans Vangheluwe. The
FTG+PM Framework for Multi-paradigm Modelling: An Automotive Case
Study. In Proceedings of the 6th International Workshop on Multi-Paradigm
Modeling, MPM’ 12, pages 13—18, New York, NY, USA, 2012. ACM.

Bertrand Meyer. Eiffel: A language and Environment for Software Engineering.
Journal of Systems and Software, 8(3):199-246, 1988.

Bertrand Meyer. Applying 'Design by Contract’. Computer, 25(10):40-51,
October 1992.

Tom Mens and Pieter Van Gorp. A Taxonomy of Model Transformation. Elec-
tronic Notes in Theoretical Computer Science, 152:125 — 142, 2006. Proceedings
of the International Workshop on Graph and Model Transformation (GraMoT
2005).

Modeling and Simulation Committee. Final report of the Model Based Engi-
neering (MBE) Subcommittee. Technical report, National Defense Industrial
Association (NDIA) Systems Engineering Division, 2011.

Pieter J. Mosterman, Sameer Prabhu, and Tom Erkkinen. An Industrial Embed-
ded Control System Design Process. In Proceedings of The Inaugural CDEN

[MSP*+17]

[MV04]

[MZL*13]

[Nad13]

[Nas14]

[NMO1]

[NSK03]

[NSVB*15]

[NXO*14]

BIBLIOGRAPHY

Design Conference (CDEN’04), pages 02B6—1 — 02B6-11, Montreal, Quebec,
Canada, 2004.

Aaron Meurer, Christopher P. Smith, Mateusz Paprocki, Ondfej Certik, Sergey B.
Kirpichev, Matthew Rocklin, Amit Kumar, Sergiu Ivanov, Jason K. Moore,
Sartaj Singh, Thilina Rathnayake, Sean Vig, Brian E. Granger, Francesco Muller,
Richard P. Bonazzi, Harsh Gupta, Shivam Vats, Fredrik Johansson, Fabian
Pedregosa, Matthew J. Curry, Andy R. Terrel, étépén Roucka, Ashutosh Saboo,
Isuru Fernando, Sumith Kulal, Robert Cimrman, and Anthony Scopatz. SymPy:
symbolic computing in Python. PeerJ Computer Science, 3(e103), 2017.

Pieter J. Mosterman and Hans Vangheluwe. Computer Automated Multi-
Paradigm Modeling: An Introduction. SIMULATION, 80(9):433-450, 2004.

Mehdi Maasoumy, Qi Zhu, Cheng Li, Forrest Meggers, and Alberto L.
Sangiovanni-Vincentelli. Co-design of Control Algorithm and Embedded Plat-
form for Building HVAC Systems. In Proceedings of the ACM/IEEE 4th Inter-
national Conference on Cyber-Physical Systems, ICCPS ’13, pages 61-70, New
York, NY, USA, April 2013. ACM.

Andreas Naderlinger. Multiple Real-Time Semantics on top of Synchronous
Block Diagrams. In Proceedings of the Symposium on Theory of Modeling &
Simulation - DEVS Integrative M&S Symposium, DEVS’13, pages 6:1-6:7, San
Diego, CA, USA, 2013. Society for Computer Simulation International.

Leonardo Nascimento. Hybrid Air : Gestion énergétique optimisée et impact
environnemental de la technologie. Technical Report 2014-CNAM-04, Société
des Ingénieurs de I’ Automobile (SIA), April 2014.

Natalya F. Noy and Deborah L. Mcguinness. Ontology Development 101: A
Guide to Creating Your First Ontology. Technical Report KSL-01-05 and SMI-
2001-0880, Stanford Knowledge Systems Laboratory and Stanford Medical
Informatics, 2001.

Sandeep Neema, Janos Sztipanovits, and Gabor Karsai. Constraint-Based Design-
Space Exploration and Model Synthesis. pages 290-305, 2003.

Pierluigi Nuzzo, Alberto L. Sangiovanni-Vincentelli, Davide Bresolin, Luca
Geretti, and Tiziano Villa. A Platform-Based Design Methodology With Con-
tracts and Related Tools for the Design of Cyber-Physical Systems. Proceedings
of the IEEE, 103(11):2104-2132, 2015.

Pierluigi Nuzzo, Huan Xu, Necmiye Ozay, John B. Finn, Alberto L. Sangiovanni-
Vincentelli, Richard M. Murray, Alexandre Donzé, and Sanjit A. Seshia. A

145

BIBLIOGRAPHY

[Obj11]

[PDH*09]

[PG98]

[PMO04]

[Pro05]

[PTQ*13]

[Qam13]

[Raj13]

[RBR*14]

[RG14]

146

Contract-Based Methodology for Aircraft Electric Power System Design. I[EEE
Access, 2:1-25, 2014.

Object Management Group. The UML Profile for Modeling and Analysis of
Real-Time and Embedded systems (MARTE) - Specification (version 1.1), June
2011.

Roberto Passerone, Werner Damm, Imene Ben Hafaiedh, Susanne Graf, Al-
berto Ferrari, Leonardo Mangeruca, Albert Benveniste, Bernhard Josko, Thomas
Peikenkamp, Daniela Cancila, Arnaud Cuccuru, Sébastien Gérard, Francois Ter-
rier, and Alberto L. Sangiovanni-Vincentelli. Metamodels in Europe: Languages,
tools, and applications. IEEE Design and Test of Computers, 26(3):38-53, 2009.

Jose Carlos Palencia Gutiérrez and Michael Gonzélez Harbour. Schedulability
analysis for tasks with static and dynamic offsets. Proceedings 19th IEEE
Real-Time Systems Symposium (Cat. No.98CB36279), pages 26-37, 1998.

Sameer M Prabhu and Pieter J] Mosterman. Model-Based Design of a Power
Window System: Modeling, Simulation, and Validation. In Proceedings of the
Society for Experimental Mechanics IMAC XXII, 2004.

Marc Provost. Himesis: A Hierarchical Subgraph Matching Kernel for Model
Driven Development. Master’s thesis, McGill University, Montreal, Quebec,
Canada, 2005.

Magnus Persson, Martin Térngren, Ahsan Qamar, Jonas Westman, Matthias
Biehl, Stavros Tripakis, Hans Vangheluwe, and Joachim Denil. A Character-
ization of Integrated Multi-View Modeling in the Context of Embedded and
Cyber-Physical Systems. In Proceedings of the International Conference on
Embedded Software (EMSOFT), pages 1-10, 2013.

Ahsan Qamar. Model and Dependency Management in Mechatronic Design.
PhD thesis, KTH - Royal Institute of Technology, 2013.

Akshay Rajhans. Multi-Model Heterogeneous Verification of Cyber-Physical
Systems. PhD thesis, Department of Electrical and Computer Engineering,
Carnegie Mellon University, 2013.

Akshay Rajhans, Ajinkya Y. Bhave, Ivan Ruchkin, Bruce Krogh, David Garlan,
Andre Platzer, and Bradley Schmerl. Supporting Heterogeneity in Cyber-Physical
Systems Architectures. IEEE Transactions on Automatic Control, 59(12):3178—
3193, December 2014.

Franck Roy and Marc Giaonnoni. Powertrain for a Hydraulic Hybrid Vehicle,
Control Method and Hybrid Motor Vehicle. Patent WO 2014/174167 A1, 2014.

[RIB04]

[RR13]

[RRW12]

[RRW13]

[RSIT18]

[Rup10]

[SBMOS]

[Sch95]

[S102]

[SK03]

[SK04]

BIBLIOGRAPHY

James Rumbaugh, Ivar Jacobson, and Grady Booch. The Unified Modeling
Language Reference Manual (2nd Edition). Pearson Higher Education, 2004.

Franck Roy and Vicky Rouss. Chaine de Traction d’un Vehicule Hybride. Patent
FR 2977 533 A1, 2013.

Jan Oliver Ringert, Bernhard Rumpe, and Andreas Wortmann. A Requirements
Modeling Language for the Component Behavior of Cyber Physical Robotics
Systems. In Modelling and Quality in Requirements Engineering: Essays Ded-
icated to Martin Glinz on the Occasion of His 60th Birthday, pages 133—-146.
Monsenstein und Vannerdat Miinster, 2012.

Jan Oliver Ringert, Bernhard Rumpe, and Andreas Wortmann. From Software
Architecture Structure and Behavior Modeling to Implementations of Cyber-
Physical Systems. Software Engineering 2013 Workshopband, pages 155-170,
2013.

Ivan Ruchkin, Joshua Sunshine, Grant Iraci, Bradley Schmerl, and David Garlan.
IPL: An Integration Property Language for Multi-Model Cyber-Physical Systems.
In 22nd International Symposium on Formal Methods (FM2018), July 2018.

Nayan B. Ruparelia. Software Development Lifecycle Models. SIGSOFT Softw.
Eng. Notes, 35(3):8-13, May 2010.

Sagar Sen, Benoit Baudry, and Jean-Marie Mottu. On Combining Multi-
formalism Knowledge to Select Models for Model Transformation Testing. In
Ist International Conference on Software Testing, Verification, and Validation,
pages 328-337. IEEE, April 2008.

Andy Schiirr. Specification of graph translators with triple graph grammars. In
Graph-Theoretic Concepts in Computer Science, Lecture Notes in Computer
Science, pages 151-163, Berlin, Heidelberg, 1995. Springer Berlin Heidelberg.

Xiaomeng Su and Lars Ilebrekke. A Comparative Study of Ontology Languages
and Tools. In Advanced Information Systems Engineering, volume 2348 of
Lecture Notes in Computer Science, pages 761-765, Berlin, Heidelberg, 2002.
Springer Berlin Heidelberg.

Shane Sendall and Wojtek Kozaczynski. Model transformation: the heart and soul
of model-driven software development. IEEE Software, 20(5):42-45, September
2003.

Shane Sendall and Jochen Kiister. Taming Model Round-Trip Engineering. In
Proceedings of Workshop on Best Practices for Model-Driven Software Develop-
ment (part of 19th Annual ACM Conference on Object-Oriented Programming,
Systems, Languages, and Applications), 2004.

147

BIBLIOGRAPHY

[SK10]

[SM12]

[SMHO08]

[Smu68]

[SPGT07]

[SPHP02]

[Sta16]

[SV06]

[SV10]

[SVDPI12]

[SVL15]

[Sym]

148

Tripti Saxena and Gabor Karsai. MDE-Based Approach for Generalizing Design.
In Model Driven Engineering Languages and Systems, volume 6394 of Lecture
Notes in Computer Science, pages 46—60, Berlin, Heidelberg, 2010. Springer
Berlin Heidelberg.

Frederic Gourves Stephane Maurel. Hybrid Vehicle using Hydraulic Power and
Associated Managment Method. Patent WO 2012/160284 A1, 2012.

Rob Shearer, Boris Motik, and Ian Horrocks. HermiT: A Highly-Efficient OWL
Reasoner. In Proceedings of the Fifth OWLED Workshop on OWL: Experiences
and Directions, volume 432 of CEUR Workshop Proceedings, 2008.

Raymond R. Smullyan. First-Order Logic, volume 43 of MATHE?2. Springer-
Verlag Berlin Heidelberg, 1968.

Evren Sirin, Bijan Parsia, Bernardo Cuenca Grau, Aditya Kalyanpur, and Yarden
Katz. Pellet: A practical OWL-DL reasoner. Web Semantics: Science, Services
and Agents on the World Wide Web, 5(2):51-53, 2007. Software Engineering
and the Semantic Web.

Bernhard Schiitz, Alexander Pretschner, Franz Huber, and Jan Philipps. Model-
Based Development of Embedded Systems. In Advances in Object-Oriented
Information Systems, volume 2426 of Lecture Notes in Computer Science, pages
298-311, Berlin, Heidelberg, 2002. Springer Berlin Heidelberg.

Stanford Center for Biomedical Informatics Research. Protégé Website.
https://protege.stanford.edu, 2016.

Sagar Sen and Hans Vangheluwe. Multi-Domain Physical System Modeling and
Control Based on Meta-Modeling and Graph Rewriting. In IEEE Conference on
Computer-Aided Control Systems Design, pages 69-75. IEEE, October 2006.

Eugene Syriani and Hans Vangheluwe. De-/ Re-constructing Model Transforma-
tion Languages. Electronic Communications of the EASST - Ninth International
Workshop on Graph Transformation and Visual Modeling Techniques, 29, 2010.

Alberto L. Sangiovanni-Vincentelli, Werner Damm, and Roberto Passerone.
Taming Dr. Frankenstein: Contract-Based Design for Cyber-Physical Systems.
European Journal of Control, 18(3):217-238, 2012.

Eugene Syriani, Hans Vangheluwe, and Brian LaShomb. T-core: a framework
for custom-built model transformation engines. Software & Systems Modeling,
14(3):1215-1243, Jul 2015.

SymPy. SymPy Website. http://www.sympy.org.

[Syr11]

[TC94]

[THO6]

[Theal
[Theb]

[Thecl]

[Thed]
[TQB+14]

[Uni]

[VDI104]

[VSB04]

[VIVMMV17]

[WMM™*08]

BIBLIOGRAPHY

Eugene Syriani. A Multi-paradigm Foundation for Model Transformation Lan-
guage Engineering. PhD thesis, McGill University, Montreal, Quebec, Canada,
Canada, 2011. AAINR77560.

Ken Tindell and John Clark. Holistic schedulability analysis for distributed hard

real-time systems. Microprocessing and Microprogramming, 40(2-3):117-134,
April 1994.

Dmitry Tsarkov and Ian Horrocks. FaCT++ Description Logic Reasoner: System
Description. In Ulrich Furbach and Natarajan Shankar, editors, Automated Rea-
soning, pages 292-297, Berlin, Heidelberg, 2006. Springer Berlin Heidelberg.

The Eclipse Foundation. Eclipse Epsilon. https://www.eclipse.org/epsilon/.

The Eclipse Foundation. Eclipse Modeling Framework.
https://www.eclipse.org/modeling/emf/.

The Eclipse Foundation. Papyrus UML Modeling tool.
http://www.eclipse.org/papyrus/index.php.

The Eclipse Foundation. Sirius. http://www.eclipse.org/sirius/.

Martin Térngren, Ahsan Qamar, Matthias Biehl, Frederic Loiret, and Jad El-

khoury. Integrating viewpoints in the development of mechatronic products.
Mechatronics, 24(7):745-762, 2014.

United Nations Economic Commission for Europe. @~ UN Vehicle Reg-
ulations - Addenda to the 1958 Agreement: Regulation No. 101.
http://www.unece.org/trans/main/wp29/wp29regs101-120.html.

VDI-Fachbereich Produktentwicklung und Mechatronik. Design methodology
for mechatronical systems. The Association of German Engineers (VDI), Berlin,
2004.

Hans Vangheluwe, Ximeng Sun, and Eric Bodden. Domain-specific Modelling
with AToM3. In The 4th OOPSLA Workshop on Domain-Specific Modelling,
2004.

Yentl Van Tendeloo, Simon Van Mierlo, Bart Meyers, and Hans Vangheluwe.
Concrete Syntax: A Multi-paradigm Modelling Approach. In Proceedings
of the 10th ACM SIGPLAN International Conference on Software Language
Engineering, SLE’ 17, pages 182—-193, New York, NY, USA, 2017. ACM.

Reinhard Wilhelm, Tulika Mitra, Frank Mueller, Isabelle Puaut, Peter Puschner,
Jan Staschulat, Per Stenstrom, Jakob Engblom, Andreas Ermedahl, Niklas Holsti,
Stephan Thesing, David Whalley, Guillem Bernat, Christian Ferdinand, and Rein-
hold Heckmann. The Worst-case Execution-time Problem&Mdash;Overview

149

BIBLIOGRAPHY

[Wor]

[WPR*11]

[ZZDNSV07]

150

of Methods and Survey of Tools. ACM Transactions on Embedded Computing
Systems, 7(3):36:1-36:53, April 2008.

World Wide Web Consortium. Semantic Web Website.
https://www.w3.org/standards/semanticweb/.

James R Williams, Simon Poulding, Louis M Rose, Richard F Paige, and Fiona
A C Polack. Identifying Desirable Game Character Behaviours through the Ap-
plication of Evolutionary Algorithms to Model-Driven Engineering Metamodels.
In Proceedings of the Third International Symposium on Search Based Software
Engineering, pages 112-126, 2011.

Wei Zheng, Qi Zhu, Marco Di Natale, and Alberto L. Sangiovanni-Vincentelli.
Definition of Task Allocation and Priority Assignment in Hard Real-Time Dis-
tributed Systems. In 28th IEEE International Real-Time Systems Symposium
(RTSS 2007), pages 161-170. IEEE, December 2007.

	Introduction
	Context
	Motivation
	Challenges and Contributions
	Delimitations and Assumptions
	Case Studies
	The Power Window
	The Hybrid Hydraulic Vehicle

	Outline of the Dissertation

	Background
	Techniques
	Modeling Languages
	Model Transformations
	Design-Space Exploration
	Formalism Transformation Graph and Process Model

	Methods
	Model Based Systems Engineering
	Contract-Based Design
	Ontologies

	Tools
	Eclipse EMF
	T-Core
	Protégé Desktop
	SymPy
	Simulink
	Massif
	MAST

	Design Contracts Enabling Consistency in Multi-Viewpoint Design Processes
	Introduction
	Related Work
	Design Contracts Supporting Multi-Viewpoint Design Processes
	Applicability of Contract-Based Design in Multi-Viewpoint Processes
	Multi-Viewpoint Consistency through Ontological Reasoning
	Foundations of Ontological Reasoning
	Ontological Reasoning in Multi-Viewpoint Design Processes

	Contract-Based Co-Design Driven Multi-Viewpoint Design Processes
	Combining Assume/Guarantee Contracts with Ontologies
	Contract-Based Co-Design Method

	An Integrated Framework Supporting the Contract-Based Co-Design Method
	Defining a Scalable and Reusable (Upper) Ontology
	Defining Viewpoint-Specific Architectures
	Defining Contracts
	Executing Analysis

	Conclusion

	A Round-Trip Engineering Method Supporting Contract-Based Co-Design Driven Processes
	Introduction
	Related Work
	The Round-Trip Engineering Method
	The Round-Trip Engineering Method Applied on the Power Window Example
	The Round-Trip Engineering Method for Common Design Processes
	Conclusion

	Design-Space Exploration Supporting Contract-Based Co-Design Driven Processes
	Introduction
	Related Work
	An Initial Pattern Catalog for Design-Space Exploration
	Model Generation Pattern
	Model Adaptation Pattern
	Model Transformation Pattern
	Exploration Chaining Pattern

	The Pattern Catalog Applied in Contract-Based Co-Design Driven Design Processes
	Design-Space Exploration Supporting the Embedded Domain
	Design-Space Exploration Supporting the Control Domain

	Conclusion

	The Integrated Framework Applied in a Contract-Based Co-Design Driven Development Process
	Introduction
	Related Work
	Designing a Hybrid Hydraulic Vehicle Using a CBCD Driven Design Process
	Preliminary Design
	Contract Negotiation
	Concurrent Detailed Design

	Conclusion

	Conclusion
	Bibliography

