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Abstract. Range cameras suffer from both systematic and random er-
rors. We present a procedure to evaluate both types of error separately
in one test. To quantify the systematic errors, we use an industrial robot
to provide a ground truth motion of the range sensor. We present an
error metric that compares this ground truth motion with the calculated
motion, using the range data of the range sensor. The only item present
in the scene is a white plane that we move in different positions during
the experiment. This plane is used to compute the range sensor motion
for the purpose of systematic error measurement, as well as to quantify
the random error of the range sensor. As opposed to other range camera
evaluation experiments this method does not require any extrinsic sys-
tem calibration, high quality ground truth test scene or complicated test
objects. Finally, we performed the experiment for three common Time-
of-flight (TOF) cameras: Kinect One, Mesa SR4500 and IFM 03D303
and compare their performance.

Keywords: Range camera, Hand-eye transformation, Time-of-flight, Er-
ror metric

1 Introduction

In this paper we present an easy procedure to quantify both the systematic and
random errors of range sensors. Consequently, the presented method provides an
evaluation tool to compare different range sensors. The proposed test delivers
quantitative error values, that are easy to compare.

We distinguish between random and systematic errors, because different tasks
are sensitive to different types of error. For example, the recognition of CAD ob-
jects in a scene is sensitive to random noise. Indeed, the presence of noise is a
serious obstacle for segmentation [13]. On the other hand, applications of range
sensors that make use of plane features, are sensitive to systematic errors. For
example, in order to determine the eigenmotion of a Time-of-flight TOF cam-
era by means of plane measurements [9, 4], random noise can be handled by
robust plane fitters [16], but the calculation of the transformation depends on



the quality of the plane coordinates. Systematic errors induce inaccuracies in
these determined plane coordinates, which in turn result in a deterioration in
the quality of the determined camera motion.

Other experiments designed to evaluate various errors of range sensors rely
on very strict manual placement [2] or calibration (relative to ground truth)
of the range sensor[15, 7]. Both these methods are cumbersome and affect the
estimate of this error. Some experiments require detailed knowledge about the
measurement scene [15, 7] , and require an extra highly accurate range scanner.
Our method does not rely on extra system calibrations or ground truth scenes.

The presented test method comprises experiments with TOF cameras (as an
example of range sensors) rigidly attached to a robot manipulator (Fig. 1). This
choice was motivated by the reliability of the current robot controllers, such that
the motion of the robot’s end effector can be considered as an accurate ground
truth. The ground truth motion of the robot manipulator will be compared with
the motion determined by the range sensor to evaluate systematic errors of the
sensor.

Fig. 1. Measurement setup. An industrial robot Kuka KR16W is holding the three
ToF cameras we compared: Kinect One, Mesa SR4500 and IFM 03D303. The scene
also contains a white plane.

However, it is a challenge to have access to this ground truth data, because
of the famous hand-eye calibration problem [14]. This problem is caused by the
fact that the relative motion between two positions of the camera is known in
the robot basis instead of the camera basis. The transformation matrix between
both reference frames, one at the camera center and the other at the robot tool
center, is unknown. We can solve for this transformation matrix by doing the



hand-eye calibration [8, 14], but this is based on the availability of a reliable
camera transformation. Therefore, using the hand-eye calibration for evaluating
the systematic errors of a range sensor (camera motion) gives rise to a conceptual
loop, and hence is not desirable. However, the quality of the system of equations
that solves this hand-eye calibration will serve as an indication for the degree of
systematic error: the hand-eye error metric (Section 3.2).

The second central element in our experiment is a planar object that is
present in the scene. This plane has two functions. On one hand, the transfor-
mation of the range camera can be estimated using different orientations of this
plane; the systematic error behaviour of the range sensor will be evaluated by
means of the quality of the computed transformation. On the other hand, the
noise of measurements on these planes is used to characterize random error. This
approach yields a decoupled evaluation tool. Indeed, the plane based method for
computing the motion of the sensor does not introduce random errors, while the
effect of random errors on the estimated plane coordinates is very low.

The experiment consists of 4 steps:

1. Mount the range camera on the robot (no special pose is required).
2. Define a number of preprogrammed positions, allowing the attached camera

to view a given plane (flat surface).
3. Capture a point cloud at each of the preprogrammed positions, correspond-

ing to the viewed plane.
4. Repeat step 3 for at least three configurations of the measurement plane.

It is important that the camera is rigidly attached to the robot, excluding
relative motion of this camera with respect to the robot during the entire
experiment.

2 Experimental setup

The objective of our experiments is to measure both the systematic and random
measurement errors of range cameras. We have tested and compared three com-
mon Time-of-flight cameras: Kinect One, Mesa SR4500 and IFM 03D303.
In order to compare the computed motion to a reliable ground truth, the TOF
sensors are mounted rigidly on an articulated robotarm (KUKA KR16W, with
a repeatibility error less than 0.1mm) as shown in Fig. 1. In each single test we
consider TOF images for a pair of robot positions, in which the attached camera
observes a fixed plane. During the whole experiment we arranged five distinct
positions of this plane, that could be viewed from twenty preprogrammed robot
configurations, providing a supply of

(
20
2

)
test pairs for each camera.

For the evaluation we need sets of 3-D points, generated by the TOF sensors,
directly provided in (X,Y, Z) coordinates with respect to the camera frame. This
means that we assumed a priori calibrated TOF cameras.

We only use points on the viewed planar object in the experimental setup. To
this end we automatically selected the pixels in the white board that is visible
in every TOF frame.



Next, we compute the best-fitting plane supporting the reconstructed 3-D
points in all given range images of the fixed board. Working with plane coordi-
nates provides following advantages over classical point based methods ([18, 1,
3]):

1. A fitted plane reduces error fluctuations compared to 3-D point measure-
ments.

2. There is no need to detect point features and to establish correspondences
between them.

3. It is easy to find a set of viewpoints from which a part of the plane is visible.
4. It is not necessary that the calibration object (in this case a board) is entirely

visible in each used viewpoint.

This best-fitting plane can be computed by principal component analysis,
but we prefer a more robust estimate based on Ransac [5]. More precisely, we
applied the Matlab function pcfitplane, that implements the algorithm of [16].
Ransac eliminates pixels that exceed a predetermined treshold from the fitted
model, even if they were selected inside the measured plane. To determine the
random noise relative to the measured plane we use the fitted plane to determine
the borders of the plane in the image, and calculate the total deviation of all
pixels inside this segmented planar region with respect to the fitted plane.

3 Evaluation metric for systematic error

The goal of this section is to devise an error metric that is a measure for the
dimensional accuracy of a range sensor. There are two difficulties that need to
be tackled:

1. The error metric should be independent of measurement noise. This is be-
cause we want to assess random error and systematic error independently.

2. The robot motion cannot be used directly as ground truth. This is because
there is an unknown transformation between the robot tool center and the
range sensor. This transformation is called the hand-eye transformation.

The first problem will be tackled by estimating the motion of the range
camera by using planes. To get around the second problem we use an error
metric we call the hand-eye error metric.

3.1 Plane-based method to estimate the motion of a range camera

A common way to describe mathematically the rigid motion of a TOF camera or
any other 3-D object is by means of the coordinate transformation between the
two positions of a rigidly attached reference frame before and after the motion.
The rotational part of the rigid motion is represented by a 3 × 3 orthonormal
matrix R (R−1 = RT ), and the translation part by a 3× 1 vector t. If p and p′



are the 3×1 coordinate vectors of a given spatial point w.r.t. the rigidly attached
reference frame before and after the motion respectively, then

p = R · p′ + t. (1)

Often, it is convenient to represent this transformation by one matrix multipli-
cation p = B · p′, using homogeneous coordinates p = (pT , 1)T with weight 1,
and a 4× 4 transformation matrix

B =

(
R t
0T 1

)
(2)

with 0 the 3× 1 zero vector.
If the rigid transformation of a depth camera is represented by a 4 by 4

transformation matrix B acting on homogeneous coordinates of 3-D points as
given by Eqn. 2, then the corresponding dual transformation acting on plane
coordinates (a, b, c, d)T is represented by B−T [11]:

p = B · p′ ⇔


a
b
c
d

 ∼ B−T


a′

b′

c′

d′

⇔


a′

b′

c′

d′

 ∼ BT


a
b
c
d

 (3)

Because the homogeneous plane coordinates (a, b, c, d)T are determined up to
a scale factor, it is convenient to normalize the plane normals n = (a, b, c)T

to length 1. This leaves us with one more ambiguity, due to the two opposite
directions for n. This can be resolved by some additional constraint, e.g. requiring
that all plane normals point towards the 3D sensor. With these conventions
the proportional similarity of Eqn. 3 can be replaced by an equality. Due to
the normalization of the plane coordinates, the transformation between planes
can be computed analogous to the rigid transformation between points. For
example, the least squares algorithm of [1] can be used. For more details on the
implementation with planes, we refer to [17, 12, 4].

3.2 The hand-eye error metric

We evaluate the depth performance of a range sensor by the correctness of the re-
constructed planes (white boards). On its turn, the reconstruction of the planes
is validated by the accuracy of the computed motion between two camera posi-
tions. The estimated camera motion can be compared with the known motion of
an articulated robot arm the camera was rigidly attached to (Fig. 1). However,
the camera motion is conjugated to the known robot motion. This means that
the motion is the same, but expressed in different bases. If the 4×4 transforma-
tion matrix A denotes the motion of the robot, and if B represents the camera
motion matrix, then this conjugacy is algebraically expressed by similarity of
matrices [6]:

A = XBX−1 (4)



In the literature this issue is also known as the AX = XB calibration problem
[8]. This 4× 4 matrix X is the so-called hand-eye calibration between robot and
camera. In general, the transformation X between the robot coordinate frame
and the camera frame is not a priori known. In our validation experiments, the
robot transformation A is accurately known and considered as ground truth,
while the computation of B has to be validated for the different types of TOF
cameras. To this end, we compose a system of linear equations in the unknown
entries of the hand-eye matrix X, following [8]. For the convenience of the reader
we briefly explain how this system of equations is obtained.

If the exact camera transformation B matrix is available then we are guar-
anteed to have a solution X to the hand-eye calibration problem

AX −XB = 0 (5)

These matrices are all 4× 4 transformation matrices and can be expressed as in
Eqn. 2: (

RA tA
0T 1

)(
RX tX
0T 1

)
=

(
RX tX
0T 1

)(
RB tB
0T 1

)
. (6)

After performing the matrix multiplication, the resulting block matrix can be
decoupled into the following system of matrix equations:{

RARX = RXRA

RAtX + tA = RXtB + tX
⇔

{
RARX −RXRA = 0

RXtB + (I3 −RA)tx = tA
(7)

The tensor product ⊗ of matrices appears to be a convenient tool to rearrange
the factors of a matrix product in order to separate the unknown matrix in a
matrix equation [10]:

M · P ·N = Q⇔ (NT ⊗M)vec(P ) = vec(Q), (8)

where vec(Q) denotes the vectorization of matrix Q: the vector obtained by
concatenating the columns of Q. Consequently, using Eqn. 8, we can reformulate
Eqn. 7 as follows:{

(I3 ⊗RA)vec(RX) = (RT
B ⊗ I3)vec(RX)

(tTB ⊗ I3)vec(RX) + (I3 −RA)tX = tA
(9)

yielding a system of twelve linear equations in the nine unknowns (vec(RX)T , tTX):

M ·
(

vec(RX)
tX

)
= s ⇔

(
I3 ⊗RA −RT

B ⊗ I3 0
tTB ⊗ I3 I3 −RA

)(
vec(RX)

tX

)
=

(
0
tA

)
(10)

Eqn. 10 was mentioned in the review paper [14] on hand-eye calibration. In
order to determine (RX , tX) we need to know the robot motion A and the
corresponding measured camera transformation B. To actually solve this system,
at least three given transformation pairs (A,B) are necessary. Furthermore, to
guarantee full rank for this system of equations the vectorized rotation matrices
of the three given transformations must be linearly independent.



In practice, coping with noisy measurements, the camera motion B obtained
from the plane-based method of Section 3.1 is not exact. Therefore, we combine
Eqn. 10 for multiple transformation pairs (Ai, Bi) (1 ≤ i ≤ n, n ≥ 3) as follows:M1

...
Mn

(vec(RX)
tX

)
=

 s1
...
sn

 (11)

with

Mi =

(
I3 ⊗RAi −RT

Bi
⊗ I3 0

tTBi
⊗ I3 I3 −RAi

)
, si =

(
0
tAi

)
(12)

The hand-eye transformation X can be estimated by the least-squares ap-
proximation (LSA) of this overdetermined system of linear equation. In our
context, the estimation of X in itself is less important than the least-squares
error of the LSA, because this indicates the quality of the system of equations,
and hence it validates the accuracy of B. This motivates us to define the mean
least-squares solution error of the LSA of this sytems as an error metric for the
depth sensor that provided the reconstruction of the planes, called the hand-eye
error metric (HEE).

HEE =
√
||s−M(MTM)−1MT s||2/(12n) (13)

with M = (MT
1 , . . . ,MT

n )T and s = (sT1 , . . . , s
T
n )T . The error metric provided by

Eqn. 13 is motivated by the following arguments:

– The robot transformation A is known accurately (we can assume zero noise
for A).

– The transformation matrix X necessarily exists and is fixed for a given robot-
sensor system. Therefore, the hand-eye error would be zero if the rigid motion
B of the depth sensor was computed correctly.

– HEE is able to assess the validity of a method over multiple measurements,
yielding a growing system of equations (Eqn. 11). The ability to combine
multiple camera positions in one error metric enables us to cover the whole
image space of the range sensor, such that the complete sensor is evaluated.

4 Evaluation metric random error

The proposed experimental setup allows us to measure the random noise of
the tested camera simultaneously. Different planes are measured in the scene
in order to compute the transformation of the range sensor between different
robot positions (Section 3.1). These planes are segmented by means of Ransac.
With the computed plane coordinates it is possible to compute an expected
depth measurement for each pixel inside the segmented rectangular image region
representing the measured plane. The difference between the plane and the true
depth measurements represents the measurement noise. The standard deviation



of the Euclidean distances between the 3D-reconstructed pixel and the fitting,
characterizes the random noise of the tested range sensor.

Furthermore, during the proposed procedure, the plane is viewed from dif-
ferent directions. This allows us to evaluate the measurement noise as a function
of the measurement angle (Figure 3).

5 Results

In the validation experiments described below, random transformations are sam-
pled from our dataset. This dataset consists of measurements from twenty dif-
ferent robot positions. In each position, five images have been taken by a TOF
sensor that was rigidly attached to the articulated robot arm. These TOF images
contain 3-D point clouds from the scene. Finally, all these measurements have
been repeated for three different commonly used Time-of-flight cameras: Kinect
One, Mesa SR4500 and IFM O3D303. Both the systematic and random errors
are evaluated separately:

1. For the systematic error, two random robot positions are chosen. The trans-
formation of the range sensor between these positions is calculated using
plane coordinates of the five planes measured in both positions. This ran-
dom selection of positions is repeated fifteen times, avoiding to duplicate a
previously chosen pair of transformations. Next the hand-eye error metric
is calculated using these transformations (translations are in mm). The cal-
culation of this error metric is repeated twenty times for different random
positions. The distribution of this error metric is visualized for each TOF
camera by means of a boxplot (Fig. 2).

2. For the evaluation of the random error, all measured planes are used. For
each frame the standard deviation of the Euclidean distance between each
measured point and the determined plane inside the segmented region repre-
sents the noise level. In addition, this noise level is plotted in Fig. 3 against
the angle between the plane normal and the focal axis of the range sensor.
The possible presence of a linear relation between the random error and the
measurement angle is checked by the correlation coefficient.

5.1 Systematic error

Figure 2 shows the boxplots representing the distribution of the hand-eye error
metric (HEE) for multiple different systems of selected transformations for three
different sensors. A small HEE indicates a low systematic error. Indeed, in this
case the hand-eye calibration, found as solution of the system of equations (11),
is stable and hardly affected by the choice of transformations that contribute to
this system. Furthermore, if the 3D calibration of the range camera is accurate,
we expect the HEE metric to be the same for every included transformation.
A large spread of the hand-eye error metric points toward unreliable estimates
for the transformation of the camera. This unreliability indicates a change of
systematic error across the measurement volume of the considered range sensor.
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Fig. 2. Distribution of the hand-eye error metric for three different TOF cameras
(transformations are in mm): Kinect One (mean: 0.92), IFM 03D303 (mean: 1.60) and
Mesa SR4500 (mean: 5.59) represented as boxplot. This test shows that the systematic
error of the Kinect One is low compared to the Mesa SR4500. The systematic error of
the IFM O3D303 lies somewhere in between.

The test shows that the systematic error of the Kinect One is the lowest,
followed by the IFM 03D303 while the Mesa SR4500 performs worst. This test
indicates that the dimensional accuracy is the most reliable for the Kinect One.

5.2 Random error

Figure 3 shows a scatter plot of the spread of the measurement error against
the measurement angle. A low spread indicates a low noise level of the sensor. A
possible linear relationship between the measurement angle and the noise level
is evaluated by means of the correlation coefficient, because this would indicate
that noise levels depend on the measurement angle.

The boxplots in Figure 3 show that the noise levels of Kinect One are the
lowest. The noise levels of IFM O3D303 are the highest for small angles, but for
larger angles (above 30 degrees) the noise level of MESA SR4500 becomes the
highest. This is because there is a strong linear relationship between noise and
angle for the MESA SR4500 (correlation coefficient of 0.67) but not for the IFM
O3D303.

6 Conclusions

We presented a relatively simple experiment to compare different range sensors,
both in terms of systematic and random measurement error. The experiment
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Fig. 3. Scatter of the standard error against measurement angle for the three considered
TOF cameras. Lower noise is better, and independence between measurement angle and
measurement noise is desired. The correlation coefficients between the measurement
angle and the measurement error for Kinect One, IFM O3D303 and MESA SR4500
are respectively: 0.29, 0.03 and 0.67

uses a robot and a plane. This robot is used to provide an accurate ground truth
motion independent of the considered range sensor. Other methods to obtain
an accurate ground truth motion are also allowed. This could for example be a
coordinate measuring arm, infrared tracker, etc.

The data provided by this experiment contain useful characteristics of the
considered range camera. The systematic error of the camera can be quantita-
tively assessed using the hand-eye metric. This error metric compares the ground
truth motion with the motion assessed by the range camera. If both motions
agree, this error metric is low. The noise levels can be assessed by computing
the standard deviation of the difference between measured plane values and the
plane fitted by a robust plane fitter. Because the measurement plane is viewed
from different directions, we can determine the sensitivity of the measurement
noise to the measurement angle, which is important in many applications.

This experiment can also be repeated to study different range sensor specific
errors. For example, for a Time-of-flight camera the noise levels are dependent
on the integration time. The test proposed in this paper can be repeated for
different values of the integration time. The results provide insight in how the
changed parameter affects both the systematic and random error.
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