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Abstract. We demonstrate that lottery markets can exhibit the “hot-hand” phenomenon,
in which past winning numbers tend to have a greater share of the betting proportion in
future draws even though past and future events are independent. This is surprising as
previous works have instead documented the presence of an opposite effect, the “gam-
bler’s fallacy” in the U.S. lottery market. The current literature also suggests that the
gambler’s fallacy prevails when random numbers are generated by mechanical devices,
such as in lottery games. We use two sets of naturally occurring data to show that both the
gambler’s fallacy and the hot-hand fallacy can exist in different types of lottery games. We
then run online experimental studies that mimic lottery games with one, two, or three
winning numbers. Our experimental results show that the number of winning prizes
impacts behavior. In particular, whereas a single-prize game leads to a strong presence of
the gambler’s fallacy, we observe a significant increase in hot-hand behavior in multiple-
prize games with two or three winning numbers.
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1. Introduction
Studies show that people rely on heuristics or simple
mental models to interpret random events (Tversky
andKahneman 1974, Oskarsson et al. 2009). Although
such heuristics ensure fast decisions that generate rea-
sonably good outcomes under most circumstances, they
can trigger systematic deviations from certain notions of
rationality. Among others, the gambler’s and hot-hand
fallacies are cognitive biases that have been com-
monly observed in the perception of randomness, and
they lead us to misjudge probabilities.

The gambler’s fallacy is an erroneous belief in neg-
ative correlations of independent outcomes gener-
ated by a random process. For example, when tossing
a fair coin, people often mistakenly believe that a tail
is due after a sequence of heads. The gambler’s fallacy
has long been observed in the field, particularly in
lottery games (e.g., Clotfelter and Cook 1993, Terrell
1994, and Sundali and Croson 2006). The hot-hand

fallacy—the counterpart to the gambler’s fallacy—is
the fallacious belief that a person who has experi-
enced a success in one random event is more likely to
succeed in subsequent attempts. This fallacy was first
described by Gilovich et al. (1985) in their research on
basketball games; they observed that both players
and fans believe that a player who has made a suc-
cessful streak of shots will continue to score as if
having “hot hands.” Later, Camerer (1989) showed
that betting markets for basketball games also exhibit
a small hot-hand bias.
Although the two fallacies seem to contradict each

other, the current literature shows that they may
coexist in the same individual and/or appear within
the same setting. For example, Croson and Sundali
(2005) and Sundali and Croson (2006) found that
casino players exhibited the gambler’s fallacy when
they bet on numbers and the hot-hand fallacy re-
garding their own luck. Guryan and Kearney (2008)
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examined the sales data for lottery outlets that had
sold winning jackpot tickets and showed that those
stores experienced a significant increase in game-
specific ticket sales, exhibiting a “lucky-store” effect.

The current literature posits twomain explanations
for the coexistence of these seemingly opposite phe-
nomena. One line of research suggests that they
both arise from the representativeness heuristics or
belief in the law of small numbers (e.g., Tversky and
Kahneman 1971, Rabin 2002, Asparouhova et al.
2009, and Rabin and Vayanos 2010). These works
identify the importance of streak length in influencing
the perception of randomness: the gambler’s fallacy
prevails in short streaks, but as the streaks lengthen,
beliefs in the hot-hand fallacy dominate. In the other
line of research, observations that the gambler’s fal-
lacy is more prevalent in lottery games and the hot-
hand fallacy more prevalent in games that require
skill are often attributed to the source of the random-
number generator. That is, we tend to observe the
gambler’s fallacy if the random generator is a me-
chanical device and the hot-hand fallacy if it is a
human being (e.g., Ayton and Fisher 2004, Burns and
Corpus 2004, Caruso et al. 2010).

This paper provides empirical evidence using two
sets of naturally occurring data to demonstrate that
both the gambler’s and the hot-hand fallacies can
appear in lottery games. We collected field data from
two fixed-odds lottery games. The first is a three-digit
(3D) lottery gameplayeddaily inChina, the scheme of
which resembles the Pick 3 lottery game reported by
Clotfelter and Cook (1993); the other game is a four-
digit (4D) lottery game played in southeast Asia that
picks 23 winning numbers at a time, three times per
week. Consistent with previous studies, we observe the
gambler’s fallacy in the 3D lottery game. In contrast to
what the literature would predict, wewere surprised to
discover the hot-hand fallacy in the 4D game. Upon
reflection, long streaks are unlikely to be observed in
lottery games, and therefore, theories building on streaks
in sequences of randomevents cannot be applied directly
to these environments. In addition, because the winning
numbers for both the 3D and 4D games are machine-
generated, theories that focus on the source of random-
nesswould predict the gambler’s fallacy in both games.

To bridge this gap, our paper proposes an alter-
native explanation for our field observations: we
suggest that the lottery-game design can play a role in
shaping the perception of randomness. Specifically,
we show that the number of winning prizes has an
impact on the occurrence of the two fallacies: single-
prize games can lead to the gambler’s fallacy, and
multiple-prize games, under appropriate conditions,
may result in the hot-hand fallacy. In addition to the
number of winning prizes, the two lottery games
differ in other aspects, such as frequency of draw and

sample population. We, therefore, test our conjecture
in an experimental study that allows us to both isolate
the effect of the number of prizes and to control for
all other differences.
In the experiment, participants are asked to guess

the outcome of simulated lottery games that only
differ with respect to the number of prizes. This de-
sign contributes to the experimental literature on the
gambler’s fallacy, which mainly focuses on binary
choice sets and a single prize. We expand the choice
set beyond the binary case and examine howbehavior
changes when multiple prizes are present. Our main
results show that, whereas the gambler’s fallacy still
prevails in the single-prize game, the fallacy immediately
disappears when the number of prizes increases to two
or three. At the individual level, we observe more hot-
hand behavior with multiple prizes than with a single
prize. We infer from our observations that the game
design, in the form of the number of prizes drawn, can
systematically influence a player’s betting behavior.
We further analyze our experimental data to un-

derstand whymultiple-prize games lead to more hot-
hand behavior. We hypothesize that different game
experiences across single- and multiple-prize games
may play an important role. Specifically, single- and
multiple-prize games differ with respect to how
frequently past winning numbers reoccur. In our
experimental data, strong gambler’s fallacy effects
emerge in thefirst few rounds across all lottery games,
suggesting that participants start out with a pre-
disposition to avoid past winning numbers. This
observation is consistent with cognitive evidence
on the prevalence of the gambler’s fallacy, which
is linked to the belief in negative autocorrelation
(see Rabin 2002, section 2, for a detailed literature
review). Repetitions of winning numbers in two
consecutive draws are rather rare events in our single-
prize setup (10% chance of repetition). The subjective
game experience is, therefore, consistent with a belief in
negative autocorrelation as contradicting evidence is
rarely experienced. However, the probability of
observing the repetitions of winning numbers in our
multiprize setups is much higher (37.7% in the two-
prize game and 70.8% in the three-prize game), and
participants in multiprize games frequently experi-
ence past winning numbers being redrawn. We argue
that, when participants are eventually confronted
with frequent repetitions, they can abandon their
initial belief in negative autocorrelation (gambler’s
fallacy) and adopt a new belief in positive autocor-
relation (hot-hand fallacy), which is consistent with
their subjective game experience. This interpre-
tation is compatible with our observation that the
gambler’s fallacy quickly disappears after playing
several rounds of multiple-prize games, whereas it
persists in the single-prize game.
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This interpretation can also explain the differences
in our field data’s behavior between the 3D and 4D
lottery games. Table 1 presents the size of winning
numbers, probabilities of each number winning and
seeing at least one repeatingwinning numbers in both
games. The second game, with 23 winners, clearly has
a higher chance of seeing a winning number again
in the next draw. If players observe that a winning
number (or some related numbers) has a higher chance
of appearing again, we ask how such observations
will affect their choice of lottery numbers to bet on. Our
empirical data suggest that the gambler’s fallacy pre-
vails in the first case (1 prize in 1,000 numbers),
whereas the hot-hand fallacy prevails in the latter (23
prizes in 10,000 numbers).

In summary, we provide empirical and experi-
mental evidence that behavior can be altered through
a careful lottery-system design. We believe these
results can have important practical implications for
risk management and decision making under un-
certainty because they suggest that the perception of
randomness can bemanipulated, and hence, behavior
can be nudged with the appropriate design. For in-
stance, several countries have attempted to influence
commuters’ behavior by offering incentive schemes
in which commuters earn credit for each journey
taken (with triple credit for off-peak journeys) and to
enter in weekly cash lotteries. The success of these
schemes hinges on an insight from behavioral eco-
nomics: on average, people are risk seeking when the
stakes are small. Hence, a 1-in-1,000 chance to win
$100 is more attractive than a cash award of $0.10. For
such low-probability events, our results suggest that
we could do better if we can induce the belief that
certain choices made by players are more likely to
win. For example, this could be done by designing
lottery games that make the hot-hand fallacy domi-
nate, and our results suggest that increasing the
number of prizes is enough to make what is actually a
1-in-1,000 chance of winning appear to be a much more
attractive bet to commuters.

2. Literature Review
Both the gambler’s and the hot-hand fallacies have
long been observed in laboratory experiments and in
thefield.Amongmanyothers,Clotfelter and Cook (1993)

observed that lottery players in 3D numbers games
in the United States are subject to the gambler’s
fallacy. Figure 1 shows the percentiles of betting ratios
(betting volume index over average index on a par-
ticular day) on different days after the winning num-
bers have been drawn. Once a 3D number is drawn as
thewinner, subsequent betting ratios drop immediately
and then gradually pick up. The immediate initial drop
provides strong evidence of the gambler’s fallacy at
work. In a different context, Camerer (1989) showed
that betting markets for basketball games exhibit a
small hot-hand bias. Similarly, when examining a set
of panel data, Green and Zwiebel (2017) found strong
hot-hand fallacy effects among baseball players in
Major League Baseball. Suetens et al. (2016) found
that people playing Lotto games usually avoid
numbers that have recently been drawn, exhibiting the
gambler’s fallacy, but tend to bet more on winning
numbers in streaks (i.e., those that have been drawn
several times in a row), suggesting the presence of
the hot-hand fallacy. Chen et al. (2016) examined
independent data sets from three empirical settings
involving high-stake, sequential decisions: asylum
judges, loan officers, and baseball umpires. They
found evidence for negatively correlated decisions,
consistent with the gambler’s fallacy.
Importantly, both the gambler’s and the hot-hand

fallacies may coexist in the same individual and ap-
pear within the same setting. One line of research

Figure 1. Betting Ratios on Previous Winning Numbers in
Three-Digit Numbers Games (Clotfelter and Cook 1993)

Table 1. The Probability of Winning and Seeing at Least One Repetition in Subsequent
Draws

3D game 4D game

Total numbers 1,000 10,000
Winning numbers 1 23
Probability of winning 1

1,000 � 0.001 1 − (1 − 1
10,000)23 ≈ 0.0023

Probability of having at least one repetition in two
subsequent draws

1
1,000 � 0.001 1 − (1 − 0.0023)23 ≈ 0.05
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posits that they both arise from a representativeness
heuristic or belief in the law of small numbers.
Tversky and Kahneman (1971) coined this term and
examined its connection with the gambler’s fallacy.
Rabin (2002) and Rabin and Vayanos (2010) built
theoretical models to model the law of small numbers
thatdirectly leads to thegambler’s fallacy. Asparouhova
et al. (2009) ran a set of laboratory experiments on
binary choice games, and their results support the
work of Rabin (2002).

These studies built the decision biases (gambler’s fal-
lacy) directly into their models and showed that other
decision biases may emerge as the streaks of winning
lengthen. However, as streaks are unlikely in lottery
games, these models cannot be directly applied in
these environments. Our paper instead examines the
role of lottery game design in shaping the perception
of randomness. We show that, because of game de-
sign, either the gambler’s or the hot-hand fallacy can
arise under appropriate conditions, and we can, thus,
manipulate the behaviors through careful system
design.

A second stream of research argues that the type
of random-event generator—whether an inanimate
device or a human being—determines the occurrence
of the gambler’s or hot-hand fallacy (Ayton and
Fisher 2004, Burns and Corpus 2004). Specifically, if
the random process is believed to be generated by a
mechanical device, people expect negative recency;
if a human being generates the sequences, however,
people expect positive recency. For example, the
experimental study by Caruso et al. (2010) demon-
strated that human subjects tend to predict the con-
tinuation of a streak of outcomeswhen the agents that
generate it are perceived to be intentional. In contrast,
when generated by a mechanical device (as in lottery
games), people believe the streak will end; that is, the
gambler’s fallacy dominates. These results are rein-
forced by field observations made in casinos and lottery
stores (Sundali and Croson 2006, Guryan andKearney
2008). Green et al. (2010) developed several ingenious
arguments to demonstrate that experimental cues can
alter how subjects learn about the generating process
(using optimal Bayesian updating with erroneous
beliefs) and, thus, substantially affect subjects’ choices
without altering the underlying outcome probabili-
ties. Our work complements these explanations; our
empirical evidence shows that either the gambler’s
or the hot-hand fallacy can occur even if the random
process is generated by mechanical devices.

In addition, further evidence of cognitive biases also
suggests that the gambler’s fallacy occurs in situations
inwhich information is experienced sequentially over
time (Barron and Leider 2010). For instance, Militana
et al. (2010) found that the bias was stronger when
research subjects had longer time intervals between

choices. In contrast, the gambler’s fallacy decreased
when people’s inaccurate assessments of the proba-
bility of an outcome imposed costs (Terrell 1994).
Navarrete and Santamarı́a (2012) showed, in two

laboratory experiments, that the incidence of the
gambler’s fallacy was reduced when the size of the
choice set was increased. Our paper has a different
focus: we investigate how the number of prizes—the
size of the outcome set—influences player’s betting
behavior while fixing the size of the choice set. Our
results, consequently, are different: we observe more
hot-hand behavior inmultiple-prize games compared
with single-prize games.

3. Field Evidence
In this section, we use field data from two fixed-odds
lottery games to demonstrate that both the gambler’s
and the hot-hand fallacy can exist in lottery games.
The first is a 3D lottery game played in China, the
scheme of which resembles the “Pick 3” lottery game
reported in Clotfelter and Cook (1993). The lottery
draws a single prize-winning number every day,
seven days a week. The other game, a 4D lottery game
played in southeast Asia, picks 23 prize-winning
numbers at a time, three times a week. In what fol-
lows,we describe the two games in detail and provide
evidence that the gambler’s fallacy prevails in the 3D
game, and the hot-hand fallacy is the dominant be-
havior in the 4D game.1

3.1. 3D Numbers Game
In the 3D numbers game, a single winning number
from 0 to 999 is randomly drawn with equal proba-
bility at 8:30 p.m. each day. Lottery tickets for the
day’s draw are sold on the same day until 8:00 p.m.
Eachwager costs 2 RMB. There are three types of bets:
straight, box 3, and box 6. In the straight bet, players
bet on a specific 3D number and receive 1,000 RMB
per wager if the number wins. The box 3 bet allows
players to make one wager on the permutation of any
3D number with two identical digits and, in the box 6
bet, on the permutation of any 3D number with three
unique digits. For example, a player who places a
2 RMB wager on 223 and chooses the Box 3 bet type
actually bets 2/3 RMB on each of the three numbers
223, 322, and 232. The payout per wager2 and odds of
winning are shown in Table 2.
Testing for the presence of the gambler’s fallacy

usually requires a full data set that includes the sales
of every number in every draw. Such a data set is not
publicly available for the lottery of interest. Never-
theless, we were able to obtain a rich enough data
set from the official website of the game operator,3

which consists of (i) thewinning number drawn, (ii) the
number of winning wagers (of the three types), and
(iii) total sales for eachdraw.Weextract this information

Kong et al.: Judgment Error in Lottery Play—Gambler’s and Hot-hand Fallacy
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from 4,466 draws on a daily basis over a 150-month
period from May 8, 2005 to October 30, 2017.

In this data set, 10 numbers were never drawn as
prize winners, 59 numbers appeared only once, and
931 numberswere drawn at least twice.We define our
dependent variable, payout rate, as the amount paid to
bettors relative to total sales for a given draw. The
higher the payout rate of a winning number, the more
popular this number was among bettors relative to
the market size of the draw. The overall mean payout
rate is 49.2%, and the median is 42.7%. The lowest
payout rate of 7.3% occurred on September 18, 2010,
when “945” was drawn as the winning number; the
highest payout rate was 530.3%, which occurred on
July 18, 2005, when “353” was drawn as the winning
number. A Welch’s two-sample t-test does not detect
any significant difference (p-value � 0.329) in mean
payout rates between numbers that have been drawn
only once (with mean m � 0.526) and numbers that
have been drawn at least twice (m � 0.488).

We seek to estimate the change in subsequent sales
of a 3D number after it has been drawn as the win-
ning number. As we only have sales information for
winning numbers, we construct a subsample of 3,476
draws in which the winning numbers have been
drawn previously (repeated) at least once within
the period the full data set covers. To measure the
influence of past wins on future ticket sales, we define

the delay of a winning number as the number of draws
that have elapsed since the last time it was drawn.We
then bin the draws according to the delay with in-
tervals of a week. Each bin contains around 30 data
points (draws). Figure 2(a) shows the 25th percentile,
themedian, and the 75th percentile of the payout rates
in each bin for the first eight weeks. The first data
point represents the same statistics for the full data
set. We observe a clear pattern of declining payout
rates with a one-week delay, which then eventually
bounce back to their initial levels. Bettors display a
tendency to avoid past winning numbers with short
delays, exhibiting strong evidence for the gambler’s
fallacy. A more detailed account on the data under-
lying Figure 2(a) is provided in Table B.1.
Our latter interpretation of the data is corroborated

by a series of paired t-tests. For each number, we
calculate its average payout rate for all draws that
repeat within x weeks (early repetition) and that
repeat in more than x weeks (late repetition). We
compare average payout rates between early and late
repetitions at the intranumber level. We then test the
null hypothesis of equal payout rates between early
and late repetitions for varying values of x with
x � 3, 5, 7, 9, and 11. All tests unanimously show that
the mean payout rate for early repetitions is signifi-
cantly lower than that for late repetitions, and it is
worth noting that all p-values are in the order of

Figure 2. (Color online) Betting on Previous Winning Numbers in 3D and 4D

Table 2. Prize Structure and Winning Odds in 3D Numbers Game

Bet type Match to win Payout per wager Odds

Straight Match the exact order 1,000 1 in 1,000
Box 3 Match any order (two identical digits) 320 1 in 333
Box 6 Match any order (three unique digits) 160 1 in 167

Kong et al.: Judgment Error in Lottery Play—Gambler’s and Hot-hand Fallacy
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magnitude of 10−5 (see detailed results in Table B.2).
However, one drawback of our approach is that we
must exclude numbers that lack either early or late
repetition. As a next step, we demonstrate the exis-
tence of the gambler’s fallacy in 3D games via a re-
gression analysis that takes into account a broader set
of winning numbers.

For the regression analysis, we again consider all
numbers that were drawn at least twice, this time
including the first draw so that we can estimate the
payout rates at zero for the horizontal axis. We use
the demeaned payout rate, denoted as DR, as the
dependent variable. To obtain the demeaned payout
rates, we first calculate the average payout rate for
each number in all draws of the sample, then sub-
tract this number-specific average from the observed
payout rate of the winning number in each draw.
Demeaning mimics a number fixed-effects approach
and allows us to control for number-specific effects
(e.g., superstitions, lucky numbers, etc.).4 For each
number in the sample, we calculate the average
payout ratio and subtract this number-specific av-
erage from the actual observed payout ratios for this
number. By construction, the mean of the demeaned
payout ratio is zero. We use the delay (denoted as T)
as the independent variable. We characterize the re-
lationship between DR and log10(T + 1) as a higher-
degree polynomial. Polynomials are functionally
flexible, and their curvatures can capture the type of
effects we were expecting to observe in the data: a
diminishing effect over time of past wins on current
payout rates. We use an ordinary least squares ap-
proach with robust standard errors to estimate the
effect of log10(T + 1) on DR. We start with the qua-
dratic function and add successively higher-degree
polynomial terms as long as they turn out to be
significant. Our final model for the 3D game is a
sixth-degree polynomial and takes the following
form:

DRi � β0 +
∑6

k�1
βk × (log10(Ti + 1))k + αi, (1)

inwhichDRi is the demeaned payout ratio of the i − th
draw in the subsample, β0 is the fixed intercept, βk
is the coefficient of the kth-order polynomial func-
tion, and αi ∼ N(0, σ2α) represents unobserved ran-
dom effects. Estimated model coefficients are shown
in Table 3. All estimated parameters are significant
with small p-values.

To visualize our estimation results, we plot the
predicted values and their 95% confidence interval in
Figure 3(a). We observe a strong gambler’s fallacy
effect, in which the demeaned payout rate signifi-
cantly drops after a winning draw, gradually picks
up, and goes back to its initial level after around 60
draws. At a delay of one day, payout rates are reduced

by almost 30%. Even at a delay of 10 days, payout rates
are down by 10%.

3.2. 4D Numbers Game
In the 4D lottery game, players bet on numbers from
0–9,999. In contrast to the 3D game, in which sales
only occur on the day of the draw, 4D sales start
one week before each draw and close at 6 p.m. on the
day of the draw. There are three draws every week
on Wednesday, Saturday, and Sunday. The mini-
mum cost of a bet is one local currency. At each
draw, 23 numbers are picked as winning numbers,
randomly generated with replacement. There are five
prize categories. The first, second, and third prize
categories correspond to the first, second, and third
winning numbers drawn and offer a per-wager
payout of 2,000, 1,000, and 500 local currency, re-
spectively. The next 10 numbers belong to the so-
called “starters” category with a payout of 250 per
wager. Finally, the remaining 10 numbers belong
to the “consolation” category with a payout of 60 per
wager. Table 4 shows the payout for each prize cat-
egory and its winning odds.
We investigate the effect of a winning draw on

subsequent betting behavior for the winning num-
bers. We aim to demonstrate that a simple change in
the game design—from drawing one winning ball in
3D to drawing 23 winning balls in 4D—substantially
impacts betting behavior. Whereas we have estab-
lished the gambler’s fallacy as the prevalent behavior
in the 3D game, we now establish that hot-hand be-
havior is prevalent in the 4D game.

Table 3. Ordinary Least Squares Estimated Regression
Coefficients on Payout Ratio in 3D and 4D Numbers Games

3D 4D

log10(T) −1.817*** 0.233***
(0.375) (0.078)

log10(T)
( )2 3.683*** −0.286***

(0.954) (0.100)
log10(T)
( )3 −2.969*** 0.086***

(0.942) (0.032)
log10(T)
( )4 1.181***

(0.446)
log10(T)
( )5 −0.231**

(0.101)
log10(T)
( )6 0.018**

(0.009)
Intercept 0.014* −0.005

(0.009) (0.006)
Observations 4,407 1,103
F-value 7.03 3.06
Degrees of freedom F-value (6, 4400) (3, 1099)
Robust standard error Y Y

Note. Standard errors are robust and provided in parentheses.
***1%, **5%, and *10% significance levels.
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We obtained data from a game operator in the
southeast Asia region with information on 156 draws
over a one-year period. The data set consists of sales
volume for each of the 10,000 4D numbers and the
23 winning numbers in each draw. Because of the
presence of different prize categories in the 4D
numbers game, we use the betting proportion—defined
as the sales volume on a number divided by total sales
in a particular draw—as our measure for the popu-
larity of a number.5 We examine all winning numbers
from draw 1 to draw 100 and calculate their betting
proportions, respectively, on the day they are drawn
and the subsequent 56 draws. Sales increase by
about 40% immediately following awinning draw (cf.
Figure 2(b)), suggesting that the hot-hand fallacy
prevails at the aggregate level. Next, we demonstrate
the existence of the hot-hand fallacy in 4D via rig-
orous regression analysis.

To facilitate a fair comparisonwith the 3D game,we
also construct a subsample of 1,103 draws, consisting
of winning numbers that have been drawn at least
twice in our data set. We denote DR as the demeaned
value of the betting proportion and T as the number
of draws elapsed since this winning number last won.
We characterize the relationship between DR and
log10(T + 1) as a higher-degree polynomial. The final
relationship after adding significant higher-order

polynomial terms is a third-order polynomial and
takes the following form:

DRi � β0 +
∑3

k�1
βk × (log10(Ti + 1))k + αi. (2)

Corresponding regression results are reported in
Table 3. All polynomial coefficients are significant,
and the signs are opposite to those of corresponding
results in 3D. To visualize our estimated effects, we
plot the predicted values and their 95% confidence
interval in Figure 3(b). We observe an increase in the
demeaned betting proportion for short delays, which
is a clearmanifestation of bettors actively seeking past
winning numbers. This effect gradually decreases as
the delay becomes longer with betting proportions
reaching their initial levels at around 25 winning
draws. This result suggests the existence of the hot-
hand fallacy in the 4D numbers games.
In summary, we observe that lottery players’

betting behaviors are significantly affected by the
gambler’s fallacy in the 3D game and the hot-hand
fallacy in the 4D game. We conjecture that a plausible
explanation is that the game design—in particular,
the size of outcome sets—leads to the different ob-
servations in the two fixed-odds lottery games. In the
4D game, there are 23 winning numbers in each draw;
repetition of winning numbers across draws, there-
fore, occurs more frequently and similarities across
draws can be easily observed. This observable repe-
tition fosters the bettors’ belief that the same or
similar numbers have a higher chance of being drawn
again, leading them to select past winning numbers.
On the other hand, consecutive wins or extremely
short delays in repetitions are rather rare events in the
3D game. From the bettors’ perspective, it is, there-
fore, the norm not to observe recurring past winning

Figure 3. (Color online) Estimated Average Payout Rate and 95% Confidence Interval of Previous Winning Numbers in 3D
and 4D After a Winning Draw
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Table 4. Prize Table and Winning Odds in 4D Numbers
Games

Prize category Payout per wager Odds

First prize 2,000 1 in 10,000
Second prize 1,000 1 in 10,000
Third prize 500 1 in 10,000
10 starter 250 1 in 1,000
10 consolation 60 1 in 1,000
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numbers. This, in turn, can lead bettors to falsely infer
that past wins have a lower chance of being drawn
again, which motivates them to avoid past winning
numbers.

Nevertheless, we cannot rule out other factors that
might be the driving force behind our observations.
For example, cultural differences might exist between
the two populations. The two games also differ in the
number of winning prizes, number of digits in the
outcome set, and the frequency with which draws are
staged. Because of data limitations, we cannot ex-
clude the possibility that the observed differences
between the games are the result of these structural
differences. We, therefore, decided to examine how
the game design influences betting behavior via a
controlled experimental study. Our goal is to make
the causal statement that a ceteris paribus change
in the size of the winning numbers set increases
bettors’ tendency to seek past winning numbers,
thereby confirming our conjecture about the mech-
anism underlying our empirical observations. In the
following section, we report on the details of our
experiment.

4. Experimental Studies
Our experimental study investigates how game
design—in particular, the size of the set of winning
numbers—affects gambler’s and hot-hand fallacy
behaviors via a simulated lottery game. We have de-
veloped an online simulated lottery game that allows
us to induce ceteris paribus changes in the number of
winning prizes drawn. This environment presents sev-
eral advantages for investigating the mechanisms of
human probabilistic predictions. The game is wide-
spread in the population, requires little skill, and each
draw from the lotterymachine “follows a known, truly
random process with a fixed probability for each
number” (Suetens et al. 2016, p. 587). In our game, a
computer randomly draws winning number(s) from
an urn containing 10 balls numbered from zero
to nine. Each number is represented by exactly one
ball in the urn, and each ball has an equal chance of
being drawn.6 Following Harrison and List (2004),
our experiment can be classified as a framed field
experiment.

4.1. Method
4.1.1. Participants. Werecruited 210participants via the
crowd-sourcing platform Prolific for our online experi-
ment.7 Participants were screened based on English
as first language to avoid any linguistic ambiguity
for the instructional aspects of the experiment. Our
participants were either UK- or U.S.-based, compris-
ing 89% and 8% of the sample, respectively; 58.6%
were female, 12% were students, and the average
age was 36.5 years. Self-reported median household

income was between $35,000 and $49,999, and 66% of
the participants reported that they played lottery or
similar betting games less than once amonth with 35%
stating that they never played such games at all. On
average, it took participants eight minutes to complete
the experiment. They received a flat completion fee of
£0.80 (approx. $1.05). The best-guessing participant
within a treatment was awarded a bonus payment of
£15 ($19.80). The expected remuneration per partic-
ipant amounted to 1.5 times the recommended re-
muneration set by Prolific.

4.1.2. Design, Apparatus, and Procedure. Participants
received an invitation link to the simulated lottery
game via Prolifc. The lottery game itself was ad-
ministered via Qualtrics, an online survey tool that
recorded participants’ self-paced responses. Screen-
shots of the decision screens as well as transcripts
of the online instructions are provided inAppendix C.
In total, there were 45 rounds with one draw of
winning number(s) in each round (multiple winning
numbers were drawn in one draw without replace-
ment). The first five rounds constituted test rounds
and gave participants the opportunity to familiarize
themselves with the presentation style. In each of
the remaining 40 rounds, participants were asked to
guess one number from zero to nine. If the guess
matched either of the winning numbers drawn, the
participant earned one point. Pointswere accumulated
over the 40 guessing rounds, and the final score de-
termined the winner of the prize. We mimicked the
design of lottery websites as observed in 3D and
4D games. In particular, participants always saw the
winning number(s) from the last round on screen, and
they could click a button to reveal the results of the five
most recent rounds.
Participants were randomly assigned to three ex-

perimental conditions, which differed only with re-
spect to how many winning numbers were drawn in
each round. In treatment T � 1, 75 participants played
the lottery game with one winning number drawn. In
treatments T � 2 and T � 3, 63 and 72 participants
played lottery games with two and three winning num-
bers drawn without replacement, respectively.8 We
implemented a stratified randomization procedure,
which explains the minimal differences in terms of
number of participants across games.

4.2. Results
For our analysis of the 40 guessing rounds, we fol-
low the same empirical strategy used by Suetens et al.
(2016) and Wang et al. (2016), who analyze naturally
occurring data with the same information struc-
ture as ours. We run probit regressions to estimate
the effect of past winning draws on current betting
behavior. Independent observations are taken at

Kong et al.: Judgment Error in Lottery Play—Gambler’s and Hot-hand Fallacy
8 Management Science, Articles in Advance, pp. 1–19, © 2019 INFORMS



the participant–period–number level. Our dependent
variable takes the value one if a participant bets in a
given period on a given number and zero otherwise.
Independent variables include a dummy for the most
recent history (period t − 1) and a count variable for
number of wins in earlier histories (periods t − 5
to t − 2). For brevity of exposition, we only report
estimation results for these two variables. However,
all estimated models include fixed effects (FE) at the
round and number level.

We also control for subject-specific “hotness” of
lucky numbers. For this, we include a variable that
measures the share of bets a number has received in
the past. To control for other subject-specific effects,
we either include subject FE or a set of demographic
controls in terms of gender, age, income, and gam-
bling habits. Standard errors are clustered at the
participant level. Table 5 reports the average mar-
ginal effects of our regressions.

We focus the discussion of our results on the model
with subject FE because differences across estimation
models are minimal. We find that, if a number has won
the most recent draw (period t − 1), the probability of
participants’ betting on this particular number is
reduced by 4.3% points in T � 1. This effect lasts
beyond the most recent draw. For every win in the
periods t − 2 to t − 5, the betting proportion on that
number is reduced by 2.1% points in T � 1. On the
aggregate level, we observe a strong gambler’s fallacy
effect in T � 1. However, aggregate betting behavior
is significantly impacted by a change in the number of
winning balls drawn. In treatments T � 2 and T � 3,
we do not detect any significant manifestation of the
gambler’s fallacy in aggregate betting behavior.

Next, we analyze participants’ betting behavior
conditional on streak length. When a number is
drawn as a winner in consecutive rounds, we say that
there is a “streak” of that winning number. The streak

length is then defined as the number of consecutive
winning rounds. For example, a streak length of one
means that a number won in the most recent round
(t − 1) but not in (t − 2), whereas a streak length of four
means that a numberwon in round (t − 4) to (t − 1) but
not in (t − 5). As discussed by Rabin (2002) and Rabin
and Vayanos (2010), streak length plays a prominent
role in the misperceptions of positive or negative
autocorrelation in independent and identically dis-
tributed (i.i.d.) processes. We run probit regressions
to estimate the impact of streak length on the betting
proportion of a number, following the same empirical
strategy we used in Table 5. Table 6 reports the cor-
responding average marginal effects. The absolute
frequencies of streak-length occurrences per partici-
pant are underlined and provided above the co-
efficient estimates (e.g., 36 streaks of length one in
T � 1, 28 streaks of length two in T � 3). In T � 1, we
find the gambler’s fallacy to emerge in short streaks
(with streak lengths one and two), but then betting
behavior switches and turns into hot-hand fallacy
behavior when the streak length is four. It is worth
noting that this pattern of behavior is compatiblewith
the theoretical predictions derived by Asparouhova
et al. (2009). In T � 2, we find only hot-hand behavior
with longer streaks. This behavior has already emerged
when streak length is three and persists when streak
length is four. In T � 3, there is no significant impact of
streak length on betting behavior.
Thus far, our analysis has revealed a strong tendency

in aggregate betting behavior to avoid past winning
numbers in T � 1, which then disappears in T � 2 and
T � 3. To demonstrate that this pattern is the result of
an increased inclination to bet on pastwinning numbers
in T � 2 and T � 3, we next focus our analysis on
individual-level data.
As a benchmark behavior, we consider i.i.d. betting

strategies that conceptualize the absenceof anypreference

Table 5. Average Marginal Effects of Probit Regression on Historical Wins
(Aggregate Level)

T = 1 T = 2 T = 3

Won period t − 1 = 1 −0.043*** −0.044*** 0.004 0.008 −0.011 −0.009
(0.007) (0.006) (0.014) (0.014) (0.009) (0.009)

Wins in t − 2 to t − 5 −0.021*** −0.017*** −0.002 0.002 −0.005 −0.003
(0.005) (0.005) (0.004) (0.003) (0.003) (0.003)

Number of participants 75 75 63 63 72 72
Subject fixed effects Y N Y N Y N
Period fixed effects Y Y Y Y Y Y
Number fixed effects Y Y Y Y Y Y
Demographic controls N Y N Y N Y
Clustered standard error Y Y Y Y Y Y
Observations 30,000 30,000 25,200 25,200 28,800 28,800

Note. Cluster robust standard errors are provided in parentheses.
***1% significance level.
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for or against previous winning number(s). We then
assess whether observed behavior deviates from this
benchmark behavior. Observe that, under any i.i.d.
strategy, the total count of bets on a previouswinning
number (i.e., to continue an ongoing streak), denoted
by x, follows a binomial distribution x ∼ B(n � 40, p �
i/10) in treatment T � iwith i � 1, 2, 3. Figure 4 depicts
these theoretically expected density functions. We

then bin participants based on the number of times
they bet on a previous winning number and plot
Gaussian kernel density estimates of these bin counts
next to the i.i.d. densities in Figure 4.When compared
with T � 2 and T � 3, the inclination to follow streaks
in T � 1 is skewed to the left relative to i.i.d. strategies.
At the same time, the right-hand tails of the densities
for treatments T � 2 and T � 3 are wider than their

Table 6. Average Marginal Effects of Probit Regression on Streak Length (Aggregate Level)

T = 1 T = 2 T = 3

Length of streak = 1 36 66 85
−0.051*** −0.053*** −0.004 0.000 −0.014 −0.012
(0.007) (0.006) (0.013) (0.013) (0.009) (0.009)

Length of streak = 2 2 10 28
−0.054*** −0.044** 0.013 0.018 −0.002 −0.000
(0.018) (0.019) (0.020) (0.021) (0.012) (0.012)

Length of streak = 3 1 3 5
0.035 0.051 0.094** 0.100*** −0.004 −0.005
(0.047) (0.047) (0.038) (0.038) (0.017) (0.016)

Length of streak = 4 1 1 2
0.166** 0.182*** 0.169** 0.153** 0.022 0.013
(0.065) (0.064) (0.070) (0.065) (0.029) (0.028)

Number of participants 75 75 63 63 72 72
Subject fixed effects Y N Y N Y N
Period fixed effects Y Y Y Y Y Y
Number fixed effects Y Y Y Y Y Y
Demographic controls N Y N Y N Y
Clustered standard error Y Y Y Y Y Y
Observations 30,000 30,000 25,200 25,200 28,800 28,800

Note. Cluster robust standard errors are provided in parentheses.
***1%, **5% significance levels.

Figure 4. (Color online) The Gambler’s and Hot-Hand Fallacies at the Individual Level
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i.i.d. expectations, indicating an increased tendency
to bet on previous winning numbers.

We can now classify participants as seeking past
numbers if they disproportionately continue streaks
relative to the i.i.d. benchmark. Let nj denote the
observed total count of bets on previous winning
numbers by participant j. We consider two proba-
bility thresholds. Under the 10% probability thresh-
old, participant j is classified as a hot-hand player if
Pr[x ≥ nj]< 0.1, that is, if the probability of observing
nj or more bets on previous winning numbers under
an i.i.d. strategy is smaller than 10%. Analogously, we
consider a 5% probability threshold and classify j as a
hot-hand player if Pr[x ≥ nj]< 0.05. Under a threshold
of 10%, we observe 5.3%, 20.6%, and 16.7% hot-hand
players in treatment T � 1, T � 2, and T � 3, respec-
tively. When measured at a threshold of 5%, there are
0%, 17.5%, and 12.5% hot-hand players in the three
treatments, respectively. Table 7 reports the corre-
sponding p-values of two-sided z-tests of proportions,
using the correction procedure for family-wise error
rates introduced in List et al. (2016). We find evi-
dence that hot-hand behavior significantly increases
from T � 1 to T � 2 and T � 3 but no evidence for
differences in hot-hand behavior between T � 2 and
T � 3.9

We conclude this subsection with an estimation of
how likely it is that our novel empirical findings are
recovering true associations. We hereby follow the
formal framework developed in Maniadis et al. (2014).
Specifically, we compute the poststudy probability
(PSP) of a declared research finding. The PSP is
the conditional probability that a significant find-
ing is true. The probability itself depends on several
parameters. We conventionally set the level of signifi-
cance at 0.05 and assume that we are the only research
team that currently investigates our hypothesis. Fur-
thermore, we calculate the post hoc achieved power
of our significant z-tests of proportions. The final
parameter—the prior fraction of true scientific asso-
ciation examined in a research field—is unknown.
We, therefore, consider various priors that repre-
sent meaningful values related to novel findings.
Table 8 presents the resulting PSPs. For small and
modest priors, our obtained PSPs are above 50%
(marked in bold). We, therefore, cautiously conclude
that our main findings are likely to represent true
associations.

4.3. Additional Analyses
Why do participants exhibit more hot-hand behavior
when we increase the number of balls drawn in a sim-
ulated lottery game? We present here a set of observa-
tions with regard to betting behavior that motivates our
answer to this question. For sake of brevity,we only state
our main finding and refer interested readers to Ap-
pendix E for details.
First, we explore changes in behavior over the

course of 40 rounds. We calculate the percentage of
participants who bet on previous winners in each
round over the course of the experiment and then the
percentage deviation from the treatment-specific base
rates (10%, 20%, and 30%, respectively, for T � 1, 2,
and 3). Figure 5 plots the adjusted deviation from the
base rates, in which negative (positive) deviations
indicate the gambler’s (hot-hand) fallacy. At the be-
ginning of the experiment, deviations from the base
rates are all negative, suggesting that participants in
all treatments show a predisposition for the gambler’s
fallacy. This tendency persists in T � 1 but not in T � 2
or T � 3. Participants in multiple-prize conditions
alter their behavior as the game proceeds—evidence
of a game design–induced change in beliefs about
the underlying random process. This observation is
corroborated by regression results on aggregate be-
havior, restricting the sample to the first five rounds
and last 35 rounds in the experiment. See Appendix D
for details.
Second, we recorded each individual’s decision

time, that is, the time it took a participant to enter a
guess for the winning number. It is well established
that decision time is a reliable indicator of task dif-
ficulty and task automaticity with quicker decision
times representing easier, more automatic decisions
(Achtziger and Alós-Ferrer 2014, Alós-Ferrer et al.

Table 7. p-Values of Two-Sided z-Tests of Proportions

Threshold at 10% Threshold at 5%

Versus T = 2 T = 3 Versus T = 2 T = 3
T = 1 0.008 0.033 T = 1 0.004 0.011
T � 2 0.568 T = 2 0.433

Table 8. Poststudy Probabilities with Different Priors

Post hoc power levels

0.95 0.81 0.65

Prior Poststudy probability

0.01 0.16 0.14 0.07
0.05 0.50 0.46 0.27
0.15 0.77 0.74 0.55
0.25 0.86 0.85 0.70
0.35 0.91 0.90 0.79
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2016). We ran panel regressionswith individual random
effects to explore the intrasubject relationship between
decision time and hot-hand behavior (continuing existing
streaks); see detailed regression results in Appendix E.
We find that hot-hand behavior is associatedwith slower
decision times in T � 1. This result suggests that fol-
lowing past winning numbers in T � 1 is a more
difficult decision than not betting on past numbers.
In T � 2 and T � 3, however, we observe a strong
reversal in our results; betting on past winning
numbers in these cases is a quicker decision than not
betting on past winning numbers. These results suggest
the existence of an underlying factor that triggers a
change in participants’ behavior and their perception
of randomness when more balls are being drawn.

4.4. Discussion
We examined the role of game design—specifically,
multiple outcomes in a random process—on the
emergence of the gambler’s and the hot-hand falla-
cies in a lottery game prediction task. Participants
were asked to guess the outcome of simulated lottery
games with one, two, or three winning numbers.
Results show that, whereas the gambler’s fallacy still
prevailed in the single-prize game, it immediately
disappeared when the number of outcomes was in-
creased to two and three. At the individual level, we
observed significantly more hot-hand behavior in
multiple-prize games than in single-prize games. We
infer from our observations that the lottery system
design, in the form of the number of prizes drawn,
systematically influenced participants’ perceptions
of randomness and, thereby, their betting behavior.
These findings offer new insight into the prevalence
of the gambler’s and the hot-hand fallacies.

One plausible explanation for our observations is that
different experiences across single- and multiple-prize
games can induce differences in beliefs about the ran-
dom generating process and, consequently, in betting

behavior. Specifically, single- andmultiple-prize games
differ with respect to how frequently past winning
numbers recur. In our experiment, the theoretical
probability of observing at least one repetition in two
consecutive draws are, respectively, 10%, 37.8%, and
70.8% in T � 1, T � 2, and T � 3 (realized relative
frequencies are 10%, 32.5%, and 70%). For example, in
round 5 of the experiment, participants observed no
prior round with consecutive repetitions of winning
numbers in T � 1 but three and five prior rounds with
consecutive winning numbers in T � 2 and T � 3, re-
spectively. In our experimental data, gambler’s fallacy
effects emerge in the first few rounds across all treat-
ments. This pattern suggests that all participants start
out with a predisposition to avoiding past winning
numbers, which is commonly associated with the in-
correct belief in negative autocorrelation in i.i.d. pro-
cesses. The subjective game experience in the single-
prize game does not refute this belief as repetitions
in winning numbers are rather rare events. How-
ever, participants in multiple-prize games experi-
ence frequent repetitions in winning numbers, which
challenges their prior belief. Eventually, they may
abandon their initial belief in negative autocorre-
lation (gambler’s fallacy), and some may adopt a new
belief in positive autocorrelation (hot-hand fallacy),
which is more consistent with their subjective game
experience.
To lend further credence to our explanation, we con-

ducted a small-scale replication study with 160 partici-
pants randomly assigned to the conditions T � 1 and
T � 3. In replicating our main findings, we added to
the design an incentivized belief-elicitation question
about the unconditional probability of observing
repetitions of winning numbers in two consecutive
draws. We observe strong evidence that participants
underestimate the probability of repetition in winning
numbers in T � 3. Specifically, participants state an
average belief of 34.6%, which falls short of both the

Figure 5. (Color online) Behavioral Change in Multiple-Prize Games
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theoretically correct probability (70.8%) and the em-
pirically realized one (70%). These types of misjudg-
ments in probabilities of repetition among multiple
outcomes are common as famously illustrated by the
birthday paradox. Judged upon participants’ stated
beliefs, the actual occurrence of consecutive winning
numbers in T � 3 is unexpected. In treatment T � 1,
participants overestimated the probability of repeti-
tion and stated an average belief of 24.8%. However,
the differences in stated beliefs between treatments
are much smaller than theoretically expected and
similar in magnitude.

We continue our discussion with some remarks
on the validity of our experimental setup. First, our
results with single-outcome games replicate/support
some relevant findings in the literature. Based on
Rabin’s (2002) model, Asparouhova et al. (2009)
predicted that the gambler’s fallacy prevails when
streaks are short, and the hot-hand fallacy emerges
when streaks become longer. To the best of our knowl-
edge, our experiment is the first to observe this pat-
tern with a clear switching point from the gambler’s
fallacy to the hot-hand fallacy. Second, our experi-
ment also replicates the empirical findings in Suetens
et al. (2016), which are based on real Lotto data
from Denmark. We applied the authors’ approach to
test for the presence of the gambler’s fallacy. In line
with their results, we find a reduction in bets on
past winning numbers, which is consistent with the
gambler’s fallacy. They find a magnitude of between
1.6% and 3.8%, depending on the sample under in-
vestigation, and we find a reduction of 4.3% in the
treatment in which one ball is drawn. Finally, our
findings are also consistent with observations by
Wang et al. (2016), who found that participants avoid
numbers that were drawn only once over the last six
draws, and numbers that were drawn three or four
times are relatively popular.

A potential confound is introduced by our winner-
take-all payment scheme. Grand prizes were awar-
ded to the best-performing participant within each
treatment, thereby inducing incentives to outperform
others. In particular, sophisticated players could have
adopted “anti-imitation” strategies—that is, betting
on numbers they believed others would not bet on.
In this view, behavioral patterns cannot be attributed
with certainty to the distortions in participants’ per-
ceptions of randomness, but could reflect their beliefs
about other participants’ behavior. The replication
study we ran also contained a post–lottery game in-
centivized recommendation task. Participants were
asked to give strategic recommendations in the form
of free text to participants of future studies of the same
game, earning them a small bonus payment each
time their recommendation is found useful. Manu-
ally inspecting all 160 individual recommendations, we

found none to explicitly or implicitly mention “to anti-
imitate others” or something similar. We also found
none to mention, in any form, our incentive scheme.
We believe that these responses are sufficient evi-
dence to conclude that an anti-imitate effect is not
a concern with our data.
We conclude this section with a brief discussion on

how our current experimental design came into place.
For all experiments discussed, participants had to
guess one winning number for the next round and the
best-performing participant within a treatment was
rewarded with a grand prize. We first ran a batch of
two similar experiments, one on Amazon’s MTurk
with 200 participants and a follow-up study with 47
course participants from one of our home universi-
ties. For the experiment on MTurk, a lottery machine
randomly drew 1 or 10 winning numbers from 0 to
99 (between-subjects design); we found no trace of
the gambler’s or the hot-hand fallacy in aggregate
behavior. In the experiments with our students, 1, 5,
or 10 winning numbers were drawn from 10 to 59
(within-subject design); we only found weak evi-
dence for the hot-hand fallacy after long streaks in
treatment T � 1 and T � 5 after playing treatment
T � 10. We conclude that the combination of the size
of winning numbers drawn and the choice set (i.e.,
potential winning numbers) was suboptimal for two
reasons. First, we would have required a much big-
ger sample size for statistical inference with a large
choice set (e.g., many numbers were never bet on, no
reasonable baseline for betting frequencies on non-
winning numbers could be established, no streaks
with 1 out of 100 balls drawn). Second, correct pre-
dictions were rather unlikely, thereby reducing par-
ticipants’ involvement in the game. In addition, we
made important observations that guided our sub-
sequent design choices. In particular, we observed
a first indication of game experience (the order with
which games were played) to influence betting be-
havior, and a vast majority of our students reported
never participating in real-life lottery games.
In response to these lessons learned, we came up

with our final design as explained in this paper. We
increased the level of realism in our presentation
of the game and reduced the size of choice set to 10.
This design offered enough flexibility to create dif-
ferent game experiences and provided higher lever-
age for statistical inference at both the aggregate
and individual-level behavior. Finally, we run an
unreported replication study with 150 participants
on Prolific in which we always revealed winning
numbers from the past five rounds on the screen (i.e., no
history button). This design was motivated by
Barron and Leider (2010), and all of our main results
obtained. All data sets are made publicly available on
the authors’ home pages.
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5. Conclusion
In this paper, we used data from two different lottery
games to demonstrate the impact of game design in
shaping two erroneous beliefs: the gambler’s fallacy
and the hot-hand fallacy. Field data showed that,
when there are multiple prizes in a lottery game,
players tend to favor previous winning numbers,
suggesting that they believe the same outcome will
repeat in the future. We then ran a set of online ex-
perimental studies and found that behavior changed
under different game designs; in particular, whereas
a single-prize game leads to the gambler’s fallacy—
consistent with the current literature—multiple-prize
games lead to more hot-hand behavior.

The notion that humans can be manipulated to
believe in the hot-hand fallacy through appropriate
game design has important ramifications in various
fields. First, it provides a behavioral explanation for
the “medium prizes puzzle” (Haruvy et al. 2001)—
that is, for why lottery-game operators typically offer
prize distributions of a few large prizes and a large
number ofmediumones. This is surprising, especially
if we assume that gamblers are typically risk seeking.
There are two common explanations for this obser-
vation. One relies on prospect theory: a large num-
ber of medium prizes reduces the probability of losing
from near certainty to some smaller probability. The
other explanation follows the line of adaptive learning;
that is, human behavior is best captured by simple
adaptive learning models, and actions that did well
in the past tend to be adopted more frequently than
those that did not. Thus, the presence of medium
prizes slows down the agent’s inclination to gamble
less. Our paper provides another explanation: a large
number of medium prizes can induce more players to
believe in the hot-hand fallacy. This conviction reduces
players’ inclination to quit the game and increases
their desire to bet on those numbers they believe to
have a higher probability of winning.

Second, our finding provides guidelines for de-
signing lottery games that induce desirable behavior,
which has important practical implications. A recent
trend is for governments to encourage good civic
behavior through the use of lottery games, the merits
of which have been documented by Richard Thaler.10

For instance, New Taipei City in Taiwan recently
initiated a lottery as an inducement for dog owners
(and other citizens) to clean up after their pets with a
grand prize of gold ingots worth as much as $2,000.
The Singapore government is also experimenting with
this approach and has implemented an incentive scheme
in which commuters earn credit for each journey taken
(with triple credit for off-peak journeys) toward a chance
to win cash prizes in weekly lotteries. Our study high-
lights two features that render lottery games more

effective for influencing behavior: (1) including a suffi-
ciently large number of medium prizes (to induce more
hot-handbelievers) and (2) adding somemechanism that
allows players to bet on numbers they believe to have a
higher probability of winning (thereby increasing their
incentive to participate in lottery games). One way to
achieve the latter is to use personalized numbers
(instead of random numbers) to which players can
easily relate. The Dutch government uses this prin-
ciple very effectively by basing one of its state lotteries
on postal codes. The idea is to make use of the near-
miss effect and also to exploit the lucky-store effect
that has been shown to exist in various lottery games.
The chances of winning may be falsely believed to be
higher if the postal code has been drawn before (or is
a near miss) in the previous draws, leading to greater
participation.
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Appendix A. Randomness Check of the Lottery Data
We check whether the true data-generating processes of
3D and 4D are indeed random, that is, whether there exists
positive or negative autocorrelation in the sequence ofwinning
numbers. To do so,we use the autocorrelation function defined
in Box and Jenkins (1976): given measurements Y1,Y2, . . . ,Yn

at time X1,X2, . . . ,Xn, the lag k autocorrelation function is
defined as

rk �
∑N−k

i�1 (Yi − Ȳ)(Yi+k − Ȳ)
∑N

i�1(Yi − Ȳ)2 . (3)

In 3D, our data set contains 4,466 consecutive draws from
May 8, 2005, to October 30, 2017. We calculated the au-
tocorrelation among these winning numbers with lag 1,
following the formula presented. The lag 1 autocorre-
lation is 0.006, showing that these numbers are not
autocorrelated.

In the 4D game, because the 23 winning numbers are
drawn with replacement, we can treat the draw of each
number as a data-generating process. However, because
the winning numbers related to the 10 starters and the 10
consolations are presented in increasing order, those win-
ing numbers have a positive autocorrelation. For this
reason, we only test a sub–data set with the first three win-
ning numbers across 156 draws during a one-year period.
The autocorrelation among those numbers is 0.0392, again
showing no significant autocorrelation among the winning
numbers.
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Appendix B. Empirical Evidence

Appendix C. Experiment Design
C.1. General Introduction to the Study for All

Experimental Conditions
Thank you for your interest in this study. In this study, you
are invited to play a simulated lottery game and your task is

to guess which numbers a lottery-computer will draw. On top
of your fixed earnings of £0.80, you can earn a bonus payment
of £15 for this study which will be awarded to every 70th
respondent. More details are provided during the study.
Please read all questions carefully and follow the on-screen
instructions. Completing the survey will take about 9 min-
utes. Make sure that javascript is enabled in your browser.
The survey works best on desktops and tablets but might be
inconvenient to complete on smartphones. In case the survey
freezes or crashes, simply refresh the page in your browser.
Participant IDs and completion codes are automatically
transferred. You can open this study in a new window.

C.2. Introduction to the Simulated Lottery Game
with T � 1

Welcome to the Simulated Lottery Game! Today, you are
invited to play a simulated lottery game. There will be 40

Figure C.1. (Color online) Screenshots from the Experiment

Table B.1. Payout Rate Statistics of Winning Numbers in 3D Game

Numbers
repeating in

Data
point Mean

Standard
deviation

25th
percentile Median

75th
percentile

All data 4,466 0.49 0.27 0.32 0.43 0.59
1 week 27 0.34 0.36 0.18 0.23 0.36
1 to 2 weeks 27 0.35 0.12 0.27 0.31 0.42
2 to 3 weeks 22 0.40 0.24 0.26 0.30 0.54
3 to 4 weeks 31 0.42 0.20 0.29 0.40 0.47
4 to 5 weeks 28 0.47 0.26 0.29 0.40 0.53
5 to 6 weeks 34 0.46 0.23 0.31 0.38 0.56
6 to 7 weeks 31 0.43 0.16 0.32 0.41 0.53
7 to 8 weeks 30 0.58 0.32 0.34 0.49 0.76
8 to 9 weeks 37 0.45 0.21 0.33 0.38 0.52
9 to 10 weeks 29 0.45 0.20 0.31 0.39 0.52
More than 10 weeks 3,180 0.49 0.24 0.33 0.44 0.59
No past win 990 0.50 0.34 0.30 0.42 0.59

Table B.2. Matched Sample t-Tests on Payout Rates for
Early vs. Late Repetitions in 3D Game

x Sample size t-statistic p-value 95% confidence interval

3 70 −5.07 3.20e-06 [−0.219, −0.095]
5 125 −4.23 4.55e-05 [−0.147, −0.053]
7 176 −4.80 3.48e-06 [−0.120, −0.050]
9 231 −4.13 5.08e-05 [−0.100, −0.035]
11 264 −4.34 2.05e-05 [−0.094, −0.035]
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rounds in total. In each round, a lottery computer will ran-
domly draw 1 numbered ball (0–9) from an urn. Each ball in
the urn has an equal chance of being drawn. Your task is to
guess, at the beginning of each round, which number will be
drawn by the computer. If you guess it correctly, you earn 1
point. Roughly 70 respondents will play this game, and the
one with the highest points score will earn a bonus payment
of £15. It is therefore important that you read on-screen
instructions carefully. Please click on NEXT to proceed. The
computer will randomly draw 1 ball from an urn of 10 balls.
The balls are numbered consecutively from 0 to 9. That is,
each number is represented by exactly one ball (one ball
with 0, one ball with 1, . . ., one ball with 9). Guess one
number from 0 to 9. If your number matches the num-
ber drawn, you earn 1 point. This game is repeated for
40 rounds.

C.3. Introduction to the Simulated Lottery Game with T � 2
Welcome to the Simulated Lottery Game! Today, you are
invited to play a simulated lottery game. There will be 40
rounds in total. In each round, a lottery computer will ran-
domly draw 2 numbered balls (0–9) from an urn. Each ball in
the urn has an equal chance of being drawn. Your task is to
guess, at the beginning of each round, which number will be
drawn by the computer. If you guess it correctly, you earn
1 point. Roughly 70 respondents will play this game, and the
one with the highest points score will earn a bonus payment
of £15. It is therefore important that you read on-screen

instructions carefully. Please click on NEXT to proceed. The
computer will randomly draw 2 balls from an urn of 10 balls.
The balls are numbered consecutively from 0 to 9. That is,
each number is represented by exactly one ball (one ball with
0, one ball with 1, . . ., one ball with 9). Guess one number from
0 to 9. If your number matches one of the numbers drawn,
you earn 1 point. This game is repeated for 40 rounds.

C.4. Introduction to the Simulated Lottery Game with T � 3
Welcome to the Simulated Lottery Game! Today, you are
invited to play a simulated lottery game. There will be 40
rounds in total. In each round, a lottery computer will
randomly draw 3 numbered balls (0–9) from an urn. Each
ball in the urn has an equal chance of being drawn. Your task
is to guess, at the beginning of each round, which number
will be drawn by the computer. If you guess it correctly, you
earn 1 point. Roughly 70 respondents will play this game,
and the one with the highest points score will earn a bonus
payment of £15. It is therefore important that you read on-
screen instructions carefully. Please click on NEXT to pro-
ceed. The computer will randomly draw 3 balls from an urn
of 10 balls. The balls are numbered consecutively from 0 to 9.
That is, each number is represented by exactly one ball (one
ball with 0, one ball with 1, . . ., one ball with 9). Guess one
number from 0 to 9. If your number matches one of the
numbers drawn, you earn 1 point. This game is repeated
for 40 rounds. Figure C.1 shows two screen shots from the
experiment.

Appendix D. Regression Results Experiment Conditioning on the First Five Rounds and the Last 35 Rounds

Table D.1. Average Marginal Effects of Probit Regression on Streak Length (Aggregate
Level): First Five Rounds

T = 1 T = 2 T = 3

Length of streak = 1 −0.050*** −0.056*** −0.037** −0.034** −0.031** −0.032**
(0.000) (0.000) (0.012) (0.021) (0.013) (0.012)

Length of streak = 2 −0.003 0.001 −0.007 −0.007
(0.944) (0.987) (0.684) (0.692)

Length of streak = 3 −0.021 −0.021
(0.572) (0.563)

Number of participants 75 75 63 63 72 72
Subject fixed effects Y N Y N Y N
Period fixed effects Y Y Y Y Y Y
Number fixed effects Y Y Y Y Y Y
Demographic controls N Y N Y N Y
Clustered standard error Y Y Y Y Y Y
Observations 3,750 3,750 3,150 3,150 3,600 3,600

Note. Cluster robust standard errors are provided in parentheses.
***1%, **5% significance levels.
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Appendix E: Regression Results on Decision Time
We followed the empirical strategy in Achtziger and Alós-
Ferrer (2014) and Alós-Ferrer et al. (2016) and adopted a
generalized least squares panel approachwith random effects
at the individual level to analyze the impact of various var-
iables on decision times. Our dependent variable in all models
is the logarithm of decision time measured from the onset of
presentation of the decision screen until submission of a guess
for a winning number. Independent observations are taken at
the individual–guess–period level. The estimation results are

reported in Table E.1. We include dummies for our multiple-
prize treatments T � 2 and T � 3 and a dummy for whether
the guess of an individual continues an ongoing streak (hot
hand). As reported in the main text, hot-hand behavior was
slower than non–hot hand behavior in T � 1, whereas hot-
hand behavior was quicker than non–hot hand behavior in
multiple-prize games. We include additional control vari-
ables to validate decision times and to control for possible
confounding factors. Participants guessed faster in later pe-
riods of the experiment—evidence of learning and task-
experience effects. Decisions were slower when the history

Table D.2. Average Marginal Effects of Probit Regression on Streak Length (Aggregate
Level): Last 35 Rounds

T = 1 T = 2 T = 3

Length of streak = 1 −0.051*** −0.052*** 0.001 0.006 −0.012 −0.009
(0.000) (0.000) (0.925) (0.671) (0.214) (0.320)

Length of streak = 2 −0.053*** −0.044** 0.015 0.021 −0.001 0.001
(0.004) (0.021) (0.459) (0.329) (0.969) (0.928)

Length of streak = 3 0.034 0.051 0.094** 0.101*** −0.000 −0.001
(0.462) (0.274) (0.012) (0.009) (0.995) (0.978)

Length of streak = 4 0.166** 0.182*** 0.168** 0.152** 0.022 0.013
(0.011) (0.004) (0.016) (0.017) (0.453) (0.640)

Number of participants 75 75 63 63 72 72
Subject fixed effects Y N Y N Y N
Period fixed effects Y Y Y Y Y Y
Number fixed effects Y Y Y Y Y Y
Demographic controls N Y N Y N Y
Clustering Y Y Y Y Y Y
Observations 26,250 26,250 22,050 22,050 25,200 25,200

Note. Cluster robust standard errors are provided in parentheses.
***1%, **5% significance levels.

Table E.1. Generalized Least Squares Panel Regression
with Random Effects at the Individual Level and Cluster
Robust Standard Errors (Reported in Parentheses)

Dependent variable
(log(decision time)) Model 1 Model 2 Model 3

Hot hand 0.127*** 0.083* 0.083*
(0.048) (0.043) (0.043)

T = 2 0.160*** 0.091 0.069
(0.062) (0.061) (0.056)

T = 3 0.061 −0.001 −0.018
(0.068) (0.060) (0.059)

Hot hand × T = 2 −0.201*** −0.183*** −0.181***
(0.058) (0.050) (0.050)

Hot hand × T = 3 −0.162*** −0.125*** −0.125***
(0.052) (0.047) (0.047)

Period −0.017*** −0.014*** −0.014***
(0.001) (0.001) (0.001)

Hotness number −0.602*** −0.595***
(0.044) (0.044)

Click history button 1.073*** 1.075***
(0.052) (0.052)

Age 0.012***
(0.002)

Table E.1. (Continued)

Dependent variable
(log(decision time)) Model 1 Model 2 Model 3

Female 0.101***
(0.048)

Transgender* 0.527***
(0.094)

Playing Lotto monthly 0.095
(0.070)

Playing Lotto < monthly 0.022
(0.060)

Playing Lotto never −0.027
(0.062)

Income −0.009
(0.010)

Constant 1.579*** 1.613*** 1.164***
(0.052) (0.047) (0.104)

Number of participants 210 210 210
Observations 8,400 8,400 8,400
Clustered standard error Y Y Y
Overall R2 0.098 0.264 0.313
Wald χ2 p 0.000 0.000 0.000

***1% and *10% significance levels.
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button was clicked. Naturally, it is time-consuming to click
the button and process the resulting additional information
displayed. We also observe that older participants were
slower than younger ones and that women and participants
associating themselves as transgender were slower than men.
The lotto-playing habits of participants had no influence on
the speed of decisions.

Endnotes
1We ran statistical tests for each lottery game and found no evidence
of lag 1 autocorrelation among the winning numbers. The details are
in Appendix A.
2There are minor payout variations by areas: in Beijing, the game
pays 980 perwager for the straight bet, and in Shanghai and Tibet, the
payout is 333 for the box 3 bet and 166 for the box 6 bet.
3 See http://www.zhcw.com/3d/kaijiangshuju/index.shtml, accessed
October 30, 2017.
4Becausewinning numbers are drawn identically and independently,
demeaning and a fixed-effects approach should, theoretically, yield
the same estimated effect of past wins on future betting behavior. We
decided not to follow the fixed-effects approach, however, as this
would have required us to estimate an additional 990 parameters in a
model with 4,407 total observations.
5The change in the dependent variable from payout rates in 3D to
betting proportions in 4D is innocuous. The payout rate in the
3D game is a simple linear function of betting proportion. All of our
3D results hold true if we replace payout rates with betting
proportions.
6Our choice for 10 balls is motivated by practical concerns. Our aim is
to create an environment in which winning is less likely than losing
but still occurs frequently enough to make incentives salient. At the
same time, we want enough flexibility to create different experi-
ences with regard to how frequently past winning numbers recur.
Ten has the additional advantage that it allows us to create a
natural and homogeneous outcome set with regard to the number of
digits present.
7Prolific is a UK-based crowdsourcing platform that connects re-
searchers with participants for their studies. In contrast to alternative
platforms, such as Amazon’s MTurk, Prolific is specifically geared
toward the needs of researchers; participating in research studies is
the only activity in which platform members can engage. The plat-
form has been shown to produce reliable, high-quality data (cf. Peer
et al. 2017).
8Although the winning numbers in the 4D game are drawn with
replacement, we do not observe any repetition in thewinning numbers
in our data set. To avoid confusion among participants, we draw the
winning numbers without replacement in the experiment, which was
common knowledge.
9As an additional robustness check, we ran one-sided, pairwise, exact
Fisher–Boschloo tests. Even after accounting for family-wise error
rates via Holm–Bonferroni, our conclusions from the main text re-
main unaffected. All p-values for comparisons of T � 2 versus T � 3
are less than 0.017. All p-values for comparisons of T � 2 versus T � 3
are more than 0.746.
10 See “Making Good Citizenship Fun,” New York Times, February 13,
2012.
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