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Abstract. This paper deals with the numerical solution of the time-dependent, three-dimensional Heston—Cox—Ingersoll—
Ross PDE, with all correlations nonzero, for the fair pricing of European call options. We apply a finite difference dis-
cretization on non-uniform spatial grids and then numerically solve the semi-discrete system in time by using an Alternating
Direction Implicit scheme. We show that this leads to a highly efficient and stable numerical solution method.
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HESTON-COX-INGERSOLL-ROSS MODEL AND THE OPTION PRICING PDE

We consider a general asset price model given by the system of stochastic differential equations (SDEs)
dS: = R;S;dT+S:\/VedW),  dVe =x(n—V;)dt+ 017/ VedW?, dR;=a(b(t)—R;)dt+ 05 /R:dW? (1)

for 0 < 7 < T with T > 0 the maturity time of the option. Here Sz, Vi, R; denote random variables that represent the
asset price, its variance, and the interest rate, resp., at time 7. The asset price model (1) constitutes a natural extension
of the well-known Black—Scholes model where the volatility 1/V; and the interest rate R; both evolve randomly over
time. The stochastic one-factor models for V; and R; were proposed by Heston and Cox, Ingersoll & Ross, resp., cf.
[1,9, 10, 11]. The full Heston—Cox—Ingersoll-Ross model has been considered, for example, in [2, 6].

In (1), the quantities k,7, 0] and a, 0, are given positive real constants and W,!, W2, W7 are Brownian motions,
with (arbitrary) given correlation factors pya, p13, p23 € [—1,1]. The function b is a given, deterministic, positive
function of time, which renders a slightly more general model than the original Cox—Ingersoll-Ross model as
described in [3]. In contrast to the Hull-White interest rate model, the interest rate in the Cox—Ingersoll-Ross
model cannot become negative, which forms an advantage of the latter model. We note that in the numerical
literature it is often assumed that the so-called Feller condition is fulfilled for both the volatility and the interest rate
models, i.e., 2kn > 0'12 and 2ab(1) > 0'22 resp. In the present paper we make no assumptions concerning this condition.

Let u(s,v,r,t) denote the fair price of a European call option if at time T = T —t the asset price equals s, its
variance equals v and the interest rate equals r. The payoff yields the initial condition u(s,v,r,0) = max(0,s — K), for
a given strike price K > 0. It can be shown from financial option pricing theory that u(s,v,r,7) satisfies the partial
differential equation (PDE)

du %u %u %u 2%u 9%u
Fri ls2 T‘F%Gz T"‘%Gzzra > +P12C715Va oy + P13028V/vr
%u du du Bu
+ p230102\/vr —H’sa +x(n— )g +a(b(T —1) —r)g —ru 2)

fors >0,v>0,r>0,0<t<T. We refer to (2) as the Heston—Cox—Ingersoll-Ross (HCIR) PDE. This is a time-
dependent convection-diffusion-reaction equation, with mixed derivative terms, on an unbounded, three-dimensional
spatial domain. In case of all correlations nonzero, an exact solution of the HCIR PDE in (semi) closed-form is not
known in the literature. We numerically solve (2) via the method-of-lines approach. First we use finite difference (FD)
schemes on non-uniform Cartesian grids in the (s, v, 7)-domain for the space discretization of the PDE. Then we apply
an Alternating Direction Implicit (ADI) method. This type of time discretization methods is tailored to semi-discrete
systems stemming from multi-dimensional PDEs with mixed spatial-derivative terms.
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The aim of this paper is to show that using an ADI scheme for the time discretization yields an efficient and stable
numerical solution method for the three-dimensional HCIR PDE.

NUMERICAL SOLUTION OF THE HESTON-COX-INGERSOLL-ROSS PDE

To numerically solve the HCIR PDE (2), the spatial domain is restricted to a bounded set [0, Smax] X [0, Vimax] X [0, Rmax]
with fixed values Smax, Vimax» Rmax chosen sufficiently large. The following Dirichlet and Neumann boundary conditions
are applied for a European call option

d d
u(0,v,r,t) =0, —M(Smax,v, nt) =1, u($,Vimax, 1,t) = 8 —M(s,v, Rinax,t) = 0. 3)
ds ar
At the boundaries v = 0 and » = 0, we consider inserting these values into the HCIR PDE. A mathematical foundation
for this is given in [4, 5]. Note that this is done irrespective of whether or not the Feller condition is satisfied for v
and/or r.

First, a Cartesian spatial grid is chosen, analogously as in [7]. A difference here is that r € [0, Riax] instead of
7 € [—Rmax, Rmax]. We have smooth non-uniform meshes 0 = sy < s1 <... <Su, = Smax, 0=v0 <vi <... <V, = Viax
and 0 =rp <r| <... <ry; = Rnax. The mesh in the s-direction has relatively many points throughout a given interval
[Stetts Stight] C [0, Smax] containing the strike K. This is natural, because it alleviates numerical difficulties due to the
initial (payoff) function that has a discontinuous derivative at s = K. It is also natural to place relatively many mesh
points around v = 0, resp. r = 0, for numerical reasons, as the HCIR PDE is convection-dominated in the v- resp.
r-direction for v ~ 0, resp. r ~ 0 and the initial function is nonsmooth. A second motivation for these choices is that
the region of interest in the (s, v,r) domain lies around (K,0,0).

For the FD discretization of the HCIR PDE, we also follow the ideas in [7], where a combination of central and
upwind second-order schemes was used to obtain an effective spatial discretization. However, we now have a different
model for the interest rate, which is similar to the model for the volatility. The derivatives du/dr, d%u/dr> and
9%u/dsdr, d*u/dvar are discretized in the same manner as the corresponding derivatives for v in the Heston—Hull-
White PDE [7]. For example, as for du/dv in the region v > 1, we apply an upwind scheme for du/dr in the region
r>max{b(T —1)|0 <t < T}. Complete details will be given in a future paper.

The FD discretization of the initial-boundary value problem for the HCIR PDE leads to an initial value problem for
a large system of stiff ordinary differential equations (ODEs),

U'(t)=A0)U(t)+g(t) (0<t<T), U(0)="Up. 4)

For any t > 0, A(t) is a given real matrix and g(¢), Up are given real vectors, of order M, with M = m;my(m3 +1). The
vector g depends on the boundary conditions (3) and the vector Uy is obtained from the initial condition. The entries
of the solution vector U(#) to (4) form approximations to the exact option values u(s,v,r,7) at the spatial grid points.
For the time discretization ADI schemes are considered. Standard implicit schemes such as Crank—Nicolson are in
general computationally too demanding. Splitting schemes of the ADI type are particularly useful for semi-discrete
systems stemming from multi-dimensional PDEs. The matrix A(¢) and the vector g(z) are split into four simpler
matrices, resp. vectors,
At) =Ao+A1+Ar+A5(1), g(t) =go+g1+g+83(t) (5)

Here A represents the part of A(z) that stems from the FD discretization of all mixed derivative terms in the HCIR PDE.
Note that Ag is nonzero whenever one of the correlation factors pi2, p13, p23 is nonzero. The matrices A1, Az, A3(t)
represent the parts of A(¢) that stem from the FD discretization of all spatial derivatives in the s-, v- and r-directions,
resp., and the ru term is distributed evenly over Ay, Ay, A3(t). We decompose g(#) analogous to that of A(z).

We study two ADI schemes, namely the Douglas (Do) scheme and the Modified Craig—Sneyd (MCS)
scheme. Let & > 0 be a given real parameter, let Ar = T /N with integer N > 1, and t, = n - Ar. Set
Agn = g3 (ty) — g3 (ta—1) = g(tn) — g(t,—1). The following schemes generate, in a one-step manner, approxima-
tions U, to the exact solution values U (¢,) of (4) forn=1,2,...,N:
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Do scheme: MCS scheme:

YOZUn—lJrAt(A(tn—l)Un—l+g(fn—1)),

Yi =Y 1+ 0AA;(Y;—U,y) (j=1,2),
Yo =Up-1 +At (A(ty—1) Up—1 + 8 (ta-1) ). Y3 =Y+ 0A1 (A3 (12) Y3 — A (ty—1) U1 +Agn),
Y=Y 1+ O0MA; (Y, —Up) (j=1,2), Yo="Yo+0AA(Ys —Up_i),
Y3 =Ya+ 01 (A3 (ty) Vs — A3 (ta—1) Un—1 +Agn), Yo=Yo+ (3 —0)Ar (A(12) Y3 — A (ty1) U1 +Aga),
U, =Y. Y=Y 1 +0AA;(Y;—Up) (j=1,2),

V3 =Y+ O A (A3 (1) Y3 — A3 (ta—1) Up—1 +Agy)

U, =Y.

The MCS scheme can be seen as an extension to the Do scheme. The Do scheme has a classical order of consistency
one and the MCS scheme is of order two for any given 0. The A part, representing all mixed derivative terms, is
always treated in an explicit fashion. The A;, Ay, A3(t) parts are successively treated in an implicit fashion.

The key advantage of ADI schemes is that the arising linear systems are efficiently solved by LU factorization, as
the pertinent matrices are essentially tridiagonal or pentadiagonal. For standard implicit methods, the matrices that
arise have a (very) large bandwidth and solving by LU factorization is in general computationally too demanding.
Moreover, with the splitting (5), the time-dependency of A is only passed onto the simpler matrix A3, which yields an
additional advantage of ADI schemes over standard implicit methods.

Under the objective of retaining unconditional stability of these ADI schemes, we take the same values of 6 as in
[7], namely, for Do 6 = 2 and for MCS 6 = max{}, 5 (2y+ 1)} with y = max{|p12|,|p13],|p23|}. Although there
are no theoretical results known in literature at present on the stability of ADI schemes for general three-dimensional
convection-diffusion-reaction equations with mixed derivative terms , these values for 8 were carefully selected from
the theoretical stability results that are available for two-dimensional convection-diffusion-reaction equations with
mixed derivative terms and three-dimensional pure diffusion problems with mixed derivatives. Here stability is always
understood in the von Neumann sense. It is our aim to rigorously investigate the performance of these ADI schemes
in the solution of the HCIR PDE. In the following section we provide a numerical illustration.

NUMERICAL EXPERIMENTS

In the special case where pj3 = p23 = 0, a semi closed-form analytic formula for the exact European call option price
function u is known [2]. We employ this formula to gain insight into the global spatial error of the FD discretization,
defined by e(my,my,m3) = max{ |u(s;,v;,rx,T) — U;(T)|}. For the ADI schemes we study the global temporal error,
defined by e (At;my,mo,m3) = max{|U;(T) — Uy,|}. Here U(T') denotes the exact solution vector to the semidiscrete
HCIR PDE (4) at time 7. The maximum is taken over all points (s;,v;,ry) € ROI, the index [ = (i, j, k) corresponds
to the spatial grid point (s;,v;,7¢) and ROI is a natural region of interest, chosen here as %K <si < %K, 0<v;<1,
0<r < %. The temporal and spatial discretization errors are both measured in the maximum norm, which is highly
relevant to financial applications. In order to compute the temporal error for a given spatial grid, we use a sufficiently
accurate reference value for U(T'), obtained by applying the MCS scheme to (4) with N = 10000 time steps.
For our numerical experiments we consider two sets for the Heston and Cox—Ingersoll-Ross parameter values

|« n o a b oy P2 P13 ps T
set1 | 3.0]012]004]020]005 (=0.0le T +0.05) 0.03 | 06 ‘ 002 | 004 | 1

set2 | 1.0 | 0.09 | 1.00 | 0.22 | 0.034 (—0.014¢= 2171 10.034) | 0.11 | -0.3 | 0(-0.5) | 0(-0.2) | 5

The strike price and spatial domain are taken as K = 100 and [0, 14K] x [0,10] x [0, 1]. Note that the Feller condition
is not satisfied for the volatility model parameters in set 2.

Figure 1 displays in the left column the estimated global spatial errors vs. 1/m for m = 10,15,...,75 where
my = 2m and mp = m3z = m. Here b is constant and p;3 = p23 = 0. The observed order of convergence for the spatial
error is appr. equal to two, namely 1.94 for set 1 and 1.96 for set 2, which is as desired. The middle column shows
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FIGURE 1. Left: Spatial error e(2m,m,m) vs 1 /m for m = 10,15,...,75 with b constant, p;3 = pp3 = 0. Middle: Temporal error
¢(At;100,50,50) vs Ar with b constant, pj3 = po3 = 0. Right: Temporal error ¢(At; 100,50,50) vs Az with b time-dependent and
nonzero correlations. ADI schemes: Do scheme (diamond) and MCS scheme (circle).

the temporal errors of the Do and MCS schemes for a range of step sizes 1073 < Ar < 10° when m = 50. Here, b is
again constant and pj3 = p3 = 0. The temporal errors are uniformly bounded from above by a moderate value and
decay monotonically as Ar decreases. Further experiments show that the temporal errors are only weakly affected by
the chosen number of spatial grid points. These observations are compatible with an unconditionally stable behavior
of the Do and MCS schemes. A convergence behavior is observed for the Do and MCS schemes with an order appr.
equal to one, resp. two, which agrees with their classical orders of consistency. Note also that temporal errors are in
general much smaller for MCS compared to Do. The right column displays the temporal errors for the parameter sets
with nonzero correlations and time-dependent mean-reversion level b. In this case there is no longer an analytical
price formula available. The observations concerning the temporal errors remain the same as for pj3 = py3 = 0 and
b constant. Note that for set 2, now, the Feller condition is also not satisfied for the interest rate model parameters
whenever r > 4.6381. We conclude that the MCS scheme is preferred over the Do scheme. In the future, more exotic
and American-style options will be studied in detail, where we will consider the extension of the pertinent research in
[7, 8].
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