How To Support Smoking Cessation In Primary Care And The Community: A Systematic Review Of Interventions For The Prevention Of Cardiovascular Diseases

Introduction: Smoking is a major risk factor for cardiovascular diseases (CVDs) and for many types of cancers. Despite recent policies, 1.1 billion people are active smokers and tobacco is the leading cause of mortality and illness throughout the world. The aim of this work was to identify smoking cessation interventions which could be implemented in primary care and/or at a community level.

Methods: A systematic review of CVDs prevention guidelines was realized using the ADAPTE Process. These were identified on G-I-N and TRIP databases. Additionally, a purposive search for national guidelines was successfully undertaken. Guidelines focusing on non-pharmacological lifestyle interventions, published or updated after 2011, were included. Exclusion criteria were specific populations, management of acute disease and exclusive focus on pharmacological or surgical interventions. After appraisal with the AGREE II tool, high-quality guidelines were included for analysis. High-grade recommendations and the supporting bibliographic references were extracted. References had to be checked in detail where sufficient information was not available in the guidelines.

Results: Nine hundred and ten guidelines were identified, 47 evaluated with AGREE II and 26 included. Guidelines recommended that patients quit smoking and that health care professionals provided advice to smokers but failed to propose precise implementation strategies for such recommendations. Only two guidelines provided specific recommendations. In the guideline bibliographic references, brief advice (BA) and multiple session strategies were identified as effective interventions. These interventions used Prochaska theory, motivational interviewing or cognitive-behavioral therapies. Self-help documentation alone was less effective than face-to-face counseling. Community-based or workplace public interventions alone did not seem effective.

Discussion: Behavioral change strategies were effective in helping patients to give up smoking. BA alone was less effective than multiple session strategies although it required fewer resources. Evidence for community-based interventions effectiveness was weak, mainly due to the lack of robust studies.

Keywords: cardiovascular diseases, primary prevention, smoking cessation, primary health care
In the last 20 years, mortality in low- and middle-income countries shifted from infectious diseases to CVDs. Current age standardized mortality rates in low-income countries are higher than those in developed countries. Additionally, global mortality by CVDs is expected to grow. By the year 2030, non-communicable diseases are projected to account for more than 75% of deaths worldwide, the majority being the result of CVDs.

CVDs can be prevented by acting on modifiable risk factors. Tobacco consumption is a major risk factor for CVDs. The benefits of stopping smoking have a broad evidence base. Smoking cessation has been shown to be effective in reducing CVD-related morbidity and mortality. Smoking cessation is one of the most effective preventive measures: in secondary prevention it could reduce the risk of a new cardiovascular event by almost half.

Considerable efforts have been made in recent years to control the epidemic in tobacco use. In 2003, the WHO adopted the WHO Framework Convention on Tobacco Control. It targeted national and regional organizations, providing the guiding principles required to reduce the prevalence of tobacco use. In 2008, the WHO proposed the MPOWER, a practical tool to implement this framework: monitor tobacco use and prevention policies, protect people from tobacco, offer help to quit, warn about the dangers, enforce bans on advertising, promotion and sponsorship, and raise taxes. Practical actions were price and tax measures, packaging and labelling regulations, smoking restriction in public places, advertising restrictions, provision of educational campaigns and cessation services. In 2019, 136 countries have implemented at least one of the key interventions to reduce tobacco demand.

Despite recent policies, smoking is still a concern worldwide. 1.1 billion people are active smokers in 2019, 80% of them living in low- and middle-income countries. Total tobacco- attributable deaths increased from 5.4 million in 2004 to more than 8 million in 2019, representing the leading cause of death, illness and impoverishment. Tobacco use contributes to poverty via the direct cost of purchasing tobacco, the health care costs for tobacco-related diseases, as well as the lost human capital that results from morbidity and mortality. In high-income countries, the number of smokers is still high. In Europe, in 2016, 28.7% of the overall population smoked and tobacco was the leading cause of preventable death and disease in the UK.

SPICES (Scaling-up Packages of Interventions for Cardiovascular disease prevention in selected sites in Europe and Sub-Saharan Africa) is an international implementation research project on CVDs non-pharmacological primary prevention. Different settings are involved in high and low- middle-income countries: France, United Kingdom, Belgium, Uganda and South Africa.

SPICES interventions will target the individual and the community level. Concerning smoking, this is the less implemented measure of the MPOWER: in 2019, only 23 countries were providing cessation services at the best-practice level.

First step was to identify non-pharmacological effective interventions for CVDs primary prevention. The aim of this work was to identify evidence-based non-pharmacological effective smoking cessation interventions and their implementation strategies for use in a primary care setting and/or at a community level.

Materials And Methods

A systematic review of international CVD prevention guidelines and national guidelines of each participating country was carried out between September 2017 and January 2018 following the PRISMA statements criteria and using the ADAPTE procedure. The ADAPTE procedure provides a systematic approach to ensure quality standards for guideline development, evaluation and implementation. TRIP (Turning Research Into Practice) and G-I-N (Guidelines International Network) databases were searched for international guidelines. A purposive search for national guidelines was carried out using national health authority websites: the Haute Autorité de Santé for France; the Tijdschrift Huisarts and Nederland Huisartsen Genootschap guidelines for the Flemish part of Belgium; the National Institute for Care and Excellence (NICE) for United Kingdom; the European Society of Cardiology (ESC) within European countries and the WHO for Uganda. The South African researchers ensured that ESC guidelines were used in South Africa. Databases were searched for guidelines focusing on CVDs prevention and/or management of CVD risk factors, such as diabetes, hypertension, smoking, sedentary lifestyle, unhealthy diet, excess weight and obesity. Detailed research equations for each database are available in Annexure 1.

Guideline titles and summaries were analyzed for eligibility. Inclusion criteria were guidelines focusing on CVD primary prevention and/or management of CVD risk factors in an adult general population and to be applied in primary care or in a community setting. Only those published after 01/01/2012 were included. If different versions
of the same guideline were found, only the most recent revision was included.

Exclusion criteria included; exclusive focus on specific populations (geriatric, infantile, socially deprived, etc.) or on secondary or tertiary prevention, exclusive focus on cardiovascular risk assessment, on pharmacological or surgical interventions, or on management of acute disease. Guidelines on specific conditions (eg, type 1 diabetes and familial hypercholesterolemia) were excluded as were those published before 01/01/2012 and not updated. The consortium agreed on this date in order to focus on recent guidelines with the most recently updated data. The research team considered that guideline authors would have reviewed and included literature published before 2012, so that no relevant data would have been missed.

Only guidelines published in English, French or Dutch were included. The lack of free full-text availability was an exclusion criterion as the research team assumed that a clinical practice guideline should be freely available. Two researchers completed this search independently, merging at the end.

Following the ADAPTE procedure, screened guidelines were eligible for quality evaluation with the AGREE II instrument (Appraisal of Guidelines for Research & Evaluation).18 AGREE II is a tool that assesses the quality of guidelines by evaluating their methodological rigor and transparency. It consists of 23 key items organized within 6 domains followed by a global rating (overall assessment [OA]). Each item is rated on a 7-point scale (7 being the best possible quality).

Full-text screened guidelines were evaluated independently by at least two researchers working blind and merging at the end. After discussion within the SPICES consortium, final inclusion was based on OA scores. We included guidelines with all OA scores superior or equal to 5 were excluded those with all OA scores below 5 or with OA scores around cut-off (one score of 4 and one of 5). Discrepant OA scores (more than 1-point difference and one score above 4) were discussed between appraisers and inclusion was based on a consensual decision taken with the researchers and a scientific committee of three senior researchers.

Data Extraction And Analysis
The included guidelines were analyzed, following the ADAPTE procedure, and a matrix of the extracted recommendations was created in order to facilitate the analysis. Recommendations were included if they had an A or B level of evidence or 1++, 1+, 2++, 2+ for the NICE grading system and/or “Class 1” or “Strong” (regardless of the level of evidence). Bibliographic references which supported the included recommendations were listed to make further details on implementation strategies accessible. For guidelines without recommendation grades, references were included if they referred to randomized or non-randomized controlled trials, interventional cohort studies, or systematic reviews of such studies. Where few strategies had been described in the guidelines or where the description was too concise, the analysis of the full-text articles, from which the guidelines had been issued, was added. The aim was to fully describe the interventions used in such articles.

For these articles, inclusion and exclusion criteria were defined. Studies with a non-pharmacological lifestyle intervention for the primary prevention of CVDs in a general, adult population were included. Main outcomes had to be pertinent to primary care or commonly used for CVD risk assessment. Interventions had to be implemented in a primary care or community setting and had to be effective with a significant statistical difference. The objective of this work was the identification of effective interventions. Non-interventional studies and those on specific populations and on secondary or tertiary prevention population were excluded, as were studies in a hospital/clinic or university context or where patients were constantly monitored or supervised because that was deemed not feasible in a primary care context. Publication date was not an exclusion criterion. When different articles dealt with the same intervention they were identified, and duplicates were removed. Full-text articles were obtained on PubMed or via the University Web Library. If not available, the article in paper format was ordered via the library of the Université de Bretagne Occidentale.

Interventions and implementation strategies used in the included references were searched through the articles, especially in the method section, and described in detail and then summarized. Information was collected on the frequency and duration of the intervention, on the setting (eg, workplace or public event, individual or group sessions), on the material used (informative material, leaflets or videos), on the psychological model used and if mass media were involved. The status and background training (if provided) of those carrying out the interventions were noted. All data were collected in an excel matrix file.
Results
Guidelines selection process is shown in the PRISMA Flowchart (Figure 1).

Forty-seven guidelines were screened for quality evaluation with AGREE II tool. Full results are available in Annexure 2. Twenty-six guidelines on CVD primary prevention were included based on their AGREE II overall score (Table 1). They were to be considered among the best quality and the most pertinent for primary CVD prevention in a primary care or community setting.

Guideline Analysis
Sixteen guidelines provided no recommendations on smoking. They focused on other risk factors, such as...
Table 1 Included Guidelines For CVD Prevention

<table>
<thead>
<tr>
<th>Guideline Title</th>
<th>Organization</th>
<th>Year</th>
<th>Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>2013 AHA/ACC guideline on lifestyle management to reduce cardiovascular risk</td>
<td>AHA/ACC</td>
<td>2014</td>
<td>USA</td>
</tr>
<tr>
<td>2013 AHA/ACC/TOS guideline for the management of overweight and obesity in adults</td>
<td>AHA/ACC/TOS</td>
<td>2014</td>
<td>USA</td>
</tr>
<tr>
<td>2013 Clinical practice guidelines for the prevention and management of diabetes in Canada</td>
<td>Canadian Diabetes Association</td>
<td>2013</td>
<td>Canada</td>
</tr>
<tr>
<td>2016 European Guidelines on cardiovascular disease prevention in clinical practice</td>
<td>ESC</td>
<td>2016</td>
<td>Europe</td>
</tr>
<tr>
<td>Behavioral counseling to promote a healthful diet and physical activity for cardiovascular disease prevention in adults with cardiovascular risk factors</td>
<td>US Preventive Services Task Force</td>
<td>2014</td>
<td>USA</td>
</tr>
<tr>
<td>Behaviour change: individual approaches (PH49)</td>
<td>NICE</td>
<td>2014</td>
<td>UK</td>
</tr>
<tr>
<td>Cardiovascular disease prevention (PH 25)</td>
<td>NICE</td>
<td>2014</td>
<td>UK</td>
</tr>
<tr>
<td>Clinical practice guidelines for the management of overweight and obesity in adults, adolescents and children in Australia</td>
<td>National Health and Medical Research Council</td>
<td>2014</td>
<td>Australia</td>
</tr>
<tr>
<td>Guidelines for the management of absolute cardiovascular disease risk</td>
<td>NVDPA</td>
<td>2014</td>
<td>Australia</td>
</tr>
<tr>
<td>Hypertension evidence-based nutrition practice guideline</td>
<td>Academy of Nutrition and Dietetics</td>
<td>2016</td>
<td>USA</td>
</tr>
<tr>
<td>Lipid modification: cardiovascular risk assessment and the modification of blood lipids for the primary and secondary prevention of cardiovascular disease</td>
<td>NICE</td>
<td>2014</td>
<td>UK</td>
</tr>
<tr>
<td>Maintaining a healthy weight and preventing excess weight gain among adults and children</td>
<td>NICE</td>
<td>2015</td>
<td>UK</td>
</tr>
<tr>
<td>Obesity prevention (CG43)</td>
<td>NICE</td>
<td>2014</td>
<td>UK</td>
</tr>
<tr>
<td>Physical activity and the environment (PH8)</td>
<td>NICE</td>
<td>2014</td>
<td>UK</td>
</tr>
<tr>
<td>Physical activity: brief advice for adults in primary care (PH44)</td>
<td>NICE</td>
<td>2013</td>
<td>UK</td>
</tr>
<tr>
<td>Preventing type 2 diabetes – population and community interventions (PH35)</td>
<td>NICE</td>
<td>2014</td>
<td>UK</td>
</tr>
<tr>
<td>Recommendations for prevention of weight gain and use of behavioral and pharmacological interventions to manage overweight and obesity in adults in primary care</td>
<td>Canadian Task Force on Preventive Health Care</td>
<td>2015</td>
<td>Canada</td>
</tr>
<tr>
<td>Risk estimation and the prevention of cardiovascular disease</td>
<td>SIGN</td>
<td>2017</td>
<td>UK</td>
</tr>
<tr>
<td>Screening for and management of obesity in adults</td>
<td>US preventive services task force</td>
<td>2012</td>
<td>USA</td>
</tr>
<tr>
<td>Team-based care to improve blood pressure control: recommendation of the Community Preventive Services Task Force</td>
<td>Community Preventive Services Task Force</td>
<td>2014</td>
<td>USA</td>
</tr>
<tr>
<td>Tobacco harm reduction (PH45)</td>
<td>NICE</td>
<td>2013</td>
<td>UK</td>
</tr>
<tr>
<td>VA/DoD clinical practice guideline for the diagnosis and management of hypertension in the primary care setting</td>
<td>VA/DoD</td>
<td>2015</td>
<td>USA</td>
</tr>
<tr>
<td>VA/DoD clinical practice guideline for the management of dyslipidemia for cardiovascular risk reduction</td>
<td>VA/DoD</td>
<td>2015</td>
<td>USA</td>
</tr>
<tr>
<td>VA/DoD clinical practice guideline for screening and management of overweight and obesity</td>
<td>VA/DoD</td>
<td>2015</td>
<td>USA</td>
</tr>
</tbody>
</table>

Abbreviations: AHA, American Heart Association; ACC, American College of Cardiology; TOS, The Obesity Society; ESC, European Society of Cardiology; HAS, Haute Autorité de Santé; NICE, National Institute for Health and Care Excellence; NVDPA, National Vascular Disease Prevention Alliance; SIGN, Scottish Intercollegiate Guidelines Network; VA/DoD, Department of Veterans Affairs/Department of Defense.

excess weight, sedentary lifestyle and unhealthy diet.19,20,23,26,28,30,35,36,38,39,41,43,31,32,33,34

Other guidelines recommended smoking cessation to prevent CVDs. It was recommended for all health care providers to advise smokers to quit, to provide information about methods to aid smoking cessation, including counselling services. Physicians were recommended to prescribe nicotine replacement therapy when indicated. No details, or very few, were found in the guidelines on how to advise smokers.21,25,27,29,37,42 Two guidelines focusing
on smoking provided more detailed recommendations.22,40

The following recommendations were identified:

- It was recommended to assess smoking status in all patients and their families and to use the Fagerstrom test (2 or 6 questions) to assess tobacco addiction (grade A).

- If smoking cessation is not attainable, smoking reduction should be the target, as an intermediate step towards quitting completely (grade B).

- Health care professionals were recommended to provide consultations dedicated to giving up smoking. The use of different techniques was recommended, such as counselling, psychological support, cognitive-behavioral therapy or motivational interviewing. Goals should be agreed with the patient and self-help documents should be provided. Past experiences, individual preferences and bio-psycho-social status should be taken into consideration (grade A).

- Intervention should be matched to the behavioral stage of change of the smoker concerned (according to the Prochaska and DiClemente model44) and have an initial, intensive phase (weekly consultations) followed by a maintenance phase lasting 3 to 6 months (monthly sessions) (grade B).

- Health care professionals should appraise themselves of the level of knowledge found within the community regarding beliefs held about smoking and other CVD risk factors.

- Phone and/or internet follow-up and self-help, using eHealth technologies, could be alternatives even though they may be slightly less effective than face-to-face interventions (grade B).

- It was recommended to involve media and public educational campaigns (grade A) and schools (grade B) as part of multicomponent strategies to promote healthy lifestyles. School personnel and health care providers were recommended to set the example and to avoid smoking at work (class 1, grade A).

ESC guidelines provided public health recommendations which dealt with law making (eg, ban smoking in public places and set higher taxes on tobacco) and were consequently excluded because they were considered infeasible on a primary care level.5 NICE PH49 provided general recommendations on behavioral approaches (such as social support) and on health care system organization but no detailed interventions for stopping smoking.24

References Analysis
One thousand eighty-one articles were identified of all 26 included guidelines for CVD prevention. After inclusion and exclusion criteria had been applied, 310 articles were included. Sixty-three included targeting smoking in their intervention. Seventeen studies were excluded from this analysis either because they presented no smoking-related outcomes (N=5) or they showed no significant differences for such outcomes (N=12). They were first included because the intervention was effective for other outcomes. Finally, 46 studies providing an effective smoking cessation intervention were included for analysis.

Interventions Description
Interventions and implementation strategies were described in detail and then summarized.

Fifteen studies provided a multicomponent intervention (targeting multiple risk factors) including an effective smoking cessation component and 31 studies targeted smoking only.

All interventions targeted a modification of the risk behavior related to smoking. They can be classified as behavioral change communication strategies.

Although interventions were heterogenous among included articles, some types of strategies were identified: self-help strategies alone, brief advice (BA), multiple sessions behavioral change strategies and community-based interventions.

Self-help strategies are presented in Table 2. These articles studied self-help strategies alone without face-to-face counseling.

Self-help documentation focused on the need to make a personal decision, the steps to successful quitting, the frequent need for repeated efforts, and the importance of setting a specific quit date and using substitutes for smoking. Self-help approaches were less effective compared with face-to-face counseling.47

BA was defined as one or two short individual consultations to provide information on the potential harm caused by smoking, advice on how to quit and on where to search for help. BA strategies are presented in Table 3. BA was more effective than usual care (including very brief advice): results for RCT with intention to treat analysis (ITT) showed 4% to 11% more continuous abstinence at 12 months of follow-up. The measure of exhaled carbon monoxide showed it to be slightly, but non-significantly, more effective than BA alone, while
Trained employees were successful in smoking cessation interventions. Relative risk (RR) for BA and multiple session behavioral change strategies was more effective than BA alone.49,54

Multiple session behavioral change strategies (Table 4) were implemented as a series of meetings with participants to raise awareness of behavioral risk, to help them change and prevent relapse.

The study from Hollis et al included both the self-help and the multiple session strategies as it implemented both interventions effectively.45

Based on RCTs with ITT results, multiple session behavioral change strategies were more effective than usual care (+3 to 9% on 12 months continuous abstinence) but also than BA (+4 to 5%).

Eight studies focused on workplace (Table 5) for the implementation of multiple session strategies. The workplace was specified in order to link individual strategies with interventions, targeting all workers, such as workplace information campaigns (posters), newsletters, smoking restricted areas, local media campaign and social support among employees.78,79,80,81,82 Trained employees were successfully involved in the organization and intervention.80,81

Three studies were linked in financial incentives but they did not seem very effective when compared with behavioral strategies.78,82,83 Three studies provided a BA intervention at the workplace, but with no or less involvement of the workplace structure and management.50,51,60

Community-Based Interventions

These were public interventions such as public campaigns carried out in the community and/or in workplaces (Table 6). They targeted the global CVD risk and were multi-component (diet, sedentary lifestyle, smoking).85,86,87,88,89

The efficacy of such interventions was unclear: none of the included studies was an RCT and none showed any statistical difference on continuous abstinence but only on point prevalence abstinence (last 7 days reported consumption).

Discussion

The objective of this work was to identify effective non-pharmacological interventions for smoking cessation to be used in a primary care or a community setting. A systematic review of guidelines, following the ADAPTE Process, included the best quality CVD prevention guidelines adapted to such settings. Health care professionals were recommended to screen for smoking, to give advice and support and to prescribe NRT when indicated. Guidelines globally failed to provide clear and detailed strategies to implement such recommended advice and support. Plus, they were centered on health care professionals. Recommendations for changes to law and to taxation were deemed infeasible in a primary care or community context and were excluded. Two guidelines only provided more detailed recommendations, such as the use of behavioral change strategies with an intensive and a maintenance phase, as well as the use of techniques such as motivational interviewing or the Prochaska stage of change theory.22,40

References analysis made it possible to specify implementation strategies for these recommendations. Although the included articles were seen to be heterogeneous in terms of the interventions, the settings and the outcomes, four main behavioral change strategies were identified.

Self-help materials showed a small positive effect in this review and in the literature, but they were less effective than face-to-face counseling.57,63,76,78,90 BA and multiple session behavioral change strategies were found to achieve better results than usual care or very BA (ie, 30 s to a couple of minutes).45,52,73 Relative risk (RR) for physician advice has been estimated to be 1.66 for

Table 2 Included Articles (Alphabetical Order) With A Self-Help Intervention

<table>
<thead>
<tr>
<th>Reference Study Type</th>
<th>Context</th>
<th>Strategy</th>
<th>Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hollis et al 199145</td>
<td>Netherlands. Primary care. 3161 smokers.</td>
<td>Nurse assisted self-help quit program. A trained nurse provided counseling and self-help material (video and printed) based on motivational interviewing. Follow-up phone calls.</td>
<td>Point prevalence abstinence 3 mo: 12.9% vs 7% (c) Continuous abstinence 3 mo: 10.6% vs 6% (c)</td>
</tr>
<tr>
<td>Slama et al 199546</td>
<td>France. Primary care, general population. 2199 smokers</td>
<td>GP providing a self-help cessation guide.</td>
<td>Point prevalence abstinence 1 mo: 6.8% vs 4.1% (c) 12 mo: NS Continuous abstinence 12 mo: 1.9% vs 0.5% (c)</td>
</tr>
</tbody>
</table>

Abbreviations: RCT, randomized controlled trial; GP, general practitioner; mo, months; vs, versus; (c), control group; NS, no significant difference.
Table 3 Included Articles (Alphabetical Order) With A Brief Advice Intervention

<table>
<thead>
<tr>
<th>Reference Study Type</th>
<th>Context</th>
<th>Strategy</th>
<th>Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cohen et al 198948</td>
<td>USA. Primary care, General population. 1420 adult smokers</td>
<td>Brief advice by GP (general practitioners) with reminders to talk about smoking and use the AAAA protocol: Ask/Advise/Agree/Arrange.</td>
<td>Point prevalence abstinence 6 mo: 4.2% vs 0.9% (c) 12 mo: 7.9% vs 1.5% (c)</td>
</tr>
<tr>
<td>Jamrozik et al 198449</td>
<td>UK. Primary care, General population. 2110 adult smokers.</td>
<td>GP brief advice and self-help documentation. Neither the addition of the measure of exhaled CO nor the follow-up by health counselor improved outcomes.</td>
<td>Point prevalence abstinence 12 mo: 15% vs 10% (c)</td>
</tr>
<tr>
<td>Kadowaki et al 200050</td>
<td>Japan. Workplace. 263 male smokers.</td>
<td>Individual brief counseling by a doctor with exhaled CO measure and periodic follow-up by doctor or nurse and booklet distribution and group discussions. One smoking cessation event organized in the workplace.</td>
<td>Point prevalence abstinence 5 mo: 12.9% vs 3.1% (c)</td>
</tr>
<tr>
<td>Lang et al 200051</td>
<td>France. Workplace. 1095 employees.</td>
<td>Brief advice by occupational physicians and nurses and self-help documentation. Follow up: phone call and a 2-month visit.</td>
<td>Point prevalence abstinence 12 mo: 18.4% vs 13.5% (c) Continuous abstinence: NS</td>
</tr>
<tr>
<td>Louwagie et al 201452</td>
<td>South Africa. Township primary care. 409 adult smokers diagnosed with tuberculosis.</td>
<td>One brief individual motivational interviewing session (15–20 mins) from the lay health care workers, and then referred to the nurse. Self-help booklet provided.</td>
<td>Point prevalence abstinence 6 mo: 39.5% vs 27% (c) 12 mo: NS Continuous abstinence 6 mo: 21.5% vs 9.3% (c)</td>
</tr>
<tr>
<td>Maguire et al 200153</td>
<td>UK. Pharmacies, general population. 484 adult smokers.</td>
<td>Individual 10 to 30 mins brief advice by a trained pharmacist. Signs and posters at the pharmacy. Information on NRT.</td>
<td>Point prevalence abstinence 6 mo: 18.5% vs 8.2% (c) Continuous abstinence 12 mo: 14.3% vs 2.7% (c)</td>
</tr>
<tr>
<td>Morgan et al 199656</td>
<td>USA. Primary care. 659 smokers aged 50–74.</td>
<td>GP brief advice based on AAAA and the transtheoretical model and self-help documentation. One follow-up phone call at 4 weeks. NRT by physicians if indicated.</td>
<td>Point prevalence abstinence 6 mo: 15.4% vs 8.2% (c)</td>
</tr>
<tr>
<td>Ojedokun et al 201357</td>
<td>Ireland. Primary care, general population. 402 adult smokers.</td>
<td>Brief advice by GP and “lung age” evaluation with a spiroimeter, self-help documentation.</td>
<td>Point prevalence abstinence 1 mo: 22.1% vs 12% (c)</td>
</tr>
<tr>
<td>Pieterse et al 200155</td>
<td>Netherlands. Primary care, general population. 530 smokers</td>
<td>Brief 10 mins motivational interviewing by trained GPs, self-help documentation and one follow-up meeting. Using the transtheoretical model. Information about NRT.</td>
<td>Point prevalence abstinence 6 mo: 11.9% vs 3.8% (c) 12 mo: 13.4% vs 7.3% (c) Continuous abstinence 12 mo: 8.2 vs 3.1% (c)</td>
</tr>
<tr>
<td>Russell et al 197956</td>
<td>UK. Primary care, general population. 2138 smokers.</td>
<td>GP brief advice plus information leaflet</td>
<td>Point prevalence abstinence 1 mo: 7.5% vs 3% (c) 12 mo: 19.1% vs 10.3% (c) Continuous abstinence 12 mo: 5.1% vs 0.3% (c)</td>
</tr>
<tr>
<td>Severson et al 200957</td>
<td>USA. Dental clinics, military personnel. 785 smokers using smokeless tobacco.</td>
<td>Three 15 mins phone counseling sessions and self-help documentation material. Based on the transtheoretical model.</td>
<td>Point prevalence abstinence 3 mo: 25% vs 8% (c) 6 mo: 24% vs 12% (c) Continuous abstinence 3 mo: 20.4% vs 9.2% (c) 6 mo: 13.5% vs 5.6% (c)</td>
</tr>
</tbody>
</table>

(Continued)
smoking cessation. Such interventions seemed even more effective when a defined behavioral change technique was used (motivational interviewing, “Five A’s”, Prochaska model or cognitive-behavioral therapy). This was consistent with evidence in the literature summarized in two recent Cochrane reviews. More intensive multiple session strategies were more successful than BA. Similar results were found by other systematic reviews either for group or individual sessions: RR for abstinence was 1.22 to 1.57 for more intensive interventions compared with simple advice. It should also be taken into consideration that the more intensive the intervention it is, the more it impacts on time and resources.

Several effective workplace interventions were found in this review. Despite this, the role of the “workplace” itself in this effect was still unclear. Best quality studies, implementing effective workplace interventions in our review included multiple session behavioral change strategies. Implemented interventions might be as effective whether offered in the workplace or elsewhere.

Spirometric lung age estimation was effective when added to BA in one study, but lung age did not differ among those who quit and those who did not. Smokers with poorer lung age were just as likely to quit as those with normal lung age. Other studies failed to show spirometry or lung age effective in promoting smoking cessation. Lung age biofeedback effect on smoking is still uncertain and concerns may be raised on the cost-effectiveness ratio.

Progressive and abrupt cessation showed similar long-term results. Evidence in the literature was insufficient to advocate aversive smoking techniques. Accordingly, only one article included in this review studied overt and symbolic aversion, but due to a small sample and a per protocol analysis, its results need to be interpreted with precaution. Money incentives were not very effective and their effect was time-limited. They did not seem a pertinent solution.

Diverse health care professionals were effective in leading such behavioral change interventions. This review showed evidence to indicate that trained community workers can successfully lead these interventions. This is important for settings where access to health care professionals is difficult.

Community-based public interventions, such as community events, mass media involvement and information campaigns, were identified in this review. They showed positive but small effects in non-controlled or non-randomized controlled trials which limited their strength. A systematic review found that community interventions had no effect, or a very limited effect, on quitting rates among adults. Among the 37 included studies, only 4 used random assignment of communities and largest and best conducted studies failed to detect a significant effect. Similarly, exclusive mass media interventions had an unclear effect mainly due to the lack of good quality studies. As smoking is also determined by the social context, the community approach still should be part of a smoking cessation project.

This review did not identify any intervention involving social media. The use of social media has been shown to be feasible and acceptable, although data are lacking regarding its effectiveness.
<table>
<thead>
<tr>
<th>Reference Study Type</th>
<th>Context</th>
<th>Strategy</th>
<th>Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barbarin O.A. 1978¹⁸</td>
<td>USA. Primary care. 60 adults smoking more than 1 pack/day</td>
<td>Self-control strategies focusing on negative consequences and side effects of smoking. Ten, 1 hr, group sessions over 1 month. Overt aversion (O), forced smoking to experience side effects, symbolic aversion (S), imagining negative consequences of smoking, or combined (Cb).</td>
<td>Point prevalence abstinence (per protocol) 3 mo: 72% (O) vs 41% (S) vs 47 (Cb) vs 8% (c) 12 mo: 44% (O) vs 16% (S) vs 25% (Cb) vs 0% (c)</td>
</tr>
<tr>
<td>Canga et al 2000³⁵</td>
<td>Spain. Primary care, Nurse. 280 diabetic smokers.</td>
<td>An initial 40-min visit adapted to the patient’s smoking history. Follow-up by phone calls or visits: 5 contacts over 6 months. By a trained nurse, based on motivational interviewing and the transtheoretical (Prochaska) model. NRT when indicated.</td>
<td>Point prevalence abstinence 6 mo: 17% vs 2.3% (c)</td>
</tr>
<tr>
<td>Cinciripini et al.1994⁴³</td>
<td>USA. Primary care, General population. 34 smokers.</td>
<td>Eight 90 mins weekly motivational interviewing and cognitive-behavioral sessions and a relapse prevention program. Scheduled progressive reduction of the number of cigarettes over 5 weeks with a set date for quitting.</td>
<td>Point prevalence abstinence 6 mo: 53% vs 6% (c) 12 mo: 41% vs 6% (c)</td>
</tr>
<tr>
<td>Cinciripini et al.1995⁴⁴</td>
<td>USA. Primary care, general population. 128 smokers</td>
<td>Scheduled gradual reduction with a quit date set at week 5. Nine weekly meetings based on motivational interviewing.</td>
<td>Point prevalence abstinence 6 mo: 41% vs 13% (c) 12 mo: 44% vs 22% (c)</td>
</tr>
<tr>
<td>Hilberink et al 2005⁶⁵</td>
<td>Netherlands. Primary care. 392 COPD patients.</td>
<td>GPs individual motivational interviewing using the transtheoretical model. 5 consultations and 3 follow-up phone calls by the practice nurse. Information about NRT. Education booklet and videotape were provided.</td>
<td>Point prevalence abstinence 6 mo: 16% vs 8.8% (c)</td>
</tr>
<tr>
<td>Hollis et al 1991⁴⁵</td>
<td>Netherlands. Primary care. 3161 smokers.</td>
<td>A professional group program: intensive nine group meetings over 2 months.</td>
<td>Point prevalence abstinence 3 mo: 14.1% vs 7% (c) Continuous abstinence 3 mo: 12% vs 6% (c)</td>
</tr>
<tr>
<td>Hollis et al 2007⁶⁶</td>
<td>USA. Community, Telephone Quit-line. 4600 smokers, planning to quit.</td>
<td>Initial 40-min session of phone counseling followed by two interventions. The moderate intervention (M): 1 follow-up call. Or the intensive intervention (I) by experienced tobacco counsellors (more effective): 4 additional phone calls over 3 months and personalized self-help material. Based on motivational interviewing techniques and transtheoretical model.</td>
<td>Continuous abstinence with NRT 6 mo: 24.3% (I) vs 21.3% (M) vs 16.8% (c) 12 mo: 21.2% (I) vs 20.1% (M) vs 17% (c) no NRT 6 mo: 13.1% (I) vs 10.7% (M) vs 10.2% (c) 12 mo: 17.1% (I) vs 13.8% (M) vs 11.7% (c)</td>
</tr>
<tr>
<td>Marcus et al 1999⁴⁷</td>
<td>USA. General population. 281 sedentary female smokers aged 18 to 65.</td>
<td>12 weekly sessions of a cognitive-behavioral program (self-monitoring, stimulus control, coping with cravings) associated with vigorous exercise (3 sessions per week) to reduce weight gain after smoking cessation. Provided by therapists and exercise specialists.</td>
<td>Continuous abstinence 3 mo: 16.4% vs 8.2% (c) 12 mo: 11.9% vs 5.4% (c)</td>
</tr>
<tr>
<td>Marks et al 2002⁶⁸</td>
<td>UK, economically deprived area of north London. 260 smokers.</td>
<td>Program using a spectrum of 30 cognitive-behavioral techniques and self-help material (written, audio). Initial 60-min session with therapists (3 to 12 people), one follow-up session and a phone call at 3 months.</td>
<td>Point prevalence abstinence 12 mo: 19.8% vs 5.8% (c)</td>
</tr>
</tbody>
</table>

(Continued)
Table 4 (Continued).

<table>
<thead>
<tr>
<th>Reference Study Type</th>
<th>Context</th>
<th>Strategy</th>
<th>Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Meyer et al 1980<sup>49</sup> Non randomized controlled trial</td>
<td>USA. High CVD risk smokers in 3 towns with 500 people recruited in each town, aged 35 to 59.</td>
<td>Intervention on multiple risk behaviors: dietary, smoking and exercise behavior. Mass media campaign: radio and television, weekly newspaper columns, posters, and printed material sent by mail. Followed by 9 face-to-face counseling sessions (1 to 3.5 hrs) over 3 months for the subject and spouse. Led by a group leader and trained counselors. Based on the social learning theory and behavioral self-control principles.</td>
<td>Point prevalence abstinence 12 mo: 32.5% vs 6.4% (c) 24 mo: 47.1% vs 10.6% (c) 36 mo: 50% vs 14.9% (c)</td>
</tr>
<tr>
<td>Neston et al 1981<sup>70</sup> RCT</td>
<td>USA. Community recruitment. 12,866 CVD high-risk middle-aged men.</td>
<td>10 weekly group meetings of 1 to 2 hrs led by counselors, combining nutrition, smoking and hypertension programs. Using social support (family) and skills development. Followed by the extended intervention which was individualized, based on results at 4 months.</td>
<td>Point prevalence abstinence 12 mo: 28% vs 8% (c) 24 mo: 28% vs 11% (c) 36 mo: 28.7% vs 13% (c) 48 mo: 29.9% vs 15.3% (c)</td>
</tr>
<tr>
<td>Nohlert et al 2009<sup>71</sup> RCT</td>
<td>Sweden. General population. 300 smokers attending dental or primary care.</td>
<td>Eight 40-min individual sessions by a trained dental hygienist over a 4-month period. Based on a mixture of behavior therapy, coaching and pharmacological advices.</td>
<td>Continuous abstinence 12 mo: 18% vs 9% (c)</td>
</tr>
<tr>
<td>Perkins et al 2001<sup>72</sup> RCT</td>
<td>USA. 219 women smokers concerned about weight gain after smoking cessation.</td>
<td>Cognitive-behavioral therapy by a woman therapist: acceptance of modest weight gain, benefits of quitting superseding the health risks of weight gain. 90-min sessions, twice per week for 3 weeks then weekly sessions for 4 weeks.</td>
<td>Continuous abstinence 6 mo: 28% vs 12% (c) 12 mo: 21% vs 12% (c)</td>
</tr>
<tr>
<td>Soria et al 2006<sup>73</sup> RCT</td>
<td>Spain. Primary care, general population. 200 smokers.</td>
<td>Three individual 20-min sessions by a GP, based on motivational interviewing and the transtheoretical model. NRT when appropriate.</td>
<td>Point prevalence abstinence 6 and 12 mo: 18.4% vs 3.5% (c)</td>
</tr>
<tr>
<td>Steptoe et al 1999<sup>74</sup> Cluster RCT</td>
<td>UK. Primary care. 883 people with one or more modifiable risk factors</td>
<td>Two to three counseling sessions with a practice nurse trained in behavioral change techniques followed by two phone calls. Based on the transtheoretical model. NRT when appropriate.</td>
<td>Cigarettes/day 3 mo: 7.1% vs 18 (c) 12 mo: 8.0% vs 2.7 (c) Continuous abstinence: NS</td>
</tr>
<tr>
<td>Wood et al 1994<sup>75</sup> RCT</td>
<td>UK. Primary care. Nurses. Family recruitment: 12,472 men and their partners.</td>
<td>Family-centered nurse led counseling. Subjects were told their CVD risk in relative to other people of the same age. The frequency of follow-up visits was determined by both the CVD risk score and individual risk factors: the higher the risk score, the more frequent the visits.</td>
<td>Smoking prevalence 12 mo: Men 19% vs 23% (c) Women 17.7% vs 21.5% (c)</td>
</tr>
<tr>
<td>Wu et al 2009<sup>76</sup> RCT</td>
<td>USA, Chinese community in New York. 122 smokers</td>
<td>Four 60-min individual sessions, in Chinese and based on motivational interviewing. Self-help materials. Phone calls follow-up. NRT provided if indicated.</td>
<td>Point prevalence abstinence 3 mo: 66.1% vs 32% (c) 6 mo: 66.7% vs 31.7% (c)</td>
</tr>
<tr>
<td>Cornuz et al 2002<sup>77</sup> Cluster RCT</td>
<td>Switzerland. 35 residents in general practice. 251 smokers.</td>
<td>Training program for residents in general practice focusing on the medical issues of smoking. Based on the transtheoretical model.</td>
<td>Point prevalence abstinence 12 mo: 13% vs 5% (c)</td>
</tr>
</tbody>
</table>

Abbreviations: RCT, randomized controlled trial; NRT, nicotine replacement therapy; GP, general practitioner; mo, months; vs, versus; (c), control group; NS, no significant difference.

Recent efforts to reduce smoking focused on anti-tobacco national policies, mass media communication and law-making. Less was done on the individual level. Cessation services were the least implemented component of MPOWER and physician interventions were not routinely provided, even in high-income countries.10,105,106
<table>
<thead>
<tr>
<th>Reference</th>
<th>Study Type</th>
<th>Context</th>
<th>Strategy</th>
<th>Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bertera et al 1993</td>
<td>Cohort:</td>
<td>USA. Workplace health program</td>
<td>A personalized health risk assessment followed by a videotaped feedback or individual consultation. Group activities and on-site classes by trained medical personnel were offered for 10 weeks on how to quit smoking (and how to deal with other risk behaviors). Smoking restrictions and awards for achieving health objectives were implemented in the workplace, and management and employees were involved.</td>
<td>Point prevalence abstinence 24 mo (months): +18%. From 1621 to 1328 smokers.</td>
</tr>
<tr>
<td>Erfurt et al 1991</td>
<td>Cluster RCT</td>
<td>USA. Workplaces. 7800 employees</td>
<td>After risk factor screening, employees could choose: 1. Guided self-help, 2. One-to-one formal consultation, and occasional phone contacts; 3. Mini-group interventions or 4. Full-group classes of eight or more participants. Led by wellness counselors. Informal health promotion and peer support groups and plant-wide health promotion activities.</td>
<td>Point prevalence abstinence 36 mo: 13.2% vs 7.8% (c)</td>
</tr>
<tr>
<td>Gomel et al 1993</td>
<td>Cluster RCT</td>
<td>Australia. Workplaces. 431 employees</td>
<td>50-min behavioral standardized counseling followed by 6 individualized sessions with a psychologist over 10 weeks. Based on 4 stages model: preparation for change, action, maintenance, relapse prevention. Self-help documentation and economic incentives (lottery tickets and voucher) were provided.</td>
<td>Point prevalence abstinence 3 mo: 18% vs 3% (c) 6 mo: NS. Continuous abstinence: NS</td>
</tr>
<tr>
<td>Groeneveld et al 2011</td>
<td>RCT</td>
<td>Netherlands. Workplace, community. 816 male workers at high CVD risk.</td>
<td>Over 6 months, three 45- to 60-min face to face counseling sessions by an occupational physician or nurse and four 15- to 30-min telephone contacts. Based on motivational interviewing techniques such as open questions, summarizing, listening, supporting and raising awareness of ambivalence.</td>
<td>Point prevalence abstinence 6 mo: 31.1% vs 13.4% (c) 12 mo: NS</td>
</tr>
<tr>
<td>Jason et al 1987</td>
<td>Cluster RCT</td>
<td>USA. Workplace. 425 smoker employees</td>
<td>During a television campaign for smoking cessation, six 45-min support group meetings were held twice a week in the workplace, led by employees trained on behavioral change techniques. Self-help manuals were provided, and posters displayed at the workplaces.</td>
<td>Point prevalence abstinence 3 mo: 22% vs 12% (c) Continuous abstinence 3 mo: NS</td>
</tr>
<tr>
<td>Jason et al 1989</td>
<td>Cluster RCT</td>
<td>USA. Workplace. 850 smoker employees</td>
<td>Six 45-min support group meetings, twice per week during a 3-week television program, focusing on techniques discussed in the television program and self-help manuals. Led by employees trained on behavioral change techniques. Then 12 monthly follow-up meetings, followed by lottery ticket incentives.</td>
<td>Point prevalence abstinence 6 mo: 29% vs 20% (c) 12 mo: 26% vs 16% (c) Continuous abstinence 6 mo: 12% vs 6% (c) 12 mo: 11% vs 3% (c)</td>
</tr>
<tr>
<td>Jason et al 1997</td>
<td>Cluster RCT</td>
<td>USA. Workplaces (63 companies in Chicago). 840 adult smokers.</td>
<td>A community-wide media campaign (television and newspaper) and cognitive-behavioral support groups. Group meetings were held twice a week for the initial 3 weeks using a self-help manual. Maintenance phase: 14 meetings over 6 months, weekly, then biweekly and then monthly. The cognitive-behavioral support was the most effective intervention.</td>
<td>Point prevalence abstinence 6 mo: 24.6% vs 4.3% (c) 12 mo: 20.7% vs 7% (c) 18 mo: 15.8% vs 7% (c) 24 mo: 18% vs 10.3% (c)</td>
</tr>
</tbody>
</table>

(Continued)
This review highlighted the efficacy of different behavioral change strategies that can be implemented in primary care and/or in the community. These approaches are highly cost-effective. BA seems more suitable for general practitioners or practice nurses because of the short duration of their consultation (5 to 20 mins in most countries). Pharmacists and dentist could play a major role as well.

Multiple session strategies, using a structured behavior change model (Prochaska Transtheoretical model, or motivational interviewing techniques) were seen to be more...
effective. Since they demand more time, they do not seem suitable for general practitioners worldwide.

This review showed that diverse health care professionals can successfully lead such interventions including lay health community workers. Training lay people to provide such behavioral change interventions could be a solution for public health authorities that deal with settings where access to care is difficult, such as low-income countries and regions in developed countries where physician availability is limited. Furthermore, involving lay people could strengthen the community approach of community-based smoking cessation projects.

Strengths And Limitations

International guidelines were reviewed following a validated and systematic protocol including their quality evaluation. Guidelines were selected, where pertinent for primary care or community context, by researchers who are primary care health care professionals (general practitioners and nurses).

This review might carry a selection bias. Studies were included if they showed a significant difference on primary outcomes. This could imply a bias concerning the effectiveness of these interventions. Since the references included arose from high-grade recommendations of the best quality international guidelines, these interventions were considered effective and this bias was therefore limited.

Multiple outcomes were found for smoking cessation interventions and the relevance of some outcomes is debatable and could involve a bias. Seven-day point prevalence abstinence was the most frequently recurring outcome in this review. Biochemical validation was frequent. An expert consensus stated that smoking cessation should be evaluated by 7-day point prevalence abstinence and prolonged abstinence at 6 and 12 months because shorter time intervals carry a very high probability of relapse. In this review, this bias concerned community interventions.

A publication bias was possible because this review protocol did not include a grey literature search. Nevertheless, different systematic reviews found similar results for the interventions described in this review.

Conclusion

Multiple session behavioral change strategies including follow-up and self-help materials were the most effective interventions for smoking cessation in primary care or community context.

These were based on motivational interviewing, Prochaska and DiClemente stage of change theory or cognitive-behavioral therapies. BA was slightly less effective. Nonetheless, BA involves less time and fewer resources and it is more suitable for primary care. These interventions could be provided by physicians, nurses and other health care professionals. Adequately trained lay health workers were also shown to be successful in providing these interventions. Community-based and workplace public interventions without behavioral change strategies were not effective. Evidence for community-based interventions effectiveness was weak due to the lack of robust studies.

Acknowledgments

The authors would like to acknowledge the SPICES Team: Dr Geoffrey Musinguzi, Pr Paul Van Royen, Pr Harm van Marwijk, Dr Linda Gibson, Dr Bowsyer Mark, Pr Tholene Sodi, Pr Mbuyiselo Douglas. And the EA 7479 SPURBO team for the systematic review: Lucie Morvan, Anne Catherine Lecuyer, Christelle Le Gafric, Hélène Roux, Marion Janyk, Nicolas Vimfles, Marion Le Bars, Pol-Maël Falhon, Louis Soulier, Cécile Guérin, Marine Réale, Hugo Vittori, Charlotte Donou, Eloïse Lissillour, Thomas Le Bras, Gabriel Eliot.

Author Contributions

All authors contributed toward data analysis, drafting and revising the paper, gave final approval of the version to be published and agree to be accountable for all aspects of the work.

Disclosure

The authors report no conflicts of interest in this work.

References

