
This item is the archived peer-reviewed author-version of:

A tool for the expression of failure detection protocols

Reference:
De Florio Vincenzo, Blondia Christian.- A tool for the expression of failure detection protocols
Proceedings of the 15th EUROMICRO Conference on Parallel, Distributed and Network-based Processing (PDP 2007),
2007 - s.l., 2007, p. 199-204
Handle: http://hdl.handle.net/10067/662220151162165141

Institutional repository IRUA

http://hdl.handle.net/10067/662220151162165141
http://anet.uantwerpen.be/irua

A Tool for the Expression of Failure Detection Protocols

Vincenzo De Florio and Chris Blondia
University of Antwerp

Department of Mathematics and Computer Science
Performance Analysis of Telecommunication Systems group

Middelheimlaan 1, 2020 Antwerp, Belgium, and
Interdisciplinary institute for BroadBand Technology

Gaston Crommenlaan 8, 9050 Ghent-Ledeberg, Belgium

Abstract

Failure detection protocols—an important building
block of fault-tolerant distributed systems—are often de-
scribed by their authors making use of informal pseudo-
codes of their own devising. Often these pseudo-codes use
syntactical constructs that are not available in COTS pro-
gramming languages such as C or C++. This translates
into informal descriptions that require ad hoc interpreta-
tions and implementations. Being informal, these descrip-
tions cannot be tested by their authors, which may trans-
late into insufficiently detailed or even faulty specifications.
Being non-standard, they require the reader to understand
each time a different lingo. This paper tackles the above
problem introducing a formal syntax for the expression of
failure detection protocols and a C library that implements
that syntax: a toolset to express and reason about failure
detection protocols. The resulting specifications are more
diffuse but non ambiguous and eligible for becoming a stan-
dard form among researchers and practitioners.

1 Introduction

Failure detection constitutes a fundamental building
block of fault-tolerant distributed systems. Many re-
searchers have devoted their efforts to this subject during the
last decade. Failure detection protocols are often described
by their authors making use of informal pseudo-codes of
their conception. Often these pseudo-codes use syntactical
constructs such as repeat periodically [4, 1, 3], at time t
send heartbeat [5, 3], at time t check whether mes-
sage has arrived [5], or upon receive [1], together with
several variants (see Table 1). We observe that such syn-
tactical constructs are not often found in COTS program-
ming languages such as C or C++. Furthermore, the lack

of a formal, well-defined, and standard form to express fail-
ure detection protocols often leads their authors to insuffi-
ciently detailed descriptions. Those informal descriptions
in turn complicate the reading process and exacerbate the
work of the implementors, which becomes time-consuming
and error-prone.

Several researchers and practitioners are currently argu-
ing that failure detection should be made available as a net-
work service [10, 14]. No such service exists to date. Lack-
ing such tool, it is important to devise methods to express
in the application layer of our programs failure detection
protocols in a simple and natural way.

In the following we introduce one such method—a class
of “time-outs”, i.e., objects that postpone a certain function
call by a given amount of time. This feature allows to con-
vert time-based events into non time-based events such as
message arrivals and easily express the constructs in Table 1
in standard C. In some cases, our class allows to get rid of
concurrency management requirements such as coroutines
or thread management libraries. The formal character of
our method allows to rapid-prototype the algorithms with
minimal effort. This is proved through a Literate Program-
ming [11] framework that produces from a same source file
both the description meant for publication and a software
skeleton to be compiled in standard C or C++.

The rest of this article is structured as follows: Section 2
introduces our tool. In Sect. 3 we put our tool to work and
use it to express three classical failure detectors. Our con-
clusions are finally drawn in Sect. 4.

2 A Time-outs Management System

This section briefly describes the architecture of our
time-out management system (TOM). The TOM class ap-
pears to the user as a couple of new types and a library of
functions. Table 2 provides an idea of the client-side proto-

1

Construct NFD-E [5] ϕ [9] FD [3] GMFD [13] D ∈ ♦P [4] HB [1] HB-pt [1]
Repeat periodically no no yes no yes yes yes
Upon t = current time yes no yes yes no no no
Upon receive message yes yes yes yes yes yes yes
Concurrency management yes yes no no yes yes yes

Table 1. Syntactical constructs used in several failure detector protocols. ϕ is the accrual failure detector discussed in [9, 10].
D is the eventually perfect failure detector of [4]. HB is the Heartbeat detector of [1]. HB-pt is the partition-tolerant version
of the Heartbeat detector. By “Concurrency management” we mean coroutines, threading or forking.

1. /* declarations */
TOM *tom; timeout t t1, t2, t3; int my alarm(TOM*), another alarm(TOM*);

2. /* definitions */
tom ← tom init(my alarm);
tom declare(&t1, TOM CYCLIC, TOM SET ENABLE, TIMEOUT1, SUBID1, DEADLINE1);
tom declare(&t2, TOM NON CYCLIC, TOM SET ENABLE, TIMEOUT2, SUBID2, DEADLINE2);
tom declare(&t3, TOM CYCLIC, TOM SET DISABLE, TIMEOUT3, SUBID3, DEADLINE3);
tom set action(&t3, another alarm);

3. /* insertion */
tom insert(tom, &t1), tom insert(tom, &t2), tom insert(tom, &t3);

4. /* control */
tom enable(tom, &t3);
tom set deadline(&t2, NEW DEADLINE2);
tom renew(tom, &t2);
tom delete(tom, &t1);

5. /* deactivation */
tom close(tom);

Table 2. An example of usage of the TOM class. In 1. a time-out list pointer and three time-out objects are declared, together
with two alarm functions. In 2. the time-out list and the time-outs are initialized, and an alarm differing from the default one is
attached to time-out t3. Insertion is carried out at point 3. At 4., some control operations are performed on the list, namely,
time-out t3 is enabled, a new deadline value is specified for time-out t2 which is then renewed to activate the changing, and
time-out t1 is deleted. The whole list is finally deactivated in 5.

col of our tool.
To declare a time-out manager, the user needs to define a

pointer to a TOM object and then call function tom init.
Argument to this function is an “alarm,” i.e., in our termi-
nology, the function to be called when a time-out expires:

int alarm(TOM*); tom = tom init(alarm);

The first time function tom init is called a custom thread
is spawned. That thread is the actual time-out manager.

At this point the user is allowed to define his time-
outs. This is done via type timeout t and function
tom declare; an example follows:

timeout t t; tom declare(&t,TOM CYCLIC,
TOM SET ENABLE, TID, TSUBID, DEADLINE).

In what above, time-out t is declared as:

• A cyclic time-out (renewed on expiration; as opposed
to TOM NON CYCLIC, which means “removed on
expiration”),

• enabled (only enabled time-outs “fire”, i.e., call
their alarm on expiration; an alarm is disabled with
TOM SET DISABLE),

• with a deadline of DEADLINE local clock ticks before
expiration.

A time-out t is identified as a couple of integers, in the
above example TID and TSUBID. This is done because in
our experience it is often useful to distinguish instances of

2

classes of time-outs. We use then TID for the class identi-
fier and TSUBID for the particular instance.

Once defined, a time-out can be submitted to the time-
out manager for insertion in its running list of time-outs.
From the user viewpoint, this is managed by calling func-
tion

tom insert(TOM *, timeout t *).

Note that a time-out might be submitted to more than one
time-out manager.

After successful insertion an enabled time-out will trig-
ger the call of the default alarm function after the specified
deadline. If that time-out is declared as TOM CYCLIC the
time-out would then be re-inserted.

Other control functions are available: a time-out can be
temporarily suspended while in the time-out list via func-
tion

tom disable(TOM *, timeout t *)

and (re-)enabled via function

tom enable(TOM *, timeout t *).

Furthermore, the user is allowed to specify a new alarm
function via tom set action and a new deadline via
tom set deadline; he can delete a time-out from the
list via

tom delete(TOM *, timeout t *),

and renew1 it via

tom renew(TOM *, timeout t *).

Finally, when the time-out management service is no
longer needed, the user should call function

tom close(TOM *),

which possibly halts the time-out manager thread should no
other client be still active.

2.1 Requirements

A fundamental requirement of our model is that pro-
cesses must have access to some local physical clock giv-
ing them the ability to measure time. The availability of
means to control the priorities of processes is also an impor-
tant factor to reducing the chances of late alarm execution.
Note how these are commodity features in most of today’s
real-time kernels. We also assume that the alarm functions
are small grained both in CPU and I/O usage so as not to
interfere “too much” with the tasks of the TOM. Finally,
we assume the availability of asynchronous, non-blocking
primitives to send and receive messages.

1Renewing a time-out means removing and re-inserting it.

3 Discussion

In this section we show that the syntactical constructs in
Table 1 can be expressed in terms of our class of time-outs.
We do so by considering three classical failure detectors and
providing their time-out based specifications.

Let us consider the classical formulation of eventually
perfect failure detector D [4]. Its basic structure is that of
a coroutine with three concurrent processes, two of which
execute a task periodically while the third one is triggered
by the arrival of a message:

Every process p executes the following:
outputp ← 0
for all q ∈ Π

∆p(q)← default time interval
cobegin

—— Task 1: repeat periodically
send “p-is-alive” to all

—— Task 2: repeat periodically
for all q ∈ Π

if q 6∈ outputp and p did not receive “q-is-alive” during
the last ∆p(q) ticks of p’s clock then

outputp ← outputp ∪ {q}
—— Task 3: when receive “q-is-alive” for some q

if q ∈ outputp
outputp ← outputp − {q}
∆p(q)← ∆p(q) + 1

coend.

We call the repeat periodically in Task 1 a “multiplicity-
1” repeat, because indeed a single action (sending a
“p-is-alive” message) has to be tracked, while we call
“multiplicity-q” repeat the one in Task 2, which requires to
check q events.

Our reformulation of the above code is as follows:

Every process p executes the following:
timeout t ttask1, ttask2[NPROCS];
task t p, q;
for (q=0; q¡NPROCS; q++) {

∆p[q] = DEFAULT TIMEOUT;
outputp[q] = TRUST;
}
/* “;” is our symbol for the “address-of” operator */
tom declare(;ttask1, TOM CYCLIC,

TOM SET ENABLE, p, 0, ∆p[q]);
tom set action(;ttask1, action Repeat Task1);
tom insert(;ttask1);
for (q=0; q¡NPROCS; q++) {

if (p 6= q) {
tom declare(ttask2+q, TOM CYCLIC,

TOM SET ENABLE, q, 0, ∆p[q]);
tom set action(ttask2+q, action Repeat Task2);

3

Figure 1. Reformulation of the HB failure detector for partitionable networks [1]. Special symbols such as τ and Dp are
caught by cweb and translated into legal C tokens via its “@f” construct [12]. The expression m.path[q] ≤PRESENTmeans
“q appears at most once in path”.

tom insert(;ttask1);
}
}
getMessage(;m);
switch (m.type) {

TASK1; TASK2; TASK3;
}

where tasks and actions are defined as follows:

TASK1 ≡ case REPEAT TASK1:
sendAll(I AM ALIVE);

break;
TASK2 ≡ case REPEAT TASK2:

q = m.id;
if (outputp[q] ≡ TRUST)

outputp[q] = SUSPECT;
break;

TASK3 ≡ case I AM ALIVE:
q = m.sender;

if (outputp[q] ≡ SUSPECT) {
outputp[q] = TRUST;
∆p(q) = ∆p(q) + 1;

}
break;

action Repeat Task1() {
message t m;
m.type = REPEAT TASK1;
Send(m, p);

}
action Repeat Task2(timeout t *t) {

message t m;
m.type = REPEAT TASK2;
m.id = t->id;
Send(m, p);

}

We can draw the following observations:

4

• Our syntax produces a longer listing with respect to the
original specification, but our syntax is more formal.
Indeed we have deliberately chosen a syntax very sim-
ilar to that of programming languages like C or C++.
Behind the lines, we assume also a similar semantics.

• Our syntax is more strongly typed: we have deliber-
ately chosen to define (most of) the objects our code
deals with.

• We have systematically avoided set-wise operations
such as union, complement or membership by trans-
forming sets into arrays as, e.g., in

outputp ← outputp ∪ {q},

which we changed into

outputp[q] = PRESENT.

• We have sistematically rewritten the abstract con-
structs repeat periodically as one or more
time-outs (depending on their multiplicity). Each of
these time-out has an associated action that sends one
message to the client process, p. This means that

1. time-related event “it’s time to send p-is-alive to
all” becomes event “message REPEAT TASK1
has arrived.”

2. time-related events “it’s time to check whether
q-is-alive has arrived” becomes event “message
(REPEAT TASK2, id=q) has arrived.”

• Due to the now homogeneous nature of the possible
events (they are all message arrivals now) a single pro-
cess may manage those events through a simple mul-
tiple selection statement (in C lingo, a switch). The
requirement for a coroutine has been removed.

Through the Literate Programming approach and a com-
pliant tool such as cweb [12, 11] it is possible to further
improve our reformulation. As well known, the cweb tool
allows to have a single source code to produce a pretty print-
able TEX documentation and a C file ready for compiling
and testing. In our experience this link between these two
contexts can be very beneficial: testing or even simply us-
ing the code provides feedback on the specification of the
algorithm, while the improved specification may reduce the
probability of design faults and in general increase the qual-
ity of the code.

Figure 1 and Figure 2 respectively show a reformulation
for the HB failure detector for partitionable networks [1]
and for the group membership failure detector [13] pro-
duced with cweb. Those reformulations include simple
translations for the syntactical constructs in Table 1 in terms

of our time-out API. An interesting case is that of the
group membership failure detector: here the authors mimic
the availability of a cyclic time-out service but intrude its
management in their formulation—which could have been
avoided using our approach.

4 Conclusions

We have introduced a tentative lingua franca for the ex-
pression of failure detection protocols and in general any
algorithm using the constructs in Table 1. TOM has the ad-
vantage of being simple, elegant and non ambiguous. Obvi-
ous are the many positive relapses that would come from the
adoption of a standard, semi-formal representation with re-
spect to the current Babel of informal descriptions—easier
acquisition of insight, faster verification, and greater ability
to rapid-prototype software systems.

Given the current lack of a network service for failure
detection, the availability of standard methods to express
failure detectors in the application layer is an important as-
sets: a tool like the one described in this paper isolates and
“conquers” a part of the complexity required to express fail-
ure detection protocols. This complexity becomes trans-
parent to the designer—which saves development times and
costs—and eligible for cost-effective optimizations.

In the future we are planning to make use of our tool in
the framework of European Project “ARFLEX” (Adaptive
Robots for FLEXible manufacturing systems, IST-NMP2-
016880) [2] and IBBT Project “End-to-End Quality of Ex-
perience” [8]. A public domain portable version of our tool
shall also be developed and validated on algorithms such as
the ones introduced in [6] and [7].

References

[1] M. K. Aguilera, W. Chen, and S. Toueg. Using the heart-
beat failure detector for quiescent reliable communication
and consensus in partitionable networks. Theoretical Com-
puter Science, (1):3–30, 1999.

[2] ARFLEX project web page, 2006.
http://www.arflexproject.eu/.

[3] M. Bertier, O. Marin, and P. Sens. Implementation and per-
formance of an adaptable failure detector. In Proceedings
of the International Conference on Dependable Systems and
Networks (DSN ’02). IEEE Society Press, June 2002.

[4] T. D. Chandra and S. Toueg. Unreliable failure detectors for
reliable distributed systems. Journal of the ACM, 43(1):225–
267, 1996.

[5] W. Chen, S. Toueg, and M. K. Aguilera. On the quality
of service of failure detectors. IEEE Trans. on Computers,
51(5):561–580, May 2002.

[6] V. De Florio. A Fault-Tolerance Linguistic Structure for Dis-
tributed Applications. PhD thesis, Dept. of Electrical En-
gineering, University of Leuven, October 2000. ISBN 90-
5682-266-7.

5

Figure 2. Reformulation of the group membership failure detector [13].

[7] V. De Florio, G. Deconinck, and R. Lauwereins. An algo-
rithm for tolerating crash failures in distributed systems. In
Proc. of the 7th Annual IEEE International Conference and
Workshop on the Engineering of Computer Based Systems
(ECBS), pages 9–17, Edinburgh, Scotland, April 2000. IEEE
Comp. Soc. Press.

[8] IBBT Project “End-to-end Qual-
ity of Experience” web page, 2006.
http://www.ibbt.be/site/index.php?id=208&L=1.

[9] N. Hayashibara. Accrual Failure Detectors. PhD thesis,
School of Information Science, Japan Advanced Institute of
Science and Technology, June 2004.

[10] N. Hayashibara, X. Défago, R. Yared, and T. Katayama.
The ϕ accrual failure detector. In Proceedings of the 23rd
IEEE International Symposium on Reliable Distributed Sys-
tems (SRDS’04), pages 66–78, Florianopolis, Brazil, Octo-
ber 2004.

[11] D. E. Knuth. Literate programming. The Comp. Jour.,
27:97–111, 1984.

[12] D. E. Knuth and S. Levy. The CWEB System of Structured
Documentation. Addison–Wesley, Reading, MA, third edi-
tion edition, 1993.

[13] M. Raynal and F. Tronel. Group membership failure detec-
tion: a simple protocol and its probabilistic analysis. Dis-
tributed Systems Engineering, 6:95–102, 1999.

[14] R. van Renesse, Y. Minsky, and M. Hayden. A gossip-style
failure detection service. In J. S. N. Davies, K. Raymond,
editor, Middleware ’98, pages 55–70, The Lake District,
UK, September 1998. Springer.

6

