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ABSTRACT 

There is a trend in the analysis of shotgun proteomics data that aims to combine information from 

multiple search engines to increase the number of peptide annotations in an experiment. Typically, 

the degree of search engine complementarity and search engine agreement is visually illustrated by 

means of Venn diagrams that present the findings of a database search on the level of the non-

redundant peptide annotations. We argue this practice to be not fit-for-purpose since the diagrams 

do not take into account and often conceal the information on complementarity and agreement at 

the level of the spectrum identification. We promote a new type of visualisation that provides insight 

on the peptide sequence agreement at the level of the peptide-spectrum-match (PSM) as a measure 

of consensus between two search engines with nominal outcomes.  

We applied the visualizations and percentage sequence agreement to an in-house dataset of our 

benchmark organism, C. elegans and illustrate that when assessing the agreement between search 

engine one should disentangle the notion of PSM confidence and PSM identity. The visualizations 

presented in this manuscript provide a more informative assessment of pairs of search engines and 

are made available as an R-function in the supplementary materials. 

 

 

 

  



 

 
This article is protected by copyright. All rights reserved. 

TOC 

 

 

Letter to Al 

Dear Al, 

I still remember well when we first met. It was at ASMS2011 - I just finalized a review on methods for 

the computation of isotope distributions and dedicated an entire section on the multinomial 

expansion to which Yergey and others have contributed a lot.  When I noticed your nametag amidst 

the ASMS crowd, I decided to quickly introduce myself to you. The short introduction became a long 

conversation and marked the start of a friendship/mentorship and a yearly tradition to meet at ASMS 

to talk about science, life, and our aspirations.  

It was during one of these ASMS dinners that we shared our frustration about the use of Venn 

diagrams for comparing results between multiple search engines, mainly because they provide a false 

intuition of search engine complementarity. We argued that rather than increasing the number of 

peptide identifications by combining search engines results, it would be wiser to focus on sequence 

agreement when conditioning on the spectrum level. A delineation of this discussion along with a new 

visualization method to replace the Venn diagrams is presented in this issue as an educational article 

in your memory.  

Can you still recollect our first words? I kept on talking about the manuscript that is also reprinted in 

this special issue, entitled: “Isotopic distributions in mass spectra of large molecules” and commented 

on how sharp-witted it was of you to see the link between the multinomial expansion and the 

calculation of isotope distributions. After my glorification of this article, you kind-heartedly notified 

that if I would have better studied the author list, I could have noticed that the article was from the 

hand of James, your brother. This situation still makes me smile when I think about you, but the 

interesting thing is that back then at ASMS, I started to talk to the wrong Yergey. Call it coincidence, 

destiny or serendipity, I am glad that we have met that day and it was an honour to have known you 

and have spent some time with you. 

Yours sincerely, 

Dirk Valkenborg
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INTRODUCTION 

Shotgun proteomics has proven to be a powerful technology for identifying proteins in a complex 

biological sample.1 To interpret the tremendous amount of fragment ion spectra produced by tandem 

mass spectrometry (MS/MS) experiments, correlative database search algorithms are often 

employed. There exists a large variety of correlative search engines to identify peptides using 

MS/MS2,3, for which exhaustive overviews are available in the literature.4-6 These different search 

algorithms all vary in accuracy, sensitivity and specificity, because they are based on various 

underlying scoring mechanisms and have different methodological implementations.  

This heterogeneity of principles used in search engines causes a variation in peptide identification, the 

choice of the search algorithm plays a role in the identification process of peptides and their 

corresponding proteins.7 To improve the robustness and confidence in peptide and protein 

identifications, studies suggest using approaches that combine the results from two or more search 

engines in terms of a meta-score. Most of these studies have shown that such approaches can greatly 

enhance mass spectral coverage and specificity, compared to the use of a single search algorithm.8-19 

An overview of the methods for combining multiple search engines is provided by Shteynberg et al.18 

A popular method to visualize the outcome of multiple search engines is the use of Venn diagrams, 

displaying the overlap and complementarity for the protein/peptide findings between pairs of search 

engines. This approach, however, simply employs a comparison of two or more sets of accession 

numbers or non-redundant peptide sequences, without taking into consideration information from 

the spectrum level. In this manuscript, we illustrate that the concept of complementarity on the 

protein/peptide level as defined by the Venn diagram view is flawed. Apart from improving the 

number of peptide identifications by using multiple search engines, a more interesting metric to 

consider is the degree of agreement on the peptide annotation at the spectrum level. Ignoring the 

agreement of peptide identification on the spectrum level becomes an issue when assessing search 

engine concordance, because the set of possible protein identifications is ultimately restricted by the 

finite set of proteins present in the database.20 

In order to construct a Venn diagram, for each search engine a list that contains all confidently 

assigned, non-redundant peptide annotations is created. In the scenario depicted in Figure 1, there 

are 3458 non-redundant peptide sequences found in common by Mascot and Sequest. The Mascot 

search engine contributes 510 additional confident peptide identifications, whilst Sequest adds 1360 

additional confident identifications. However, when further investigating these results it may well be 

that both search engines find the same set of non-redundant peptide sequences, but they do not 

reach a consensus when conditioning on the spectrum level. This hypothetical scenario is depicted in 

the table shown in Figure 1 by the coloured cells, where there is agreement in terms of identifying 

non-redundant peptide sequences, but disagreement in the peptide-to-spectrum-matches (PSMs) 

when considering the scan numbers. Although in this simplistic example no agreement is reached 

between the search engines when considering the spectrum level, in contrast, on the peptide set-

level, some of these identifications contribute to the intersection area of the Venn diagram. A different 

type of disagreement is represented by the cells indicated by grey colours. In this case, sequences are 

only found by one of the search engines. These identifications will contribute to the set of differences 

or complimentary findings, although, strictly speaking, at the spectrum level both search engines tend 

to disagree about the peptide annotation for that particular spectrum.  
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Arguably, the simplistic and hypothetical example presented in Figure 1 is not completely realistic or 

exhaustive. When multiple search engines are combined, it is possible that spectra will fail to receive 

a (confident) identification. Missing spectrum annotations would further complicate a concordance 

analysis and should be taken into account.  

Based on the aforementioned considerations, we conclude that the practice of summarizing mass 

spectrometry-based proteomics experiments by Venn diagrams is prone to misleading interpretation 

when combining results from multiple search engines. We argue that the agreement and 

disagreement should be assessed at the level of the spectrum and not on the level of the set of non-

redundant peptide identifications, as the latter obscures information about search engine reliability. 

Therefore, we propose a new visualization that provides this information at first glance. Additionally, 

we would like to promote the use of different variants of percentage agreement to summarize 

agreement between a pair of search engines.   

 

 

 

 

 

 

 

 

 

 

MATERIALS AND METHODS 

PEPTIDE IDENTIFICATION  

 

A spectral dataset of our benchmark organism C. elegans was interpreted by SearchGUI version 3.2.20 

as a workflow manager. The 20,581 tandem MS spectra were searched by Comet21,22 and MS-GF+23 

against a C. elegans protein database (ws229 wormbase) downloaded at 

ftp://ftp.wormbase.org/pub/wormbase/species/c_elegans/assemblies/. Precursor mass tolerance 

was set at 10 ppm, while fragment mass tolerance was set to 0.5 Da. A maximum of five missed 

cleavages by trypsin was allowed for. A static modification of 57.021 Da on cysteine was defined to 

account for carbamidomethylation and a dynamic modification of 15.9949 Da was introduced to 

account for possible oxidation of methionine. Monoisotopic masses were used for the precursor mass. 

Furthermore, only first ranked PSMs were considered for analysis, i.e., only one sequence annotation 

for each fragment ion mass spectrum is retained. The negative logarithm of the MS-GF+ and Comet E-

value was adopted as the MS-GF+ and Comet score. For Sequest and Mascot respectively the xcorr 

and ion score were used. A target-decoy (TD) search strategy was applied on a separate database 

search with reversed peptide sequences to determine the cut-off values by Ndecoy/Ntarget for a global 

PSM-level false-discovery rate (FDR) of 5% for both search engines.24 A similar workflow using 

Proteome Discoverer 1.3 was followed to obtain peptide identifications by Mascot3 and Sequest2. 

Figure 1: Hypothetical scenario on how disagreement at the level of scan numbers will contribute to 
the Venn diagram that represents findings at the level of peptide sequence information.  

ftp://ftp.wormbase.org/pub/wormbase/species/c_elegans/assemblies/
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Note that we adopted an FDR of 5% for illustrative purposes, while usually an FDR of 1% is deemed 

more appropriate for proteomic experiments. 

PERCENTAGE SEQUENCE AGREEMENT 

The main question that was addressed in this research was whether there is an agreement in terms of 

the peptide-to-spectrum assignments between Comet and MS-GF+ on the one hand and Mascot and 

Sequest on the other. When analyzing the agreement between two search engines, the concept of 

sequence agreement in terms of the peptide annotation tends to be conflated with the notion of 

sequence confidence. In this study we take into account sequence confidence by dichotomizing the 

confidence score in categories of peptide-spectrum-matches that do or do not pass the false discovery 

rate (FDR) cutoff. This creates three different scenarios, namely where both, only one or neither one 

of the search engines confidently annotates the spectrum. To account for the confidence that is 

assigned to a peptide annotation, sequence agreement - i.e. whether spectra get annotated with the 

same peptide by both search engines - is discussed conditionally on the three described scenarios. To 

assess sequence agreement, we calculate the percentage sequence agreement as the proportion of 

spectra that received the same peptide annotation from both search engines.25 Although percentage 

agreement has the advantage of being computationally simple and easy to interpret, it does not allow 

for the fact that a certain amount of agreement can be expected on the basis of chance alone.26 This 

is important to remark because, for example, large proteins that have many peptides are more likely 

to be found by different engines. Cohen proposed a measure of agreement that corrects for such 

chance findings.27 However, application of Cohen’s kappa to a mass spectrometry dataset faces the 

issue of the presence of a large number of distinct categories, i.e., peptide sequences. The use of 

Cohen’s kappa is further elaborated on in detail in the supplementary materials, but we already can 

mention that the correction for chance findings in the shotgun proteomics setting is negligible. As 

such, the use of the kappa coefficient boils down to percentage sequence agreement.  

MISSING ANNOTATIONS 

In general, database-searching engines identify only a proportion of the MS/MS spectra of digested 

proteins. Due to differences in their implementation, various search engines can handle low-scoring 

spectra in a vastly distinct way, leading to a discrepancy between the spectra annotated by the 

different algorithms. In our analysis we ignore missing annotations and filter out spectra that are not 

identified by both search engines. This filtering step can be perceived as a quality threshold, removing 

non-confident and most likely conflicting identifications, but also induces some information loss. A 

more detailed breakdown of the missingness patterns can be found in the supplementary materials.  

 

RESULTS AND DISCUSSION 

In total, when FDR filtering is disabled, Sequest provided 20,233 peptide-spectrum-matches. Among 

them, 12,128 (59%) were also identified by Mascot. Ignoring missing annotations means that 8105 

spectra that initially received a Sequest identification are filtered out, or alternatively were set to 

disagree at a MASCOT score of 0 (no confidence). By contrast, both Comet and MS-GF+ assigned a 

peptide sequence to most of the available MS/MS spectra when disregarding any confidence 

threshold. In our experiment, 361 and 362 out of the 20,581 spectra did not receive an identification 

from MS-GF+ and Comet, respectively. From these non-identified spectra, 328 were missing in both 

Comet and MS-GF+ results, yielding 20,186 spectra identified by both search engines. The percentage 

sequence agreement across all of these spectra is equal to 45.06% and 78.89%, for the Comet-MS-GF+ 

and Sequest-Mascot comparison respectively. It should be remarked that the higher agreement for 
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the Sequest-Mascot case is due to the missing annotations, which probably reflects an internal quality 

threshold for reporting.  

COMPARISON OF SEARCH ENGINES UNDER A TARGET-DECOY APPROACH 

In order to study the influence of confidence (i.e., pass the FDR criteria) on the sequence agreement, 

the results from the conducted MS/MS experiment are presented in Figure 2. In the scatterplots in 

the left panels, the identification scores provided by both search engines for each spectrum are 

plotted on the x- and y-axis. The barplots in the right panels contain a summary of the spectral 

agreement, related to the corresponding scatterplots.  In what follows, different scenarios are 

proposed for comparing sequence agreement in function of the confidence score, i.e. we discuss 

search engine concordance in terms of the different quadrants that are indicated in Figure 2.  

 

 

 

 

 

 

  

Figure 2: (Left) Scatterplot summarization of the rank 1 search engine results for all spectra between 2 search 
engines. Every dot in the plot represents a spectrum that is investigated by the search engines. The score of 
one search engine is denoted on the x-axis, the score of the other search engine is denoted on the y-axis. The 
colors give a binary indication whether the sequence annotation agrees (blue) or disagrees (red) among the 
search engines. The horizontal and vertical black lines indicate, in this case, the user-specified 5% FDR cutoff. 
Quadrant I (top-right) visually represents the percentage sequence agreement of the spectra that receive a 
confident score from both search engines. Spectra that only comply with an FDR of 5% for one of the two 
search engines are depicted in quadrants II (top-left) and IV (bottom-right). Spectra that receive an 
identification with a score below the FDR cut-off for both algorithms are compared in terms of sequence 
agreement by quadrant III (bottom-left). Spectra that did not receive a score from a search engine have been 
removed in this plot. (Right) Barplot and textual summarization of the percentage sequence agreement 
analysis from the comparison between two search engines. The quadrants in the barplot correspond to the 
quadrants indicated in the scatterplot in the left panel. The length of the bars is relative to the number of 
spectra in the respective quadrant. The colors indicate sequence agreement (blue) or disagreement (red). 
Spectra that did not receive a score from a search engine have been removed from the analysis.  (A) 
Comparison of Mascot and Sequest. (B) Comparison of Comet and MS-GF+. 
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STUDYING THE INFLUENCE OF THE CONFIDENCE RANKING 

The obtained results are first compared on the set of confident PSMs in quadrant I, i.e., the peptide 

identification results that comply with an FDR of 5% for both search engines according to the TD 

approach described in the materials section. There are 6,042 fragment ion spectra that received a 

score above the FDR threshold of 5% from both Comet and MS-GF+ (Quadrant I). It is observed that 

out of these 6,042 spectra, 5,996 (99.24%) agree in sequence annotation between both search 

engines. Similarly, there are 4,312 fragment ion spectra that received a score above the FDR threshold 

from both Mascot and Sequest. The percentage sequence agreement amongst these spectra is equal 

to 99.88%.  

It is reassuring that, in general, the dots (i.e., spectra) in quadrant I are overwhelmingly blue (i.e., 

sequence agreement), but the red dots (I.e., disagreement) are the most acute cases. One red dot in 

quadrant I would lead to two contributions in a Venn diagram and are therefore the most alarming. 

These insights are not provided by the area-proportional Venn diagram presentation. 

The most interesting quadrants in Figure 2, however, are quadrants II and IV. They indicate spectra 

that received a confident annotation by only one of the two search engines. For example, there were 

1,247 spectra that received a confident ranking by MS-GF+ but that failed to receive a confident score 

from Comet. Among these spectra, which are represented by the bottom-right quadrant in the 

scatterplot in Figure 2B, 825 (66.16%) agreed in identification for both search engines. Analogously, 

there were 780 spectra that received a confident ranking by Comet but that scored below the FDR 

cutoff for MS-GF+. Among these spectra, which are represented by the top-left quadrant in the 

scatterplot of Figure 2B, 432 (55.38%) agreed in identification for both search engines.  

Our motivation in focusing on the details of quadrants II and IV can best be summed up by (a slightly 

paraphrased) Tolstoy: “Happy PSMs are all alike; every unhappy PSM is unhappy in its own way”. The 

original version of this quote, often referred to as the Anna Karenina Principle, suggests that failures 

are multi-faceted and diverse, whereas success is uniform. In our case, the implication is that two 

search engines can fail to agree because they produce different peptide identifications, but they can 

also fail to agree for other reasons, namely because they do not achieve a sufficient degree of 

confidence on the underlying peptide identification.28   In contrast, when focusing on quadrants II and 

IV in Figure 2A for the comparison between Mascot and Sequest, the parts that are considered as a 

complementary contribution from the multiple search strategy, it can be seen that the sequence 

annotations are in high agreement but one of the search engines lacks courage to call it a confident 

finding. 

For completion, quadrant III in Figure 2A and 2B constitutes the spectra that failed to receive a 

confident annotation from either search engine. There are 12,117 spectra that scored below the 5% 

FDR cut-off for both MS-GF+ and Comet. The percentage sequence agreement on this set of spectra 

equals 15.21%. Similarly, for the comparison between Sequest and Mascot, 5,514 spectra were scored 

below the FDR threshold, of which the percentage sequence agreement in terms of sequence 

annotation equals 56.42%.  
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AGREEMENT BY PEPTIDE SUMMERIZATION AT THE SEQUENCE LEVEL 

In what preceded we have presented the results regarding percentage sequence agreement on the 

spectrum level for each of the quadrants in Figure 2 separately. We argue that such a representation 

is much more informative than the sequence set analysis by the Venn diagrams in Figure 3. For 

example, the search engine agreement presented in Figure 3 is based on the set of peptide 

annotations that receive a confident score by at least one the search engines, i.e. the set of spectra 

comprised of quadrants I, II and IV. In what follows, we contrast the agreement at the level of the set 

of non-redundant peptide annotations (Figure 3) to the percentage sequence agreement on the 

spectrum level (Figure 2). 

 

 

 

There are 8,069 spectra that receive a confident annotation by either Comet, MS-GF+ or both. These 

spectra constitute 6,609 unique peptide annotations. Notice that 79.06% of the peptide annotations 

are found by both search engines, which contributes to the intersection of the Venn diagram. 

Additionally, Comet and MS-GF+ account for 10.05% and 10.89% of the peptide annotations that could 

not be confidently identified by both search engines. Analogously, there are 6,614 spectra confidently 

identified by Sequest and Mascot. The identifications of these spectra are composed of 4,890 non-

redundant peptide annotations, of which 65.14% are found in common by Sequest and Mascot. 

Sequest and Mascot separately contribute 9.75% and 25.11% additional peptide annotations. The 

metrics from the Venn diagram can be contrasted with the percentage sequence agreement on the 

spectral level for quadrants I, II and IV. The percentage sequence agreement for the respective Comet-

MS-GF+ and Mascot-Sequest comparison are equal to 89.89% and 97.58% suggesting a large 

agreement instead of the complementarity suggested by Figure 3. By no means the results presented 

in the barplots in Figure 2, can be inferred from the Venn diagram mainly due to the presence of 

redundant peptide annotations. Another effect that complicates the inference of Figure 2 from Figure 

3 was already announced in the introduction. For example, a confident sequence disagreement in 

Figure 3: Venn diagrams that represent the agreement on the set of non-redundant peptide 
annotations comprised of quadrants I, II and IV. Notice the discrepancy between the agreement 
on the set of peptides and the percentage sequence agreement on the spectrum level. 
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quadrant I can result in the irrational effect of a complementarity in the Venn diagram at the level of 

non-redundant peptide annotations. On the other hand, any findings in quadrant II or IV, whether 

search engines agree or disagree, does not necessarily lead to a complementarity in the finding at the 

level of non-redundant peptide annotations as these peptide findings can be covered by another 

peptide-spectrum-match. As previously discussed, the comparison of search engines conflates two 

different questions, namely: 

1. Is there an agreement in sequence annotation between search engines? 

2. Are the search engines (both) confident about the sequence annotation? 

It is possible that search engines assign the same sequence annotations to a spectrum, but one search 

engine is very confident about this assignment, whilst the other lacks courage to make the call. This 

discrepancy was made clear especially in the comparison between Comet and MS-GF+. On the other 

hand, there might also be spectra that are confidently identified by both search engines, but that do 

not agree on their peptide annotation. The analysis in this manuscript demonstrates that Venn 

diagrams provide only a restricted view on search engine agreement and/or complementarity. Instead 

we could use the visualizations proposed in Figure 2 in order to make a more complete evaluation 

about search engine agreement. 

CONCLUDING REMARKS 

In this manuscript, we propose the concept of percentage sequence agreement on peptide 

identification at the spectrum level to assess agreement in the context of database search engines 

instead of summarizing results at the level of peptides or proteins by means of a Venn diagram. When 

assessing the agreement between search engines, it should be clear where and how confidently they 

agree. Typically, in database searches this is a combination of both sequence annotation and sequence 

confidence. Therefore, we propose to visualize the outcome of a database search by the Mondrian-

like plots presented in Figure 2 that divide the search engine results into four quadrants depending on 

the search engine’s confidence. The percentage sequence agreement and some simple summary 

statistics can be computed for each of these quadrants as depicted in the barplot of Figure 2.  From 

these summary statistics, it is trivial to compute an overall percentage sequence agreement for 

quadrants I, II and IV by means of a weighted average.  

Besides, the more in-depth view on search engine concordance for the quadrants individually, 

provided by Figure 2, these plots gives us the opportunity to associate a notion of quality on the 

peptide annotation if classical database search engines are used, i.e., no 2nd pass or chimeric spectra 

search engines. There are four scenarios possible: 

1. Green flag (safely passes QC):  

a. The search engines strongly agree on a peptide annotation (blue dots in quadrant I).  

b. The search engines weakly agree on a peptide annotation (blue dots in quadrant II 

and IV). It means that both search engines recognize the same peptide in the 

presented fragment ion series but one of the engines is not confident about its 

finding. 

2. Orange flag (warrants further investigation): 

a. The search engines weakly disagree on a peptide annotation (red dots in quadrant II 

and IV), it means that the search engines assign different peptides to the observed ion 

fragments, but one of the search engines is not confident about its finding. Therefore, 

the identification of the uncertain search engine can be discarded. 
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3. Red flag (does not pass QC): The search engines strongly disagree on a peptide annotation 

(red dots in quadrant I). Action should be undertaken to untie the conflicting identification. 

Provided aforementioned assumptions about chimeric spectra and standard search engines, 

a spectrum should not give rise to two identifications.   

4. White flag (unidentified spectra): The findings in quadrant III are not of concern since both 

search engines are uncertain about the peptide annotation. Nevertheless, in case they agree 

on a peptide annotation, this could hint towards the presence of explanatory peptide ions in 

the spectrum. 

For the example of MS-GF+ and Comet, the aforementioned numbers can be easily obtained from 

Figure 2 as follows: 

 #spectra(Green) = 0.9924 * 6043 + 0.5538 * 780 + 0.6616 * 1247 = 5997 + 432 + 825 = 7254 

spectra 

 #spectra(Orange) = (1-0.5538) * 780 + (1-0.6616 * 1247) = 348 + 422 = 770 spectra 

 #spectra(Red) = (1-0.9924) * 6042 = 46 spectra 

We want to emphasise that the minimalistic QC approach presented here should not be over-

interpreted. Sequence agreement and spectral confidence depend on the selected search engines and 

since we only consider two search engines at the time, a severe selection bias in the QC results can 

occur. This selection bias can be remediated by a sensitivity analysis on the spectra for multiple 

pairwise search engine comparisons and summarizing the QC results for a more robust interpretation. 

Another disadvantage of the binary approach is that we lose the fine-grained information present in 

the score distributions of the search engines. A possible solution is to revert to probabilistic models 

that compute a meta-score for the quality of the identification on a continuous scale. For example, 

the methods of Shteynberg et al. and Searle et al. allow for such a meta-analysis approach.17,18 Such 

probabilistic models yield two major advantages compared to the simple analysis presented in this 

manuscript. Firstly, the probabilistic meta-score is able to register the nuances around the FDR 

threshold, making it slightly less sensitive to the selection of the search engine pairs. Secondly, when 

extending the visual quality control to more than three search engines, the interpretation of the plots 

becomes complicated. A meta-score can easily incorporate information from multiple search engines, 

making it less vulnerable for the selection bias due to the pairwise comparison. 

Furthermore, it should be noted that missing annotations, especially when they only occur for one of 

the search engines, complicate the agreement analysis. In our analysis, Mascot fails to reports a score 

for a substantial proportion of spectra. However, it can be shown (supplementary materials) that the 

spectra that do not receive a score by either of the search engines, mainly produce low-scoring 

identifications by the other search engine and imply some internal quality filter. Nonetheless these 

missing scores and annotations would land mainly in quadrant III and would thus not substantially 

influence the agreement analysis when not taken into account.  A more thorough approach would be 

to perform a sensitivity analysis by random imputation of the missing score and agreement. 

Alternatively, a worst case approach could be considered that sets the missing score to the minimum 

score and the annotation is assumed to disagree. Latter findings could be contrasted with the 

complete case as reported in Figure 2. 

For illustrative purposes, we have considered only 2 sets of different search engines in this manuscript, 

namely Sequest and Mascot as the two most employed commercial database search engines to-date 

and Comet and MS-GF+ as two open-source search algorithms available through SearchGUI. However, 

our illustrations are not restricted to the cases presented in this paper and different comparisons, e.g. 

Comet-Mascot or other search engines, e.g. Andromeda can be employed. Moreover, when 
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comparing multiple search engines, the new visualisation approach is easy to generalize up to three 

search engines. For area-proportional circular Venn diagrams such an extension is usually 

impossible29. For higher dimension the comparison becomes visually difficult and other metrics have 

to be computed such as a generalisation of the percentage agreement or Cohen’s kappa. The R script 

to produce the scatterplots and barplots of Figure 2 for any combination of two search engines is 

provided in the supplementary information. We should also note that in our analysis, we have used 

both raw match scores (for the Mascot-Sequest comparison) and probability-based scores (for the 

Comet-MS-GF+ comparison). Our visualization approach is flexible and can operate on any type of 

score, however, comparisons should always be made at the same score types as non-monotone 

transformations could skew the scatter plot data. Preferably, a probabilistic score is used to compare 

results across different search engines. For example, when investigating Figure 2A, one can observe 

that the 5% FDR threshold is not well aligned with the region of sequence disagreement (red dots in 

quadrant III), whereas in Figure 2B the FDR nicely separates the quadrants with dominant sequence 

agreement and disagreement.   

To conclude, the take-home message of this manuscript is that the nature of disagreement among 

search engines should be verified, i.e. whether disagreement originates from having the same ID, but 

low confidence versus a true divergence of opinion. This divergence can be visualized with the 

proposed Figure 2 with the same effort as the Venn diagrams at the peptide level, but the figures give 

a more informative view. These visualizations also combat the perverse effects of the Venn diagram 

summary that reward strong disagreement as high complementarity. Instead of striving towards 

complementarity one should strive for better search engine concordance and progress towards a 

universal search engine.  

 

 

 

 

 

 

  



 

 
This article is protected by copyright. All rights reserved. 

REFERENCES 

1. Aebersold R, Mann M. Mass spectrometry-based proteomics. Nature. 2003;422(6928):198-
207. 

2. Eng JK, McCormack AL, Yates JR. An approach to correlate tandem mass spectral data of 
peptides with amino acid sequences in a protein database. Journal of the American Society 
for Mass Spectrometry. 1994;5(11):976-989. 

3. Perkins DN, Pappin DJC, Creasy DM, Cottrell JS. Probability-based protein identification by 
searching sequence databases using mass spectrometry data. ELECTROPHORESIS. 
1999;20(18):3551-3567. 

4. Nesvizhskii AI. Protein Identification by Tandem Mass Spectrometry and Sequence Database 
Searching. In: Matthiesen R, ed. Mass Spectrometry Data Analysis in Proteomics. Totowa, NJ: 
Humana Press; 2007:87-119. 

5. Kapp E, Schütz F. Overview of Tandem Mass Spectrometry (MS/MS) Database Search 
Algorithms. Current Protocols in Protein Science. 2007;49(1):25.22.21-25.22.19. 

6. Hubbard SJ. Computational Approaches to Peptide Identification via Tandem MS. In: 
Hubbard SJ, Jones AR, eds. Proteome Bioinformatics. Totowa, NJ: Humana Press; 2010:23-42. 

7. Sadygov RG, Cociorva D, Yates JR. Large-scale database searching using tandem mass 
spectra: Looking up the answer in the back of the book. Nature Methods. 2004;1(3):195-202. 

8. Elias JE, Haas W, Faherty BK, Gygi SP. Comparative evaluation of mass spectrometry 
platforms used in large-scale proteomics investigations. Nature Methods. 2005;2(9):667-675. 

9. Alves G, Wu WW, Wang G, Shen R-F, Yu Y-K. Enhancing Peptide Identification Confidence by 
Combining Search Methods. Journal of Proteome Research. 2008;7(8):3102-3113. 

10. Chamrad DC, Körting G, Stühler K, Meyer HE, Klose J, Blüggel M. Evaluation of algorithms for 
protein identification from sequence databases using mass spectrometry data. 
PROTEOMICS. 2004;4(3):619-628. 

11. Jones AR, Siepen JA, Hubbard SJ, Paton NW. Improving sensitivity in proteome studies by 
analysis of false discovery rates for multiple search engines. PROTEOMICS. 2009;9(5):1220-
1229. 

12. Kapp EA, Schütz F, Connolly LM, Chakel JA, Meza JE, Miller CA, Fenyo D, Eng JK, Adkins JN, 
Omenn GS, Simpson RJ. An evaluation, comparison, and accurate benchmarking of several 
publicly available MS/MS search algorithms: Sensitivity and specificity analysis. 
PROTEOMICS. 2005;5(13):3475-3490. 

13. Kwon T, Choi H, Vogel C, Nesvizhskii AI, Marcotte EM. MSblender: A Probabilistic Approach 
for Integrating Peptide Identifications from Multiple Database Search Engines. Journal of 
Proteome Research. 2011;10(7):2949-2958. 

14. Price TS, Lucitt MB, Wu W, Austin DJ, Pizarro A, Yocum AK, Blair IA, FitzGerald GA, Grosser T. 
EBP, a Program for Protein Identification Using Multiple Tandem Mass Spectrometry 
Datasets. Molecular &amp;amp; Cellular Proteomics. 2007;6(3):527. 

15. Resing KA, Meyer-Arendt K, Mendoza AM, Aveline-Wolf LD, Jonscher KR, Pierce KG, Old WM, 
Cheung HT, Russell S, Wattawa JL, Goehle GR, Knight RD, Ahn NG. Improving Reproducibility 
and Sensitivity in Identifying Human Proteins by Shotgun Proteomics. Analytical Chemistry. 
2004;76(13):3556-3568. 

16. Searle BC. Scaffold: A bioinformatic tool for validating MS/MS-based proteomic studies. 
PROTEOMICS. 2010;10(6):1265-1269. 

17. Searle BC, Turner M, Nesvizhskii AI. Improving Sensitivity by Probabilistically Combining 
Results from Multiple MS/MS Search Methodologies. Journal of Proteome Research. 
2008;7(1):245-253. 

18. Shteynberg D, Nesvizhskii AI, Moritz RL, Deutsch EW. Combining Results of Multiple Search 
Engines in Proteomics. Molecular &amp;amp; Cellular Proteomics. 2013;12(9):2383. 

19. Yu W, Taylor JA, Davis MT, Bonilla LE, Lee KA, Auger PL, Farnsworth CC, Welcher AA, 
Patterson SD. Maximizing the sensitivity and reliability of peptide identification in large-scale 



 

 
This article is protected by copyright. All rights reserved. 

proteomic experiments by harnessing multiple search engines. PROTEOMICS. 
2010;10(6):1172-1189. 

20. Serang O, Käll L. Solution to Statistical Challenges in Proteomics Is More Statistics, Not Less. 
Journal of Proteome Research. 2015;14(10):4099-4103. 

21. Eng JK, Hoopmann MR, Jahan TA, Egertson JD, Noble WS, MacCoss MJ. A Deeper Look into 
Comet—Implementation and Features. Journal of The American Society for Mass 
Spectrometry. 2015;26(11):1865-1874. 

22. Eng JK, Jahan TA, Hoopmann MR. Comet: An open-source MS/MS sequence database search 
tool. PROTEOMICS. 2013;13(1):22-24. 

23. Kim S, Pevzner PA. MS-GF+ makes progress towards a universal database search tool for 
proteomics. Nature Communications. 2014;5:5277. 

24. Nesvizhskii AI. A survey of computational methods and error rate estimation procedures for 
peptide and protein identification in shotgun proteomics. Journal of Proteomics. 
2010;73(11):2092-2123. 

25. Berk RA. Generalizability of behavioral observations: a clarification of interobserver 
agreement and interobserver reliability. Am J Ment Defic. 1979;83(5):460-472. 

26. Baer DM. REVIEWER'S COMMENT: JUST BECAUSE IT'S RELIABLE DOESN'T MEAN THAT YOU 
CAN USE IT. Journal of Applied Behavior Analysis. 1977;10(1):117-119. 

27. Cohen J. A Coefficient of Agreement for Nominal Scales. Educational and Psychological 
Measurement. 1960;20(1):37-46. 

28. Tolstoy L. Anna Karenina. Russia: The Russian Messenger; 1877. 

29. Micallef L, Rodgers P. eulerAPE: Drawing Area-Proportional 3-Venn Diagrams Using Ellipses. 
Plos One. 2014;9(7):e101717 

 

 

 


