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A multi-objective optimization-extended techno-economic 
assessment: Exploring the optimal microalgal-based value chain 

Gwenny Thomassen,*a,b Miet Van Daela,b, Fengqi Youc and Steven Van Passela,d 

The use of fossil-based products induces a large environmental burden. To lighten this burden, green technologies are 

required that can replace their fossil-based counterparts. To enable the development of economically viable green 

technologies, an optimization towards both economic and environmental objectives is required. To perform this multi-

objective optimization (MOO), the environmental techno-economic assessment (ETEA) methodology is extended towards 

a MOO-extended ETEA. The development of this MOO-extended ETEA is the main objective of this manuscript. As an 

example of a green technology, the concept of microalgae biorefineries is used as a case study to illustrate the MOO-

extended ETEA. According to the results, all optimal value chains include open pond cultivation, a membrane for medium 

recycling and spray drying. The optimal economic value chain uses Nannochloropsis sp. in a one-stage cultivation to 

produce fish larvae feed, while the optimal environmental design uses Dunaliella salina or Haematococcus pluvialis to 

produce carotenoids and fertilizer or energy products, by means of anaerobic digestion or gasification. The crucial 

parameters for both environmental and economic feasibility are the content, price and reference impact of the main end 

product, the growth parameters and the biomass and carotenoid recovery efficiency alongside the different process steps. 

By identifying the economic and environmentally optimal algal-based value chain and the crucial drivers, the MOO-

extended ETEA provides insights on how algae-based value chains can be developed in the most economic and 

environmentally-friendly way. For example, the inclusion of a medium recycling step to lower the water and salt 

consumption is required in all Pareto-optimal scenarios. Another major insight is the requirement of high-value products 

such as carotenoids or specialty food to obtain and economically and environmentally feasible algal-based value chain. 

Due to the modular nature of the MOO-extended ETEA, multiple processes can be included or excluded from the 

superstructure. Although this case study is limited to current microalgae biorefinery technologies, the MOO-extended 

ETEA can also be used to assess the economic and enviromental effect of more innovative technologies. This way, the 

MOO-extended ETEA provides a methodology to assess the economic and environmental potential of innovative green 

technologies and shorten their time-to-market.

Introduction  

Technological research is often directed by an economic 

motivation. When improving the performance of an existing 

technology or introducing a new technology to the market, the 

main objective is indeed in general to obtain maximal profits. 

However, this focus on economic optimization has led to 

technologies and processes that have a large impact on the 

environment. The consequences of climate change and other 

environmental problems have urged researchers to include a 

new objective during technology development. Besides 

maximizing profits, minimalizing the environmental impact 

needs to be a main objective as well. As technology 

development has become a process with multiple objectives, a 

multiple criteria decision method is required. The aim of this 

paper is therefore to develop a multi-objective optimization 

methodology that takes into account both economic and 

environmental objectives and that can be easily applied to a 

large range of green technologies.  

 

A large variety in potential algae species exists, each with their 

own characteristics and end products.1 These end products can 

vary from high-value products, such as food supplements, and 

pharmaceuticals to low-value products, such as energy.2 The 

process value chain of an algae biorefinery contains multiple 

different process steps, starting from cultivation towards 

purification of the end products. For each step, different 

options exist.3 Due to this variety in species, end products and 

process steps, multiple algae biorefinery value chains can be 

formulated.4 Currently, two main microalgae applications exist. 

The first application is the sale of high-value carotenoids as food 

supplements or colorants.5 The carotenoids, such as β-carotene 

or astaxanthin, have a limited market volume but a high market 
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price.6 Another commercially viable application is the sale of the 

whole microalgal-biomass for food or feed.5 The biomass, which 

can contain carotenoids and multiple valuable nutrients, has a 

larger market volume, but a lower market price. Despite these 

two commercially viable applications, most economic and 

environmental assessments of microalgal-based value chains 

have focused on the production of bioenergy as the main 

product. An example of these assessments is the analysis of the 

life cycle energy and greenhouse gas analysis for algae-derived 

biodiesel.7 However, the production of microalgal-based 

bioenergy is currently not economically viable and also no 

consensus exist over the environmental impact of this 

application.8 By comparing all these value chains according to 

economic and environmental objectives using an uniform and 

transparent method, the potential of the microalgae biorefinery 

concept can be assessed and the different applications can be 

compared.  

 

The multi-objective environmental techno-economic 

optimization that will be developed in this paper, will therefore 

be applied to explore the economic and environmental 

potential of microalgae biorefineries. In previous studies, 

multiple algal-based biorefinery value chains have been 

assessed on their technological, economic and/or 

environmental impact.9 For these individual assessments, the 

environmental techno-economic assessment (ETEA) 

methodology, which integrates aspects of process design, 

techno-economic assessment and life cycle assessment, was 

developed.10 However, the ETEA methodology assesses 

different scenarios one by one. In each scenario a potential 

microalgae value chain is selected. However, in practice, for 

each step of the value chain, multiple process options are 

available. Not only the process options can differ, but also the 

selected algae species and the production scale can vary, as 

economies-of-scale can have an influence as well. The number 

of potential scenarios can therefore become very large. In this 

paper, 1188 potential value chains were included, which each 

can have multiple optimal production scales as the economies-

of-scale can have different effects on different objectives. Due 

to this large number of potential scenarios, the ETEA 

methodology needs to be extended with an optimization step. 

As this optimization follows both economic and environmental 

objectives, a multi-objective optimization (MOO) method is 

used. The ETEA methodology will therefore be adapted towards 

a MOO-extended ETEA methodology.  

 

The MOO methodology as used for the MOO-extended ETEA 

was based on the work of Gong and You (2014). In their study, 

an algal-biorefinery value chain was optimized, producing 

energy products out of a Chlorella vulgaris feedstock, with the 

objective to minimize unit carbon sequestration and utilization 

cost.11 The study adopted multiple strategies, such as the 

successive piecewise linear approximation algorithm, to reduce 

the complexity of the non-convex optimization problem. These 

strategies will also be adopted in the MOO-extended ETEA and 

will be further discussed in the methodology section. However, 

Gong and You (2014) considered only one objective. The same 

authors used their methodological framework as well to 

optimize towards multiple objectives, those being unit cost and 

unit global warming potential.12 To deal with the fractional term 

in the objective, a parametric algorithm, based on Newton’s 

method was introduced. This way, the unit cost and unit global 

warming potential could be optimized. However, in their 

superstructure, always one main end product, being renewable 

diesel or biodiesel was produced. This way, only the unit global 

warming potential for this end product will be minimized. The 

authors used the ɛ-constraint method to handle the multiple 

objectives. As this method is the most used method for similar 

problems, it will also be used in the current model.13 A third 

paper by the same authors optimized towards total annual costs 

and global warming potential and included routes for medium-

value byproducts, such as poly-3-hydroxybutyrate. Multiple end 

products were included in this paper, but only the global 

warming potential for one product was optimized instead of the 

entire biorefinery. Economic allocation was used to obtain the 

global warming potential of the main end product.14 In a similar 

study, multiple end products were included as well without the 

use of the fractional term.15 Instead of the unit global warming 

potential, the total global warming potential was minimized. 

However, the optimal value chain in this case for the 

environment would be to produce nothing at all. These previous 

papers provide a good base for the MOO, providing strategies 

to deal with non-linearities. However, these studies mostly 

focus on one end product at a time and do not take into account 

the fossil-based reference products for all end products. 

Moreover, they also do not take into account the entire life 

cycle of the end products. Lastly, they only take into account 

GWP as an environmental indicator. Another MOO study on 

renewable energy-driven desalination systems does take into 

account multiple environmental indicators, using the ReCiPe 

method.16 However, they aggregate the different indicators into 

one end indicator, which also does not allow to see the impact 

on different indicators. An aggregated indicator has also been 

used by other studies, for example for the MOO of single-effect 

water/Lithium Bromide absorption cooling cycles; for a medical 

supply chain design problem and for liquid-liquid extraction 

operations.17, 18 19 Studies which do take into account multiple 

environmental indicators usually use genetic algorithms.20 

However, these algorithms cannot guarantee to find the global 

optimal solution and are therefore not used in the proposed 

MOO-extended ETEA. 

 

The current study extends these papers in four different ways. 

First, a full set of environmental indicators, using the ReCiPe 

endpoint indicators, is included. Second, a methodological 

framework for the integrated use of ETEA and MOO is provided. 

Third, a large range of algae biorefinery value chains containing 

different sorts of microalgae species and products, ranging from 

high value antioxidants to low-value energy applications, is 

assessed. Finally, a cradle-to-grave LCA perspective is used by 

including the conventional reference processes for all end 

products. The inclusion of these conventional reference 

processes enables the use of substitution as an allocation 

strategy, which is preferred by the ISO guidelines over the 
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generally applied partitioning strategies.21 To the best of our 

knowledge, this study is the first one that provides a 

methodological framework to use a multi-objective 

optimization in an integrated environmental and techno-

economic assessment, including a cradle-to-grave perspective 

and a full range of environmental indicators. Moreover, this 

study is also the first one that assesses the economic and 

environmental potential of algal-based biorefineries, including 

both high-value applications and low-value applications and 

including an optimization of the production scale. As most 

existing algae-based biorefinery studies focus on energy 

applications, this study aims to broaden this perspective 

focusing more on the sustainable design of green chemicals. 

The main objectives of this paper are therefore: 1) integrate a 

MOO method in the ETEA methodology and provide a generally 

applicable strategy to perform a MOO-extended ETEA; 2) 

applying this MOO-extended ETEA to a case study of multiple 

algal-based value chains to enable the identification of the 

optimal process routes and to guide further technology 

development of algal-based biorefineries. 

 

Data and Methodology 

Superstructure 

The potential microalgae biorefinery value chains are grouped 

in a superstructure, containing the different options for each 

process step of the value chain. The included options were 

selected based on their Technological Readiness Level (TRL).22 

Technologies that are already technologically mature (TRL 9) 

can be modelled with less uncertainty than technologies on a 

low TRL. Multiple technologies for bioenergy production were 

included as well. Although the application for algal-based 

bioenergy is not yet commercially available, the technologies 

required for this production are on a high TRL. The model did 

not include a constraint for multiple products, as this would 

exclude optimal value chains. Therefore, not all optimal value 

chains have to be biorefineries. The superstructure is illustrated 

in Fig. 1. The hypothetical microalgae biorefinery is situated in 

Belgium and a total project lifetime of ten years is considered. 

The production scale is limited to 3% of the global market of 

each end product. The market volumes of the different 

potential end products can be found in the electronic 

supplementary information. 

 

The superstructure includes three potential microalgae species: 

Dunaliella salina, Haematococcus pluvialis and Nannochloropsis 

sp. The first two species are currently used for anti-oxidant 

production on a commercial scale.23 This commercial process 

can be extended to produce multiple products, such as fertilizer 

or bioenergy, in a biorefinery concept. Nannochloropsis sp. is 

included as it has been proposed as a potential species for a 

microalgae biorefinery by multiple studies.24-26  

 

In the first cultivation stage the biomass was accumulated in 

optimal growth conditions. The three process options for this 

cultivation stage are an open pond, a tubular photobioreactor 

(PBR) and the Proviron Advanced Photobioreactor Technology 

(ProviApt), which has been assessed before for microalgae 

cultivation.27 The ProviApt reactor consists of multiple reactor 

chambers, contained by a plastic bag.28 The water in the plastic 

bag acts as a buffer against outside contamination and 

temperature variations.29  

 

The algae could be cultivated in one stage or in two stages. If a 

two-stage cultivation is selected, the second stage is a stress 

stage. In this stress stage, the nutrients are limited and the 

salinity is increased. Under these conditions the algae 

accumulate specific components such as β-carotene, 

astaxanthin and triacylglycerols (TAG).30, 31 For Dunaliella salina, 

a maximum β-carotene content after the stress stage of 8.8% 

was included.32-34 The astaxanthin content of Haematococcus 

pluvialis reached 3% after the stress stage.35 The growth 

parameters of the different cultivation options for the different 

algae species are summarized in Table 1. To model the 

cultivation stage, a logistic growth curve was used. The 

maximum specific growth rate r was corrected for a lower 

irradiation rate in Belgian conditions for open pond cultivation. 

The algae were transported to the stress stage as the 

concentration c1 reached 67% of their maximum concentration. 

The algae were harvested from the stress stage when the 

concentration c2 reached 77% of their maximum concentration.  

 

The same amount of nutrients was provided in each cultivation 

option. These nutrients included KNO3, KH2PO4, NaHCO3, 

MgSO4 and FeCl3.6H2O. The CO2 consumption was calculated 

based on the carbon composition of the microalgae, taking into 

account an uptake efficiency of 59% for open ponds and 71% 

for the PBR and the ProviApt.36-40 Besides CO2, also N2O, NH3 

and O2 emissions were included. The bioreactors were both 

heated to obtain the optimal cultivation temperature. The 

electricity consumption for cultivation was caused by mixing 

and the CO2, water, salt and nutrient supply. 

 

After the cultivation step, the medium, containing water and 

salt, can be recycled using a membrane. The Integrated 

Permeate Channel (IPC®) membrane is used for this step.41 This 

preharvesting step can be repeated if a two-stage cultivation 

process is used. 

 

After cultivation and preharvesting, the biomass is harvested in 

a centrifuge until a biomass concentration of 12% is reached.42 

The electricity consumption for this centrifuge equaled 1.40 

kWh∙m-3.43 In case of a marine algae species, a washing step was 

included to reduce the salt content under 4 g∙l-1. The washing 

step included a mixer and a centrifuge. 

 

In the next step, two process options are included for the drying 

step: a spray dryer and a freeze dryer. The atomization energy 

for the spray dryer came from electricity. In the spray dryer the 

biomass was dried until an end solid concentration of 5%.44 For 

the freeze dryer, the end solid concentration was 6%.45 An 

energy consumption of 1,445 kWh∙ton-1 was calculated for the 
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spray dryer. For the freeze dryer, an energy consumption of 

2,000 kWh∙ton-1 was used, based on the technical properties of 

a commercial freeze dryer. 

 

If the microalgae have a thick cell wall, a disruption step needs 

to be included after the drying step. Bead milling is included as 

the process option as it is one of the technologies generally 

preferred by the industry.46 For the beadmilling, an energy 

consumption of 2.82 kWh∙kg dry weight-1 was modelled.47 

 

After cell disruption, the desired fractions can be extracted. The 

different desired products, being carotenoids and TAGs, reside 

in the lipid fraction of the algae biomass. This lipid fraction is 

extracted using hexane as a solvent.48 A recovery rate of 95% 

was assumed. Six extraction steps were included, requiring each 

time 1 l hexane∙l biomass fraction-1.49 The hexane emissions are 

5.20 g∙kg hexane-1.50, 51 The electricity consumption of this 

extraction step was 1.70 kWh∙kg lipid fraction-1.50-52 

 

After the extraction step, the two fractions are separated using 

a filtration step. The hexane in the lipid fraction is recycled in a 

vacuum distillation step, while the hexane in the residue is 

recycled in an evaporator.  

 

The lipid fraction can be sold as such or can be further processed 

into fuel and energy, using a transesterification or a 

hydrotreating step. In the transesterification step, the 

triglycerides react with an alcohol to form esters and glycerol in 

the presence of an acid or base catalyst. The main end product 

resulting from this process is biodiesel.53 To model this process, 

the data parameters from the GREET soybean oil 

transesterification process were used.54 GREET is a software 

tool that calculates the emissions resulting from multiple fuel 

and vehicle life cycles. It contains data on a variety of conversion 

processes and feedstocks.55 Although the process for soybean 

oil is not identical to the microalgae oil process, this process has 

been used before as a good proxy for the microalgae process.56 

For the modelling of the equipment, the process design of a 

previous study was used.57 Hydrotreating consists of multiple 

processes where hydrogen reacts with the lipid fraction to 

produce renewable diesel and naptha.58 Before the 

hydrotreating process, a three-step purification process 

consisting of degumming, demetallization and bleaching was 

included to remove gums, metals and other impurities that 

could cause problems for the subsequent catalytic upgrading 

step.58 For the equipment modelling, the process design of a 

previous study was used.59 

 

The residue can be sold as fertilizer or can be further processed 

into energy products. If the carotenoids have not been 

extracted, the biomass can be sold as fish larvae feed. The 

included process options for the processing of the residue into 

energy are pyrolysis, gasification, torrefaction, hydrothermal 

liquefaction (HTL), and anaerobic digestion. Pyrolysis, 

gasification, torrefaction and HTL are thermochemical 

processes that produce a mixture of biochar, biogas and bio-

oil.60 However, the composition differs over these different 

processes. In the pyrolysis process, the carbon fraction of the 

algae biomass is decomposed at high heating rates in the 

absence of oxygen. The main end product of pyrolysis is bio-oil. 

In gasification, mainly biogas is produced by reacting the 

biomass fraction under high temperatures with a controlled 

amount of oxygen and/or steam. Biochar is the main end 

product in the torrefaction process. This process occurs at a 

relatively lower temperature (<300°C). The biomass is partly 

decomposed and can be further pelletized to achieve high 

densification.61 The HTL process produces an aqueous phase as 

well, which can be recycled for the nutrients. The HTL process is 

comparable to pyrolysis, however, the biomass does not need 

to be dried.62 The drying costs can therefore be reduced when 

the HTL process is selected. The bio-oil resulting from the four 

thermochemical conversion processes is upgraded and refined 

into gasoline and diesel before it can be sold. In the anaerobic 

digestion process, biogas is produced. The digestate, containing 

nutrients, is recycled to the cultivation stage.63 

 
All technological, economic and environmental input data for 

the different processes can be found in the electronic 

supplementary information.  

 

Methodology 

Environmental Techno-Economic Assessment. The ETEA 

methodology consists of five steps: The first step is the market 

study, where the prices, market volumes and process options 

are identified. In the second step, the process flow diagram 

(PFD) and mass and energy balance are constructed. The 

process value chain is formulated and the input, output and 

equipment size of the entire process is calculated. The third step 

is the economic analysis, where the Net Present Value (NPV) is 

determined. All prices have been harmonized to €2016 values 

using the CEPCI index. In the fourth step, the environmental 

analysis, the environmental impact indicators are calculated. 

For this purpose, the midpoint and endpoint indicators of the 

Recipe 2016 indicator set are used.64 The last step is the 

interpretation step, where the contribution of the different 

process steps and parameters to the output indicators is 

assessed. A Monte Carlo analysis is used with 10,000 iterations 

and a triangular distribution on all parameters (-10%; +10%) to 

identify the parameters that have the highest impact on the 

output indicators. The triangular distribution was assumed as 

this is the most commonly used distribution from modeling 

expert opinion.65 The fraction of 10% has to be the same for all 

variables. It does not represent the uncertainty of that 

parameter.66 

 

The ETEA methodology follows an iterative approach where 

new technologies are guided throughout their development, 

following a stage-gate approach.67 The TRLs are used to classify 

the different stages.22 To identify the most important 

parameters, the whole lifecycle needs to be included.10 The 

MOO extension will optimize the ETEA results for all process 

designs, and is therefore an extension of the second, third and 

fourth step of the ETEA.  
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The ETEA model is built in Excel. The upstream environmental 

impact factors of the material and utilities used in the process 

are extracted from SimaPro and added in a separate sheet in 

the Excel-model. In this way, the entire model remains in Excel 

and dynamic linkages between the different parts exist. This 

dynamic linkage means that a change in one input parameter is 

automatically translated into all the different output 

parameters.  
 

MOO-extended ETEA. The result of the optimization algorithm 

is the Pareto frontier, which consists of all Pareto-optimal value 

chains. A Pareto-optimal value chain is a value chain that cannot 

be improved in one objective, without deteriorating another 

objective.68 

 

The MOO–extended ETEA has four objectives, including one 

economic and three environmental objectives. The 

environmental objectives are calculated as environmental 

savings compared to a reference scenario using the substitution 

method. In the reference scenario the same products are 

produced, based on a conventional feedstock, such as a fossil 

feedstock, instead of a microalgae feedstock. If the 

environmental impact of the microalgal-based product is lower 

than the environmental impact of the reference product, the 

environmental savings, indicated by Δ, are positive. The four 

objectives of the MOO problem are therefore formulated as 

follows: 1) Maximization of the NPV; 2) Maximization of the 

Human health environmental savings (ΔHH); 3) Maximization of 

the Ecosystem quality environmental saving (ΔEQ); and 4) 

Maximization of the Resource scarcity environmental saving 

(ΔRS).  

 

The decision variables that are optimized are: 1) the binary 

variables bg,h, which select which process option h is included in 

step g; and 2) a continuous variable a for the production scale. 

Based on these decision variables, the four objectives can be 

calculated for each possible value chain. An overview of all 

notations used in the MOO problem is provided in Table 2. 

 

To calculate the objective functions based on these decision 

variables, non-linear functions are required for two reasons. 

First, the mass and energy balance contains non-linear 

equations. For example, the total electricity consumption of the 

open pond process is calculated using a binary variable selecting 

the open pond process and a continuous variable covering the 

scale of the process. The multiplication of these two variables, 

which both need to be optimized, leads to a non-linear 

equation. The second non-linearity is situated in the cost and 

environmental impact calculation of the equipment. For 

example, the cost of equipment unit k in process option h of 

process step g is calculated following the six-tenth rule. 

 

The optimization problem can therefore be classified as a Multi-

Objective Mixed Integer Non-Linear Problem (MOMINLP). 

However, this type of problem is usually non-convex and it is 

very challenging to obtain a global maximum solution within a 

reasonable amount of time. Therefore, we will relax this 

problem using three strategies in the same model. The first 

strategy is to remove the non-linearity in the mass and energy 

balance. In the second strategy, the non-linearity in the cost and 

environmental impact calculation of the equipment is removed. 

With the third strategy, the multi-objective problem is 

transformed into multiple single objective problems. 

 

In the first strategy, new continuous decision variables are 

introduced for each process option of each process step, 

following the big-M method.69 New constraints are added to set 

the variable at zero, if the corresponding process option has not 

been selected: 0 ≤ 𝑎𝑔,ℎ ≤ 𝑀 ∗ 𝑏𝑔,ℎ. If the binary variable is one, 

the M indicates the upper bound of the variable. In this way, the 

binary variables are removed from the mass and energy balance 

equations and added in these additional constraints. The 

variables a are also divided into input and output variables for 

each process option. New variables a are created for each 

component j of the mass throughput as well. The meaning of 

the different continuous decision variables ag,h,j is illustrated in 

Fig. 2.  

 

In the second strategy, a piecewise linear approximation is 

added, which estimates the linear function that results in the 

same cost for the corresponding scale.70 Fig. 3 illustrates the 

concept, by dividing the cost curve into two partition parts, 

using two partition points (PP). As the scale is situated in the 

second part of the curve, Cost(cg,h) will be approximated by 

Cost(cg,h,p=2). The cost will therefore always be 

underestimated.11 

 

If the non-linear cost function is written as 𝐶𝑜𝑠𝑡 = 𝛿𝑔,ℎ,𝑘 ∗

𝑐𝑔,ℎ,𝑘
𝛽𝑔,ℎ,𝑘 , with δg,h,k being a constant, dependent on the cost of 

the reference capacity, and βg,h,k being the power exponent 

referring to the economics of scale for the equipment k of 

option h of step g, then the corresponding linear approximated 

function will be: 𝐶𝑜𝑠𝑡 = ∑ 𝑒𝑔,ℎ,𝑘,𝑝𝑐𝑔,ℎ,𝑘,𝑝 + 𝑓𝑔,ℎ,𝑘,𝑝𝑑𝑔,ℎ,𝑘,𝑝𝑝∈𝑃 . The 

binary variable dg,h,k,p will ensure that only one part of the curve 

is selected. The continuous variable cg,h,k,p equals the 

appropriate capacity and ensures that the part of the curve is 

selected that contains this capacity. The continuous variables 

eg,h,k,p and fg,h,k,p calculate the cost for the selected partition 

point PPg,h,k,p. 

  

In the third strategy, the ε-constraint method is used to 

transform the multi-objective problem into four single-

objective problems.71 In each single-objective problem, one 

objective is kept as the main objective and the other objectives 

are added as an additional constraint. In this additional 

constraint the transformed objective needs to be larger than 

the ε-value for that objective. By varying the ε–value between 

the nadir and utopian value of that objective, a discontinuous 

Pareto frontier is obtained. This concept is illustrated in Fig. 4 

for five ε-value iterations and two objectives. 

 

Using these strategies, the resulting single optimization 

problem has been transformed into a Mixed-Integer Linear 
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Problem (MILP). Multiple iterations of this MILP were run, each 

varying the objective function and the different values of the ε-

constraint. 

 

The MOO step is directly linked to the other steps of the ETEA. 

During the previous steps, technological, economic and 

environmental data for each process option of each process 

step was stored in the Excel model. This data is then transferred 

into two matrices (Aq and Aeq) and seven vectors (Bq, Beq, x0, 

npv, hh, eq, rs) in order to solve the problem.  

 

The matrix Aeq contains the equality constraints, where each 

column stands for one decision variable. Here, all correlations 

between the different variables of x are stated. The potential 

combinations of process options and parts of the cost curve are 

also specified in this matrix. The matrix Aq contains the 

inequality constraints and has the same columns as Aeq. The 

last lines of matrix Aq contain the objective vectors npv, hh, eq 

and rs. The corresponding parameters of vector Bq contain the 

ε-value for the corresponding iteration. The values of x0 equal 

the decision variables of the selected ETEA value chain. 

Following this approach, the matrices can be checked in the 

ETEA model in Excel. 

 

The optimization problem was solved using the global SCIP 

solver in Matlab, by using the OPTI-tool, which provides an 

interface for a broad range of solvers in Matlab.72, 73 In the 

electronic supplementary information, the formulations of the 

original MOMINLP, the transformed MILP and the composition 

structure of the matrices are provided. 

Results 

Optimization: Pareto frontier 

The Pareto frontier consists of the four value chains that are 

optimal in each dimension and of seven intermediate value 

chains that cannot be improved in one dimension without 

deteriorating in another dimension. The names of the optimal 

value chains refer to the main differences that distinguish them 

from each other. The first main difference is the algae species, 

where Ds signifies Dunaliella salina, Hp stands for 

Haematococcus pluvialis and Ns refers to Nannochloropsis 

species. The second main difference is the processing option for 

the residual biomass: FLF means the residual biomass is sold 

without processing as fish larvae feed; F means the residual 

biomass is sold without processing as fertilizer; G means that 

the residual biomass undergoes a gasification step; P refers to a 

pyrolysis step for the residual biomass processing; AD signifies 

the residual biomass processing step is an anaerobic digestion 

step; and T means that the residual biomass goes to a 

torrefaction process. In all eleven optimal value chains, the 

algae are cultivated in an open pond and the medium, 

containing water and salt in case of a marine algae species, is 

recycled. The algae are harvested in a centrifuge, dried using a 

spray dryer and no lipid processing step is included. In the value 

chain with the highest NPV, value chain Ns FLF, Nannochloropsis 

sp. is cultivated in one stage and fish larvae feed is sold. No 

disruption, extraction, separation, residue processing, residue 

purification or lipid purification step was included in this value 

chain. The fish larvae feed is used for larvae in aquaculture. The 

optimal value chain for human health savings is value chain Ds 

AD. In this value chain, Dunaliella salina is cultivated in two 

stages. The biomass residue goes through an anaerobic 

digestion step. The lipid fraction, containing the β-carotene, is 

purified but not further processed. β-carotene is sold as an end 

product. In the optimal value chain for ecosystem quality 

saving, value chain Ds F, Dunaliella salina is cultivated as well. 

The only difference from value chain Ds AD is that the residual 

biomass is not further processed but sold as fertilizer. The 

optimal value chain for resource scarcity savings is value chain 

Hp G. In this value chain Haematococcus pluvialis is cultivated. 

No washing step is required, but a bead mill is included for cell 

disruption. The lipid fraction is purified and sold for the 

astaxanthin. The residual biomass is processed in a gasification 

step. The intermediate value chains are value chains Hp F, Hp 

AD, Ds G, Hp T, Ds T, Hp P and Ds P. Value chains Hp F and Hp 

AD are similar to value chain Ds F and Ds AD with some 

differences. Specifically, Haematococcus pluvialis is cultivated 

instead of Dunaliella salina, no washing step is required, a bead 

mill is included and astaxanthin is sold. Value chains Ds G, Ds T 

and Ds P are similar to value chain Ds AD. The only difference is 

that the processing of the residual biomass is either a 

gasification, a torrefaction or a pyrolysis step instead of 

anaerobic digestion. In the same way value chains Hp T and Hp 

P resemble value chain Hp AD. A summary of the results of the 

eleven Pareto-optimal value chains, which constitute the 

Pareto-frontier, is provided in Table 3. 

Process flow diagram (PFD) and mass and energy balance 

The PFDs of the optimal value chains are provided in the 

electronic supplementary information. The summary of the 

mass and energy balances of the optimal value chains is 

provided in Table 4. 

 

Haematococcus pluvialis is a freshwater alga and does not 

require salt addition or a washing step, which reduces the water 

consumption for this species compared to the other species. 

The dry weight biomass content of carotenoids is lower for 

Haematococcus pluvialis than for Dunaliella salina, which leads 

to a larger production scale for Haematococcus pluvialis. This is 

only partially compensated by the lower market volume for 

astaxanthin compared to the market volume of β-carotene. In 

the anaerobic digestion value chains, fertilizer and CO2 are 

generated in an aqueous phase, which is assumed to be 

recycled to the cultivation stage. The syngas production in the 

gasification value chains is larger than in the other design 

options. In the pyrolysis design options, the most diesel and 

gasoline is produced. 

 

Economic analysis results 
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The economic results for the optimal value chains are provided 

in Table 5. The NPV for the fish larvae feed value chain is higher 

due to the lower operational and investment costs. These lower 

costs can be explained by the single cultivation stage. In the ten 

value chains that produce carotenoids, the Haematococcus 

pluvialis value chains have higher NPVs than the Dunaliella 

salina value chains. Although the larger scale corresponds to 

higher investment and operational costs, astaxanthin has a 

higher price. The higher revenues are sufficient to offset the 

higher costs. The anaerobic digestion value chains have a higher 

NPV than the gasification, torrefaction and pyrolysis value 

chains, which is mainly explained by the higher investment costs 

and the hydrogen cost for the biocrude refining. 

 

Environmental analysis results 

The environmental results for the optimal value chains are 

provided in Table 6, including both the endpoint and the 

underlying midpoint environmental impact categories. The fish 

larvae feed value chain only has negative environmental 

impacts, except for the ΔTETP impact category. The ΔIRP 

category is negative for all value chains due to the upstream 

impact of electricity. The fossil-based reference value chain for 

astaxanthin has a higher environmental impact than the β-

carotene reference value chain. However, due to the larger 

production scale, the Haematococcus pluvialis value chains 

have lower environmental savings on most environmental 

impact categories. 
 

In Fig. 5, the contribution of the midpoint indicators to the 

endpoint indicators is analyzed to identify the most relevant 

midpoint indicators. In the endpoint impact category ΔHH, 

ΔGWP and ΔPMFP have the highest contribution. In the 

endpoint impact category, ΔEQ, ΔGWP and ΔTAP have the 

highest contribution. The last endpoint impact category, ΔRS, is 

mainly determined by ΔFFP. Therefore, the main midpoint 

categories that will be further assessed are ΔGWP, ΔPMFP, 

ΔTAP and ΔFFP.  

 

Interpretation 

The contribution of the different process steps to the economic 

investment and operational costs for the Pareto-optimal value 

chains is illustrated in Fig. 6. The highest investment costs are 

caused by the spray dryer, pond liner, land costs and the 

preharvesting membrane. The main operational costs are the 

indirect costs, which include the personnel costs and insurance 

and repair costs of the equipment.  

 

Fig. 7 provides the contribution analysis for the main midpoint 

indicators. The main contributor to all environmental impacts is 

the upstream impact of the nutrients and CO2 in the cultivation 

stage. The electricity consumption during the drying stage has a 

significant contribution to all environmental impact categories 

as well.  

 

In the sensitivity analysis the most crucial parameters for each 

objective in each value chain are identified. A first iteration of 

the sensitivity analysis indicated that the carotenoid content, 

carotenoid price, fish larvae feed price, carotenoid reference 

impact, fish larvae feed reference impact and weighted average 

cost of capital shared approximately ninety percent of all 

variation for all impact categories and all value chains. As the 

cost and environmental impacts of the algal-based production 

value chains is compensated by the price and reference impact 

of the carotenoids and fish larvae feed, these parameters are 

important and their uncertainty should be systematically 

analyzed.  

 

However, this first iteration only provides limited insights on the 

importance of underlying process parameters that differentiate 

the value chains. Therefore, the sensitivity analysis has been 

iterated for a second time without these crucial parameters to 

identify other important parameters as well. The results of the 

second iteration of the sensitivity analysis are provided in Table 

7. A positive value means that an increase in this parameter will 

ensure an increase in the corresponding indicator. The value 

indicates the percentage of change in the indicator explained by 

this parameter. In the second iteration, the most important 

parameters for most impact categories are either the process 

parameters that induce a loss of biomass or carotenoids in the 

process, during drying, extraction or harvesting; and/or the 

growth-related parameters, such as the correction factor for 

the lower solar irradiation in Belgium. Also, the upstream 

environmental impact of electricity is an important parameter. 

For the ΔGWP and ΔPMFP indicators, the CO2 requirement and 

fixation efficiency of the algae in open pond cultivation are 

crucial as well. The KNO3 requirement and NH3 emissions are 

important for the ΔTAP impact category for the Haematococcus 

pluvialis value chains. The material requirement for the liner of 

the open ponds is also important for the ΔFFP in the Ns FLF value 

chain, explaining 8% of the total variation for this impact 

category. 

Discussion 

The crucial parameters that defined the economic and 

environmental potential of the optimal value chains were 

mainly the price content and reference impact of the 

carotenoids and biomass. Therefore, research should focus on 

limiting losses of these components throughout the chain. 

Another important focus is the inclusion of a medium recycling 

step to lower the consumption of water and salt. A third 

important focus are the growth parameters. As algae differ in 

productivity and composition, the selection of the optimal algae 

is crucial to define an optimal algae-based biorefinery. 

Metabolic engineering can also play a role in obtaining the 

optimal algae strand.74 

 

The superstructure as optimized in this paper contained both 

high-value and low-value applications. The production scale 

was restricted by the smallest market volume of the products. 

According to the results, the optimal biorefinery has a limited 
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scale and bioenergy is only produced as a byproduct from the 

residual biomass. The lipid fraction of the biomass contains the 

carotenoids. However, it can also be converted to biofuel. All 

optimal value chains that refined the biomass into multiple 

products, preferred the purification of the carotenoids. In this 

way, the production scale remained limited. In the fish larvae 

feed value chain, the biomass was not refined but sold as whole. 

As the environmental impact savings were negative for these 

value chains, all production scales correspond to a Pareto-

optimal scenario until a production scale of 114 ton 

biomass∙year-1 is reached. If the production scale is between 114 

ton biomass∙year-1 and 132 ton biomass∙year-1, the 

environmental performance can be improved by reducing the 

production scale. At the production scale of 114 ton 

biomass∙year-1, the value chain cultivating Haematococcus 

pluvialis for carotenoids and fertilizer has a higher NPV than the 

value chain cultivating Nannochloropsis sp. for fish larvae feed. 

 

A major outcome from the model is that food or feed-based 

microalgae biorefineries with a limited production scale were 

identified as more economically and environmentally optimal 

than fuel-based microalgae biorefineries on a large scale. A lot 

of current microalgae biorefinery studies still focus on energy as 

the main end product.75, 76 According to our results, it would be 

more appropriate to focus on food or feed as main end 

products, and consider energy as a side product.  

 

The fish larvae feed that is produced in the optimal economic 

value chain is used for the early life stages of fish larvae. As a 

specialty feed, the price for this product is high compared to 

other feed. The algae that are currently sold for this purpose 

have been grown in the ProviApt reactor and have been freeze 

dried instead of spray dried. This value chain is also 

economically profitable, although less profitable than the 

optimal fish larvae feed value chain as identified in this study. 

Quality considerations can have additional influences and affect 

the final price of the product. However, as no reliable estimate 

for this relation was available, it was not included in the model.  

 

As the larvae feed scenario only sells larvae feed, it is strictly 

speaking no biorefinery as only one product is valorized. 

However, this scenario has been included as the larvae feed is 

currently commercially produced. This way, this scenario acts as 

a benchmark scenario to compare with other biorefinery 

scenarios. According to our results and given the current market 

situation, none of the included biorefinery scenarios has higher 

profits than the larvae feed scenario. 

 

The lipid fraction, containing the carotenoids, contributes much 

more to the revenues than the residue fraction. However, 

multiple opportunities exist to further valorize this residue 

fraction.77 Current research increasingly focusses on the 

valorization of the protein or polysaccharide fraction, which can 

also be extracted from the residual fraction.78-80 However, a 

clear market for these applications does not exist yet. If multiple 

fractions can be valorized, the biorefinery concept can be 

further elaborated. Although the current microalgae market 

mainly exists for the whole biomass fraction or the lipid 

fractions, a biorefinery with a full range of end products may be 

able to economically compete with these applications. This way, 

also medium-value applications such as chemicals or plastics 

might become economically and environmentally feasible. A 

recommendation towards the chemical researchers, based on 

our results would therefore be to more focus on residual 

fractions and their applications instead of the lipid fractions, 

which already have applications. The production of biofuels 

from the lipid fraction, which still receives a lot of attention, can 

only become economically viable if the residual fraction is 

valorized to a large extent. In addition, the further valorization 

of this residual fraction can also reduce the environmental 

impact. 

 

The fish larvae feed value chain has a higher environmental 

impact than the reference scenario. The reference scenario was 

based on conventional fishmeal.81 However, there is no 

environmental impact category included in the ReCiPe 2016 

indicator set that includes the environmental impact of 

overfishing or biotic resource use in general. The additions of a 

biotic resource indicator can overcome this gap.82 

 

The land used in the optimal value chains varies between 28 and 

114 hectares. Although algae can grow on degraded land and 

the cultivation can be done on different locations, finding this 

large land area in a small and densely populated country such 

as Belgium will be difficult. However, the algae cultivation does 

not have to be restricted to one location. An interesting 

extension to the model would be to find the optimal distribution 

of locations and to optimize the logistics of algae value chains in 

the model, based on existing logistic analyses.83, 84  

 

The use of equipment is often neglected in LCA studies. 

However, the upstream impact of the liner was identified as an 

important parameter for the FFP of the fish larvae feed value 

chain. Neglecting the upstream impact of the pond 

manufacture would have had a significant impact on the 

outcome result. Therefore, the environmental impact of 

equipment cannot be excluded per se.85 

 

The superstructure contains a wide range of different 

microalgae biorefinery value chains. However, the aim is not to 

capture all potential value chains. The preference was given to 

processes with a higher TRL to minimize the uncertainty. New 

processes and improved data can be added to extend and 

update the superstructure. The superstructure can also be 

extended to include other applications. A review by Laurens et 

al. discussed a broad range of valorization possibilities and their 

market potential.26 For example, different fractions of 

microalgae have cosmetic attributes and can therefore be used 

as moisturizers, sunscreen, whitening, hair care or anti-aging 

products.86 Also, other fractions, such as the protein fraction 

have an important commodity value and can be sold 

separately.26, 87 Although clear market possibilities can be 

identified, the technological process steps to obtain these 

different fractions are still under development. 
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The optimization model was restricted to 3% of the end product 

market volume. This constraint was included to avoid 

oversupply of the market, which could decrease the price of the 

end products, given the price elasticity of supply. This constraint 

also allowed high-volume products such as biofuels to benefit 

from the economies-of-scale that are induced by their higher 

production scale. The inclusion of this constraint enables the 

comparison of low-volume and high-volume products, which 

would not be feasible otherwise. 

 

The environmental indicators were optimized relative to a 

reference scenario, using the conventional production 

processes, as environmental savings. This means that a value 

chain that has a lower environmental impact than the reference 

scenario will be optimal if it produces at the maximal scale. By 

selecting the environmental savings as an objective, all 

objectives will be maximized in the optimization problem. If one 

of the objectives would be minimized instead, the production 

scale would function as a trade-off, and a continuous Pareto 

frontier would be assumed. However, this also means that the 

optimal value of this objective would be zero and no biomass 

would be produced. Although all these processes still have an 

absolute environmental impact on the environment and a 

negative absolute environmental impact should remain the end 

goal, an environmental saving compared to the reference 

scenario can already be considered an improvement and was 

therefore selected as the objective in the optimization problem.  

 
The sensitivity analysis assumed a triangular distribution on all 

parameters to identify the most sensitive parameters. To obtain 

an uncertainty range on the output indicators, a more accurate 

distribution needs to be added to all parameters. However, a 

large number of parameters in different dimensions were 

included and some parameters, such as the productivity of the 

algae, were highly uncertain. the main result of this MOO-

extended ETEA is not the value of the output indicators, but the 

identification of the optimal value chains and the most sensitive 

parameters, underlying the output indicators. More specific 

uncertainty distributions on all parameters would lead to a large 

range of the output indicators, which would not provide any 

useful information for the objectives of this paper. 

 

In this study, the MOO analysis was performed using the ε-

constraint method to transform the problem with four 

objectives into multiple iterations of a single-objective problem. 

Another possibility to deal with the multiple objectives would 

be the use of evolutionary algorithms, such as the NSGA III 

algorithm.88 The advantage of these algorithms is that they can 

better handle non-linear problems and can include more 

objectives. The use of these algorithms to integrate MOO, LCA, 

process design and economic costs has also previously been 

used.89 However, evolutionary algorithms are not able to 

confirm a solution as the global optimal. As the differences 

between the different process options in a process step that 

does not have a large contribution can be very small, 

evolutionary algorithms may have a hard time to identify the 

global optimal value chain. The ε-constraint method, as 

implemented in this study, is the generic version. An augmented 

version was developed in order to accelerate the process.90 The 

implementation of this augmented version could be an 

interesting addition to the MOO-extended ETEA model. 

 

The indicators used for the optimization are the three endpoint 

indicators of the ReCiPe 2016 method. Optimizing the 

seventeen midpoint indicators instead would provide more 

information. However, using the ε-constraint method, this 

would lead to a large amount of iterations and the optimization 

problem would become complex. The use of evolutionary 

algorithms can better handle multiple objectives. The NSGA III 

algorithm was developed to handle a large number of 

objectives. However, this algorithm has also not been tested for 

more than 15 objectives.91 Another solution would be the 

development of a specific indicator set that selects the most 

important environmental indicators for the corresponding case 

study.92 To enable the incorporation of a large amount of 

objectives, objective reduction methods have been developed 

as well, which could also be used to solve this problem.93-95 

 

The results of the MOO-extended ETEA include the Pareto 

frontier with all Pareto-optimal value chains. No weights or 

subjective preferences have been included to choose between 

the different value chains. If one optimal value chain needs to 

be selected, the decision maker should decide on the weighting 

method after the Pareto-frontier has been calculated. This 

weighting method can for example use goal programming or be 

based on a multiple-criteria decision analysis. 

 

All microalgae biorefinery value chains are situated at the same 

location in Belgium. As the solar irradiation was an important 

parameter in the model, an interesting extension of this model 

would be to optimize this location. This can have an impact on 

the cultivation characteristics, resource availability, prices, 

financial parameters and the upstream environmental impact 

factors. However, the current MOO method might need 

improvement, for example by using the augmented ε-constraint 

method to keep the computational efficiency at a satisfactory 

level.  

 

The current multi-objective optimization takes economic and 

environmental objectives into account. However, to perform a 

full techno-sustainability analysis, social objectives need to be 

included as well.96 The integration of such a social analysis into 

the MOO-extended ETEA framework would be an interesting 

path for further research. 

 

The methodological framework of ETEA-MOO is used in this 

study for a microalgae-biorefinery case study, but can be used 

in other applications as well. The structure of the matrices used 

in the optimization problem is constructed in such a way that it 

can be generally applied for MOO problems including a 

superstructure with different process options and steps. 
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Conclusions 

The MOO-extended ETEA as developed in this study provides 

useful insights into the broad range of potential microalgae 

biorefinery designs by the identification of the most promising 

value chains from different perspectives and the identification 

of the most sensitive parameters. The optimal value chain for a 

microalgal-based biorefinery consists of an open pond 

cultivation, a medium recycling step and a spray dryer. In the 

optimal economic value chain, Nannochloropsis sp. is cultivated 

in a one-stage cultivation process and the biomass is sold as fish 

larvae feed for early life phases of aquaculture. In the optimal 

environmental value chains, Dunaliella salina and 

Haematococcus pluvialis are cultivated in a two-stage process 

and β-carotene, fertilizer or energy, are produced using 

gasification or anaerobic digestion. Intermediate value chains 

include the two-stage cultivation of Haematococcus pluvialis 

and Dunaliella salina for astaxanthin, β-carotene and fertilizer 

production and energy products using anaerobic digestion, 

gasification, torrefaction or pyrolysis. The crucial parameters for 

economic and environmentally feasible value chains are the 

content, price and reference impact of the main end product, 

growth parameters and the loss of biomass and carotenoids 

alongside the value chain. The developed methodology is not 

only limited to microalgae biorefinery applications, but can 

assist in optimizing a broad range of new technologies towards 

economic and environmental perspectives and therefore 

accelerate the market introduction of green products and 

technologies.  
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Fig. 1 Superstructure of all algae biorefinery process options included in the model, PBR=photobioreactor, IPC®=integrated permeate channel, HTL=hydrothermal 
liquefaction.   
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Fig. 2 Continuous decision variables used in the optimization model where component j is an input or output to process option h of process step g  
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Fig. 3 Piecewise linear approximation with two partition points PP1 and PP2, dividing the cost curve in two parts, Part 1 and Part 2. The cost Cg,h,k is the real cost, while 
the cost Cg,h,k,p=2 is the cost approximated by the linear approximation curve that is situated in Part 2 of the cost curve.  
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Fig. 4 Example of the ε-constraint method to obtain the Pareto-frontier with two objectives, ΔHH and NPV, and five ε-iterations for both objectives, ΔHH =human health 
savings, NPV=Net Present Value.  
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Fig. 5 Contribution of the midpoint indicators to the endpoint indicators for all Pareto-optimal scenarios, ΔHH = Human health savings; ΔEQ = Ecosystem quality savings; 
ΔRS = Resource scarcity savings; ΔGWP = Global warming potential; ΔODP = Ozone depletion potential; ΔIRP = Ionizing radiation potential; ΔPMFP = Particulate matter 
formation potential; ΔEOFP = Photochemical oxidant formation potential for ecosystems; ΔHOFP = Photochemical oxidant  formation potential for humans; ΔTAP = 
Terrestrial acidification potential; ΔFEP = Freshwater eutrophication potential; ΔHTPc = Human toxicity potential cancer; ΔHTPnc = Human toxicity potential non-cancer; 
ΔTETP = Terrestrial ecotoxicity potential; ΔFETP = Freshwater ecotoxicity potential; ΔMETP = Marine ecotoxicity potential; ΔLOP = Agricultural land occupation potential; 
ΔWCP = Water consumption potential; ΔSOP = Surplus ore potential; ΔFFP = Fossil fuel potential.   
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Fig. 6 Contribution analysis of the different process steps to the investment and operational costs of all Pareto-optimal scenarios  
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Fig. 7 Contribution analysis of the different process steps to the main environmental output indicators for all Pareto-optimal scenarios, GWP=global warming 
potential, PMFP=particulate matter formation potential, TAP=terrestrial acidification potential, FFP=fossil fuel potential.
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Table 1 Summary of the main growth parameters, C0=initial concentration, c1=end concentration 1st stage, c2=end concentration 2nd stage, time1=cultivation period 1st stage, 

time2=cultivation period 2nd stage, r1=maximum specific growth rate 1st stage, r2=maximum specific growth rate 2nd stage, productivity1=productivity 1st stage, 

productivity2=productivity 2nd stage, PBR=photobioreactor. 

Species Dunaliella salina Haematococcus pluvialis Nannochloropsis sp. 

Cultivation option Open pond PBR ProviApt Open pond PBR ProviApt Open pond PBR ProviApt 

C0 [g∙l-1] 0.06 0.23 0.23 0.06 0.50 0.50 0.2 0.25 0.25 

C1 [g∙l-1] 0.35 1.41 1.41 0.35 2.90 2.90 0.73 1.75 1.75 

C2 [g∙l-1] 0.40 1.59 1.59 0.40 3.27 3.27 0.82 1.98 1.98 

Time1 [days] 23 8 3 23 14 5 29 7 3 

Time2 [days] 6 2 1 6 4 1 9 2 1 

r1 [day-1] 0.12 0.35 0.90 0.12 0.20 0.52 0.08 0.41 1.05 

r2 [day-1] 0.08 0.23 0.60 0.08 0.13 0.35 0.06 0.27 0.70 

Productivity1 [g∙l-1∙day-1]  0.013 0.142 0.363 0.013 0.168 0.441 0.018 0.202 0.517 

Productivity2 [g∙l-1∙day-1] 0.007 0.081 0.057 0.008 0.101 0.069 0.009 0.127 0.081 
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Table 2 Overview of the notations used in the MOO problem 

 Set of indices 

G set of process steps, indexed by g 

H set of process options of step g, indexed by h 

J set of mass components of option h of step g, indexed by j 

K set of equipment units of option h of step g, indexed by k 

P set of partition parts, indexed by p 

ITnpv set of iterations for the ε-constraint of NPV, indexed by it-npv 

IThh set of iterations for the ε-constraint of HH, indexed by it-hh 

ITeq set of iterations for the ε-constraint of EQ, indexed by it-eq 

ITrs set of iterations for the ε-constraint of RS, indexed by it-rs 

 Variables 

ag,h,j component j of option h of step g 

bg,h binary variable of step g, option h 

cg,h,k,p capacity at part p of the equipment k of option h of step g 

dg,h,k,p binary variable selecting part p of the cost curve of 

equipment k of option h of step g 

xg,h,j,k,p decision variable, consisting of ag,h,j, bg,h, cg,h,k,p, dg,h,k,p 

eg,h,k,p continuous variable to calculate the cost at part p of 

equipment k of option h of step g 

fg,h,k,p continuous variable to calculate the cost at part p of 

equipment k of option h of step g 

PPg,h,k,p Partition point of part p of equipment k of option h of step g 

 Parameters 

αg,h,k reference capacity of equipment k of option h of step g  

βg,h,k power exponent of equipment k of option h of step g 

Mg,h,j upper bound of continuous decision variable ag,h,j 

γg,h,j component j from input to output of option h of step g 

δg,h,k reference price of equipment k of option h of step g 

εit-npv epsilon-constraint for NPV indexed by amount of iterations 

εit-hh epsilon-constraint for HH indexed by amount of iterations 

εit-eq epsilon-constraint for EQ indexed by amount of iterations 

εit-rs epsilon-constraint for RS indexed by amount of iterations 

npvg,h,j,k,p parameter to multiply with xg,h,j,k,p to calculate the NPV savings 

hhg,h,j,k,p parameter to multiply with xg,h,j,k,p to calculate the HH savings 

eqg,h,j,k,p parameter to multiply with xg,h,j,k,p to calculate the EQ savings 

rsg,h,j,k,p parameter to multiply with xg,h,j,k,p to calculate the RS savings 
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Table 3 Main results for the value chains of the Pareto frontier, NPV=net present value, ΔHH=human health savings, ΔEQ=ecosystem quality savings, ΔRS=resource scarcity savings, 

bm=biomass. 

 NPV ΔHH ΔEQ ΔRS Scale 

 [106 €] [DALY] [species∙yr] [106 $] [ton bm∙yr-1] 

Ns FLF 180 -20 -0.07 -1.1 132 

Hp F 155 353 0.80 23.8 331 

Ds F 17.6 415 1.21 18.7 149 

Hp AD 154 353 0.80 23.8 331 

Ds AD 17.1 415 1.21 18.7 149 

Hp G 151 349 0.79 24.0 331 

Ds G 15.1 414 1.21 18.8 149 

Hp T 150.6 349 0.79 24.0 331 

Ds T 15.0 414 1.21 18.7 149 

Hp P 150.4 351 0.79 24.0 331 

Ds P 14.9 415 1.21 18.7 149 
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Table 4 Summary of the mass and energy balance of the Pareto-optimal value chains 

Parameter Ns FLF Hp F Ds F Hp AD Ds AD Hp G Ds G Hp T Ds T Hp P Ds P 

Water [dam³] 224 434 550 598 609 434 550 434 550 434 550 

Salt [kton] 3.48 0.00 26.1 0.00 26.1 0.00 26.1 0.00 26.1 0.00 26.1 

CO2 [kton] 5.84 14.7 6.62 14.7 6.62 14.7 6.62 14.7 6.62 14.7 6.62 

Nutrients [kton] 3.32 11.8 5.34 11.8 5.34 11.8 5.34 11.8 5.34 11.8 5.34 

Hexane [ton] 0.00 96.4 43.6 96.4 43.6 96.4 43.6 96.4 43.6 96.4 43.6 

Hydrogen [kton] 0.00 0.00 0.00 0.00 0.00 34.8 12.7 46.7 17.1 60.87 22.2 

Electricity [GWh] 17.3 79.5 32.5 80.0 32.7 79.8 32.6 79.6 32.6 076.7 32.6 

Heat [GWh] 0.00 0.00 0.00 1.66 0.60 0.03 0.01 0.04 0.02 0.06 0.02 

Fertilizer [kton] 0.00 2.45 0.88 0.19 0.07 0.00 0.00 0.00 0.00 0.00 0.00 

Fish larvae feed [kton] 1.2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Carotenoids [ton] 0.00 84.0 111 84.0 111 84.0 111 84.0 111 84.0 111 

Biogas [GWh] 0.00 0.00 0.00 6.73 2.42 0.00 0.00 0.00 0.00 0.00 0.00 

Syngas [GWh] 0.00 0.00 0.00 0.00 0.00 14.0 5.10 9.27 3.39 7.22 2.64 

Diesel [m³] 0.00 0.00 0.00 0.00 0.00 122 44.6 164 59.8 213 77.9 

Gasoline [m³] 0.00 0.00 0.00 0.00 0.00 113 41.3 152 55.4 197 72.1 

CO2 [dam³] 0.00 0.00 0.00 275 99.1 0.00 0.00 0.00 0.00 0.00 0.00 

Wastewater [dam³] 227 440 565 440 565 440 565 440 565 440 565 

Emissions [kton] 4.85 12.3 5.56 12.3 5.56 12.3 5.56 12.3 5.56 12.3 5.56 

Land [ha] 28 114 52.1 114 52.1 114 52.1 114 52.1 114 52.1 
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Table 5 Economic results for Pareto-optimal value chains, NPV=net present value 

 NPV Investment costs Operational costs Revenues 

 [106 €] [106 €] [106 €∙yr-1] [106 €∙yr-1] 

Ns FLF 180 14.9 3.83 38.16 

Hp F 155 34.8 9.39 42.11 

Ds F 17.6 19.1 5.85 11.18 

Hp AD 154 35.3 9.50 42.07 

Ds AD 17.1 19.4 5.90 11.17 

Hp G 151 38.6 9.73 42.07 

Ds G 15.1 21.2 6.04 11.17 

Hp T 150 38.7 9.75 42.05 

Ds T 15.0 21.3 6.04 11.17 

Hp P 150 38.7 9.77 42.05 

Ds P 14.9 21.3 6.05 11.16 
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Table 6 Environmental savings results of all Pareto-optimal value chains 

Parametera Ns FLF Hp F Ds F Hp AD Ds AD Hp G Ds G Hp T Ds T Hp P Ds P 

ΔHH -19.6 353 415 353 415 349 414 349 414 351 415 

ΔEQ -0.07 0.80 1.22 0.80 1.21 0.79 1.21 0.79 1.21 0.79 1.21 

ΔRS -1.2 23.8 18.7 23.8 18.7 24.0 18.8 24.0 18.7 24.0 18.7 

ΔGWP -17 198 219 197 219 195 218 195 218 195 218 

ΔODP -112 15.1 577 5.51 573 -7.28 569 -7.20 569 -7.07 569 

ΔIRP -10.1 -29.8 -9.79 -30.0 -9.87 -29.9 -9.85 -29.9 -9.83 -29.9 -9.84 

ΔHOFP -12.7 298 357 297 357 296 357 298 357 301 359 

ΔPMFP -2.13 213 275 213 275 210 274 210 274 212 275 

ΔEOFP -13.1 310 371 309 371 309 371 310 371 313 372 

ΔTAP -0.05 0.52 2.19 0.52 2.19 0.51 2.19 0.51 2.19 0.51 2.19 

ΔFEP -2.9 46.1 53.3 47.9 53.9 46.2 53.3 46.2 53.3 46.3 53.3 

ΔTETP 74.4 21.5 62.4 21.1 62.3 -625 -174 -760 -223 -519 -135 

ΔFETP -0.4 1.46 2.40 1.63 2.46 1.45 2.40 1.46 2.40 1.47 2.40 

ΔMETP -0.58 2.13 3.42 2.35 3.50 2.13 3.42 2.13 3.42 2.14 3.43 

ΔHTPc -0.01 3.19 4.24 3.28 4.27 3.22 4.26 3.24 4.26 3.26 4.27 

ΔHTPnc -0.27 1.87 2.65 1.99 2.70 1.91 2.67 1.94 2.68 1.97 2.69 

ΔLOP -1.01 -1.14 0.60 -1.21 0.57 -1.24 0.56 -1.21 0.57 -1.19 0.58 

ΔSOP -0.01 2.60 0.48 2.60 0.48 2.60 0.48 2.61 0.48 2.61 0.48 

ΔFFP -3.60 63.7 52.7 63.6 52.7 64.4 53.0 64.3 52.9 64.3 52.9 

ΔWCP -0.07 5.52 3.17 5.35 3.11 5.39 3.12 5.37 3.12 5.40 3.13 

a ΔHH = Human health savings [DALY]; ΔEQ = Ecosystem quality savings [species∙yr]; ΔRS = Resource scarcity savings [106 $]; ΔGWP = Global warming potential [106 kg 

CO2-eq]; ΔODP = Ozone depletion potential [kg CFC11-eq]; ΔIRP = Ionizing radiation potential [106 kBq Co-60-eq]; ΔHOFP = Photochemical oxidant formation potential 

for humans [103 kg NOx-eq]; ΔPMFP = Particulate matter formation potential [103 kg PM2.5-eq]; ΔEOFP = Photochemical oxidant formation potential for ecosystems 

[103 kg NOx-eq]; ΔTAP = Terrestrial acidification potential [106 kg SO2-eq]; ΔFEP = Freshwater eutrophication potential [103 kg P-eq]; ΔTETP = Terrestrial ecotoxicity 

potential [103 kg 1,4-DCB-eq]; ΔFETP = Freshwater ecotoxicity potential [106 kg 1,4-DCB-eq]; ΔMETP = Marine ecotoxicity potential [106 kg 1,4-DCB-eq]; ΔHTPC = Human 

toxicity potential cancer [106 kg 1,4-DCB-eq]; ΔHTPnc = Human toxicity potential non-cancer [109 kg 1,4-DCB-eq]; ΔLOP = Agricultural land occupation potential [106 

m² yr]; ΔSOP = Surplus ore potential [106 kg Cu-eq]; ΔFFP = Fossil fuel potential [106 kg oil-eq]; ΔWCP = Water consumption potential [106 m³ water-eq]. 
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Table 7 Sensitivity analysis results of the second iteration [%] 

 Value chain Ns 

FLF 

Hp F Ds F Hp AD Ds AD Hp P Ds P Hp G Ds G Hp T Ds T 

NPV Biomass loss in dryer [%] -11           

 Solar irradiation correction factor [%] -15 -16 -16 -17 -18 -17 -16 -16 -16 -18 -15 

 Maximum biomass concentration cultivation [g∙l-1] +14 +23 +25 +24 +24 +23 +25 +24 +23 +24 +23 

 Maximum specific growth rate [day-1] +14 +15 +16 +17 +17 +17 +16 +18 +15 +17 +15 

ΔGWP CO2 fixation efficiency [%] +27 +15 +10 +16  +16 +10 +16 +11 +16  

 CO2 requirement [g CO2 g biomass-1] -16     -10      

 Electricity impact [Impact kWh-1]  -13  -12  -12  -11  -12  

 Carotenoid loss in extraction [%]   -13  -13  -13  -13  -14 

 Biomass loss in dryer [%]   -14  -13  -14  -13  -14 

ΔTAP Carotenoid loss in extraction [%]   -28  -28  -28  -28  -28 

 Biomass loss in dryer [%]   -29  -29  -28  -28  -29 

 Biomass loss in centrifuge [%]   -11  -10  -10  -10  -10 

 Biomass loss in washing step [%]     -10  -10  -10  -10 

 KNO3 requirement 1st growth stage [g∙l-1] -39 -29  -29  -28  -28  -27  

 NH3 emission [g NH3 g KNO3
-1] -15 -11  -12  -11  -11  -11  

 NH3 emission impact [impact kg-1] -14 -12  -11  -12  -12  -12  

ΔPMFP Electricity impact [Impact kWh-1] -11 -14  -14  -13  -13  -13  

 Biomass loss in dryer [%]  -13 -21 -11 -21 -11 -21 -11 -21 -12 -20 

 Solar irradiation correction factor [%]            

 Carotenoid loss in extraction [%]  -13 -21 -13 -20 -12 -21 -12 -21 -11 -20 

ΔFFP Maximum biomass concentration cultivation [g∙l-1] +13 +13 +11 +13 +11 +12 +12 +14 +10 +14 +12 

 Solar irradiation correction factor [%] -18 -13 -12 -13 -13 -14 -10 -13 -12 -14 -11 

 Maximum specific growth rate [day-1] +15 +12 +11 +13 +12 +12 +11 +13 +12 +13 +11 

 Biomass loss in dryer [%]   -10  -10  -11  -11  -11 

 Carotenoid loss in extraction [%]   -10  -10  -11  -10  -11 

 Electricity impact [Impact kWh-1] -11 -15  -16  -16  -16  -14  

 


