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Temporal coherence of a photon condensate: A quantum trajectory description
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In order to study the temporal coherence of a single-mode dye-cavity photon condensate, a model is developed
for the dynamics which treats the condensate mode on a quantum-mechanical level. The effects of driving-
dissipation and Kerr interactions on the number fluctuations are studied analytically and numerically, including
the finding of a long-τ antibunching effect. Depending on the interaction strength, we quantitatively observe an
exponential Schawlow-Townes-like decay or Gaussian Henry-like decay of phase correlations. The adequacy of
a heuristic phasor model originating from laser physics in describing the number and phase dynamics is validated
within the experimentally relevant parameter regime. The ratio of the first- and second-order coherence times is
shown to be inversely proportional to the number fluctuations, with a prefactor that varies smoothly throughout
the crossover between canonical and grand-canonical statistics.
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I. INTRODUCTION

In the last few decades, a vast amount of research has been
done on the related phenomena of Bose-Einstein condensates
(BECs) and quantum fluids [1,2], for reasons of fundamental
interest as well as their exploitation for quantum simulation.
The traditional platform for the realization of quantum fluids
is ultracold atoms, but another fascinating platform is a BEC
of photons. Because their effective mass is many orders
of magnitude lower, condensation can take place at room
temperature. In order to achieve thermalization, a successful
approach has been to use effective photon-photon interac-
tions in a nonlinear material, resulting in the condensation of
polaritons: coherent superpositions of photons and excitons
[3], of which the temporal coherence has been studied in [4]
and [5].

An alternative approach, where there is no need for the
photons to be hybridized, consists of letting the photons
interact with their environment [6–12]. This is realized ex-
perimentally by frequent absorptions and emissions of the
photons by dye molecules (the gain medium), which are
themselves thermalized by collisions with solvent molecules.
It has been shown [13,14] that there is a smooth crossover
between laser physics and a photon BEC. The distinction is
that in the latter, almost-full thermalization is reached with
minor leakage, whereas in a laser, which is driven further out
of equilibrium, gains and losses dominate the dynamics. A
consequence is that lasers generally need population inversion
for the gain medium, while a photon BEC does not.

An interesting, presently realized, feature of photon BECs
in a dye microcavity system, as opposed to other BECs, is
that the number of photons does not remain fixed through
time, even in the absence of losses. If the gain medium
is sufficiently large that saturation effects are small, the
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condensate will exhibit grand-canonical statistics [15–18].
This is remarkable, because the noninteracting Bose gas is one
of the few systems where ensemble equivalence is not satisfied
[19].

Along with these statistical fluctuations of the particle
number, one observes fluctuations of the phase [20–22], as
first predicted in [23]. These can be understood from a
heuristic phasor model (HPM), originally proposed in laser
physics [24,25], because the phase fluctuations at sufficient
particle number correspond to the standard Schawlow-Townes
broadening [25]. The dynamics seems richer, though, because
in the grand-canonical regime the particle number can become
zero so that the phase of a subsequent new photon is entirely
random, known as a ‘phase jump.’ Although predictions from
the HPM seem to match experiments so far, the theoretical
understanding is still limited.

In particular, the phase jump picture suggests that a dra-
matic increase in temporal coherence occurs when the second-
order coherence falls below roughly g(2)(0) = 1.5, where
the probability of having zero photons in the condensate
starts to become exponentially small [20]. We show here
that throughout the crossover between canonical and grand-
canonical statistics, the phase coherence time behaves much
more smoothly than expected by the phase jump analysis.

We also study the influence of a weak Kerr nonlinearity on
the coherence. For ultracold atoms, the temporal coherence
properties in the presence of interactions have been studied
in [26] for bosons and [27] for fermions. Nonlinearities
are not necessary for condensation to occur and are thus
often disregarded [21]. Nevertheless, they naturally emerge
in experimental setups, where a not entirely decoherent dye
induces a natural Kerr effect [28]. Furthermore, it is possible
to engineer these interactions on purpose, which makes the
photons behave more like polaritons and might open the
possibility for effects such as superfluidity [29]. It has also
been proposed to realize similar behavior with χ (2)-nonlinear
materials [30]. Although the precise intrinsic value of the
Kerr nonlinearity in the commonly used dye molecules is still
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the subject of debate (a recent discussion is given in [28]),
we show that already small values of the Kerr nonlinearity
can substantially affect the coherence properties. Because the
interaction strength can vary by many orders of magnitude, we
here focus on the qualitative influence on interaction scales
where the number and phase dynamics are altered signifi-
cantly, while the associated energy scale per particle remains
small compared to other energy scales. Apart from the in-
stantaneous Kerr effect, delayed interaction may also arise in
photonic condensates because of thermo-optical effects [31].
The latter are out of the scope of this paper because they are
expected to contribute significantly only on time scales much
longer than our simulations, although, in principle, our model
could be extended to include them.

Throughout this work, we assume for simplicity the pres-
ence of only a single photon mode. In many experimental
setups, this is valid because of the lower population of excited
modes, the fact that these do not interact, and their small over-
lap with the condensate [32]. Analytical predictions consider-
ing only a single mode have also been successful in describing
phenomena such as the decay of second-order coherence
[21]. As confinement is improving with novel experiments,
restriction to a single mode becomes more realistic in practice.
Nevertheless, beyond this single-mode description, photonic
condensates in some parameter regimes can also exhibit ef-
fects arising from multiple modes that lead to interesting
physics: if the occupation of other modes is large and the
finite size of the reservoir is important, mode competition can
become important [12]. Large occupation of other modes in
a substantially interacting system will additionally result in
Beliaev-Landau scattering, which may give corrections to the
single-mode results [1].

In the next section (Sec. II), we describe the photon con-
densate system in more detail and study the number statistics.
We revisit standard results with the inclusion of a Kerr non-
linearity and present thermodynamic and dynamical estimates
for the number fluctuations, which are verified by solving
stochastic rate equations. We also show that weak interactions
can alter significantly the density distribution and intensity
correlations and, further, that finite losses can cause long-τ
antibunching.

In Sec. III, we tackle the semiclassical HPM in the presence
of Kerr interactions and point out some conceptual issues
stemming from its heuristic nature.

To verify the validity of the HPM, we provide in Sec. IV
a model where the condensate mode is treated on a fully
quantum-mechanical level, while the dye molecules are de-
scribed by classical rate equations. As we aim to describe
single-shot experimental realizations, this naturally leads to
the quantum trajectory (wave-function Monte Carlo) formal-
ism, yielding a stochastic Schrödinger equation that describes
an open system under continuous measurement [33,34]. Be-
cause photon numbers in the cavity can easily reach order 104,
it is numerically very demanding to solve this Schrödinger
equation exactly in a truncated Fock space. Therefore, at high
densities, we make the variational ansatz that the state is
Gaussian in density and phase, which has been shown to be
good in describing dephasing properties [35]. In addition to
reducing computational complexity, the variational equations
also yield theoretical insight in the density-phase dynamics.

Quantum trajectories have previously also been used for the
study of the related polariton condensates [36].

Using this quantum trajectory model, we show that, despite
its heuristic character, the HPM is valid for experimentally
relevant quantities, as their predictions from both methods
match. Finally, In Sec. V we study the properties of first-order
coherence in photon condensates, including the influence
of Kerr interactions and reservoir size, and relate the first-
and second-order coherences to each other. Both Schawlow-
Townes and Henry phase diffusion mechanisms are observed,
and we show that the presence of phase jumps has only a
limited quantitative effect on the phase decay. We formulate
our conclusions in Sec. VI. In the Supplemental Material we
provide [37].

II. NUMBER STATISTICS

A. Model for a driven-dissipative, interacting photon
condensate

We assume a reservoir containing Mtot two-level dye
molecules, of which M↑ (M↓) are in the excited state (ground
state). Because of the rapid decoherence due to collisions
with solvent molecules [13], these numbers can be treated
as classical integers. We consider this reservoir to be coupled
with a single, quantum mechanical, photon mode with number
operator n̂. Because we restrict ourselves in this section to
number statistics, it is sufficient to consider only number
eigenstates (Fock states) with n photons. The corresponding
rate equation for the photons is then given by

dn = −dN + dM. (1)

Here dN and dM are Poisson processes describing molecular
absorption at rate B12M↓n and molecular emission at rate
B21M↑(n + 1), respectively, where B12 and B21 are the modi-
fied Einstein coefficients for absorption and emission [15]. For
convenience, we define γ := B12M↓ and R := B21M↑. In the
absence of losses, the total number of excitations X = M↑ + n
is conserved such that dM↑ = −dn and dM↓ = dn. For this
system, many previous analytical results regarding the number
distribution and correlation functions have been summarized
in [21]. In practice, the quality factors of cavities are restricted
so that an additional loss at rate κn(t ) [6] takes place, which
is compensated by an additional pumping of molecules. In a
typical experimental setup, γ � κ , so that we expect losses
not to affect the number statistics significantly. As we are
concerned with ensemble statistics only, we have the freedom
to choose the photon-counting unraveling for external losses
[38], such that they are also modeled by a Poisson process dK .
This results in a rate equation,

dn = −dN + dM − dK. (2)

In order to keep the long-time expectation value of X constant,
the molecule reservoir is pumped through a process dP with
constant rate κn, where n is the average particle number such
that

dM↑ = dN − dM + dP (3)
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and M↓ = Mtot − M↑. From Eq. (2), the average evolution
is [21]

∂n

∂t
= B21(X − n)(1 + n) − B12n(M − X + n) − κn, (4)

from which one finds that in the steady state

X (n) = B12n(M + n) + B21n(n + 1) + κn

B12n + B21(n + 1)
. (5)

In general, the Einstein coefficients B12 and B21 of the ab-
sorption and emission processes are related by the Kennard-
Stepanov law (see the Supplemental Material to [15]):

B21(ω)

B12(ω)
= w↓

w↑
e−β(ω−ω0 ). (6)

Here, ω is the frequency of the photon, ω0 the frequency of the
atomic transition between the ground and the excited states of
the dye, β = 1

T the inverse temperature (we set kB = h̄ = 1
throughout this work), and w↑,↓ are weight coefficients taking
into account the internal molecular density of (rovibrational)
states in the electronic ground and excited level. For noninter-
acting photons with frequency ωc, the frequency dependence
in (6) depends only on the detuning ωc − ω0 = 	.

A Kerr effect adds by definition an interaction energy
Eint (n) = U

2 n2 to the photons. The nth photon now carries
a frequency ω = ωc + [Eint(n) − Eint(n − 1)] ≈ ωc + Un. As
long as the interaction strength and particle number are not
excessively large, only the relative difference between B21(ω)
and B12(ω) is important, so that we can treat B12 as constant.
With this, we rewrite (6) as

B21(n)

B12
= w↓

w↑
e−β(	+Un). (7)

B. Number statistics

As in Ref. [15] the steady-state number distribution can be
found by assuming detailed balance,

Pn+1

Pn
= X − n

M − X + n + 1

B21(n)

B12
, (8)

such that

Pn

P0
=

(X
n

)
(Mtot−X+n

n

)e−β[	n+(U/2)n2], (9)

where the notation within brackets refers to binomial coeffi-
cients. In the limit of an infinite reservoir, (9) reduces to a
Bose-Einstein distribution,

Pn ∝
(

M↑
M↓

)n

e−βE [n] = exp

(
− (	 − μ)n + (U/2)n2

T

)
,

(10)
where the chemical potential is μ = T log (M↑/M↓).

In Fig. 1, we see that the predictions in number distribu-
tions, (9), closely match numerical results from rate equa-
tions, (2), for a set of parameters corresponding to recent
experiments [39], as summarized in Table I. As for the inter-
action strength, we have taken the value U = 10−5h̄MtotB12,
corresponding to a dimensionless interaction parameter g̃ =
U

h̄ ≈ 9.95 × 10−5 for trapping frequency 
 ≈ 8π × 1010 Hz,
which is larger than the most common estimates of the natural
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FIG. 1. Particle number distribution, (9), without (a) and with
(b) interactions, for the parameters listed in Table I. Green lines:
analytical results, (9), covered by the numerical simulation of the
rate equations, (2) and (3) (blue line), and HPM (red line) results. In
both cases there is a very good agreement between the analytical
prediction and the numerical results obtained by rate equations.
These are also matched by the predictions from the HPM. Stochastic
results are obtained from 103 independent samples, each evolving a
time 105B−1

12 M−1
tot .

Kerr effect [28,32]. Importantly, by defining the effective
reservoir size

Meff = Mtot

2
[1 + cosh (β(	 + Un))]−1, (11)

one can distinguish in the noninteracting case a canoni-
cal regime with Poissonian number statistics (n2 � Meff), a
grand-canonical regime with Bose-Einstein statistics (n2 �
Meff), and a transition region (n2 ≈ Meff).

For our parameters in Table I, we have an effective reser-
voir size Meff = 7.6 × 107 � n2 = 106 such that the system is
rather on the grand-canonical side of this crossover. Definition
(11) only weakly depends on U to the extent that it changes
the average energy per photon. However, also for fixed Meff,
the number distribution is significantly altered by interactions:
the number fluctuations are reduced, as predicted by [17].
This can be understood thermodynamically: by approximating
n to be continuous and integrating (10) over positive n, we

TABLE I. Experimental parameters corresponding to Rho-
damine 6G at 560 nm. [39]. Further, we have taken for the simu-
lations n = 1000, which is somewhat smaller than in typical experi-
mental setups, to reduce the relevant time scales. We have chosen the
finite value of the interaction strength such that the phase and number
statistics are significantly altered (σ = Un2

T of order one), while the
average interaction energy per particle Un remains small compared
to other energy scales. The notion of ‘without interactions’ refers to
U = 0, whereas ‘without losses’ means κ = 0.

Parameter Value

B12 2.5 kHz
Mtot 109

	 −2.4kT/h̄
T 300 K
U 10−5 B12Mtot = 6.4 × 10−7 kBT/h̄
w↑/w↓ 1
κ 2.2 GHz = 8.3 × 10−4 B12Mtot
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FIG. 2. Amount of fluctuations η =
√

n2−n2

n in a grand-canonical
condensate as a function of the interaction parameter σ as thermo-
dynamically derived (black line), with asymptotics 1 − σ (dashed
cyan line) and σ−1/2 (dashed red line). Orange line: The dynamical
approximate result, (17).

obtain the grand-canonical partition function Z . From the
associated free energy F = −T logZ , the equation of state
n(μ) can be obtained, as well as the amount of number

fluctuations Var [n](μ). Eliminating μ, the ratio η =
√

n2−n2

n
can be expressed as a function of the interaction parameter
σ = Un2

T , as shown in Fig. 2. Asymptotically, The relative
amount of fluctuations η decreases as 1 − σ for small σ

and as σ−1/2 for large interactions σ . For our parameters,
we find σ = 0.64, corresponding to η = 0.75, whereas our
noninteracting condensate has η = 0.99.

For a finite reservoir, μ becomes dependent on n, so that the
above thermodynamic analysis is no longer valid. η can also
be computed self-consistently from the number distribution,
(9), or analytically from the dynamical argument below.

C. Second-order coherence

The second-order coherence time τ (2)
c , the decay time of

g(2)(τ ) = n(t )n(t+τ )
n2 , can be obtained by an extension of the

approach in [21]. In linear approximation, B21 = B21(1 −
βUδn(t )), such that the average fluctuation evolves as

∂

∂t
δn(t ) = −

[
B21X

n
+ (B12 + B21)n

+ βUB21M↑(1 + n)

]
δn(t ) + O(δn(t )2), (12)

where the driven-dissipative nature has been disregarded.
Accordingly, the number correlations decay at rate

�2 =
[

1 + σ

n(1 + eβ(	+Un) )
+ (1 + e−β(	+Un) )

n

Mtot

]
B12Mtot (13)

=
[

1 + σ + n2

Meff

]
B12M↓

n
. (14)
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RateEq
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FIG. 3. Second-order correlation functions for the grand-
canonical parameters in Table I, with the exponential decay, (13),
without (a) and with (b) interactions. Generally there is a good agree-
ment, though at later times deviations originating from the driven-
dissipative character are visible. These results are again matched
by the HPM (colors as in Fig. 1). (c) Inset: g(2)(τ (2)

c < τ < τX ) − 1
becomes negative, while this is not the case without losses (κ = 0;
purple area).

As long as Un � 	, the change in �2 = (τ (2)
c )−1 from a

noninteracting condensate is directly proportional to the in-
teraction parameter σ . Note that the same expression, (13), is
also obtained if B21 is treated as constant while considering
frequency dependence in B12. We verify the validity of the
decay rate, (13), by comparison to numerical simulations by
rate equations in Fig. 3.

For generic parameter values, g(2)(0) = 1 + η2 can also
be estimated by the stationary solutions of the expectation
value of

d[δn(t )2] = 2δn(t )d[δn(t )] + d[δn(t )]2 (15)

= −2�2δn(t )2dt + R(n + δn + 1)dt + γ (n + δn),

(16)

from which

g(2)(0) − 1 = η2 = δn2

n2 = 1

1 + σ + n2

Meff

. (17)

For an infinite reservoir (Meff/n2 → ∞), we can compare
this dynamical result directly with the thermodynamic result
above. As we see in Fig. 2, the relative difference in predic-
tions for η remains smaller than 5% for all values of σ , and
(17) becomes exact in the limit of large σ . We can attribute the
deviations at smaller σ to higher-order contributions in dδn.

Such an estimate of η is also useful to initiate the number
of excited molecules in the numerical simulations. As can be
seen from Eq. (5), both the average number of photons and its
fluctuations determine the number of excited molecules:

M↑ = X (n) − n = (B12M + κ )n + (B12 + B21)n2η2

B21(n + 1 − βUn2η2) + B12n
. (18)

In previous analytic discussions, we have disregarded the
driven-dissipative nature of the system. Intuitively, one might
expect that losses will reduce the second-order coherence
time. Such an effect is not observed in the number distribution,
as shown in Fig. 1.
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However, as we see in Fig. 3, g(2)(τ ) is altered on time
scales long compared to the photon correlation time τ (2)

c ,
where a long-τ antibunching effect appears. This can be
explained in the following way: if at τ = 0 the stochastic
particle number is n = n + δn, the corresponding fluctuation
modifies the excitation number by 	X = −κ δnτ (2)

c . Because
n = n(X ), the particle number expectation value is altered
to n′ = n + ∂n

∂X 	X , where from (5), ∂X
∂n ≈ B12B21Mtot

n2(B12+B21 )2 , so that

g(2)(τ ) changes in the order of

nn′

n2 − nn

n2 ≈ n2(B12 + B21)2

B12B21Mtot
κτ (2)

c , (19)

where we have used that in the grand-canonical regime,
δn ∼ n. Expression (19) predicts a decrease in g(2)(τ ) of
about 0.012. We verify this numerically by averaging g(2)(τ )
over a time interval 104B−1

12 M−1
tot − 5 × 104B−1

12 M−1
tot , which is

sufficiently larger than τ (2)
c but smaller than the time scale of

fluctuations in total excitation number τX and obtain a value
g(2)(τ (2)

c < τ < τX ) − 1 = −0.012 for the experimental κ and
g(2)(τ (2)

c < τ < τX ) − 1 = 0.003 without losses, in agreement
with our results. Of course, one always has g(2)(∞) = 1 as the
initial and final states become entirely independent, but the
relaxation from deviation, (19), only takes place over the time
scale of the dynamics of X , namely, τX = (κ ∂n

∂X )−1, which
is of order 105 B−1

12 M−1
tot in our simulations. Because of the

different values for τ (2)
c and η, this effect is weaker in our

simulations of the interacting condensate.

III. THE HEURISTIC PHASOR MODEL FOR PHASE
EVOLUTION

A. A semiclassical model

Next, we proceed to the evolution of the phase. Some
descriptions of the temporal coherence of a photon condensate
rely on a heuristic phasor model [21], originally developed in
laser physics [24,25], which we repeat here with the addition
of Kerr interactions. According to the HPM, one considers
the field to be classical such that the state is defined by a
single phasor (corresponding to a coherent state). The energy
of a state with n photons, relative to a situation where all
excitations are in the dye, is given by

E (n) = 	n + U

2
n2, (20)

where 	 is the detuning between the cavity and the dye
transition. As we treat the phasor as an order parameter, the
phase oscillates at speed [1]

vp = dE

dn
= 	 + Un. (21)

As statistical properties remain the same in a rotating frame,
we may replace 	 in numerical simulations with 	′ = 0
(no rotation for the vacuum) or 	′ = −Un (no rotation on
average) for convergence. Absorption, stimulated emission,
and external losses are here treated as deterministic currents
that retain the coherence entirely: they are modeled by an
evolution of the particle number

dn = (R − γ − κ )n dt, (22)

where Rn is the rate of stimulated emission, γ n the rate of
absorption, and κn the rate of external losses through the
mirrors. Spontaneous emissions into the condensate mode are
then taken into account as an additional Poisson process dMs

with expectation dMs = Rdt . For each spontaneous emission,
a vector eiφ with unit magnitude and random phase is added
to the field

√
neiθ , with the motivation that this represents an

additional photon that is fully incoherent [40]. In fact, such
a spontaneous emission does not deterministically change the
photon number with one and may even reduce it. As before, R
and γ depend on Un and M↑, which is evolved simultaneously
with the photon number. Since the photon number now varies
continuously, the numbers of molecules in the ground (M↓)
and excited (M↑) states are no longer integers.

B. Predictions

If M↑ and M↓ are sufficiently large that R and γ remain
approximately constant, the following analytic discussion ap-
plies: for geometric reasons, the phase evolves as [24]

dθ = 1√
n

sin(φ) dMspont. (23)

From this, we obtain d Mean(θ ) = 0 and

d Var[θ ] = R

2n
dt . (24)

Meanwhile, the photon number evolves as

dn = (R − γ − κ )n dt + (1 + 2
√

n cos φ)dMs, (25)

such that

d Mean[n] = dn = −(γ + κ )ndt + R(n + 1)dt (26)

and

d Var[n] = 2(R − γ − κ ) Var[n]dt + R(2n + 1)dt . (27)

Despite its simplicity, the HPM is able to give a simple
explanation for Schawlow-Townes phase diffusion [25].

A special case occurs when the particle number vanishes
entirely. Here, Eq. (24) becomes singular. This means that, in
the absence of other photons, the phase of the spontaneous
emission is entirely random over the interval [0, 2π [ and a
so-called phase jump occurs [21].

In Figs. 1 and 3, we see that the predictions of the HPM
match the exact values for the number statistics, as described
in the previous section. In Figs. 4(a)–4(c) we show the evo-
lution of the phase and particle number of a typical HPM
sample.

Despite these successes, there are some conceptual diffi-
culties with the HPM. First, by treating the field as classical,
any squeezing effects are disregarded. Second, the continu-
ous variation of the field is inconsistent with the fact that
the emission and absorption are discrete processes at the
level of the dye. Third, it is physically dubious that only
spontaneous emission and neither absorption nor stimulated
emission causes shot noise. In the phasor model, the overly
large noise from the spontaneous emission actually mimics
the shot noise from all loss and gain processes. Note that
even though a single spontaneous emission event adds one
photon on average, this number has an uncertainty of

√
n, such
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FIG. 4. Some typical single-shot realizations, as predicted by (a–c) the HPM versus (d–f) the quantum trajectories. We see that there

is a clear qualitative difference on short time scales: whereas the fluctuations of the phasor model (a) are discrete events corresponding to
spontaneous emissions, noise remains on all scales within a quantum trajectory (d). However, this qualitative difference is washed away
on longer time scales, where the phase evolution according to the HPM (b) becomes equivalent to that of a trajectory (e; blue line). Also,
regarding the photon number, the evolution of the HPM (c) is indistinguishable from the trajectory (f; blue line) on sufficiently large time
scales corresponding to typical experiments. Furthermore, it is clear that according to both the HPM and the trajectories, the phase fluctuates
the most when the photon number is low. For completeness, we have added also the other Gaussian moments of the trajectory (see Appendix
A): in (e) 〈δ̂θ δ̂θ 〉 (red line) and 〈δ̂n δ̂θ 〉sym (yellow line) are typically small but show spikes at phase jumps. In (f), we see that generally 〈δ̂n δ̂n〉
(red line) < 〈n̂〉, reflecting number squeezing. Note that 〈θ̂〉 is only defined modulo 2π .

that a spontaneous emission can even decrease the photon
number. Finally, regarding the phase, one may wonder what is
so special about these spontaneous emission events that these
influence θ whereas other processes do not.

IV. THE QUANTUM TRAJECTORY DESCRIPTION

A. A quantum model

In order to address the questions posed at the end of the
previous section, we study the photon field on a fully quantum
mechanical level. Because of its driven-dissipative nature, the
photon condensate is an open quantum system. The study of
an open system starts with the distinction between system and
environment. Here, we treat the condensate mode as the sys-
tem to be modeled by a quantum-mechanical stochastic wave
function, |ψ (t )〉. We use the notation 〈·〉 to denote quantum
expectation values with respect to this wave function. The
gain medium, on the other hand, is modeled classically: of
the Mtot dye molecules, the integer amounts M↑(t ) [M↓(t )]
are in the excited [ground] state as described by stochastic
rate equations given in Sec. II. This is justified because of
the frequent collisions with solvent molecules that lead to
thermalization [10].

The coherent evolution of the photons, in the frame ro-
tating at the dye transition frequency, is governed by the
Hamiltonian

Ĥ = 	 â† â +U

2
â† â† â â, (28)

where the operators â (â†) annihilate (create) a photon, defin-
ing also the number operator n̂ = â† â. Again, for numerical
purposes we can go to a rotating frame and replace 	 with
arbitrary 	′. In the absence of Hamiltonian dynamics, the
evolution of the photon field is governed by three processes:
gain (corresponding to emission of the dye molecules) occur-
ring at rate R(〈n̂〉 +1), absorption at rate γ 〈n̂〉, and external
losses through the mirrors at rate κ 〈n̂〉. Because of the discrete
nature of the dye excitations, the first two processes are
naturally described through a photon-counting unraveling as
if the photon number is ‘measured’ by the dye. External
losses are modeled by a heterodyne unraveling, first, because
heterodyne detection is typically performed in experiments
on this leaking current and, second, because it keeps the
wave function localized in phase space, which is helpful.
By combining these processes, we readily obtain a stochastic
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FIG. 5. (a) Wigner function of a representative trajectory wave function in the exact regime, about to make the transition to the variational
regime. (b): Wigner function of the corresponding variational trajectory with the same Gaussian moments. The similarity is striking. Color
scheme from [44].

Schrödinger equation [33]:

|ψ̃〉 =
[

1 − i

(
Ĥ − i

2
(γ + R + κ ) n̂

)
dt + κ 〈â〉∗ â dt

+ √
κ â dZ∗ +

(
â

〈â〉 − 1

)
dN +

(
â†

〈â〉∗ − 1

)
dM

]
|ψ〉.
(29)

Here, the tilde denotes that the left-hand side describes the
unnormalized wave function, to be renormalized after every
time step. dZ = 1√

2
(dWx + idWp) is a complex (Itô) Wiener

noise process such that |dZ|2 = dt , and dN and dM describe
Poisson processes as defined in Sec. II, where the role of n is
now replaced with 〈n̂〉. Because the photon number typically
becomes mesoscopic, exact evolution of (29) in a truncated
Fock basis rapidly becomes computationally unfeasible. A
number of variational approaches have been proposed for
efficient simulation to this extent [41,42]. Here, the fact that
the system is a single bosonic mode with large occupation,
combined with a visual inspection of the Wigner function
in Fig. 5, leads us to model the field as being Gaussian
in particle number and phase: an ‘N�-Gaussian’ state as
was also used in [35]. Under this assumption, the field |ψ〉
is entirely characterized by the expectation values 〈n̂〉, 〈θ̂〉,
〈δ̂n δ̂n〉, 〈δ̂θ δ̂θ 〉, and 〈δ̂n δ̂θ 〉sym, where δ̂O := Ô −〈Ô〉 is defined
as the fluctuation of operator Ô. The full variational equations
for these expectation values are given in Appendix A. Note
that if external decay vanishes, or if it is described as a photon-
counting process, we find that 〈δ̂n δ̂n〉 → 0, 〈δ̂θ δ̂θ 〉 → ∞, and
the equations reduce to stochastic rate equation as in Sec. II.
Interestingly, it is thus the (small) losses that allow us to define
a phase and avoid the condensate to become a particle number
eigenstate [43].

Because in the grand-canonical regime the particle num-
ber fluctuates also to vanishingly low densities we use a

combination of both the exact, (29), and the variational,
(A2)–(A6), evolution. That is, we define treshhold particle
numbers ntrans,↘ and ntrans,↗. When 〈n̂〉 < ntrans,↘ = 200 we
perform the exact evolution and when 〈n̂〉 > ntrans,↗ = 240
we perform the variational evolution. In the intermediate
window, ntrans,↘ < 〈n̂〉 < ntrans,↗, the method of the previous
regime remains in use. The transitions between methods are
discussed in more detail in Appendix B. Whereas the varia-
tional equations are solved by a straightforward Euler method
with direct addition of the Poisson increments, for proper
numerical convergence of the exact trajectories, an approach
where the deterministic and diffusive evolution is separated
from the individual jumps [45] is used.

B. Predictions

Similarly to the HPM, we calculate the evolution of the
moments of the field while treating γ and R as constant. We
use the variational equations from Appendix A as a start-
ing point, considering highest-order O(〈n̂〉) = O(〈δ̂n δ̂n〉) =
O(〈δ̂θ δ̂θ 〉−1

) [this relation between orders can be seen from
a coherent state where 〈n̂〉 = 〈δ̂n δ̂n〉 and relation (A9)]. Under
the assumption 〈δ̂n δ̂θ 〉sym ≡ 0 and neglecting noise, one ob-
tains as the stationary solution for the phase variance, (A5),

〈δ̂θ δ̂θ 〉stat =
1 +

√
2
(
1 + γ+R

κ

)
4 〈n̂〉 . (30)

Substituting in (A4) results in

d 〈θ̂〉 = κ + γ + R

2
√〈n̂〉 dWθ , (31)

where dWθ denotes a real Wiener process from which

d Mean[θ̂] = d〈θ̂〉 = 0 (32)
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and

d Var2 θ̂ = d[θ̂ θ̂ ] − d[θ̂
2
] = κ + γ + R

4 〈n̂〉 dt . (33)

In trajectory simulations, the total variance of an observable
Var[Ô] = Var1 Ô + Var2 Ô can be decomposed into the in-
tratrajectory variance Var1 Ô = 〈δÔδÔ〉 and the intertrajectory
variance Var2 Ô = Var〈Ô〉 [33]. Here, from our stationary
assumption, d Var1 θ̂ = 0 such that d Var[θ̂] = d Var2 θ̂ .

Similarly, we obtain the stationary solution for the particle
number from (A3),

〈δ̂n δ̂n〉stat =
√

κ√
2
√

γ + R
〈n̂〉, (34)

where we have used κ � γ , R. Substituting in (A2) results in

d Mean[〈n̂〉] = d〈n̂〉 = (R − γ − κ )〈n̂〉dt (35)

and

d Var n̂ = d Var2 n̂ = d〈n̂〉2 − d (〈n̂〉2
)

= [2(R − γ − κ ) Var n̂ + (γ + R + κ )〈n̂〉]dt . (36)

Comparing Eqs. (32), (33), (35), and (36) with the pre-
dictions from the HPM, (24), (26), and (27), the similarity
is evident. In line with the expectations, the HPM predicts a
variance increase proportional to the gain R, whereas this is
symmetrical in R, γ , κ according to our trajectory result. In
the steady state, however, R ≈ γ + κ at least to highest order
in 〈n̂〉, such that the time-averaged result is the same. This
correspondence is also reminiscent of the result for a laser
[25]: also there, the phasor model predicts a phase diffusion
proportional to the gain coefficient R, whereas a more detailed
quantum-mechanical derivation makes clear that R+κ

2 is the
correct quantity, although both become equivalent at threshold
where R ≈ κ .

In Figs. 4(d)–4(f) a representative evolution of phase and
particle number during a single trajectory simulation is shown.
In short times there is a qualitative difference from the HPM:
discrete steps corresponding to emission events are replaced
by scale-invariant noise, induced by the heterodyne detection
and fueled by all emission and absorption processes. However,
current experiments cannot resolve these small fluctuations on
short time scales, as long as they do not affect correlation
functions. It is clear in Fig. 4 that the predictions of both
methods become qualitatively indistinguishable on longer
time scales. We see also that for both methods, the phase
diffuses more rapidly at lower photon numbers, as predicted
by Eqs. (24) and (33).

V. FIRST-ORDER COHERENCE

In Fig. 6 the first-order correlation function g(1)(τ ) =
α∗(t )α(t+τ )

|α(t )|2 is shown, and again, predictions of the HPM agree

well with the exact result, obtained by trajectories. In the
noninteracting case, the decay of correlations is clearly expo-
nential, whereas it is Gaussian in the presence of interactions.
The decay can be understood from multiple points of view; let
us start with the noninteracting case.

0 2,000 4,000

10−1

100

(a)

τ(B-1
12M

-1
tot)

|g(1
)
|

analytical
W/E
Traj.
HPM
HPM (κ = 0)

0 100 200 300 400

10−1

100
(b)

FIG. 6. First-order correlation function for the parameters in
Table I: (a) noninteracting and (b) interacting cases. Colors as in
previous figures. Yellow line: the polariton result of (46) and (47)
from [4]. The result without losses (purple line) is also obtained
by the HPM. The quantum-trajectory results are obtained from
84 (noninteracting) or 112 (interacting) independent samples, each
evolving a time 104B−1

12 M−1
tot .

A. Schawlow-Townes effect from the canonical to the
grand-canonical regime: The influence of ‘phase jumps’

According to the HPM picture, absorption and stimulated
emission only affect the phasor radially, as d

√
n = dn

2
√

n
=

R−γ

2

√
n dt , where we have used Eq. (22) and neglected the

external losses. The stochastic evolution of the HPM can then
be written in terms of the phasor alone as

dα = −γ − R

2
α dt + dS, (37)

where dS is additive noise corresponding to the spontaneous
emissions. In the grand-canonical limit, γ and R can be treated
as constants, such that for the expectation value,

dα = −γ − R

2
α = −R

2n
α. (38)

From the quantum regression theorem [25], it is then clear that

g(1)(τ ) = e−t/τ (1)
c , (39)

where
1

τ
(1)
c

= R

2n
= B21M↑

2n
≈ B12M↓

2n
= B12Mtot

2n(1 + eβ	)
. (40)

By another line of reasoning, the phase evolution is dom-
inated by large phase jumps when the photon number in the
cavity vanishes as described in [20,21]. From estimating the
probability of having zero photons in the cavity, one obtains
the ‘phase jump rate’ �0

PJ = B12M↓
nζ . In the grand-canonical

limit, ζ = 1, so that this is consistent with (40) up to a scaling
factor of order one. The picture of phase jumps would further
predict that the phase evolution is suppressed if the probability
for the zero-photon state vanishes (ζ → ∞), as occurs outside
of the grand-canonical limit, towards the canonical regime
Meff � n2, where Meff is defined as in Eq. (11). By additional
numerical simulations shown in Fig. 7, we see that this is not
the case. At most, the first-order coherence time, rescaled with
the molecule number, only scales by a factor of two. This is
not entirely unsurprising, as the remaining value corresponds
to the standard Schawlow-Townes dephasing [25] occurring
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FIG. 7. g(1)(τ ) in the absence of interactions, for different values
of Mtot (109, red line; 107, purple line; 105, cyan line) and hence Meff,
together with the asymptotic exponential decays ξ = 2 (yellow line)
and ξ = 4 (green line). Again, the other parameters are as in Table I
and n = 1000. Inset: Even towards the canonical regime, there is a
short initial time span of grand-canonical (ξ = 4) decay of the order
of τ (2)

c .

in the limit where the number distribution is sharply peaked,
as can already be seen from (24). We are thus led to write
generically

�1 ≡ 1

τ
(1)
c

= B12M↓
ξn

, (41)

where ξ = 2 in the grand-canonical limit and ξ = 4 in the
canonical limit. Comparing with the decay of second-order
coherence, (13), we find that

τ (1)
c

τ
(2)
c

= �2

�1
(42)

= ξ

[
1 + σ + n2

Meff

]
(43)

= ξ

η2
= ξ

g(2)(0) − 1
, (44)

where we have used (17) for the third equality. However, in the
inset in Fig. 7, we see that on sufficiently short time scales,
there is always an initial decay with ξ = 2. There is a clear
intuition here. In general, γ − R = γ − R + (B12 + B21)δn,
where δn = n − n. When, at short time scales, δn remains
approximately constant, a similar reasoning to the grand-
canonical regime yields

g(1)(τ ) = e−Rτ/(2n)

n
n exp

(
− (B12 + B21)δn

2
τ

)

≈ e
−R
(2n) τ

(
1 − η2

2
(B12 + B21)nτ

)

≈ e
−R
(2n) τ . (45)

At later times, higher-order effects set in and restrict the
dynamics. It is instructive to compare these results with the
ones obtained by Whittaker and Eastham [4] in a polariton
context. There, a Schawlow-Townes decay is predicted to be
of the form

|g(1)(τ )| = exp

[
η2

4
(e−�2τ − �2τ − 1)

]
. (46)

For �2τ � 1, this reduces to an exponential decay at rate
η2

2 �2, whereas for �2τ � 1, (46) decays exponentially at

rate η2

4 �2. This can be understood because at short times
the number fluctuations contribute to the decay of g(1), but
after a time 1/�2 only Schawlow-Townes phase diffusion
remains. There remain a few differences between the physics
of (46) and the photon condensate. First, (46) is derived in
[4] under the explicit assumption that the whole ensemble
has a Gaussian number distribution peaked around n [46].
This assumption is physical for the photon condensate only
in the canonical regime, where the probability of having zero
photons is negligible. This means that the predicted long-time
value of ξ equals 4, in agreement with our prediction for the
canonical regime.

Finally, the time scale of the transition between the two
decay rates is for photon condensates determined not by �2,
but only by the second term in (13), which is responsible for
the time dependence of R and γ . In the grand-canonical limit,
this means that a slowing of the decay would only take place
at infinitely long times, unlike the prediction of (46), as shown
in Fig. 6.

B. Effect of Kerr interactions

In the presence of finite photon-photon interactions, the
decay of first-order coherence is altered, as we see in the
right panel in Fig. 6(b). The profile is Gaussian rather than
exponential. This is characteristic for the so-called Henry
mechanism [24]. Whereas Schawlow-Townes decay is at-
tributed to direct fluctuations of the phase, Henry decay results
from phase diffusion as a consequence of number fluctuations
causing a change of the interaction energy. For the Henry
effect, Ref. [4] predicts an additional decay,

|g(1)(τ )| = exp

[
−η2U 2

�2
2

(e−�2τ + �2τ − 1)

]
, (47)

which reduces to a Gaussian decay with characteristic time
(
√

2/U 〈n̂〉η) at short time scales. As we see in Fig. 6, there is
good agreement with our numerical results at short times, al-
though deviations occur at later times, which we can attribute
to the non-Gaussian character of the number distribution.

The fact that the prediction of Gaussian decay for short
time scales remains valid in the grand-canonical limit can
be understood because in a frame rotating at the bare cavity
frequency, the expectation value of a phase factor of a state
with n photons at time t is

e(−iUnt ) = exp

[ ∞∑
m=1

km
(−i)mU mtm

m!

]

= e−iUnt e
−1
2 U 2t2(n2−n2 )+O(Ut )3

, (48)
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where km is the mth cumulant of the distribution of n. Here,
we have implicitly assumed that n remains approximately
constant at short times.

VI. CONCLUSIONS

We have studied the temporal coherence of a single-mode
photon condensate both with and without weak Kerr inter-
actions and have also accounted for the effects of driving
and dissipation. We have shown thermodynamically and dy-
namically how interactions reduce the number fluctuations
and calculated the corresponding enhancement of the decay
of second-order correlations, which we numerically verified
by stochastic rate equations. The driven-dissipative nature of
a realistic photon condensate causes g(2)(τ ) < 1 at large τ ,
because of the coupling of the photon number to the slow
reservoir dynamics. We have reviewed the heuristic phasor
model and shown analytically and numerically its adequacy
in describing experimentally relevant quantities while being
numerically efficient. For comparison, a quantum mechanical
model of the condensate mode based on variational quantum
trajectories was introduced, assuming only classical coupling
with the dye molecules. Exhibiting similarities with both a
laser far from equilibrium [24] and an isolated atomic BEC
[26], we have observed both Schawlow-Townes (exponential)
and Henry (Gaussian) contributions to the decay of phase
correlations in the photon condensate, depending on the in-
teraction strength. As the effect of ‘phase jumps’ is similar to
the standard Shawlow-Townes effect, we found no qualitative
differences in the coherence between canonical and grand-
canonical regimes. We have shown how first- and second-
order coherence times are related by the number fluctuations.
An interesting open question is to what extent the picture

above changes in the presence of thermo-optical effects. To
study the latter, longer evolution times are necessary, but
as we have shown, an approach based on the numerically
efficient heuristic phasor model is likely to be sufficient.
Another possible extension is the study of coupled condensate
modes, as appear in lattices of cavities. Also, within a single
cavity, there can be interesting physics arising from mode
competition for some parameter values [12], which we have
omitted here.

Finally, we have assumed here that the absorption and
emission processes are Markovian and coupling between the
photons and the molecules is weak.

It remains an open question to what extent our conclusions
remain valid outside of these approximations [47]. Because
our conclusions at strong thermal equilibrium and with weak
losses are similar to those for a threshold laser far from
equilibrium, regarding both the validity of the HPM and
the shape of the autocorrelation functions, we expect these
conclusions to remain valid for all usual parameter values for
photon condensates.
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APPENDIX A: THE VARIATIONAL EVOLUTION

Following Ref. [35] (which has, however, a different sign convention for the parameter 	), the trajectory evolution, (29), can
be recast in terms of (normalized) expectation values 〈Ô〉 to be

d〈O〉 = i〈[H, O]〉dt − γ + R + κ

2
(〈n̂ O〉 + 〈O n̂〉)dt + (γ + R)〈O〉 〈n̂〉 dt + κ〈â† O â〉dt

+ √
κ (〈â† δ̂O〉dZ + 〈δ̂O â〉dZ∗) +

( 〈â† O â〉
〈n̂〉 − 〈O〉

)
dN +

( 〈â O â†〉
〈n̂〉 +1

− 〈O〉
)

dM, (A1)

where, again, δ̂O = Ô − 〈O〉. By introducing a Dirac phase through â =: eiθ̂
√

n̂ satisfying [n̂, θ̂ ] = i and using Wick’s theo-
rem, we obtain for the Gaussian correlation functions 〈n̂〉, 〈θ̂〉, 〈δ̂n δ̂n〉 = 〈n̂ n̂〉− 〈n̂〉2, 〈δ̂θ δ̂θ 〉 = 〈θ̂ θ̂〉− 〈θ̂〉2

, and 〈δ̂n δ̂θ 〉sym =
〈n̂ θ̂〉 /2 + 〈θ̂ n̂〉/2 − 〈n̂〉 〈θ̂〉; the evolution

d 〈n̂〉 = − (γ + R) 〈δ̂n δ̂n〉 dt − κ 〈n̂〉 dt + 2Re[(C2 − C1)
√

κdZ] +
( 〈δ̂n δ̂n〉

〈n̂〉 − 1

)
dN +

( 〈δ̂n δ̂n〉
〈n̂〉 +1

+ 1

)
dM, (A2)

d 〈δ̂n δ̂n〉 = − 2κ 〈δ̂n δ̂n〉 dt + κ 〈n̂〉 dt − 2κ|C2 − C1|2dt + 2Re[(D3 − 2C2 + C1(1 − 〈δ̂n δ̂n〉))
√

κdZ]

− 〈δ̂n δ̂n〉2

〈n̂〉2 dN − 〈δ̂n δ̂n〉2

(〈n̂〉+1)2
dM, (A3)

d 〈θ̂〉 =
(

−	 + U

2

)
− U 〈n̂〉 −(γ + R) 〈δ̂n δ̂θ 〉sym dt + 2Re[C6

√
κdZ] + 〈δ̂n δ̂θ 〉sym

〈n̂〉 dN + 〈δ̂n δ̂θ 〉sym

〈n̂〉+1
dM, (A4)
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d 〈δ̂θ δ̂θ 〉 = − 2U 〈δ̂n δ̂θ 〉sym +κ

4
E1dt − 2κ|C6|2dt + 2Re[(D1 − 〈δ̂θ δ̂θ 〉C1)

√
κdZ]

+
(

−〈δ̂n δ̂θ 〉sym
2

〈n̂〉2 + E1

4 〈n̂〉

)
dN +

(
−〈δ̂n δ̂θ 〉sym

2

(〈n̂〉+1)2
+ E2

4(〈n̂〉+1)

)
dM, (A5)

d 〈δ̂n δ̂θ 〉sym = − U 〈δ̂n δ̂n〉 −κ 〈δ̂n δ̂θ 〉sym dt − 2κRe[(C2 − C1)C∗
6 ]dt

+ 2Re

[(
−C6 −

(
〈δ̂n δ̂θ 〉sym + i

2

)
C1 + D2

)√
κdZ

]
− 〈δ̂n δ̂n〉 〈δ̂n δ̂θ 〉sym

〈n̂〉2 dN − 〈δ̂n δ̂n〉 〈δ̂n δ̂θ 〉sym

(〈n̂〉 +1)2
dM. (A6)

Here, the coefficients C and D are defined as in [35] and

E1 :=
〈

1

n̂

〉
≈ 1

〈n̂〉
(

1 + 〈δ̂n δ̂n〉
〈n̂〉2

)
, (A7)

E2 :=
〈

1

n̂ +1

〉
≈ 1

〈n̂〉+1

(
1 + 〈δ̂n δ̂n〉

(〈n̂〉 +1)2

)
. (A8)

By considering the measurements to be perfect, we can do a restriction towards pure states, for which the relation

〈δ̂n δ̂n〉 〈δ̂θ δ̂θ 〉− 〈δ̂n δ̂θ 〉sym
2 = 1

4 (A9)

is satisfied [35]. This constraint allows us to compute 〈δ̂θ δ̂θ 〉 (or another variance) directly from the others.

APPENDIX B: TRANSITIONS BETWEEN EXACT AND
VARIATIONAL REGIMES

1. From variational to exact

When 〈n̂〉 decreases from the variational regime below the
threshold ntrans,↘, the N�-Gaussian state must be explicitly
expressed in the Fock base to continue numerically exact
evolution. A generic Gaussian density operator [38] can, by
definition, be written as

ρ̂ = N exp
{−βĤeff

}
(B1)

for a quadratic Ĥeff. A Gaussian state that is pure is obtained
by taking the limit β → ∞, which is equivalent to taking the
lowest eigenvector (‘ground state’) of Ĥeff.

In order to construct Ĥeff, we need explicit matrix represen-
tations of n̂ and θ̂ . For the particle number operator n̂ = â† â
this is straightforward. Regarding θ̂ we encounter the fact that
phase is not a true observable, with the consequence that,
strictly speaking, no Hermitian phase operator exists [48].
However, as long as the Fock space is truncated (which is the
case here) at level Nmax, a meaningful phase operator can be
obtained through the Pegg-Barnett formalism to be

θ̂PB(θ0) = θ0 + Nmaxπ

Nmax + 1

+ 2π

Nmax + 1

Nmax∑
j �=k

exp {i( j − k)θ0}| j〉〈k|
exp {i( j − k)2π/(Nmax + 1)} − 1

(B2)

[48]. One free parameter, θ0, remains, corresponding to the
phase cut. That is, because phase is a periodic variable, there
must be a cut where (going counterclockwise) the phase
sharply changes with −2π . In order to avoid secondary effects
of this cut, we use θ0 = 〈θ̂〉−π such that the N�-Gaussian
state is as far from the phase cut as possible.

Using the operators n̂ and θ̂ := θ̂PB(〈θ̂〉−π ), an effective
Hamiltonian,

Ĥeff = (n̂ −〈n̂〉)2 〈δ̂θ δ̂θ 〉 +(θ̂ −〈θ̂〉)2 〈δ̂n δ̂n〉
− (n̂ −〈n̂〉)(θ̂ −〈θ̂〉) 〈δ̂n δ̂θ 〉sym

− (θ̂ −〈θ̂〉)(n̂ −〈n̂〉) 〈δ̂n δ̂θ 〉sym, (B3)

is constructed. |ψ〉 is obtained as the eigenvector of Ĥeff

corresponding to the lowest eigenvalue.

2. From exact to variational

When, in the exact regime, 〈n̂〉 = 〈ψ | n̂ |ψ〉 increases
above ntrans,↗, the Gaussian moments must be computed. As
in the previous case, this is entirely straightforward regarding
〈n̂〉 and 〈δ̂n δ̂n〉. For the phase, we want to use the operator
θ̂PB(θ0) again, although this time it is not a priori clear which
value of θ0 to use. We therefore make an initial guess θ

(0)
0

and construct a corresponding θ̂
(0)
PB = θ̂PB(θ (0)

0 ). We then iter-

atively use θ i+1
0 = 〈ψ | θ̂ (i)

PB |ψ〉 − π and repeat the procedure
self-consistently until convergence is reached. The resulting
θ̂PB(θ ( f )

0 ) can then be used to proceed in calculating the
Gaussian moments. We have verified that the above procedure
results in the expected phase arg [α] when applied to an
arbitrary coherent state |α〉. After this transition, we use the
purity relation, (A9), as a numerical check and as verification
for the validity of the Gaussian ansatz.

The fact that in this work two different definitions of a
phase operator (Dirac and Pegg-Barnett) are used causes no
problems because the particle number at the transitions is
sufficiently large and the trajectory states are sufficiently well
behaved.
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[28] M. Radonjić, W. Kopylov, A. Balaž, and A. Pelster, New J.

Phys. 20, 055014 (2018).
[29] O. L. Berman, R. Y. Kezerashvili, and Y. E. Lozovik, J. Opt.

Soc. Am. B 34, 1649 (2017).
[30] A. Majumdar and D. Gerace, Phys. Rev. B 87, 235319 (2013).
[31] H. Alaeian, M. Schedensack, C. Bartels, D. Peterseim, and M.

Weitz, New J. Phys. 19, 115009 (2017).
[32] J. Klaers, J. Schmitt, T. Damm, F. Vewinger, and M. Weitz,

Appl. Phys. B 105, 17 (2011).
[33] H.-P. Breuer and F. Petruccioni, The Theory of Open Quantum

Systems (Oxford University Press, New York, 2002).
[34] H. J. Carmichael, Statistical Methods in Quantum Optics 2:

Non-classical Fields, Theoretical and Mathematical Physics
(Springer, Berlin, 2008).

[35] W. Verstraelen and M. Wouters, Appl. Sci. 8, 1427 (2018).
[36] M. Wouters, Phys. Rev. B 85, 165303 (2012).
[37] See Supplemental Material at http://link.aps.org/supplemental/

10.1103/PhysRevA.100.013804 for code used to simulate the
time volution through different methods.

[38] C. Gardiner and P. Zoller, Quantum Noise: A Handbook of
Markovian and Non-Markovian Quantum Stochastic Methods
with Applications to Quantum Optics. Springer Series in Syner-
getics (Springer, Berlin, 2004).

[39] J. Schmitt (private communication, 2018).
[40] N. B. Abraham and S. R. Smith, Phys. Rev. A 15, 421 (1977).
[41] A. J. Daley, Adv. Phys. 63, 77 (2014).
[42] W. Casteels, R. M. Wilson, and M. Wouters, Phys. Rev. A 97,

062107 (2018).
[43] K. Mølmer, Phys. Rev. A 55, 3195 (1997).
[44] D. A. Green, Bull. Astron. Soc. India 39, 289 (2011).
[45] N. Bruti-Liberati and E. Platen, Comput. Econ. 29, 283

(2007).
[46] This is different from our ansatz, where we consider only indi-

vidual trajectories as having a Gaussian number distribution.
[47] I. de Vega and D. Alonso, Rev. Mod. Phys. 89, 015001 (2017).
[48] M. M. Nieto, Phys. Scr. 1993, 5 (1993).

013804-12

https://doi.org/10.1103/RevModPhys.85.299
https://doi.org/10.1103/RevModPhys.85.299
https://doi.org/10.1103/RevModPhys.85.299
https://doi.org/10.1103/RevModPhys.85.299
https://doi.org/10.1209/0295-5075/87/27002
https://doi.org/10.1209/0295-5075/87/27002
https://doi.org/10.1209/0295-5075/87/27002
https://doi.org/10.1209/0295-5075/87/27002
https://doi.org/10.1103/PhysRevLett.101.067404
https://doi.org/10.1103/PhysRevLett.101.067404
https://doi.org/10.1103/PhysRevLett.101.067404
https://doi.org/10.1103/PhysRevLett.101.067404
https://doi.org/10.1103/PhysRevB.85.205310
https://doi.org/10.1103/PhysRevB.85.205310
https://doi.org/10.1103/PhysRevB.85.205310
https://doi.org/10.1103/PhysRevB.85.205310
https://doi.org/10.1038/nature09567
https://doi.org/10.1038/nature09567
https://doi.org/10.1038/nature09567
https://doi.org/10.1038/nature09567
https://doi.org/10.1038/nphys1680
https://doi.org/10.1038/nphys1680
https://doi.org/10.1038/nphys1680
https://doi.org/10.1038/nphys1680
https://doi.org/10.1007/s11467-016-0568-3
https://doi.org/10.1007/s11467-016-0568-3
https://doi.org/10.1007/s11467-016-0568-3
https://doi.org/10.1007/s11467-016-0568-3
https://doi.org/10.1080/09500340.2017.1404655
https://doi.org/10.1080/09500340.2017.1404655
https://doi.org/10.1080/09500340.2017.1404655
https://doi.org/10.1080/09500340.2017.1404655
https://doi.org/10.1103/PhysRevA.91.033826
https://doi.org/10.1103/PhysRevA.91.033826
https://doi.org/10.1103/PhysRevA.91.033826
https://doi.org/10.1103/PhysRevA.91.033826
https://doi.org/10.1103/PhysRevA.98.013810
https://doi.org/10.1103/PhysRevA.98.013810
https://doi.org/10.1103/PhysRevA.98.013810
https://doi.org/10.1103/PhysRevA.98.013810
http://arxiv.org/abs/arXiv:1809.08774
https://doi.org/10.1103/PhysRevLett.111.100404
https://doi.org/10.1103/PhysRevLett.111.100404
https://doi.org/10.1103/PhysRevLett.111.100404
https://doi.org/10.1103/PhysRevLett.111.100404
https://doi.org/10.1103/PhysRevA.92.011602
https://doi.org/10.1103/PhysRevA.92.011602
https://doi.org/10.1103/PhysRevA.92.011602
https://doi.org/10.1103/PhysRevA.92.011602
https://doi.org/10.1103/PhysRevLett.108.160403
https://doi.org/10.1103/PhysRevLett.108.160403
https://doi.org/10.1103/PhysRevLett.108.160403
https://doi.org/10.1103/PhysRevLett.108.160403
https://doi.org/10.1103/PhysRevLett.112.030401
https://doi.org/10.1103/PhysRevLett.112.030401
https://doi.org/10.1103/PhysRevLett.112.030401
https://doi.org/10.1103/PhysRevLett.112.030401
https://doi.org/10.1103/PhysRevE.94.042124
https://doi.org/10.1103/PhysRevE.94.042124
https://doi.org/10.1103/PhysRevE.94.042124
https://doi.org/10.1103/PhysRevE.94.042124
https://doi.org/10.1103/PhysRevLett.116.033604
https://doi.org/10.1103/PhysRevLett.116.033604
https://doi.org/10.1103/PhysRevLett.116.033604
https://doi.org/10.1103/PhysRevLett.116.033604
https://doi.org/10.1088/1361-6455/aad409
https://doi.org/10.1088/1361-6455/aad409
https://doi.org/10.1088/1361-6455/aad409
https://doi.org/10.1088/1361-6455/aad409
https://doi.org/10.1088/1367-2630/18/10/103012
https://doi.org/10.1088/1367-2630/18/10/103012
https://doi.org/10.1088/1367-2630/18/10/103012
https://doi.org/10.1088/1367-2630/18/10/103012
https://doi.org/10.1103/PhysRevA.90.043627
https://doi.org/10.1103/PhysRevA.90.043627
https://doi.org/10.1103/PhysRevA.90.043627
https://doi.org/10.1103/PhysRevA.90.043627
https://doi.org/10.1109/JQE.1982.1071522
https://doi.org/10.1109/JQE.1982.1071522
https://doi.org/10.1109/JQE.1982.1071522
https://doi.org/10.1109/JQE.1982.1071522
https://doi.org/10.1103/PhysRevA.80.033614
https://doi.org/10.1103/PhysRevA.80.033614
https://doi.org/10.1103/PhysRevA.80.033614
https://doi.org/10.1103/PhysRevA.80.033614
https://doi.org/10.1016/j.crhy.2016.02.005
https://doi.org/10.1016/j.crhy.2016.02.005
https://doi.org/10.1016/j.crhy.2016.02.005
https://doi.org/10.1016/j.crhy.2016.02.005
https://doi.org/10.1088/1367-2630/aac2a6
https://doi.org/10.1088/1367-2630/aac2a6
https://doi.org/10.1088/1367-2630/aac2a6
https://doi.org/10.1088/1367-2630/aac2a6
https://doi.org/10.1364/JOSAB.34.001649
https://doi.org/10.1364/JOSAB.34.001649
https://doi.org/10.1364/JOSAB.34.001649
https://doi.org/10.1364/JOSAB.34.001649
https://doi.org/10.1103/PhysRevB.87.235319
https://doi.org/10.1103/PhysRevB.87.235319
https://doi.org/10.1103/PhysRevB.87.235319
https://doi.org/10.1103/PhysRevB.87.235319
https://doi.org/10.1088/1367-2630/aa964c
https://doi.org/10.1088/1367-2630/aa964c
https://doi.org/10.1088/1367-2630/aa964c
https://doi.org/10.1088/1367-2630/aa964c
https://doi.org/10.1007/s00340-011-4734-6
https://doi.org/10.1007/s00340-011-4734-6
https://doi.org/10.1007/s00340-011-4734-6
https://doi.org/10.1007/s00340-011-4734-6
https://doi.org/10.3390/app8091427
https://doi.org/10.3390/app8091427
https://doi.org/10.3390/app8091427
https://doi.org/10.3390/app8091427
https://doi.org/10.1103/PhysRevB.85.165303
https://doi.org/10.1103/PhysRevB.85.165303
https://doi.org/10.1103/PhysRevB.85.165303
https://doi.org/10.1103/PhysRevB.85.165303
http://link.aps.org/supplemental/10.1103/PhysRevA.100.013804
https://doi.org/10.1103/PhysRevA.15.421
https://doi.org/10.1103/PhysRevA.15.421
https://doi.org/10.1103/PhysRevA.15.421
https://doi.org/10.1103/PhysRevA.15.421
https://doi.org/10.1080/00018732.2014.933502
https://doi.org/10.1080/00018732.2014.933502
https://doi.org/10.1080/00018732.2014.933502
https://doi.org/10.1080/00018732.2014.933502
https://doi.org/10.1103/PhysRevA.97.062107
https://doi.org/10.1103/PhysRevA.97.062107
https://doi.org/10.1103/PhysRevA.97.062107
https://doi.org/10.1103/PhysRevA.97.062107
https://doi.org/10.1103/PhysRevA.55.3195
https://doi.org/10.1103/PhysRevA.55.3195
https://doi.org/10.1103/PhysRevA.55.3195
https://doi.org/10.1103/PhysRevA.55.3195
https://doi.org/10.1007/s10614-006-9066-y
https://doi.org/10.1007/s10614-006-9066-y
https://doi.org/10.1007/s10614-006-9066-y
https://doi.org/10.1007/s10614-006-9066-y
https://doi.org/10.1103/RevModPhys.89.015001
https://doi.org/10.1103/RevModPhys.89.015001
https://doi.org/10.1103/RevModPhys.89.015001
https://doi.org/10.1103/RevModPhys.89.015001
https://doi.org/10.1088/0031-8949/1993/T48/001
https://doi.org/10.1088/0031-8949/1993/T48/001
https://doi.org/10.1088/0031-8949/1993/T48/001
https://doi.org/10.1088/0031-8949/1993/T48/001

