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Abstract. Transverse-momentum dependent parton distributions can be introduced gauge-
invariantly in QCD from high-energy factorization. We discuss Monte Carlo applications of these 
distributions to parton showers and jet physics, with a view to the implications for the Monte Carlo 
description of complex hadronic final states with multiple hard scales at the LHC. 
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INTRODUCTION 

Experimental studies of multi-particle final states at high-energy hadron colliders rely 
on realistic event simulation by parton-shower Monte Carlo generators. Multi-particle 
states acquire qualitatively new features at the forthcoming Large Hadron Collider 
(LHC) compared to previous hadron-hadron experiments due to the large phase space 
opening up for events characterized by multiple hard scales <?i, ...,<3̂ ,̂ possibly widely 
disparate from each other. This brings in potentially large radiative corrections loga
rithmic in the ratio of two such scales, a^ln^qf/qj, and potentially new effects in the 
nonperturbative components of production processes (e.g., parton densities being probed 
in regions of the phase space near the kinematic boundaries). It is not at all obvious that 
the approximations involved in standard Monte Carlo generators that have successfully 
served for event simulation in past collider experiments will be up to the new situation. 

Standard parton-shower generators like HERWIG and PYTHIA are based on the dom
inance of collinear QCD radiation, supplemented by color-coherence effects for soft 
gluon emission from partons carrying longitudinal momentum fraction x ~ ^(1). How
ever as the energy increases the effects of emissions that are not collinearly ordered 
are known to become more and more important, and coherence effects from space-like 
partons carrying momentum fractions x <^ 1 set in. The high-energy multi-scale kine
matics is bound to enhance the sensitivity to these dynamical features. The theoretical 
framework to take this into account requires the use of generalized QCD factorization 
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techniques and the introduction of partonic distributions unintegrated not only in the 
longitudinal momenta but also in the transverse momenta. Although Monte Carlo imple
mentations of this framework are not nearly as developed as standard shower generators 
at present, there are already studies that have been able to show their potential advan
tages over coUinear-based algorithms in specific cases of hadronic final-state analyses. 

In this article we briefly recall the basis for the introduction of transverse-momentum 
dependent (TMD) parton distributions from high-energy factorization, and point to on
going activity toward fully general definitions; then we discuss Monte Carlo calcula
tions that use the high-energy TMD framework to make predictions for jet observables, 
including angular and momentum correlations in final states with multiple jets. We com
ment on current developments toward general-purpose Monte Carlo tools and applica
tions to final states with heavy quarks and heavy bosons plus jets at the LHC. 

TMD DISTRIBUTIONS FROM fflGH-ENERGY FACTORIZATION 

Precise definitions for transverse-momentum dependent (TMD), or unintegrated, parton 
distribution functions [1,2] are at the center of much current activity. In the general 
case, to characterize such distributions gauge-invariantly over the whole phase space 
is a difficult question, and a number of open issues remain. In the case of small x a 
well-prescribed, gauge-invariant definition emerges from high-energy factorization [3], 
and has been used for studies of collider processes both by Monte Carlo [4, 5] and by 
semi-analytic resummation [6, 7] approaches. 

The diagrammatic argument for gauge invariance, given in [3], and developed in [8], 
is based on relating off-shell matrix elements with physical cross sections at x <^ 1, 
and exploits the dominance of single gluon polarization at high energies.^ The main 
reason why a natural definition for TMD pdfs can be constructed in the high-energy 
limit is that one can relate directly (up to perturbative corrections) the cross section for 
ei physical process, say, photoproduction of a heavy-quark pair, to an unintegrated gluon 
distribution, much as, in the conventional parton picture, one does for DIS in terms of 
ordinary (integrated) parton distributions. On the other hand, the difficulties in defining 
a TMD distribution over the whole phase space can largely be associated with the fact 
that it is not obvious how to determine one such relation for general kinematics. 

The evolution equations obeyed by TMD distributions defined from the high-energy 
limit are of the type of energy evolution [10]. Factorization formulas in terms of TMD 
distributions [3] have corrections that are down by logarithms of energy rather than 
powers of momentum transfer. On the other hand, it is important to observe that this 
framework allows one to describe the ultraviolet region of arbitrarily high kj^ and in 
particular re-obtain the structure of QCD logarithmic scaling violations [6, 7, 8]. This 
ultimately justifies the use of this approach for jet physics. In particular it is the basis 
for using corresponding Monte Carlo implementations [11] to treat multi-scale hard 
processes at the LHC. 

^ It is emphasized e.g. in [4, 9] that a fully worked out operator argument, on the other hand, is highly 
desirable but is still missing. 
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From both theoretical and phenomenological viewpoints, it is one of the appealing 
features of the high-energy framework for TMD distributions that one can relate its 
results to a well-defined summation of higher-order radiative corrections. By expanding 
these results to fixed order in a^, one can match the predictions thus obtained against 
perturbative calculations. This has been verified for a number of specific processes 
at next-to-leading order (see for instance [12] for heavy flavor production) and more 
recently at next-to-next-to-leading order (see for instance [13]). Note that this fact also 
provides the basis for shower algorithms implementing this framework to be combined 
with fixed-order NLO calculations by using existing techniques for such matching. 

In the next section we point to topical issues and activity on TMD generalizations. 
After this, we focus on existing high-energy Monte Carlo with unintegrated pdfs and 
phenomenological applications to jets. 

LOW ENERGIES 

As mentioned above, in the general case full results on TMD distributions are yet to 
be established. The current status is discussed in [1]. Factorization formulas in terms of 
unintegrated parton distributions will have a considerably complex structure. A proto
typical calculation that illustrates this structure is carried out in [14], which treats, rather 
than a general scattering observable, a simpler problem, the electromagnetic form factor 
of a quark. This case is however sufficient to illustrate certain main features, namely 
the role of nonperturbative, gauge-invariantly defined factors associated with infrared 
subgraphs (both coUinear and soft), and the role of infrared subtractive techniques that 
serve to identify these factors. Analyses along these lines for more general processes, 
involving fully unintegrated pdfs, have recently been reported by T. Rogers [15]. 

One of the questions that a full factorization statement will address is the treatment 
of soft gluons exchanged between subgraphs in different coUinear directions. The un
derlying dynamics is that of non-abelian Coulomb phase, treated a long time ago in [16] 
for the fully inclusive Drell-Yan case. But a systematic treatment for more complex ob-
servables, including color in both initial and final states, is still missing. Vogelsang and 
Yuan [17] illustrate this point neatly with a simplified calculation for di-jet hadropro-
duction near the back-to-back region.-^ 

A further question concerns lightcone divergences and the x -> 1 endpoint behavior. 
The singularity structure at jc —> 1 is different in the TMD case than for ordinary (in
tegrated) distributions, giving divergences even in dimensional regularization with an 
infrared cut-off [19]. The singularities can be understood in terms of gauge-invariant 
eikonal-line matrix elements [19], and the TMD behavior can be related to cusp anoma
lous dimensions [20, 21] and lack of complete KLN cancellations [2, 20, 22]. In general 
this affects the precise form of factorization and relation with coUinear distributions. 

^ Note that interestingly in [18], which has a different point of view than TMD, Coulomb/radiative mixing 
terms are found to be responsible for the breaking of angular ordering in the initial-state cascade and the 
appearance of superleading logarithms in di-jet cross sections with a gap in rapidity. 
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Relevant applications are both at low energies and at high energies. An important ex
ample for current experimental programs is semi-inclusive leptoproduction ([23,24,25], 
and references therein), where infrared subtractive techniques of the type [14, 26] 
serve for TMD-factorization calculations [27], and in particular for the proper treat
ment of overlapping momentum regions.^ Implications for spin asymmetries [34] and 
possibly exclusive reactions [35] are being studied. General characterizations of TMD 
distributions will be relevant at colliders for turning present k_L-showering genera
tors into general-purpose tools to describe hadronic final states over the whole phase 
space [5, 36]. 

In the next section we consider applications of k_L-shower generators to multi-jet final 
states [37]. The main focus is on regions where jets are far from back-to-back, and the 
total energy is much larger than the transferred momenta so that the values of x are 
small. In this regime the ambiguities related to soft Coulomb exchange and to lightcone 
divergences are not expected to be crucial. We find that the TMD distributions, as well 
as the transverse-momentum dependence of short-distance matrix elements, play a very 
essential role to describe correlations in angle and momentum of the jets. 

MULTI-JET CORRELATIONS 

This section presents multi-jet results [37] of Monte Carlo implementing TMD distri
butions according to high-energy factorization, and compares them with collinear-based 
Monte Carlo results. 

*. 2 
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1.710'*<x<310"* 3 10-* < X < 5 10^ i- k 10-* < X < 1 1 0 ' 
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FIGURE 1. (left) Angular correlations and (right) momentum correlations [37] in three-jet final states 
measured by [38], compared with the CASCADE and HERWIG Monte Carlo results. 

In Fig. 1 we consider three-jet production in ep, for which precise and interesting 
measurements have recently appeared [38], and we show results for the cross section 

^ Subtraction techniques related to those of [14, 26] are developed in [28] for soft-coUinear effective 
theory, and studied in [29] and [30] in relation with standard perturbative methods. See also SCET 
applications to shower algorithms [31], TMD pdfs [32] and jet event shapes [33] for use of these 
techniques. 
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in the azimuthal separation A0 between the two leading jets and in the transverse-
momentum imbalance A/?^ The shape of the distributions is different for HERWIG and 
for the k_L-shower Monte Carlo CASCADE [39], with the largest differences occurring at 
small A<̂  and small A/?̂ , where the jets are not close to back-to-back configurations [40] 
and one has three hard, well-separated jets."^ By analyzing the angular distribution 
of the third jet, Refs. [5, 37] find significant contributions from regions where the 
transverse momenta in the initial state shower are not ordered. The description of the 
measurement by the k^-shower is good, whereas the coUinear-based shower is not 
sufficient to describe it. 

Note that the interpretation [5, 37] of the angular correlation data in terms of correc
tions to coUinear ordering is consistent with the finding in [38] that while inclusive jet 
rates are reliably predicted by NLO fixed-order results, NLO predictions are affected by 
large corrections to di-jet azimuthal distributions (going from &{cc^) to ^(a^)) in the 
small-A0 and small-jc region, and begin to fall below the data for three-jet distributions 
in the smallest A0 bins. 

It is important to realize that the result in Fig. 1 receives contribution from the 
transverse-momentum dependence of both TMD pdfs and hard matrix elements. Fig. 2 
shows different approximations to the azimuthal dijet distribution normalized to the 
back-to-back cross section. The solid red curve is the full result. The dashed blue 
curve is obtained from the same TMD pdfs but not including the transverse-momentum 
dependence of the hard ME. We see that the high-kj_ component in the hard ME [3] 
is essential to describe jet correlations for small A(/). For reference we also plot with 
the dotted (violet) curve the result obtained from the TMD pdf without any resolved 
branching, corresponding to nonperturbative, predominantly low-k^ modes. 
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FIGURE 2. Azimuthal distribution normalized to the back-to-back cross section [37]: (solid red) full 
result; (dashed blue) same TMD pdfs but no finite-k^ correction in ME; (dotted violet) TMD pdfs with 
no resolved branching. 

To examine more closely the distribution in kj^ that results from highly off-shell 
subprocesses, in Fig. 3 we study the jet cross section in transverse energy and compare 
the k^-shower with the NLO result. It is noteworthy that the large-p^ part of the di-jet 
spectrum is very close for the two calculations. At low pt one sees the Sudakov form-
factor effect in the shower result. Differences in the single-jet spectra are also of interest 

^ Near A(|) ^ 
predictions. 

K, on the other hand, soft-gluon exchange effects such as in [17] may well affect the 
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and currently under study. This may be of use to relate [41] DIS event shapes measuring 
the transverse momentum in the current region to hadro-production pT spectra. 

€ i n 3 

10 20 30 
-1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3 

loglO(p_t)par)(GeV) 

E,T (GeV) E,2 (GeV) 

FIGURE 3. Comparison of the k_L-shower CASCADE with the NLO di-jet calculation DiSENT: 
(left) distribution in single-jet transverse energy; (right) distribution in the di-jet transverse energy. 

Let us note that besides jet final states the off-shell effects mentioned above are ex
pected also for heavy mass production. For instance, they may affect the phenomeno-
logical small-x broadening of W and Z PT distributions emphasized by Olness [42] 
(see [43]), and their use as luminosity monitor [44]. Multi-scale effects may arise [45] 
in the associated production of W and bottom quark pairs [46] and in final states with 
Higgs [47, 48]^ especially for measurements of non-inclusive observables and correla
tions. 

SUIMIVIARY AND PROSPECTS FOR LHC FINAL STATES 

We have discussed the method of kj^-dependent Monte Carlo shower, based on 
transverse-momentum dependent (TMD), or unintegrated, parton distributions and 
matrix elements defined by high-energy factorization. The theoretical basis of the 
method allows one to go to arbitrarily high transferred-momentum scales, thus making 
it suitable for the simulation of hard processes at the LHC. 

We have pointed to developments of the approach toward general-purpose event 
generators, and illustrated applications to experimental ep data for final states with 
multiple hadronic jets. Despite the lower ep energy, the multi-jet kinematic region 
considered is characterized by large phase space available for jet production and is 
relevant for extrapolating to the LHC initial-state showering effects. 

The multi-scale QCD effects that we are treating also affect heavy mass production 
at the LHC, including final states with heavy bosons and heavy flavor. It is interesting 
to note that even at LHC energies the transverse momentum distribution of top quark 
pairs calculated from the k^-shower is similar to what is obtained from a full NLO 
calculation (including parton showers. MC@NLO [50]), where the k^-shower predicts 
an even harder spectrum. Fig. 4. 

^ Similar effects were noted [49] in the predictions for the Higgs transverse-momentum spectrum at the 
LHC. 
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We conclude by observing that, using unintegrated parton distributions together with 
the off-shell matrix elements, many of the sub-leading effects are properly simulated, 
both in ep collisions at HERA as well as at the LHC. For ep we could show that the 
predictions coming from the k_L-shower simulation CASCADE are in good agreement 
with the measurements. For the LHC even at the large scale of tt production we observe 
reasonable comparison with results containing full NLO effects. 

log10(p_t)(ttbar)(GeV) 

FIGURE 4. Comparison of transverse momentum distribution of tt pairs calculated from the k^-shower 
CASCADE with the NLO calculation MC@NLO at LHC energies. 
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