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Abstract

Business- and mission-critical distributed applications are increasingly expected
to exhibit highly dependable characteristics, particularly in the areas of availability
and QoS-related factors such as timeliness. For this type of applications, a complete
cessation or a subnormal performance of the service they provide, as well as late
or invalid results, are likely to result in significant monetary penalties, environmental
disaster or human injury. However, software components deployed within distributed
computing systems may inherently suffer from several types of impairments, such
as long response times or temporary unavailability; the former which is mainly
to be attributed to data exchanges (susceptible to network latencies and latencies
resulting from potential resource contention), the latter due to functional failures
having occurred (or an accumulation of parametric failures). Considering the
compositional nature of many large-scale distributed applications, it is easily fore-
seeable that failures in the constituent components not properly dealt with can
propagate and may subsequently perturb the service provided by the application.

Traditional redundancy-based fault-tolerant schemes, which were conceived to
tolerate permanent hardware faults primarily and transient faults caused by external
disturbances secondarily, do not offer sufficient protection for tolerating software
faults (often referred to as design or specification faults) [2, 3]. Indeed, the peculiar
characteristics to software require design diversity rather than simply replicating
a specific software component [4, 5]. Replicating software would obviously incur
replicating any residual dormant software fault. The rationale is that redundantly
deploying multiple functionally-equivalent but independently implemented software
components will hopefully reduce the probability of a specific software fault affecting
multiple implementations simultaneously, thereby keeping the system operational.

The n-version programming (NVP) mechanism, a well proven design diversity
pattern for software fault tolerance, was first introduced in 1985 as “the independent
generation of n > 1 functionally-equivalent programs from the same initial specifica-
tion” [6]. An n-version module constitutes a fault-tolerant software unit — a client-
transparent replication layer in which all n programs, called versions, receive a copy
of the user input and are orchestrated to independently perform their computations
in parallel. It relies on a generic decision algorithm to determine a result from the
individual outputs of the version employed within the unit. Many different types
of decision algorithms have been developed, which are usually implemented as
generic voters. Examples include, amongst others, majority, plurality and consensus
voting [7, 8] [5, Chapt. 4].

Adopting classic redundancy-based fault-tolerant design patterns, such as NVP,
in highly dynamic distributed computing systems does not necessarily result in the
anticipated improvement in dependability. This primarily stems from the statically
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predefined redundancy configurations hardwired within such dependability strate-
gies, i.e. a fixed degree of redundancy and, accordingly, an immutable selection of
functionally-equivalent software components, which may negatively impact the
schemes’ overall effectiveness, at least from the following two angles.

Firstly, a static, context-agnostic redundancy configuration may in time lead
to a more rapid exhaustion of the available redundancy and, therefore, fail to
properly counterbalance any disturbances possibly affecting the operational status
(context) of any of the components integrated within the dependability scheme. The
effectiveness of an NVP composite is largely determined by the dependability of
the versions employed within. As elucidated in [3, Sect. 4.3.3], the use of replicas of
poor reliability can result in a system tolerant of faults but with poor reliability. It
is therefore crucial for the system to continuously monitor the operational status
of the available resources and avoid the use of resources that do not significantly
contribute to an increase in dependability, or that may even jeopardise the schemes’
overall effectiveness.

Secondly, the amount of redundancy, in conjunction with the voting algorithm,
determines how many simultaneously failing versions the NVP composite can
tolerate. For instance, an NVP/MV scheme applying majority voting (MV) can mask
failures affecting the availability of up to a minority of its versions. A predetermined
degree of redundancy is, however, cost ineffective in that it inhibits to economise
on resource consumption in case the actual number of disturbances could be
successfully overcome by a lesser amount of redundancy. Reversely, when the
foreseen amount of redundancy is not enough to compensate for the currently
experienced disturbances, the inclusion of additional resources (if available) may
prevent further service disruption.

In this thesis, a novel dependability strategy is introduced encompassing advan-
ced redundancy management, aiming to autonomously tune its internal redundancy
configuration in function of the observed disturbances. Designed to sustain high
availability and reliability, this adaptive fault-tolerant strategy may dynamically alter
the amount of redundancy and the selection of functionally-equivalent resources
employed within the redundancy scheme. The remainder of this thesis is structured
as follows: We first present the concept of NVP/MV schemata in Chapt. 2 and show
how disturbances emerging from the activation of software design faults may put
their effectiveness into jeopardy. A set of ancillary metrics is then set forth in Chapt. 3,
allowing to capture contextual information regarding the environment in which
the scheme is operating, particularly with respect to disturbances that challenge
its effectiveness, and that enable to detect the proximity of hazardous situations
that may require the adjustment of the redundancy configuration. After introducing
another metric designed for approximating the operational status of individual
resources in terms of reliability in Chapt. 4, we move on to elaborate on the internals
of the proposed adaptive fault-tolerant strategy in Chapt. 5. An overview of the
architectural framework for the discrete-event simulations used for the validation of
the proposed dependability strategy is given in Chapt. 6, followed by an overview
of the options are available to the designer for modelling the system and analysing
its performance. Proceeding by reporting on the strategy’s effectiveness analysis
in Chapt. 7, we then elaborate on a prototypical service-oriented implementation
before concluding by summarising the main findings reported and conclusions
drawn throughout this dissertation.
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CHAPTER 1
Introduction

“It is [...] estimated that the vast majority of computer failures originate
from software faults, estimations ranging from 60 up to 90 percent” [9–11].

In this introductory chapter, we elaborate on how the dependability of
software applications may be impaired, and how it can be safeguarded
through the use of design techniques for application-level fault tolerance.
We then proceed by outlining how the research reported throughout this
dissertation relates to various research domains in the area of computer
science in general, its objectives, and the challenges it is supposed to
address.

Business- and mission-critical distributed applications are increasingly expected
to exhibit highly dependable characteristics, particularly in the areas of availability
and QoS-related factors such as timeliness. For this type of applications, a complete
cessation or a subnormal performance of the service they provide, as well as late
or invalid results, are likely to result in significant monetary penalties, environmental
disaster or human injury. However, software components deployed within distributed
computing systems may inherently suffer from several types of impairments, such
as long response times or temporary unavailability; the former which is mainly to
be attributed to network latency as the result of data exchange, the latter due to
failures having occurred. Considering the compositional nature of many large-scale
distributed applications, it is easily foreseeable that failures in the constituent
components not properly dealt with can propagate and may subsequently perturb
the service provided by the application.

However, what precisely is meant by service? And what makes software truely
dependable? Exactly by what types of disturbance can a distributed application be
impaired? How can it be shielded to avoid that such impairments would result in
failure? And can failures be contained at all, preventing them from damaging and
perturbing system-wide operations?

1.1 A Short Introduction to Software Dependability

Largely structured according to the dependability taxonomy set forth in [12], this
section contains a broad overview of several dependability aspects, with a particular
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focus on fault-tolerant techniques, and how they may be successfully leveraged
for attaining and sustaining specific QoS levels. Before elaborating on software
dependability, however, some fundamental concepts of software systems need to be
clarified and explicitly defined.

Compositionality of Enterprise Applications From a functional perspective, an
enterprise application is an ICT solution that has been purposefully designed
and implemented so as to provide an automated end-to-end software solution
in support of specific functionality and/or a specific set of business processes, in line
with the customer’s commercial, public, societal, and/or environmental objectives.
From a merely technical perspective though, an ICT solution is synonymous with
a distributed computing solution: it is the whole of software applications that are
deployed and being executed on different computing devices, potentially located at
geographically dispersed sites, and that rely on a dedicated network communication
infrastructure for exchanging information1.

Found to be an effective branch of software engineering, component-based
development has proved successful in structuring and modularising the functionali-
ty, the implementation logic and complexity of ICT solutions into a set of dedicated
software components [13, Sect. 5.2] [14, Chapt. 19]. “The essence of using components
is to divide [...] functionality into units with maximal internal cohesion and minimal
external coupling. Components are truly self-contained units of functionality” [15].
A software solution is typically assembled from a specific set of dedicated and
interconnected software components, supplemented by adequate orchestration
logic responsible for coupling the underlying components to one another, and
coordinating any exchanges of data. A comprehensive definition can be found in [16,
Chapt. 16], in which a component is defined as “a standardised and interchangeable
software module that is fully assembled and ready to use and that has well-defined
interfaces to connect it to clients or other components”. The definition well and truly
highlights three elementary properties: it must (i) implement a public interface, (ii)
respond to invocation requests, possibly using a message exchange mechanism, and
(iii) encapsulate its implementation logic and hide the implementation details
within. In order to allow for remote access, the interface may accommodate non-
functional information in addition to a mandatory list of supported operations and
message formats — cf. WSDL and SOAP [17, 18].

Considering this compositional nature of ICT solutions and the role of software
components as building blocks, the abstract notion of software entity is introduced
for generalisation purposes [14, Sect. 11.3]. At the very lowest level, it can be used
to refer to stand-alone, single-component software entities without dependencies
of any kind. One level upward, composite software entities encapsulate logic for
properly orchestrating other software entities encompassed or used within. A
binding is said to have been established between two interacting software entities

1The focus lies on application components that can interact in a distributed context. Based on
principles in SoA and microservices-oriented paradigms, these software entities pass data by exchanging
messages with one another. The architectural trait of modularity can also be applied in the context
of embedded devices, where it is more likely data (messages) are passed using shared storage, e.g. a
commonly accessible area in a shared memory.
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when they have been successfully linked such that they can exchange information2.
In this arrangement, the entity supplying the information fulfils the role of producer;
the entity that accepts this information fulfils the role of consumer. At the highest
level of composition, the term is used to refer to the enterprise application in its
entirety, that is to say the software system itself.

A B

D E

C

Figure 1.1: Software applications as assemblies of multiple software entities;
interconnectivity can be achieved by composition and/or eventing. The software
entities have been modeled as CCM components.

As the desire has been growing to integrate legacy IT assets in enterprise applica-
tions, so did the need for standardisation in order to bridge the technological
disparities that inevitably surface due to the wide range of technologies used for
the implementation of software entities. One such type of standard is the CORBAr

Component Model (CCM) developed by the OMGr, which defines a comprehensive
model that illustrates how software entities can be linked and assembled in contem-
porary distributed computing systems [20]. In doing so, it reveals two distinct,
complementary architectural patterns for binding software entities: client-server
architectures and event-driven architectures (EDAs). When zooming into the mecha-
nism that data is passed between system components, the former architectural
style maintains a request-response invocation pattern, where the initiative for
triggering the exchange is requested by the consuming party (the client). The request
may contain input data to be processed by some known functionality or software
routine on the server. Rather than sending request arguments, in the event-driven
approach, a set of events are defined that represent significant and interesting
changes in system state. Upon their occurrence, a publish-and-subscribe messaging
pattern will ensure that these events and the associated event data is published and
propagated to any interested party that subscribed to be notified for a specific type
of event. Clearly, it is the producing party (the server) that takes the initiative to
notify the interested party, which will then have the responsibility to process the
event data locally and obtain meaningful information from that.

2The terminology used here was inspired by the concept of the same name defined as part of the
WSDL specification, although it is used here with a strong focus on the loose coupling of services and
service composition at runtime. The naming is used in [19] in a very similar context.
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– In the traditional client-server architecture, which remains the predominantly
used architecture to date, a binding is established between two software entities:
a client and a server, which correspond to the roles of consumer and producer,
respectively [14, Sect. 12.2]. The invocation of the server entity is initiated by the
client entity by issuing a request message destined for the server entity. As soon as
the request message has been handed over to the server entity, the request will be
served and processed, after which a response message is usually sent back to the
client entity. When invoking an entity, a single operation — a handle to a specific
software processing routine — is called that is defined in the entity’s interface. An
interface is a structured textual representation for describing the “specifics of how
to access the underlying” functionality offered by the entity [21]. It comprises at
the very least a set of exposed operations, the permissible message (payload) data
types, and the applicable interaction patterns [22, Chapt. 7–9]. Several interface
definition languages are available, though WSDL has become extremely popular,
and is now widely and successfully used in XML-based SoA solutions [18]. A
competing, and more recent language, is the OpenAPI specification (commonly
referred to as Swagger), that has become the de facto standard for representational
state transfer (REST)-based interfaces [23].
An example of an invocation-based binding can be seen in Fig. 1.1, linking the
software entities (components) A and B: the crescent-like receptacle is the client
entity’s sole point of interaction with the interface of the server entity B, which is
depicted by the circular shape at the left. The receptacle represents a stage in the
operations of the client entity A, during which some part of the functionality of
the server entity B is explicitly called for by sending out the request message, until
the response message has been received.
The composite entity C is composed of the entities A and B, including the binding
between these two underlying entities. This means that whenever C is invoked, it
will call for the functionality of entity A, which in turn will call for the functionality
of B. This call may be preceded and/or followed by additional programming logic,
which typically includes data transformations and conversions. The underlying
entities may or may not be packaged in the same deployment unit.

– Event-driven architectures (EDAs) have recently gained popularity, and rely on
publish-and-subscribe models for the asynchronous exchange of specific data
fragments called events [24]. In such type of models, there is an interested party
— the event sink — that issues a subscription request, i.e. it states its interest in
a specific type of events. The other party — commonly referred to as the event
source, or the publisher — may accept the request, thereby pledging to send
out event messages asynchronously3 [22, Sect. 7.7]. That is to say, events are
published without delay, avoiding the need for the sink to periodically poll.
An event-driven binding links a specific event type that is advertised by a given
software entity fulfilling the roles of event source and producer, to another entity
that takes on the roles of event sink and consumer. As can be seen from software
entity B in Fig. 1.1, an event source can produce several types of events. Each
supported event type is depicted by a rhombic shape and corresponds with a
specific data structure. Event instances and their payload are usually wrapped and

3Note that the initial subscription request follows a request-response messaging pattern. Event
messages are, however, exchanged using a publish-and-subscribe model.
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carried inside a predefined message format that depends on the standard used; an
example is the WS-Notification set of specifications, which is frequently used in
XML-based SoA solutions [24]. Entity D shows that an event sink can be capable
to receive events of different types, though this depends on the implementation.
A y-shaped receptacle can be observed for each supported event type the sink can
interpret and process.

Both architectural patterns show great similarity indeed. The difference is to
be found however in the role that initiates data exchanges in bindings. In EDA
architectures, it is the event source (producer) that takes the initiative to exchange,
or, as it is frequently said, to push event data. The even sink will be waiting and
listening for any such events to arrive. In client-server architectures though, this
initiative is taken by the client (consumer) by explicitly requesting data and waiting
for a reply.

Applications, and the (Quality of ) Service they Provide A commonly used design
paradigm in the development of enterprise applications is service-orientation,
which is “a [popular, multi-disciplinary] design paradigm indended for the creation
of solution logic units [— software entities, that is —] that are individually shaped
to be collectively [...] utilised in support of the realisation of the strategic goals
[and objectives set out by the customer]” [25, Sect. 3.1]. Careful scrutinisation of
this definition shows that structuring enterprise applications as service-oriented
architectures (SoAs) implies the application of principles such as modularisation
and compositionality, in which the collective behaviour of the underlying software
entities contributes to the overall mission the application as a whole is expected
to support. According to [25, Sect. 3.1], each of these “units of service-oriented
solution logic” constitutes a service. In other words, the service associated with
a specific software entity corresponds to the functionality of the set of related
software routines and their implementation encapsulated within, and its ability
to successfully perform some production act and deliver a desirable result [26].
Furthermore, the SoA Reference Model as proposed by OASISr emphasises that
“a service is provided by a [software entity] — the service provider — for use by
others [...]”. It then continues to define a service as a “mechanism to enable access to
one or more capabilities, where the access is provided using a prescribed interface
and is exercised consistent with constraints and policies as specified by the service
description” [21]. The external party mentioned in the definition above is usually
referred to as the service consumer, or simply the end-user, which can be “[any]
other system, human or physical, [or software entity] interacting with the considered
[service provider]” [12, 27]. From the end-user’s point of view, a software entity
appears to be a black box; the end-user has little or no knowledge on its internals.
As the sole point of interaction takes place via its interface, the service it delivers
corresponds to the (functional) behaviour resulting from the invocation of any of
the defined operations within, as it is perceived by the end-user.

The term quality of service (QoS) is typically used in networked telephony,
(real-time) streaming multimedia services, and distributed/cloud computing
solutions, as an indication of the overall performance of the service associated to the
whole software system, or to an individual software component, as it is perceived by
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the end-user4 [28, Sect. 5.4.1]. It is from this user perspective that it is also frequently
referred to as quality of experience (QoE). A QoS estimate allows to quantitatively
measure the extent to which the intended service is actually being delivered, and to
assess whether specific service level agreements (SLAs) are met. Such assessment is
the result of comparing a combination of quantifiable properties that adequately
capture the characteristics that the service is expected and observed to exhibit. “This
allows the quality of service to be benchmarked and, if stipulated by the agreement,
rewarded or penalized accordingly” [29, 30]. From a functional perspective, suitable
properties allow to quantify and assess if the entity is performing and operating as
intended and expected, and if it manages to deliver desirable results. One suitable
attribute proposed in the QoS taxonomy of [31] is fidelity, or a measure to assess
“how well [the] service is [actually] being rendered”. Unfortunately, it “is often
difficult to define and measure [this attribute] because it is subject to [varying]
judgements and perceptions”. Other examples include dependability measures such
as availability and reliability. From a non-functional perspective, the quality aspects
of the service under consideration primarily reduce to performance measures that
capture the service throughput and latency. These can be complemented by other
measures and rule abidance with respect to characteristics such as operational cost,
interoperability, security, integrity (transactionality), accessibility etc. [31, 32].

Software Dependability: Characteristics and Properties With business- and
mission-critical enterprise applications increasingly expected to exhibit highly
dependable characteristics, it is of the utmost importance that sufficient attention is
paid to an effective composition of suitable software entities, which are themselves
highly dependable [31, Sect. 5.1.1] [3, Sect. 4.3]. A comprehensive definition to
informally describe the property of dependability can be found in [33]: for any
given software entity, dependability is “the trustworthiness and continuity of the
[associated,] delivered service, such that reliance can justifiably be placed on this
service”. An essential quality in this definition is trustworthiness, which, according
to [27], can be seen as “the degree of user confidence that the [entity] will operate
as [expected] and that the system will not fail in normal use” [27]. Untrustworthy
applications may occasionally fail to meet their objectives, and, in doing so, result in
significant monetary penalties, or even catastrophic failures causing environmental
disaster or human injury.

A better insight into dependability may be reached by breaking it down into
a number of consituent sub-properties and measures, of which the three most
influential have been shown in the figure above:

– Availability is a dependability measure that allows to assess and quantify the
ability of a software entity to deliver its associated service as is intended, i.e.
conform its specifications, whenever requested. An entity is said to be available
during that part of its operational life during which the service is accomplished
in full whilst processing a specific invocation [12]. It is formally defined as the
probability that a given entity is operational and ready for immediate use at a
given point in time.

4Throughout this dissertation, we focus on software programs and functionality exposed through
well-defined interfaces, so it can be used in a distributed context. We do not specifically target streaming
or telephony services.
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Figure 1.2: Reproduction of the dependability taxonomy introduced in [12].

– Another quality aspect of a service is accessibility: it “represents the degree [the
service] is capable of serving a [...] request. It may be expressed as a probability
measure denoting the success rate or chance of a successful service instantiation
at a point in time. There could be situations when a [...] service is available but
not accessible. High accessibility [...] can be achieved by building highly scalable
systems. Scalability refers to the ability to consistently serve the requests despite
variations in the volume of requests” [34, pp. 17–18]. The property is commonly
overlooked and thought to be part of availability, since the service itself will be
perceived as unavailable when it cannot be accessed. Accessibility is usually
determined by decisions taken on capacity planning, and various settings and
configuration details of the deployment environment, including any underlying
hardware, network and middleware infrastructure — cf. Sect. 8.5.

– A software entity capable of maintaining failure-free operation over a specified
time period, is said to be reliable. Reliability is a dependability measure of
the “continuous service accomplishment [...] from a reference initial instant”,
which corresponds to a period of sustained availability during which all issued
invocations will be serviced correctly [12]. It is a probabilistic measure, and
is defined as the “probability, over a given period of time, that [an entity] will
correctly deliver services as expected by the user” [27]. Even though this measure
has been successfully used for hardware appliances, it remains extremely hard
to find exact estimates for complex software components, and an alternative
context-aware approximation method is introduced in Chapt. 4. Similar to availa-
bility, reliability is concerned with the operations of a software entity, and the
level of conformance to its specifications.

– Another dependability concern is safety, a property which is of the utmost impor-
tance to bear in mind when engineering safety-critical applications. This class
of applications is usually found in enterprises such as nuclear power plants,
waste treatment facilities and chemical processing plants. In such industries,
system failure could potentially lead to grave catastrophic consequences, thereby
(in)directly threatening the environment and causing damage to people. Safety
is a “system property that reflects the system’s ability to operate (normally or
abnormally) without [catastrophic failure], ensuring [that it] cannot damage [the
environment in which it is operating, and this] regardless of its conformance (or
nonconformance) to its specifications” [27].
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In addition to the above four principal properties of dependability, other system
properties are also occasionally considered under the heading of dependability:

– The concept of survivability has been rigorously analysed in [35], in which it is
defined as “the ability of a networked computing system to [sustain] essential
services in the presence of attacks and failures, and recover full services in a
timely manner”. As implied, the service associated with a survivable software
entity may temporarily drop to a degraded service QoS level, during which part
of the underlying system resources may be intentionally disabled, before resuming
operations in full. Unlike other dependability facets, survivability calls for
additional requirements, which describe the acceptable levels of post-disturbance
functionality, and the maximum duration that such degraded service levels are
acceptable.

– A related property is that of software resilience, which, according to [36], refers
to the robustness of a given software entity or system. It can be defined as
“the trustworthiness of a software system to adapt itself so as to [effectively]
absorb and tolerate the consequences of failures, attacks, and changes within
and without the system boundaries” that could potentially affect system availabili-
ty [36] [37, Chapt. 23, 26]. The adaptive capabilities of resilient software entities
call for self-configuring and self-healing capabilities, and so seem to suggest that
this type of entities are themselves in fact self-managing autonomic software
entities [38]. Furthermore, the resilient behaviour of a software entity seems to
correspond to the self-optimising characteristic of a similar autonomic entity: it
will pursue its objective to maximally sustain the availability of the associated
service, though occasionally, despite its perseverance, this objective may not
always be met, in which case it might exhibit a suboptimal performance of its
operations. Additional information on the properties of autonomic computing
systems can be found further down this chapter in Sect. 1.2.

Dependability Threats and Impairments Throughout the operational life of a
software entity, the associated service may be temporarily and/or repeatedly disrup-
ted, potentially resulting in a violation of one or more of the intended dependability
attributes. As shown in Fig. 1.2 and 1.3, “the accepted terminology [...] distinguishes
three levels” in the materialisation of dependability impairments: faults, errors and
failure [12, 39]. Each term (level) marks a specific type of problem affecting the given
software entity or system, the difference being that “in case of a fault, the problem
is on the physical level (that is, located in the program source code in the context
of software); in case of an error, the problem occurred on a computational level
(the values of a program state); in case of a failure, the problem occurred on [entity
(system)] level” [2, 40]. More specifically:

– A failure or malfunction is any situation under which the delivered service is
behaving in an unexpected way, and deviates from the expected service as it was
anticipated and specified. It indicates a period of time in the operational life of the
affected entity during which some functionality or action that is due or expected,
cannot be fully accomplished conform the entity’s specifications. At the worst,
a failure will translate in a “a total cessation of [the associated service]”, though
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it may also result in “a performance of some function in a subnormal quality or
quantity, like deterioration or instability of operation” [2].

– An error is a condition in which the affected software entity exhibits an undesirable
or unexpected internal state, and “which is liable to lead to [a subsequent]
failure” [12]. As long as such condition holds, the error has become effective,
and unfinished computations are likely to result in incorrect or inaccurate results,
resulting in a perturbed service being rendered. So it can be seen that a “failure is
[indeed] the manifestation on the service of an error” [12]. Examples of erroneous
system state include, for instance, program execution being caught in an infinite
loop, deadlock, truncation of numeric values, and arithmetic over- or underflow5.
As soon as the undesirable effects of an error have dissipated, i.e. the error has
become latent, the corresponding failure may, given time, dematerialise as well.

– Finally, as shown in the cause-and-effect relationship depicted in Fig. 1.3, the
root cause of an error, and, consequentially, a failure, is to be found in a fault: a
physical defect, a design or implementation flaw that was overseen and remains
within a software entity. Such imperfections introduce latent errors, which, when
activated, become effective, and result in an unintentional deviation of the entity’s
function. A fault does not necessarily have to manifest as an effective error though:
whether it is activated or not depends on the internal state of a susceptible entity,
and the frequency and timing of requesting the associated service. Software
faults typically include programming mistakes and wrong design assumptions
(endogenous causes). Furthermore, unrealistic assumptions regarding the entity’s
deployment environment — exogenous conditions that seemingly do not affect
the entity’s correct behaviour itself — may prevent successful service delivery. This
would include inadequate capacity planning, which could lead to, e.g., frequent
congestion of the communication network, resulting in performance failures.

With software entities deployed on hardware devices, and ever more often relying
on middleware solutions and implementation frameworks, it can easily be seen
how the dependability of a given entity is highly dependent on the robustness
of the underlying infrastructure [40] [3, Chapt. 4] [42, Fig. 1]. Middleware solutions
and implementation frameworks are themselves compositions of software entities,
and are designed to support several ancillary specifications, and the services exposed
by the constituent entities usually directly correspond to standardised predefined
features.
Examples include, e.g. messaging solutions supporting publish-and-subscribe
models, and runtime libraries in support of WS-* specifications — v. Chapt. 8. The
definitions for the dependability properties and impairments introduced throughout
this section are also applicable to hardware devices and peripherals [3]. Examples of
faults that may result in failure can be physical flaws in the design of digital circuitry,
or the underlying electronic components and wires. Unlike software components
which are a purely intellectual product, hardware components typically contain
electronic and mechanical parts, and therefore do wear out over time [39]. Moreover,

5These examples are specific to the application layer. One may also consider errors in lower layers,
e.g. memory or storage malfunctions. As we focus on software reliability and the effectiveness of applying
redundancy schemata based on design diversity, within the scope of this dissertation, we will merely
focus on software-specific faults — so-called design faults [41].

11



they can be quite sensitive to unforeseen environmental conditions, including
exogenous factors such as temperature, humidity, and radiation.

fault latent error
introduces

effective error failure
manifests itself as

activated
all effects have

dissipated

Figure 1.3: Dependability impairments: terminology and cause-and-effect
relationship.

“Because a system is defined by a collection of objects [— components —]
working towards a singular goal or collection of goals, their efficiency, [dependability]
and security are directly tied to one another” [43]. For instance, “[the occurrence
of a failure] may, and in general does, propagate from one component to another;
by propagating, [it is likely to cause] other (new) errors”, affecting the operations
of entities relying on the component from which the initial failure originated [12].
Failure propagation poses a serious challenge in the effectiveness of software
applications, as these are often composed of multiple software entities, which in
turn depend on hardware devices and middleware components. Unless the impact
of a failure can be limited to the immediate proximity of the component from
which it originated, it may indirectly put at risk the service that the application as a
whole is expected to provide [40, 44] [5, Chapt. 8]. This calls for adequate validation,
compensation and/or recovery logic to be put in place, which is typically accom-
plished by structuring the application as a composition of fault containment units
(FCUs) [2, Sect. 2.2]. An FCU is a dedicated wrapper component designed to
accommodate this additional type of logic for a specific component, or a subset of
the application’s constituent components. In doing so, it is responsible for maximally
isolating (containing) any failures that may originate from the use of the underlying
components, and prevent the effects of that failure from propagating throughout
the system any further. FCUs can be implemented in a variety of styles, some of
which will be addressed later on in this section.

Following the accepted terminology for dependability impairments, another
term is now introduced for improved readability. Throughout this dissertation, the
notion of disturbance will be used whenever there is no specific need to distinguish
between the different stages in the phenomenological failure emergence model as
depicted in Fig. 1.3. In the context of a given software entity, the notion is used to
indicate the event of a specific request being struck by some type of failure, resulting
in the perturbation and, consequently, the (temporary) unavailability of the service
that the software entity that is processing the request was expected to provide. When
used, the emphasis lies on the unavailability of the service, and the entity’s inability
to serve this request, i.e. the failure matters, and which precise design fault and
erroneous state lead to its occurrence, is considered irrelevant.

After careful analysis of the way failures materialise and how (seriously) they
affect their surroundings — that is, the software entity from which they originate
— they can be categorised using the failure taxonomy described in [45, Sect. 11.3],
which is composed of the following three dimensions: duration, effect, and scope.
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– A first element in characterising the seriousness of a failure is its duration.
It corresponds to a specific time interval in the entity’s operational life, during
which the failure (continuously) affects the associated service; after this interval,
all the effects of the failure will have dissipated, and the corresponding error will
return to a latent state. When categorising failures in terms of their duration, a
distinction is commonly made between transient, intermittent and permanent
failures. Unlike transient failures, which are “characterised by a relatively short
duration” and may clear up without “major recovery actions”, permanent failures
are unrecoverable, and will last until the system is shut down for repair, i.e. it is
instructed to cease its operations. Intermittent failures are transient in se, but they
become active periodically, usually when some specific environmental condition,
a specific workload pattern, or even another fault (e.g. memory malfunction)
results in a specific system state [2, Sect. 3.4.1].

– A second dimension considers a failure’s effect on the behaviour of the service
being rendered, from a functional and/or non-functional perspective. When
affected by a functional failure, an entity will not operate in accordance with
its functional specifications, and thus fail to deliver desirable results. In case of
a non-functional failure, the entity “may be executing the requested functions
correctly”, though at a subnormal performance and fail to meet some of the
instated SLAs6. Further analysis and insight of the commonest software failures
and their effects can be found in Sect. 2.6 and the software failure classes depicted
in Fig. 2.3.

– Probably the most important element in characterising the seriousness of a
failure is its scope, or the extent to which it affects (part of) the application.
Ideally, a partial failure should be confined to cause anomalous behaviour only
in its immediate locality, hence perturbing the service directly associated to the
affected entity, or the service wrapped inside the enclosing FCU. In case failures
are successfully contained, “some of the services provided by the [consituent
application entities may] become unavailable, while others can still be used”. At
the other extreme of the spectrum are total failures, which are characterised
by a complete disruption of all the functionality and services offered by the
application. These could result from the occurrence of software faults such
as, e.g., crash failures, and from environmental factors such as power outages.
Finally, the dimension of failure scope can also be used to indicate whether the
service associated to a software entity is disrupted in full, or in part, in which
case only some, and not all of the operations defined in the entity’s interface are
affected.

1.2 Software Resilience and Autonomic Computing

It was already pointed out that resilient software entities, being adaptive and reconfi-
gurable in se, exhibit some of the properties inherently linked to autonomic

6Non-functional failures are oftentimes referred to as parametric failures in the hardware community.
It refers to any condition in which a device or circuit fails to meet datasheet specifications. Examples could
be a higher consumption of power than that what was specified, lower performance, longer processing
times etc.
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computing. Considering the compositional and distributed nature of contemporary
enterprise applications, the autonomic computing paradigm acknowledges the need
for additional computational intelligence so as to “provide users with a [service]
running at peak performance 24/7”, and to overcome any disturbance that could
potentially result from the operational, compositional and environmental complexity
of such type of applications [46]. The construction of an autonomic software
application calls for the introduction of a set of dedicated autonomic managers,
in addition to the underlying resources from which an application is traditionally
composed — be it other software entities, hardware or middleware components.
An autonomic manager is a purpose-built software entity that is responsible for
managing a specific selection of the application’s resources — v. Fig. 1.5. In this
capacity, it implements and encapsulates some type of adaptation logic responsible
for adequately responding “to unpredictable [environmental] changes [and localised
problems], while hiding the intrinsic complexity [of doing so] to operators and users”.
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Figure 1.4: Reproduction of the autonomic computing properties tree, as it was
originally published in [47].

A distinctive characteristic of such type of logic is that it should be self-adjusting,
i.e. it should be able to change the operations, the configuration and/or the functions
of the underlying managed resources, which should allow “to cope with temporal
and spatial changes in [the] operational context, either long term (environment
customisation/optimisation) or short term (exceptional conditions such as malicious
attacks, [failures], etc.)” [48]. Furthermore, in order for adaptation logic to qualify
as autonomic, it needs to exhibit some additional properties; it should be context-
aware, and it should be able to change the system automatically. The trait of context-
awareness can be used to direct the adaptation procedure and can, in itself, be
further decomposed into the properties of self-awareness and environment-
awareness [47]. “In order to be able to assess if its current operation serves its
purpose”, context-aware adaptation logic “must be able to monitor its internal state
[(self-awareness)], as well as its [current external operating conditions (environment-
awareness)]” [47, 48]. In the etymological sense of the word, satisfying the trait of
automaticity means that the adaptation logic is able to “self-control its internal
functions and operations”, and must be able to “operate without any manual
intervention or external help” by system administrators and operators [48].

The self-managing behaviour of an autonomic manager is typically decomposed
into four self-managing capabilities: self-configuring, self-healing, self-optimising
and self-protecting. “Collectively, [they] enable more efficient [...] operations
by automatically and proactively monitoring [the behaviour of the underlying
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managed resources, and their environmental operating conditions, so as] to improve
performance, prevent outages, and recover from failures” [49].

– The capability of self-configuration corresponds to its ability to, within its own
scope, adjust its configuration “automatically, [and] in accordance with high-level
policies — representing business-level objectives, for example — that specify what
is desired, not how it is accomplished” [46]. Adjustments can only be made to the
underlying managed resources, or to the self-managing intelligence contained
within the autonomic manager.

– “The self-healing objective must be to minimize all outages in order to keep
enterprise applications up and available at all times” [50]. Such capability is
responsible for “preventing and recovering from failure by automatically discove-
ring, diagnosing, circumventing, and recovering from [localised problems] that
might [otherwise] cause service disruptions” [46, 51]. Such recovery procedure
should be able to detect and isolate a faulty component, and, if possible, restore it
into a correct operational state, prior to reintroducing the fixed or a replacement
component into service [50]. In fact, these objectives correspond to the principles
of fault masking and containment, and highlight that a self-healing autonomic
manager is de facto an FCU per se.

– An autonomic manager should be self-protective and should be able to anticipate,
detect, identify and “defend the [managed unit] as a whole against large-scale,
correlated [external threats] arising from malicious attacks or cascading failures
that remain uncorrected by self-healing measures” [38,46]. This objective, bearing
a strong resemblance to the survivability dependability attribute, can be achieved
either reactively by applying adequate recovery actions, or by proactively interve-
ning so as to prevent such threats from materialising, or to mitigate their effects.

– The objective of a self-optimising autonomic software entity is to “continually
[tune itself and] seek ways to improve [its] operation, identifying and seising
opportunities [— proactively or reactively —] to make [itself] more efficient in
performance or cost” [46, 51]. In trying to maximise the use of the underlying
resources, an attempt could be made, e.g., to attain a better balance and distribu-
tion of the workloads.

The adaptive behaviour necessary for achieving the objectives set out by the
self-managing capabilities listed here above, is usually modelled as a control loop
before it is implemented. Control loops, or feedback loops as they are often referred
to, are a well known concept originating from system theory and have been success-
fully used to realise the self-monitoring and self-adjusting traits of adaptive software
[4, Chapt. 4] — cf. Fig. 1.4. These traits, in addition to context-awareness, correspond
to the three quintessential attributes of autonomic behaviour, in which “changing
circumstances [in the context, be it internal or environmental, should be] detected
through self-monitoring, and adaptations [should be] made accordingly (self-
adjusting)”7 [47]. The architectural model for the design of autonomic manager
software entities, featured in Fig. 1.5, shows how a self-contained software entity

7With all the self-monitoring properties ascribed to autonomic computing systems, and their ability
to derive knowledge from available information, one may be inclined to believe that these systems,

15



results from the composition of a comprehensive set of dedicated software entities
for implementing the autonomic, self-managing behaviour, while structuring this
behaviour as a MAPE-K control loop. As can be seen from Fig. 1.5, such “control
loop is composed of four parts that share [contextual] knowledge, including parts
that monitor, analyse, plan and execute” [49]. The monitoring part is responsible
for capturing contextual information within its own activity scope. Intent upon
understanding the current system state, this information is then periodically analy-
sed: data and events are diagnosed and correlated to identify relevant situations and
symptoms of conditions that may require adaptation. Desirable adjustments can be
applied — executed — to the managed resources if an appropriate response could
be found — planned — so as to improve or sustain their operational performance
in view of the environment in which they are operating. At the core of this MAPE-K
subsystem is a knowledge source; not only does it hold information about the
managed resources and their environment, it frequently holds business and IT
policies as well, whose goals and objectives will be honoured whenever a plan for
adjustment is effectuated [38, 51].

Figure 1.5: Taken from [51, Chapt. 1], this picture illustrates the internals of an
autonomic manager, and how its adaptive capabilities are modeled as a MAPE-K
control loop. ©2007 by Taylor & Francis Group, LLC

Furthermore, the architectural model in Fig. 1.5 seems to imply that managed
resources are themselves wrapped inside manageable software entities, and thus
accessible through an interface. However, in order to accommodate for the self-moni-
toring and self-adjusting traits of a MAPE-K control loop, each of these interfaces
will need to be extended so as to provide for adequate sensing and effectuation
capabilities. An abstraction of these capabilities results in the concepts of sensor

especially when combined with techniques for artificial intelligence, are self-conscious. Even though
there is no globally accepted definition that lists the traits associated with consciousness, it is generally
accepted that (i) a system should have access to information, and (ii) that system to be self-aware,
in the sense that there exists a “self-referential relationship in which the cognitive system is able to
monitor its own [functioning] and obtain information about itself” [52]. The cognitive properties of
an autonomic computing systems — although capable of acting upon their internal state, based on
contextual information — are not (directly) able to understand the state they find themselves in. They
lack perceptional abilities, although they are aware by applying basic rules and predefined algorithms
on a limited set of data representing specific characteristics of the environment in which they are set to
operate — cf. Sect. 9.1.
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and effector; both correspond to part of the manageability interface of a specific
managed resource. A sensor “exposes information about the [resource’s] state and
state transitions”, and is used for monitoring purposes. An effector aids to bring
about intentional state changes and, as such, “enact a desired alteration in the
[...] resource”, i.e. to execute an adaptation plan [38]. Precisely how to implement
these additional manageability capabilies is left aside, but clearly, the autonomic
computing initiative has laid the conceptual foundations for the design of the
WSRF and WSDM families of WS-* specifications [53] — v. Chapt. 8. That being
said, sensing and effectuation capabilities have been successfully implemented as
WSDM-enabled resources, in which relevant sensorial information may be retrieved
by periodic polling or asynchronously by exchange over a publish-and-subscribe
eventing model such as WS-Notification. Another option, albeit less widespread and
robust, is to use reflective and refractive variables, as suggested in [53].

We already pointed out the existence of two alternative interface definition
languages on p. 6: WSDL, and, closely linked to that, the XML-based SOAP messaging
format, vs a REST-based approach that is mainly promoting the use of the JavaScript
Object Notation (JSON) messaging format [23, 54]. Nowadays, REST has widely
been adopted and is very much preferred over SOAP. This is mainly because JSON
is found to be a much more lightweight messaging format than XML that lies at
the basis of SOAP. Clearly, from a pure performance point of view, REST has the
edge on WSDL, as it will require less bandwidth for the exchange of data messages.
However, there is no mature match for the extensive capabilities that XSD schemas
bring for XML validation of SOAP messages. Furthermore, there is a whole range of
WS-* specifications available for interfaces defined in the WSDL definition language,
which promote standardisation and cover several functional aspects, ranging from
basic messaging aspects, security, eventing, service discovery, management of
resources etc. [22]. No counterpart can be found for either of these standards in REST,
resulting in proprietary, oftentimes, incompatible service interfaces and ad-hoc
implementations — functionality that would otherwise largely be present as part of
the middleware offering and that would ensure interoperability. In the context of
NVP, when application logic is exposed as web services, the functional components
that will represent versions are in se a managed resource. And, as will be explained
in great detail in Chapt. 8, some of these specifications — in particular WSDM and
WSRF — have shown to be very useful in implementing a generic framework that
allows to implement A-NVP for any type of functionality.

It was already pointed out in Sect. 1.1 that the property of software resilience
shows great similarity to the self-managing properties of autonomic software. A
better insight into software resilience may be obtained by decomposing it into
a base of ancillary consituent attributes: perception, awareness, planning and
dynamicity [36]. Each of these attributes (except the latter) directly corresponds to
one or more of the phases in a MAPE-K autonomic control loop. More specifically,
perception is the objective of the monitor phase in the loop; it is defined as the ability
to perceive change, either in the operations of the underlying managed resources,
or environmental. During the next stage in the loop — the analysis — the available
contextual information is diagnosed so as to recognise conditions and situations that
may threaten a managed resource from operating correctly (situation-awareness).
The essential property of resilient behaviour is, without doubt, the “ability to plan
reactive or proactive strategies to compensate for current (or, respectively, future)
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threatening conditions, and the ability to enact [— execute —] those strategies by
performing the actual parametric and structural adaptations” (planning) [36, 55].
The final property of dynamicity characterises, in a way, the extent to which the
former three properties can become acclimatised to “past experience and conti-
nuously improve” the effectiveness of the former three properties (self-learning),
and the extent to which the system is able to adapt itself accordingly [36].
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Figure 1.6: Dependability means categorised into 3 design techniques. Reproduction
of [3, Fig. 2.12].

1.3 Design Philosopohies to Combate Faults

The “techniques for attempting to improve or maintain a system’s normal perfor-
mance in an environment where faults are of concern” are typically categorised into
three categories: fault avoidance, fault tolerance and fault masking [3]. However,
masking faults that have been activated (in other words: errors) is actually what is
used by most techniques for software fault tolerance that rely on design diversity. The
three design techniques are shown in Fig. 1.6, which illustrates how each technique
may be applied so as to form an effective barrier against a specific dependability
impairment. The key discriminating factor is that “fault avoidance techniques try to
reduce the probability of fault occurrence, while fault tolerance techniques try to
keep the system operational despite the presence of faults” [41]. This section will
provide a bird’s-eye view of the primary means to deal with faults in constructing
dependable software solutions.

In this dissertation, the focus is on software fault tolerance, and the application
and optimisation of redundancy schemata. As such, we will only cover functional
software (design) faults8. Even though hardware faults can have an impact on the
availability of software, and may (in)directly trigger latent software faults9, this
relationship is kept out of scope10 — v. dashed arrow in Fig. 1.6.

8“Researchers agree that all software faults are design faults” [41]. Hence, both terms are will be used
interchangeably.

9Moreover, recent discoveries seem to indicate that specific workload patterns can accelerate the
malfunctioning of hardware circuitry (both in terms of parametric and functional failures) [56].

10The reason for this is threefold: (i) such investigation would represent a separate research topic in
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1.3.1 Fault Avoidance

The concept of fault avoidance — also known as fault prevention — covers any
technique that is used to prevent, by construction, or minimise, by specification and
verification, the presence or introduction of latent errors in a (software) computing
system during its construction or implementation [12]. Unlike fault tolerance, it
is a proactive strategy mean to identify all potential areas where faults can occur.
It includes various precautionary quality assurance and design methodologies;
approaches that are quite different from a philosophical point of view:

– “In the design and implementation phase, fault avoidance can be achieved by [...]
formal verification and validation techniques” [57]. Such formal methods aim
to “eliminate errors at the requirements specification and design stages of the
development” [41].

o It is useful to validate every design before it is used for further development.
If conducted appropriately, “many of the specification mistakes that might
otherwise result in faults can be eliminated” [3]. Furthermore, ample attention
should be spent on ensuring a proper system-environment fit [55]. This also
affects systems that integrate with various other external systems. If needed, the
design should be altered to introduce additional “[shielding] to prevent external
disturbances from causing faults in the system” [3]. Mostly, such external
disturbances affect the underlying hardware and connectivity infrastructure.
Typical examples include lightning, electromagnetic interference, cooling, etc.

o The correctness of a design and its implementation can be supported through
the use of formal specification and verification techniques [58]. Most of these
techniques apply a type of mathematical notation to explicitly describe the
desired system properties and behaviour. This allows a clear, unambiguous
specification of the requirements for software, which highlight misinterpreta-
tions and incorrect system assumptions in the detailed technical design. An
example of one such specification language is the Z notation [59]. In particular,
the accuracy and expressive power of such languages makes them useful for
the description of core components in mission- and safety-critical systems.
Admittedly, such formalisms cannot easily be applied to highly complex, large,
distributed systems. Hence, they are usually only applied to specific parts of the
system that pose most risk to the overall system operations and performance.

o Finally, the concept of fault forecasting is a rather different approach. It “includes
a set of methods and techniques [...] to estimate the presence, the creation,
and the consequences of faults”, usually by monitoring and analysing the
operational behaviour of the system (once it was placed in production). It
may leverage machine learning (ML) technologies to predict when errors can
materialise, and to report on this so that any residual (latent) fault can be
addressed and fixed in subsequent software releases11.

itself, and (ii) we would likely have to make assumptions on specific hardware that is used, whereas we
deliberately wanted to abstract the intricacies of the underlying middleware and hardware layers, and
zoom in specifically on software redundancy schemata. Furthermore (iii), such investigation would be
more valuable in the context of low-level dedicated/embedded systems, whereas the focus here is on real
application functionality deployed on general commercial-off-the-shelf (COTS) hardware.

11Note that forecasting has primarily been used for hardware, where it is used to support predictive
maintenance.
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– “In the test and debugging phase, fault removal can be performed” by subjecting
the implementation to rigorous testing procedures, aiming to falsify the assump-
tion that a carefully crafted solution is sound and correct [57]. In doing so, “many
of the faults that [remain] in the system after manufacture can be detected and
eliminated before [... it ...] is placed in operation” [3].

1.3.2 Fault Tolerance

Even though fault avoidance techniques may be effective in identifying faults and
removing them from the system before it is put in production, there will always
remain others that eluded detection despite rigorous and extensive testing and
debugging. In short: one should simply face the fact that “it is practically impossible
to build a perfect [(software)] system” [2]. Hence the need for fault tolerance, which
can be described as the introduction of compensatory measures to ensure that
the system will continue to perform its task and to deliver its intended service,
even after the occurrence of faults — in other words, when a limited subset of
the underlying system components are struck (disturbed) by failure. From this, it
follows that methods for fault tolerance are by their very nature “applied [... in the
operational phase ...] to provide proper system service in spite of faults” [57]. Apart
from safety-critical applications, many fault-tolerant solutions typically also support
a graceful degradation of the system’s performance. This is applicable in case “the
size of the faulty set increases, [where the system should continue to operate] and
continue executing part of its workload [in a best-effort mode, rather than] suddenly
[collapsing]” [60].

By adding additional circuitry and (software) components on top of a specific
component, fault-tolerant design techniques aid in the development of FCUs. The
additional logic should prevent faults in the core component from introducing
errors into the informational structure of the system that could affect other system
components, or the system as a whole [61]. Despite the naming, fault tolerance is
about the recovery and masking of failures (disturbances), as can be seen in Fig. 1.3.
The additional protection layer that an FCU adds on top of a specific software
component will therefore include techniques for effective error processing that are
meant to rectify any erroneous state that violates the specification of the service that
the component is expected to deliver [12]. Briefly put, it should attempt to correct
the data stored in memory data before another part of the system will use that data.
Error recovery techniques are usually categorised into two classes:

– In forward error recovery, the “error is masked without any computations having
to be re-done” [60]. Such techniques will apply some type of compensation
routine to achieve fault masking and contain the effect of an error or disturbance
within the fault-tolerant FCU. Some commonly used techniques to achieve this
type of error recovery are:

• Running in a single thread of execution, a simplex system is by nature a
potential single point of failure (SPoF). Nonetheless, one can introduce
and apply consistency checks to verify the correctness of the computing
results returned by such component, using characteristics that are known
a priori from the initial specifications. Furthermore, application-specific
recovery actions can be added to the source code itself. This approach is
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also referred to as single-version fault tolerance [5, Chapt. 8]. It is however
difficult to achieve a proper separation of the error detection and correction
features from the core programming logic itself. Another drawback is that
this approach cannot cope “with system faults that arise from interactions
between the hardware and the software” [14, p. 483], as there is no replication
of hardware either12.

• Another example is to revert to multiple-version (software) fault tolerance,
which will be covered in more detail later in this chapter. In applying
such approach, it is assumed that a sufficient degree of redundancy can
“enable the delivery of an error-free service from the erroneous (internal)
state” [62]. Furthermore, they rely on a comparison algorithm — so-called
voting algorithms — that will compare and analyse potential deviations
in the results computed by several distinct versions, and adjudicate the
correct outcome to be returned. As an example, the architectural pattern of
n-version programming will be explained in more detail further down this
chapter.

• Hybrid approaches supporting failover schemes have shown their use and
remain popular, in particular to improve the dependability of the deployment
infrastructure. In standby sparing, for instance, the architecture of the
system includes additional component(s) that are kept on standby, and
which may be put in operation as a substitute for a faulty component.

– Backward error recovery techniques rely on a runtime environment that is respon-
sible for “periodically [taking] checkpoints to save a correct computational state.
When [an] error is detected, [the system is rolled] back to a previous checkpoint,
[effectively restoring a] correct state”, after which execution can resume [60].
This procedure actually corresponds with the three phases of recovery-oriented
computing solutions: rewinding the system to an error-free state, repairing the
system, and they replaying, by resuming or redoing the necessary parts of the
computation [63]. System repair is achieved through reconfiguration, i.e. “the
process of eliminating a faulty entity from a system and restoring the system
to some operational condition or state” [3]. The result are FCUs that include
adequate facilities for fault detection, fault location and fault recovery [44, 64].
Furthermore, such units are in se self-aware, self-configuring and self-healing, for
they will autonomously monitor and adjust themselves if needed. One example of
this class of error recovery techniques is the principle of recovery blocks (RB), a
redundancy-based pattern in which different versions are tried in sequence, one
at a time, until one has produced an acceptable result.

1.3.2.1 Multiple-Version (Software) Fault Tolerance

Fault tolerance is the architectural trait of systems that can or aim to maximally
sustain service delivery, compliant with the initial specifications for which they were
designed and implemented, in spite of faults having occurred or occurring [12].

12It is, however, possible to prevent hardware errors from propagating upwards to higher abstraction
layers (including the platform software) in digital systems. A classification of various “techniques for
[increasing] resilience and [mitigating] functional [hardware] errors” that can increase system resilience
was presented in [42].
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Its achievement is, in general, “the result of some strategy exploiting some form
of redundancy — time, information and/or hardware/software redundancy” [11].
The idea is that the introduced redundancy can stand up to temporary periods of
malfunctioning in part of the underlying components, and, as such, sustain the
system’s dependability as a whole. Additional system components obviously imply
a cost penalty, which cannot always be justified, as the effectiveness of redundancy
schemata can vary significantly. For instance, it is possible to design highly available,
yet poorly reliable systems. This would be the case if disturbances dematerialise or
can be repaired quickly, having left the internal system state undamaged (possibly
after recovery), or if the system is assembled using poorly performing components.
Furthermore, the effectiveness of a fault-tolerant solution may evolve over time. This
applies particularly to hardware systems, where components have typically suffered
from age, wear and tear, and the cumulative effects of environmental maladies like
dust, vibration and temperature extremes will translate into a rising failure rate [65].
Recent research has also shown that there is a tight coupling between some types of
hardware aging, the architectural topology and parameters of that hardware, and
the runtime workload placed on this hardware equipment [56]. Unlike hardware,
software does not suffer from wear and tear; once uploaded into memory and
placed in operation, it will continue to serve its purpose [2]. Although early releases
of software solutions typically suffer from a diverging internal state ensuing from the
accumulated effect of request processing, rigorously engineered stable production
releases hardly do.

It is often said that single-version redundancy will not increase availability
or reliability at all. One simply cannot expect to achieve effective fault-tolerant
designs by simply replicating the same hardware/software components. Doing
so can be a “possible source of common-mode failures [— i.e., a fault that occurs]
simultaneously in two or more redundant components”, resulting in multiple
correlated disturbances [2]. Indeed, redundant copies of the same hardware/software
component are very likely to fail when subject to identical environmental conditions
(specific unsupported ranges of input values, operating conditions that were not
foreseen by the device manufacturer, request pattern, malfunctioning underlying
or connected infrastructure etc.). This is particularly applicable to software, where
software faults are the result of incorrect design or implementation mistakes. Hence,
a “comparison procedure will not [be able to detect software failure] if the duplicated
software modules are identical, because [these flaws] will appear in [all copies]” [61].
While this opinion has been repeatedly expressed in the literature, and is incontesta-
bly true for static redundancy schemata, where design faults would translate in
common-mode failures, this is not necessarily the case for dynamic redundancy
schemata. Such fault would only translate in failure when the internal system state
would deviate from the operational conditions as expected during design — i.e.,
when affected by an error. Since the internal state is the result of a complex interplay
between state changes due to the processing of requests, as well as various types
of inter-component events over time, all replicas of the single version would fail
in a static redundancy scheme, for they are subject to the same environmental
conditions. However, for dynamic redundancy schemata, where a replica can
at runtime be taken out of service or put into service (again) depending on the
operational context and needs, the internal states may differ, and not all may be
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drifting towards an erroneous state13.
This calls for design diversity; starting from the same (non-)functional

specifications, several alternative implementations — called versions — are designed
and developed independently by different project teams. At the end, several
functionally-equivalent software solutions are available, each of which can be used
to serve the intended service, while significantly reducing the risk of common-mode
failures. In doing so, “it is hoped that [...] the same mistakes will not be made
by the different [designer and implementation teams]”, and that it is less likely
to share a common fault across different implementations. “Therefore, when a
fault occurs, the fault either does not occur in all [versions], or it occurs differently
in each [version], so that the results generated by the [version] will differ” [66].
With functionally-equivalent, yet diversely designed hardware devices or software
solutions in place, a fault-tolerant design typically involves a specific redundancy
scheme that is composed of n versions, n being the applied level of redundancy.
Throughout the next two sections, we will elaborate on the two main types of
redundancy schemata: recovery blocks (RB) and n-version programming (NVP).

Recovery blocks (RB) As the name itself implies, the technique of recovery blocks
is used for backward error recovery that will repeatedly recover the system state
in case of failure. The term is used to refer to an architectural redundancy-based
pattern in which different versions will be executed in sequence, one by one, until
an acceptance test confirms a sufficient level of trust in a result computed by
one specific version. Unlike NVP-based redundancy schemata, not all available
redundancy is necessarily used: the primary implementation v1 is always executed
on invocation; other versions will be used in case the acceptance test evaluates to
a value that indicates a doubtful response [67, Chapt. 1]. Central to the concept is
that the (entire) system state is saved in a recovery cache before any processing is
requested (including the primary implementation). This saved state will be restored
prior to the execution of the next alternative module whenever the acceptance test
fails — i.e. the system is rewound or rolled back into an error-free state.

The resulting fault containment unit heavily relies on an execution engine, which
comes with support to back up the system state (so-called checkpointing), and to
repeat the computation using a different implementation if the application of the
acceptance test on the current alternative does not generate a checksum inside a
predefined interval, in which case the current version should be considered faulty. If
the test passes, the computed result is returned and the mission is accomplished;
if the test fails, the correct system state is reloaded from the recovery cache. Only
when an error is detected will alternative implementations be used. Alternatives
v2 . . . vn are sequentially tried and the acceptance test is applied against the results
until either a satisfactory result is obtained, or no further versions remain, in which
case a failure is propagated by means of an exception. At the core of this redundancy
scheme is the acceptance test: a runtime assertion that will be applied by the
execution engine for validating the results computed by the underlying versions.
Consistency checks and self-checking functions are commonly used for this type
of test.

13While the author wanted to point out the impact of request processing and load patterns on faulty
behaviour, by no means he wants to imply that simple replication of software components can achieve
effective fault-tolerant solutions.
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Figure 1.7: Backward error recovery using recovery blocks.

The effectiveness of recovery blocks rests to a great extent on the acceptance test.
A failure of the acceptance test is a failure of the whole recovery blocks strategy. For
this reason, the acceptance test must be simple, must not introduce huge run-time
overheads, and it must not retain data locally [68].

Because the alternatives are executed in sequence rather than in parallel, hard-
ware replication is, strictly speaking, not required. It also means that, given a
redundancy level n, this type of redundancy scheme is capable of recovering from at
most n −1 faulty replicas, albeit at the expensive of a considerably worse execution
time. One specific version is not necessarily identical to the others that are used
within a recovery blocks redundancy scheme. In determining the order in which the
underlying versions are tried, the designer can actually express multiple degraded
service levels. For sure, the primary version v1 should attempt to satisfy the functional
requirements in full; the first alternative v2 would result in a less complete service.
The final alternative vn would deliver the least complete service [69] [70]. Architec-
tures supporting failover by adding a (single) backup circuit next to the primary
circuit can be classified within this architectural pattern as well.

n-version programming (NVP) The roots of NVP redundancy schemata are to be
found in the domain of hardware fault tolerance [11]. They are similar to deployments
using n-modular redundancy (NMR), a technique that has long been effectively
used to deal with random hardware failures [14]. In such schemata, an FCU is
constructed by replicating a hardware unit n times by components supplied by
different manufacturers, though conforming to the same specification. The critique
of wasting redundancy unneededly in spite, this architectural redundancy-based
pattern has been successfully used for systems with extreme dependability require-
ments, examples of which can be found in aironautics and nuclear facilities. All of
these components are called in parallel whenever service is requested from the FCU.
The n outputs that each of the versions produce are then fed into a comparison
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routine or voting algorithm, used to compare discrepancies between the received
outputs, to detect potential failures, and to adjudicate a single acceptable result
to be returned. If an implementation produces deviating output compared to the
other variants, or it fails to produce any output at all, its output should be ignored,
and this disturbance should be contained and masked. NVP essentially is the same
architectural pattern as NMR, the only difference being that software components
are used as underlying resources instead of hardware circuitry. The additional logic
needed to support this type of redundancy scheme is also implemented in software
rather than hardware.

A common voting mechanism is majority voting, although other algorithms exist
and can be applied as well – cf. App. B. The selection of a suitable decision algorithm
requires forethought and a realistic view on the behaviour of the environment in
which the system will be operating, particularly with respect to the rate and pattern
with which disturbances are likely to occur. Furthermore, the redundancy level itself
should be chosen such that the decision algorithm can effectively mask a sufficient
amount of failures and achieve the intended level of dependability [69]. Most of the
literature has reported on triple-modular redundancy (TMR), suggesting that an
odd degree of redundancy be used so as to avoid situations where a result cannot
be decided. The inner working of NVP schemata is formally defined as part of the
discrete event simulation model that can be found in Sect. 2.1 and 2.2.

An NVP/NMR FCU in itself eases the detection, isolation and containment
of any disturbances that affect any of the n underlying resources (components).
Appropriate actions can be taken when anomalies are suspected during the compari-
son routines: the unit can include a fault manager that may try to repair the faulty
component automatically, or if this appears to be impossible, it could automatically
reconfigure the component selection and purge faulting components, after which
the system will proceed execution with the remaining units. Such self-configuring
redundancy schemata are the scope of this thesis, in which we propose a generic
framework for maximising the dependability of NVP schemata by including algo-
rithms capable of autonomously reconfiguring and optimising the redundancy
employed — v. Chapt. 5.

Hybrid Approaches Although NVP and RB are the main fault-tolerant techniques
for design diversity, there exist hybrid variations of these redundancy schemata.

In acceptance voting (AV), the concept of acceptance test is combined with NVP,
to prevent erroneous version responses (ballots) from being used as input to the
voting algorithm [71, pp. 162–172]. As the name implies, the technique of two-pass
adjudication (TPA) includes two voting round passes: the first pass is fed with the
original inputs; if that fails to adjudicate an outcome, a second pass is initiated,
which is fed by re-expressed parameters. By its very nature, it is the combination
of traditional NVP with the basic technique of just retrying versions, hoping that
disturbances would be of transient nature, and would automatically disappear.
TPA was designed mainly to avoid that “small modifications to the [input] data
would not adversely affect the application”, especially in a context where sensor
data — which, depending on the type, can be very noisy and imprecise data — is
processed [71, pp. 218–231]. For more details on AV and TPA, refer to Sect. 9.3.1.

Another approach is taken in [72], in which the authors propose an algorithm
that is essentially a hybridisation of a basic retry mechanism, NVP and RB. Their
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approach is similar to the approach of the A-NVP algorithm that is defined throughout
this dissertation, in that the optimal configuration is dynamically adjusted towards
optimal performance and fault-tolerant behaviour based on estimated QoS measure-
ments collected at runtime for individual versions. It can also vary the voting strategy,
where the common MV, can be changed into plurality voting (PV) and even active
voting (AV), if performance is expected to benefit from this14. The similarity with our
work confirms once more that “[traditional] fault tolerance strategies are too static
and cannot auto-adapt to different environments”, and that “context-aware dynamic
fault tolerance strategies” can help to improve (i) dependability, (ii) performance,
and (iii) cost efficiency [72].

1.3.2.2 Combining Different Types of Resilience Techniques

The previous section discussed in great detail how the two primary techniques for
fault tolerance based on design diversity can be used to achieve resilient software
systems. Apart from these techniques, other basic techniques can be used, in their
own right or in combination, to increase the resilience of digital systems. The
effectiveness of these technique(s) is highly dependent on the fault and system
models of the components used within the system, its architectural properties, and
the environment in which is set to function. Furthermore, one can discriminate
several layers of abstraction in the design of digital systems, ranging from the
hardware platform layer, the underlying devices or electronic circuitry, the platform
software stack (including operating system, runtime engines and/or interpreters,
and middleware solutions), to the actual application layer. Such layered approach
is nicely depicted in [42, Fig. 1, Sect. 2]. In that article, the authors point out that
cross-layer resilient system design can be achieved by applying “functional reliability
techniques [...] at the [hardware and software platform layers ...] complementary to
techniques [at the application, circuit and device layers].”

The classification presented in [42] is particularly interesting in the context of
embedded systems, where the underlying hardware is well known, and techniques
can be applied on different layers to prevent functional errors from occurring and
mitigate the risk they translate in a system-wide failure. Many software applications,
however, are nowadays being deployed on so-called commercial-off-the-shelf (COTS)
hardware and/or software components. Industry trends including the virtualisation
and cloudification of deployment infrastructure, and the wide use of general-purpose
middleware solutions like application servers and integration solutions have resulted
in a “lack of internal knowledge [that has added] an additional challenge on deriving
appropriate reliability-driven approaches” [42]. In such contexts, it is challenging
to select the appropriate combination of techniques to enhance the overall system
resilience by mitigating the effects of functional reliability errors.

Design-time knowledge can however be exploited to define combinations of
varying sophistication levels, in which multiple error mitigation and resilience
techniques can be applied at different layers to defend against functional errors
occurring and to prevent them from propagating to higher-level layers. For example,
hardware resources could be (re)allocated, and versions migrated/moved to improve
the reliability match between software tasks and hardware modules. That approach,

14More information about PV and AV can be found in App. B, Sect. B.2.
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or — alternatively — various failover/retry mechanisms, may further improve system
reliability. The combination of various categories of techniques is a most interesting
research track to pursue, but remains out of scope for the time being15.

1.4 On the Role and Advantages of Discrete Event Simulation

Discrete event simulations have proven to be extremely useful in analysing the
behaviour and properties of complex systems. They can be seen as computer
programs written in such a way that they mimic the behaviour of the system under
investigation [73, pp. 380–382]. In modelling the system, it is formalised from two
distinct perspectives. Firstly, a set of variables and/or class objects is identified
that can represent and reflect the state the system is currently in. Secondly, the
system’s operational and the environment’s behaviour is analysed, resulting in a
set of dedicated simulation entities. Each of these entities has a specific life cycle,
during which they can affect the system, its state and/or its environment. It is the
aggregate result of the state changes brought about by these identified entities that
approximates the actual system’s behaviour.

Even though simulation modelling and analysis is a complex task that can be
time consuming and expensive, it has been profitably used in many disciplines. They
are essential to scientific research, for instance, in weather and climate modelling.
They have been used by utility providers in support of capacity planning, and by
financial service providers for optimising their core business processes and risk
analysis. Even more applications can be found in various domains: companies active
in the domains of aviation, logistics in general, and even the military have long been
using simulations throughout the design of complex, highly-dependable systems.
They have been used to conduct experiments in order to analyse, evaluate and
assess how and to what extent “new policies, operating procedures, decision rules,
information flows, [changes in] hardware designs, physical layouts and transportation
systems” are to affect the performance and operations of the systems being
investigated [74, Chapt. 1]. This effectively allows specific hypotheses, designs and
policies to be tested for feasibility and efficiency, “without disrupting the ongoing
operations of the real system”. Furthermore, they can be used for improving the
performance of (legacy) systems, by tracing the key parameters that determine
the actual quality of experience, and which value ranges show a direct link with
performance hits. The only requirements for doing computer-based simulations
are computing power and simulation software, both of which are readily available
nowadays. Despite its many advantages, discrete event simulation in itself is no
guarantee for success, and validation of the model remains hard.

Discrete event simulations are all about analysing how the overall state of the
system evolves in time. Changes in state occur at distinct points in simulation
time, and may occur as various entities enter the system, move through it while

15It was already indicated in footnote 5 on p. 11 that the scope of this dissertation is limited to the
application layer. To put that in perspective: we have studied in great detail (i) the implementation and
potential benefits that NVP redundancy schemata can bring, and (ii) how design faults can materialise
and how they can be effectively masked in that context. Referring to the different abstraction layers
defined for a digital system — or, more generally speaking, for software applications — in [42, Fig. 1,
Sect. 2], we merely focus on the upper application layer. It is in that layer that implementations of NVP
and RB schemata can be found.
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interacting with the environment and/or other entities, and eventually exit. The
lifecycle of a simulation entity is made up of numerous events, which have the
following characteristics:

– each event is scheduled to occur at a distinct (discrete) point in simulation time;

– every event comes with a detailed description of the steps (actions) that are to
take place and how these result in a change of state of the system as a whole, or
one or more (other) entities in the system [75, Sect. 5.3.2];

– an event cannot change the past: the steps associated to events should be computed
in the order that the events were scheduled and activated. This property is
commonly known as the causality constraint, and is necessary to ensure the
correctness of the simulation program [73].

As an event will move the system from one state into another instantaneously,
and “the state of entities remains constant between events, there is no need to
account for this inactive time” when running discrete event simulations [76]. More
specifically, immediately after all the actions of the associated event have been
applied, and the state of the system has been changed at the time corresponding
to that particular event, the simulated time can already be advanced to the time of
the next event, and the processing of that next event can start immediately. This
enables a simulation to skip over inactive time, whose passage in the real world
we are forced to endure [76]. Undoubtedly, the possibility to fast-forward the time
between events is one of the main advantages of using discrete event simulation,
and the principle is widely known as next-time advance. “Virtually all simulation
[implementation frameworks] use the next-event approach to time advance”. This is
also what differentiates discrete event simulation from emulation – i.e., injecting
specific load in a real-world system (in production) with the aim of testing and
analysing system properties, behaviour and/or performance.

Discrete event simulation also surpasses emulation in that the researcher can
exert much more control on the influence commonly caused by the environment or
specific entities:

– it allows to focus particularly on specific phenomena under investigation, and to
suppress environmental behaviour that could otherwise inhibit these phenomena
from materialising;

– distributions are commonly used to generate interevent time intervals of varying
lengths in a deterministic manner, and to introduce a desired factor of randomness;

– hence, “time can be compressed or expanded allowing for a speedup or slowdown
of the phenomena under investigation”, and rarely observed phenomena can be
reproduced more easily [74].

Experience has shown that it is difficult to keep track of the various intricacies of
the system under investigation, when it is modelled using the basic event-scheduling
approach using a single set of events. As the complexity of the analysed system
increases, the designer is more likely to benefit from structuring his/her simulation
model and event set using the following techniques:
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– Whereas the primary emphasis of a regular discrete event simulation model is on
identifying precisely how and when state changes, constructing an activity-based
model will put focus on how various entities in the system interact. In this context,
basic events are categorised and associated to a specific part (task) in the life cycle
of an entity, and they only effectuate the impact of the entity’s operations on its
environment. The approach “emphasises a review of all [events] in a simulation to
determine which can be begun or terminated at each advance of the clock” [76].

– Adding one further level of abstraction, a process-interaction approach helps in
structuring the life cycle of an entity as a sequence of events and/or activities. It
allows to keep track of the “progress of an entity [– which stage of its life cycle it is
currently in –] from its arrival event to its departure event” [76].

– What both approaches have in common, is that the life cycle of a select number
of entities is decoupled from the rest of the system, and that specific events
are associated with each activity and/or process to effectuate the required state
changes.

Fig. 1.8 shows how events, activities and processes can be used in discrete-event
modelling and how they relate to one another. For each process or task (activity),
processing will start at the arrival of an event; completion of the service that a task
has received is marked by another event. Note the non-uniform inter-event time
intervals:

time
event 1:
arrival

event 2:
service

begun on
task 1

event 4:
service
ended

on task 1

event 3:
service

begun on
task 2

event 4:
service
ended

on task 2

event 5:
departure

activity 1

activity 2

process

Figure 1.8: Taken from [76, p. 41]: discrete-event modelling using events, activities
and processes.

Within the scope of this dissertation, discrete event simulations are used to
investigate the effectiveness of various policies for dynamic redundancy management.
The discrete event simulation model formalised in Chapt. 2 is supposed to unravel
the operations of NVP-based redundancy schemata in detail, and identifies a number
of entities, their life cycles and the interplay of events that cause the system to change
state. Most of these entities are defined as processes, few examples of which are:

– Given an NVP scheme, the NVP composite is in itself an entity and is decoupled
from the underlying versions. Its behaviour is described as a process that
dispatches several copies of the incoming request and forwards it to the other n
entities (versions) for processing. The process also relies on a voting component,
again a specific entity.
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– Each version can serve multiple requests concurrently, and can be affected by
several types of (software) faults.

– Software faults are modeled as individual entities. The associated life cycle should
foresee in a periodic transition between intervals during which the fault remains
dormant, and intervals of fault activation, propagation and materialisation. More
specifically, such life cycle model will include events so as to describe (i) how
a latent fault is activated, (ii) how this activation leads up to a disturbance that
can affect (some of) the requests being processed by the affected version, and
(iii) when the effects of the fault have dissipated (in case the fault is of transient
nature).

– Request handling itself is modeled as a process responsible for producing a
computed response – referred to as outcome, if any. A request will be handled by
a specific version, which can fail to produce a correct outcome when affected by
disturbances of any kind. Furthermore, the execution of individual requests may
depend on various scheduling policies applied at the corresponding version due
to a limited processing capacity.

– Both types of request – the initial request arriving at the NVP composite and the
replicated requests sent out to multiple versions – are examples of process-struc-
tured entities. The same applies for the voting procedure. The simulation model is
also structured using activities, which is clearly exemplified by the fact that faults
can affect the operation of versions and thus the outcome of requests.

1.5 Motivation and Problem Description

Adopting classic redundancy-based fault-tolerant design patterns, such as NVP, in
highly dynamic distributed computing systems does not necessarily result in the
anticipated improvement in dependability. This primarily stems from the statically
predefined redundancy configurations hardwired within such dependability strate-
gies, i.e. a fixed degree of redundancy and, accordingly, an immutable selection of
functionally-equivalent software components, which may negatively impact the
schemes’ overall effectiveness, at least from the following two angles.

Firstly, a static, context-agnostic redundancy configuration may in time lead
to a more rapid exhaustion of the available redundancy and, therefore, fail to
properly counterbalance any disturbances possibly affecting the operational status
(context) of any of the components integrated within the dependability scheme. The
effectiveness of an NVP composite is largely determined by the dependability of
the versions employed within. As elucidated in [3, Sect. 4.3.3], the use of replicas of
poor reliability can result in a system tolerant of faults but with poor reliability16. It
is therefore crucial for the system to continuously monitor the operational status
of the available resources and avoid the use of resources that do not significantly
contribute to an increase in dependability, or that may even jeopardise the schemes’
overall effectiveness.

16Although not within the scope of this study, this phenomenon applies to various layers of the
system architecture. For hardware circuitry in particular, apart from the obvious functional failures,
the composition of electronic components and circuits may worsen the parametric behaviour of the
composite, and therefore its general reliability [3, Sect. 4.3].
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Secondly, the amount of redundancy, in conjunction with the voting algorithm,
determines how many simultaneously failing versions the NVP composite can
tolerate. For instance, an NVP/MV scheme applying majority voting can mask
failures17 affecting the availability of up to a minority of its versions. A predetermined
degree of redundancy is, however, cost ineffective in that it inhibits to economise
on resource consumption in case the actual number of disturbances could be
successfully overcome by a lesser amount of redundancy. Reversely, when the
foreseen amount of redundancy is not enough to compensate for the currently
experienced disturbances, the inclusion of additional resources (if available) may
prevent further service disruption.

1.6 Objectives, Research Questions and Contributions

In this thesis, a novel dependability strategy is introduced encompassing advanced
redundancy management, aiming to autonomously tune its internal redundancy
configuration in function of the observed disturbances. Designed to sustain high
availability and reliability, this adaptive fault-tolerant strategy may dynamically alter
the amount of redundancy and the selection of functionally-equivalent resources
employed within the redundancy scheme. The proposed solution has been intentio-
nally designed as a parameterised framework, where alternative policies can be
applied at will, and a comprehensive simulation framework supports the designer
in modelling the system’s environmental behaviour, and in conducting extensive
performance analyses in order to assess their effectiveness. While studying this
dissertation, the reader may expect the following research questions to be addressed:

RQ-1. Can the dependability of individual (software) components be approxima-
ted by aggregating runtime information and statistics?
Rather than relying on a theoretical estimation of the dependability that is
calculated at design time, it may be more accurate to monitor the functional
and environmental behaviour at runtime and extract meaningful knowledge
to obtain a better and more accurate view on the system’s actual dependability
attributes. Not only will it avoid potentially complex calculations during the
design phase, it will also allow to better track the system-environment fit
throughout the system’s operational life, based on realistic estimations of the
dependability of the available resources (versions).
A key contribution is to be found in the formal definition of a mathematical
structure that is capable of efficiently capturing how a specific version —
(software) component — has affected the reliability of the fault-tolerant
redundancy scheme throughout its operational life span. Its design was
inspired by the α-count approach, resulting in an extremely lightweight

17With the emphasis on software, we will consider only failures resulting from the activation of design
faults, plus general performance failures where a result cannot be acquired in time. Fig. 2.3 on p. 45
provides a clear overview of the (functional) software failure classes that are covered in our study. Other
failure classes, like parametric and/or functional hardware failures, specific types of failures affecting
network connectivity and middleware operations, remain out of scope and are considered as future
research — v. Sect. 9.3.6.
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memory footprint18, as described in [77]. Values for this measure are computed
taking into account various types of contextual information, including instan-
taneous estimations of the scheme’s availability, as indicated ex-post by
means of the distance-to-failure (dtof ) measure that was originally announced
in [78]. This novel measure is crucial to support redundancy schemata in
which the redundancy configuration is autonomically adjusted, and is used
to support the attributes of perception and (environment-)awareness that
autonomic computing systems require, as elucidated in Sect. 1.2.
This mathematical structure is formalised in Chapt. 4, and the supporting
metrics that serve as the foundation are defined in Chapt. 3. Whereas these
chapters focus exclusively on majority voting, the structure was also formalised
for unanimity voting in App. B.

RQ-2. Is it possible to realise an increase in dependability using a dynamic redun-
dancy configuration in NVP schemata? Is it possible to economise on
redundancy expenditure without jeopardising the overall effectiveness of
an NVP redundancy scheme in terms of dependability?
Traditional n-version programming redundancy schemata rely on a static
redundancy configuration. Our objective is to see if such scheme’s availability
can be better sustained by steering the applied level of redundancy in function
of the perceived system-environment fit, and by optimising the selection of
the underlying redundant resources. At the same time, we will explore the
possibility to economise on resource expenditure by avoiding inefficient or
unneeded allocation of redundant resources.
The main contribution of the research reported in this dissertation is the
formal description of a parameterised algorithm responsible for the
adjustment of the redundancy configuration used in NVP redundancy
schemata in view of the environmental context in which the scheme has
been and is currently operating. From a dependability perspective, its design
objective is to sustain high availability and reliability, whereas from a resource
expenditure perspective it should focus on the exclusion of replicas that do
not significantly contribute to the application’s objectives and goals. The
researcher may wish to target other non-functional properties, including, but
not limited to, timeliness19. The proposed A-NVP/MV algorithm is helpful in
building autonomic and resilient software systems. Such systems will exhibit
all four of the self-management capabilities that an autonomic computing
system is expected to exhibit: it is self-configuring, since it will automatically
and independently tune the employed redundancy configuration as needed;
it is self-healing and self-protecting, since faulty replicas that do not consis-
tently contribute to the application’s objectives and goals are (proactively)

18Such monitoring capability should result in negligible overhead, a low memory footprint and
little additional resource cost for the deployment of dedicated software components, which should
broaden its applicability and promote adoption in various environments, including resource-constrained
environments.

19We apply a relative notion of timeliness here, in that a specific timeout tmax can be set in case of
latency-sensitive applications. Similar to [72], in the assumption that the overhead of the A-NVP scheme
is negligible, version invocation requests would be required to have returned a response in due time, for
it to be used as ballot in the voting procedure — v. assumptions (A38) and (A37). If not, the version’s
result will not be considered to adjudicate an outcome. Refer to Sect. 3.2 and 5.1 for more details.
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substituted; and it is self- optimising, so that the optimal selection of available
replicas will be used to maximally support the objectives as defined by the
application designer. This algorithm is defined in Chapt. 5, while the three
supported application objectives (viz. dependability, resource consumption
and timeliness) are extensively covered in Chapt. 3.
Another contribution is the evaluation of the effectiveness of the proposed
algorithm, including a preliminary assessment of some promising policies
for redundancy management, which can be found in Chapt. 7.

RQ-3. Can the effectiveness of a policy for redundancy management be reliably
analysed upfront?
In order to attain a specific dependability level, one needs to ascertain there
is a proper system-environment fit, in which the redundancy scheme and the
underlying redundancy configuration is capable of masking any disturbance
that may result from the influence of the environment in which the scheme
is deployed and operating. For mission-applications, trial and error is not
an option, and we need tools to analyse under which conditions the desired
dependability level would be reached — well before the system is actually
placed in production.
Our contribution can be found in the design and implementation of a
comprehensive discrete event simulation framework tailored to the execu-
tion of rigorous performance analyses of new policies for (autonomic)
redundancy management within the scope of various types of redundancy
schemata. The framework comes with a wide range of artefacts and templates
that support the designer in properly modelling the environment to a level of
sufficient detail, and tools to exert control on the environment, its behaviour
and properties whilst conducting large-scale experiments. This includes,
amongst others, the means to define how and when a specific version
may/will fail, to inject the desired type of fault at specific stages throughout
a simulation run, how the load imposed on the system is to be balanced
and routed to various system components etc. Various predefined metrics
will report and provide insight on the system-environment fit or mismatch.
Furthermore, the framework can easily be extended and customised,
broadening its applicability to other research domains as well.
Available features in the discrete event simulation framework — including,
but not limited to, failure injection, metrics and measures — are extensively
described in Chapt. 6, whereas the formal models that define the implemen-
ted behaviour can be found in Chapt. 2.

RQ-4. Can autonomous redundancy management be implemented as a well-
separated concern within the context of contemporary distributed
computing systems?
Monolithic applications are difficult to debug, and complicate adding new
functionality. With the growing complexity of software, simplification by
means of abstraction and modular design have become key to allow for
improved maintainability. Dedicated application logic for fault tolerance
should be non-intrusive, in that it should be implemented well-isolated from
the core application business logic.
Having scrutinised the self-managing capabilities that autonomic computing
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systems are expected to implement, and how these directly map to properties
of resilient software, our contribution can be found in the design of a flexible
implementation library to support the development of fault containment
units. The library was built on readily available, proven open-source
software [79]. Furthermore, we argue that proper separation of concerns
can be achieved by building solutions on top of the WS-* stack, where the
WSDM and WSRF specifications in particular can aid in isolating effective
implementations of autonomic capabilities from the underlying managed
resources [80]. As an example, an implementation of an FCU is available,
where the redundancy employed within the FCU is autonomously managed
by the A-NVP/MV algorithm reported in this dissertation.
More details on the use of WS-* specifications for implementing (A-)NVP can
be found in Chapt. 8, and App. C.

RQ-5. How to define, implement, and examine the effectiveness of various
strategies and policies for static and/or dynamic redundancy management?
Applying the A-NVP algorithm calls for adequate tools to define redundancy
management policies, and assess the system-environment fit in view of
a specific target deployment environment. To do so, robust simulation
tools are needed to both model the policies and configuration of the A-NVP
configuration, and to assess its performance when varying the environ-
mental properties.
The flexibility of the toolchain resulting from this research encourage the
designer to “enable reconfiguration mechanisms that refocus the available,
safe resources to support the most critical services rather than over-provisio-
ning to build failure- proof systems”. Both the simulation framework as well
as the implementation library come with parameterised templates that ease
the burden of modelling redundancy allocation policies. Furthermore, the
designer is assisted in the creation of precise models of the environment in
which the system is expected to operate, allowing him/her to exert control
on specific environmental behaviour and properties while examining the
scheme’s effectiveness from various positions of interest. The offered toolset
is built on Java™open-source software, so further customisation is possible
whenever required.
An extensive overview of the feature set of the toolset is given in Chapt. 6,
whereas the generic parameterised algorithm is defined in Chapt. 5, and
examples of concrete redundancy allocation policies can be found in Sect. 7.3.

Starting from an extensive literature study on software fault tolerance, we decided
to start by addressing these first two research questions by defining a formal and
theoretical model to approximate the actual robustness of software components
in terms of dependability, based on the dtof metric defined in [78]. The rationale
for doing so was the objective of keeping track of the system-environment fit, or
rather the evolution of this fit throughout the operational life of a fault-tolerant
NVP composite. This approach has the advantage that, with some reasonable
delay, it should be able to detect changes in the fault model. The formalism of
the normalised dissent metric became the basis of our A-NVP algorithm, that was
designed to provide a robust and configurable solution for autonomously steering
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the redundancy configuration towards an optimum selection of versions, both
quantitatively and qualitatively.

To address these research questions, emulation in the context of distributed
computing solutions did not seem a viable option, because of the inherent complexity
of such computing environments, where it proved to be extremely challenging to
exert a proper level of control on the environment. Discrete event simulations allow
to model the environment and the system under investigation to be modelled in
great detail, and to achieve the needed levels of determinism and reproducibility
when running simulations. It also allows to analyse particular conditions in detail,
and to easily vary specific parameters — something that would be much more
challenging in the case of emulation. To proceed, we formally defined several
simulation models that reflect the way so-called design faults materialise in reality.
These models served as the basis for the simulation tools that were developed20

and used to assess the performance of the proposed A-NVP algorithm. Additional
advantages of using simulation are:
– the system and its performance can be scrutinised in great detail before it is put

in production, thereby reducing the likelihood of catastrophic failure (provided
that fault and system models reflect reality);

– many predefined metrics and measures have been defined and implemented, so
various attributes can easily be inspected without requiring additional effort to
analyse and process results — v. Chapt. 6.

Our experimentation was mainly focused to highlight the advantages of A-NVP,
compared to the classic NVP technique that was initially published in 1985 [6]. Using
discrete event simulations, we were able to corroborate our claim that A-NVP has the
potential to economise on resource expenditure, while sustaining the redundancy
scheme’s ability to tolerate faults in a way that is no worse than for classic NVP.
Thereby, we have been able to clearly demonstrate that applying a dynamic redun-
dancy configuration is likely to result in more robust levels of software fault tolerance,
especially when it is adjusted autonomously based on detected disturbance (i.e.,
indications of failures inferred from the majority voting procedure).

For the scope of this dissertation, we have used simplistic fault models with the
aim of generating concise results visually by means of charts, graphs and tables
(primarily to improve readability). Because of this, when injecting failures with more
general distributions (for instance, by sampling from a lognormal distribution),
we expect significantly more randomness and less marked trends in the number
of injected failure per voting round [82]. One may therefore expect to observe a
moderate slow-down in the way A-NVP is steering the redundancy configuration.
Note that the simulation framework was designed to support various failure injection
techniques and supports the designer in accurately defining specific fault and
system models. Hence, the framework can be used to inject failures by sampling
from a theoretical model, where the time between fault occurrences is sampled
from some distribution, or where failures can be injected based on data that was
logged/analysed for systems in production.

20Our simulation framework is a Java™-based implementation of the models defined in Chapt. 2
using the SSJ software library, which was developed at the Université of Montréal [81]. The framework
bring additional features, like an implementation of the dtof and normalised dissent metrics (Chapt. 3,
resp. 4), of the A-NVP algorithm (Chapt. 5), and various options to inject failures and to report different
properties and attributes (Chapt. 6).
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1.7 List of Publications

For completeness, this section is included to provide an overview of the publications
through which the research reported throughout this dissertation were initially
announced:

– Jonas Buys, Vincenzo De Florio, and Chris Blondia. Towards Context-Aware
Adaptive Fault Tolerance in SoA Applications. In Proceedings of the 5th ACM
International Conference on Distributed Event-Based Systems (DEBS), pp. 63–74,
2011. Association for Computing Machinery, Inc. (ACM) [83].
The A-NVP algorithm was first presented at the DEBS 2011 conference in New
York (NY, USA). This publication covered Chapt. 3–5 and 8. It contained the
full description of the replica selection model (Sect. 5.3), and a first, incomplete
version of the redundancy dimensioning model (Sect. 5.2)21. A complete
implementation of the A-NVP composite as a WSDM-enabled FCU, where the
underlying versions are wrapped and exposed as WS-Resources, was also
described — v. Chapt. 8.

– Jonas Buys, Vincenzo De Florio, and Chris Blondia. Towards Parsimonious
Resource Allocation in Context-Aware n-Version Programming. In Proceedings
of the 7th IET International Conference on System Safety and Cyber Security, volume
607 of IET Conference Publications, pp. 137–144, 2012. The Institute of Engineering
and Technology (IET) [84].
This paper was presented in Edinburgh, Scotland, United Kingdom. Again, the
A-NVP algorithm was formally explained — covering Chapt. 3–5 — however this
time with an extended version of the redundancy dimensioning model (in its final
form as it is included in Sect. 5.2). Having struggled against the shortcomings
of emulation, we implemented a discrete event simulation framework to better
control environmental behaviour, including several options for failure injection.
Although the concepts and definitions in Chapt. 2 and 6 laid the basis of the
preliminary performance analyses22 included in the paper, due to space restrictions,
neither of these chapters were shared with the community.

The following list of publications relate to a separate, albeit related, research track,
in which we have shown that some of the available linguistic constructs in WS-BPEL
can be used to implement redundancy schemata like NVP and RB. This work is
included as App. C, and is somehow related to Chapt. 8, in the sense that WS-BPEL
is an alternative WS-* specification that can be used to achieve a clear separation of
concerns by isolating the actual business logic — encapsulated and exposed as web
services — from the dedicated fault-tolerant orchestration logic — v. Sect. 8.4.223.

21Based on a combination of the redundancy allocation mechanism defined in [78], corresponding to
policy Strategy A, Variant 2. Refer to p. 151 for more information.

22A more in-depth analysis of the initial experiment that occurred in [84] can be found as
Experiment 7.9 in Chapt. 7. The objective was to illustrate that the use of a dynamic redundancy
configuration, using the A-NVP algorithm and applying a safety margin csm — essentially an example
of Strategy B, Variant 1 as defined on p. 154 — can effectively result in a higher level of reliability and a
lower cumulative amount of allocated redundancy.

23We no longer advocate the use of WS-BPEL to implement NVP and RB. The WSDM-based solution
described in Chapt. 8 is far more flexible, as the use of WSRF-SG service groups allows for convenient
runtime discovery of functionally-equivalent versions. Furthermore, the WS-BPEL language is quite
limited, and in itself does not allow to implement the A-NVP algorithm defined in Chapt. 5.
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– Jonas Buys, Vincenzo De Florio, and Chris Blondia. Applying Business Process
Re-engineering Patterns to Optimize WS-BPEL Workflows. In IT Revolutions,
volume 11 of Lecture Notes of the Institute for Computer Sciences, Social Informatics
and Telecommunications Engineering (LNICST), pp. 151–160. Springer Berlin
Heidelberg [85].
Presented at the 1st international ICST Conference on IT Revolutions, organised
in Venice, Italy, December 17–19, 2008.

– Jonas Buys, Vincenzo De Florio, and Chris Blondia. Optimization of WS-BPEL
Workflows through Business Process Re-engineering Patterns. International
Journal of Adaptive, Resilient and Autonomic Systems, 1(3), pp. 25–41, 2010 [68].

– Jonas Buys, Vincenzo De Florio, and Chris Blondia. Optimization of WS-BPEL
Workflows through Business Process Re-engineering Patterns. In Vincenzo De
Florio, editor, Technological Innovations in Adaptive and Dependable Systems:
Advancing Models and Concepts, chapter 20, pp. 345–361. IGI Global, 2012 [86].

The above publications have been occasionally cited in the literature, which show
the relevance of our contributions in the domain of fault-tolerant engineering of
SoA solutions [87–89], and the domain of reliability engineering [90–93].

1.8 Structure

The remainder of this thesis is structured as follows: We first present the concept
of NVP/MV schemata in Chapt. 2 and show how disturbances emerging from the
activation of software design faults may put their effectiveness into jeopardy. A
set of ancillary metrics is then set forth in Chapt. 3, allowing to capture contextual
information regarding the environment in which the scheme is operating, primarily
with respect to disturbances that challenge its effectiveness, and that enable to
detect the proximity of hazardous situations that may require the adjustment of the
redundancy configuration. After introducing another metric designed for approxima-
ting the operational status of individual resources in terms of reliability in Chapt. 4,
we move on to elaborate on the internals of the proposed adaptive fault-tolerant
strategy in Chapt. 5. Next, an overview of the architectural framework for the
discrete-event simulations used for the validation of the proposed dependability
strategy is given in Chapt. 6, followed by an overview of the metrics that are available
to the designer, and a formal definition how each is actually measured. We proceed
by reporting on the strategy’s effectiveness analysis in Chapt. 7. A prototypical
service-oriented implementation of the proposed adaptive fault-tolerant strategy
is presented thereafter, leveraging WS-* specifications to realise proper separation
of concerns, and to gather and disseminate contextual information. We conclude
by summarising the main conclusions drawn and reported in this dissertation, and
point out interesting future directions, as well as open research questions.
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CHAPTER 2
Essential Simulation Models

In this chapter, a survey is given of how NVP-based redundancy schemata
are expected to operate in the context of contemporary distributed compu-
ting environments that exhibit a timed asynchronous system model. The
behaviour of such fault-tolerant schemata is formalised by means of a
discrete event model that allows to unravel how potential disturbances
emerging from the activation of software design faults and the occurrence
of performance failures can affect these systems and may put their effective-
ness into jeopardy. A fault injection and failure manifestation model is
then outlined so as to characterise the different ways in which disturbances
may materialise, the repercussions they may have on the proposed discrete
event model, and the impact they may have on the outcome of the
redundancy scheme. Related research question(s): RQ-3.

2.1 Voting Round State Transition Model

Let {`x }C be a sequence of monotonically increasing, strictly positive integer indices
`x = x in L =N+, such that each voting round, i.e. a single invocation of an NVP
composite C, is uniquely identified. As shown in the state transition diagram in
Fig. 2.1, the arrival of a request message at the composite interface will trigger
the initialisation of a new voting round (C,`) with ` the next element in {`x }C.
Immediately after, the system is to retrieve the redundancy configuration to be used
throughout the newly initialised voting round (C,`), i.e. the amount of redundancy
used and, accordingly, a selection of functionally-equivalent software components
(transition from state (a) to (b)). We define the set V containing all functionally-
equivalent versions available in the system. For a given round (C,`), the amount
of redundancy used within the NVP scheme is denoted as n(C,`) ≥ 1, such that the
versions employed for round (C,`) are contained within V (C,`) ⊆V and n(C,`) = |V (C,`)|.

Having acquired the redundancy configuration, the request message payload
will then be replicated and forwarded to each of the selected versions vi ∈V (C,`)for
processing. Each such invocation of a version vi can be uniquely identified by the
tuple 〈C,`, i 〉, with i a natural number that uniquely identifies the corresponding
version (replica) instance.
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An NVP redundancy scheme relies on a decision algorithm in an attempt to
overcome any disparities in the results acquired for each of the subordinate invoca-
tions 〈C,`, i 〉, and to adjudicate a satisfactory result to be returned for the voting
round (C,`) nonetheless. Such disparities may arise as the result of disturbances
affecting the operational status of any of the versions vi ∈V (C,`) — cf. Sect. 2.4. The
essential part of any voting mechanism is the construction of a generalised partition
℘(C,`) of the set of versions V (C,`). This partitioning procedure is initiated in state (b)
within the scope of a specific voting round (C,`), immediately after the invocations
〈C,`, i 〉 have been issued, and runs in complete isolation of other (pending) voting
rounds. Whenever a ballot has been secured for one such invocation, the partially
constructed partition is updated and the corresponding version vi will be classified
as a member in an appropriate equivalence class. The equivalence classes that
emerge from the partitioning procedure ultimately reflect which versions are in
mutual agreement, i.e. which versions returned similar responses in view of the
equivalence relationships defined in Sect. 2.6.1.1. As soon as a result is available for
each of the versions involved, the transition from (b) to (c) will fire, the partitioning
procedure terminates and the construction of ℘(C,`) is completed. At this stage,
all information is available to adjudicate a result; if none can be found, a failure
message will be returned to the client.

(a) (d)(b) (c)

decision algorithm
℘(C,`) constructed

request arrived, voting
round (C,`) initialised

forward input message
to replicas vi ∈ V (C,`)

〈C,`, i1〉

〈C,`, i2〉
. . .

〈C,`, in(C,`)〉

(0)

dispatch request 〈C,`, i 〉 from
NVP composite C to vi (1)

network
transmission

request
received

(2)
Qr ,i n

request
processing(3)

(4)Qr ,out

response
sent (5)

network
transmission

A/S/c/k/n/D

Figure 2.1: Version invocation state transition model.

Whilst an attempt is made to adjudicate a result, information will be extracted
from the generated partition. For instance, in case of majority voting, the scheme will
only manage to identify a result if there exists some equivalence class in ℘(C,`) with
a cardinality no less than a qualified majority of the employed degree of redundancy
n(C,`). If such an equivalence class is found, the associated result, based on the
equivalent ballots that were reported by the members classified inside that class,
will be returned.

Note that a result for a voting round (C,`) may be returned pre-emptively,
depending on the type of voting mechanism used, and even before a result has
been acquired for each of the subordinate invocations 〈C,`, i 〉. The conditionalities
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are specific to each type of voting mechanism, which can only inspect the (partially)
constructed partition immediately after each successive partition update, i.e. when-
ever a result for some version vi ∈V (C,`) has been acquired and the version has been
classified into some equivalence class accordingly. More information regarding
voting pre-emption can be found in Appendix B. Regardless of whether an adjudica-
ted result is returned before the transition into state (c) has completed, results
will be collected for the pending requests and accounted for by the partitioning
procedure.

2.2 Version Invocation State Transition Model

The process of invoking a version vi from within a voting round (C,`) — a request
denoted by (C,`) — can be characterised according to the state transition diagram
shown in Fig. 2.1. In the upper half, one can see the general state transition diagram
of the voting round itself. In this particular case, none of the engaged versions
vi are subject to performance failures. A high-level overview of the steps in the
version invocation itself, initialised when the replicated input is forwarded to vi for
processing, is provided in the lower half below. The model draws upon the Request
Processing state transition model as defined in the Web Service Management:
Service Life Cycle (WSLC) specification [94].

After a request 〈C,`, i 〉 has been transmitted over the network, it will be handed
over to the deployment environment hosting vi , resulting in a transition to the
RequestReceived state (1).

The admission and scheduling of incoming request is henceforth managed by the
host’s queuing policy, which is responsible for deferring the request until the required
processing capacity and/or system resources have become available. While the host
acquires the necessary system resources, the request will be temporarily stalled and
await further processing until the conditions allow for transition Qr,in to fire. It is
only at this point with RequestProcessing (2) as current state, that the functionality
of the version vi will be called to process the request (A01). Whenever a request
has been processed, i.e. immediately after it has completed the transition into its
RequestProcessed (3) state, the corresponding system resources are released, and
the next request (if available) will be taken from the waiting queue: it too will then
transition into its RequestProcessing (2).

As soon as vi has completed execution, the result will be handed over to the
deployment environment, awaiting network transmission, which is symbolised as
the transition Qr,out. Finally, the invocation process 〈C,`, i 〉 terminates when the
response has been delivered at the NVP composite, such that its response can be
utilised for the continuation of round (C,`).

Throughout this dissertation, the term pending request will be used to denote a
request that has accomplished the transition into state (1) though has yet to enter
into state (4). During this stage of its life span, it is being handled by the deployment
environment on which the target version vi is deployed, and therefore is susceptible
to failures that may arise within that environment.
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2.3 Version Invocation Discrete Event Model

Fig. 2.2 shows a predefined set of discrete events and the potential chronological
sequences thereof that are representative of the operation of a single version invoca-
tion. This discrete event model is at the core of the simulations used throughout
this thesis for the assessment of the effectiveness of the proposed dependability
strategy, and formalises the abstract invocation state transition model described
in the previous section1. The retrieved ballot will be used as the response of
version vi when the decision algorithm is expected to adjudicate the outcome for
voting round (C,`), and may be susceptible to different types of disturbances that
occurred during the lifetime of invocation 〈C,`, i 〉. The shaded area highlights the
normal event sequence in the absence of any type of disturbance; an overview of
potential disturbances as well as their repercussions on the ballot retrieval procedure
is elucidated in Sect. 2.6. Note the use of timer, divergence and convergence
elements, denoted by markers taken from the BPMN specification, which may
result in multiple sub-sequences of events to be followed contemporaneously2 [95].

The event sequence(s) that will eventually result from the progression of an
invocation 〈C,`, i 〉 is driven by the principle of event replacement. One can distin-
guish three options in the way events are replaced:

1. An event can be successively replaced by another self-instated event scheduled
when it has completed processing (denoted by solid, black arcs). As per
Sect. 1.4, an event is an atomic unit of work that may cause the system to
change state. Once its processing starts, all steps and actions associated with
it will be processed in full and without interruption. While it is processed,
there can be no interleaving of actions pertaining to other events, as only a
single event can be processed at any time.

2. It can be preemptively replaced when it was previously scheduled but it did
not occur by the time at which another, external event occurred (dashed arcs).
This type of event replacement is typically triggered by the occurrence of
failure activation events.

3. Finally, event replacement can be deferred until a specific condition holds, e.g.
until the queuing policy indicates that some processing capacity is available
(blue arcs).

For the time being, we will only focus on the normal event sequence that would
materialise for an invocation 〈C,`, i 〉 in the absence of any type of disturbance,
as it is highlighted in the shaded area shown in Fig. 2.2. Note how this event
sequence emerges almost exclusively from successive event replacements, which
have the advantage that a replacement event can be scheduled to occur after
some delay relative to the time the replaced event was previously scheduled to
occur, thereby enabling the simulation of network transmission delays, service and
waiting/sojourn times. Other event sequence(s) will be systematically expounded
upon over the next few sections.

1The states in the lower part of Fig. 2.1 have been included in green in Fig. 2.2, to allow for more
convenient cross-referencing.

2For a given invocation, at most one event is scheduled at any time for each sub-sequence in progress.
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Upon initialisation, an event of type RequestInitialised will be scheduled for
immediate processing, which will be replaced by a RequestSent event, possibly
scheduled with deferred occurrence time, which may accommodate any overhead
situated at the NVP composite prior to the actual transmission of the replicated
request to vi

3. The delay applied when the RequestSent event instates its replacement
RequestReceived event corresponds to the network latency for sending the invoca-
tion request message from the NVP composite to the host on which vi is deployed.

Next, when the RequestReceived event is processed, two events will be scheduled,
which is denoted by the parallel gateway shown at its right: the upper branch will
consider the sojourn time in state (1) before the transition Qr,in can be fired, and
will schedule the replacement RequestProcessing event accordingly (cf. Fig. 2.1); the
lower branch will initiate a new context update by means of a CounterUpdateIssued
event, a procedure which is isolated from the core invocation event sequence and
that will be explained in Sect. 2.7. Observe how the conditional replacement of the
RequestReceived event by its successor RequestProcessing event will be postponed
(if needed) for as long as all available processing capacity at the host of vi has
been exhausted. The admission of requests for processing is coordinated using
a queuing model; its scope is depicted in yellow in Fig. 2.2, which identifies the
relevant event (replacements) that interact with it. The simulated invocation 〈C,`, i 〉
will then appear to be processed by vi for a duration equal to the given service time,
after which the event RequestCompletedNormally, replacing its RequestProcessing
predecessor, will be processed. During its processing, it will (i) relinquish the
processing capacity that had been allocated for the request’s servicing4, and (ii)
schedule a replacement ResponseSent event to occur when network transmission of
the outgoing response message has commenced — cf. Qr,out in Fig. 2.1.

After the ResponseSent event is processed, the divergence element shown at
its right will again cause the scheduling of two separate events: a replacement
event of type ResponseReceived, scheduled to occur when the response has arrived
at the NVP composite, and a CounterUpdateIssued event. Finally, because it was
assumed no disturbance of any type affected the invocation, the exclusive gateway
convergence element shown at the right of the ResponseReceived event will be
triggered by path (a), resulting in the scheduling of a RequestHandled replacement
event, which will report the result for invocation 〈C,`, i 〉 to the decision algorithm.

2.4 Fault Manifestation Model

The essential part of any voting procedure is the construction of a generalised

partition ℘(C,`) = {P (C,`)
F ,∪̇ j∈{1,...,k(C,`)}P j }5 of the set of versions V (C,`). This partitio-

ning procedure is heavily influenced by the disturbances that affected any of the
requests 〈C,`, i 〉 involved during the voting round (C,`). Throughout this dissertation,
the notion of disturbance is used to denote the event of a single request 〈C,`, i 〉

3Examples could be memory — or, more general, resource — contention, or serialisation overhead
of the internal data representation to a format that can be sent over the wire — v. p. 94.

4The same applies to any other event type implementing the RequestProcessed state. This includes
events of type RequestCompletedAbnormally and RequestFailedExceptionally.

5The notion of a generalised partition as a partition that may contain empty blocks has been taken
from [96]. A reduced notation ∪̇ j∈{1,...,k(C,`)}P j is used to denote the partition {P1, . . . ,Pk(C,`) }. Unless

explicitly stated otherwise, a partition is assumed to contain only non-empty equivalence classes.
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struck by some type of failure, resulting in the perturbation and, consequently, the
(temporary) unavailability of the service that version vi is expected to provide (A02).
We will now elaborate on several types of disturbances relevant to NVP/MV schemes,
how such disturbances influence the transition path in the version invocation state
transition model presented in Fig. 2.1 and elaborate on the repercussions their
occurrence may have on the version invocation discrete event model as depicted in
Fig. 2.2, as well as their effect on the generated partition ℘(C,`). More specifically,
disturbances will be categorised using the comprehensive list of failure classes
presented in Fig. 2.3. Each of the classes shown represents a distinct manifestative
behaviour for a deviation of the service an affected version is sought to provide. It
reflects the total order in manifestation severity defined in Sect. 2.6.5 (for distur-
bances pertaining to software failures for a pending request being serviced).

Observe how the RequestHandled event was defined to report the result for an
invocation 〈C,`, i 〉 to the decision algorithm. Throughout this section, a total order
will be defined of the failure classes shown above in Fig. 2.3, which will serve as an
abstraction layer of the range of possible results that can be returned for 〈C,`, i 〉 by
means of RequestHandled events (D01). In addition, this event can also signal that
the result for the invocation is in accordance with the functional specifications, as
it would be expected when no disturbances affected its course (A03). The result
to be returned for an invocation will emerge from the first event combination that
activates one of the three event replacement paths comprised within the exclusive
merge convergence element shown at the immediate left of the RequestHandled
event in Fig. 2.2.

failure domain

content timing content and timing

performance
failures

response
value failure

erroneous
value failure≺≺≺ ≺≺≺

late response
failure

omission failure

crash failures

detected as

Figure 2.3: Failure classes situated in the different failure manifestation domains
(generalisation of the concepts originally published in [97] and [4, Sect. 1.2.1]).

2.5 System Model

The application of NVP/MV schemata in contemporary distributed computing
systems is assumed to exhibit the properties of a timed asynchronous distributed
system model (A04) [4, 98, 99]. It is because of this reason that the WSLC Request
Processing transition model was chosen as the foundation of the version invocation
state transition model in the first place [94]. Assuming this type of system model
allows to explicitly characterise the distinct system components on which NVP
systems rely in terms of their failure semantics, i.e. the behaviour that each is likely
to exhibit upon failures. This can be accomplished by defining the manifestative
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behaviour for each of the failure classes shown in Fig. 2.3, and listing the applicable
failure classes to which each particular type of system component may be subjected.
As such, a system characterised by the timed asynchronous distributed system
model can be expected to exhibit the following properties:

1. Software components located on different hosts communicate by exchanging
messages over an unreliable network datagram service with performance failure
semantics. The datagram service may occasionally drop messages, resulting in an
omission failure, or it may delay transmission such that messages do not arrive
within the imposed timeout (if one is specified that is), which would translate
into a late response failure.

2. A timeout service is available at application level, by means of which performance
failures can be detected. It relies on the local hardware clock to which software
components are granted access. Clocks on different network hosts have a bounded,
though unspecified, drift rate [98].

3. “All services [in the system] are timed: specifications prescribe not only the
outputs and state transitions that should occur in response to inputs, but also the
time intervals within which [...] these outputs and transitions [may be expected
to occur]” [98]. Software components in particular (including those related
to the operating system and the middleware deployment environment) have
content/performance failure semantics. If the underlying algorithm fails to
produce a correct result, the service will suffer a content failure; a late response
failure will occur if it fails to return a result within the imposed timeout. If the
algorithm has crashed and has ceased execution, omission failures will emerge.

4. Components susceptible to performance failures may crash and persistently
exhibit omission failures for a prolonged period of time. Affected components
may subsequently recover, although this is not assumed to be the case throughout
this thesis (A05).

For the remainder of this chapter, however, we shall only consider the content,
crash and performance failure classes as disturbances that may potentially affect the
operations of individual versions. The network datagram service, the middleware
deployment environment and the NVP composite itself are assumed to behave
properly without any disturbances appearing (A06) — cf. (A04), properties 1 and 3.
This implies that no disturbances can emerge from an improper configuration of
the system or any of its components, and that no administrative mistakes are made
by the people operating the system [100].

During the past 40 years, queuing models have been found to serve well as an
effective tool to model and analyse computing systems and their processing capacity
planning. As such, a suitable queuing policy was sought to model the admission
of requests for processing at individual replicas, which best matches the internal
characteristics of conventional service endpoint implementation technologies.
Throughout this thesis, it is assumed requests are admitted for processing by a
specific version based on a G/G/c queuing model (A07). The choice for this type
of model reflects the properties defined in the Java™ Servlet Specification and its
reference implementation supplied with the Oracle Java™ EE runtime [101] — refer
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to Sect. 8.5.2 and 6.1.1, p. 193, resp. 91, for more detailed information on queuing
models.

Many different application servers have been developed with the purpose of
deploying and hosting (servlet-based) web service endpoints. It is common for
these server programs to maintain a pool of standby threads to deal with incoming
requests. For the sake of simplicity, let us assume that a single pool of c ≥ 1 threads
is maintained for each (version) endpoint, each of which can be used to serve a
single request at a time. Each request runs independently and in complete isolation
of any other; the queuing discipline is based on a first come, first served (FCFS)
scheme, without support for processor sharing — v. (A07). Once a request has been
completely processed, the allocated thread will be released, after which it can then
be reallocated for serving another request — v. (A42).

The system properties described above imply that the processing capacity of
each version is managed by a multiple-channel, single-phase queuing system, and
confirm our claim of a G/G/c model. The worker threads that were mentioned
correspond to identical server instances (channels) that service requests in parallel.
Once a request has been processed by a worker thread, it no longer requires further
service (single-phase processing).

2.6 Software Failure Classes: Effects, Scope and Duration

In complex software systems, there always remain design faults which eluded
detection despite rigorous and extensive testing and debugging. Whether or not a
latent software design fault is activated, is entirely dependent on the execution path
followed when a version is invoked to process a particular request. More specifically,
it is the (initial) internal software state and the received input arguments that will
affect branch conditions and determine how execution is to proceed and which
blocks of programming logic are to be executed. As program execution progresses
and the selected code blocks along the execution path are executed, the design faults
hidden within will be activated. The activation of a software fault is assumed to
directly result in the emergence of a disturbance, without any latency between
the fault’s activation and its manifestation (A08). Moreover, the effects of the
manifestation of some disturbance in the content or timing failure domain affecting
an invocation 〈C,`, i 〉 are considered to instantaneously result in the temporary
unavailability of the service provided by vi with respect to 〈C,`, i 〉, and in complete
isolation of any other request (A09). For such types of failure classes, the potential
disruptive effects on the response value acquired for an affected request 〈C,`, i 〉 are
expected to have dissipated by the time the voting round (C,`) transitions into its
(c) state (A10). With the exception of crash failures, it is possible that a failure may
occur before the effects of another failure that occurred earlier on have dissipated.

Among software defects, a distinction is commonly made between Bohrbugs and
Heisenbugs, primarly from a debugging perspective [100]. It rests on the (different)
types of disturbances that can materialise due to the activation of a design fault. The
former type of design faults will “systematically [result in disturbances of the same
failure class] in the presence of [identical] input conditions and initial state” [4].
Whereas Bohrbugs exhibit deterministic properties in terms of the failure behaviour
they induce, the disturbances caused by Heisenbugs may span several failure classes;
their materialisation usually “depend[s] on subtle combinations of the system state
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and its environment” [4]. This section will now elaborate how software design faults
can manifest as content or crash failures (A11).

2.6.1 Response Value Content Failures

Whereas it would be expected that functionally-equivalent versions sharing a
common specification would return the same response when provided with identical
input, discrepancies between their response values may arise due to response
value failures (RVFs) [102]. Such type of disturbances may find their origins in
the activation of (i) Bohrbugs, examples of which are (implicit) type conversions
that were overseen during development, or careless deployment of the software on a
host with a different arithmetic unit, as well as (ii) Heisenbugs, e.g. race conditions.

Despite being classified as failures, the occurrence of RVF failures during system
operations will usually not make the system appear to fail. Rather, the content of the
response returned via the service interface is syntactically correct, though diverges
from implementing the service’s functional specification — cf. (A02).

It is assumed that RVF failures manifest only when a latent software design
fault is activated along the current execution path followed whilst version vi is
processing request 〈C,`, i 〉 (A12), i.e. when the request is in the RequestProcessing
state (A01), as can be seen from the yellow hatched area in Fig. 2.1. In spite of failure
activation, vi will proceed along the current execution path until completion, after
which a response will be returned and transmitted over the network. As shown by
transition RVF (1) in Fig. 2.2, the occurrence of an RVF failure affecting a pending
request being processed and not subject to any other failure having previously
occurred, will result in the preemptive replacement of the previously scheduled
RequestCompletedNormally event by a RequestCompletedAbnormally event,
scheduled at the same time at which the version vi was initially expected to complete
processing of request 〈C,`, i 〉. The expected service processing time therefore
remains unaffected.

Let V (C,`)
r v f ⊆ V (C,`) be the set of versions that, during voting round (C,`), were

affected by an RVF failure and that were not subject to any other type of failure of

higher severity. The event sequence for an invocation 〈C,`, i 〉, with vi ∈V (C,`)
r v f will

resume along the normal event sequence highlighted in Fig. 2.2, and will conclude by
a RequestHandled event reporting a result that is syntactically valid but not conform
vi ’s functional specifications. Furthermore, let V (C,`)

n f ⊆ V (C,`) denote the set of

versions that were not affected by any failure at all; a RequestHandled event will

result in a similar way for any invocation of a vi ∈V (C,`)
n f , signaling the exact value

has been returned, in line with (A03). During the voting procedure, a partition

∪̇ j∈{1,...,k(C,`)}P j =℘(C,`) \ P (C,`)
F is constructed for all versions in V (C,`)

r v f ∪V (C,`)
n f that

returned a syntactically valid response. This partition will hold equivalence classes
P1, . . . ,Pk(C,`) , such that each of these sets contains those versions vi ∈V (C,`) which
reported identical results (A13). Ideally, in a situation without disturbances of any
kind, i.e. unanimous consensus, only one class P1 would need to be created to

accommodate all n(C,`) versions in V (C,`)
n f such that℘(C,`) \ P (C,`)

F = {P1} =V (C,`)
n f and

P (C,`)
F =V (C,`)

r v f =;. Contrarily, dissenting versions in V (C,`)
r v f require the creation of

additional equivalence classes.

48



Let cb denote the cardinality |V (C,`)
r v f | and B(C,`) = ∪̇ j∈{0,...,cb }b j a generalised

partition with cb +1 possibly empty consensus blocks. Equivalence class b0 ∈B(C,`)

is defined to hold all versions that were not affected by any failure and that returned
the exact result as it was expected from (A03). The other blocks b j will group the

remaining versions in V (C,`)
r v f based on the equivalence of the responses returned.

WhenB(C,`) has been constructed, the final partition℘(C,`) \ P (C,`)
F can be established

by removing all empty equivalence classes. Moreover, its cardinality k(C,`) is represen-
tative of how many different syntactically valid responses were returned by versions
in V (C,`).

2.6.1.1 Generating Response Values

In order to compensate for the application-dependent nature of the range of valid
response values, our simulation model was deliberately designed for abstraction
of actual response values (D02). Rather, it will employ advanced techniques to
generate an applicable response value for each invocation 〈C,`, i 〉 affected by a
content failure. This procedure will be called upon adjudication when the voting
round (C,`) transitioned into state (c), i.e. after all invocations 〈C,`, i 〉 for each
vi ∈V (C,`) have had their RequestHandled events processed.

Let Ran(X ) be a finite range for some random variable X :Ω 7→R that is represen-
tative of the response acquired for an invocation 〈C,`, i 〉. In addition, we define
a function h(C,`) : V (C,`) 7→ (Ran(X )∪⊥) such that h(vi ) yields a random variate
x ∈ Ran(X ) symbolising a syntactically valid response that was acquired for an
invocation 〈C,`, i 〉, or ⊥ if no such response could be acquired in a timely manner.
Moreover, each block b j is defined to cover some specific interval Xb j ⊂ Ran(X ),
given that

⋂
j∈{0,...,cb } Xb j =; such that any two random variates of X are considered

as equivalent if and only if they both fall within the coverage interval Xb j of the same
consensus block b j (A14).

By analogy with the formalised majority voting procedure defined in [7, Sect. 2.1],
versions vi ∈V (C,`) can be classified using an inexact notion of equality between
results acquired from the corresponding invocations, an equivalence relation that
can be formalised as follows:

R(C,`)
d = { (vi1 , vi2 ) ∈V (C,`)×V (C,`) |

[ h(C,`)(vi1 ) = h(C,`)(vi2 ) =⊥ ] (2.1a)

Y [ ∃! j : h(C,`)(vi1 ),h(C,`)(vi2 ) ∈ Xb j ] } (2.1b)

The first clause (2.1a) expresses consensus amongst all versions in V (C,`) for which,
within the scope of the current voting round, a late or syntactically invalid response
was received, or that suffered from an omission failure. Such versions are to be
classified in P (C,`)

F accordingly — cf. Sect. 2.6.2 and 2.6.4. Valid response messages

that can be retrieved in a timely manner for the remaining versions in V (C,`)
r v f ∪V (C,`)

n f
will be used to assess and detect consensus on the basis of equivalent results, as
shown by clause (2.1b). More specifically, if two random variates corresponding
to the responses secured for any two versions vi1 , vi2 ∈V (C,`) lie within a common
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coverage interval Xb j , then vi1 and vi2 are thought to be in consent and both shall
be classified in b j . We will now present two alternative approaches for generating

(deterministically reproducible) response values for versions in V (C,`)
r v f . In doing so,

the notion of consensus based on the equivalence of response values, as formalised
by means of relation R(C,`)

d , will be complemented by redefining clause (2.1b) in
terms of a two-argument distance function d : Ran(X )×Ran(X ) 7→R+

0 inspired
by [7]. Generally speaking, d(x, y) É ε for any pair of versions vi1 , vi2 held within
b j , with x and y random variates drawn as response values h(C,`)(vi1 ), respectively

h(C,`)(vi2 ), and ε ∈R+
0 . In other words, two responses are considered to be equivalent

when they differ by no more than ε (within the context of a specific
voting round (C,`)).

From a Normally Distributed Variable The first approach is based on the probabi-
lity density function of the normal distribution N (µ,σ2), with µ= 0 and σ= 1. The
rationale of using this distribution is that it is assumed that outlier response values
are centred around the exact value, and that extreme outliers are less likely to occur
than minor deviations from the exact value (A15) [103, pp. 292–299]. As shown
in Fig. 2.4, we now delimit Ran(X ) as the discrete interval [µ−3σ,µ+3σ]; this
interval supports the vast majority of the possible response values (random variates
of the normally distributed variable X ) — up to 99.73% [104]. We now proceed
by subdividing Ran(X ) into 2(cb +1) equidistant subintervals of size ε= 3σ/cb+1, as
illustrated in Fig. 2.4. Any coverage interval Xb j for j ∈ {0, . . . ,cb} is now represented
as the merger of two such subintervals spaced at equal distance of and at both sides
of µ, i.e.

Xb j =
{ [−ε,ε] j = 0 (2.2a)[−( j +1)ε, − jε

[∪ ]
jε, ( j +1)ε

]
j ∈ {1, . . . ,cb} (2.2b)

such that each block b j will accommodate the same amount of variability in the
response values generated for the versions classified within, in comparison to the
exact value µ (A16) — thereby demarcating a range of possible output values that
are considered to be equivalent, in line with (A13) and (A14). As the absolute value
of a real number may intuitively be thought of as its distance from µ= 0 and thus the
magnitude of the discrepancy with respect to the exact value, we can redefine the
distance function as d(x, y) = ||x|− |y ||. Hence, one can then observe from Eq. 2.2
that, within the scope of a voting round (C,`), the corresponding random variates
representing the response value acquired from an invocation 〈C,`, i 〉 of any of the
consentient versions vi classified within the same b j are guaranteed not to differ by
more than ε. In particular, for any two random variates x, y ∈ Xb j drawn from X as

the response values of a pair of versions vi1 , vi2 ∈V (C,`), clause (2.1b) of R(C,`)
d holds

if and only if d(x, y) < ε in case vi1 , vi2 ∈V (C,`)
r v f are classified in b j for j ∈ {1, . . . ,cb},

or if d(x, y) É ε for versions vi1 , vi2 ∈V (C,`)
n f classified in b0.

In order to classify a version v ∈V (C,`)
r v f , we will draw a random variate x from

the normally distributed variable X until we have a value that lies within some
interval Xb j other than Xb0 . The version under consideration will then be added to
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the corresponding block b j associated to the relevant coverage interval. Mapping

a random variate x to some b j ∈ {B(C,`) \ b0} is a two-stage procedure. First, an
intermediate natural number is computed using the ancillary mapping function
f : Ran(X ) 7→N0:

f (x) =
⌈ |x|−ε

ε

⌉
(2.3)

From this value y = f (x), the destination block b j = g ( f (x)) can now be obtained by

means of the function g :N[0,...,cb ] 7→B(C,`) such that g ( f (x)) = b f (x). Classification

of some version v ∈V (C,`)
r v f entails the repeated process of drawing random variates x

from a normally distributed random variable X until it was found that
g ( f (x)) ∈ {B(C,`) \ b0}, implying the disposal of variates for which f (x) = 0 or f (x) > cb

holds — cf. the constrained domain for which function g was just defined.

µ−
3
σ

b0

µ+
3
σ

b1 b1b2 b2b3 b3b4 b4b5 b5
0

exact value bucket

exclusion interval

density function

Figure 2.4: RVF classification system based on the probability density function of
the normal distribution, assuming cb = 5. Symmetrical coverage interval mergers in
accordance with (A16).

From a Uniformly Distributed Variable A second approach that can be taken is by
sampling from a random variable X distributed according to a continuous uniform
distribution U (a,b). However, assumption (A15) does not apply here; response
values are equally likely to take any value within the interval [a,b] = Ran(X ) with
probability (b−a)/k (A17). When choosing minimum and maximum values a = 0,
respectively b = cb , the common coverage interval width ε= 1, and each coverage
interval Xb j will cover the random variates that lie within the range [ j −1, j ], for
j ∈ {1, . . . ,cb}. Note that in contrast with the normal RVF manifestation model, no
specific subinterval Xb0 of the considered range for X is considered for block b0.

In order to classify a version v ∈ V (C,`)
r v f , we will draw a random variate x from the

uniformly distributed variable X until we have a value that lies within [a,b], after
which v can be classified into some block b j corresponding to the applicable interval
Xb j . Note that a Bernouilli trial with p = 0.5 will be used to decide which block to
assign a version to when the variate x equals a common interval boundary, as is the
case when cb > 1 and x ∈ {1, . . . ,cb −1}.

The partial consensus relation between any two versions in V (C,`)
r v f classified

within the same b j was stipulated in clause (2.1b) of R(C,`)
d . It can now be formalised
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by means of response equivalence in that the corresponding random variates
x, y ∈ Xb j drawn from X are guaranteed to differ by no more than ε, i.e. d(x, y) É ε

with the distance function redefined as d(x, y) = |x − y |.

Ramifications of Generation Approach In the previous two sections, the notion
of consensus among versions was defined in terms of an equivalence relation
applied on random variates drawn from a random variable X representative of
the response acquired from an invocation of these versions. This relation was
formalised by means of the distance function d and an upper bound ε imposed
as the maximum discrepancy between any two random variates x, y ∈ Xb j drawn

for any pair of versions in V (C,`)
r v f ∪V (C,`)

n f classified in the same consensus block b j

during the adjudication procedure at the end of voting round (C,`). Moreover, the
equivalence relation was defined on specific coverage intervals Xb j such that the
properties associated to the mathematical definition of equivalence hold under both
definitions of the distance function. Let x, y , z ∈ Xb j . Unsurprisingly, when sampling

from N (µ,σ2) and for j Ê1, reflexivity and symmetry show from d(x, x) = 0 < ε,
respectively d(x, y) = d(y , x) < ε. Transitivity applies as well, as can be observed from
the definitions of the coverage intervals in Eq. 2.2 and Sect. 16 that
d(x, z) < d(x, y)+d(y , z). Note that all properties still hold for j = 0, or when sampling
from U (0,cb), though the strict inequalities should be replaced by their corresponding
non-strict counterpart. This remark is also applicable to strict voting, for which
an exact notion of equality is used, i.e. d(x, y) = x − y , and ε= 0, and clause (2.1b)
would be equivalent to h(C,`)(vi1 ) = h(C,`)(vi2 ).

Though inspired by the formalised majority voting procedure as elucidated in [7,
Sect. 2.1], the construction of the partitionB(C,`) differs in that versions are classified
into consensus blocks b j deterministically, depending on the order in which random
variates are drawn from the variable X . This order intuitively corresponds to
the order in which responses are acquired from the corresponding invocations
〈C,`, i 〉 issued within the scope of a given voting round (C,`) (increasing response
times) (A18). Indeed, without the classification procedures defined in the previous
two sections, several eligible partitions could emerge based on the equivalence of
response values in Ran(X ) instead of individual coverage intervals Xb j , an issue
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Figure 2.5: Probability mass function f A indicative of the cardinality of individual
consensus blocks b j ∈B(C,`) \ b0.

52



extensively pointed out in [7]. Consequently, consensus blocks b j ∈B(C,`) are not
necessarily maximal with respect to the property that d(x, y) É ε, for any x, y ∈ Ran(X ),
as is the case in formalised majority voting; versions will be partitioned according to
the discrepancies observed between their (generated) response values instead.

The implications of choosing either of the suggested approaches for generating

response values relate particularly to the generalised partition B(C,`) \ b0 of V (C,`)
r v f

constructed during the partitioning procedure. Recall that this partition is iteratively
constructed, and that an update is called for whenever a new response has been
secured for versions v ∈V (C,`) participating in round (C,`). More specifically, the
chosen model will affect two inherently related properties of B(C,`) \ b0, viz. the
number of non-empty consensus blocks b j held within, and their cardinality |b j |.
Let us denote this latter property by the discrete random variable A. Within the
scope of a single voting round (C,`) affected by cb = |V (C,`)

r v f |RVF failures, this variable

effectively defines a relation Ω 7→N[1,...,cb ].
A comparison of the cardinality of generated consensus blocks for classifying

versions affected by RVF failures under the two alternative approaches for response
value generation is shown in Fig. 2.5: it depicts the probability mass function f A

of the discrete random variable A, which has been computed for eligible values
in Ran(A) (shown on the vertical axis) in view of the corresponding abscissae cb

(shown on the horizontal axis). The abscissae represent how many versions affected
by RVF failures should be classified, effectively delimiting Ran(A) (vertical axis) as
N[1,...,cb ]. For each value along the horizontal axis, frequency data was obtained from
1000 sample runs, during each of which response values were generated and cb

versions were classified accordingly in terms of the equivalence relation defined
hereabove. A characteristic shared by both approaches is that consensus blocks of
larger cardinality are less likely to materialise, which is reflected in the corresponding
confidence intervals plotted for A in Fig. 2.6. Lower, shaded series of intervals relate
to U (0,cb), upper series to N (0,1). Note how Ran(A) reduces to {1} for cb = 1.
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Figure 2.6: Confidence intervals computed on the observational mean of the random
variates in Ran(A) collected over 1000 sample runs (95% confidence level).

One can however clearly observe that sampling response values from N (0,1)
is more likely to result in consensus blocks of larger cardinality than had U (0,cb)
been used. This observation was anticipated because of the increased probability of
generating minor discrepancies that tend to centre around the mean µ, as stated
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by (A15) and illustrated in Fig. 2.4 — cf. (A17). As the generation approach based
on the normal distribution results in an increased cardinality of consensus blocks,
it logically follows that its application will generally reflect in the construction of
partitions comprising fewer blocks when compared to the alternative based on a
uniform distribution. Moreover, the data plotted in Fig. 2.6 seems to suggest that, as
cb increases, the centres of the confidence intervals converge towards a common
value, while the corresponding radii exhibit a gradual decline. This observation
has been corroborated by additional experiments in which cb is varied up to 1000
with results showing how averaging the obtained centres yields 1.974 for N (0,1)
with a standard deviation as little as 0.015, or 1.578, respectively 0.013 for U (0,cb).
Furthermore, preliminary experimentation has shown that, in the long run, similar
results with only little divergence would emerge had different parameters been
chosen for the underlying sampling distribution used.

2.6.2 Erroneous Value Content Failures

The activation of a latent software design fault may also cause the normal flow of
execution to be interrupted abruptly by means of an exception being thrown, a
situation characterising the manifestation behaviour of what will be referred to as
erroneous value failures (EVFs). Note that the exceptional behaviour caused by the
occurrence of an EVF failure is transient and will disappear immediately such that it
will only affect the relevant pending requests that were being serviced at the time the
failure occurred (A19) — cf. (A02), (A09) and (A10). This implies that any relevant
exceptions raised are caught and dealt with internally — inside the software unit
itself, that is — so that it can gracefully recover and avoid corruption of its internal
state. Falling within the content failure domain, a syntactically invalid response
message that was not covered by the functional specifications will be returned by
the middleware environment for the affected invocation, containing the serialised
exception thrown. As exceptions are fully contained within the software unit from
which they originate, they cannot propagate to the deployment environment, nor
can they affect any other component deployed on top of it.

It follows from (A01) that EVF failures emerging from a design fault in version vi

can only affect a pending request 〈C,`, i 〉 whilst it is in the RequestProcessing state
(A20), as can be seen from the yellow hatched area in Fig. 2.1. The occurrence of an
EVF failure affecting a pending request being processed and not subject to any other
failure having previously occurred, will result in the replacement of the formerly
scheduled RequestCompletedNormally event by a RequestFailedExceptionally
event (see Fig. 2.2, transition EVF (2)). Unlike RVF failures, the occurrence of an
EVF failure will result in the immediate scheduling of the replacement event, as the
version will not pursue processing along the currently followed execution path. The
RequestFailedExceptionally event will then immediately issue a failure message
to be returned and transmitted over the network, resulting in transition Qr,out to be
fired in the version invocation state transition model as shown in Fig. 2.1.

Let V (C,`)
ev f ⊆ V (C,`) be the set of versions that, during voting round (C,`), were

affected by an EVF failure and that were not subject to any other type of failure

of higher severity. The event sequence for an invocation 〈C,`, i 〉, with vi ∈V (C,`)
ev f

will rejoin the normal event sequence highlighted in Fig. 2.2 by a ResponseSent
event, and will conclude by a RequestHandled event reporting a syntactically invalid
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result. When the voting round (C,`) has transitioned into state (c), the partitioning

procedure will classify all versions v ∈V (C,`)
ev f into P (C,`)

F .

2.6.3 Crash Failures

A version vi struck by a crash failure, e.g. because of a deadlock, infinite loop, or
uncaught exceptions, has become permanently unresponsive: it will continuously
exhibit omission failures for any request it was servicing at the time of failure
occurrence, as well as subsequent requests (A21). The service vi is expected to
provide has become permanently unavailable, thereby violating (A09) and (A10) [4].
Execution is perceived to have stopped, i.e. it “does not take the next step of
its algorithm and has lost all its previous state” [105]. It is assumed that crash
failures can only arise as the result of the activation of a latent software design fault
along the current execution path followed whilst version vi is processing a request
〈C,`, i 〉 (A22), i.e. when the request is in the RequestProcessing (2) state, in line
with (A01), and illustrated by the yellow hatched area in Fig. 2.1.

As a crash failure effectively halts any processing or activities of the affected
version vi , its activation will affect the version invocation state transition model in
two possible ways. Firstly, any pending request 〈C,`, i 〉 being serviced at the time a
crash failure affected vi , will never transition to state (3). The processing capacity
that had previously been allocated for servicing these requests will therefore never
be relinquished. Secondly, all other requests destined for execution by vi that did
not already transition to state (2) will never transition to the RequestProcessing
(2) state. Note that crash failures were explicitly defined to originate from a design
fault in the software implementation of a version; the activation of such failures
is assumed to affect only the availability of the version, and does not affect the
behaviour of the deployment environment (A23). Consequentially, any request
〈C,`, i 〉 arriving at the host at which vi was deployed will be accepted and queued,
but will become stuck in the RequestReceived (1) state, awaiting processing indefini-
tely. Requests that already transitioned into state (3) prior to the emergence of the
crash failure will pursue along the normal transition path and have their response
sent out for delivery (transition Qr,out).

For requests susceptible to a crash failure having occurred, the associated
omission failure will manifest by means of a performance failure (A24), as described
in Sect. 2.6.4. As can be seen from the discrete event model in Fig. 2.2, for each
request being serviced, when not subject to any other failure having previously
occurred, the occurrence of a crash failure will result in the replacement of the
previously scheduled RequestCompletedNormally event by a RequestFailedCompo-
nentCrash event, scheduled at time +∞. Stalled requests 〈C,`, i 〉 awaiting processing
will result in the RequestProcessing event to be replaced similarly.

2.6.4 Performance Failures

As can be seen in Fig. 2.1, not all requests 〈C,`, i 〉 take an equal amount of time to
return their response. Let tmax represent the largest permissible response time that
an NVP composite can afford for any request 〈C,`, i 〉 to complete. This parameter
is of particular interest as it is used to detect late timing failures, often referred to
as performance failures — any version vi ∈ V (C,`) failing to produce and have its
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response returned within the time constraints imposed would obviously translate
into such type of failure. It is assumed that a performance failure manifests only
when a timely response for a request is not available (A25) by the time the decision
algorithm is expected to adjudicate the outcome for the current voting round
(C,`), as can be seen from the hatched area below state (c) in Fig. 2.1. Note that
a performance failure does not directly affect the progress of the request itself.
Moreover, its emergence is not necessarily due to the activation of a software
design fault affecting the version servicing the request, as it can materialise from
the interplay of several endogenous and exogenous conditions as well (A26) [106].
For instance, the complexity of an implementation (version) — an endogenous
condition — may exceed the computational capacity of the underlying hardware
platform — an exogenous condition — such that the application’s timing characteris-
tics as described in the specifications can hardly ever be met. Other examples of
exogenous conditions include, e.g. network transmission delays, and queuing delays
or overhead originating from the deployment platform.

As such, two types of performance failure can be discerned. Firstly, a performance
failure can effectively detect omission failures when the request was affected by a
crash failure — cf. Sect. 2.6.3. Secondly, any other type of request failing to deliver a
response within the specified time constraints, and that was not affected by a crash
failure in the meantime, is said to suffer from a late response failure (LRF). Such type
of failure usually occurs due to inadequate capacity planning, where the system
— version, in this case — would be observed to perform subnormally, since the
assumptions on the expected load prove to be unrealistic, or not in line with current
demand. In describing the state transition path for a request, a clear distinction
needs to be made between these two types of performance failures.

As for omission failures due to a crash failure affecting vi , Sect. 2.6.3 already
enlarged on the possible paths followed by a request 〈C,`, i 〉 in the state transition
diagram shown in Fig. 2.1. Because the version has become permanently unrespon-
sive, an event of type RequestFailedComponentCrash had already been scheduled
at time +∞ — cf. (A09) and (A10). If request 〈C,`, i 〉 failed to return its response
to the NVP composite before the tmax timeout has lapsed since its initialisation,
the PerformanceFailure event will be processed and replaced by an event of type
FailureReceived to be instantaneously processed. Finally, the replacement event
will cancel the previously scheduled RequestFailedComponentCrash event and hand
over the response (failure message) for voting, after which the response acquisition
procedure has been completed and the request has been completely handled.
Note how a RequestHandled event emerges from a FailureReceived event being
successively replaced, complemented by a preemptive replacement of a Request-
FailedComponentCrash event, as it is defined by the join convergence element contai-
ned within path (c).

When a performance failure emerges due to a request 〈C,`, i 〉 suffering from an
LRF failure, a correct response may eventually be delivered but will be discarded, for
the request will continue in the background, following the normal path in the version
invocation state transition model, during which failures may still affect its course.
Such type of failure occurs in isolation of other requests in the system, adhering to
(A02), (A09) and (A10). Note that the request may already have been affected by
content failures by the time its response was due. After the request has timed out, i.e.
no event of type ResponseReceived had occurred in the request’s preliminary event
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sequence during a tmax time span since its initialisation, the PerformanceFailure
event will be processed and a FailureReceived event will subsequently be immedia-
tely scheduled, signaling the lack of a timely response. Finally, as it can be observed
from the convergence element held within path (b), when both FailureReceived
and ResponseReceived events are available for successive, respectively preemptive
replacement, the final RequestHandled replacement event will be scheduled.

Note that when a request is initialised, a specific PerformanceFailure event will
automatically be scheduled for processing when a period equal to tmax has lapsed,
apart from a RequestInitialised event. The replacement procedure formalised
by the convergence elements in paths (b) and (c) shows how the RequestHandled
event emerges as the successor for the FailureReceived event, whereas the other
input events, i.e. RequestFailedComponentCrash, respectively ResponseReceived,
are preemptively replaced and therefore discarded. Having detected a performance

failure for invocation 〈C,`, i 〉, the version vi will be classified in P (C,`)
F , for the

RequestHandled event signaled a performance failure as the result for 〈C,`, i 〉.

2.6.4.1 Injecting Late Response Failures

When running simulations, one may occasionally wish to inject performance failures
into the system and investigate to what extent they may degrade its performance.
As will be explained in Sect. 6.4, our simulation environment has been designed to
support multiple failure injection mechanisms. What all of these mechanisms have
in common is that they allow the user to specify predefined or custom-made failure
activation events which are to be scheduled automatically so as to affect the desirable
replicas and/or voting rounds. Additional information that can be specified include,
e.g., the conditionalities that should hold before scheduling this type of events, and
the resulting manifestative behaviour — failure class, that is. Whereas omission
failures would spontaneously emerge after injecting a crash failure affecting the
desirable replica, the injection of LRF failures is somewhat more complex. In what
follows, a two-phase procedure is suggested for injecting an LRF failure within the
scope of a newly initiated version invocation.

current state scheduled state stance variate

(1) RequestInitialised RequestSent client overhead 0

(2) RequestSent RequestReceived RTT (incoming) 1

(3) RequestReceived RequestProcessing queuing overhead ⊥
(4) RequestProcessing RequestCompleted RPT (overall) 2, 3

(Ab)Normally
(5) RequestCompleted ResponseSent replica overhead 5

(Ab)Normally /
Exceptionally

(6) ResponseSent ResponseReceived RTT (outgoing) 4

Table 2.1: State transitions in the version invocation discrete event model during
which an activation of an LRF failure may occur.

Any failures to be injected so as to affect a given request 〈C,`, i 〉 should only be
activated at a relevant stage during its execution, depending on the susceptibility
of its current state to the corresponding types of disturbances. As this applies to
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LRF failures as well, the first step of the suggested procedure involves designating
which transition in the version invocation discrete event model is to be affected,
i.e. which transition should be postponed so as to trigger a performance failure
— cf. Fig. 2.2. Table 2.1 lists the state transitions that could potentially trigger an
LRF failure: the current, actual state is shown in the second column; the next state,
which corresponds to the currently scheduled event in our discrete event model,
is shown in the third column. If, at any time during a request’s execution, the
currently pending transition is one of the listed eligible transitions, and if it fails to
fire before the tmax timeout has lapsed, an LRF failure would emerge, which would
be caught by means of a performance failure6. The last column in the table shows
the random variates that correspond to specific state transitions where the LRF
should be injected — with variates sampled from a random variable distributed
according to the suggested binomial distribution B(n, p), as per Fig. 2.7.

For the injection of LRF failures, one should not consider extending transition (3)
from RequestReceived to RequestProcessing though; this transition should remain
under the control of the queuing mechanism that is utilised by the applicable replica
vi for managing and admitting requests for processing. Tampering with the duration
of this transition would almost certainly result in intervals during which the system
may be in an inconsistent state — e.g. an empty waiting queue during (part of) the
additional delay.

The total simulated execution time of a request is the result of several constituents,
each of which quantifies the time required to deal with the request from a specific
perspective. Each of these consituents corresponds to the time it takes for a state
transition listed in Table 2.1 to fire7. Obviously, a significant part of the overall
execution time is the request’s servicing time, which is composed of the request
processing time (RPT) and the time the request is kept waiting until processing
capacity becomes available — transitions (4) and (3), respectively. Another signifi-
cant part would be the time required for transferring the request and response
messages to/from the targeted replica vi , i.e. the round-trip time (RTT): transitions
(2) and (6) from an incoming, respectively outgoing perspective with respect to
vi . The remaining transitions (1) and (6) account for the internal overhead of the
outgoing network transmission queue at the client and replica and the minor delays
that may ensue thereof. Due to the way in which the manifestative behaviour of
EVF failures was defined in Sect. 2.6.2, LRF failures cannot emerge during the RPT of
a request that has already been affected by an EVF failure. Indeed, an EVF failure
occurrence essentially cancels out events of type RequestCompleted(Ab)Normally,
and the replacement event of type RequestCompletedExceptionally that is scheduled
for immediate execution will in itself be replaced by its successor event ResponseSent
in due course — cf. transition (5).

6Recall that in a discrete event simulation, a state transition p → q between the states p and q is
identified by scheduling only an event corresponding to the next state q ; the current state p is not explicitly
represented. The transition is said to fire when this event is actually processed, which corresponds to the
notion of successive event replacement introduced in Sect. 2.3 on p. 43. When emphasis is placed on the
time prior to the firing of a transition, the notion of state transitions shall be used; otherwise, event q
will be referred to as the currently scheduled event, and a reference will be made to the applicable event
replacement procedure.

7All other transitions shown in the normal event sequence of the version invocation discrete event
model in Fig. 2.2 were defined to occur instantaneously, without introducing any further delay.
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Let us consider a random variable Y : Ω 7→ N0 that follows the binomial distribu-
tion B(n, p) with parameters n = 5 and p = 0.5. The probability density function of
such distribution is plotted in Fig. 2.7 (units along vertical axes equal 1/32). In order
to determine which transition to prolong so as to inject an LRF failure for a given
request, a random variate y ∈ [0,n] is drawn from Y . This sample is drawn once for
each request in the initial state — cf. Fig. 2.2. The value obtained from y identifies
the state transition that should be postponed; this mapping is shown in column 5 in
Table 2.1.

The rationale for sampling from this distribution is that the impact of the RPT on
the execution time of requests is assumed to outweigh the impact of the RTT, which
is usually true in case these requests are issued to replicas hosted within a local
area network (LAN) — located within the same administrative network unit, that
is. Furthermore, the significance of the RTT will account for invocations of versions
hosted across a wide area network (WAN), in which network transmission delays are
expected to exhibit greater magnitude and variability.

Having selected the state transition to prolong, the second step in the LRF
failure injection procedure is to prolong the time span before this transition is
fired. Immediately after each subsequent event replacement during the simulation
of the request’s execution, the system will check if the scheduled replacement event
is eligible for LRF failure injection, i.e., it corresponds to one of the state transitions
listed in Table 2.1. Rescheduling the currently scheduled event so as to occur at a
later point in time will then lead to a prolongement of the current state transition.
Let ti ni t ∈R represent a time stamp in simulation time at which the request has been
initialised, and q a real number such that q > 0. It is easy to see how an LRF failure
will spontaneously emerge by rescheduling the currently scheduled event to occur
after an additional delay of (1+q) · tmax − ti ni t time units, and this with respect to
the time it had initially been scheduled to occur.

Suitable values for q could be sampled, e.g., from a random variable Q that
is distributed according to a gamma distribution Γ(k,θ), with shape parameter
k > 1. As this distribution is positively skewed and bounded at 0, the right tail of
its probability density function is considerably longer than the left tail, and thus

RPT (overall)

client overhead

replica overhead

RTT (incoming)

RTT (outgoing)

0 1 2 3 4 5

Figure 2.7: Probability mass function of B(n, p), with n = 5, and p = 0.5, used to
determine which state transition to defer when injecting LRF failure.
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random variates obtained for q are more likely to be of moderate size [107, p. 88–89].
This is a desirable property, since we are not simulating omission failures in which
some request (or response message) is lost, and such values ensure the tmax timeout
is not exceeded to an unrealistic extent.

As a final remark, it should be pointed out that the injection of LRF failures
affect only the scheduling of events appertaining to the execution of requests; failure
activation events remain untouched and can still affect the further course of the
request’s execution.

2.6.5 Failure Class Severity Hierarchy

Throughout the previous sections, we elaborated on the conditions that could lead to
the manifestation of a particular failure class, and the ensuing repercussions on the
transition path in the version invocation state transition and discrete event models
(Fig. 2.1, resp. 2.2). So far, the impact of a single occurrence of some failure class
was described, in complete isolation of any other occurrence of (another) failure
class. During the course of its lifetime, a request 〈C,`, i 〉 may, however, be affected
by multiple failures (A27); it is the combination of failure class manifestations, and
especially the sequence in which they occur and affect a request, that will completely
determine the request transition path followed, and whether or not a timely or valid
response will be available at the time of voting.

It is noteworthy to point out that, in the context of (the simulation of) a single
request 〈C,`, i 〉, multiple (scheduled) occurrences of a single failure class affecting
the request in question, possibly activated by different software design faults, are
assumed to be idempotent: only the first occurrence will result in a state transition;
subsequent occurrences will be withheld8 (A28). Idempotence does not apply to
performance failures though, for at most one such failure can occur for a given
request.

Furthermore, as was already pointed out in Sect. 2.6.4, a request affected by an
LRF (performance) failure will continue its execution in the background, during
which it may be affected by other failure classes. In case its further course was
not subject to failures other than content failures, a response will eventually be
delivered, though it will be discarded as the voting procedure had already been
initialised, immediately after the manifestation of the performance failure9. A crash
failure affecting the request will result in a silent, unattended omission failure.

We will now elaborate on all possible sequences of failure occurrences of different
failure classes and how these may affect a request, by means of the discrete event
model in Fig. 2.2. In doing so, an intuitive notion of severity will be associated to the
different failure classes introduced in the previous sections.

8Note that these failure occurrences are withheld only with respect to the request under
consideration, and may affect other pending requests, depending on their current state.

9At the time the performance failure for the request under consideration occurred, i.e. after a time
span of tmax since the state (b) was reached in the transition path of voting round (C,`), which is
represented by the area hatched in orange below state (c) in Fig. 2.1, the NVP composite is expected
to retrieve a response for each of the requests previously spawned. Late response or omission failures
will be assumed and caught by performance failures for those vi ∈ V (C,`) for which no response was
previously acquired. The decision algorithm will then be called to adjudicate the outcome for (C,`) based
on this preliminary digest of responses.
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Let 〈C,`, i 〉 be a pending request still being serviced and already affected by
an RVF failure, i.e. its current scheduled event is RequestCompletedAbnormally.
The occurrence of an EVF failure will overrule the previous RVF failure, resulting
in the transition RVF ; EVF (3) being fired, such that the current event will be
superseded by a RequestCompletedExceptionally event, as described in Sect. 2.6.2.
Alternatively, a crash failure affecting vi would result in the replacement of the
current RequestCompletedAbnormally event by a RequestFailedComponentCrashed
event, the latter which will be scheduled at time +∞, similar to the procedure
outlined in Sect. 2.6.3. Regardless of the failure classes having affected 〈C,`, i 〉,
omission and LRF failures will always be caught by performance failures.

In case a pending request 〈C,`, i 〉 still being serviced is hit by an EVF failure, i.e.
its currently scheduled event is of type RequestCompletedExceptionally, it cannot
be affected by any other failure originating from a software design fault affecting
vi — cf. assumptions (A12), (A20) and (A22). This can be motivated by the
fact that after EVF failure occurrence, the request is no longer being serviced; a
fault message has been handed over to the deployment environment, queued and
awaiting transmission. At this stage, only LRF failures caught by a performance
failure may supersede the EVF failure when the response would not arrive in a timely
manner.

Obviously, because a crash failure hitting a version vi will persist in affecting any
new and pending request 〈C,`, i 〉, content failures are not expected to emerge, as
the crash caused all processing by vi to be halted, and therefore design faults that
can only be activated from particular execution flows cannot be triggered anymore
— cf. assumptions (A21), (A12) and (A20). Such requests will eventually exhibit
an omission failure, caught by a performance failure, a procedure described in
Sect. 2.6.3 and 2.6.4.

In conclusion, there exists a total order between failure classes by considering
the severity of their manifestation affecting the response for a request 〈C,`, i 〉 at
the revelant stages in its lifecycle, which is shown in Fig. 2.3 as the order: first
performance failures, then EVF and finally RVF failures.

2.6.6 Software Failure Activation

As it can be seen from the dashed arcs in the version invocation discrete event model
presented in Fig. 2.2, the manifestation of software failures during the relevant life
span of an invocation, i.e. the yellow hatched area in Fig. 2.1 in which the request is
in the RequestProcessing (3) state, will result in one or more previously scheduled
events to be preemptively replaced. For this type of event replacement procedure
to be initiated, additional external failure activation events are required — cf. the
replacement procedures defined in Sect. 2.3. As such, we define a set of dedicated
failure activation events whose sole purpose is to model the occurrence of some
software failure type, and to enact its manifestative behaviour on the invocation
event model. Precisely how this type of events should be scheduled will be discussed
in the scope of Sect. 6.4, which will elaborate on advanced techniques for failure
injection. Such activation events are defined for each failure class included in the
total order introduced in Sect. 2.6.5, i.e. the ResponseValueFailure,
ErroneousValueFailure and CrashFailure event types. Upon occurrence, such
activation event may immediately initiate a preemptive replacement procedure,
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adhering to (A08). The activation event PerformanceFailure does not abide this
approach though, for its successor FailureReceived event will be scheduled during
the processing ensuing from its occurrence, as it can be seen from Fig. 2.2.

Failure activation events will only initiate a preemptive replacement procedure
if the invocation is susceptible to that type of failure class at the time the failure
emerges — cf. (A08). We therefore introduce a flexible enactment mechanism, in
which the predefined events from the model in Fig. 2.2 may be composed of several
marker interfaces, and that is compliant to the failure class severity hierarchy stated
in the previous section [108, pp. 179–180]. Three such marker interfaces are defined
for each of the software failure classes, viz. AffectedByRVF, AffectedByEVF and
AffectedByCrashFailure. A preemptive replacement procedure will be initiated
for any event in the set of all scheduled, unprocessed events for an invocation
matching the marker interface corresponsing to the failure activation event currently
being processed. More specifically, an event of type RequestCompletedNormally is
composed of all three marker interfaces; the AffectedByEVF interface is applicable
for events of type RequestCompletedAbnormally10.

Additionally, the AffectedByLateResponseFailure marker interface has been
defined for the purpose of injecting LRF failures. Note how this marker interface
is used not to pre-emptively replace the currently scheduled event by an event of
another type, but to reschedule it to occur at a later point in time, in order to trigger
a performance failure. More information on this procedure and the further flow of
execution can be found in Sect. 2.6.4.

The annotated UML class diagram in Fig. 2.8 illustrates the interplay between
failure activation events and scheduled events for pending invocations, and highlights
the underlying role of a sound inheritance tree of marker interfaces to enforce the
failure severity hierarchy. Marker interfaces prefixed by AffectedBy are used to drive
the preemptive event replacement procedure described in Sect. 2.3. Events eligible
for replacement must extend the appropriate interfaces so as to enforce the failure
severity hierarchy introduced in Sect. 2.6.5. Observe how the scheduled states of the
state transitions susceptible to the injection of LRF failures, as listed in Table 2.1,
adopt the AffectedByLateResponseFailure marker interface.

The version invocation discrete event model was explicitly designed for extensi-
bility, in that additional failure classes can be defined and included in the failure
severity hierarchy. As such, failures emerging from disturbances affecting the service
that other system components intend to provide can be modelled and simulated
as well. This includes, e.g., the network datagram service, the underlying hardware,
or the middleware deployment environment — cf. (A04) and (A06). It is sufficient
to add specific marker interfaces for new failure classes, inserting these interfaces
at a suitable position in the inheritance tree shown in Fig. 2.8, and decorating the
susceptible events in the discrete event model accordingly. In doing so, one should
make sure to correctly decorate events pertaining to request invocations so as to
preclude violations of assumption (A28). Additional information regarding the
proposed design, its implementation and its purpose with respect to a simulation

10From Fig. 2.2, the RequestProcessing event type can also be observed as eligible for
preemptive replacement due to a crash failure having previously occurred, i.e. it exposes the
AffectedByCrashFailure interface (D03). This design decision is implementation-specific, as
a CrashFailure activation event will be automatically injected so as to enforce (A21).
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platform designed to assess the effectiveness of (NVP-based) redundancy schemata
can be found in Chapt. 6.

�AffectedByDesignFault�

�AffectedByEVF� �AffectedByCrashFailure�

�AffectedByRVF�

�AffectedByLateResponseFailure�

ErroneousValueFailure

Î check marker

CrashFailure
Î check marker

ResponseValueFailureÎ check marker

failure activation events

Request Completed
Normally

Request Completed
Abnormally

RequestSent RequestReceived

ResponseSent ResponseReceived version invocation model discrete

events susceptible to failure occurrences

Î trigger event replacement(s) if applicable

Figure 2.8: Preemptive event replacement and the inheritance tree of marker
interfaces are effectively used to realise the defined failure severity hierarchy.

2.7 Counter Update Discrete Event Model

The counter update discrete event model, shown as the event sequence below the
normal invocation event sequence in Fig. 2.2, encompasses a series of predefined
events that enable to model the impact of a version invocation 〈C,`, i 〉 on the load
statistics maintained for vi by the deployment environment (middleware) of the host
on which this version is deployed. Its design was inspired by the NumberOfRequests,
NumberOfFailedRequests and NumberOfSuccessfulRequests counter metrics defined
in the operation manageability capability of the Management of Web services
(MOWS) specification [109]11. Furthermore, the model describes how changes
in these statistics are conveyed to the NVP composite — v. Sect. 8.3.

When a new counter update is initiated from the lower branch of the parallel
gateway divergence elements following the replacement of either a RequestReceived
or ResponseSent event in the course of an invocation 〈C,`, i 〉, a new CounterUpdate-
Issued event will be scheduled to be instantaneously processed, and configured
appropriately so as to relay relevant load-related information pertaining to vi . A
CounterUpdateIssued event ensuing from the replacement of a RequestReceived
event serves the purpose of incrementing the NumberOfRequests counter, reflecting
the arrival of a new request at the deployment environment hosting vi , which took
place when the invocation transitioned into state (1) in Fig. 2.1. Conversely, when

11Throughout this dissertation, unless explicitly stated otherwise, it was assumed that a version vi
exposes only a single operation, such that one set of the aforementioned counters is maintained for vi
(A29). Refer to Chapt. 8 for more information.
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the invocation has been handled by vi and a response message is being returned
over the network, i.e. state (4), the CounterUpdateIssued event emerging from
the replacement of the ResponseSent event will increment either of the counters
NumberOfSuccessfulRequests or NumberOfFailedRequests, depending on the event
sequence(s) followed and whether the invocation had been affected by a content
failure during its processing. More specifically, the syntactically invalid fault message
returned for invocations that were not were subject to any other failure class of higher
severity than an EVF failure, will be reflected in the value of the NumberOfFailed-
Requests counter. Alternatively, the CounterUpdateIssued event will update the
NumberOfSuccessfulRequests counter if a syntactically valid response value is retur-
ned, such as it is the case for invocations unaffected by any type of disturbance, or
those that were only affected by RVF failures. In order to enforce consistency, each
counter update will convey the values of all three counters.

The occurrence of crash failures may inhibit the emergence of new CounterUpda-
teIssued events. Such events will continue to be issued by the replacement procedure
of the RequestReceived event for new requests 〈C,`, i 〉 arriving at the host at which
vi was deployed, even though vi had been halted due to a crash failure. The
replacement RequestProcessing event will be preemptively replaced though, for no
actual processing will occur, as the invocation has become stuck in the RequestRecei-
ved (1) state depicted in Fig. 2.1. Consequently, the replacement procedure of the
ResponseSent event is disabled and a final counter update therefore cannot be issued
— which is also relevant for invocations 〈C,`, i 〉 that were being serviced at the time
the crash failure affecting vi was activated. Note that the counter update discrete
event model itself is not susceptible to failures, cf. (A04), property 3 and (A06).

When an issued CounterUpdateIssued event is processed, it will automatically
schedule its CounterUpdateSent successor replacement event to occur after some
delay comparable to Qr,out, during which the counter update is enqueued, awaiting
network transmission. Finally, the arrival of the counter update message at the
NVP composite is signaled by the occurrence of the CounterUpdateReceived event,
which was scheduled to replace its predecessor CounterUpdateSent event after a
simulation time equal to the network transmission delay.

Any version vi used for the processing of an invocation 〈C,`, i 〉 on behalf of
the NVP composite cannot reasonably be assumed to be a dedicated resource, for
vi may also be used by a third party, resulting in additional external load. Such
additional invocations 〈⊥,⊥, i 〉 are modelled so as to follow the same discrete event
model, including the issuance of counter updates at the proper stages during its
progression. Their execution is performed independently of any pending voting
round (C,`), i.e. the results held within their scheduled RequestHandled event are
simply discarded. They may, however, lead to the occurrence of a crash failure
affecting vi which may have repercussions on invocations 〈C,`, i 〉 for which the
result should still be acquired, i.e. a ResponseSent event had not been scheduled by
the time the crash failure was activated — cf. (A22).

Note how in distributed computing systems the dissemination of counter updates
would usually take place by means of asynchronous publish-and-subscribe messaging
models [109]. The proposed counter update discrete event model in Fig. 2.2 was
designed so as to mimic the potential timing overhead of such messaging models,
though considers only a single subscriber — the NVP composite — to be notified of
counter updates (D04).
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CHAPTER 3
Capturing the Effectiveness of

Redundancy Configurations
In this chapter, we argue that the effectiveness of a redundancy scheme is
largely determined by the redundancy configuration used within, and its
ability to counterbalance the disturbances ensuing from the environment
in which it operates and to which it is subject. A set of ancillary metrics is
introduced, which allow to capture contextual information by assessing
the effectiveness of any given redundancy configuration at the end of a
specific voting round, and which enable the assessment of the proximity of
hazardous situations that may require its adjustment. The contents of this
chapter have been disseminated to the public through the publications
[83] and [84]. Related research question(s): RQ-1 and RQ-2.

Redundancy-based fault-tolerant strategies have long been used as a means to avoid
a disruption in the service provided by the system in spite of the occurrence of
failures in the underlying components. Adopting these fault-tolerance strategies in
highly dynamic distributed computing systems, in which components often suffer
from long response times or temporary unavailability due to the manifestation
of disturbances, does not necessarily result in the anticipated improvement in
dependability.

The effectiveness of a fault-tolerant redundancy scheme such as NVP is largely
determined by the redundancy configuration used within, i.e. the amount of
redundancy used and, accordingly, a selection of functionally-equivalent software
components, and its ability to counterbalance the disturbances ensuing from the
environment in which it operates and to which it is subject.

Statically predefined redundancy configurations encompassing a fixed amount
of redundancy and an immutable set of versions have traditionally been employed
within many classic dependability strategies. Such redundancy configurations
are, however, context-agnostic, i.e. they do not take account of changes in the
operational status of any of the components contained within the redundancy
scheme, and may prove to be inadequate to maintain the effectiveness of the
fault-tolerant unit from the following three angles.
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3.1 From a Dependability Perspective

“Whether or not the availability [of the scheme] is improved depends on the amount
of redundancy employed and the availability of the software components used to
construct the system” [3, 110]. The amount of redundancy, in conjunction with
the voting algorithm, controls how many simultaneously failing versions the NVP
composite can tolerate whilst continuing to provide the user with the expected
service. For instance, an NVP scheme, e.g. one based on majority voting, can mask
disturbances affecting up to a minority of its versions — a function of the amount
of redundancy indeed. Furthermore, the dependability of any NVP composite is
determined by the dependability of the versions employed within. As elucidated
in [3, Sect. 4.3.3], the use of replicas of poor reliability can result in a system tolerant
of faults but with poor reliability. Likewise, versions exhibiting low availability may in
time lead to a more rapid exhaustion of the available redundancy, or result in a failure
of the scheme when the amount of redundancy becomes insufficient to mask the
ensuing failures. It is therefore of paramount importance to construct fault-tolerant
systems using highly dependable software components, and to avoid the use of
resources that do not significantly contribute to an increase of dependability.

The minimal amount of redundancy the NVP composite would require during
the operational time interval for a voting round (C,`) in order to stay dependable
and have the decision algorithm return the correct result in spite of being challenged
by a given number of disturbances e(C,`) is expressed by its contextual redundancy,
by means of the function cr :N0 7→N+ such that cr (e(C,`)) = 2 ·e(C,`) +1 [106]. An
example of a reactive redundancy adjustment procedure is shown in Fig. 3.1: red
regions represent periods during which composite C fails because of an insufficient
amount of redundancy; green regions indicate voting rounds (C,`) for which
disturbances are successfully counterbalanced — i.e. n(C,`) ≥ cr (e(C,`)) — cf. (A30).

{`x }C

cr (e(C,`))

e(C,`)

n(C,`)

0
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2
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2 4 6

Figure 3.1: Example of a reactive redundancy adjustment procedure. Redundancy
undershooting regions marked in red; overshooting regions in green.

Let P (C,`) be the set of largest cardinality in the generated partition℘(C,`) \ P (C,`)
F ,

or ; if no such set exists, i.e. when this partition is the empty family and therefore
P (C,`)

F =V (C,`). This generalised partition ℘(C,`) materialises at the end of voting

round (C,`), i.e. when a result has been acquired for each v ∈V (C,`) — cf. state (c)
in Fig. 2.1. Then c(C,`)

max = |P (C,`)| represents the largest consent found between
the versions in V (C,`) within the scope of (C,`). In order for the majority voting
procedure to be able to adjudicate a result o of the scheme, there should be a
consensus amongst an absolute majority of the n(C,`) versions, i.e. c(C,`)

max Ê m(C,`),
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with m(C,`) defined as

m(C,`) =
⌈

n(C,`) +1

2

⌉
(3.1)

Put differently, m(C,`) is indicative of the smallest degree of consent needed for a
consensus block P (C,`) to qualify for the equivalence class [o] — cf. (A13) and (A14).
Conversely, if c(C,`)

max < m(C,`), the voting procedure will not be able to determine a
result.

It is worth recalling that the exact result is assumed to be properly returned for
versions unaffected by any type of disturbance — cf. (A03). Even though P (C,`)

is uniquely identified by a single consensus block in ℘(C,`) \ P (C,`)
F if c(C,`)

max Ê m(C,`),

it does not necessarily correspond to the consensus block b0 ∈B(C,`) constituted

by those versions in V (C,`)
n f that were found to be equivalent with respect to this

exact value, if such block exists. Indeed, the decision algorithm will only be able to

guarantee the correct result o if n(C,`) −e(C,`) = |V (C,`)
n f | Ê m(C,`), i.e. when

n(C,`) Ê cr (e(C,`)) and therefore [o] = P (C,`) = b0 (A30). Another situation may arise

when a unique consensus block P (C,`) 6= b0 exists, such that e(C,`) Ê |V (C,`)
r v f | Ê m(C,`),

in which case the voting procedure shall not be able to adjudicate the correct result
and an incorrect value will be returned, resulting in the (temporary) unavailability
of the scheme. Should there exist multiple eligible consensus blocks with a common
maximum cardinality less than m(C,`), one of these blocks may be selected nondeter-
ministically and assigned as P (C,`). Note how m(C,`) −1 represents the largest
possible degree of consent within a consensus block that constitutes a plurality,
though not an absolute majority. Consequently, a scheme is resilient to withstand
disturbances affecting at most a minority n(C,`) −m(C,`) of the n(C,`) versions used
throughout a voting round (C,`).

3.1.1 Hazard Proximity Identification

The dtof metric, initially announced in [78], was meant to provide a measure of
the proximity of hazardous situations that may necessitate the adjustment of the
currently employed redundancy configuration so as to ensure the availability of the
composite’s service. For a specific voting round (C,`), function dtof :℘(C,`) 7→N0 is
defined as

dtof (C,`) =


0 c(C,`)

max < m(C,`) (3.2a)

m(C,`)−d (C,`) c(C,`)
max Ê m(C,`) ∧n(C,`) odd (3.2b)

m(C,`)−d (C,`)−1 c(C,`)
max Ê m(C,`) ∧n(C,`) even (3.2c)

where d (C,`) in Eq. (3.2b) and (3.2c) represents n(C,`) − c(C,`)
max , i.e. the number of

versions that are either faulty or that returned a vote that differs from the majority, if
any such majority exists1. As can be easily seen, dtof returns an integer in [0,m(C,`)]
for any odd n(C,`) or in [0,m(C,`) −1] for any even n(C,`). This integer represents how
close we were to failure at the end of voting round (C,`).

1For the sake of brevity, we say that the faulty versions in P (C,`)
F are in dissent with the responses

returned by any of the versions classified within P1 . . .Pk(C,`) .
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Unaware of the disturbances that affected any of the invocations 〈C,`, i 〉 and
the repercussions thereof on the partitioning procedure, dtof is unable to discern
whether the consensus block identified as a majority corresponds to b0. As such, the
result o adjudicated from a consensus block P (C,`) constituting a majority will be
assumed to be the exact result; the impossibility to establish a majority, however,
will be regarded as a failure of the scheme (A31) — cf. (A30). Considering the
random variable A and its probability mass function f A defined in Sect. 2.6.1.1,
the probability of violating the former clause of this assumption can be quantified
as p ·Pr [A Ê m(C,`)], where the multiplier equals the complement of the cumulative
distribution function FA(m(C,`) −1) and p is the probability that during round
(C,`) at least m(C,`) versions are affected by an RVF failure. As the mass of f A is
largely situated in the probabilities associated with the random variates 1 and 2,
the adjudication of an erroneous outcome is quite likely for n(C,`) É 3, although
this effect may be mitigated by the value taken by p. The use of higher levels of
redundancy will result in markedly smaller multiplier values — cf. Fig. 2.5.

The maximum distance is reached when there is full consensus among the

replicas, i.e. ℘(C,`) \ P (C,`) =;, therefore V (C,`) = P (C,`) and accordingly c(C,`)
max = n(C,`).

Conversely, the larger the dissent, the smaller is the value returned by dtof , and the
closer we are to the failure of the voting scheme. A critically low value dtof (C,`) = 1
represents a situation for which the majority was attained by only m(C,`) versions.
During this voting round (C,`), the available redundancy n(C,`) was equal to cr (e(C,`))
and was completely exhausted to counterbalance the maximal number of disturban-
ces the scheme could tolerate, i.e. e(C,`) = n(C,`) −m(C,`). If the scheme would have
been subjected to additional disturbances affecting any of the versions v ∈ P (C,`),
the scheme would have failed to reach a majority and dtof returns 0. Fig. 3.2 depicts
some examples when the number of replicas n is 7. In (a), unanimous consensus is
reached, which corresponds to the farthest "distance" to failure. For scenarios (b)
and (c), an increasing number of votes dissent from the majority (red and yellow
circles) and correspondingly the distance shrinks. In (d), no majority can be found
— thus, failure is reached.

(a) dtof = 4 (b) dtof = 3

(c) dtof = 2 (d) dtof = 0

Figure 3.2: Distance-to-failure in an NVP/MV scheme with n = 7 replicas, for varying
levels of consensus.
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3.1.2 Nett Redundancy: Abundance or Shortfall

Intuitively, dtof (C,`) = 1 corresponds to the existence of a consent between precisely
m(C,`) versions, given that n(C,`) versions were involved during the current voting
round (C,`). Accordingly, for any dtof (C,`) > 0, one can observe that

c(C,`)
max = m(C,`) +

(
dtof (C,`) −1

)
(3.3)

Based on this observation, c(C,`)
max −m(C,`) essentially defines a measure providing a

quantitative estimation of how closely the currently allocated amount and selection
of resources within an NVP/MV composite matched the observed disturbances —
by shortcoming or excess. Having defined c(C,`)

max as a natural number in [0,n(C,`)],
one can easily see that Ran(c(C,`)

max −m(C,`)) lies in [−m(C,`),n(C,`) −m(C,`)]. In other

words, c(C,`)
max −m(C,`) provides an indirect estimation of the shortage or abundance

of redundancy with respect to the disturbances that affected round (C,`): a positive
value essentially quantifies how many versions there exist in excess of the mandatory
m(C,`) versions that collectively constitute the majority for round (C,`)2. For negative

values, the absolute value |c(C,`)
max −m(C,`)| represents the lack of consent relative

to P (C,`) that would be required so as to constitute a majority. Such a value is
interpreted as a symptom that the currently experienced disturbances cannot be
successfully counterbalanced by the redundancy configuration used, i.e.
n(C,`) < cr (e(C,`)), and the scheme would fail to guarantee the availability of the
service it seeks to provide despite its fault-tolerant nature.

3.1.3 Contextual Redundancy and Dependability

Fig. 3.1 shows how two regions of interest may emerge when the employed level of
redundancy diverges from the contextual redundancy that is required to systemati-
cally tolerate disturbances [106].

An “overshooting region” represents operational intervals of sustained availability
of the service the composite is sought to provide. Such type of region encompasses
one or more non-adjacent subsequences of {`x }C (highlighted in green in Fig. 3.1)
for which the employed degree of redundancy can safely guarantee the delivery
of the correct result, though may show to be overabundant with respect to the
currently experienced threat. More specifically, for each voting round (C,`) lying
within this region, n(C,`) Ê cr (e(C,`)). By reason of (A30) and (A31), we shall say
that a redundancy configuration for which dtof (C,`) > 0 is cr -dependable with
respect to round (C,`), as clearly n(C,`) Ê cr (e(C,`)) holds true, and the configuration

could have withstood an additional b
(
n(C,`)−cr (e(C,`))

)
/2c = c(C,`)

max −m(C,`) disturbances
— v. theorem A.1, App. A.

Similarly, an “undershooting region” (the red aggregate in Fig. 3.1) represents
intervals of voting rounds (C,`) during which the foreseen redundancy n(C,`) proves
to be insufficient to counteract the current environmental disturbances e(C,`). The

2P (C,`) was previously used to denote the set of all versions in V (C,`) that contributed to the majority
found at the end of round (C,`). Let Pm(C,`) ⊆ P (C,`) such that |Pm(C,`) | = m(C,`). If dtof (C,`) = 1,

Pm(C,`) = P (C,`). For dtof (C,`) > 1, the majority is reconfirmed by dtof (C,`)−1 surplus versions, i.e.

|P (C,`) \ Pm(C,`) | = dtof (C,`)−1.
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availability of the service the composite is expected to sustain will be temporarily
compromised, for the adjudication procedure will fail to produce the correct result
for voting rounds lying within this region — cf. (A30).

3.2 From a Timeliness Perspective

A second challenge has its origins in the fact that remotely deployed software
components may occasionally suffer from long response times, which is mainly to
be attributed to any network latency as the result of message exchanges and, to a
lesser extent, to excessive concurrency demands ensuing from periods of elevated
load; the latter which may result in requests to be temporarily stalled upon their
arrival at the target host — cf. state (1) in Fig. 2.1. For time-critical applications in
which the timely availability of results is of paramount importance, any additional
delay in the response time of a resource involved in a redundancy scheme may
impact the scheme’s effectiveness to deliver an outcome within the imposed time
constraints [31, 102].

NVP voting schemes can be designed to retrieve a reply for each invocation
〈C,`, i 〉 of a version vi ∈V (C,`) within a guaranteed time slot tmax , a procedure
formalised in Sect. 2.6.4. Any version failing to produce its response within the
time constraints imposed by the voting system would obviously translate into a
performance failure and, as such, have a detrimental impact on the effectiveness of
the redundancy configuration [4, 102]. The time required for a voting round (C,`) to
retrieve a result for each vi ∈V (C,`), i.e. the time it takes for (C,`) to complete the
transition from state (b) into state (c), is consequently guaranteed not to exceed
tmax , and will equal the maximum time required to complete the transition from
the initial (0) to the terminal (5) state for any invocation 〈C,`, i 〉 if none of these
were affected by a performance failure.

3.3 From a Resource Expenditure Perspective

The application of redundancy schemata clearly brings with it some tangible impacts,
the foremost of which are a significantly higher development cost and associated,
increased infrastructural requirements for the development and deployment of
additional software components. A predetermined degree of redundancy may,
therefore, prove to be cost ineffective in that it inhibits to economise on resource
consumption in case the actual number of disturbances could be successfully
overcome by a lesser amount of redundancy, i.e. a value dtof Ê 1.

3.4 Application-Agnostic Context Properties

Having motivated the deficiencies inherently connected to the use of a statically
predefined redundancy configuration with respect to the effectiveness of the fault-
tolerant unit within which it is hardwired, there is thence an urgent need for adaptive
software fault-tolerant solutions, encompassing sophisticated context-aware redun-
dancy management.

The characteristic of context-awareness refers to the fact that a redundancy
scheme is aware of the surrounding environment (i.e. the context) in which it
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operates — cf. Sect. 1.2. This environment was shown to have "an exceedingly
powerful impact on [the scheme] either because the latter needs to adapt in response
to changing external conditions or because it relies on resources whose availability
is subject to continuous change" — disturbances that may very well put the scheme’s
effectiveness into jeopardy had it held on to a static redundancy
configuration [102, 111]. Examples of contextual information include, but are not
limited to, properties like the amount of redundancy currently employed, to what
extent this amount was capable of tolerating disturbances (i.e. dtof ), the evolution of
voting outcomes, and the operational status of each of the available resources v ∈V .
The operational status of a version v comprises a set of attributes encompassing
statistics on response time, the number of pending requests3, and a measure for
reliability approximation that will be introduced in Chapt. 4 shortly.

Triggered by changes in the context, such adaptive fault-tolerant strategies may
autonomously tune the amount of redundancy and the selection of functionally-equi-
valent resources employed within the redundancy scheme so as to sustain its
effectiveness. Such an adaptive dependability strategy is introduced for NVP-based
redundancy schemata in Sect. 5, in which the redundancy configuration is dynami-
cally constructed in view of the knowledge obtained from the context properties
mentioned hereabove.

3Considering the non-negative integer values of the counter metrics defined in Sect. 2.7, the number
of pending requests can easily be determined as NumberOfRequests− (NumberOfFailedRequests+
NumberOfSuccessfulRequests).
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CHAPTER 4
Approximating Reliability

In order to allow for the autonomous adjustment of the employed redun-
dancy configuration in view of potentially changing environmental beha-
viour, it is imperative that the system be able to approximate the operational
status of individual resources. Expanding on its previous announcements
in [83] and [84], the key contribution of this chapter is to be found in
the introduction of a mathematically defined structure that is capable of
efficiently capturing how a specific software component — version, that is
— has affected the reliability of the fault-tolerant composite throughout
its operational life span. The advantage of this normalised dissent metric
is that an extremely small memory footprint will suffice to store this type
of contextual information. Related research question(s): RQ-1.

It was already pointed out that the dependability of any NVP composite is affected by
the dependability of the components integrated within. Controversial opinions exist
on whether it is meaningful to use probabilistic measures of dependability, most of
which are based on an analogy of traditional hardware dependability, to evaluate
the quality of software. In particular, many people have questioned the adequacy of
software reliability to quantify the operational profile of a software system.

A first major objection that has frequently been put forth is that, in spite of
the proliferation of software reliability models that have been developed since the
early 1970s, only few of these models seem to be able to capture and quantify
a satisfying amount of complexity without excessive limitations [112]. Failing to
adequately quantify the reliability of a software component inhibits the application
of commonly used analytical combinatorial techniques for reliability analysis of
hardware redundancy schemata to equivalent schemes involving diversely designed
functionally-equivalent software components [3, Chapt. 4].

Moreover, it is hard to determine a quantitative approximation of the overall
failure rate for a given software component. Apart from residual design faults, in
a distributed computing environment, the failure rate of a software component
may be influenced by the emergence of disturbances as failures in the underlying
deployment platform or hardware, in any required external resource or network
connectivity failures [102, 113] — cf. (A06).
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As an alternative to a probabilistic measure for the reliability of a software
component, we now define a generic property to measure the suitability of a particu-
lar software component (version) within a given NVP/MV redundancy scheme.
Whereas dtof is a valuable metric for capturing the instantaneous effectiveness of a
given redundancy configuration used throughout the life span of a single completed
voting round (C,`) from a dependability perspective, it fails to assess the impact
of a particular version on the scheme over time. We therefore define a measure to
quantify the historical and relative impact of any version v ∈V on the redundancy
scheme C — the normalised dissent D(C, v). Inspired by the α-count approach,
penalties and rewards are repeatedly issued for individual versions depending on
whether or not versions are perceived to be subject to a failure [77, 114] [5, Chapt. 3].
Our approach differs, however, in that such updates reflect the operational context
in which the appurtenant versions have been operating, i.e. one or more completed
voting rounds, rather than issuing updates of a constant magnitude.

A single value D(C, v) is maintained at the NVP composite C for each v ∈V , and
is updated whenever the transition from the (c) to the terminal state (d) is fired after
the the partitioning and adjudication procedure for a voting round (C,`) has been
completed (Fig. 2.1). Let {yz }C be a monotonically increasing sequence of strictly
positive integer indices yz = z in Y =N+, such that each consecutive completion of
some voting round (C,`) originating from an invocation of C is uniquely identified
by the next element y in {yz }C. Note how the bijective mapping function bC : Y 7→ L
defines the correlation between the terms in either of the sequences {yz }C and
{`x }C

1. Furthermore, an indicator random variable E (C,`)(v) is defined for all v ∈V

E (C,`)(v) =
{

0 v ∈V \V (C,`) (4.1a)

1 v ∈V (C,`) (4.1b)

and can be used to discriminate between idling versions and versions that are
engaged in the redundancy configuration used for a voting round (C,`). Considering
the number z of voting rounds appertaining to C that completed since its initialisa-
tion, the last known value D(C, v) of the normalised dissent for a version v ∈V is
given by D (z)(C, v) as follows:

D(z)(C, v) =



0 z = 0 (4.2a)

D(z−1)(C, v)+p(C,`)(v) E (C,`)(v) = 1∧dtof (C,`) > 0∧ v ∉ P (C,`) (4.2b)

E (C,`)(v) = 1∧dtof (C,`) = 0 (4.2c)

D(z−1)(C, v)× r (C,`)(v) E (C,`)(v) = 0 (4.2d)

E (C,`)(v) = 1∧dtof (C,`) > 0∧ v ∈ P (C,`) (4.2e)

As can be seen from Eq. (4.2a), the initial value D (0)(C, v) of the normalised
dissent for some version v ∈V is set to be 0. Then each update subsequently issued
on D(C, v) as the result of the completion of a voting round (C,`) with `= bC(yz )

1Note that the order in which voting rounds complete, i.e. the sequence {yz }C, is not necessarily
the order in which these voting rounds have been initialised, as represented by the sequence {`x }C.
Put differently, it is unlikely that bC(yz ) = `x for z = x (as exemplified in Fig. 5.1). Indeed, in large-scale
distributed computing environments, one may expect a significant amount of variability in the response
time of an invocation on the NVP composite, which may be due to the dynamically changing redundancy
configuration used for different voting rounds. More information on timeliness issues can be found in
Sect. 2.6.4 and 3.2.
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and yz = z Ê 1 in {yz }C will depend on the information accrued on the effectiveness
of the employed redundancy configuration V (C,`), and the potential role of v therein.
The rationale is that a penalty p(C,`)(v) ∈ ]0,1] is fined for any engaged version in
dissent with the majority that resulted at the end of voting round (C,`), or when
simply no majority was found, which corresponds respectively to Eq. (4.2b) and
(4.2c). A version v that repeatedly failed to provide a useful contribution to the
voting scheme C will therefore translate into a higher value D(C, v). Inversely, a
reward r (C,`)(v) ∈ ]0,1[ will weigh down previously accumulated penalties as v is
observed to sustain the availability of the composite throughout the life span of
round (C,`), or when it was not engaged in the redundancy configuration used —
v. Eq. (4.2d) and (4.2e). Both penalisation and reward mechanisms are presented in
greater detail hereafter.

4.1 Acquiring Context Information

A substantial characteristic of both models is that the penalty addends and the
reward factors they generate aim to capture the robustness of the NVP/MV voting
scheme. For a given voting round (C,`) during which a majority could be found, i.e.
dtof (C,`) > 0, let

w (C,`)
e =


1 0 < n(C,`) É 2 (4.3a)

1− dtof (C,`) −1

n(C,`) −m(C,`)
n(C,`) > 2 (4.3b)

The above definition takes advantage of the dtof metric as defined in Eq. (3.2) to
acquire information on the effectiveness of the redundancy configuration employed
during the voting round (C,`). The fraction involved in Eq. (4.3b) was designed
so as to provide insight into the robustness of the redundancy configuration in
face of the disturbances encountered. Specifically, the numerator can be regarded
as the number of additional disturbances the redundancy configuration could
have withstood during round (C,`) — cf. Eq. (3.3). Conversely, the denominator
represents the maximum number of disturbances that the scheme can withstand,
given the available amount of redundancy, n(C,`). As such, w (C,`)

e provides an
estimation of how close a given redundancy configuration was to exhausting the
available amount of redundancy whilst it tried to counterbalance the disturbances
experienced during round (C,`). Considering the premise that dtof (C,`) > 0, it can

be seen from Eq. (4.3) that w (C,`)
e is a real number contained within the interval [0,1].

A critically low value dtof (C,`) = 1, i.e. w (C,`)
e = 1, represents a situation for which

the majority was attained by only m(C,`) versions. During this voting round (C,`),
the available redundancy n(C,`) was completely exhausted to counterbalance the
maximal number of disturbances the scheme could tolerate, i.e. n(C,`) −m(C,`).
Similarly, for n(C,`) > 2, a value w (C,`)

e = 0 corresponds to a voting round with full

unanimity, i.e. c(C,`)
max = n(C,`). Such additional consent contributes to the robustness

of the scheme and its redundancy configuration, for it is resilient to withstand up to
n(C,`) −m(C,`) disturbances.

Furthermore, for v ∈V (C,`), we define an ancillary function

c(C,`)(v) =
{

|P j | v ∈ P j ∧P j ∈ {℘(C,`) \ P (C,`)
F } (4.4a)

⊥ otherwise (4.4b)
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which allows to obtain the amount of versions that reported the same result as v
at the end of round (C,`) — cf. (A13). It can easily be seen that the range of this
function is [1,n(C,`)].

4.2 Penalisation Mechanism

We now characterise the penalisation mechanism used in Eq. (4.2b) and (4.2c) for a
subset of engaged versions V (C,`) ⊆V — that is, a set of versions v ∈V (C,`) for which
E (C,`)(v) = 1:

p(C,`)(v) =


s(C,`)(v)×w (C,`)

e v ∉ P (C,`)
F ∧dtof (C,`) > 0 (4.5a)

m(C,`) − c(C,`)(v)

m(C,`) −1
v ∉ P (C,`)

F ∧dtof (C,`) = 0 (4.5b)

1 v ∈ P (C,`)
F (4.5c)

The penalty p(C,`)(v) inflicted on an engaged version v ∈V (C,`) in dissent with
the majority found at the end of voting round (C,`) is given by Eq. (4.5a). The

idea behind the multiplier w (C,`)
e is that a replica disagreeing with the majority

during round (C,`) should be penalised relatively to the detrimental impact it
may have on the robustness of the currently selected redundancy configuration —
cf. Eq. (4.3). The closer round (C,`) was to failure (that is, the closer to dtof (C,`) = 0),
the stronger the multiplier shall penalise the dissentient replica. The further away
from failure, the less we penalise as the excess degree of consent enhances the
robustness of the redundancy configuration such that it is capable of tolerating
additional disturbances. Note how the above multiplier cannot evaluate to 0 for at
least v is in dissent for round (C,`), and therefore full consensus, i.e. the maximum
value for dtof (C,`) as defined in Eq. (3.2), can never be reached — cf. Eq. (4.2b). The
range of w (C,`)

e , which was previously defined as [0,1] in Eq. (4.3), will therefore be
confined to the interval ]0,1].

The multiplicand s(C,`)(v) will then scale the intermediate penalty obtained
using w (C,`)

e inversely proportional to the amount of consent between a minority of
engaged versions, including v

s(C,`)(v) = 1− c(C,`)(v)

m(C,`)
(4.6)

Indeed, any version v in dissent with the majority found is part of a minority

equivalence class in ℘(C,`) \ {P (C,`),P (C,`)
F }. As the range of the previously defined

function c(C,`)(v) will consequently narrow to [1,n(C,`) −m(C,`)], one can observe
from Eq. (4.6) that the values obtained for s(C,`)(v) lie in ]0,1[.

Having defined the maximum plurality that is not an absolute majority as
m(C,`) −1 in Sect. 3.1, the penalty for any of the versions involved in voting round (C,`)
for which no majority could be determined, can be found using Eq. (4.5b). A version
v will be attributed the maximum penalty if its result is unique and in dissent with all
the other versions, i.e. c(C,`)(v) = 1. On the contrary, should there exist a minority of
consentient active versions with cardinality equal to m(C,`) −1, each of the versions
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would be penalised in the most gentle way. In other words, the more isolated the
case, the heavier the penalty; the larger the cardinality of the minority to which a
given version belongs, the less each of the versions that constitute the minority will
be penalised.

Finally, faulty replicas that did not return a meaningful response are assigned
the maximum penalty 1 — cf. Eq. (4.5c).

4.3 Reward Model

Whenever a version v ∈V (C,`) produces a response that complies with the majority
determined at the end of voting round (C,`), a reward should compensate for any
penalties that may have been imposed in previously completed voting rounds
and consequently result in the gradual decline of its normalised dissent D(C, v)
— cf. Eq. (4.2e). Unlike the penalisation mechanism, which is only applicable
to engaged versions, the reward model is also used for idle replicas that are not
currently involved in the redundancy configuration for a given voting round (C,`)
but that may have been used in previously completed or pending voting rounds —
cf. Eq. (4.2d).

Let 0 < k2 < k1 < kmax < 1. We now define the reward factor r (C,`)(v) for a version
v ∈V as

r (C,`)(v) =
 k1 +

(
(kmax −k1)×w (C,`)

i (v)
)

E (C,`)(v) = 0 (4.7a)

k2 +
(
(k1 −k2)×w (C,`)

e

)
E (C,`)(v) = 1 (4.7b)

For any version v , a smaller reward factor r (C,`)(v) will result in a steeper decline
of its normalised dissent D(C, v), whereas a larger factor would result in a more
gradual decline. The number of voting rounds emerging from the invocation of C in
which v ∈V was actively engaged, up until and including the last completed voting
round (C,`), is denoted by #r ound s(C, v). In addition, we define #consent (C, v) as
the number of those voting rounds which were accounted for in #r ound s(C, v) for
which v contributed to the majority. Consequently, #r ound s(C, v)−#consent (C, v)
corresponds to those voting rounds in which v had been engaged, such that either
v was in dissent with the majority, or no majority was found at all. Note how these
counters are updated along with the updates issued for the corresponding D(C, v)
value.

w (C,`)
i (v) =


0 #r ound s(C, v) = 0 (4.8a)
#r ound s(C, v)−#consent (C, v)

#r ound s(C, v)
#r ound s(C, v) > 0 (4.8b)

With w (C,`)
i (v) defined as a real number in [0,1], Eq. (4.7a) shows how the reward

factor is determined for an idle version v ∈V \V (C,`) that is not involved in the
current voting round (C,`). It follows that r (C,`)(v) is contained within [k1,kmax ].
The upper endpoint of the range, kmax , is defined to be close to, but less than
1. This is motivated by the fact that, if kmax were equal to 1, a value r (C,`)(v) = 1
would not be able to ensure that penalties accumulated during previous voting
rounds are weighed down over time — cf. Eq. (4.2d) and (4.2e). The smallest reward
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r (C,`)(v) is equal to k1 and corresponds to the case when v did not participate
in any voting round so far, i.e. Eq. (4.8a), or when the replica contributed to the
majority for every voting round it was previously engaged in, i.e. Eq. (4.8b) when
#r ound s(C, v) = #consent (C, v). Larger reward values will be obtained for versions
v , up to a maximum of kmax , proportional to the relative amount of voting rounds
for which an engaged version v previously failed to support the voting scheme and
was subsequently penalised, i.e. w (C,`)

i (v).
The reward procedure for engaged versions that were in consent with the outcome

of the current voting round (C,`) is described in Eq. (4.7b). Having defined w (C,`)
e as

a real number contained within the interval [0,1] in Eq. (4.3), it can be seen the range
of r (C,`)(v) is delimited by [k2,k1] for any version v engaged during round (C,`). As it

can be seen in Eq. (4.7b), larger values for w (C,`)
e , i.e. dtof (C,`) −1 approaches 0, lead

to a larger reward factor r (C,`)(v), up to the maximum value k1. Contrariwise, more

robust redundancy configurations translate into smaller values for w (C,`)
e and will

be allotted smaller values for r (C,`)(v) accordingly. This allows to counterbalance
and rectify a situation where v was undeservedly penalised in any preceding voting
rounds it participated in, i.e. v did produce a correct result, but it was penalised
because of an inadequate selection V (C,`).

As a final remark, we would like to point out that it was a deliberate design
decision to define the reward model for idle versions in a separate range [k1,k2],
resulting in reward factors of comparatively greater magnitude, so as to ensure a
more gradual decline in normalised dissent when compared to engaged replicas.
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CHAPTER 5
An Adaptive Context-Aware

Fault-Tolerant Strategy
Having motivated the desire to adjust a redundancy scheme’s internally
used redundancy configuration in order to safeguard the scheme’s depen-
dability objectives, or to avoid excessive resource consumption, we will
now proceed by outlining the core design principles of a novel NVP-based
fault-tolerant strategy, and elaborate on its support for advanced redun-
dancy management. The key contribution of this chapter lies in an
adaptive dependability strategy in which an autonomous context-aware
adjustment process of the redundancy configuration is configurable by
means of various resource allocation policies, and which is driven by the
set of application-agnostic context properties suggested in Sect. 3.4. The
contents of this chapter have been disseminated to the public through the
publications [83] and [84]. Related research question(s): RQ-2 and RQ-5.

In this section, we introduce our adaptive NVP-based fault-tolerant strategy and
elaborate on the advanced redundancy management it supports. Aiming to autono-
mously tune its internal configuration in view of changes in context, it was designed
to dynamically find the optimal redundancy configuration. Our context-aware
reformulation of the classical NVP/MV system structure encompasses two comple-
mentary parameterised models that jointly determine the redundancy configuration
to be used throughout a newly initialised voting round (C,`), with ` the next element
in the sequence {`x }C. The retrieval procedure of the redundancy configuration
takes place whilst preparing to fire the transition from state (a) to state (b) as shown
in the voting round state transition model in Fig. 2.1 (D05).

During the first stage of this procedure, the redundancy dimensioning model,
which will be explained shortly in Sect. 5.2, will select the appropriate degree of
redundancy n(C,`) to be employed in function of the disturbances experienced
in previous voting rounds. In doing so, it will attempt to economise on resource
expenditure whenever it can be argued safe to do so. Next, the replica selection
model will establish which replicas v ∈V are most appropriate to constitute V (C,`).
This second stage, which will be elaborated upon in Sect. 5.3, was designed to
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enrol those replicas targeting an optimal trade-off between the context properties
introduced in Sect. 3.4 and Chapt. 4, i.e. normalised dissent, response time and
pending load.

5.1 Application-Specific Requirements

The optimal redundancy configuration is, however, not only determined by the
quantitative assessment in terms of the context properties introduced in Sect. 3.4
and Chapt. 4, but also by the characteristics of the application itself, or the
environment in which it operates. For instance, some applications may be latency-
sensitive, whereas others may operate in a resource-constrained environment. The
A-NVP/MV algorithm was conceived to take these application-specific intricacies
into account, in that the redundancy dimensioning and replica selection models
can be configured by means of a set of user-defined parameters.

Our A-NVP/MV algorithm has been designed primarily to maximise the redun-
dancy scheme’s dependability, and secondarily, it may be configured to target
other application objectives such as time constraints as well as load balancing.
User-defined weights wC

D , wC
T and wC

L for each of the three respective application
objectives listed, can be used to configure the replica selection model such that it
will engage the most appropriate replicas so as to maximise the overall effectiveness
of the voting scheme. It is assumed that∑

X∈{D ,T ,L}
wC

X = 1 (5.1)

Furthermore, an optional user-defined parameter tmax represents the largest
permissible response time that an NVP composite C can afford for any invocation
〈C,`, i 〉 to complete, with vi ∈V (C,`). A smaller value represents more stringent
requirements on the scheme’s response time, implicitly indicating that the application
is more latency-sensitive. The tmax parameter is of particular interest as it is used
to detect omission and late response failures: if a version vi ∈V (C,`) failed to return
its response to the NVP composite before the tmax time-out has lapsed since the
initialisation of the corresponding invocation 〈C,`, i 〉, vi will be classified in P (C,`)

F
and penalised accordingly as described in Sect. 4.2, 2.6.4 and 3.2.

Finally, applications deployed in resource-constrained environments may benefit
from the parameter nmax Ê 1 to set an upper bound on the number of replicas to
be used in parallel, which may result in the utilisation of fewer computing and
networking resources. This parameter may affect the degree of redundancy n(C,`) as
determined by the redundancy dimensioning model, possibly at the expense of a
significantly higher risk of failure of the voting scheme. Contrariwise, the parameter
nmi n Ê 1 can be used to set a lower bound on the degree of redundancy to be used,
such that the scheme is guaranteed to be resilient to withstand at least b(nmi n−1)/2c
disturbances. Lastly, a parameter ni ni t will set the default degree of redundancy to
be initially used, i.e. n(C,`) = ni ni t for `= 1 and nmi n É ni ni t É nmax .

5.2 Redundancy Dimensioning Model

Given the set V of available functionally-equivalent versions in the system, our
redundancy dimensioning model is responsible for autonomously adjusting the
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degree of redundancy employed such that it closely follows the evolution of the
observed disturbances. In the absence of exceptional disturbances, the scheme
should scale down its use of redundant replicas so as to avoid the unnecessary
expenditure of resources. Contrarily, when the foreseen amount of redundancy is
not enough to compensate for the currently experienced disturbances, it would be
beneficial to dynamically revise that amount and enrol additional resources — if
available.

Let nc denote a function defining a relation C ×L 7→N+ designed to return an
integer representing the degree of redundancy n(C,`) to be employed for round
(C,`), with C ∈C , ` ∈ {`x }C ⊆ L and C the set of NVP-based redundancy schemata
deployed. Ideally, the redundancy configuration used for a round (C,`) would
involve a number n(C,`) of versions that is consistently greater than or equal but
close to cr (e(C,`)), with e(C,`) the number of disturbances that challenge the scheme
during the operational life span of round (C,`) — cf. Sect. 3.1. Maintaining such
levels of redundancy would allow the system to exhibit resilience with minimal
overshooting and to balance both the design goal of reliability persistence and
reducing the operational costs of the system [106]. Nonetheless, the robustness of
the system relies upon the quality of nc , and in particular on its ability to effectively
track the evolution of the e(C,`). As the number of disturbances affecting the course
of a specific voting round is not precisely known1, the task of estimating cr (e(C,`))
upfront it is quite arduous when relying solely on contextual information acquired
from previously completed rounds. Even if a meaningful trend could have been
caught, the issue is further aggravated by missing information from pending requests
and the potential intermittent whimsicality of the environment. For example, the
redundancy adjustment procedure depicted in Fig. 3.1 clearly fails to anticipate
changes in the number of disturbances affecting subsequent voting rounds, resulting
in occasional breaches of the targeted dependability. A solution to this issue avoiding
disruptions of the availability of the expected service may be to allocate an adequate
amount of additional redundancy.

The redundancy dimensioning model is expected to determine n(C,`) upon
initialisation of the voting round (C,`), abiding the premise that
nmi n É n(C,`) É min(|V | ,nmax ). Note that the behaviour of the system is undefined
in case |V | < nmi n , or when the optimal degree of redundancy as inferred by the
model exceeds nmax or falls beneath nmi n . Depending on the application domain,
the A-NVP/MV scheme could simply report failure, or it could proceed with the
suboptimal redundancy currently supported.

5.2.1 Window of Context Information

In order to make an informed decision on the amount of redundancy n(C,`) to be
used, the model will consider the course of the amount of redundancy used for
previously completed voting rounds and whether or not the selected redundancy
proved to be sufficient to guarantee the scheme’s availability. Recalling that z was
defined in Chapt. 4 to denote the number of completed voting rounds appertaining
to the scheme C, the system shall therefore maintain a data structure to store this

1Recall from (A31) that an estimation of e(C,`) cannot be deduced until the time (C,`) has completed
the transition into state (c) — cf. Fig. 2.1.
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type of contextual information for each y in the subsequence {ymin(1,z−rd+1), . . . , yz }C
of {yz }C. More specifically, for each completed voting round y lying within the
window constituted by this subsequence, the context properties of interest are:
the corresponding identifier `x = bC(y), the amount of redundancy n(C,`x ) that
was employed throughout its execution, and the extent to which this redundancy
was found to be capable of masking disturbances such that a majority could be
adjudicated. This last context property was defined in Sect. 3.1 as c(C,`)

max −m(C,`)

and provides an indirect estimation of the shortage or abundance of redundancy
with respect to the currently experienced disturbances threatening the successful
completion of the voting round (C,`) — cf. (A31).

Let rd , ru and r f be natural numbers in N+ such that 1 É r f É ru < rd . The
former number rd represents the minimum number of consecutive successful
voting round completions before contemplating scaling down the current level
of redundancy. In line with (A31), a given voting round (C,`) is observed to have
completed successfully if a sufficiently large degree of consent could be found
between the responses acquired from the subordinate invocations 〈C,`, i 〉 of the
involved versions vi ∈V (C,`) such that a majority could be found (A32), i.e.

c(C,`)
max −m(C,`) Ê csm , with a discretionary safety margin csm defined as a natural

number in [0,n(C,`) −m(C,`)] — cf. Eq. 3.3. Note how rd imposes an upper bound
on the maximum window capacity maintained by the data structure, as shown in
Fig. 5.1. This data structure is maintained by context manager located within the
A-NVP/MV composite — v. Fig. 5.2, p. 87. View on system state before n(C,`) is set
for use throughout a newly initialised voting round (C,`).
It is assumed that shorter window lengths may result in an incautious downscaling
of the redundancy, which in itself might lead to failure of the voting scheme in
subsequent voting rounds. Contrariwise, one may reasonably expect that the
redundancy scheme is less likely to fail due to the downscaling of the employed
degree of redundancy for larger values of rd , at the expense of postponing the
relinquishment of excess redundancy (A33).

z−rd . . . z−ru . . . z

3 4 5 6 7 8 10 9 11

3 3 3 3 5 6 6 6 6

1 1 1 -1 0 1 1 2 1

y

`x = bC(y) < `

n(C,`x )

c(C,`x )
max −m(C,`x )

n(C,`−1)
ru

rd

Figure 5.1: Window-based data structure holding context information regarding the
employed degree of redundancy and its ability to sustain the scheme’s availability
throughout the last rd completed voting rounds.

The number ru expresses the maximum number of successive voting round
completions that failed to meet the criterion of success as defined hereabove,
before responding by considering the use of additional redundancy. On the one
hand, such scenario would involve voting rounds for which a result o could be

adjudicated, yet the cardinality c(C,`)
max of the corresponding consensus block [o] did
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not comprise an ample number of consentient replicas so as to suit the imposed
safety margin csm . On the other hand, it encompasses voting rounds for which the
decision algorithm failed to adjudicate a result, i.e. dtof (C,`) = 0 — a case the model
will endure at most r f times within the observation window constituted by the
corresponding subsequence {ymin(1,z−ru+1), . . . , yz }C of {yz }C

2. At risk of prolonging
the scheme’s unavailability, temporarily refraining from increasing the employed
degree of redundancy after observing a potentially hazardous situation might allow
the replica selection model to regain the scheme’s intended dependability by substi-
tuting poorly performing versions by more reliable, idling versions. Smaller values
for ru (and r f ) would usually enable potentially hazardous situations to be detected
more rapidly. This would come at the price of a more aggressive upscaling strategy
though, in which system resources would be allocated rather lavishly (A34).

The data structure shown in Fig. 5.1 is updated upon each subsequent completion
y of a voting round, as represented by the corresponding element in the sequence
{yz }C. Each column characterises an observational sample pertaining to a single
voting round `= bC(y) and holds information regarding the redundancy n(C,`)

employed and its effectiveness to counterbalance the disturbances e(C,`) to which it
was subject, i.e. c(C,`)

max −m(C,`). Information pertaining to round bC(yz−rd ) will be
discarded for values z > rd , as exemplified at the left in Fig. 5.1.

It follows from (D5) that the function nc used to determine the degree of redun-
dancy n(C,`) to be used for a voting round ` in {`x }C takes the shape of a piecewise
constant function {`x }C 7→N+. Each piece of the function delineates a certain
disjoint subsequence of the function’s domain {`x }C, such that the same amount
of redundancy was used for each of the voting rounds represented by the elements
contained within the subsequence. Observe how step discontinuities in between
any two adjoining such subsequences emerge because of the adjustment of the
degree of redundancy. The redundancy dimensioning model has been designed so
as to determine, whenever desirable, the extent to which the currently employed
degree of redundancy should be adjusted, i.e. the oscillation of the discontinuities
is applied to the value the function took in the previous subsequence. As such, the
system will maintain the level of redundancy currently employed within C. Having
determined the amount of redundancy n(C,`) to be used for a newly initialised voting
round `, ` being the next element in the sequence {`x }C, the system will store this
newly computed value, effectively overriding the current level of redundancy that
was used before, i.e. n(C,`−1).

5.2.2 Window Semantics

We will now elaborate on the procedure used to determine the amount of redundancy
to be used throughout a newly initialised voting round `. In doing so, we use the
abstract notion of window semantics SC to epitomise the specific conditionalities
and correlational techniques that enable the redundancy dimensioning model to
deduce the optimum degree of redundancy matching the scheme’s operational
context from the stored information. In this capacity, SC defines two ancillary
functions describing a relation L 7→N+. More specifically, the upscaling function

2Note how all observations with a nett redundancy larger than or equal to 0 are held within the green
redundancy overshooting region as exemplified in Fig. 3.1. On the contrary, rounds for with a negative
value is reported, i.e. dtof = 0, are part of the red undershooting region.
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f (C,`)
u is responsible for determining if and to what extent the current level of redun-

dancy n(C,`−1) should increase, whereas the downscaling function f (C,`)
d quantifies

the extent by which n(C,`−1) should be lowered. The final degree of redundancy
n(C,`) to be used for the continuation of ` is then resolved as follows:

n(C,`) =


min(min(nmax , |V |),n(C,l−1) + f (C,`)

u ) cntu Ê ru or cnt f Ê r f (5.2a)

max(nmi n ,n(C,`−1) − f (C,`)
d ) cntd = rd (5.2b)

n(C,`−1) otherwise (5.2c)

The above Eq. (5.2a) and (5.2b) formalise the upscaling, respectively downscaling
procedure for `> 1. Observe how the adjustment of the redundancy is constrained
by the application-specific parameters nmi n and nmax , as well as by the amount |V |
of system resources available. Discontinuities in the piecewise constant function
nc depicting the evolution of the employed degree of redundancy throughout the
domain {`x }C will only emerge for values n(C,`) −n(C,`−1) 6= 0, effectively portraying
the appurtenant oscillations. Indeed, other scenarios would reduce to Eq. (5.2c),
indicating that the same level of redundancy is maintained, therefore prolonging
the applicable subsequence to include `.

The value of the optional safety margin csm expressing the amount of consent
supplementary to the mandatory m(C,`) required for the successful adjudication of
a result o is set at the discretion of the chosen window semantics SC. It serves as
a parameter to the redundancy dimensioning model, primarily aiming to reduce
the likelihood that the downscaling procedure itself would result in failure of the
scheme in the first few subsequent voting rounds. Moreover, such safety margin
could anticipate a shortfall in redundancy when the effectiveness of the employed
redundancy is observed to exhibit a decreasing trend and proactively trigger the
upscaling procedure. Either way, the underlying rationale for maintaining a slightly
higher degree of redundancy stems from the assumption that the environment
behaves unpredictably and the number of disturbances e(C,`) it brings about affecting
ongoing voting rounds `, therefore, may vary considerably, exhibiting a trend most
whimsical (A35). In sharp constrast, the redundancy dimensioning model was
designed to gradually adjust the used degree of redundancy downwards, targeting
the contextual redundancy cr (e(C,`)), in line with the trend perceived from the data
held within the observation window. The safety margin can therefore intuitively
be seen as the maximum aberration in terms of additional disturbances that the
scheme can tolerate as compared with the observed trend.

The internals of any realisation of a specific window semantics SC encompass
the auxiliary counters cntd , cntu and cnt f and stipulate the conditionalities under
which these counters are to be updated for successive voting round completions yz

in the sequence {yz }C. In particular, the basic criterion of success defined in (A32)
can be restricted by imposing additional constraints. Counters may be updated and
reset immediately before the actual insertion of the observational sample holding the
contextual information acquired from a completed voting round yz . The insertion
of a new sample matching the imposed constraints will result in counter cntd to be
incremented, unless there exists a previously inserted sample pertaining to round
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bC(yz−rd ) that had been accounted for as well3. Whether or not cntd is reset after a
downward adjustment of the degree of redundancy, remains undefined and depends
on the implementation of the chosen window semantics. Samples failing to comply
with the (constrained) success criterion will cause the counter cntd to be reset and
the value held in cntu to be incremented, as well as the value in cnt f if dtof (C,`) = 0
for `x = bC(yz ). As the window {y(z−ru+1), . . . , yz }C is shifted so as to accommodate
yz for z > ru and the element yz−ru no longer lies within the scope of the observed
window, these counters will be decremented if their value was affected at the time
yz−ru was inserted.

Furthermore, the correlational techniques applied in order to make an informed
decision on how the currently employed degree of redundancy should be adjusted,
are held within the implementation of the upscaling and downscaling functions
f (C,`)

u , respectively f (C,`)
d . Which function, if any, will be called upon the initialisation

of each successive voting round ` in {`x }C, is dependent on the state of the aforemen-
tioned counters at the time the model attempts to settle for n(C,`). In case cntu Ê ru ,
or cnt f Ê r f , the upscaling function will be called, and the adjusted degree of
redundancy to be employed will be determined as per Eq. (5.2a). If such upward
adjustment is caused because of a state in which cnt f Ê r f , counter cntu may or
may not be reset (cnt f will always be). Whether or not this counter is reset remains
undefined and depends on the implementation of the chosen window semantics. In
case cntd = rd , the degree of redundancy will be adjusted downwards, as shown in
Eq. (5.2b). If neither of the previous two cases holds true, the system will proceed
with the degree of redundancy as it was previously employed — v. Eq. (5.2c).

5.3 Replica Selection Model

Having established the degree of redundancy n(C,`) to be employed throughout
round (C,`), the replica selection model will then determine a selection of versions
V (C,`) to be used by the redundancy scheme C, such that |V (C,`)| = n(C,`). The
proposed model has been designed so as to achieve an optimal trade-off between
dependability as well as performance-related objectives such as load balancing and
timeliness, respectively represented as the wC

D , wC
L and wC

T application-specific
configuration parameters. More specifically, its purpose is to mitigate the adverse
effects of employing inapt resources that consistently perform poorly in terms of
the envisaged effectiveness objectives and that, consequentially, may threaten the
effectiveness of the overall redundancy scheme. If the degree of redundancy n(C,`) to
be utilised follows a constant or decreasing trend, then, depending on the availability
of eligible versions that can be used as a substitute, the model will be successful in
excluding such inapt replicas.

The suitability of a particular version v ∈V within an NVP/MV scheme can
now be assessed quantitatively, leveraging the context properties introduced in
Sect. 3.4 and Chapt. 4. More specifically, this assessment is made by computing a
score s(C, v) in which all relevant contextual information accrued during previously
completed voting rounds is taken into account.

3Note how this scenario can only materialise when z > rd , for the maximum window capacity rd
is entirely used, necessitating the disposal of sample yz−rd so as to free sufficient capacity prior to the
insertion of sample yz .
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Let us denote the last known values of the normalised dissent, the number of
pending requests and the average response time for a version v ∈V by D(C, v), L(C, v)
and T (C, v) respectively. If no such value was previously reported, all variables will
hold the value 0. The process of determining a trade-off between the different
application objectives can now be facilitated by normalising the context properties,
which were defined without any upper bounds, to the same range. We therefore
define δCD as the maximum value D(C, v) for all versions v ∈V . δCL and δCT are defined
analogously as the maximum value of L(C, v) and T (C, v), respectively. Whereas
D(C, v), L(C, v) and T (C, v) are initialised to 0, the thresholds δCD , δCL and δCT will be
initialised to 1. Subsequently, the values for these context properties can now be
normalised to a real number over the interval [0,1]:

XN (C, v) = δCX −X (C, v)

δCX

for v ∈V (5.3)

where X ∈ {D ,L,T } stands for any of the three context properties normalised dissent,
pending load and response time. Practically speaking, a larger value X (C, v) for any
of the three properties under consideration is representative of a worse impact of the
replica v on the redundancy scheme. Accordingly, larger values of the normalised
value XN (C, v) signal versions more suitable to support the redundancy scheme.
After the context property values were normalised onto a common range [0,1], one
can now determine the score s(C, v) for each version v ∈V as follows:

s(C, v) = wC
D ×DN (C, v)+wC

L ×LN (C, v)+wC
T ×TN (C, v) (5.4)

The replica selection procedure is then reduced to a mere sorting problem, in
which the versions are ranked by descending values of s(C, v). At this stage, all
information regarding the redundancy configuration is available, and the execution
of the voting round (C,`) can proceed using the first n(C,`) versions.

It was already pointed out in Sect. 5.1 that the optional user-defined parameter
tmax is used to enable the detection of performance failures. Whenever a replica v
is detected to be affected by such a type of failure throughout the course of a voting
round (C,`), the stalled invocation request should promptly be abandoned, and a
predefined internal failure message will be issued as the response message. Version

v will consequently be classified in P (C,`)
F , and penalised as described in Sect. 4.2,

directly affecting the version’s normalised dissent value.
The use of the tmax configuration parameter will also have repercussions on the

T (C, v) context property. As one can see in Eq. (5.4), if some context property value
X (C, v) for a specific replica v was not updated after its initialisation, i.e. X (C, v) = 0
and therefore XN (C, v) = 1, the version is tacitly assumed to contribute to the success
of the scheme in terms of the application objective associated with that property —
cf. (A39). We have therefore chosen to report tmax as the response time of versions
that fail to return their response within the imposed time constraint, such that the
system can guarantee that T (C, v)É tmax .

5.4 Context Manager

Obviously, an important prerequisite to obtain an accurate resource selection V (C,`)

is to have the required contextual information instantly available. As shown in
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Fig. 5.2, the A-NVP composite contains a context manager component that is
responsible for continuously monitoring any changes in the operational status of the
available resources, i.c. the context properties introduced in Sect. 3.4 and Chapt. 4
for each of the functionally-equivalent versions v ∈V available in the system. It also
serves the purpose of maintaining the data structure depicted in Fig. 5.1.

When new information regarding one or more context properties is reported,
the context manager will update its internal data structures accordingly, enforcing
appropriate synchronisation mechanisms so as to ensure data consistency. As such,
any update of a context property X (C, v) for a version v will instantaneously be
reflected in the value of the corresponding XN (C, v). Property updates may account

for internally deduced information, e.g. the c(C,`)
max −m(C,`), normalised dissent and

version invocation response time metrics, which are harvested by the A-NVP/MV
scheme at the end of each voting round `= bC(y) for successive elements y in {yz }C
— cf. Chapt. 4. Other metrics such as pending load may, however, be externally
provided; updates to their values may be subjected to delays due to the issuance,
transmission and processing of notification messages, a procedure which was
formalised in the counter update discrete event model introduced in Sect. 2.7.
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Figure 5.2: An A-NVP-based redundancy scheme designed as a WSDM-enabled
WS-Resource. Includes manageability capability implementing this algorithm, with
dedicated context manager component.
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CHAPTER 6
Simulation Tools for Conducting

Performance Analyses
One of the key contributions of the research reported throughout this
dissertation is the design of a comprehensive discrete event simulation
framework to scrutinise the behaviour of (fault-tolerant) system models,
and to conduct extensive performance analyses so as to assess the effective-
ness of various types of policies for advanced redundancy management
(research question RQ-3). In this chapter, we elaborate on the many
predefined measures that are available out of the box, and that allow to
report on the operational behaviour of system components, to analyse
the performance of redundancy schemata from various perspectives, and,
as such, provide insight on the system-environment fit or mismatch. We
then highlight the key means that support the designer in modelling the
behaviour and properties of the system itself, the entities held within, and
the environment in which it is planned to operate. Other related research
question(s): RQ-5.

The principal properties that contribute to system dependability were already listed
and defined in Chapt. 1. But to what extent is a system really dependable in
practice? How can we quantify how well a system is operating? Does it make
sense to consider these properties in isolation? This section provides an overview of
some useful measures and metrics that can be used to report and provide insight
on the system-environment fit or mismatch, and on the performance of the system,
from various perspectives, including dependability and timeliness.

In conducting rigorous performance analyses using discrete event simulations,
the designer requires adequate tools to quantitatively assess and judge the observed
behaviour while zooming in on specific system and/or environmental traits. Such
assessments are usually made by measuring several directly observable values or
performance aspects of interest — measures, that is — at specific stages of the
simulation process. However, it rarely makes sense to consider these measures in
isolation, for some are inextricably linked and may, considered together, ease the
interpretation of simulation results.
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While a measure expresses a way to obtain numbers or quantities, it is the
associated metric that will put these values in perspective and give an actual meaning
to the values obtained from measuring. Typical metrics in DES simulations are a
(discrete) time unit, a number of resources (simulation entities and/or objects), a
percentage or a real number where a higher value is indicative of a better score,
and classic longitudinal and monetary measurements. A measure obtained for a
specific performance attribute is specific to the environment in which the system
was operating, and how that system was actually used over time. A change in
environmental properties (including deviating load pattern) is very likely to yield
another measure [14]. Furthermore, measurements can be used to ascertain the
current system-environment fit. Indeed, the violation of one or more assumptions
about the system’s behaviour and properties, or about the environment in which it
is operating, are very likely to cause some (but usually not all) measurements that
can be flagged as outliers with respect to some predefined reference interval.

In this section, an overview is given of the various metrics that are available to the
designer, as well as a description of how measurements are actually computed for
each. The framework automatically keeps track of the evolution of these measures
during simulation runs, and comes with facilities for automatically ranking system
resources (e.g. replicas) and/or simulation runs and batches based on numerous
combinations of metrics that the designer desires to monitor. The metrics defined
here are merely a glimpse of those that are available out of the box as the simulation
framework is shipped, to which the designer can easily add purpose-built metrics
that may accommodate specific requirements.

Any type of information can be measured, both application/domain-agnostic
and -specific properties. Measurements are instantaneous observations, and are
computed and recorded based on the state taken by the system and the environment
at a specific point in simulation time. Further correlation and analysis during or after
the simulation is usually required, and multiple measures are typically recorded for
the same set of metrics at various stages of the simulation. It may be useful to apply
simple summation (e.g. to obtain the total number of voting rounds) or descriptive
statistics (e.g. the average degree of redundancy being used). At times, specific
algorithms can be used, an example of which can be found in the normalised dissent
that was presented in chapter 4. Some may even perform correlation taking the
simulation time into account when the individual measurements were recorded.

6.1 Measuring How Well Replicas Perform

Having pointed out the compositional nature of fault-tolerant redundancy schemata
in Sect. 1.3.2.1, and motivated how their effectiveness is largely determined by
the performance of the underlying versions (replicas) in Chapt. 3, we will start by
covering some useful replica-specific metrics/measures that aid in the performance
analysis of individual replicas.

6.1.1 Requesting Service: Decomposing the End-to-End Response Time

The recorded end-to-end response time of a request for service is the result of
several constituents, each of which quantifies the time required to deal with the
request from a specific perspective.
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On the Role of the Queuing Model and Quality of Service A version is a network-
accessible software component that is destined to provide a specific service and
therefore placed in production by deploying it to a (corporate) IT infrastructure
— v. (A41). Such infrastructure refers to all network and connectivity services,
hardware appliances and middleware solutions required to realise the service that
the deployed entity is expected to deliver. Whereas hardware appliances and message-
oriented middleware provide the technical underpinning that is needed to realise
the solution logic held within the software component, the service that is brought
about should be accessible to the anticipated audience, hence the need for network
connectivity services — v. (A06). Holding the actual solution logic, a version can
be seen as a processing facility, where — much like a traditional queuing system —
requests arrive, where they receive service, after which they depart — v. (A07) and
(A42).
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Figure 6.1: Decomposing the end-to-end response time for service invocation.
Customisation of [45, p. 69 Fig. 3.1]. Above: the corresponding events in the
discrete event simulation model shown in Fig. 2.2.

Queuing Models and the Kendall Notation Over the past 50 years, a lot of research
has been done in the area of queuing theory, and many different types of queuing
models with widely varying properties have been reported in the literature. The
Kendall notation is a commonly used abstract notation that is available to theoreti-
cally classify queuing models, and to denote their analytical properties as a tuple
A/S/c/k/n/D [115, Chapt. 1]. More specifically, the notation allows to characterise
the input or arrival process A, the service time distribution S, the number of
available server instances c, the buffer size k, the size of the calling population
n, as well as the scheduling discipline D .
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A queuing model is essentially a processing facility, using a processing resource at
its core to handle service requests. The processing facility corresponds to the actual
system being analysed. Requests for service arrive at random times, eventually
receive service, after which they are said to leave or depart from the facility. The
(inter-)arrival times between successive request messages are characterised by the
input or arrival process A, whereas the service (processing) times are characterised
by the service time distribution S. In reality, request inter-arrival and service
processing times are rarely constant, and various probability distributions have
been tried for A and S in an attempt to accurately approximate realistic values [116].
At any time, at most c requests can be simultaneously serviced by the processing
resource. Given this limited processing capacity, the facility includes a buffer — the
waiting queue — in which at most k incoming requests may be temporarily kept on
hold until a sufficient share of the processing facility’s capacity becomes available.
When the processing facility becomes available, the scheduling discipline D is
responsible for deciding which deferred request will be popped from the waiting
queue to be served next. Examples are a simple first come, first served (FCFS)
scheduling policy, in which requests will be serviced in the order they were stalled
and put on hold — v. (A07). When requests need to be serviced with different SLA
levels, a priority-based scheduling discipline (PNPN) may prove useful.
Finally, the calling population n expresses how many potential software entities or
actors may be requesting service, or — put differently — the cardinality of the set of
all types of requests permissible in the facility.
Each parameter in the model characterises a trait of how the service is rendered,
taken its deployment environment into account, and how it is exposed to and
consumed by various actors and systems. No specific model is targeted throughout
this chapter and the generic representation will be used as is.

Many contemporary distributed computing systems rely on message-oriented
middleware for exposing the solution logic encapsulated within a software
component to the outside world — v. Sect. 8.1. Such middleware solutions are often
responsible for dealing with incoming request and outgoing response messages,
for (de)serialising messages/data objects, and for scheduling and queuing these
messages. Since it is not common to embed scheduling and queuing logic within the
actual solution logic (separation of concerns), the queuing parameters k and D are
generally determined by the middleware itself, its configuration and/or its feature
set. More information about the role and type of queuing models in contemporary
distributed computing systems can be found in Sect. 8.5.2.

When crafting the simulation model, the designer should select a suitable queuing
model, for it will be decisive in the way the modelled resource — version, that is —
will be dealing with requests.

The Constituents of the End-to-End Response Time As shown in Fig. 6.1, the
end-to-end response time recorded for a single invocation of a specific version
can be decomposed in several precisely quantifiable types of delays, resulting from
the actual processing of the request, and overhead resulting from messaging and
queuing activities. Having pointed out that a version is a network-accessible software
component whose service is exposed and managed using a queuing model, we can
now proceed by decomposing and defining the different terms that make up the
actual end-to-end response time as it is perceived by the service requestor (QoS):
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– Throughout this dissertation, the round-trip time is considered to be the time
required for transferring the request and response messages to/from the processing
facility. This time accounts for the time to transfer the initial request originating
from the service requestor to the processing facility (RTTincoming), as well as for
the time to send a response message back (RTToutgoing). Here, we assume that
the service is accessible as an operation — a software routine — exhibiting a
request-response message invocation pattern (A36) [117]. The RTT does not
include the RPT at the processing facility, nor potential waiting times.

– Within the scope of a single service invocation request, the sojourn time is the
time interval starting when the request message has arrived at the processing
facility, up until the response is handed over to the message-oriented middleware
and system runtime, the response message has been built, and is all set to be
despatched to the initial service requestor. It is composed of two parts:

+ If all processing capacity is taken upon the arrival of a new request message,
that request will be temporarily stalled, and kept waiting in a queue. It will be
left in there until processing capacity becomes available and the scheduling
policy D allows to resume the processing of the request at hand [118]. The
inbound waiting time — denoted as Qr,in in Fig. 6.1 — is the time that
the request has spent waiting in the queue before processing capacity was
allocated to process it. At any one time, at most k requests can be kept on
hold. When all buffering capacity is used, additional requests coming in are
typically rejected.
The time spent in the waiting state is determined by the interplay of several
factors. Apart from exogenous factors like the influx of load, the main
endogenous factors can be found in parameters that affect the total
processing capacity being allocated. The number of available server
instances c, as it is called, plays a part here. It is usually determined by
the threading model applied in the middleware runtime or the solution logic.
Many modern systems maintain a thread pool of a specific configurable size,
in which each thread can handle a single request. This is covered in more
detail in Sect. 8.5. Obviously, the longer the average service time, given a
fixed amount of processing threads c, the less frequent a single processing
thread will be relinquished given a constant arrival rate of requests, resulting
in longer waiting times.

+ The request processing time (RPT): the duration during which the request is
actually being serviced by the processing facility. In discrete event simulations,
RPT values are commonly generated by drawing random variates from
the service time distribution S, and are therefore commonly referred to
as request service times.
The RPT may vary, and is determined by various endogenous and exogenous
conditions. It is the immediate result of the parameters S and c, and the
indirect result of the parameters A and n. It is dependent on the service time
distribution S, which is directly affected by the computational complexity
of the solution logic itself and the algorithms used to realise it, and the
processing capacity of the hardware infrastructure on which the software
component is deployed. Concurrent processing of multiple requests is
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expected to result in longer service times. In addition to the limited capacity
of the hardware, typical concurrency issues may occasionally cause idling,
examples of which can be found in resource sharing and synchronisation
overhead. Though the processing facility itself is shielded and protected
by the waiting queue buffer, it are exogenous factors such as the arrival
rate A and the number of service requestors n that will determine how
many requests will need to be handled in parallel. In addition, this influx of
requests is curbed by the inbound queue’s capacity k.

– The inbound waiting time is the result from buffering newly arrived requests until
part of the processing capacity has been relinquished to actually start processing
them. Apart from this incoming queuing delay, we can also observe an outbound
waiting time that accounts for all the overhead and delays to (i) serialise the result
obtained from the solution logic, (ii) to construct a proper and syntactically correct
response message, embedding the serialised response value, and (iii) to initiate the
actual despatch to the intended recipient being the service requestor. These tasks
are typically the responsibility of message-oriented middleware solutions. Due to
the fact that they are highly optimised to achieve extreme levels of performance
in dealing with these messaging-related tasks, this constituent of the response
time is assumed to be negligible, and will not be taken into further account (A37).
It is depicted in Fig. 6.1 though and is marked as Qr,out.

Client Overhead In considering the overall time required to handle a specific
request, several client-specific preparatory and concluding activities will result in
additional, albeit negligible, overhead to add to the end-to-end response time. Such
overhead is also applicable to redundancy schemata, which take the role of client
when requesting service from one or more versions:

– The outbound client overhead includes the overhead resulting from the activities
needed to construct the request message, to serialise it and have it sent out. It
is the time required to handle all of these activities before the request moves
into state (0), which precedes the end-to-end response time itself (Fig. 6.1). This
can also be seen as the time it takes before an event of type RequestSent can be
activated after the corresponding RequestInitialised event (Fig. 2.2).

– The inbound client overhead accounts for the overhead resulting from the
deserialisation and parsing of the response message and its processing. In the case
of an NVP redundancy scheme, this would include the voting and partitioning
algorithm. Starting when the request has transitioned into state (5), it succeeds
the end-to-end response time, and its duration corresponds to the time needed
before an event of type RequestHandled is activated after the corresponding
RequestSent event (Fig. 6.1 and 2.2).

Throughout this dissertation, it is assumed the outbound and inbound client
overhead is negligble (A38). The proposed simulation framework does allow to apply
different models though, and, in doing so, assess their impact on the performance
of various types of redundancy schemata.
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6.1.2 How to Measure Metrics in Discrete Event Simulations?

One of the core principles in discrete event simulations is that an event is scheduled
to occur at a distinct (discrete) point in simulation time. By doing so, real time
delays that would emerge from conducting experiments using emulation — using a
software system that is actually put in production — can be avoided when conducting
similar experiments using discrete event simulations. This advantage is commonly
referred to as the principle of next-time advance, as elucidated in Sect. 1.4. Since the
behaviour of the system and the environment in which it operates is modelled as a
set of events, and a single event will cause the model to move from one state into
another instantaneously, there is no need to actually wait for a transition to complete.
Instead, it is sufficient to take note of the (virtual) simulation time at which the event
was handled, and the delay that would be observed in the actual real-world system
can be skipped over. That delay — essentially the time it takes for a transition to fire
— can be approximated by computing the difference in simulation time based on
the time stamps that were recorded for successive/relevant events.

The approach described here above is applicable to all time-based measures;
values that express a duration relative to a base unit of time — be it (milli)seconds,
minutes, hours or days. It is applicable in particular, but not limited to, the measures
defined in this section. In Fig. 6.1, the relevant events that determine the constituents
of the end-to-end response time are labeled (1) to (5), each of which corresponds
to an event of the model shown in Fig. 2.2 and described in Sect. 2.2.

For other types of metrics, which apply a base unit different than time, a specific
measurement is computed and recorded for each event in addition to the time
at which it was handled. This type of metrics requires to compare the recorded
measurements, and maybe feed them into some algorithm for further analysis,
rather than the time stamps associated to the relevant events. The dtof and norma-
lised dissent are examples of measures that are computed using an algorithm —
v. Chapt. 3 and 4. Less complex examples are measures for reporting, for instance, on
the amount of redundancy used throughout a specific voting round. Such measures
usually do not require specific algorithms to extract information from the system
state, and can usually be deduced by counting a specific number of resources in the
simulation model.

6.1.3 Time-based Dependability Measures

“Suppose that once a system becomes operational, it will take a certain time to fail
again. The average time for the system to fail is called mean time to failure (MTTF).
Once the system fails, it will take a certain time to recover from the failure and return
to an operational state. The average time it takes for the system to recover is called
mean time to repair (MTTR)” [45, Sect. 11.4]. Once recovered, the “system [...] will
operate [, on the average,] for a time corresponding to the MTTF before encountering
its next failure. The time between two failures is the sum of the MTTF and the MTTR
and is the mean time between failures (MTBF)” [3, Sect. 4.2.5].

Software entities are often perceived to be in a so-called up or down state [119].
Indeed they can be seen to alternate between periods of normalcy, during which they
remain fully operational in line with the intended (non-)functional requirements,
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and periods of abnormalcy during which they behave anomalously. Transitions
between either type of period are triggered by the emergence of disturbances, and
the dissipation of their effects:

– When an entity is placed into operation, it is assumed to initially perform
correctly (A39). Software is commonly assumed to age throughout its
operational life span, and, by doing so, to become increasingly vulnerable to
disturbances.

– when an entity is (has become) fully operational (again), the first emergence
of a disturbance indicates the start of a period of anomalous behaviour;

– contrarily, when an entity is in a period of anomalous behaviour, it will resume
its normal behaviour as soon as the effects of all disturbances have dissipated.

As a side note, the author would like to mention software rejuvenation, a
proactive technique for recovery-oriented computing which, building on
assumption (A39), has been identified as a cost-effective solution to overcome
the effects of software aging. It does so by “periodically restarting software modules
to flush out latent errors” [44]. Although this technique is not explicitly considered
throughout this thesis, it may be applied whenever the proposed A-NVP algorithm
indicates that a specific component performs inadequately, and that the component
should (temporarily) be taken out of service.

A dual-state model effectively captures how the “life of the system is perceived
by its users [...] with respect to the specified service” [12]: the system is said to
be up when the service is being delivered as specified (service accomplishment),
whereas it is said to be down whenever it deviates from what was specified (service
interruption, or degradation). Quantifying the accomplishment-interruption alter-
nations (transitions) in this model is helpful in measuring the system’s effectiveness
from a dependability perspective. Apart from time-based measures like the mean
time to failure (MTTF), mean time to repair (MTTR) and mean time between
failures (MTBF), it also supports key dependability measures like availability and
reliability, which are expressed as a dimensionless, conditional probability or a
percentage. In line with their definition on p. 9, the property of availability can
be seen as “a measure of the [current] service accomplishment with respect to
the alternation of accomplishment and interruption”, and that of reliability as “a
measure of the continuous service accomplishment (or, equivalently, of the time to
failure) from a reference initial instant” [12].

The stochastic dual-state model is summarised in the upper right corner of the
diagram below. It shows how two parameters λ and µ, which have commonly been
used in the literature to approximate dependability-related measures, determine
when the system goes into either of the up or down state: “the system fails, i.e.,
goes from up to down, with a rate λ and gets repaired, i.e., goes from down to
up, with a rate µ” [45, Chapt. 11]. Here, the overall failure rate λ is to be seen as
the expected number of disturbances that would manifest and affect the device
or system and the service it is rendering per given time period. The overall repair
rate µ corresponds to “the average number of repairs that occur per time” unit
— essentially an approximation of how quickly the effects of a disturbance are
expected to disappear [3, Sect. 4.2]. It is, however, quite difficult to obtain accurate
approximations for these parameters, especially when dealing with complex failure
occurrence and recovery/repair patterns as they are usually observed in distributed
computing systems. And even if such approximations would be available, they fail
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to indicate how the rate at which failures emerge and their effects dematerialise
— i.e., the system recovers or repairs from their effects — evolves throughout the
system’s operational life.

We will now clarify the relationship between the concepts of MTBF, MTTR
and MTTF. In Fig. 6.2, the horizontal time line represents the operational life of a
software entity; the origin at the left corresponds to the time the entity is placed into
operation.
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Figure 6.2: Relationship between MTBF, MTTR and MTTF. Reproduction
of [3, Fig. 4.2] and [45, Fig. 11.2–11.3].

Mean Time to/between Failure/Repair For now, our primary interest is in the
MTTF, MTBF and MTTR measures. Even though these measures have been found
to serve well for quantitatively evaluating a system’s dependability attributes, they
have typically been defined with an implicit focus on mission-critical hardware
appliances and digital circuitry, assuming that the system will be taken out of service
as soon as the first failure has occurred, and that it will only be brought back into
operation once faulty components have been replaced. Clearly, this is not in line
with the focus of this dissertation, which is primarily on software systems and design
faults. Disturbances emerging from such type of defects do not necessarily cease
operation/execution indefinitely, and it is not always feasible to retrace a disturbance
to one particular originating design fault, since its manifestation is usually also
determined by various environmental factors. As such, for mission-critical
(distributed) software systems leveraging redundancy schemata, faulty software
components are deliberately kept running in the assumption that disturbances may
be of transient or intermittent nature, and that a faulty component can recover
and resume normal behaviour (A40). This is supported by the expectation that no
mission-cricital system will ever be placed in production, unless it is found to be
sufficiently mature, and has been submitted to rigorous testing routines to detect
and remove as many defects as possible.

Operational Life Once a software entity has been deployed, the operational
life is the total time during which the entity is running and accepting requests for
processing, starting from the moment the entity is launched, i.e. it is instructed to
start its operations, until the system is shut down, i.e. it is explicitly instructed to
cease its operations.

Furthermore, the system can also be brought to a halt implicitly, whenever a
crash failure materialises. This will bring the system down and cause it to become
permanently unresponsive and continuously exhibit omission failures — v. (A21).
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From this point of view, the operational life has been commonly used as the time
until the very first crash failure (time to failure) — in line with assumption (A08)
that states that a fault immediately translates into a failure upon activation. Note
how the system remains live despite potential transient and/or intermittent periods
of degraded service that may result from other types of disturbances, viz. RVF, EVF
and LRF failures.

Mean Time between Failure Occurrence (MTBFO) The time between failure
occurrence is defined as the time between any two consecutive failure occurrences,
both of which result in a disturbance affecting the availability of the software entity
under consideration. Different from the computation of MTTF and MTBF values,
every activation of a failure is accounted for, regardless of the state the entity is in at
the time of activation (up or down) — v. (A08). The metric is useful in estimating how
frequent latent software faults are triggered that remain within the implementation
logic of the software entity, and in assessing the risk of service perturbation.

Mean Time to Failure (MTTF) The MTTF can be defined as the average dura-
tion of all periods throughout the system’s operational life during which its availability
is sustained in full and without interruption, i.e. it behaves in line with its (non-)
functional specifications. In other words: the MTTF represents the average amount
of time that the system has countinuously spent in the up state. It is approximated
by taking the arithmetic mean of individual measurements, each of which represents
the time that has passed between the start of a period of normalcy, until the very first
failure occurrence that will make the system go down again. Note how only a subset
of all potential failure occurrences is considered, as opposed to the MTBFO metric.
In case of a burst of failures, only the first may affect the MTTF, and subsequent
failures are typically assumed to be endured by the system as part of the MTTR.

Although one may find many references in the literature where the MTTF is
approximated as 1/λ, one should realise that such approximation is correct only when
the system behaviour obeys the exponential failure law, which in itself assumes
that failures occur at an approximately constant average rate λ [3, Sect. 4.2] [45,
Sect. 11.4]. Put differently, the time between subsequent failure occurrences is
exponentially distributed. Even though this assumption has commonly been used
due to its simplicity and desirable properties, and to great success for the analysis
of digital circuitry, it is inadequate to support detailed analysis of software systems,
whose behaviour can be more accurately modelled using a time-varying failure rate
function. The lognormal distribution has been found to capture well the overall
behaviour of distributed software systems [82, 116, 120–126]. Furthermore, the
failure rate can also depend on the type of fault, and its properties in terms of
duration and recurrence. For intermittent failures in particular, these properties can
be precisely approximated using a Weibull distribution [127, Chapt. 2] [112, Sect. 3.4]
[128, Chapt. 13] [129].

During simulation runs, the described discrete event simulation framework will
collect all information that is needed in order to compute exact measures for the
MTTF. This allows the designer to use whatever desired combination of distributions
(if any) to inject disturbances into the system.
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Mean Time to Repair (MTTR) The MTTR can be quantified as the average
duration of all periods throughout the system’s operational life, each of which is
characterised by a prolongment of unavailability, as the system continuously fails
to meet the objectives defined in its (non-)functional specifications, resulting from
the occurrence of disturbances. Put differently, it is the average time delay, starting
from the moment the system becomes unavailable, to the earliest point in time
when the system resumes it operations in full. This corresponds to the time it takes
for the system to recover, as can be quantified by the time between two successive
transitions from up to down, and vice versa.

As long as the system stays down, it will fail to successfully process and handle
requests; due to disturbances, all of them will treated in such a way that the service
will exhibit faulty behaviour, either by violating the functional requirements, or
by violating the non-functional requirements — cf. Sect. 2.6 1. Since a software
system cannot subsequently recover from crash failures, the occurrence of such
type of disturbance essentially characterises the end of a system’s operational life
— v. (A21). Since the MTTR was defined with respect to a system’s operational life,
only measurements indicating the actual recovery latency are taken into account.

In practice, the MTTR depends on various endogenous and exogenous factors. It
depends on the fault recovery mechanism used by the system itself, and operational
matters like the maintenance schedule, monitoring systems, the deployment infra-
structure, and the availability and location of spare components (on-site vs off-site)
[2, Sect. 3.3] — v. Sect. 1.3.

The MTTR is usually approximated as 1/µ, given an overall repair rate µ. It is,
however, “extremely difficult to estimate, and is often determined experimentally”
to ensure accuracy [3, Sect. 4.2]. The described simulation framework has been
implemented in line with this recommendation.

Mean Time between Failure (MTBF) The MTBF is the average duration of all
periods throughout the system’s operational life, each of which starts whenever
the system suddenly becomes unavailable, extending beyond the resumption of its
normal operations, before it ultimately stops when it is about to become unavailable
once more. Each such period is immediately proceeded by a period during which
the system behaved correctly and the availability of the service it seeks to provide is
sustained in full. Each such period includes “any time required to repair the system
and place it back into an operational status” [3, Sect. 4.2]. In other words, the MTBF
is calculated by dividing the operational life by the number of transitions from the
up to the down state that can be observed throughout. Or, more intuitively, within
the operational life, it is expected that MTBF = MTBF + MTTR, as is illustrated in
Fig. 6.2 — cf. assumptions (A09) and (A10).

1Despite assumptions (A09) and (A10) that state that — with the exception of crash failures —
all effects of a disturbance immediately dissipate, the corrupted results of affected requests may be
delivered to the requesting party with some reasonable delay. This is because of middleware messaging
and queuing overhead, and network transmission delays — cf. Fig. 2.1 and 2.2. In case the requesting
party is a redundancy scheme, it may still perceive anomalous behaviour.
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6.2 Redundancy Schemata & Performance Measures

As was illustrated in Fig. 1.5, a knowledge source is to be found at the core of any
autonomic computing software system. Being autonomic software units in se, such
architectural model is also applicable to adaptive redundancy schemata, which rely
on a dedicated context-aware management component — v. Fig. 5.2. Such type of
component takes the role of knowledge source and is responsible for collecting and
managing runtime data that is used to compute various types of metrics. Precisely
how well the software entity will perform depends on the selection of metrics that
are monitored, and the quality of the collected measurements.

Furthermore, adaptive redundancy schemata aim to autonomously adjust the
employed redundancy configuration by allocating the available redundancy capacity
in the system only in part, and selecting only those versions that are expected to
contribute most to the scheme’s overall objectives — cf. Sect. 5.1. This allocation is
controlled by specific redundancy dimensioning and selection models into which
context-aware information is fed — cf. Sect. 5.2 and 5.3. Unlike classic predefined
redundancy schemata, in which a static set of versions is used, dynamic redundancy
configurations may vary throughout time, and so can the selection of the versions
available in the system.

6.2.1 General Measures

Regardless of whether a single instance of a context management component is
used for multiple redundancy schemata, or multiple, dedicated instances are used
for each individual scheme, all collected measurements are linked to a specific
operational context: a specific fault-tolerant composite C. Even though they may
not seem very significant, the following basic measures should always be monitored,
for they will put various other types of measures in perspective, thereby facilitating
the analysis of how well adaptive redundancy schemata perform, primarily from a
dependability and resource expenditure perspective:

– The total number of voting rounds `Ctot al that have been simulated and analysed
throughout a particular simulation run. This indicates how many times service
was requested from the redundancy scheme. The emphasis is placed on the
fault-tolerant composite C itself rather than the underlying versions.

– The total number of voting rounds #rounds(C,v) in which a specific version was
part of the redundancy configuration and, as such, contributing to the overall
outcome of a specific scheme C — v. p. 77. Measurements are maintained for each
version in the system. Absolute values collected for this metric are often put in
perspective and expressed as values relative to the total number of voting rounds
`Ctot al . Obviously, #r ound s(C, v) ≤ `Ctot al .

– When analysing the performance of a redundancy scheme using a redundancy
dimensioning model in which a safety margin csm is enforced, the simulation
framework will compute `suspect: this measure corresponds to the number of
voting rounds for which an outcome could be adjudicated, though the degree of
consent in addition to the required absolute majority did not exceed the imposed

margin, i.e. 0 ≤ c(C,`)
max −m(C,`) < csm — v. p. 82 and 84. Applying a safety margin is
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useful for applications that should exhibit highly dependable characteristics, and
measurements recorded for `suspect are indicative of intervals in the operational
life of the investigated scheme in which the degree of consent is suspiciously close

to the minimum degree of consent c(C,`)
max required for the system to survive. The

measure is usually compared to the total number of voting rounds `Ctot al .

The proposed A-NVP algorithm relies on the availability of context information.
These data structures that are typically maintained by a dedicated context manager
component included in the NVP FCU — cf. Sect. 5.2.1 and 5.4. The data held within
is analysed and used to adjust the redundancy configuration, and is essential for
the functioning of the redundancy dimensioning and replica selection models
— cf. Sect. 5.2 and 5.3. Throughout the operational life of a given redundancy
scheme, several measures can be recorded based on the information held within
this so-called window of context information, which may provide further useful
insight in the overall performance of the proposed algorithm:

– To be able to make an informed decision and adequately dimension the optimum
level of redundancy requires the availability of high-quality and complete context
information. The data structure shown in Fig. 5.1 is updated upon each subsequent
completion y of a voting round `= bC(y); only then the information for updating
the context knowledge can be deduced. Whereas the data held within this data
structure is updated as soon as voting rounds have completed, the decision
as to what level of redundancy is to be applied for subsequent voting rounds
is determined based on the collected information available at the time these
new rounds are initialised. The order in which voting rounds complete does
not necessarily correspond to the order in which they have been initialised.
Such mismatch is the result of the arrival pattern by which new requests hit
the redundancy scheme and the degree of variance that is noted with respect
to the time required to handle them (which in turn is mainly determined by the
end-to-end response time of the subordinate version invocations).
Partially incomplete context information may result in suboptimal redundancy
dimensioning. Such situation is referred to as a corrupted state of the window of
context information. The total number of voting rounds during which the level of
redundancy was determined based on incomplete context information is denoted
as äcorrupt. The measure is commonly expressed as a percentage relative to the
total number of voting rounds `Ctot al .
Window corruption is verified at the start of each voting round. To do so, a
technique based on triangular numbers can be applied, with the nth tringular
number Tn defined as the sum of all natural numbers k ∈N+ such that Tn =∑n

k=1 k = n(n+1)/2. Consider the state of the cached context information when
a new voting round (C,`) is being initiated, and let `mi n and `max represent
the smallest, respectively largest voting round identifier value. Then all context
information is present in the window if T`max −T`mi n = ∑z

k=max(1,z−rd+1) bC(yk ).
More intuitively, this condition will verify that a sample of context information is
cached for all of the last mi n(z,rd ) voting rounds whose initialisation preceded
that of round (C,`). In doing so, the insertion (round completion) order of the
samples does not matter. Even if the data structure were sorted based on the
voting round identifiers, e.g. using a priority queue, gaps may remain for rounds
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that are pending.
Note that applying a sequential arrival pattern for the arrival of requests at the
fault-tolerant composite — or, in other words, voting round initialisations —
where voting rounds are handled one after another, will always correspond to
äcor r upt = 0 — cf. p. 109.

– Another useful measure is äfill, denoting how many samples were present at the
end of each voting round. It is used to analyse how quickly the maximum window
capacity rd is actually allocated. The closer measurements would approximate rd ,
the more information is available to make an informed decision on the degree of
redundancy to be used in subsequent voting rounds. The default context manager
implementation will collect measurements and report mimimum and maximum
values, which should always lie within the interval [1,rd ]. It will also report the
average value, the observed standard deviation as well as information about the
confidence interval.
Eventually, for values `Ctot al ≥ rd , ä f i l l = rd . However, if the pattern in which
requests arrive at the fault-tolerant composite would lead to many voting rounds
being concurrently handled, in particular during the early phases of the scheme’s
operational life, it may take longer before the total window capacity is completely
allocated — which the designer can observe from the reported metric data.

– A variation of the previous measure is used to zoom in on the size of the upscaling
view maintained on the current state of the context window. This view comprises
the last {ymi n(1,z−ru+1), ..., yz } samples of the overall context window, and corres-
ponds to periods during which the scheme is temporarily deferring an anticipated
upward adjustment of the currently applied level of redundancy. Such scenario
would typically occur upon the insertion of an observational sample holding the
contextual information acquired from a completed voting round for which an
outcome could be adjudicated, yet in spite of a qualified majority, the consentient
ballots to spare fell below the imposed safety margin csm . Another scenario would
be a voting round for which a majority could not be established. The following
statistical data is collected and available: upper and lower values observed,
arithmetic mean and standard deviation, as well as confidence intervals.

6.2.2 From a Dependability Perspective

Often expressed as a percentage of the total number of simulated voting rounds
`Ctot al , the total number of voting rounds for which the scheme failed to adjudicate

an outcome is denoted as `Cfailure. In n-version programming, such situation
would occur when an insufficient level of congruence between the acquired ballots
inhibits the adjudication of a majority. More formally: whenever c(C,`)

max −m(C,`) ≤ 0
— cf. Sect. 3.1.2. The measure gives an estimation of how frequently the redundancy
scheme has been unavailable, and failed to successfully render the service it was
expected to.

In addition, one may discern the following replica-specific measures:

– The (relative) number of those voting rounds which were accounted for in
#r ound s(C, v) for which v contributed to the majority is denoted as #consent(C,v)
— cf. Sect. 4.3. Obviously, #consent (C, v) ≤ `Ctot al .
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– Within the scope of a particular voting round `, whenever an engaged version
vi is affected by some type of disturbance while processing a service request
〈C,`, i 〉, that version is expected to be in dissent with the majority established
for that round, if one can be found at all — cf. Sect. 4.3 and (A31). The number
of voting rounds during which a specific version v did not contribute to the
adjudication of an outcome of the redundancy scheme can be computed as
#r ound s(C, v)−#consent (C, v), and should not exceed `Ctot al . This number is

often expressed as a value relative to the total number of voting rounds `Ctot al , or
relative to the number of voting rounds in which the version was included in the
scheme’s redundancy configuration — #r ound s(C, v), that is.

– The normalised dissent D(C, v) was introduced in Chapt. 4 as a replica-specific
metric that represents how well a given version v contributed to the sustained
availability of a redundancy scheme C throughout the scheme’s operational life
span. Measurements are recorded for all versions V every time a voting round
has completed (to be precise: when it has transitioned into state (d) — v. Fig. 2.1).
The metric is used as an alternative to approximate the actual reliability, and the
evolution of the measurements recorded for a specific version should match the
version’s susceptibility to disturbances.

All of the time-based dependability measures introduced in Sect. 6.1.3 are
collected for the fault-tolerant composite itself, as well as for all of the versions
used by the underlying redundancy configuration. These measures are usually
expressed as real-world (continuous) time intervals. However, as the emphasis is
placed on the sustained availability of the fault-tolerant composite as a whole, the
proposed simulation framework will compute measurements expressed as a number
of consecutive voting round invocations, rather than expressing them in units of
discrete simulation time. Individual updates of measurements can be obtained at
the end of each voting round, while honouring the order in which voting rounds
have been initialised. That being said,

– The time to failure (TTF) of a given redundancy scheme corresponds to the total
number of voting rounds until the scheme (first) failed to produce/adjudicate
an outcome — cf. (A31). Similarly, the TTF for a specific version corresponds
to the total number of voting rounds during which that version sustained the
schema’s availability in full, until it was affected by some disturbance that caused
it to behave anomalously — cf. (A30).

– In addition to that, the framework is shipped with support to compute the XTTF,
or the time until the x th failure, where x can be set at will. Whereas basic TTF
measurements fail to represent the reliability of the scheme and its underlying
versions during the early phases of its operational life, the XTTF may provide more
insight in the degree of intermittence between various failure occurrences.

– The mean time between failures (MTBF) was defined before as the average
duration of all periods throughout a software entity’s operational life, each of
which starts whenever the system suddenly becomes unavailable, extending
beyond the resumption of its normal operations, before it ultimately stops when
it is about to become unavailable once more. Inituitively, this can be seen as the
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average amount of time that a software entity has spent in the up state throughout
its operational life. Similarly, the mean time to repair (MTTR) was defined as
the average duration in between two successive periods of continuous fault-free
behaviour, or the average amount of time the entity spent in the down state.
Discrete values can be used to indicate the extent of the theoretical, time-based
measurements. Values can be determined for each replica that is part of the
available redundancy capacity, or for the redundancy scheme itself:

+ For a given redundancy scheme, consider a chart in which the horizontal axis
represents a timeline in which voting rounds are represented in the order in
which they have been initialised. Then all of those rounds are marked (plotted)
for which the given version was affected by one or more disturbances. For that
given version, the MTBF can then be approximated as the average number of
voting rounds during which it exhibited fault-free behaviour in between two
successive rounds during which it exhibited faulty behaviour. Or, more formally,
by averaging the overall length of all the applicable subsequences in {`x }C.
Similarly, the MTTR can be approximated by computing the average length
of windows of transient unavailability. Or, put differently, the repair period
corresponds to the number of successive voting rounds during which the
version uninterruptedly exhibited faulty behaviour.
These replica-specific measures are computed based on the failures that are
actually observed; there is no relation with the contribution of the version — its
ballots — to the actual outcomes adjudicated by the decision algorithm.

+ For a given redundancy scheme, such estimation can be obtained as the cumula-
tive number of voting rounds covered by all intervals during which the scheme’s
availability was sustained in full (MTBF), or during which it showed to be
unavailable for a longer period, albeit transient in nature (MTTR). As criterion
to determine if the scheme is (un)available, it is sufficient to check that the
underlying decision algorithm was able to adjudicate an outcome at the end of
a particular voting round, i.e. dtof (C,`) > 0 — cf. (A32).
Measurements are computed in two different ways: honouring the initialisation
order in which voting rounds have been initiated, as well as the order in
which voting rounds have completed. The latter mechanism was introduced
since, depending on the request arrival rates and the variance of the overall
RPT, voting rounds do not necessarily complete in the same order they were
initialised — v. p. 74. It actually makes sense to do so, since both measures
primarily intend to capture information with respect to (the detection of) failure
occurrences, and failures will only be detected at the end of specific voting
rounds — cf. (A06).

6.2.3 From a Timeliness Perspective

Latency-sensitive applications typically come with the non-functional requirement
of being able to render a service within a predefined time limit — cf. Sect. 5.1.
Such requirement should be taken into account while determining an appropriate
redundancy configuration, and a balance should be found between a fair distribution
of the load across the available redundancy (versions) and the delay in acquiring
an outcome. For adaptive redundancy schemata to be able and to attempt to
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meet such type of application-specific objective requires an indication on the
responsiveness of the individual versions available in the system. The proposed
discrete event simulation framework is shipped with a default context manager
implementation that is capable of monitoring the end-to-end round-trip time
of version invocation requests and all of its constituents as listed in Sect. 6.1.1.
Outbound as well as inbound client overhead can, optionally, be modelled and
monitored as well. All of these metrics are collected specifically for all versions
operating in a given redundancy scheme, and the mean as well as the standard
deviation are computed based on the recorded version-specific measurements.

6.2.4 From a Resource Expenditure Perspective

In Sect. 1.5, we argued that static redundancy configurations, or the use of a higher
degree of redundancy, do not necessarily yield a higher degree of dependability.
Even though a sufficiently high degree of redundancy is, without doubt, an essential
requisite to maximally sustain the availability of redundancy schemata, the available
redundancy should be managed carefully and well-consideredly, and be sparingly
allocated. This way, part of the additional cost in using excessive levels of redundancy
could be economised — cf. Sect. 3.3. The following metrics are measured throughout
the simulation of voting rounds:

– Honouring the constraints imposed on the applied degree of redundancy consumed
within a given redundancy scheme C, where nmi n ≤ n(C,`) ≤ nmax , the total
amount of redundancy units consumed over a simulation run is denoted as∑

n(C,`), ∀` ∈ {`x }C — cf. Sect. 5.1. Intuitively, a single unit of redundancy can be
seen as a single invocation 〈C,`, i 〉 of a single version vi . Measurements will give
an indication how extensively the available redundancy — that is the finite set V
of functionally-equivalent versions available in the system — was actually used.

– Within the context of a given voting round (C,`), the contextual redundancy
was defined in Sect. 3.1.3 as the minimum degree of redundancy required to
counterbalance the effects caused by a given number of disturbances e(C,`).
The measure can be used to determine if the employed degree of redundancy
n(C,`) was (in)sufficient, and to indicate redundancy under- or overshooting —
cf. Sect. 3.1.2. Accumulating these measurements for all rounds ` ∈ {`x }C gives
a clear indication on the bare minimum of redundancy (units) that would have
been required to guarantee the scheme’s availability under comparable conditions
(identical types of disturbances with a similar failure occurrence pattern).

– Although the result is surely not indicative of a scheme’s overall reliability, it is
useful to put the total redundancy consumption

∑
n(C,`) in perspective. Nonethe-

less, both measures should be compared bearing into account the number of
voting rounds`Cf ai l ur e during which disturbances could not be successfully masked.

This is because a poor redundancy dimensioning strategy could result in redun-
dancy undershooting, which might result in a total amount of redundancy

∑
n(C,`)

very close to the cumulative contextual redundancy
∑

cr (e(C,`))2.

2When computing contextual redundancy measurements, the designer may choose whether or not to
take strict LRF failures into consideration. Strict LRF failures are disturbances that affect a specific scope
— version invocation 〈C,`, i 〉, that is — that is not affected by other, more severe types of disturbances —
cf. Sect. 2.3.
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In order to maximally safeguard the dependability of a redundancy scheme,
versions that are affected by disturbances while processing requests originating from
the scheme should be marked and considered as suspicious, and should be closely
monitored. Ideally, any suspicious version is directly taken out of service, keeping
only those other versions in service that exhibit near-perfect behaviour as specified.
Obviously, this is not always possible, particularly in case the available redundancy is
limited, as it usually is. After all, each additional implementation incurs a significant
cost for its design and development, as well as increased infrastructural and operatio-
nal costs. Furthermore, a limited redundancy might necessitate to recover previously
excluded versions when there is a sudden need to scale the redundancy up. The
algorithm introduced in Chapt. 5 was designed with these concerns in mind. It
is used to manage the redundancy configuration employed within redundancy
schemata, and to remove or add versions as appropriate, either taking suspicious,
poorly performing replicas out of service, or integrating previously suspected replicas
as soon as it is deemed safe to do so. But how long will we monitor a version marked
as suspicious before acting and taking it (temporarily) out of service? And how much
damage can it cause during this interval? How frequent do we reach out to previously
disabled redundancy to bridge periods in which an unusually high number of
disturbances are observed? The following metrics may help to understand. They
are collected specifically for all versions operating within the context of a given
redundancy scheme, and the mean as well as the standard deviation are computed
based on the recorded version-specific measurements:

– The term exclusion latency is used to denote a period corresponding to a specific
subsequence of {`x }C, starting from a voting round during which the version
was first affected by a disturbance since it was used in the scheme’s redundancy
configuration, and ending with the last round in this sequence, followed by a
round during which the version was immediately excluded. When the version
is hit by a burst of disturbances, the first will indicate the start of the interval,
and all subsequent disturbances that occur before the first exclusion will be
considered as exclusion failures. The exclusion latency indicates how long a faulty
replica that was marked as suspicious, was kept in service, before it was actually
excluded. It is expressed as a number of voting rounds and is indicative of the
uncertainty that the continued use of the faulty version causes, as it may have a
negative effect on the effectiveness of the employed redundancy configuration.
The latency depends on the fault detection effectiveness and how severely replicas
are penalised: higher penalty values may be expected to result in shorter latency
windows — cf. Chapt. 4.

– During the exclusion latency, the applicable version is kept in service, but it may
suffer from additional disturbances. That would incur penalties to be inflicted
in updating the corresponding normalised dissent measurements, as it clearly
threatens the reliability of the redundancy scheme as a whole — cf. Sect. 4.2. An
exclusion failure is a failure of a given version during a specific voting round that
is part of the exclusion latency. Since only a single type of disturbance — the most
severe type — is considered to affect a version within the scope of a specific voting
round, the exclusion failures cannot exceed the exclusion latency itself.

– The re-integration latency is the delay, expressed as the number of consecutive
voting rounds, between the moment when a specific version had been excluded
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from the scheme’s redundancy configuration, until it was once again selected and
engaged during a subsequent voting round. Throughout this period, the version
was not used in the scheme’s redundancy configuration. How quickly an excluded
version will be re-enabled in a redundancy configuration depends on various
factors. In case the version was taken out of service because it had been affected
by one or more disturbances, there is a direct relationship with the applied reward
factor (lower values would translate in shorter latencies) — cf. Chapt. 4. However,
the recorded latencies will also depend on how well or poorly the other versions in
the system have been performing, and to what extent their observed performance
is in line with the scheme’s endeavoured objectives.

– When a specific replica is properly functioning and contributing to the sustained
availability of the redundancy scheme, there is no specific need to exclude it
from the scheme’s redundancy configuration (although it could be in case the
used level of redundancy is reduced, and that version shows to be performing
relatively poorly with respect to the other versions participating in the redundancy
configuration). A successive usage period is a sequence of consecutive voting
rounds during with a specific version was engaged and actively used within a
given scheme’s redundancy configuration. Put differently, a single such period
corresponds to a specific subsequence of {`x }C, and ends at the last round in this
sequence, followed by a round during which the version is excluded.

Apart from the above, the context manager will also maintain replica-specific
load statistics. Based on the metrics defined in the MoWS specification, the context
manager will keep track of three attributes that help to characterise throughput
levels: NumberOfRequests, NumberOfFailedRequests and
NumberOfSuccessful Requests. More information on this specification can be found
in Sect. 8.2.4. Measurements are acquired after the receipt of notification messages,
which imply a potential delay before the metrics are updated — cf. Sect. 2.7 and 3.4,
and (D04). Subject to these delays, the currently known pending load L(C, v)
associated with a version v is determined as NumberOfRequests− (NumberOfFailed−
Requests + NumberOfSuccessfulRequests), which should approximate the
current number of pending requests. Note how update notifications are issued
at various stages of the version invocation state transition model; measurements are
expected to be updated in reasonable time — cf. Fig. 2.2.

Finally, the degree of redundancy employed within adaptive and autonomous
redundancy schemata is likely to vary throughout the scheme’s operational life —
cf. Fig. 3.1. Each adjustment to the level of redundancy being used corresponds to
what is referred to as a redundancy event. For dynamic redundancy configurations,
it is useful to compute the following two measures:

– The total number of events during which the degree of redundancy was increased
(scaled up) and how many of these events resulted in a redundancy level
(configuration) that proved sufficient to sustain the scheme’s availability. Whereas
the former is denoted as 4total, the latter is denoted as 4success.

– Similarly, 5total denotes the total number of events during which the redundancy
was brought/scaled down, and how many of these events resulted in a redundancy
configuration that proved to be inadequate to sustain the scheme’s availability
and thus resulted in one or more failures (5failure).
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– Another useful measure is the number of times 4bump the system intended to
scale the current level of redundancy up, but failed to do so because of the imposed
upper limit nmax . Measurements may help to assess if the total redundancy
capacity is adequate to support bursts of failures. Assuming that the available
redundancy is efficiently allocated and used, it is likely that each such type of
redundancy event corresponds with a failure of the redundancy scheme itself.

All of the above are often expressed as a percentage of the total number of redundancy
events observed for each of the directions in which the redundancy level can be
adjusted (up or down, respectively 4tot al and 5tot al ). They provide an indication
as to how effective the redunancy dimensioning and replica selection models were
to proactively reach out for spare redundancy capacity in case (there is a risk) of
redundancy undershooting, or economise on using excess redundancy in case of
redundancy overshooting. Obviously, as no such type of events would be observed
for traditional, static redundancy configurations, both measure will evaluate to 0.

6.3 Modelling the Environment

Another thing that is needed are tools for the designer to exert control over the
environment in which the system is operating, and the effect it may have on the
system, its behaviour and performance. At times, one may wish to analyse the
essential characteristics of the system under normal operating conditions, in order
to assess if and how the performance of the system can be improved. Such type of
analysis often calls for the ability to (temporarily) suppress any undesired behaviour
that could result from disturbances affecting the system itself, or the infrastructure it
relies on (in particular network connectivity services and hardware and middleware
components). If not, it would be very useful if the designer were able to analyse
and/or reproduce specific conditions, in particular when catastrophic failures need
to be examined ex-post. This would help to comprehend and reveal the exact root
cause, required to harden the system and improve its resilience. Discrete event
simulations are particularly helpful to support the designer in deterministically
reproducing a specific scenario of correct or erroneous behaviour.

Apart from being able to control the occurrence of disturbances — a subject that
will be touched in the next section — the following parameters play a key part in
ensuring the determinism of discrete event simulations:

– Being processing facilities in se, the characteristics of a software entity can easily
be denoted in Kendall notation. One of the key attributes included in such type of
representation is the arrival process A: a property that is used to characterise the
influx of new requests arriving at the facility. This is no different when considering
fault-tolerant redundancy schemata. However, a distinction needs to be made
between the actual scheme itself, and the underlying versions:

+ When considering an individual version vi , the load imposed upon it is the
result of two types of requests. One can observe requests that were instantiated
within the context of a specific voting round. This type of requests are denoted
as 〈C,`, i 〉, where C represents the redundancy scheme (the client, v. p. 6) that
issued the request, and this within the scope of a specific voting round `. A
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version can also be requested to deliver its service by third-party components
and/or system actors other than the redundancy scheme itself. This second
category of requests — collectively referred to as external load and denoted
as 〈⊥,⊥, i 〉 — are issued independently of the redundancy scheme in whose
redundancy configuration the version may be engaged – v. p. 64.

+ The simulation framework allows the designer to plug in a specific model that
reflects a desired arrival process of external load. Such model can optionally
be defined for a specific version, and is used to inject stand-alone requests
in the background as the simulation progresses. The mechanism relies on
the generation of inter-arrival times, so that requests can be easily injected
sequentially — v. p. 43.
Subordinate requests will arrive in function of the creation and handling of
voting rounds; no further configuration is possible at replica-level.

+ When a request arrives at an NVP-based redundancy scheme, it will lead to
the instantiation of a new voting round. The simulation framework allows the
designer to plug in a specific model that reflects the desired arrival process.
The designer can choose to define a time-based inter-arrival model, or start
new voting rounds in sequence. This allows to control whether different voting
rounds may be handled (partly) in parallel.

– The second most important parameter in Kendall notation is the service time
distribution S. Such distribution is often used to sample RPT values. More
formally, as illustrated in Fig. 6.1, this corresponds to the time during which
a request stayed in state (2) before transitioning into state (3).
The simulation framework allows the designer to plug in a version-specific model
that reflects a desired service time distribution. No specific model is considered for
redundancy schemata, since the actual RPT of voting rounds is largely determined
by the RTT values recorded for the subordinate version invocations.

– The author believes there is little use in modelling specific queuing overhead for
the A-NVP composite and/or individual versions, in view of assumptions (A07)
and (A38). Indeed, in handling subordinate version invocations, the end-to-end
response time is mainly composed of the RTT and RPT, and the (outbound)
waiting time and inbound/outbound client overhead usually do not significantly
contribute.
Furthermore, when performing simulations, usually only a single redundancy
scheme is instantiated, and it does not make sense to consider additional queuing
overhead. This is mainly motivated because the end-to-end response time for
a specific voting round is largely determined by the end-to-end response times
recorded for the subordinate version invocations. Additional latencies that may
result from queuing-specific complexity at the level of the fault-tolerant composite
are usually negligible or irrelevant for the objectives that one hopes to achieve
by means of simulation. Nevertheless, should the designer disagree, specific
properties of the environment on which these software entities have been deployed
can easily be configured by associating a specific model (implementation logic)
to the relevant entities — cf. Fig. 6.1.
At the level of the redundancy scheme, the outbound client overhead can be
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modelled — v. p. 94.
For versions, one can define the number of server instances c as well as buffer
size k, the scheduling discipline D . The simulation framework will (re)schedule
the relevant events, thereby applying the defined queuing model. Optional
version-specific configuration allows to specify the extent of the overhead resulting
from the enveloping, serialising and requesting transmission of (i) syntactically
valid response messages (no EVF failures occurred), (ii) error messages (in case of
EVF failures or omission failures), or (iii) counter update messages — cf. Sect. 2.73.

– Adequate models used to sample network transmission delays can be specified
for individual version instances. The reason this type of models are associated to
versions is that the network topology can be modelled in a modular way, and the
latencies resulting from the route to/from the (single) instantiated redundancy
scheme can be defined. These are used to determine the RTT for subordinate
version invocations, encompassing the time required for transferring the request
from the scheme to the applicable replica, and sending the resulting response
back. The default implementation shipped with the simulation framework does
not assume any specific network topology.

– Finally, versions may be affected by all sorts of faults during their operational life,
and disturbances can therefore be observed while processing requests. Although
the primary interest lies on software design faults, it may be useful to model the
behaviour of the deployment environment too, in particular the reliability of the
underlying hardware and middleware. In the context of discrete event simulations,
contructing and applying suitable fault models is closely related to the technique
of failure injection, which will be covered in the following section.

6.4 Failure Injection Mechanisms

Failure injection is a technique commonly used in software testing, and is typically
used to improve “the coverage of a test by introducing faults to test code paths, [and
to analyse and improve the effectivenes of] error handling [routines in particular]
that might otherwise rarely be followed” [130]. When analysing the effectiveness of
redundancy schemata using discrete event simulations, the technique is helpful, in
that it allows the designer to exert control over the number and frequency of failure
occurrences — the number of observed disturbances, that is.

Defining a suitable fault model is an intrinsic aspect of modelling the environ-
ment in which redundancy schemata operate — cf. Sect. 6.3. It allows to identify how
failures should be injected, at what failure rate they should be, which replicas are
susceptible to specific types of faults, and how a specific type of fault may materialise
— cf. the various types of disturbances defined in Sect. 2.6. The proposed simulation
framework allows to implement and configure a specific fault model and analyse its
impact on the behaviour and effectiveness of redundancy schemata. To facilitate this,

3This model is used to identify the amount of simulation time between the occurrence of an event of
type request completed (ab)normally and one of type response sent in case of (i); between the
occurrence of an event of type request completed exceptionally and one of type response sent
in case of (ii); and between the occurrence of an event of type counter update issued and one of type
counter update sent in case of (iii) — cf. Fig. 2.2.
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these models can be defined in two ways, depending on the designer’s preferences
and requirements:

(i) Specific fault behaviour can easily be modelled by defining how a specific
(design) fault will affect and disrupt the normal operation of one or more
versions. Using a special type of auxiliary event, the activation of faults can
be deterministically simulated and failures can be injected accordingly. A
single instance of such event will be scheduled for each fault at the start
of a simulation run, which will be rescheduled using an event replacement
procedure, reflecting inter-failure times that are typically sampled from the
probability density function of some random variable — cf. the definition of
event replacement (p. 43). Although the default implementation assumes that
fault activation and failure occurrence concur, as per assumption (A08), the
designer has the liberty to define manifestation latencies at will.

(ii) For each individually deployed instance of a version — which will be referred
to as a replica4 — the designer can optionally configure a specific fault model.
If no such configuration is specified, the replica is assumed to be fault-free,
although failures can still be explicitly injected using the previous approach (i).
Such model allows to inject various types of disturbances that may result from
the activation of design faults. It also allows to define policies to determine
when failures should be injected, which allows to inject failures only when
specific conditions apply, or during specific voting rounds. Using this approach,
the designer can choose between two options:

(a) The designer can choose to inject replica-specific failures by sampling
inter-failure times from a random variable. This approach is similar to
(i), yet differs in that this behaviour is encapsulated within a specific fault
model that is specifically linked to one or more replicas. Both approaches
can also be used to inject hardware and/or middleware failures.

(b) A trend-based failure injection mechanism is also available for additio-
nal convenience, allowing the designer to define trends in which a given
amount of failures can be injected within the scope of specific voting
rounds. Considering a chart in which the abscissae correspond to the
elements of {`x }C (in that order), and where the ordinates reflect the
desired number of disturbances to be injected during the corresponding
voting round, the designer can configure failure injection by defining one
or more intervals (subsequences of voting rounds), and defining a simple
linear curve. While the simulation is progressing, for each subsequent
voting round, the system will inject a suitable number of disturbances that
approximates the amount computed from the selected model. Trends can
be described using simple XML fragments, that are validated against the
XSD scheme shown in Lst. 6.1. Using such type of injection configuration,
for a given voting round `, the framework will select a random subset

4The distinction between the notions of version vs replica is only made throughout this section for
the sake of convenience. This allows to simulate the same fault behaviour, but trigger different types of
disturbances, which may be useful in case of multiple deployments — replicas — of the same version
across different hosts.
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from the set of available replicas V and inject the necessary disturbances,
whereby injection can be steered according to specific conditions defined
by the designer (e.g. targeting or sparing specific versions, trigger crash
failures etc.).

Listing 6.1: trend-based failure injection requires an XML fragment that is valid as
per the XSD schema listed below

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema targetNamespace="http://pats.ua.ac.be/adss/"

xmlns:tns="http://pats.ua.ac.be/adss/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<xsd:element name="rounds" type="xsd:integer"/>
<xsd:element name="value" type="xsd:double"/>
<xsd:element name="slope" type="xsd:double"/>

<xsd:element name="scope">
<xsd:complexType>

<xsd:sequence>
<!-- one or more subsequences of voting rounds within the current scope;

each with a specific failure trend -->
<xsd:element ref="tns:interval" minOccurs="1" maxOccurs="unbounded"/>

</xsd:sequence>
</xsd:complexType>

</xsd:element>

<xsd:element name="interval">
<!-- characterised by a linear curve f(x) = ax + b -->
<xsd:complexType>

<xsd:sequence>
<!-- how many voting rounds current interval applies to -->
<xsd:element ref="tns:rounds"/>
<!-- an optional start value; pick last known from previous interval

if not present -->
<xsd:element ref="tns:value" minOccurs="0"/>
<xsd:element ref="tns:slope"/>
<!-- cap the maximum number of disturbances to be injected -->
<xsd:element ref="tns:bound"/>

</xsd:sequence>
</xsd:complexType>

</xsd:element>

<xsd:element name="failure_trend">
<xsd:complexType>

<xsd:sequence>
<!-- one or more subsequences of voting rounds for independent

analysis; each is divided into intervals -->
<xsd:element ref="tns:scope" minOccurs="1" maxOccurs="unbounded"/>

</xsd:sequence>
</xsd:complexType>

</xsd:element>

</xsd:schema>
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6.5 Simulation Tools

When conducting experimentation through the use of discrete event simulations,
it is crucial to be able and zoom in on specific behavioural characteristics of the
modelled system, rather than having to cope with an overwhelming amount of
complexity that results from the activity of processing significant amounts of event
objects and effectuate the desired change in state — v. Sect. 1.4. Indeed, judging
by the length of Chapt. 2, and by the number of assumptions that it revealed, one
can easily see that it is extremely hard to interpret the results of simulations lacking
adequate tooling to report on specific phenomena of interest.

Given the need to reduce complexity and to be able to zoom in on specific
properties of the system’s behaviour, our discrete event simulation framework has
been designed to generate well-readable, customisable reports reporting on key
measures, measurements and statistics that can visualise and clarify the environ-
mental behaviour and how the model behaves in such environment.

6.5.1 Automated Analysis of Individual Simulation Runs

Once individual simulation runs are successfully completed, the framework will
generate a number of graphs and tables that will prove valuable to understand when
disturbances have occurred, if, how and when the level of redundancy has changed,
and by what extent, during which rounds a specific version has been involved, and
whether or not it contributed to the scheme’s availability. Furthermore, based on
statistics that are computed based on various measurements that were collected
throughout the simulation run, an overview is given in which the effectiveness of
individual versions is quantified, and in which these versions are automatically
ranked so as to indicate the best system-environment fit.

Listing 6.2: example trend-based failure injection configuration, satisfying the
syntactical structure defined in Lst. 6.1

<?xml version="1.0" encoding="UTF-8"?>
<adss:failure_trend xmlns:adss="http://pats.ua.ac.be/adss/"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://pats.ua.ac.be/adss/ failure_trend.xsd">

<adss:scope>
<adss:interval>

<adss:rounds>10</adss:rounds>
<adss:slope>1.15</adss:slope>

</adss:interval>
<adss:interval>

<adss:rounds>10</adss:rounds>
<adss:value>2</adss:value>
<adss:slope>-0.8</adss:slope>
<adss:bound>3</adss:bound>

</adss:interval>
<adss:interval>

<adss:rounds>10</adss:rounds>
<adss:slope>0.67</adss:slope>

</adss:interval>
<adss:interval>

<adss:rounds>10</adss:rounds>
<adss:value>8</adss:value>
<adss:slope>-2</adss:slope>
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</adss:interval>
<adss:interval>

<adss:rounds>10</adss:rounds>
<adss:slope>0.05</adss:slope>

</adss:interval>
<adss:interval>

<adss:rounds>10</adss:rounds>
<adss:slope>0.25</adss:slope>
<adss:bound>4</adss:bound>

</adss:interval>
</adss:scope>

</adss:failure_trend>

As an example, we have added the generated report for a simulation in which
the behaviour of a traditional NVP redundancy scheme with a fixed degree of
redundancy n = 5 is analysed when it would be operating in a specific environment
that is configured as follows:

– Failures are injected using the trend-based failure injection mechanism
— v. Sect. 6.4. The configuration is defined as an XML fragment, which can be
found here above in Lst. 6.2. Trends are defined as linear equations for specific
domain intervals; the corresponding curves are plotted in Fig. 6.3a (dashed and
dotted curves in orange).

– All versions in the system are subject to the same fault model: there is a 78%
chance that the fault will materialise as an RVF, a 21% chance that it will materialise
as an EVF, and a mere 1% chance that it will materialise as a crash failure. RVF
failures are sampled from a uniform distribution, as described in Sect. 2.6.1.1.

– As shown in Fig. 2.1 and 2.2, versions are processing facilities in se, where the
available processing capacity is typically managed in a way that can easily be
formally described as some type of queuing system. In this particular experiment,
a simplistic model is applied, since its main purpose is to illustrate the interpretabi-
lity of the output generated by the described reporting tools. Service response
times are sampled from an exponentially distributed random variable with a rate
λ set to 0.4. Versions will accept and process requests one by one, in the order
in which they arrive, i.e. they apply an FCFS scheduling discipline. No specific
arrival process is defined: no external load will be injected, and requests only
originate from the (single) redundancy scheme under analysis. New voting rounds
are injected into the system only — that is to say: requests arrive — as soon the
previous have completed.

– For simplicity, constant network transmission times of 3.5 units of simulation
time are defined for transferring the initial request to individual versions, and the
response (or error) message back to the redundancy scheme. A timeout tmax of
12 units of simulation time is chosen.

It was already pointed out in Sect. 3.1 that the amount of disturbances and the time
at which they are injected directly affects the availability of the redundancy scheme.
In this particular experiment, the primary application objective is dependability,
i.e. wC

D = 1 — cf. Sect. 5.1. The correlation between the availability of the scheme
throughout time, the injection/occurrence of failures and into what specific types of
disturbances these translate, can be observed from Fig. 6.3a–6.3c:
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Figure 6.3: Automatically generated graphs for a single simulation run shed light
on failure occurrence patterns, redundancy/resource consumption and sustained
availability.

– The number of failures to be injected is indirectly configured by means of the
XML fragment listed in Lst. 6.2, and is plotted as the orange dashed and dotted
lines. Specific values for individual voting rounds are plotted as +. These reflect
the maximum number of failures that should be injected into the system, thereby
affecting a corresponding number of versions in the overall pool of available
redundancy V .

– However, the actual number of injected failures that were injected during a given
voting round (C,`) — indicated as × — depends on the number of available
versions in the system |V |, the corresponding redundancy configuration that is
being applied, and the system’s internal state (e.g., when one or more versions are
affected by crash failures). Furthermore, the designer can optionally define an
upper boundary to the number of failures to be injected for any specific voting
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round (C,`) that falls within the span of a single trend interval. Such boundaries
are visualised as red horizontal lines.

– Fig. 6.3c shows the exact type of disturbance by which a specific version was
struck during a given voting round (C,`): crash failures and the resulting omission
failures are marked as |, respectively ◦, RVF failures as + and EVF failures as ×.
In case of a dynamic redundancy configuration, where the replica selection may
otherwise not be clear for individual voting rounds, fault-free versions are marked
with pentagonal symbols. Note how LRF failures are marked as ä. The overview
needs to be interpreted heedful of the failure class severity hierarchy defined in
Sect. 2.6.5. A unique colour is used for each individual version, so as to easily spot
the impact these failure occurrences have on the version’s normalised dissent.
Note that omission failures — and performance failures in general — are not
injected as such; they are automatically injected after a crash failure had previously
been injected — v. Sect. 2.6.3. Furthermore, the emergence of LRF failures
is not directly linked to software (design) faults, but rather to an inadequate
system-environment fit, and is usually revealed by applying application-specific
constraints and requirements — v. Sect. 2.6.4 and 5.1. Therefore, the occurrence
of performance failures — be it omission or LRF failures — cannot be managed
by the user-defined failure trend. Nor can their occurrence be suppressed by
a boundary that is applied to constrain the total amount of disturbances for
individual voting rounds. This is done to ensure the soundness of the simulation
models defined in Chapt. 2.

– Furthermore, disturbances also have a direct effect on the partitioning procedure
that underpins the majority voting adjudication mechanism. This can also be
seen in Tables 6.2 and 6.3: failures are denoted by the symbol ×. Versions
that remain fault-free for the entire duration during which they processed a
subordinate invocation request 〈C,`, i 〉 are marked as

p
. Versions whose response

corresponded to a ballot that contributed to the majority are marked accordingly5.

nmi n 5 `Cf ai l ur e (c(C,`)
max −m(C,`) < 0) 23% (14 of 60)

nmax 5
∑

n(C,`) = 300
∑

cr (e(C,`)) = 242(292) 4success 0% (0 of 0)

ni ni t 5
∑

(n(C,`) − cr (e(C,`))) = 58(8) 5 f ai l ur e 0% (0 of 0)

tmax 12,000 w (C,`)
e ∈46 [0,000,1,000] µ= 0,576 σ= 0,349 ci90% : ( 4.91E-1, 6.61E-1 )

`Ctot al 60 n(C,`) ∈ [5,5] µ= 5,000 σ= 0,000 ci90% : ( 5.00, 5.00 )

TTF 2 X T T F −2 = 3 MT BF =13 3,385 MT T R =6 2,167

Table 6.1: General overview of redundancy scheme behaviour.

The report also generates resource consumption statistics:

– Whereas the essential statistics are displayed in Table 6.1, the actual level of
redundancy used and its evolution throughout the scheme’s operational life is
plotted in Fig. 6.3b (+ marks).

5Observe how for the voting round `= 8 a majority was found despite the RVF failures that affected
the consentient versions. Such conditions are acceptable behaviour, as per assumptions (A30) and
(A31), and are signalled by the grey background in the dtof column. This is because NVP/MV redundancy
schemata lack perceptional abilities to directly detect failures; they are only purposefully aware and rely
on fault masking and adjudication algorithms [36].
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– For each voting round (C,`), the nett redundancy is plotted using green ◦ marks
— cf. Sect. 3.1.2. Measurements are indicative of the shortage or abundance of the
number of versions with respect to the mandatory majority m(C,`). Voting round
failures are highlighted by red × marks. Further details on the voting procedure
can be found in Tables 6.2 and 6.3.

– Although not present in Fig. 6.3b, additional markings might indicate conditions
where the redundancy dimensioning algorithm instructed to scale the level of
redundancy up, but was not able to (for instance, when all resources in the system
had been allocated, or when the parameter nmax disallows such upscaling action).
This is only applicable for dynamic redundancy configurations; corresponding
events would be denoted as pink 4 marks. Likewise, the report will also report on
the number of unsuccessful redundancy downscaling events, where the scheme
would become unavailable as soon as the redundancy configuration would be
adjusted to apply a lesser amount of redundancy.

– Table 6.1 also lists the applicable values for ni ni t , nmi n and nmax . Furthermore,
it shows the cumulative number of resource allocations

∑
n(C,`) throughout the

scheme’s operational life. It also shows the cumulative contextual redundancy6∑
cr (e(C,`)) so as to give an intuitive, yet overly simplified, indication of whether

too many or to few resources have been used — v. p. 105. Similarly, it will mention
how many redundancy upscaling events proved to be successfull in regaining or
prolonging the scheme’s availability.

– Finally, an overview of key dependability measures is given, including MTTF,
MTBF and MTTR.

A key factor in determining correct values for the normalised dissent is the

effectiveness factor w (C,`)
e : this factor is used in particular to assess the instantaneous

effectiveness of a specific redundancy configuration during a specific voting round
(C,`), given the occurrence of disturbances e(C,`) — cf. Sect. 4.1. Measurements
are collected at the end of each voting round throughout the simulation run, and
are visualised in Fig. 6.3b; their exact values, together with the corresponding
dtof measurements, are listed in Tables 6.2 and 6.3. Note how for this particular
experiment the computation of the normalised dissent follows a configuration in
which k1 is set to 0.85, k2 to 0.75 and kmax to 0.95 — cf. Sect. 4.3. For extended time
to failure intervals, an indication of the effectiveness factor is given by means of an
average as well as standard deviation, including the number of samples (Fig. 6.3b).

` ℘(C,`) \ P (C,`)
F P (C,`)

F dtof w (C,`)
e v0 v1 v2 v3 v4

1 { 4, 2, 3, 0 } { 1 } 2 0,500
p

m × p
m

p
m

p
m

2 { 1, 0 } { 2, 3, 4 } ; 1 1,000 × × p
m

p
m

p
m

3 { 0, 4 } { 3 } { 2, 1 } ; 0 - × p p × ×
4 { 2 } { 3 } { 0, 4, 1 } 0 - × × × × ×

Table 6.2: Voting round summary: replica selection & partitioning.

6As can be seen in table 6.1, two measurements are collected: one without taking LRF failures into
account, and another that does take this type of failures into account – the latter is shown in parentheses.
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` ℘(C,`) \ P (C,`)
F P (C,`)

F dtof w (C,`)
e v0 v1 v2 v3 v4

5 { 2 } { 1, 0 } { 4, 3 } ; 0 - × × × × ×
6 { 2, 0 } { 1 } { 4 } { 3 } 0 - × × × × ×
7 { 1 } { 0, 4 } { 3, 2 } 0 - × × × × ×
8 { 2, 0, 3 } { 1 } { 4 } ; 1 1,000 ×m × ×m ×m ×
9 { 1, 0 } { 3, 4 } { 2 } 0 - × × × × ×

10 { 0 } { 3, 1, 4, 2 } 0 - × × × × ×
11 { 1 } { 0, 3, 2 } { 4 } 1 1,000

p
m × p

m
p

m ×
12 { 4, 0 } { 1, 3, 2 } ; 1 1,000 × p

m
p

m
p

m ×
13 { 2, 1, 0 } { 3, 4 } 1 1,000

p
m

p
m

p
m × ×

14 { 3, 0, 1, 2, 4 } ; 3 0,000
p

m
p

m
p

m
p

m
p

m
15 { 3, 1, 2, 4, 0 } ; 3 0,000

p
m

p
m

p
m

p
m

p
m

16 { 1, 2, 4, 0, 3 } ; 3 0,000
p

m
p

m
p

m
p

m
p

m
17 { 1, 2, 0, 3 } { 4 } 2 0,500

p
m

p
m

p
m

p
m ×

18 { 2, 0, 3, 4, 1 } ; 3 0,000
p

m
p

m
p

m
p

m
p

m
19 { 1, 4, 2, 0, 3 } ; 3 0,000

p
m

p
m

p
m

p
m

p
m

20 { 0, 4, 3, 2, 1 } ; 3 0,000
p

m
p

m
p

m
p

m
p

m
21 { 0, 4, 2, 3 } { 1 } 2 0,500

p
m × p

m
p

m
p

m
22 { 1, 3, 0, 2 } { 4 } 2 0,500

p
m

p
m

p
m

p
m ×

23 { 2, 4, 0, 3 } { 1 } 2 0,500
p

m × p
m

p
m

p
m

24 { 2, 3, 1, 4 } { 0 } 2 0,500 × p
m

p
m

p
m

p
m

25 { 0, 4, 1, 2, 3 } ; 3 0,000
p

m
p

m
p

m
p

m
p

m
26 { 2, 1, 0, 4, 3 } ; 3 0,000

p
m

p
m

p
m

p
m

p
m

27 { 2, 0, 3, 4 } { 1 } 2 0,500
p

m × p
m

p
m

p
m

28 { 2, 3, 0, 4 } { 1 } 2 0,500
p

m × p
m

p
m

p
m

29 { 1, 0, 3 } { 2, 4 } 1 1,000
p

m
p

m × p
m ×

30 { 2, 3, 4 } { 0, 1 } 1 1,000 × × p
m

p
m

p
m

31 { 4 } { 1, 2 } { 0, 3 } 0 - × × × × ×
32 { 4 } { 2, 1, 0, 3 } 0 - × × × × ×
33 { 0 } { 4, 2 } { 1, 3 } 0 - × × × × ×
34 { 0 } { 2, 1, 4 } { 3 } 1 1,000 × p

m
p

m × p
m

35 { 1, 4, 2, 0 } { 3 } 2 0,500
p

m
p

m
p

m × p
m

36 { 2, 1 } { 0, 4, 3 } 0 - × p p × ×
37 { 2, 4, 1, 0 } { 3 } 2 0,500

p
m

p
m

p
m × p

m
38 { 4, 1 } { 2, 0, 3 } 0 - × p × × p

39 { 0, 1, 2, 4 } { 3 } 2 0,500
p

m
p

m
p

m × p
m

40 { 1, 2, 4, 0 } { 3 } 2 0,500
p

m
p

m
p

m × p
m

41 { 4, 2, 1, 0 } { 3 } 2 0,500
p

m
p

m
p

m × p
m

42 { 2, 1, 4 } { 0, 3 } 1 1,000 × p
m

p
m × p

m
43 { 0, 1, 2, 4 } { 3 } 2 0,500

p
m

p
m

p
m × p

m
44 { 1, 2, 0, 4 } { 3 } 2 0,500

p
m

p
m

p
m × p

m
45 { 2, 1, 0, 4 } { 3 } 2 0,500

p
m

p
m

p
m × p

m
46 { 4, 1, 0, 2 } { 3 } 2 0,500

p
m

p
m

p
m × p

m
47 { 2, 1, 4 } { 0, 3 } 1 1,000 × p

m
p

m × p
m

48 { 0, 4, 1, 2 } { 3 } 2 0,500
p

m
p

m
p

m × p
m

49 { 2, 4, 0, 1 } { 3 } 2 0,500
p

m
p

m
p

m × p
m

50 { 0, 4, 1 } { 2, 3 } 1 1,000
p

m
p

m × × p
m

51 { 1, 4, 0, 2 } { 3 } 2 0,500
p

m
p

m
p

m × p
m

52 { 2, 0, 1 } { 4, 3 } 1 1,000
p

m
p

m
p

m × ×
53 { 0, 4, 1 } { 2, 3 } 1 1,000

p
m

p
m × × p

m
54 { 0, 1, 4 } { 2, 3 } 1 1,000

p
m

p
m × × p

m
55 { 1, 4, 2, 0 } { 3 } 2 0,500

p
m

p
m

p
m × p

m

Table 6.3: Voting round summary: replica selection & partitioning (continued).

The above table shows detailed information about how the injected disturbances
affect particular replicas, and what impact these disturbances have on the rendered
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service: it shows how deviations from the normal behaviour — resulting in ballots
with a lesser degree of mutual equivalence — typically lead to partitions being
generated by the applied adjudication algorithm with a lessened likelihood of finding
a qualified majority.

Based on these recorded values, an overview is then given of which replicas
best perform from various angles (Table 6.6). This may help to clarify the observed
behaviour of the system under investigation — the fault-tolerant composite, that is
— and may provide further insight into the impact of version-specific fault models
on the scheme’s overall performance.

In case the total available redundacy in the system V would exceed the level of
redundacy applied in any specific redundancy configuration n(C,`), this overview
will show the selection of replicas that were (not) involved — cf. Sect. 5.3. Detailed
statistics are collected and reported for all version in the system; Tables 6.4 and 6.5
clearly list specific values, their inverse, and — where useful — indications of the
average and standard deviation7.

version v0 v1 v2 v3 v4

queuing model null null null null null

outbound client overhead µ60 = 0,000 µ60 = 0,000 µ60 = 0,000 µ60 = 0,000 µ60 = 0,000

σ= 0,000 σ= 0,000 σ= 0,000 σ= 0,000 σ= 0,000

RTT (incoming) µ60 = 3,500 µ60 = 3,500 µ60 = 3,500 µ60 = 3,500 µ60 = 3,500

σ= 0,000 σ= 0,000 σ= 0,000 σ= 0,000 σ= 0,000

Qr,out µ60 = 0,000 µ60 = 0,000 µ60 = 0,000 µ30 = 0,000 µ60 = 0,000

σ= 0,000 σ= 0,000 σ= 0,000 σ= 0,000 σ= 0,000

RTT (outgoing) µ60 = 3,500 µ60 = 3,500 µ60 = 3,500 µ30 = 3,500 µ60 = 3,500

σ= 0,000 σ= 0,000 σ= 0,000 σ= 0,000 σ= 0,000

inbound client overhead µ60 = 0,750 µ60 = 0,750 µ60 = 0,750 µ30 = 0,750 µ60 = 0,750

σ= 0,000 σ= 0,000 σ= 0,000 σ= 0,000 σ= 0,000

end-to-end response time µ60 = 9,446 µ60 = 9,485 µ60 = 9,498 µ30 = 9,654 µ60 = 9,703

σ= 2,304 σ= 3,133 σ= 3,364 σ= 2,252 σ= 2,281

Qr,in µ60 = 0,000 µ60 = 0,000 µ60 = 0,000 µ30 = 0,000 µ60 = 0,000

σ= 0,000 σ= 0,000 σ= 0,000 σ= 0,000 σ= 0,000

RPT µ60 = 2,446 µ60 = 2,485 µ60 = 2,498 µ30 = 2,654 µ60 = 2,703

σ= 2,304 σ= 3,133 σ= 3,364 σ= 2,252 σ= 2,281

sojourn time µ60 = 2,446 µ60 = 2,485 µ60 = 2,498 µ30 = 2,654 µ60 = 2,703

σ= 2,304 σ= 3,133 σ= 3,364 σ= 2,252 σ= 2,281

Table 6.4: Replica configuration & statistics.

6.5.2 Automated Analysis of Simulation Batches

As soon as the system and its environment have been modelled and a first simulation
run indicates a correct implementation, one then usually proceeds by running
simulation batches. Batches are mainly helpful for further in-depth analysis of the
system-environment fit:

7A note on Table 6.4 though: the subscript numbers represent amount of observations used in
computing arithmetic mean and standard deviation, and represent the number of voting rounds the
corresponding version was involved in. The values for v3 reflect the occurrence of a crash failure. As
the version has crashed, requests will still be accepted by the queuing system, but they will never start
processing. Here, we assume the middleware on which the version is deployed will continue to function,
regardless of v3 having crashed. Hence the two different subscript values (30 vs 60).
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– the designer might want to assess how different redundancy management policies
and algorithms behave given similar environmental conditions;

– or (s)he may want to evaluate the effectivess of a specific policy when the model
is subject to varying conditions.

As soon as all configured/queued simulation runs have completed, the proposed
discrete event simulation framework will automatically rank all individual simulation
runs, and this from various angles. By default, the ranking is generated based on the
default redundancy scheme-specific metric measurements that have been collected
— cf. Sect. 6.2.

The ranking logic has been designed in such a way that the designer can imple-
ment new metrics and define how measurements should be collected during indivi-
dual simulation runs, and can define whether ranking should be based on ascending
rather than descending values. Furthermore, ranking criteria can be defined as a
combination of various metrics.

version v0 v1 v2 v3 v4

re-integration latency n/a n/a n/a n/a n/a

n/a n/a n/a n/a n/a

exclusion latency n/a n/a n/a n/a n/a

n/a n/a n/a n/a n/a

exclusion failures n/a n/a n/a n/a n/a

n/a n/a n/a n/a n/a

successive usage period µ1 = 60 µ1 = 60 µ1 = 60 µ1 = 60 µ1 = 60

σ= 0 σ= 0 σ= 0 σ= 0 σ= 0

#r ound s(C, v)−#consent (C, v) 22 18 16 39 21

,→ `Ctot al 37 % 30 % 27 % 65 % 35 %

,→ #r ound s(C, v) 37 % 30 % 27 % 65 % 35 %

#r ound s(C, v) 60 60 60 60 60

,→ `Ctot al 100 % 100 % 100 % 100 % 100 %

#consent (C, v) 38 37 42 22 38

,→ #r ound s(C, v) 63 % 62 % 70 % 37 % 63 %

normalised dissent µ60 = 2,035 µ60 = 2,604 µ60 = 1,686 µ60 = 8,711 µ60 = 2,262

σ= 1,426 σ= 2,112 σ= 1,303 σ= 9,357 σ= 1,820

end-to-end response time µ60 = 9,157 µ60 = 8,908 µ60 = 8,923 µ60 = 10,681 µ60 = 9,387

σ= 1,653 σ= 1,544 σ= 1,666 σ= 1,747 σ= 1,621

TTF 1 1 3 2 2

,→ inv 1,000 1,000 0,333 0,500 0,500

XTTF-2 2 4 4 3 3

,→ inv 0,500 0,250 0,250 0,333 0,333

MTBF 1,286 1,583 1,900 0,541 1,308

,→ inv 0,778 0,632 0,526 1,850 0,765

MTTR 5,000 3,250 3,667 8,000 7,000

,→ inv 0,200 0,308 0,273 0,125 0,143

Table 6.5: Failure injection replica statistics.
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version v0 v1 v2 v3 v4

re-integration latency - - - - -

exclusion latency - - - - -

exclusion failures - - - - -

successive usage period - - - - -

#r ound s(C, v)−#consent (C, v) 4 2 1 5 3

#r ound s(C, v) 1 1 1 1 1

#consent (C, v) 2 3 1 4 2

normalised dissent 2 4 1 5 3

end-to-end response time 3 1 2 5 4

TTF 3 3 1 2 2

XTTF-2 3 1 1 2 2

MTBF 4 2 1 5 3

MTTR 3 1 2 5 4

outbound client overhead 1 1 1 1 1

RTT (incoming) 1 1 1 1 1

Qr,in 1 1 1 1 1

RPT 1 2 3 4 5

sojourn time 1 2 3 4 5

Qr,out 1 1 1 1 1

RTT (outgoing) 1 1 3 2 1

inbound client overhead 3 3 2 1 3

Table 6.6: Replica auto-ranking: the ability to automatically rank replicas based on
specific performance attributes, may prove helpful in better comprehending the
system-environment fit.
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CHAPTER 7
Performance Analyses

In this chapter, some exemplary policies will be suggested for implemen-
ting the abstract A-NVP/MV strategy presented in Chapt. 5. Designed (i)
to sustain the availability of redundancy schemata and (ii) to increase the
overall cost effectiveness by parsimoniously allocating system resources,
each policy defines how the cached context information will be used to
effectuate the desired change to the current redundancy configuration.
First, we will show how such dynamic redundancy configurations prove
to be effective in overcoming the limitations faced by applying static
redundancy configurations. Next, we will zoom in into how such policies
perform under various conditions, when and to what extent they improve
the overall performance of the system, and when their use is not guaran-
teed to translate in performance gains. In doing so, we use the simulation
framework that was described in the previous chapter. Related research
question(s): RQ-2 and RQ-3.

7.1 Redundancy Configurations: How Dynamic Configurations
can Overcome the Limitations of Static Configurations

The purpose of section is to illustrate the limitations inherent to the use of traditional,
static redundancy configurations, and how dynamic redundancy configurations may
be used to overcome these limitations to some extent. We shall primarily focus on
the concern of dependability, where it is desirable to maximally sustain the scheme’s
availability (reliability), while applying some form of parsimony in the allocation
of system resources so as to economise on resource expenditure. Whereas similar
experimentation can be performed for assessing the impact of specific redundancy
configuration on the scheme’s effectiveness in terms of timeliness, e.g. by applying
intelligent load balancing techniques to realise lower response times, this concern is
kept out of scope1.

1Throughout this dissertation, the emphasis is placed on dependability analysis rather than capacity
management. Applying load balancing techniques to achieve lower response times typically requires
detailed modelling of the deployment environment on which individual versions are running — more
specifically the computational capacity of hardware and middleware infrastructure — as well as the
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Throughout this section, we will use the simulation framework that was described
in Chapt. 6 to generate various graphs and tables that should help in analysing and
comprehending the various limitations of traditional redundancy schemata, as well
as the potential benefits of dynamically allocating the available redundancy.

7.1.1 The Deficiencies of Static Redundancy Configurations

The effectiveness of an NVP composite is largely determined by the dependability of
the versions employed within. As elucidated in [3, Sect. 4.3.3], and demonstrated
in experiment 7.1, the use of replicas of poor reliability can result in a system
tolerant of faults but with poor reliability. It is therefore crucial for the system to
continuously monitor the operational status of the available resources and avoid the
use of resources that do not significantly contribute to an increase in dependability,
or that may even jeopardise the schemes’ overall effectiveness.

Experiment 7.1

In Fig.7.1, one can easily see how important it is to select versions that perform well in
terms of dependability. The system-environment fit determines the effectiveness of
the redundancy scheme. We compare two scenarios; both apply a static redundancy
configuration using 5 versions.
As one may observe from Fig. 7.1c, the scheme is always able to tolerate the
disturbances that sporadically affect the selected versions. In this scenario A, there
is a good match between the system and its environment (the underlying versions,
their operating conditions, etc.). In this environment, only disturbances in the timing
domain materialise, as can be seen in Fig. 7.1e, and the applied degree of redundancy
shows to be effective to counterbalance any occasional LRF failures that affect one or
more of the underlying versions in use. Apart from these occasional LRF failures, no
other disturbances are injected.
In scenario B, the redundancy scheme applies another static redundancy
configuration: it applies the same degree of redundancy, yet another set of replicas.
Another fault model applies, and only disturbances in the content domain — i.e.
RVF and EVF failures — are applied. For versions affected by RVF failures, the
corresponding ballots that will be used by the voting procedure are sampled from
a uniform distribution — v. p. 51. As one can observe from Fig. 7.1d and 7.1f, the
selected versions are quite unreliable, therefore the scheme itself becomes unreliable.
Indeed, the applied degree of redundancy is not always sufficient to mask all failures
(disturbances in the content domain). In fact, in terms of availability, the scheme
performs worse than had a simplex system been used consisting only of version v2:
the simplex system would have been available for 66 out of 80 voting rounds (82.5%),
whereas the scheme was available for 55 of the total of 80 voting rounds (a mere 68%).
Note how the difference in system-environment fit is apparent from the normalised
dissent measurements.

network topology and throughput — cf. Sect. 2.5 and 8.5.2. Such detailed modelling would also require
to make environment-specific decisions as to where the individual resources are actually deployed and
hosted, which goes beyond the intention of this dissertation, where we wish to make an abstraction of
the whereabouts of individual versions (e.g. on a corporate LAN, a WAN, or on the Internet). As described
in Sect. 6.3, our simulation framework includes the functionality that allows for basic modelling of the
environment and all of its contituents. If needed, the reader can implement custom artefacts that better
fit his/her specific needs.
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In [36], the authors propose a classification to categorise fault-tolerant solutions
by analysing resilient behaviour as the result of four properties: perception, aware-
ness, planning and dynamicity. In line with this classification:

6 Traditional NVP redundancy schemata simply rely on a voting algorithm to
filter out any flawed results and, in doing so, adjudicate a correct outcome —
a principle generally known as fault masking. There is no active monitoring of
the versions on which the scheme relies, nor the deployment environment in
which it is operating. Because of this, they fail to capture the specific nature
of the disturbances that emerge: they are systems lacking awareness, having
little or no perceptional abilities.

Experiment 7.2

This limitation is exemplified in Fig. 7.2e: given a static TMR configuration, the
scheme would fail to detect that one of the underlying versions was struck by, e.g. a
permanent failure (as is the case for version v2 that has crashed just before or during
voting round `= 29). As a consequence, the scheme would fail to deduce that —
for voting round `= 29 and subsequent voting rounds — this particular version no
longer contributes to sustain its availability and that its prolonged use consistently
translated in omission failures. This can be observed by dtof or nett redundancy
measurements being recorded that indicate the available redundancy is (nearly)
exhausted (Fig. 7.2c) — cf. Sect. 3.1.1–3.1.2. The scheme would observe that it would
no longer be able to withstand the total number of disturbances, where it would fail
to fully mask the underlying failures, in spite of incidental conditions during which it
could occasionally regain its availability (although by chance).
Versions were configured with an exponentially distributed service time S (λ= 0.4),
no waiting time (c = k =∞) and constant network transmission times set to 3.5 time
units. RVF and EVF failures are injected with an 80%, resp. with 20% probability,
with RVF failures sampled from a uniform distribution (refer to p. 51). tmax = 30
time units. Normalised dissent values are computed with parameters set as follows:
k1 = 0.85, k2 = 0.75 and kmax = 0.95.
Had a dynamic redundancy scheme been applied as in Fig. 7.2f, the redundancy
configuration could have been altered so that v2 would (temporarily) be taken out of
service, and would have been replaced by another version that was judged as more
reliablea (scheme configured with rd = 5, ru = r f = 1 and csm = 0 — cf. Chapt. 5).
When comparing scenarios A and B, one can observe that — in spite of the
same cumulative number of resource allocations

∑
n(C,`) — there is a significant

improvement of the scheme’s overall availability. Whereas a 91% availability is
recorded for an operational life in which the scheme has handled `Ctot al = 80 voting
rounds, only a 51% availability is recorded for scenario A (refer to Tables 7.1a
and 7.1a)b. Furthermore, note that the application of a dynamic redundancy scheme
has the potential to attain considerably higher MTBF and lower MTTR values.
The crash failure affecting version v2 essentially renders it pretty much useless for
further use in any redundancy scheme. Dynamically selecting the versions at runtime
will remove poorly performing versions that do not (significantly) contribute to the
scheme’s effectiveness, and can successfully replace these with other, more reliable
versions. In this particular case, because version v2 will automatically be removed
from the redundancy configuration, it will have considerably less negative impact
on the redundancy scheme’s operations: in scenario B, v2 will participate to a mere
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44% of the total number of voting rounds `Ctot al (unlike 100% in scenario A). As a
consequence, the number of disturbances that the scheme has to overcome because
of the use of this particular version, decreases from 59 in scenario A to a mere 19 in
scenario B (refer to Tables 7.1c and 7.1d)c.

aFor the unexploited share of redundancy, normalised dissent measurements may record
(near-)optimal values. Even though such replicas may handle external traffic throughout the
scheme’s operational life span, and can thus suffer from any type of failure, such disturbances
will not be accounted for in the context of this particular scheme’s.

bWe apply an intuitive notion of availability, that is obtained by subtracting the relative
amount of voting rounds for which a failure was recorded from 1, given the total amount of
redundancy `Ctot al .

cNote that after v2 was excluded because of subsequent increases in normalised dissent
measurements, v2 is eventually re-introduced in the replica selection. This is due to the
nature of the reward model defined in Sect. 4.3, that will gradually undo any penalty that was
previously imposed to the version because of disturbances that might have affected the scheme’s
availability. The rationale of this approach is that versions that are affected by disturbances of
transient nature, or by intermittent bursts of disturbances can still sustain the scheme’s overall
availability at relevant stages of its operational life. The pace with which previous penalties are
undone can be configured according to application needs, by means of several parameters — cf.
Eq. (4.2e), p. 74.

6 The traits of planning and dynamicity are absent, as the redundancy configura-
tion is static and determined at design time, and a specific, immutable selection
of redundant resources in the system is used.

– This does not allow to exclude poorly performing versions, nor does it
allow to change the replica selection at runtime — cf. Sect. 5.3. Besides,
there is no relevant contextual knowledge to justify such adaptation; the
NVP composite simply is unaware of which versions perform better (in
terms of reliability). This approach may result in suboptimal redundancy
configurations being used over a prolonged period of time, with reliability
below the anticipated levels, possibly resulting in catastrophic failure.
Such scenario can be observed in Fig. 7.2e.

Experiment 7.3

In Fig. 7.3, we consider an environment in which two specific versions suffer
from intermittent bursts of disturbances that emerge as EVF failures. This is
a common situation in real-world distributed computing systems: whenever a
remotely deployed version would not be reachable because of issues with the network
communication infrastructure, any subsequent invocation of such version would
typically result in EVF failures (a timeout at the client side, i.e. in the NVP composite’s
runtime), LRF failures (whenever the latency exceeds the imposed upper limit tmax ),
or even RVF failures (when the result to be transferred is corrupted due to, e.g.,
electromagnetic interference).
As can be observed from Fig. 7.3e, version v2 exhibits perfect behaviour, fully in line
with its (non-)functional requirements and without any disturbance at all. Within the
operational context of the analysed NVP composite, versions v0 and v1 are affected
by bursts of EVF failures throughout the intervals with voting round identifiers [1,10],
[28,40] and [65,80], resp. [18,40] and [60,80]. As one can see in Fig. 7.3c, because
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the replica selection is static and immutable (scenario A), the overlapping regions of
both sets of intervals will result in redundancy undershooting and thus interrupted
service of the redundancy scheme.
Versions are configured with an exponentially distributed service time S (λ= 0.4),
no waiting time (c = k =∞) and constant network transmission times set to 3.5
time units. Except for version v2, in scenario B, RVF and EVF failures are injected
with an 80%, resp. with 20% probability, with RVF failures sampled from a uniform
distribution (refer to p. 51). Failures injected using trend-based definitions; additional
intermittent intervals/bursts of EVF failures are injected for versions v0 and v1.
tmax = 30 time units. Normalised dissent values are computed with parameters set
as follows: k1 = 0.85, k2 = 0.75 and kmax = 0.95.
Had a dynamic redundancy configuration been used (scenario B), where an
additional standby version v3 could be called in as a temporary replacement for
a faulty versions v0 and/or v1, this would have lead to a slightly higher availability
of the NVP composite: 67% as opposed to 64% in scenario A (compare Tables 7.2b
with 7.2a). Note that in addition to the burst of failures injected for versions v0 and
v1, we are injecting (on average) an additional error for each voting round, which
may not necessarily match reality. If fewer additional disturbances were injected,
this difference would become more recognisable. Furthermore, one can also see a
better spreading of the unavailability of the redundancy scheme itself, where the
use of a dynamic redundancy configuration (dynamic replica selection, yet constant
degree of redundancy) results in higher MTBF and lower MTTR measurements being
recorded.
Finally, comparison of Tables 7.2c and 7.2d clearly shows how an A-NVP scheme is
more aware of the environment in which it is operating, and its ability to steer the
redundancy configuration accordingly (planning), resulting in versions v0 and v1
being used in far fewer voting rounds than would have been the case for a static
redundancy configuration.

– A predetermined degree of redundancy is, however, cost ineffective
in that it inhibits to economise on resource consumption in case the
actual number of disturbances could be successfully overcome by a
lesser amount of redundancy. Reversely, when the foreseen amount of
redundancy is not enough to compensate for the currently experienced
disturbances, the inclusion of additional resources (if available) may
prevent further service disruption. Refer to experiment 7.4 on p. 133.

7.1.2 How Dynamic Redundancy Configurations may Address the
Shortcomings of Static Configurations

Unlike traditional NVP, our A-NVP algorithm is responsible for maintaining a dyna-
mic redundancy configuration. The classification defined in [36] can help to
categorise the resilient behaviour of our solution:

4 Although our A-NVP algorithm is categorised as a resilient software system
lacking perceptional abilities to directly detect environmental change, it is
believed to possess the property of awareness. Relevant information about the
scheme as well as the underlying redundant resources is harvested during the
scheme’s operational life and is cached in memory — Sect. 5.4. This contextual
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information can be used to deduce information about the environmental
conditions in which the scheme is operating, e.g. what versions did or did not
contribute to the scheme’s dependability, and to what extent, how much time
did it take to acquire a ballot from a specific version, etc.

4 Such contextual information is then used to analyse if the scheme might
benefit from adjusting the current redundancy configuration. Such approach
of purposefully planning allows to optimise what part of the available redun-
dancy is to be allocated, either in terms of replica selection or redundancy
level, resulting in truly dynamic redundancy configurations.

In case of redundancy undershooting, it can be beneficial to increase the degree
of redundancy and to substitute poorly performing replicas for alternatives.
Redundancy undershooting is the event in which, for a particular redundancy
configuration/level and during a given voting round, the maximum tolerable number
of disturbances was exceeded — cf. Sect. 3.1.3 and Fig. 3.1 p. 66. Oftentimes, in
classic redundancy schemata, this upper limit is defined before the system was
placed in production. Although such systems are resilient in the sense that they will
tolerate up to that level of disturbances, they will fail in case environmental change
would result in additional versions being struck by failure (as illustrated in Fig.7.1d
and 7.1f on p. 124).

Whereas static redundancy configurations would essentially be defenseless
against such situations where bursts of failures would emerge, dynamic configura-
tions might avoid failure by engaging additional versions, thereby increasing the
degree of redundancy, or by removing poorly performing ones from the initial
selection.

Experiments 7.2 and 7.3 illustrate how selecting the optimum set of versions
proves effective to realise improved levels of availability. When adding dynamic
redundancy scaling, additional benefits can be realised, including a reduction in
resource expenditure (experiment 7.4).

Experiment 7.4

In Fig. 7.4, two fault-tolerant strategies are applied to the same pool of versions. On
the left, a traditional NVP scheme is applied, with n = 5 (scenario A). On the right, an
A-NVP scheme is applied, where the chosen degree of redundancy can vary between
in [3,7] with increments or decrements of two (scenario B, an application of Strategy
A, Variant 2, as defined in Sect. 7.3.1.2). The redundancy scheme is initialised such
that it is capable of tolerating up to one failure, hence ni ni t = 3. The redundancy
dimensioning and replica selection algorithm are defined using the model outlined
in Chapt. 5, with rd = 7, and ru = r f = 1. Such redundancy management approach
is in line with what was published in [78, Sect. 3.3]a, and is reactive in nature, as
redundancy is upscaled only when near-zero dtof measurements are recorded. If the
voting scheme failed to find consensus amonst a majority of the replicas involved
during the round n(C,`−1), the model will increase the number of redundant replicas
to be used in the next voting round, to the extent that n(C,`) = n(C,`−1) +2, provided
that n(C,`−1) < |V |. Conversely, when the scheme was able to produce an outcome
with a given amount of redundancy for a certain amount rd of consecutive voting
rounds, a lower degree of redundancy shall be used for the next voting round (C,`),
involving n(C,`) = max(3, ((C,`)(`−1 +2)) replicas.
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Versions are configured with an exponentially distributed service time S (λ= 0.4),
no waiting time (c = k =∞) and constant network transmission times set to 3.5 time
units. RVF and EVF failures are injected with an 80%, resp. with 20% probability, with
RVF failures sampled from a uniform distribution (refer to p. 51). Failures injected
using trend-based definitions. tmax = 16 time units. Normalised dissent values are
computed with parameters set as follows: k1 = 0.85, k2 = 0.75 and kmax = 0.95.
In scenario A, the designer expected a maximum of two disturbances affecting the
composite’s underlying resources, hence the predetermined degree of redundancy
n = 5. In scenario B, resources are allocated parsimoniously: the designer takes the
risk to start with a lower degree of redundancy, knowing that more resources can be
called in whenever needed (within a predefined limit of total available redundancy
|V | = 7).
From the statistics listed in Table 7.3, one can see that a dynamic redundancy scheme
has the potential to realise a significant reduction in resource expenditure, while
better sustaining the scheme’s availability:

– For most of its operational life, the scheme in scenario A is plagued by redundancy
overshooting. In scenario B, whenever the system deems it safe or opportune
to do so, it will attemt to downscale the currently applied degree of redundancy.
The statistics recorded clearly show that scenario B is successful in tolerating a
similar series of failure with a significantly lower resource expenditure: whereas
an average resource consumpion of 5 redundancy units (versions) is recorded per
voting round for scenario A, the average number of allocated resources per voting
round in scenario B is a mere

∑
n(C,`)/125 = 3.925 — a reduction of 27.38%!

– In scenario B, when the scheme’s environment suffers from more than the initially
anticipated number of disturbances, the system will reach out to additional
resources/redundancy, notwithstanding the fact that versions are dynamically
selected at runtime. Trying to parsimoniously allocate system resources, when
defining a static redundacy configuration, the designer has no other option
than to make a trade-off between the risk appetite and the cost resulting from
involving additional redundancy. Moreover, as exemplified by experiment 7.1,
when hardwiring poorly performing versions, the additional cost may prove to be
pointless.
One of the advantages of using an adaptive redundancy allocation mechanism is
that it allows to temporarily go beyond the redundancy level that was initially
judged appropriate, in case of redundancy undershooting. Such situation
would occur when (i) replicas perform worse than expected, or (ii) when more
disturbances than initially foreseen would simultaneously affect the scheme’s
underlying resources (due to, e.g. exogenous factors that may lead to additional
LRF and/or EVF failures). As we can see from Fig. 7.4a and 7.4c and 7.4b
and 7.4d, scenario B would perform better to counterbalance such peaks, given
the availability of some remaining unallocated redundancy, and that those
additional resources would perform well. By consequence, this could result in a
slightly improved overall availability of the redundancy scheme: 95 and 94% for
scenarios B, resp. A — cf. Tables 7.3a and 7.3b.
The applied algorithm in scenario B was, however, configured to work reactively.
Had it been configured to apply, e.g., an additional safety margin csm to proactively
detect an emerging or upward failure trend, it would have resulted in an even
higher availability of the redundancy scheme. Alternatively, a hybrid constellation
could be devised in which an RB-like retry mechanism would be triggered to
recover from failed voting rounds (using the same versions selected before, or
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alternative ones). Both solutions would improve the scheme’s dependability, at
the expense of a slighly higher redundancy consumption (and, obviously, response
times), though still lower than the cumulative resource consumption of the static
configuration depicted in scenario Ab.

In line with previous experiments, a dynamic redundancy configuration can
effectively realise lower MTTR and higher MTBF measurements than a static
redundancy configuration. Note that — given a specific environment (failure
model/trend) — the allocation of less redundancy will result in less disturbances to
be masked by the redundancy schemec. This can be observed in Tables 7.3c and 7.3d,
by adding all voting rounds for which each specific engaged version was affected by
one or more disturbances (140 in scenario A as opposed to 95 in scenario B). Quite
convincing results for a simple A-NVP configuration that is mainly reactive and only
upscales after undershooting. Capturing and analysing contextual data at runtime
can help to act in a more proactive manner. As a final note, the differences in the way
both approaches perform would obviously depend on the nature of the disturbances
that materialise, the pace at which they occur, and their effect on the underlying
versions. In short: all is determined by the system-environment fit.

aEven though it was applied on redundant data structures, it can readily be reused for
dynamically determining the redundancy level. In line with traditional NVP, it will only report
an odd degree of redundancy. Note that we have combined our dynamic replica selection
algorithm with the initial algorithm, which in its original form selects versions at random from
the available pool of resources. Had we not done so, the results would have shown less positive
results, at the expense of a lower availability of the scheme.

b6 failures times use of all available redundancy, or 42, plus 491 units already used, resulting
in 533 units — still a saving of approximately 15%.

cThe actual number of injected disturbances for any specific voting round is eventually
determined by the amount of redundancy that is actually used.

Dynamically optimising the redundancy configuration can help to realise shorter
average MTTR and prolonged time to failure.

Because of the previous proposition, if a dynamic redundancy configuration
would be more resilient to overcome unforeseen bursts of disturbances, that would
obviously translate in less failures of the NVP composite as a whole. Such lower
probability should normally reflect in time between failure measurements of greater
magnitude being recorded, as well as lower time to repair values. This seems to be
corroborated by experiments 7.1–7.4.

In some cases, a dynamic redundancy configuration can realise a reduction in
resource consumption/expenditure. In traditional NVP, the maximum number
of tolerable disturbances that a given redundancy scheme can tolerate at a time
is determined upfront, based on estimations, assumptions and analyses of the
environment, and the available versions in the system. As dependability is the
primary objective of any fault-tolerant system, the redundancy configuration to be
used (and the degree of redundancy in particular) is typically chosen so that the
system will for sure be resilient to withstand the worst anticipated scenario. However,
in reality, this worst-case scenario hardly occurs, and during most of the scheme’s
operational life, an excessively large share of the available redundancy will therefore
be allocated. Reducing the degree of redundancy is likely to result in a saving in
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resource expenditure, without necessarily degrading the scheme’s dependability
characteristics.

In case of disturbances emerging due to exogenous factors, e.g. congestion on
specific network links that may result in LRF failures, there might be a short period
during which a clearly detectable trend announces an exceptionally high level of
disturbances that the currently used redundancy configuration may soon no longer
be able to tolerate. A-NVP is able to detect such trends, and to act accordingly. It can
update the redundancy configuration by involving more resources (redundancy)
to temporarily overcome this exceptional state, thereby safeguarding the scheme’s
resilience, and allocating redundancy on a just-in-time basis. As soon as the system
considers it safe to relinquish the additional redundancy, it can gradually do so,
and return to normal operations. This behaviour is exemplified by the simulations
presented and discussed in experiment 7.4.

To conclude this section, a few notes though:

– In all of the experiments shown above, whenever a dynamic redundancy configura-
tion was applied, replicas were selected using the model defined in Sect. 5.3, which
was configured to target sustained availability only. More specifically, wC

D = 1 and

wC
T = wC

L = 0 — v. Sect. 5.1.

– The above experiments, the environmental conditions and runtime parameters of
the A-NVP algorithm were specifically chosen for demonstration purposes so as
to enable the model’s effectiveness to be concisely captured, and to corroborate
the statements made with respect to the potentials gains and advantages in using
dynamic redundancy schemata. Even though the plots in previous figures are
of great help in analysing, comprehending and comparing the behaviour and
performance of traditional vs adaptive NVP redundancy schemata, it is difficult to
include them in printed form for longer operational life spans without affecting
readability. The behaviour of redundancy configurations — be it static or dynamic
— should be analysed over longer operational intervals, especially since the
system-environment fit may evolve over time (like in experiment 7.3, for instance).

– Even though our discrete event simulation toolbox provides a multitude of failure
injection mechanisms, a simplistic, trend-based injection mechanism was chosen
for visualisation purposes, as illustrated in Fig. 7.1–7.4. Despite its convenience
and simplicity, the trend-based failure injection approach does introduce some
form of randomness that may complicate detailed analysis. By default, once the
replicas were selected that will be used throughout a specific voting round, this
type of failure injection will select, usually at random, a subset of these replicas
for which disturbances will be injected — v. Sect. 6.5.1. This behaviour can be
overridden though, as we did in experiments 7.2 and 7.3. A typical case would
be when a specific (sub)set of versions should perform badly while analysing the
impact on the NVP composite’s behaviour.
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7.2 Detecting Faulty Replicas, Removing them from Service, and
Re-integrating them once they Recover

The main conclusion to be drawn when analysing experiment 7.1 is that faulty
versions jeopardise the availability of the redundancy scheme. However, a specific
version may only be periodically affected by disturbances — intervals during which
use of the version should be avoided. Contrarily, when that version is functioning as
expected, it will contribute in sustaining the scheme’s overall availability.

It is therefore useful to see to what extent the replica selection algorithm propo-
sed in Sect. 5.3 is able to act decisively and (temporarily) take versions that are
suspected to have failed out of service, and if it is capable of re-allocating them
when it is safe to do so. To illustrate this, we will compare various failure occurrence
patterns and assess the different impact on the replica selection procedure.

– When faulty versions recover and return to their normal functioning, if the risk
that they will fail once more is low to moderate, it makes sense to use them again.
After all, the are very likely to further support the availability of the redundancy
scheme. The re-integration latency represents the delay between the moment a
particular version is taken out of service, until that decision is undone, and the
version is allocated again.

– Contrarily, once a version becomes faulty, it should no longer be part of the
redundancy configuration, for its continued use is likely to put at risk the scheme’s
overall availability. By exclusion latency, we refer to the delay between the
moment a failure occurs, or a burst of failures starts, until the time when this
is detected/perceived and the system acts accordingly by removing it from the
current redundancy configuration.

Both measures were already briefly touched in Sect. 6.2.4. As we pointed out
in Sect. 5.1, the particular application requirements may require to select versions
carefully, whereby a suitable trade-off should be found between the different potential
application objectives: dependability, timeliness and load balancing. The environ-
mental context in which the scheme is operating, together with the specific objectives,
will determine what contextual information is used by the A-NVP algorithm to select
(and remove) versions from the redundancy configuration. A full investigation is
out of scope of this dissertation, and we will focus primarily on the dependability
objective (as argued in note 1, p. 125).

In Chapt. 4, we defined the normalised dissent metric as a mathematical structure
to approximate the reliability of individual versions. This measure lies at the heart of
our A-NVP algorithm, and it can be explicitly configured so as to allow steering the
way in which the redundancy configuration may change — cf. Sect. 5.3. In particular,
the designer can set the parameters 0 < k2 < k1 < kmax < 1 of the reward model — cf.
Sect. 4.3. In doing so, (s)he could choose to apply a more aggressive allocation policy
for versions that were suspected (or found) to have failed. The values chosen for
these configuration parameters will therefore have an effect on the re-integration
latencies.
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Experiment 7.5

In Fig. 7.5, we consider an environment in which five functionally-equivalent versions
operate. The environment is modelled such that participation of a version vi in the
context of a voting round (C,`) is likely to be affected by a disturbance for (i +1) ·5%.
For version v4, this probability was set to 30%. A disturbance will materialise as RVF
or EVF failures with 75, resp. 25%. The response values to be used as ballots for
the voting procedure are sampled from a uniform distribution. tmax was set to 25
discrete time units.
For this particular experiment, we have configured the algorithm to apply a fixed
redundancy level of n(C,`) = 3: replicas will be dynamically selected, but the degree
of redundancy will not vary, even though all contextual knowledge is collected to be
able to do so. In scenario A, we have chosen k1 = 0.25, k2 = 0.05 and kmax = 0.95. In
scenario B, we changed k1 to 0.75. Based on Eq. 4.2 and 4.7 on p. 74, resp. 77, we
would expect that:

– For replicas that are idle — that is: not actively participating in the redundancy
configuration for a specific voting round — normalised dissent measurements will
decrease at a higher rate when the difference between kmax and k1 is larger. This
difference would be 0.75 in scenario A vs 0.20 in scenario B.
Maximising the difference between these two values (and thus selecting a lower
value for k1) will result in a more rapid re-integration of previously penalised —
thus faulty — versions in the redundancy configuration. This would translate in
a more aggressive resource allocation policy, which is more eager on including
versions that may have been suspected or have been found to fail before (increased
risk appetite).

– Conversely, when the designer would prefer to act more cautiously in selecting
versions, (s)he could decide to lower the value assigned to k2, and to broaden the
distance between k1 and k2. In doing so, more trust is placed in versions that
continued to support the scheme’s functioning and that contributed to the ability
to adjudicate an outcome. Faulty versions will consequentially remain excluded
for relatively longer intervals.

Accordingly, lower re-integration latencies are recorded in scenario A — cf. Tables 7.5c
and 7.5d. Comparing Fig. 7.5e and 7.5f reveals how normalised dissent measurement
show a sharper decline. Because the configuration in scenario A undoes any
previously inflicted penalties more rapidly than in scenario B, the side effect is that
the version performing worst — v4, that is — is now being used more intensively
throughout the redundancy scheme’s operational life: 47% as opposed to 36%,
resulting in a slightly worse availability of the scheme itself (5 instead of 4 failures —
compare Tables 7.5a and 7.5b).
It is important to set a suitable value for tmax , since LRF failures may result in
measurements that do not correlate to disturbances originating from design faults.

The other part of the reliability approximation model — the penalisation mecha-
nism — cannot be configured; it processes contextual information that is deduced
by the generic voting component at the end of every voting round — cf. Sect. 4.2. It
therefore depends on the ability to find consensus among the ballots acquired for
each version in the redundancy configuration, which in itself is influenced by failures
in the content and/or timing domain — v. Fig. 2.3. Compared to other participating
versions that appear to function better, versions that suffer from disturbances during
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a relatively higher share of their involvement in the redundancy scheme’s operational
life may be taken out of service faster — resulting in lower exclusion latencies.
To conclude this section, a few notes though:

– If, during the operational life of the redundancy scheme, a version is struck by a
crash failure, that version might still be re-introduced in the replica selection later
on. This can clearly be observed from Fig. 7.2f (and 7.2e), and is the result of the
algorithm not being capable of directly sensing the nature of disturbances. It does
not have perceptional abilities, though it is purposefully aware: the occurrence of
failures is detected through observation of the evolution of normalised dissent
measurements, which in themselves reflect the degree of consensus found
throughout the voting procedure. However, one might consider extending the
algorithm with a probing functionality, in which it could retry the request several
times (in the background), and where it would permanently exclude the faulty
version when it was suspected to have crashed — e.g. after a predefined number
of successive omission failures.

– When applying a dynamic redundancy configuration with a varying redundancy
level, the act of redundancy downscaling/upscaling is very likely to result in
additional exclusion, respectively re-integration measurements (latencies) to be
recorded, although one cannot generally state that this would result in better/worse
latencies.

– Due to the self-optimising nature of the A-NVP algorithm, the exclusion and/or
re-integration of specific versions depends on how well individual versions are
believed to behave compared to the other (participating) versions. The algorithm
will be less successfull in dynamically adjusting the replica selection as replicas
are being used less frequently, or in case of incomplete contextual knowledge (a
situation referred to as corrupted window of contextual information in Sect. 6.2.1,
p. 101). We will be zooming in on this matter in greater detail in Sect. 7.4.

7.3 Policies for Parsimonious Resource Allocation

The proposed A-NVP redundancy dimensioning model aims to autonomously
tune the employed degree of redundancy in view of encountered disturbances,
and is fitted with accompanying policies intent upon increasing the scheme’s cost
effectiveness without breaching its dependability objective — cf. Sect. 5.2. The
model can be configured in line with the designer’s preferences, thereby allowing
him/her to define policies that will be used to allocate system resources to a greater
or lesser degree of parsimony. In this section, we will analyse if and how the proposed
model can be used to effectively and safely reduce the allocated redundancy. In
this context, safety actually means the sustained availability of the scheme, with
minimal service interruption — preferably none at all, i.e. reliability2.

7.3.1 Lowering the Cumulative Amount of Allocated Redundancy

In this section, we will zoom in into how such policies may perform under various
conditions, when and to what extent they improve the overall performance of the

2Hence we use the intuitive notion of safety here, as opposed to the formal definition stated on p. 9.
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system, primarily in terms of dependability and resource consumption. We will
define a number of promising resource allocation policies, and subject them to
experimentation so as to assess their impact on the overall performance of the
proposed dependability strategy. This analysis will be achieved by means of the
discrete event simulation framework that is founded upon the discrete event and
failure manifestation models defined in Chapt. 2, and that includes a reference
implementation of the A-NVP/MV dependability strategy proposed in Chapt. 5.

7.3.1.1 Challenges to Overcome in Applying Dynamic Redundancy Configurations

The use of autonomous redundancy schemata that apply dynamic redundancy
configurations does introduce a few challenges that may affect the scheme’s dependa-
bility. The designer should be well aware of these, and should apply proper configura-
tion to mitigate these risks.

– It is not wise to apply too much frugality in allocating resources, especially at the
early stages of the scheme’s operational life. The choice of the initial degree
of redundancy is likely to determine the initial time to failure. This can be
seen when comparing Fig. 7.4c with Fig. 7.4d (p. 134): when subject to similar
environmental conditions, the initial level of redundancy in scenario B shows to
be insuffient to avoid failure during voting round (C,6). Of course, all depends
on the actual fault model of the environment, and how and when it will cause
disturbances to materialise. Ergo, it is better to initialise the redundancy configura-
tion with a moderate (to high) degree of redundancy to be used, rather than to
start from the bare minimum (TMR). See also: experiment 7.6.

Experiment 7.6

In Fig. 7.6, a simplistic A-NVP strategy was applied that maintains an odd level of

redundancy — that is, f (C,`)
u = f (C,`)

d = 2. In doing so, we have essentially applied
Strategy A, Variant 2 as defined in Sect. 7.3.1.2. Versions are selected at runtime based
on the most recent normalised dissent measurements (only). These measurements
are computed with parameters set as follows: k1 = 0.45, k2 = 0.05 and kmax = 0.85.
In this particular experiment, only RVF failures are considered, hence tmax is left
undefined. The response values for invocations that are affected by RVF failures
— to be used as ballots for the voting procedure — are sampled from a normal
distribution with a standard deviation σ= 0.5. The redundancy dimensioning model
was configured as follows: rd = 15, ru = r f = 1 — no safety margin csm has been
imposed.
At the left side (scenario A), this redundancy strategy was configured to economise
on resource expenditure, by setting a lower initial degree of redundancy to be used
(ni ni t = 3). At the right (scenario B), that value was set to 5. Apart from this, both
scenarios apply nmi n = 3 and nmax = 5.
Although both scenarios are characterised by the same number of failures, the
recorded TTF measurements are: 10 vs 16. Despite this experiment’s simplicity,
the key message to convey here is that it is — generally speaking — not wise to set
the initial degree of redundancy too low (unless one would have a very accurate and
precise view on the actual fault model). Apart from realising better TTF, temporarily
starting with a slightly higher redundancy level will also ensure a more accurate
view is obtained on the constituent versions underpinning the redundancy scheme.
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Usually, only few and relatively inaccurate contextual information is available at the
start of the scheme’s operational life, and active use of more system resources will
generate more relevant contextual information that can be effectively used to steer
the redundancy configuration.

– Probably the biggest risk would be found in the act of changing the degree of
redundancy to be used. Both upscaling as well as downscaling introduce risk:

+ Upscaling to a moderate level of redundancy usually makes sense, but as
soon as one includes too many versions, there may be so many disturbances
e(C,`) that no qualified majority can be found. Indeed, some of the standby
versions that will be included might have been previously excluded from
the replica selection because they were found to underperform or not to
contribute to the scheme’s dependability at that time. Refer to experiment
7.10 for more information.
A few useful metrics are the total amount of events at which the redundancy
level to be used in the redundancy configuration was increased (4tot al ), and
how many of these events resulted from redundancy undershooting and
lead to the immediate recovery of service availability (4success ). Another
one is the number of attempts to reach out to additional redundancy, with
no remaining spare capacity (4bump ) — a situation that would arise when

n(C,`) = |V (C,`)| = |V |. The reactive nature of the applied dependability
strategy can be observed from Fig. 7.4d on p. 134: the algorithm will attempt
to increase the level of redundancy upon failure (at the start of the first voting
round following round (C,`), ∀` ∈ {6,17,21,94,97}). Mostly, it is successful
in realising the immediate recovery of the scheme’s availability, with the
exception of `= 98, in which all available redundancy is allocated, and no
spare capacity remains.

+ Similarly, downscaling in itself obviously introduces risk, as the redundancy
configuration will rely on less versions to mask disturbances that may affect
them. Unfortunately, even though a strategy may be capable of scaling down
the utilisation of system resources, doing so might occasionally result in
redundancy undershooting, even for relatively large values of rd . A few useful
metrics are the total number of events during which the redundancy was
brought/scaled down (denoted by 5tot al ), and how many of these events
resulted in a redundancy configuration that proved to be inadequate to
sustain the scheme’s availability and thus resulted in one or more failures
(denoted by 5 f ai l ur e ).

Experiment 7.7

In this experiment, we analyse the behaviour of an A-NVP redundancy
scheme, when it is configured using different instantiations of Strategy B,
Variant 1 — v. Sect. 7.3.1.2. In the left half of Fig. 7.7 (scenario A), resources
are allocated so as to attempt to mask and overcome any disturbance
that may affect the scheme’s availability. In the right half (scenario B),
resources are relinquished more rapidly, thereby seeking to further reduce

145



`
x

0
50

100
150

0 2-2
480
324 =

88
1,481

(a)
scen

ario
A

:failu
res

overview

`
x

0
50

100
150

0 2-2
510
344 =

98
1,483

(b
)

scen
ario

B
:failu

res
overview

`
x

0
50

100
150

n
in

it =
3

n
m

a
x =

50 2 4

w
e =

1
w

e =
0

1,000
0,000

(10)

(c)
scen

ario
A

:reso
u

rce
allo

catio
n

&
u

n
d

er-/oversh
o

o
tin

g

`
x

0
50

100
150

n
in

it =
5

n
m

in =
30 2 4

w
e =

1
w

e =
0

0,906
0,272

(16)

(d
)

scen
ario

B
:reso

u
rce

allo
catio

n
&

u
n

d
er-/oversh

o
o

tin
g

`
x

0
25

50
75

100
125

150

2,003 v
0

v
1

v
2

v
3

v
4

(e)
scen

ario
A

:n
o

rm
alised

d
issen

t&
o

b
served

d
istu

rb
an

ces

`
x

0
25

50
75

100
125

150

2,747 v
0

v
1

v
2

v
3

v
4

(f)
scen

ario
B

:n
o

rm
alised

d
issen

t&
o

b
served

d
istu

rb
an

ces

Figu
re

7.6:E
xp

erim
en

t7.6:th
e

in
itiallevelofred

u
n

d
an

cy
m

igh
td

eterm
in

e
th

e
T

T
F.In

scen
ario

A
,w

e
startby

u
sin

g
a

low
red

u
n

d
an

cy
level;in

scen
ario

B
,a

h
igh

er
levelis

u
sed

.Itis
ap

p
aren

tfro
m

th
e

ch
arts

h
ere

ab
ove

th
atth

e
T

T
F

w
illb

e
w

o
rse

fo
r

A
.

146



resource expenditure. Versions are selected based on normalised dissent
measurements. These measurements are cached at the end of each
successive completed voting round, and are obtained with parameters
set as follows: k1 = 0.85, k2 = 0.75 and kmax = 0.95. Performance failures
are detected after a tmax timeout equal to 15 discrete time units have
lapsed. Other types of disturbances will materialise with an 80 and 20%
probability for RVF, resp. EVF failures (with response values for the former
type of disturbance sampled from a uniform distribution). The redundancy
dimensioning algorithm is configured with ru = r f = 1, ni ni t = 5, nmax = 7
and nmi n = 3. The difference between scenarios A and B is to be found in
that rd is set to 10, resp. 5 voting rounds, and that a safety margin csm = 1 is
applied in the former, whereas none is applied in the latter.
The more sparingly the available redundancy is allocated, the higher the
risk that the redundancy scheme will be struck by failures. The act of
downscaling can in itself introduce risk: as one can observe from Fig. 7.7d,
there are 5 f ai l ur e = 2 unsuccessful attempts to reduce the degree of
redundancy, i.c. ` ∈ {37,46} — v. Table 7.5. Furthermore, even though
scenario B was able to reduce resource expenditure with 28.6% (compared to
scenario B), this does come at the expense of a far inferior reliability, where
13% of downtime is recorded, in contrast to a mere 4% (expressed in view of
the total number of voting round failures). One can also observe that there
might be an impact on the TTF.
Shorter window lengths may result in a (slightly) more incautious
downscaling of the redundancy, which in itself might lead to failure of the
redundancy scheme in subsequent voting rounds. The general trend shows
that the redundancy scheme is less likely to fail due to the downscaling of
the employed degree of redundancy for larger values of rd , at the expense
of postponing the relinquishment of excess redundancy — a statement
confirmed in [83, Sect. 4.2] and [78].

– When trying to economise on resource expenditure, every call (request) counts.
To mask e(C,`) of disturbances, given a majority voting adjudication algorithm, at
least (C,`) = cr (e(C,`)) = 2 ·e(C,`) +1 versions are required. This corresponds to an
odd degree of redundancy, as it is commonly found in traditional NVP.
Odd levels of redundancy have long been used to avoid undetermined results at
the end of the voting procedure, where one might observe only two distinct
equivalence classes of the same cardinality — cf. Sect. 2.1. However, such
reasoning is mainly applicable to plurality voting (PV) — cf. App. B. It is the
author’s belief that no such constraint should be adhered to when using n(C,`) ≥ 3.
After all, when using majority voting, the qualified majority will decide, and there
can only be one — cf. Eq. (3.1), p. 67. Furthermore, the ballots acquired from
individual versions are usually validated and/or normalised before returning them
to the voting mechanism. A common example would be to round numeric values
to a specific number of significant decimal digits. Furthermore, the distance
function d(x, y) used within the voting mechanism will seek to find additional
equivalence.
In the context of dynamic redundancy configurations, temporarily maintaining
an even degree of redundancy — usually after downscaling the redundancy —
may help to avoid redundancy undershooting, especially if the replica selection
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also varies. Although one additional version is used more than what is — strictly
speaking — necessary to mask e(C,`) of disturbances, keeping this additional
resource in use can help to better steer the redundancy configuration towards the
optimal replica selection3.
Although a larger share of the redundancy will be allocated than what is — strictly
speaking — required, temporarily maintaining an even degree of redundancy can
partially mitigate the risk of downscaling/upscaling. Oftentimes, when a safety
margin csm is defined, it would be economically beneficial to use an even degree
of redundancy (otherwise even more resources would be used, since one would
upscale to the nearest odd number).

– The system-environment fit may change over time, and various fault models may
apply to different stages of the scheme’s operational life. Even if the environmental
behaviour would have been properly modelled, it would take time for the algorithm
to rebalance the redundancy configuration, resulting in a transition period with
suboptimal availability of the scheme itself. Combined with the challenges
covered in Sect. 7.4, this may lead to situations in which a dynamic redundancy
scheme is actually defenseless, and can only try to extract meaningful knowledge
from the context information, thereby hoping to regain control and mitigate
downtime.

Experiment 7.8

Both scenarios shown in Fig. 7.8 are exposed to similar environmental conditions,
except that the fault model in scenario B on the right is more whimsical, in that
the failure trends are more challenging to identify throughout the execution of
voting rounds ` ∈ [60,180]. To be more specific, for the interval [60,105], the
deviation from the failure trend is sampled from a uniformly distributed random
variable with a =−3 and b = 6. Likewise, for [105,179], a =−2 and b = 2. As one
can observe in Fig. 7.8b, this behaviour clearly obfuscates the actual failure trend.
Algorithm parameters set as follows: k1 = 0.85, k2 = 0.75 and kmax = 0.95.
Performance failures are detected after a tmax timeout equal to 15 discrete time
units have lapsed. Other types of disturbances will materialise with an 80 and 20%
probability for RVF, resp. EVF failures (with response values for the former type of
disturbance sampled from a uniform distribution). The redundancy dimensioning
algorithm is configured with Strategy B, Variant 1 using the parameters rd = 5,
ru = 3 and r f = 1, ni ni t = 5, nmax = 13 and nmi n = 3. A safety margin csm = 1 is
applied in both scenarios.
Clearly, in scenario A, the failure trend is captured, albeit after a moderate delay,
and the algorithm will adjust the redundancy configuration accordingly. The delay
is mainly determined by the factor rd , and — to a lesser extent — csm — v. Fig. 7.8a
and 7.8c.
In scenario B, where the failure trend is blurred as of voting round `≥ 60,
one can observe a markedly higher resource allocation, simply because the

3Trustworthy versions will be characterised with lower normalised dissent measurements being
recorded. Recall that normalised dissent measurements are interpreted as an approximation of a version’s
reliability. Even though normalised dissent is updated at the end of each voting round — also for versions
that have temporarily been taken out of service — the most accurate results would be available after
continuous use. Indeed, that would mean the impact of the version has been actively and constantly
monitored, by assessing if the ballots acquired from the version (if any) helped to adjudicate an outcome
(majority).
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redundancy scheme is sitting quite defenseless, hoping that upscaling the degree
of redundancy will suffice to mask the disturbances that emerged and to resume
and/or sustain the scheme’s availability. Indeed, it is not capable of accurately
anticipating the failure trend (model).

In summary: upscaling should be proactive, and should be context-aware to avoid
calling underperforming versions. In general, one may expect that a properly chosen
value csm matching the variability of the environment and the ensuing disturbances
aids in intercepting the trend and may lead to a reduction of scheme failures due to
more efficient proactive upscaling and less aggressive downscaling.

7.3.1.2 Some Exemplary Dependability Strategies

In this section, we will list a few policies that can be used to manage the redundancy
configuration as part of an A-NVP redundancy scheme.

Strategy A The first policy is inspired by the strategy published in [78, Sect. 3.3],
and was already used in previous experimentation to showcase the
advantages of applying a dynamic — albeit reactive — redundancy
scheme. In line with traditional NVP, it will only report an odd degree
of redundancy. A simplex system is not allowed, hence nmi n ≥3. If
the voting scheme failed to find consensus amongst a majority of the
replicas involved during the last completed voting round, the model will
increase the number of versions to be used in the next voting round,

to the extent that f (C,`)
u = 2. Conversely, when the scheme was able to

produce an outcome with a given amount of redundancy for a certain
amount rd of consecutive voting round completions, a lower degree of

redundancy shall be used for the next voting round, with f (C,`)
d = 2.

The initial algorithm can be easily modelled as an A-NVP scheme:
although initially observing only raw dtof measurements, without any
correlation or trend analysis, it does fit the model, in which the success
criterion could be used to detect success or failure.4. The parameters ru

and r f are obviously set to 1; nmax ≥ ni ni t ≥ 35.
This strategy can be used in two possible ways:

Variant 1 In its basic form, the strategy selects versions arbitrarily from the
available pool of resources. This corresponds with the model
defined in [78].

Variant 2 In an extended form, we have combined our dynamic replica
selection algorithm with the initial algorithm: the scheme will
rank the available versions and dynamically select the optimal

4Combination of the success criterion as it is defined on p. 82 with Eq. 3.3, p. 69 shows how a safety
margin can be set to define the “critically low dtof value” mentioned in [78]. There is no mentioning
of any precise value, and we presume dtof = 0 was used. The context manager will maintain a cache of
recent nett redundancy measurements that can be used to support this model — v. Fig. 5.1, p. 82.

5Faithful to the original, the redundancy scheme is initialised such that it is capable of tolerating up
to one failure, hence r f = 3.
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n replicas, based on the available contextual information. This
variation was used in experiment 7.4, p. 133.

Strategy B A second strategy — that originally appeared in [84] — is a plain imple-
mentation of the mechanism defined in Sect. 5. When the degree of
redundancy n(C,`−1) is found to be overabundant, the downscaling
function will try to adjust downwards by an amount

f (C,`)
d = (c(C,`x )

max −m(C,`x ))− csm , with `x denoting the voting round in
the observation window for which the smallest degree of consent was

found. Undershooting the safety margin will cause f (C,`)
u to return

csm −|c(C,`x )
max −m(C,`x )|, with `x the round in the observation window

delimited by ru exhibiting the largest deviation from the imposed security

margin. The upscaling function f (C,`)
u will try to inflate the redundancy

level by |c(C,`x )
max −m(C,`x )|+ csm in case of redundancy undershooting,

with `x the eligible round with the smallest degree of consent.

Variant 1 In its basic form, the strategy will attempt to reach out to additional
redundant capacity in case the scheme is found to underperform
(or fail). The only limitation here is the total amount of redundant
resources |V | present in the system — cf. Sect.5.2.

Variant 2 Adding redundancy does not always translate in an improvement
of dependability. To avoid aggressive upscaling, which in turn
may trigger additional disturbances that the scheme’s redundancy
configuration cannot possibly overcome, this variation will main-
tain oversight of the normalised dissent measurements for all
versions v ∈V . In order to do so, it will rank all versions based on
their latest normalised dissent measurement, and — if needed —
override the redundancy dimensioning model’s decision whenever
the model would instruct to upscale in a situation where the pre-
viously unallocated redundancy was found to underperform.
Having ranked the versions based on their normalised dissent
measurements, those versions whose measurements fall in the
upper quartile (Q3) will be supposed to structurally underperform
such that their inclusion in the redundancy configuration cannot
be justified67. This will typically result in a reduced consumption of
redundant resources. This variation was used in experiment 7.10.

Additional strategies can be added/defined as desired, with upscaling and downsca-
ling functions usually taking into account cached contextual information. The
designer can even decide to cache additional metric measurements, and act on
these (possibly combined with the current set of supported metrics).

6The discrete event simulation framework can be configured for any specific quantile value. It’s use
is not limited to this exemplary configuration.

7A threshold cannot simply be applied to normalised dissent measurements, as measurements are
relative to the current redundancy configuration, and indicate the extent to which specific versions
outperform or underperform with respect to others. Considering all versions operate normally, although
occasionally affected by a disturbance, with the exception of a specific subset of versions. For this last
subset of versions, one will observe a steeper curve in the evolution of normalised dissent measurements
being recorded. Unless behaviour is curbed, one will see that these measurements diverge from “normal”
measurements that centre around some stable value.
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7.3.2 Comparing the Effectiveness of Various Policies

We now compare the effectiveness of five redundancy dimensioning strategies,
in addition to a traditional NVP scheme. Each of these strategies is assumed to
be deployed within an A-NVP/MV scheme operating in an environment in which
the same set V of versions had been deployed and that exhibits identical failure
behaviour.

Experiment 7.9

With the exception of the voting rounds in interval [195, 205], no more than
four failures are assumed to affect the versions in V (C,`). Such scenario could
successfully be overcome by a static redundancy configuration with n = 9a.
Apart from such classic strategy, we will evaluate several other dependability
strategies for parsimonious resource allocation, based on the formalism
introduced in Chapt. 5:
– in scenarios B and C, Variant 1, resp. Variant 2 of strategy Strategy A are

applied;
– scenarios D and E are examples are examples of Strategy B, Variant 1: in

the former no safety margin is applied, whereas it is in the latter;
– scenario F is resemblant of scenario E, but will reach out to additional

redundant resources.
A global value tmax = 15 is applied for all scenarios. k1 = 0.85, k2 = 0.75, and
kmax = 0.95. For scenarios E and F, a discretionary safety margin csm = 1
is used; none is used in the other scenarios. Apart from scenario A, the
employed redundancy can vary between [3,9]. In scenario F, nmax = 11.
For scenarios B–F, at the expense of a more aggressive allocation strategy,
we set ru = r f = 1, such that the availability of the scheme can swiftly be
regained in case of redundancy undershooting. Whereas rd = 20 is used in
scenarios B–E , this value is reduced to 10 for scenario F. Injected failures
are set to materialise as EVF and RVF content failures with a 20, respectively
80% probability, with response values being sampled from a uniformly
distributed random variable — v. p. 51.
The following table gives a brief overview of the key findings at the end of
simulation when each of these scenarios is subject to the same environment:

scenario strategy variant rd csm `Cf ai l ur e TTF MTBF MTTR
∑

n(C,`) saving

A — n/a n/a n/a 6% 9 11.733 2.667 2250

B A 1 20 n/a 8% 13 11.368 2.222 1992 -11.46%

C A 2 20 n/a 8% 9 11.263 2.000 1984 -11.82%

D B 1 20 0 12% 9 5.821 2.231 1775 -21.11%

E B 1 20 1 7% 9 11.941 2.571 2164 -3.82%

F B 1 10 1 3% 9 25.857 1.143 2193 -3.82%

As we can see from the above overview, the approach applying the greatest
degree of parsimony (scenario D) results in a significantly worse overall
availability of the redundancy scheme, in spite of an impressive reduction
in resource allocation (in terms of versions being invoked). With a slightly
worse overall availability, one can observe that more than 10% of version
invocations can be avoided in scenarios B and C — that is, compared to
the cumulative number of resource allocation that would be applicable for
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the static redundancy configuration (scenario A). Even though the resource
expenditure recorded is only of moderate size — less than 4% — scenarios
E and F show the best results in terms of availability: both result in a an
overall availability close to or better than what could be expected from a
comparable static redundancy configurationb. For scenario E, a retry-based
approach where the redundancy scheme would attempt to mask any faulty
voting round, could result in even better performance in terms of availability,
but with hardly any economisation of resource allocationc. Scenario F — in
spite of reaching out to more functionally-equivalent versions — results in
a significantly better dependability stance: a mere 3% of failure instead
of 6%. And this result can be achieved by allocating, on average, less
computational capacity (a lesser degree of version invocations). The key
message to convey here is that — if one can afford the investment needed for
the development of additional versions — one should consider this option
for truly mission-critical applications. Also, when comparing scenarios B
and/or C with E, the observation of E performing slightly better in terms of
availability could have been anticipated, as B/C are reactive in nature and
respond to actual failures rather than proactively adjusting the redundancy
upwards were the agreed safety margin violated (scenario E).

aIn Fig. 7.9, 7.10 and 7.11, one can occasionally observe additional disturbances: these
result from performance failures or from RVF failure that emerge because of sampling response
values (so-called ballots) from a specific distribution — cf. Sect. 2.6.1.1.

bWhen comparing with strategy D, observe the significant improvement with respect to the
number of scheme failures when applying a small safety margin.

cEven if there would be no reduction in resource allocation at all, the amount of
functionally-equivalent versions in the system would be the same, with identical development
cost, yet the application of A-NVP would provide insight in how well each of these versions
performs, and could be used for in-depth failure root cause analysis.

7.4 Identifying Scenarios in which the Approach does not
Perform Well

Now that we have shown the benefits of using dynamic redundancy schemata
and have shown that A-NVP dependability strategies can successfully realise these
gains, we will explore the conditions under which their use is not guaranteed to
translate in performance gains. After all, “a precise characterisation of the amount
of [redundancy] necessary to deal with a certain [fault model] is not always easy or
even possible” [78].

– Ideally, monitored versions should be continuously used. This will result in
more accurate normalised dissent measurements. Even though measurements
are generated for periods in which replicas are just sitting idle, the evolution
of these measurements relies on the assumption that failures are transient in
nature, and that temporarily taking a faulty version out of service may remove the
detrimental effects of that version during a certain time interval, during which
it may eventually recover. During that interval, the penalisation mechanism
will gradually assess the version from seriously untrustworthy to moderately
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trustworthy.
However, theoretically, the most accurate measurements that would closely keep
track of a version’s behaviour would be to engage it in every voting round, so that
its operational status could be deduced from the voting/partitioning procedure —
v. Sect. 2.1. As it may be advantageous to temporarily exclude faulty versions from
the redundancy configuration, it is important to conduct an up-front analysis
to properly model the environment — including the fault model — and find an
acceptable balance that will effectively boost the scheme’s objectives.

– When all versions available in the system periodically or frequently fail, it might
cause more harm than good to apply higher levels of redundancy. Due to the
nature of the replica ranking, obviously less reliable versions would be selected.
The optimisation problem would then reduce to a risk assessment problem, where
the risk of failure should be minimised. One should therefore find a balance
between normalised dissent measurement levels that indicate versions that have
performed acceptably, and for which the risk of using them in subsequent voting
rounds is judged low, and versions that are not likely to support the redundancy
scheme’s availability at all.
Imposing a safety margin csm will obviously lead to higher redundancy levels
being used. Therefore, in addition to the n(C,`) best versions that will be selected
by the replica selection model, the redundancy configuration will — generally
speaking — include an additional amount of “less trustworthy” versions. This in
itself can obviously put at risk the proper functioning of the redundancy scheme.
One can therefore expect to benefit from applying a safety margin if there are only
few poorly performing versions present for use; if the vast majority is medium to
highly trustworthy and are observed to perform well, there should be no problem.

Experiment 7.10

In this experiment, we will evaluate the following dependability strategies,
and compare their effectiveness against a classic NVP scheme (scenario A):
– scenarios B and C are examples are examples of Strategy B, Variant 1: in

the former no safety margin is applied; in the latter, a margin csm = 1 is
maintained;

– scenario D corresponds to Strategy B, Variant 2.
A global value tmax is set to 15 discrete time units. k1 = 0.85, k2 = 0.75,
and kmax = 0.95; rd = 5, and ru = r f = 1. Apart from scenario A (static

redundancy configuration with a fixed redundancy n(C,`) = 7), the
employed redundancy is initialised as ni ni t = 5 and can then vary between
[1,7]. We assume a pool of |V | = 7 functionally-equivalent resources
(versions).
Each scenario will be simulated when being subject to similar
environmental conditions. Failures are injected using the trend-based
mechanism; they will materialise as EVF and RVF content failures with a
20, respectively 80% probability, with response values being sampled from
a uniformly distributed random variable — v. p. 51. In general, version
service response times are sampled from an exponentially distributed
random variable with λ= 0.4; network transmissions are assumed to take
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a constant 3.5 time units (one-way). It is however assumed that a specific
subset of versions — say, v2 and v3 — very often suffer from failure. Such
situation could occur, for instance, if these would be deployed in a specific
network, and the link to connect to that network is highly congested.
Subsequent invocations of either version are therefore expected to suffer
from LRF performance failures.
The following table gives a brief overview of the key findings at the
end of simulation when each of these scenarios is subject to the same
environment:

scenario strategy variant csm `Cf ai l ur e MTBF MTTR
∑

n(C,`) saving

A — n/a n/a 38% 1.655 2.636 560

B B 1 0 38% 1.517 2.500 542 -0.03%

C B 1 1 36% 1.821 2.154 558 -0.00%

D B 2 n/a 35% 1.185 3.111 409 -26.96%

The key messages to convey here are that:
– Maintaining a redundancy configuration using a lower degree of

redundancy, but using an optimal subset of the available redundancy
tends to yield better results in terms of dependability. Furthermore,
compared to traditional NVP and even A-NVP, it is likely to result in a
significantly reduction in resource expenditure. This statement is true
especially when there is a marked difference in the performance of the
available redundant resources (versions) in the system. The drawback
of this approach is, however, that the overall load on the allocated
versions will increase, and won’t be offloaded to other, stand-by versions
(which are observed to perform worse). This can be observed when
comparing scenario D with scenarios A–C: given an operational life of
the redundancy scheme of 80 voting rounds, we can record a spectacular
reduction of up to 27% compared to traditional NVP when refraining
from upscaling the redundancy if the stand-by versions are judged
insufficiently trustworthy. In this particular experiment, one can even
see that — because the use of unreliable versions is reduced/avoided —
3% less scheme failures are recorded.

– In this experiment, versions v2 and v3 perform poorly. They are
intensively allocated and used in scenarios A–C (as can be seen in
Fig. 7.12e, 7.12f, and 7.13e. When using versions that are untrustworthy,
or that underperform with respect to the average performance recorded
for the available system resources, the dependability of the redundancy
scheme may suffer, both in terms of availability and reliability. Indeed,
in scenario D, 3% less voting rounds are observed during which the
redundancy scheme failed to adjudicate an outcome. This is because
the use of the worst performing versions in the system is avoided, as
can be observed from Fig. 7.13f (and by comparing Tables 7.10a, 7.10b
and 7.11a with 7.11b.

– Strategy B, Variant 2 (scenario D) is successful in reducing the inclusion
of underperforming resources in the redundancy configuration. Still,
because normalised dissent measurements for idling versions gradually
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decrease, previously penalised/excluded versions will eventually be
re-introduced in the redundancy configuration. Whereas versions v2

and v3 are engaged in all 80 voting rounds in scenarios A and C, and
in 72 of the 80 voting rounds in scenario B, a mere 30 voting rounds
is noted for scenario D. Furthermore, because the normalised dissent
measurements do not inflate as much, the algorithm is capable of safely
downscaling when a lesser degree of disturbances is detected.

The above clearly corroborates the statement that the use of replicas of
poor reliability can result in a system tolerant of faults but with poor
reliability [3, Sect. 4.3.3]. A higher degree of redundancy therefore does
not necessarily result in higher level of fault tolerance.
To conclude, a few side notes though:
– For visualisation and readability purposes, we have chosen to use

a trend-based failure injection approach. However, such approach
will generally inject the same number of disturbances for different
redundancy levels. If we would know the exact details of the fault model,
in general, less failures would be injected for lower redundancy levels.
As a consequence, the probability of voting round failure would further
diminish. Compare the number of injected disturbances in Fig. 7.12a,
7.12b, 7.13a and 7.13b (in particular for `≥ 60).

– The number of injected disturbances is denoted by ×. For many voting
rounds, one can observe a number that exceeds the defined trend. This
is because performance failures are not accounted for in the trend
definition. In this particular experiment, only LRF performance failures
materialise, since no crash failures are injected.

– The cumulative amount of allocated redundancy
∑

n(C,`) recorded for
scenario C is lower than what the algorithm would have considered as
optimal redundancy levels. This can be observed from Fig. 7.13c, where
the upper limit |V | = 7 is reached, even though the algorithm would
instruct the system to scale the degree of redundancy up (conditions
denoted as 4). Had more resources been available, the cumulative
degree of redundancy would be even higher. And — depending on the
dependability of the additional resources — the scheme itself would
exhibit a better or worse availability (number of voting round failures).

– We would like to remind the reader to the fact that the pentagonal
symbols that indicate normal, fault-free behaviour, are only displayed
in those scenarios in which a dynamic redundancy configuration is
applied. Its purpose is mainly to visualise which versions are engaged
in the configuration, and which remain idling.

– We would like to conclude this experiment by pointing out that
the discerning reader may observe a different number of injected
disturbances for a similar redundancy configuration, but in different
scenarios. This may occur because of differences in sampling from
random number generators, where the sequence of sampling may not
fully be identical. As an example, additional LRF failures may emerge
because of a random variate sampled from the exponentially distibuted
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service time distribution, where the variate — added to the network
transmission round-trip time — would exceed the tmax timeout. For
instance voting round `= 20 has an identical redundancy configuration
in scenarios A–C, yet the number of disturbances varies.

– In the above experiments, for readability purposes, requests were injected to
hit the fault-tolerant composite one after another, one at a time. Athough this
does not reflect reality, in which requests would hit with rather unpredictable
inter-arrival rates and patterns, it does guarantee that there is no window corrup-
tion at the time the algorithm will adjust the redundancy configuration — v. p. 101.
Because of this, decisions with respect to changes in the degree of redundancy
to use, or which selection of versions to use, will be based on the latest, most
complete and therefore most accurate data.
In contemporary distributed computing systems, the arrival process with which
requests typically arrive at the processing facility is typically characterised by
some type of distribution. Few aspects will determine the extent that contextual
information is partially missing in order to determine a well-considered change
in the redundancy configuration:

+ The end-to-end response times may vary, even for specific version — cf.
Sect. 6.1.1.

+ With the exception of failures in the content domain, all other sorts of failures
will be detected very late — after the tmax timeout has lapsed. Imagine
this is the case for a voting round (C, `), and that no failures in the timing
domain would occur throughout the next voting round (C, ` + 1). Then,
assuming the end-to-end response times do not substantially vary, it is
quite likely that round (C, ` + 1) will have completed before (C, `) has. Then,
the measurements deduced for round (C, `) may not be available when
initialising subsequent rounds (C, ` + x), x ≥ 28.

+ The inter-arrival rates at which requests hit the redundancy scheme: intense
use of the scheme will result in more pending requests that are concurrently
being processed9, which will magnify the two phenomena listed here above.

Experiment 7.11

In this experiment, a variation of the trend-based failure injection used in Fig. 7.8
is applied, and the following scenarios are evaluated:
– In scenario A, voting rounds are scheduled one after another: there is no

concurrent processing of subordinate requests pertaining to different voting

8Depending on the time that request hits (arrives at) the redundancy scheme, response times, etc.
Note that larger tmax values may result in a worse degree of window corruption.

9Such behaviour would be observed especially when a queuing model A/S/c/k/n/D would be
applied with a limited processing capacity defined (i.e. c 6=∞). Furthermore, when processing facilities
— versions, that are — are subject to increased load, one may reasonably expect to see a subsequent
increase of (inbound) waiting and/or request processing times. This has a direct impact on the recorded
end-to-end response times, as per Fig. 6.1, p. 91.
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rounds. A service time distribution S with request processing times are
sampled from an exponentially distributed random variate with λ set to 1/2.5.
Likewise, incoming/outgoing network transmission RTT times are sampled
from an exponentially distributed random variable with λ set to 1/3.5. Similar
distributions are applied in scenarios B and C. The A-NVP algorithm is set to
apply a safety margin csm = 1. The reward model parameters are set as follows:
k1 = 0.85, k2 = 0.75, and kmax = 0.95, and the redundancy dimensioning model
is configured with rd = 5, and ru = 3 and r f = 1. We assume a pool of |V | = 9
functionally-equivalent resources (versions): the initial degree of redundancy
is set to ni ni t = 5, and is then allowed to subsequently vary between nmi n = 3
and nmax = 9. RVF and EVF failures are injected with an 80%, resp. with 20%
probability, with RVF failures sampled from a uniform distribution (refer to
p. 51).

– Scenario B is identical to scenario A, except that voting rounds no longer hit the
NVP scheme one after another. Instead, they will arrive at a constant, evenly
paced rate. We will inject new voting rounds every 5.65 discrete time units
(which should be sufficient to ensure there will be overlapping processing of
multiple voting rounds, given the expected average RTT and service times).

– Scenario C is identical to scenario B, except that the inter-arrivals are sampled
from a uniformly distributed arrival process A with a = 2 and b = 9.3, with an
average a+b/2 = 5.65 comparable to previous scenario.

– Finally, in scenario D, we will apply the same configuration as in scenario C, but
with slightly worse RTT and RPT (service) times: for the service time distribution,
λ is set to 1/3.25, and the exponential distribution used to sample RTT times will
have λ= 1/3.75.

Given a similar fault model, the behaviour of the algorithm under these varying
environmental conditions can be observed in Fig. 7.14 and 7.15 (overview of failure
occurrences and resource allocation), and the tables below (statistics collected for
scheme and individual versions). The following table gives a brief overview of the
key findings when each of these scenarios is subjected to the same environment:

scenario strategy variant csm `Cf ai l ur e äcor r upt
∑

n(C,`) inter-arrival time

A B 1 1 3% 0% 1152 —

B B 1 1 2% 9% 984 µ= 5.650, σ= 0

C B 1 1 2% 10% 851 µ= 5.669, σ= 2.103

D B 1 1 6% 15% 1147 µ= 5.669, σ= 2.103

We have applied Strategy B, Variant 1 as defined in Sect. 7.3.1.2, and have set a
safety margin csm to ease proactive upscaling. As we introduced more variability
in the environmental behaviour (RTT and service response and inter-arrival
times), we can observe an increase in the number of voting rounds for which
the redundancy dimensioning model determined the redundancy level to be
used based on a so-called corrupted window of cached contextual information
äcor r upt — v. p. 101. As one would expect, the more pending requests (voting
rounds), the higher the degree of window corruption. No direct correlation can
be found between window corruption and the scheme’s overall availability (using
`Cf ai l ur e as an indicator for unavailability).

When comparing the end-to-end version response times in Tables 7.12c,
7.12d, 7.13c and 7.13d, scenarios A–C show similar average response times for
all versions, within range [8.30,9.65] of discrete event time steps. The increase in
average RTT and service response times in scenario D translates in another range
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[9.30,10.97]. Obviously, compared to scenario C, this results in a higher percentage
of window corruption because of the additional variability in the overall RTT,
which can also be observed by an additional amount of LRF failures in scenario D.
It is therefore not surprising to see that the scheme is somewhat more unavailable:
6% compared to a mere 2%. But when comparing Tables 7.12d, 7.13c and 7.13d,
one can deduce from the measurements of #r ound s(C, v)−#consent (C, v) that
with 170a, scenario D had to endure far more dissent — potentially due to
additional disturbances — than scenarios B and C (where a mere 113, resp. 99 were
recorded). We have kept the tmax timeout stable across the different scenarios.
There is however a direct correlation between the degree of window corruption
and tmax : the higher its value, the longer it will take to collect ballots. However,
the value should be chosen in line with the response times recorded for the
underlying resources, otherwise the voting algorithm may not be able to adjudicate
an outcome as too few versions returned their response in due time.

aObtained by adding the measurements for all involved versions.

– Whilsicality of the environment: as mentioned before, the system-environment
fit may change. At times, the environment may behave quite differently than what
the designer initially foresaw. Although an A-NVP composite will eventually detect
a change in behaviour — be it in terms of availability, response times or load of/on
the underlying versions — a transient state is likely during which the composite
is just operating without any accurate or precise perception or awareness of its
surrounding environment — cf. experiment 7.8.

7.5 Conclusion

The various experiments conducted as part of this chapter seem to confirm that
the suggested A-NVP algorithm can be effectively applied to identify situations
necessitating an adjustment of the redundancy configuration. We have shown
that dynamic redundancy configurations can achieve a substantial improvement
in dependability, compared to traditional, static redundancy strategies. Given
the availability of spare system resources, our redundancy dimensioning model
is indubidably capable of scaling up the employed degree of redundancy, either in
response to a failure of the scheme, or as a precautionary measure if the effectiveness
of the employed redundancy is observed to deteriorate. Furthermore, tuning the
adopted degree of redundancy to the actually observed disturbances
allows unnecessary resource expenditure to be reduced, therefore enhancing
cost effectiveness.
Our experimentation has revealed that:

– Our A-NVP algorithm will only be successful if it is configured in line with the
behavioural characteristics of the environment in which it will be put into opera-
tion — in particular the applicable fault model. Even if these characteristics
would be unknown, the algorithm and the provided simulation framework will
support the designer in assessing how the redundancy scheme would perform
under various conditions, which would avoid wrong assumptions being made
and therefore help to realise a better system-environment fit.
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– Despite the benefit of purposeful redundancy upscaling, we have also observed
that upscaling is not always beneficial, and that the significance of extracting,
analysing and using correct contextual information when dynamically selecting
eligible versions at runtime is of equal, if not higher, importance.
One could also enhance the solution to upscale the level of redundancy only
when the potential gains significantly exceed the potential risk of doing so. For
instance, one could consider a (dynamic) upper limit for normalised dissent
measurements, and use this to assess whether to upscale/downscale/maintain
the current redundancy level.

– Collecting runtime statistics throughout the scheme’s operational life is essential,
as is illustrated by the normalised dissent. This metric can be used to assess a
specific version’s reliability over time, in the context of a specific redundancy
scheme. Analysis of the evolution of recorded measurements can shed clarity on
the failure model for individual versions.

– The perceptional abilities of the algorithm could be improved by adding probing
mechanisms to gain more accurate insight into the the nature of disturbances, e.g.
crash failures. Although such enhancement would improve the scheme’s overall
dependability, it would come at the expense of additional resource consumption.

– Finally, when determining a suitable level of redundancy to be applied, to ensure
full reliability, the designer will likely need to apply a safety margin csm so as to
realise (i) a more efficient proactive upscaling, and (ii) a less aggressive down-
scaling. In doing so, it is expected that the reduction in resource consumption will
be of less significance — though, in general, still better compared to using a static
redundancy scheme.
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CHAPTER 8
How WS-* Specifications can

Ease the Development of FCUs
“Web service technology allows the integration of applications across
different organisations and facilitates interoperability among distributed
heterogeneous applications and components, independent of the develop-
ment platform, middleware, operating system and hardware type” [131].
The use of stateless web services and the confinement of any communica-
tion to take place via explicitly defined service interfaces appear to suggest
that web services are an adequate technology for implementing FCUs.
In this chapter, a prototypical service-oriented implementation of the
proposed adaptive fault-tolerant strategy is presented, demonstrating
that WS-* specifications can be leveraged not only to gather and dissemi-
nate contextual information, but to sustain adaptive redundancy manage-
ment as well, broadening the applicability of NVP schemata by increased
interoperability. We argue that the WSDM and WSRF specifications in
particular can aid in isolating effective implementations of autonomic
capabilities from the underlying managed resources, and in achieving
proper separation of concerns. With message-oriented middleware solu-
tions increasingly being used to underpin the operations of web services-
based service-oriented architectures, we deemed it useful to conclude this
chapter by elaborating on the queuing model that such solutions typically
administer when handling service requests. The content of this chapter
has been disseminated to the public through publication [83]. Related
research question(s): RQ-4.

8.1 On the Role of Message-oriented Middleware in
Contemporary Distributed Computing Systems

There is a growing move to transform legacy distributed systems into service-oriented
architectures (SoA), mainly driven by the prospects of interoperability, agility and
legacy leverage. The widespread adherence to the service-oriented computing
paradigm can be justified as it comprises the best practices in distributed computing
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of, roughly estimated, the past twenty years, and by the numerous standardisation
initiatives backed by major industry consortia. It emerged as an architectural
pattern in response to increasingly complex challenges in the domain of enterprise
application integration (EAI), aiming to overcome the technological disparities that
are commonly observed between the various heterogeneous legacy systems that
can be found in an enterprise’s ICT landscape.

Service-oriented architectures are a continuation of traditional client-server
architectures. In this type of architecture, there is at least one service provider —
in control of and responsible for managing a server — that is capable of delivering
a specific service. One or more service requestors — acting as clients — use
(consume) this service and communicate with the service provider by exchanging
messages, honouring the terms described in the service interface definition. They
are distributed computing systems, where a network infrastructure is responsible
for interconnecting the various entities like service providers and requestors, and as
such supports the exchange of message data in a robust and performant manner.

Among the available technological solutions to SoA, XML-based web services,
which have become the predominant implementation technology for encapsulating
and deploying software components, are now being used in a diversity of application
domains, ranging from enterprise software to embedded systems. Such type of web
services in particular offer a high degree of interoperability, which mainly stems from
the use of the SOAP messaging protocol to envelop messages to be exchanged, and
which is well-suited for carrying additional attributes to ease message transmission,
routing and processing — of which many are predefined attributes of various
specifications in the WS-* protocol stack. Furthermore, such type of web services
are easily approachable after introspection of the interface definition, which usually
takes the form of a WSDL document. This document contains a listing of entry points
(the so-called endpoints) through which the service is accessible, and includes
a rigorous description of syntactically valid inbound request messages, and the
expected structure of outbound response messages.

As demand grew for transforming enterprise applications into web services-based
service-oriented architectures, so grew trust in WS-* specifications. And as these
specifications gained in popularity, we have seen a gradual shift from custom-built
proprietary integration implementation technology to reusable toolsets like software
libraries and code generators, and finally to message-oriented middleware (MoM).
A MoM solution is a set of software libraries that collectively support the sending
and receiving of messages that result from requesting the service and functionalities
exposed by a distributed computing system. MoM solutions are available both
as commercial and open-source offerings; either type usually incurs a license fee.
They come with an embedded application server, and software runtime libraries to
support various specifications in support of common tasks and duties like message
processing, transaction management, orchestration, service discovery and federa-
tion, security and access control, etc. Examples include specifications that are
part of the core Java™ platform, and additional libraries in support of the WS-*
protocol stack. The JAX-WS and JAX-RS specifications are an essential part of the
Java™ platform, and help to expose business logic as web services resources. There
are also numerous open-source runtime libraries available, many of which emerged
from the Apache Web Services project. For sure, Apache Axis2 and Glassfish Metro
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are the most wide-spread. Many of these libraries are included in commercial
integration solutions.

As can be seen from Fig. 8.1, the application-to-application (A2A) interaction
in SoA solutions is often accomplished through the use of middleware technology.
Emphasis is placed on the SOAP messaging layer that is governed by a WSDL layer, in
which the required message exchange patterns are defined. MoM solutions usually
result in an improved separation of concerns and maintainabi-
lity, since most of the technical duties it should fulfill no longer require the developer
to write (all of the) implementation logic. The integration code left in the business
logic is minimal, and is usually well-readable and maintainable when using annota-
tions. Apart from the key responsibilities listed here above, MoM solutions introduce
an abstraction layer on top of the actual network technology used to exchange
messages — be it an intranet, the Internet, or simply an interprocess communication
facility. The underlying communication channels are thus completely transparent
to the actual business logic, requiring only little or no integration logic at all.

requestor program provider program

application
layer

middleware
layer

system
platform

WSDL

SOAP

WSDL

SOAP

requestor
component

provider
component

network

process boundaries

program component flow of service request A2A interaction

Figure 8.1: Reproduction of [51, Fig. 9.1]: application-to-application communication
in which the middleware layer is responsible for managing the network connectivity
and handling the messaging complexity, while adhering to WS-* specifications.

8.2 Overview of Key Web Service Specifications and Standards

There exist numerous web services (WS-*) specifications that emerged from intense
and unwavering standardisation initiatives coordinated by the W3Cr and OASISr

organisations, and backed by major industry consortia. Due to the complementary
approach in the way most of these specifications have been defined, the resulting
web service protocol stack has proved to be extremely useful in defining, locating,
and implementing XML-based web services, as well as making services interact
with each other. Most of these specifications define languages and vocabularies
compliant to the eXtensible Markup Language (XML), and aim to solve specific
tasks and duties that are commonly expected to be fulfilled by message-oriented
middleware in an interoperable, platform-, technology- and vendor-neutral way.
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As can be seen in Fig. 8.2, the WS-* stack covers transport, messaging and
eventing, description, discovery, management, orchestration, and security protocols
(the latter are not shown though) [22, Chapt. 6–7, 17]. This figure shows a layered
representation of the specifications relevant to our A-NVP implementation. Although
they are not explicitly shown because they are not directly related to the research
reported here, other WS-* specifications exist that are intended to contribute to the
overall dependability of XML-based web services, mainly in the areas of reliable
messaging, transactional support and end-to-end-security [22].

Due to space restrictions, only relevant specifications will be addressed, and
apart from high-level introductory explanations that provide the reader with infor-
mation about the key concerns addressed by and the main concepts of the proposed
solution, specific features cannot and will not be provided. The reader may wish
to consult https://www.oasis-open.org/standards for in-depth information
about the listed specifications, as well as an introduction to those not covered
in this section. Detailed information on W3Cr-driven specifications, particularly
XML-related standards and first-generation WS-* standards such as WSDL,
WS-Addressing and SOAP, may be retrieved from https://www.w3.org/TR/.

The use of WS-* specifications is, in itself, no guarantee for achieving ICT
solutions of higher quality with improved dependability characteristics. Some
specifications like UDDI have often been perceived as overly complex and have
never seriously gained ground. The decision on which subset of the available
specifications is to be used should be made without prejudice and requires adequate
forethought, withholding those that cannot be purposefully used to support the
desired non-functional requirements of the solution that is to be developed and/or
re-engineered. The same applies to the assessment of competing specifications,
or that show a significant overlap — such as the WS-Eventing and WS-Notification
specifications, for instance.

8.2.1 The Foundations: Connectivity & Message Exchange Patterns

In this section, an overview is given on the foundational technologies and specifica-
tions that are indispensable to effectively implement distributed computing systems.
From a connectivity perspective, “the [...] significant advantage that XML web
services have over previous efforts is that they work with standard Web protocols —
XML, HTTP and TCP/IP” [132].

At the very lowest layer, there is a need for a robust and reliable network communi-
cation infrastructure, to realise the intended connectivity. Packetised network traffic
resulting from the exchange of messages is usually transmitted over TCP/IP-enabled
networks. The Internet Protocol Suite comprises a set of networking protocols
upon which the Internet and most computer networks rely. Maintained by the
IETFr, the relevant RFCs describe protocols for data packetisation, addressing,
transmission, and routing. Together, they provide a robust solution for end-to-end
networked connectivity.

As it is, web services are network-accessible software components that encapsu-
late and expose the underlying business logic in a structured, managed and standar-
dised way. They are usually placed in production by deploying them to an application
server, which will expose them to the network through a managed set of endpoint
references (EPRs) through which clients can communicate and consume the exposed
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services by the exchange of messages. An EPR is an XML fragment that encapsulates
the information necessary for identifying a web service endpoint, such that messages
can be routed to the intended target web service. The structure of these XML
fragments should comply with the syntax and semantics outlined in the
WS-Addressing specification. WS-Addressing was set out by the W3Cr consortium
as a set of “transport-neutral mechanisms that allow web services [and clients]
to communicate addressing information” and conversational attributes [133]. It
has become an essential part of the WS-* protocol stack, defining a series of XML
vocabularies for identifying and communicating references to concrete web service
endpoints, enriching the expressiveness of regular uniform resource identifiers
— compact sequences of characters adhering to the syntactical guidelines set out
in RFC 3986 that are used to identify, name, and address network resources — by
including additional reference parameters [54, Sect. 18.2].

Emerging from a joint standardisation effort coordinated by IETFr and W3Cr,
the HTTP protocol has become the foundation for (textual) data exchange over
the Internet [28, Sect. 7.3.4]. It is commonly used in XML-based SoA solutions to
exchange SOAP messages amongst web services by POSTing these messages as
HTTP request payloads. Over the years, this approach has proved most effective in
achieving the intended connectivity required to access remote web services whose
endpoints are often protected by the use of corporate firewalls.

From a messaging perspective, the predominant specifications in the WS-* stack
are, without doubt, SOAP and WSDL. Both specifications have been well received
and have been widely and successfully adopted.

The Simple Object Access Protocol (SOAP) specification introduces a lightweight
procotol that is intended to support the exchange of structured information between
XML-based web services. It was designed to be platform- and technology-indepen-
dent, bridging the technological disparities that can be observed when integrating
various middleware, implementation and transport technologies. Even though it
was designed with a particular focus on the exchange of messages in XML-based SoA,
its application is by no means limited to such context. Valid SOAP messages should
be structured as envelopes, in which the message body carrying the XML payload is
clearly separated from the optional SOAP headers which carry specific information
in support of the WS-* feature set. Among SOAP header blocks, WS-Addressing
elements are commonly found. Valid messages are usually exchanged over HTTP,
although other transmission protocols are available [17] [54, Chapt. 11].

“The SOAP messaging protocol provides only basic communication and does not
describe what pattern of message exchanges are required to be followed by specific
service requestors and providers” [51, Chapt. 9]. To address this deficiency, a web
service is typically exposed through a well-defined open XML interface described in a
Web Services Description Language (WSDL) document that formally describes the
syntax of standardised and application-specific messages in XML Schema Definition
(XSD) format [18]. The WSDL specification has been highly acclaimed and widely
used, and, being an XML-based interface description language, it outlines the details
for structuring and describing the functionality offered by web services, port types
— i.e. the set of exposed operations — and the permissible message (payload) data
types and message exchange and interaction patterns [22, Chapt. 7–9].
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Figure 8.2: Layered overview of WS-* specifications illustrating WSRF and WSDM
and their interdependencies relative to other industry standards.

The WSDL specification has been designed to allow for the inclusion of additional
extensibility elements that can be used to optionally augment the expressiveness
and semantics of the interface description. In the case of stateful WS-Resources,
references to WSRF-RP documents and associated WS-RMD descriptors are usually
added — specifications that will be covered in Sect. 8.2.4.

8.2.2 Service Introspection & Metadata Retrieval

Considering the expressiveness of WS-* specifications like WSDL, and — in case
of stateful WS-Resources — WSRF-RP and WS-RMD, the interface of a web service
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component can be described in great detail. Publishing an exhaustive description
including all relevant metadata in a machine-interpretable way is useful, in that
it allows potential service requestors to retrieve this metadata, and to introspect
(analyse) it, even in an automated way. The Web Services Metadata Exchange
(WS-MEX) specification was standardised under the coordination of the W3Cr

and proposes a standardised interface and a set of operations that can be used for
retrieving all or part of the metadata associated with a specific web service, using
only a single endpoint (reference) [134, 135] [22, Sect. 7.5]. Using specific dialect
identifiers, the requesting party itself can decide on whether to retrieve the WSDL
in its entirety, or in part, e.g. the embedded WSRF-RP document, or the referenced
WS-RMD document [136, 137].

8.2.3 Publish-and-Subscribe Eventing Models

Whereas WSDL mainly describes message exchange patterns — most of which will be
initiated by the service requestor — it comes with limited support for asynchronous
messaging patterns. Fortunately, several WS-* specifications are available that can
be used to implement service-oriented, event-driven architectures. Event-driven
architectures rely on a publish-and-subscribe model for the asynchronous exchange
of specific data fragments called events [138, Sect. 10.6]. In an attempt to apply the
concepts of publish-and-subscribe models to web services-based SoA solutions, two
standardisation initiatives emerged: WS-Eventing by the W3Cr, and
WS-Notification by OASISr. Both WS-* specifications show considerable overlap,
in that they define a specific set of operations to facilitate asynchronous message
exchange between event sources and sinks, as well as a generic event message
format — cf. Sect. 1.1 [139] [24]. It is fair to say that the WS-Notification family of
specifications is by far superior to WS-Eventing. Apart from the core
WS-BaseNotification specification, it also includes the WS-Topics specification that
describes various filtering options with which the subscriber can express its particular
interests, e.g. by means of an XPath query that is validated against the notification
message payload.

8.2.4 Exposing and Managing Stateful Resources

The recent advances in autonomic computing have resulted in numerous standardi-
sation initiatives under the auspices of the OASISr, which have resulted in a compre-
hensive set of WS-* specifications, most notably the WSRF and WSDM families of
specifications.

Serving as the core foundational specification, WS-Resource outlines how a
WS-Resource results from the composition of a (stateful) resource and a web service
through which the resource can be accessed, controlled and/or monitored. Several
specifications in the WSRF and WSDM family may be required to support such
features though. Note how such type of web services is implicitly assumed to be
stateful, whereas statelessness is otherwise considered as one of the key charactistics
of web services [140, Chapt. 11].

At the highest level, one can find the Web Services Distributed Management
(WSDM) family of specifications. These define a standardised, extensible model for
exposing a web services-based manageability layer through which an underlying
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stateful resource — e.g. an application or a device wrapped within a WS-Resource-
compliant entity — can be managed and controlled. This will result in improved
controllability and interoperability, even across enterprise and organisational
boundaries [109]. A WSDM-enabled WS-Resource is essentially an aggregation
of several manageability capabilities that are collectively exposed through a single,
cohesive WSDL interface. A manageability capability defines a set of resource
properties, operations, events, metadata and other semantics supporting a particular
management aspect of a WS-Resource service. Apart from a set of predefined
foundational manageability capabilities, WSDM was designed for extensibility,
allowing the development of domain-specific capabilities comprising customised
manageability logic or that extend any of the foundational capabilities as appropriate.
Such approach clearly accommodates the principle of separation of concerns, not in
the least because application-specific logic is separated from the application-agnostic
predefined manageability capabilities.

It is comprised of the Management Using Web Services (MUWS) and
Management of Web Services (MoWS) specifications. In addition to the definition
of a set of core foundational manageability capabilities, the MUWS specification
outlines how to encapsulate and expose customised manageability and/or business
logic as additional domain- and/or application-specific capabilities. The MoWS
specification takes this one step further by zooming in on the specificities of wrapping
and managing web services as such as WS-Resource-compliant entities using
MUWS [109, MoWS]. In order to expose information regarding the operational
status of the underlying managed web service, it defines several service- and opera-
tion-level metrics and status models, as well as a request processing state model,
which was derived from the Web Service Management: Service Life Cycle
specification.

Many of the features introduced by WSDM heavily rely on the Web Services
Resource Framework (WSRF) family of OASISr-authored specifications that aim
to “define a generic and open framework for modelling and accessing stateful
resources using web services”. Its two key specifications are, without doubt, the
Web Services Resource Framework: Resource Properties (WSRF-RP) and Web
Services Resource Framework: Service Group (WSRF-SG).

WSRF-RP defines an extensible mechanism for exposing additional, stateful
information by means of a set of typed values — called resource properties —
in the WSDL interface of a WS-Resource. “The declaration of the WS-Resource’s
properties represents a projection of or a view on the WS-Resource’s state. This
projection is defined in terms of a resource properties document. This [...] document
serves to define a basis for access to the resource properties through web service
interfaces”, as the specification introduces robust protocols for querying, reading
and manipulating these metadata properties in a standardised format [136].

Resource properties and resource property documents can be formally described
using the syntax set out in the WS-ResourceMetadataDescriptor (WS-RMD)
specification. This concise, albeit expressive language allows to enrich a
WS-Resource’s core WSDL interface definition with additional metadata in order
to describe the semantics of individual resource properties in detail. In doing so,
the designer can enforce and indicate any value restrictions and access control
constraints that are applicable, supporting, e.g. mutability and modifiability [137].
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Web Services Resource Framework: Service Group, a related specification,
comes with interfaces and operations for managing service groups, i.e. “[potentially]
heterogeneous by-reference collections of web services”. It can be used as a light-
weight alternative for UDDI, for it can serve as a lightweight service registry solution,
capable of structuring entire federations of web services. It supports representing
a logical group of functionally-equivalent services that expose a common WSDL
interface as a WS-Resource. It relies on WSRF-RP for group membership manage-
ment, and on the companion WS-ResourceLifetime specification for lifecycle
management of the underlying referenced resources.

8.3 A-NVP WS-* SoA Prototype

In this section, we present a prototypical service-oriented implementation of the
adaptive fault-tolerant strategy as proposed in Chapt. 5. The framework was conceived
leveraging a set of ratified WS-* specifications, mainly capitalising on the features
offered by the WSRF, WSDM and WS-Notification families of OASISr-published
standards. The framework was developed using the latest release of the
Apache MUSE project to date, supplemented by our own implementation of the
MoWS specification1. As illustrated in Fig. 5.2, we have implemented an NVP
redundancy scheme as a WSDM-enabled WS-Resource-compliant web service
aggregating several manageability capabilities. Effectively realising a proper fault
containment unit (FCU), where the underlying redundant resources (versions) are
members of WSRF-SG service group, the core of its implementation consists of three
manageability capabilities. The following subsections will cover each in greater
detail.

8.3.1 Enhanced WS-ServiceGroup Capability

The composite A-NVP web service leverages the WSRF-SG specification and the
notion of membership content rules defined therein to manage federations of
functionally-equivalent web services. The entries of the group represent locally or
remotely hosted member web services, and membership content rules can be used
to express constraints on the member services. Such rules can impose limitations
on the WSDL port types that services in the service group must implement, as
well as the resource properties the member services are expected to expose. The
rationale behind the mandatory use of membership content rules is that web
services implementing a common WSDL port type and exposing the same set of
resource properties can be considered as functionally-equivalent. If needed, adapter
interfaces can be used to apply the necessary transformation logic, and expose
the underlying service through a common interface, while shielding the specific
implementation details and technological differences, and wrapping the originally
published WSDL interface, in case this is not fully compliant [141, Sect. 15.1].

We have extended the foundational WSRF-SG capability in order to support
advanced replica management. This includes facilities to compensate for the
occasional emerging and disappearing of web services in the system. A freshly

1For more information, refer to https://attic.apache.org/projects/muse.html and
http://52north.org/communities/sensorweb/amused/.
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discovered service may be added to the group as the result of an incoming MUWS
advertisement notification, provided the reported service complies to the member-
ship content rules. Upon addition of a replica member web service, its metadata
will be validated, and the service group will automatically issue a WS-Notification
subscription request so as to be notified of changes in any additional mandatory
resource properties that were declared in the membership content rules set on the
service group — cf. Sect. 8.3.3. Conversely, the receipt of a WS-ResourceLifetime
destruction event will trigger the removal of the member from the service group.

The A-NVP composite has been explicitly designed as a generic WSDM-enabled
utility WS-Resource so as to support a diversity of applications, without the need to
generate application-specific proxy classes at design time. When assembling the
deployment artefact, the user is expected to supply the WSDL interface definitions
containing the port type descriptions for admissible service group members. During
the initialisation of the composite WS-Resource, the provided WSDL definitions will
be inspected, and for each non-standardised, request-response operation declared
within, a new message handler will be registered. Furthermore, the system will
automatically initialise the membership content rules, given the port types that were
found whilst scanning the user-supplied interface definitions. Note that the WSDL
interface advertised for the A-NVP composite itself is predefined and exposes a single
port type combining only the standardised operations defined for the WSRF-SG and
WS-Notification Consumer capabilities.

Figure 5.2 shows how message handlers enable the A-NVP composite to accept
application-specific SOAP request messages and hand these over to the A-NVP
manageability capability for execution. It can be seen from the message handlers
that port type A exposes 3 operations and port type B exposes 2. All versions
implementing port type A are assumed to be unreachable. When detected, the
service group disables the corresponding message handlers. Should there remain
no active member services in the group for a particular port type, the respective
handlers will be disabled, such that they will dismiss any incoming SOAP request by
reporting a WS-Addressing ActionNotSupported fault message.

8.3.2 Domain-Agnostic A-NVP Capability

Context information for any of the member web services within the federation is
managed at operation level — cf. (A29). Specifically, for each operation for which a
dynamic message handler was registered, the context manager provides adequate
data structures for storing the values D(C, v), L(C, v), T (C, v) and the respectively
corresponding maxima δCD , δCL and δCT as defined in Sect. 5.3, as well as the counters
#r ound s(C, v) and #consent (C, v) that were introduced in Sect. 4.3. Furthermore,
application-specific configuration parameters can be specified for individual
operations, thereby overriding the system defaults. One may do so by editing a
deployment descriptor, in which a service operation can be uniquely identified by
the service port type name and the WS-Addressing action URI.

The capability provides a single operation to accept NVP service requests. Upon
invocation of the A-NVP composite, the system first determines the set of eligible
functionally-equivalent member services in the service group, i.e. V . In order to do
so, the payload of the incoming SOAP request as well as its WS-Addressing message
headers are inspected so as to establish which of the registered port types exposes
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the targeted service operation. After acquiring all registered member services that
implement the given port type, the capability proceeds by applying the algorithm
introduced in Chapt. 5 so as to determine an adequate selection of versions V (C,`).
Such selection is carried out referring to the context information pertaining to the
targeted operation, as stored in the context manager. The SOAP request is then
simultaneously forwarded to each of the selected versions. As soon as an absolute
majority m(C,`) of the selected n(C,`) versions have returned their response, the
voting scheme will determine and return the outcome of the current voting round `,
without awaiting the remaining replicas to return — cf. (A18). At the same time, the
n(C,`) − m(C,`) pending results will be collected after the response was sent to the
client such that the dtof (C,`) and normalised dissent D(C, v) can be computed and
subsequently reported to the context manager as soon as the voting round ` has
completed and all n(C,`) ballots have been acquired and processed.

It is noteworthy to point out that the voting procedure will assign any two

versions to the same equivalence class of the partition ℘(C,`) \ P (C,`)
F if the XML

fragments enclosed within the body of their SOAP response messages are found to
be syntactically equivalent, given the XSD schema definitions included in the WSDL
interface. Special attention is paid to SOAP faults, however, which are typically
used to convey error condition information when an exceptional situation occurs.
In particular, one needs to clearly distinguish between application-specific and
application-agnostic fault messages. Whereas the former type of fault messages are
expected to carry domain-specific fault data and are processed like ordinary SOAP
response messages, application-agnostic fault messages will directly be classified in

P (C,`)
F . Examples of this second category of messages include, e.g., standardised fault

messages from various WS-* specifications, or SOAP faults reported for versions
that were detected to be affected by performance or omission failures (cf. Sect. 5.1
and 5.3).

8.3.3 Externally Supplied Context Information

As pointed out in Sect. 5.3, the vast majority of the metrics and counters stored in
the context manager is updated using information that was collected within the
A-NVP composite itself, upon completion of a voting round. An exception to this
approach though, is the number of pending requests L(C, v), which needs to be
supplied externally as it is conceivable that a member replica may concurrently
be used by services other than the A-NVP composite. Specifically, we require
any member WS-Resource to expose the metrics defined by the MoWS operation
metrics manageability capability. As such, the resource property OperationMetrics
is supposed to be included in the membership content rules of the A-NVP composite.

Upon addition of a new member service, the enhanced service group capability
will consequently issue a WS-Notification subscription request in order to be notified
for changes in the values of this resource property. Any valid value for
the OperationMetrics resource property is defined to hold three direct XML child
elements, i.c. NumberOfRequests, NumberOfFailedRequests and
NumberOfSuccessfulRequests. Considering the non-negative integer values of these
metrics, the context manager can easily determine the number of pending requests
as NumberOfRequests − (NumberOfFailedRequests + NumberOfSuccessfulRequests).
The estimation of the load on any of the registered member services is always a
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rough approximation, due to potential latency in the issuance and processing of the
WS-Notification notification messages — cf. (D04).

8.4 Additional Contributions & Related Work

This section will cover related research activities that are not directly related or in
line with the main research track reported throughout this dissertation. Nonetheless,
these activities are worth mentioning, as they further substantiate the key statement
raised in this chapter that WS-* specifications can aid in achieving proper separation
of concerns while implementing reliable and autonomic distributed computing
systems.

8.4.1 Reflective and Refractive Variables

Reflective and refractive variables were originally announced in [53] as an
application-layer construct that can be used to implement feedback loops —
cf. Sect. 1.2. Being an abstraction to perform concealed tasks, they are “volatile
variables whose identifier links them with an external device”, a sensor, or an
actuator. Reflective variables are periodically and “asynchronously updated
by dedicated service threads that interface [the corresponding] external devices”
and/or sensors; the referenced values will therefore accurately reflect the values that
were actually measured by those devices — within some reasonable delay. Note
that reflective variables may also expose analysed and processed measurements.
Furthermore, a modification of the value referenced by a refractive variable will be
caught and interpreted as a request to trigger actuation and realise a change in the
configuration of the corresponding external device or sensor.

Such model allows to clearly express potentially complex operations in the
application layer in a structured way, while encapsulating and shielding the comple-
xity of underlying application logic, communication protocols and hardware-specific
details from the end-user. This translates not only in a strong separation of design
concerns, but in enhanced maintainability as well [53]. Because of the additional
layer of abstraction, the technique is well-suited to underpin the monitoring and
execution activities on which feedback loops typically rely — cf. Sect. 1.2.

Taking this a step further up to the level of distributed computing systems, the
author argues that reflective and refractive variables can be effectively implemented
as WSRF-RP resource properties exposed using WSDM-enabled WS-Resources.
In doing so, each variable — resource property — is formally described using a
WS-RMD definition: refractive variables have read-write modifiability; reflective
variables read-only. Both types are mutuable. Here, it is common to have one or
more dedicated manageability capabilities that hold all logic for updating reflective
variables and exposing them as resource properties. The same applies for reflective
variables, and the specific logic that is responsible for realising state change and
reconfiguration. Furthermore, all details for interacting with the underlying managed
resource(s), are shielded within. Interested parties can be automatically notified
whenever the values of a reflective variable — resource property — has changed by
means of WS-Notification.

Additional contributions can be found in the design of a middleware solution
in support of a distributed telemonitoring solution, developed within the scope of
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the Little Sister research project reported in [142, Sect. IV]2. The resulting solution
includes the entire backend software infrastructure, including

(i) a modular C++ library designed to support the additional integration of the
software routines and functionality supplied by the other academic partners
participating to the project;

(ii) a comprehensive set of software routines for managing and using image
sensors;

(iii) an integration layer built as a federation of WSDM-enabled web services,
which is used to control the C++ backend components by means of a Java™
Native Interface (JNI) bridge, and to integrate the system in the applications
developed and commercialised by the participating industrial partners; and

(iv) tools for runtime monitoring of sensor value and configuration changes.

In addition to these activities, the author extended the Apache MUSE project with
support for the MoWS specification, thereby adding support for standardised,
application-agnostic service-level and operation-level metrics and request processing
state models, and for modelling and exposing application-specific status models.

8.4.2 Implementing Fault-tolerant Orchestration Logic as Workflows

With the advent of XML-based SoA, the OASISr Web Services Business Process
Execution Language (WS-BPEL) specification swiftly became a widely accepted
standard for modelling business processes. As its name implies, WS-BPEL is a
standardised executable XML-based language in which long-running business
process activities can be described by orchestrating data flows, in which information
is retrieved from and communicated to web service endpoints [143]. The specification
is largely centered around the use of web services for process decomposition and
assembly, aiming to maximally leverage key WS-* standards like SOAP and WSDL,
as can be observed from Fig. 8.2 [22, Sect. 16.1].

A WS-BPEL process definition is a self-contained, centrally-managed
coordination routine that formally describes the various interactions with and data
flows between web services, controlling the sequences in which message exchange
patterns occur, as well as intermediate data manipulation and transformation
operations. Orchestration tools supporting the WS-BPEL language generally come
with robust state persistence and lifecycle management features. This is needed
not only because there may be activities that involve human interaction, but also
because specific processes may need to be suspended, resumed or terminated.
The WS-BPEL4People and WS-HumanTask specifications are recommended to be
used for implementing activities that require human intervention [144–146]. As
can be observed from Fig. 8.2, these specifications have been devised as modular
extensions building on top of the core WS-BPEL specification, in an attempt to cover
the complete spectrum of human-to-process interaction — interaction patterns that
the core WS-BPEL specification did not originally foresee.

Whereas business processes are usually long-running, the underlying web services
are assumed to expose software routines implementing short-lived, stateless business

2The objective of this project was to deliver a low-cost solution for ambient-assisted living, including
ample features so as to sufficiently protect and assist the elderly. Funded by iMinds, the project was a
joint research initiative of the universities of Antwerp, Ghent and Brussels, in collaboration with industrial
partners Niko Projects, JFOceans and Seris Belgium, and supported by the Christelijke Mutualiteiten.
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logic, although WS-Resources services are typically stateful, due to the underlying
managed resources. Such long-running transaction model calls for adequate
support for failure recovery in order to compensate parts of long-running business
processes. Accordingly, WS-BPEL comes with a specific set of synactical language
constructs so as to delineate scopes and attach compensation handlers that hold
application-specific forward error recovery routines [147, Chapt. 4] — v. Sect. 1.3.2.

Despite the proliferation of WS-* specifications, and the availability of redimen-
tary syntactical constructs for failure recovery in languages like WS-BPEL, XML-based
SoA does not, in itself, contribute to the construction of dependable web services.
The author has pointed out in [68, Sect. 3.4.3] though how these constructs can
be used to implement redundancy schemata like NVP and RB, and how a clear
separation of concerns can be achieved by isolating the actual business logic encapsu-
lated within the underlying web services — versions, that are — from the dedicated
fault-tolerant orchestration logic. For more information about this contribution, we
refer to App. C.

8.5 Request Processing is Managed by Message-oriented Middleware

8.5.1 Effective Capacity Planning Calls for Realistic Queuing Models

“Servers must offer cost-effective and highly-available services in the elongated
period” [148]. Adequate forethought should be spent on capacity planning, aiming
to sustain service dependability by the reconciliation of the various objectives and
expectations expressed by various stakeholders. From a functional perspective,
there is a clear need for a scalable deployment infrastructure in order to be able to
handle the expected load and safeguard the accessibility of the published services —
cf. Sect. 1.1. From an operational and economical point of view though, “efficient
policies that avoid over-provisioning are clearly desirable” [30].

Effective capacity planning and analysis require a sufficient degree of insight
into a software system’s structure and its inner working, a realistic view on the
environment in which it will be deployed and will be operating, as well as estimations
based on models that faithfully represent the rate at which incoming requests
are actually received. This includes, but is by no means limited to, the type and
bandwidth of the network communication infrastructure and the number of compu-
ting resources. Simulation is a vital technique for planning and analysing capacity.
Once a simulation model is built using the knowledge obtained from the aforementio-
ned details, this model can then be used to determine the extent to which the
modelled system is capable of handling the anticipated load. This investigation
usually involves the use of queuing models, which allow to zoom in on specific
properties of the system itself and its environment, and to analyse how to maximise
the system’s utilisation — minimising idling time and avoiding resource over-
provisioning — and throughput (processing capacity). The use of the Kendall
notation to classify queuing models and to denote their properties was already
covered in Sect. 6.1.1 on p. 91.

Although differentiated QoS levels may be desirable in commercial enterprise
(cloud) environments, only few platforms actually enforce a policy- and tier-based
service model. Rather than applying such priority-based (PNPN) scheduling disci-
pline, servers are usually found to apply a simple first come, first served (FCFS)
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policy, where service requests will be handled — serviced — in the order they arrived,
and where they will be processed entirely without any intermediate
interruption3 [30]. Whenever a sufficient share of the processing capacity is released,
the facility will start processing the request at the front of the waiting queue (if
available). This type of scheduling discipline is usually chosen because it ensures
fairness amongst the service requests that, upon arrival, were added to the waiting
queue, and because it can be implemented with little complexity [118].

Throughout this dissertation, the processing resource is assumed to be a remotely
deployed, network-accessible software component, e.g. a web service, which is
referred to as version or replica (A41). Assuming that there is sufficient servicing
capacity available to handle requests in the long run, the model is said to be stable
when subject to normal load4. Since requests “do not arrive at a constant, evenly
paced rate, nor are they all served in an equal amount of time”, a waiting queue
will be “continually increasing and decreasing in length (and [will] sometimes [be]
empty)” [149, Chapt. 16]. Intuitively, one could say that the queue is likely to grow
when the facility is subject to a burst of requests, whereas it will shorten during
periods of low demand or inactivity.

8.5.2 Application Servers and Servlet-driven Request Processing

Most message-oriented middleware solutions rely on an embedded application
server for deploying business logic and exposing it to external parties. Such applica-
tion servers are designed to manage the influx of requests in a controlled and
systematic way, and to ensure each will be serviced in due time. This clearly indicates
the presence of an underlying queuing model. A suitable model should represent
the characteristics of conventional service endpoint implementation technologies.
Not only do these technologies define ways to create entry points through which the
service can be accessed; they also cover transport-specific details and suggest — at
times implicitly — processing and scheduling policies.

Without doubt, the Java™ Servlet Specification has significantly contributed to
the success of HTTP-based web service endpoints [101]. Most message-oriented
middleware solutions are shipped with libraries to support servlet-based request
handing and processing. Although most request processing is handled directly by
the servlet runtime, the specification does outline a generic API that should be

3This is different from the processor sharing (PS) scheduling discipline, where each request will
receive an equal share of the available processing capacity by applying techniques similar to time slicing,
often realised in time-shared computer systems by means of round-robin scheduling algorithms. With
PS, servicing of the request will immediately start upon arrival; there is no need to wait. The services
time distribution will take the potential overhead that will surface due to context switching into acount,
including the performance penalties resulting from lock acquisition and relinquishment delays of shared
resources.

4Most queuing models have a limited processing and/or queuing capacity, which is usually the result
from capacity planning prior to placing the modelled system in production. Given that the estimations
used to approximate the pace at which load is arriving at the facility is realistic, the capacity of the
queue should be sufficient to overcome transient bursts of incoming service requests. In such scenario,
the queue length will allow to overcome the variations in arrival rate and the model will exhibit stable
behaviour. However, the model cannot be expected to reliably serve unrestrained load, as one would
expect to observe during denial-of-service (DoS) attacks. In such scenario, the queue would grow to
become infinite over time, and, given the limited processing capacity, the system would suffer from
(partial) interruptions in accessibility and therefore availability — cf. Sect. 1.1.
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implemented to reach out to the actual business logic and to trigger the actual
functional request processing. In reality, most message-oriented middleware solu-
tions are shipped with a custom implementation of the servlet API. This eases the
integration of custom business logic, requiring the developer only to register custom
implementation classes by modifying configuration files, and is useful to trigger
additional message processing and validation logic in due course — e.g. libraries
in support of WS-* specifications. The servlet model has shown to be a robust and
effective model for web services-based SoA, since web service requests are issued by
POSTing SOAP messages as part of an HTTP message body.

Throughout this thesis, it is assumed that a queuing model underpinning a
contemporary message-oriented middleware solution constitutes a multiple-
channel, single-phase process (A42). Waiting line structures are often categorised
using the number of channels and phases that can be observed in the queuing
process, where the number of channels is indicative of the available processing
capacity to serve multiple requests in parallel — referred to as c in the Kendall
notation [149, Chapt. 16]. There is only a single phase in handling requests, as any
potential form of composition or orchestration of the underlying business logic
is fully masked and unknown to the client (service requestor). As the primary
scope of this thesis is the application of redundancy schemata in contemporary SoA
architectures, we assume each underlying resource — web services acting as versions
— corresponds to a software component containing a self-contained, short-lived
atomic unit of business logic (A43).

Many different application servers have been developed with the purpose of
deploying and hosting (servlet-based) web service endpoints. It is common for
these server programs to maintain a pool of standby threads: all share the duty of
processing incoming requests. For the sake of simplicity, let us assume that a single
pool of c ≥ 1 threads is maintained (for each version), each of which can be used to
serve a single request at a time. Each request runs independently and in complete
isolation of any other. Requests are admitted for processing using an FCFS queuing
discipline. Once a request has been completely processed, the allocated thread
will be released, after which it can then be reallocated for serving another request.
These system properties clearly imply that the processing capacity of each version is
managed by a multiple-channel, single-phase queuing system. The worker threads
correspond to identical server instances — channels, that are — that service requests
in parallel. Once a request has been processed by a worker thread, it no longer
requires further service (single-phase processing).

Most servers allow to easily adjust the size of the worker thread pool c and the
waiting buffer k by means of a simple change in configuration, although the capacity
of the waiting buffer is very often assumed to be infinite and constrained only by
the available memory of the host. Not all requests will immediately go into service;
some may temporarily be stalled and remain in the buffer, awaiting the availability
of a worker thread in the pool. The maximum amount of worker threads that can
be managed by an application server is constrained by the available memory, or by
the operating system of the host, although recent advances in computer hardware
and in distributed clustering technologies have allowed application servers to scale
and measure up to virtually any demand. Hence, for the sake of convenience,
we assume k = c =∞. The properties of the queuing model employed by most
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contemporary application servers can thus be summarised as a G/G/c model,
conform assumption (A07).

Due to the multi-threaded nature of servlet request processing, context switching
will inevitably take place when multiple requests are being handled in parallel.
Although it may appear as though there is hardly any waiting before newly arrived
requests are treated, this does not imply a PS scheduling discipline. The primary
characteristic of the model is that requests are admitted using an FCFS policy:
requests are treated independently, and although they may be processed in parallel,
no specific time slicing is applied.

195





CHAPTER 9
Conclusions & Future Research

Adopting classic redundancy-based fault-tolerant design patterns, such as NVP, in
highly dynamic distributed computing systems does not necessarily result in the
anticipated improvement in dependability. This primarily stems from the statically
predefined redundancy configurations hardwired within such dependability strate-
gies, i.e. a fixed degree of redundancy and, accordingly, an immutable selection of
functionally-equivalent software components, which may negatively impact the
schemes’ overall effectiveness, and this from a dependability, a timeliness as well as
a resource expenditure perspective.

Furthermore, we see a growing tendency to transform legacy enterprise
applications into service-oriented and microservices-based architectures —
architectural patterns which uphold principles such as contract-first, loosely-coupled
(dynamic) composition and late binding. For business-critical applications, such
transformation requires effective techniques to realise dependable fault-tolerant
SoA “in terms of autonomic searching, discovering and selecting” candidate services
in a robust and reliable way [87].

9.1 Key Contributions of this Research

In this thesis, a novel dependability strategy has been introduced encompassing
advanced redundancy management, aiming to autonomously tune its internal
redundancy configuration in function of the observed disturbances. Designed to
sustain high availability and reliability, this adaptive fault-tolerant strategy may
dynamically alter the amount of redundancy and the selection of functionally-
equivalent resources employed within the redundancy scheme.

The publications through which the research reported throughout this dissertation
were initially announced, have been occasionally cited in the literature, which show
the relevance of our contributions in the domain of fault-tolerant engineering of
SoA solutions [87, 88, 91–93]. We will conclude by listing the various contributions
of this research, and by referring to the research questions that were initially raised
in the introductory chapter (refer to pp. 31–34).
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– The main contribution of the research reported in this dissertation can be found in
the formal description of a parameterised algorithm that is responsible for the
adjustment of the redundancy configuration used in NVP redundancy schemata
in view of the environmental context in which the scheme is operating (Chapt. 5).
From a dependability perspective, its design objective is to maximally sustain
availability, whereas from a resource expenditure perspective it should focus on
the exclusion of replicas that do not significantly contribute to the application’s
objectives and goals. The algorithm addresses the research questions
RQ-2 and RQ-5.
In [36], the authors propose a classification to categorise fault-tolerant solutions
by analysing resilient behaviour as the result of four properties: perception,
awareness, planning and dynamicity.

6 Although our A-NVP algorithm is categorised as a resilient software system
lacking perceptional abilities to directly detect environmental change,

4 it is believed to possess the property of awareness.

4 Unlike traditional NVP redundancy schemata, which are said to be only
purposefully aware because they merely rely on fault masking, A-NVP is
believed to attain a higher level of resiliency through “parametric and structu-
ral adaptation [of the underlying redundancy configuration]”.

4 Such reconfiguration is triggered by changes in metric measurements, which
are used to indirectly monitor the scheme’s environmental state. It is therefore
classified as a system that is capable of purposefully planning.

4 Its dynamicity is judged medium, as versions are dynamically (un)selected
at runtime, unlike traditional NVP in which the redundancy configuration is
static and determined at design time.

Moreover, the resilient behaviour of A-NVP is categorised as predictive [150]. It
is “identified as a second-order predictive mechanism, in that its behaviour is a
response computed by correlating two perception dimensions: the overall dtof as
well as the version’s trustworthiness [— normalised dissent, that is —] with respect
to the majority of votes” [36].

– In [93], the authors compared sixteen redundancy-based techniques for software
fault tolerance — including our A-NVP model — by scoring each technique’s
ability to address various essential parameters for optimal behaviour, in terms
of (i) adjudication, (ii) design diversity, and (iii) adaptiveness1. The authors
acknowledge that “A-NVP [...] added a significant value to conventional NVP
with an added feature of configuration of quality and quantity of [versions]
to participate [in a redundancy scheme]”. Overall, our algorithm is ranked
as the second best technique that maximally addresses all identified essential
parameters. We believe this to be a meritorious place, acknowledging the value
of our contribution to the domain of software fault tolerance, especially since
A-NVP was confirmed to have “the highest score in [terms of] adaptive[ness]-
related parameters”.

1Here, “adaptiveness implies awareness about operating environment and mutating the technique
to suit that environment”, corresponding to the concept of system-environment fit used throughout
this dissertation. Refer to [93, Table II] for specific properties of redundancy schemata that support the
properties of awareness and planning.
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– Another contribution is the evaluation of the effectiveness of the proposed
algorithm in Chapt. 7, including a preliminary assessment of some promising
policies for redundancy management, thereby addressing the research questions
RQ-3 and RQ-5. We have shown that it is possible to realise an increase in
dependability, or economise on redundancy expenditure without jeopardising
the overall effectiveness of NVP redundancy schemata when applying dynamic
redundancy configurations. The effectiveness of doing so depends on the applied
policies for redundancy management, whose parameters should be configured
to ensure there is a good system-environment fit. Suboptimal configuration
that is not fully in line with the application objectives or with the environment’s
properties, may obviously result in a deterioration of the scheme’s effectiveness.

– Another key contribution is to be found in the formal definition of a mathematical
structure that is capable of efficiently capturing how a specific version has
affected the reliability of the fault-tolerant redundancy scheme throughout
its operational life span. This addresses research question RQ-1. This can
be found in Chapt. 3–4 and App. B. In addressing research question RQ-3, we
have shown how the dependability of individual (software) components can
be approximated by aggregating runtime information and statistics, and thus
can be used to indirectly perceive environmental change, failures in particular.
Normalised dissent measurements are used for steering the adjustment of the
scheme’s underlying redundancy configuration, and can be used to boost environ-
mental awareness — provided that inbound requests hit the fault-tolerant
composite at a constant, evenly paced and sufficiently high arrival rate.

– Discrete event simulations have been profitably used in many research disciplines
— including dependability engineering — to conduct experiments to analyse
the behaviour and performance of new algorithms and techniques, especially
in the early phases of their development. They have become an indispensible
tool for researchers to manage complexity, to try and find ways to solve issues
and improve performance, by zooming in on specific phenomena and controlling
environmental conditions that may otherwise complicate in-depth analysis. In
response to research questions RQ-2 and RQ-5, we have developed a discrete
event simulation framework that can be used to conduct rigorous performance
analyses of policies for (autonomic) redundancy management within the scope
of various types of redundancy schemata. As described in Chapt. 2 and 6, the
framework comes with:

(i) a wide range of artefacts and templates that support the designer in properly
modelling the environment to a level of sufficient detail, and to define,
implement, and examine the effectiveness of various strategies and policies
for static and/or dynamic redundancy management;

(ii) tools to exert control on the environment, its behaviour and properties
whilst conducting large-scale experiments;

(iii) an implementation of various predefined metrics than can provide insight
on the system-environment fit or mismatch, which can optionally be
extended at will to support other, custom-defined metrics.

199



– Furthermore, in Chapt. 8, we have shown how autonomous redundancy
management can be implemented as a well-separated concern within the con-
text of service-oriented architectures, thus providing an affirmative answer to
research question RQ-4. Having scrutinised the self-managing capabilities that
autonomic computing systems are expected to implement, and how these directly
map to properties of resilient software, our contribution can be found in the
design of a flexible implementation library to support the development of fault
containment units. We have shown that it is beneficial to implement FCUs as
managed WS-Resources, and have described our WS-*-compliant implementation
of A-NVP. Building on top of the WSDM and WSRF specifications helps to isolate
the implementation of autonomic capabilities from the underlying managed
resources, and allows to expose a single, stable and consolidated service interface,
where the common functional part is clearly separated from the standardised
operations for steering the autonomous management (proper separation of
concerns). Moreover, the WS-ServiceGroups managed by FCUs ensure the friction-
less addition and/or removal of functionally-equivalent services, hence supporting
key principles such as autonomic searching, discovering and selection of candidate
services (versions).
NVP schemata are modular, component-based architectures in se — cf. Sect. 1.1.
Implementing NVP as WS-*-compliant FCUs effectively realises n-version software
execution environments (NVX), thereby meeting all of the requirements listed
in [151]:

4 Independence of the program modules from the programming language
and encapsulation: the common functional behaviour implemented by each
individual version (WS-Resource) is exposed through a formal service interface
definition (WSDL). Technical implementation details are effectively encapsula-
ted, and remain hidden.

4 Dynamic connection of the program modules: the use of WS-ServiceGroups
allows to replace individual WS-Resources — program modules or versions —
at runtime.

4 Inter-module access (protection): when deploying web services on applica-
tion servers, the application server will ensure their execution is constrained
to a specific, well-isolated deployment and runtime context. Furthermore, the
service is consumed uniquely through the service interface and the explicitly
defined/exposed endpoints. Adding the distributed nature of service-oriented
architectures to that, WS-Resource-compliant versions typically run in different
processes or on different network hosts than the process where the NVP
composite itself is running. Hence, the components in the architecture are not
expected to interfere with one another.

Our algorithm for autonomously adjusting the redundancy configuration has
been observed by the authors of [91], who have analysed its properties and have
acknowledged its ability to autonomously adjust the redundancy configuration
when needed.
Apart from a WSDM-driven implementation, we have also pointed out that some
of the linguistic constructs available in WS-BPEL can be used to implement
redundancy schemata like NVP and RB, and that such an approach can help
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to achieve a clear separation of concerns by isolating the actual business logic
encapsulated within the underlying web services — versions — from the dedicated
fault-tolerant orchestration logic (refer to App. C for more information).

The key message conveyed in this section is that A-NVP is capable of realising a
reduction in resource consumption/expenditure, while safeguarding the availability
of the redundancy scheme as a whole. It does so by applying a dynamic redundancy
configuration that is adjusted so as to exclude poorly performing versions, and
by allocating a more suitable share of the available redundancy. This statement
was corroborated by means of extensive discrete event simulation, and confirmed
in [91] and [93]. In traditional NVP, however, the maximum number of tolerable
disturbances that a given redundancy scheme can tolerate at a time is determined
upfront, based on estimations, assumptions and analyses of the environment,
and the available versions in the system. This applies especially to safety-critical
systems, in particular in industrial settings, such as the control systems of a particle
accelerator connected to a fusion target (e.g. the MYRRHA project2). Or one might
consider a traditional nuclear power plant, in which safety relies on the availability of
cooling systems. In that case, the exception is rare with respect to the rule, although
of course its malfunction — unfortunately exemplified by the 2011 Fukushima
incident — may lead to environmental disaster, human injury and/or significant
monetary penalties. If worst-case dimensioning results in undershooting, or when
wrong assumptions about the environment and the threats it poses to the system
in consideration, there is a concrete possibility of catastrophic failure — v. Sect. 3.1
and [152, Fig. 3]. In such a case, proper use of the A-NVP scheme may result in
excellent operational costs, where it can be used to optimise energy consumption,
with no impact on safety3.

9.2 Reliability Engineering: Over Four Decades of Research

Ever since its introduction back in 1977, the NVP methodology has inspired many
researchers to investigate how it can be used to realise truly dependable software
systems [67, Chapt. 2]. It has become a well-known architectural blueprint in
reliability engineering, and has been successfully applied in mission-critical control
systems found in nuclear power and chemical processing plants, aviation and
aerospace, the military and waste treatment facilities. Over the past fourty years,
many have studied how NVP can be successfully applied, and have assessed its

2For more information on the Multi-purpose hYbrid Research Reactor for High-tech Applications
(MYRRHA) project, refer to https://myrrha.be/myrrha-project/.

3If we continue the example of a power plant and the availability of a cooling facility, one may
argue that the cost resulting from redundant cooling installations could decrease, either because these
installations should be less subject to wear, or simply because there will be less need for fuel to power
all of them at the same time. So indeed, if one can guarantee that upon failure or suboptimal use of
the “master” installation(s), one can swap these for backup equipment that is in stand-by mode within
a reasonable and guaranteed delay, the safety and availability of the plant as a whole would not suffer.
Of course, this depends on the risk appetite of the organisation, and the feasibility of a timely failover.
Either way, at the very least, A-NVP would be able to observe subsets of resources — versions, in fact —
that are underperforming, compared to the overall functioning of the replicas. It goes without saying
that for HVAC systems, one would probably need to redefine the dtof metric to reflect more meaningful
data, e.g. a delta between the temperatures of water recorded both at the ingress and the egress from the
installation.
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potential to significantly increase the dependability of software systems [93]. Since
then, an overwhelming number of publications that have appeared in the literature,
in which the technique has been applied to various emerging concepts and
technologies. Research continues to date, where topics like fault prevention and/or
detection, finding the optimal redundancy configuration at an improved cost-benefit
ratio, and measuring design diversity are predominant [153–157].

Fault prevention/detection: developing dependable software. While it is true
that introducing redundancy in software comes at a significant higher investment
cost, no qualitative software can ever be delivered without some form of redundancy.
Software engineering involves many steps and tasks that are to be carried out by
humans. Humans that — regardless of their education, training and proficiency
level — occasionally err, thereby introducing faults. In [158], the authors argue
that no matter what modelling frameworks, development tools and verification
processes are used or introduced during a project, the only option to further reduce
the number of residual faults is to introduce redundancy throughout the various
stages of the software development lifecycle (SDLC). That may include reviewing
done at the level of requirements analysis, architecture and design, peer reviews
during programming, and additional quality assurance by a testing team. However,
all of these only reveal faults; they do not show their absence. For mission-critical
systems, the only way to further reduce the likelihood of errors occurring is to
introduce redundant software components, where multiple versions of a component
with the same functional behaviour are independently developed by different teams.

Our research takes a different approach though, although we adhere strongly to
the idea of introducing redundancy throughout the SDLC to ensure that high-quality
software be delivered. Throughout this dissertation however, it is assumed that
n functionally-equivalent versions have already been developed and have been
deployed — in either production (regular operations) or pre-production (testing)
environments. The presence of residual design faults — whose activations would
materialise as disturbances (failures) — is likely to be detected by the majority
voting algorithm, and would be accounted for in normalised dissent measurements.
Further in-depth analysis of system logs may indicate the nature of these faults, and
possibly their whereabouts. A similar approach is taken in [153].

Measuring design diversity. “Classic engineering approaches rely on different
forms of redundancy explicitly added at design time, and suitably exploited at
runtime” [154]. Examples include hardware, information and time redudancy, as
well as software redundancy [2]. NVP rests on the assumption that “coincidental
faults in independently developed components are very unlikely” — an assuption
that has oftentimes been disputed. In this research track, researchers are trying to
address and refute this critique. When using truly diversely designed versions in a
redundancy scheme, the scheme would indeed realise its dependability objectives
(i.c. increased reliability and fault-tolerant behaviour). But unless adequate precau-
tions are taken to ensure that their design and implementation is truly diverse,
applying NVP may lead to expectations not being met and, worst-case, result in
catastrophic failure. A particularly accurate, albeit informal definition of redundancy
was suggested in [155]: “two [code] fragments are redundant when they are functio-
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nally equivalent [— they produce indistinguishable functional results from an
external viewpoint —] and at the same time their executions are different” [154].

In [159], the authors propose a dissimilarity measure that can be used to analyse
different code fragments and reveal the extent to which these fragments’ executions
differ algorithmicly. As such, the measure can be used to determine deep code
differences from shallow code differences — the latter which would put at risk the
effectiveness when both fragments would be part of versions used in the same
redundancy scheme.

Furthermore, software redundancy can sometimes be achieved by carefully
using third-party libraries and/or runtime environments, simply by using different
software routines whose underlying implementation is different, yet produce identi-
cal functional results — this principle of intrinsic software redundancy was put forth
in [154].

Finding the optimal redundancy configuration at an improved cost-benefit ratio.
Developing truly dependable software solutions by means of software redundancy
and fault tolerance introduces a significant additional cost that can easily add up to
levels that cannot be justified given revenue forecasts, time to market, or the risk and
the amount of financial losses against which the software should protect4. Recent
research on NVP is largely centered around the following two problems:

(i) Given a set of versions, what is the best combination that will realise the
application’s objectives? Apart from dependability attributes, other attributes
like timeliness and resource expenditure are also taken in consideration.

(ii) How can reliable software systems be produced at affordable costs?

A multi-attribute decision making model is used in [160] to determine which alterna-
tive redunancy configuration performs best, with a ranking obtained based on a
combination of attributes, including, e.g. implementation and computing resource
cost, memory usage and reliability (MTTF). The approach described in the cited
publication seems quite similar to the redundancy dimensioning and replica selection
models that were introduced in Chapt. 5, which clearly indicates that the research
problem covered throughout this dissertation is actively being studied and is relevant
in the domain of reliability engineering.
However, on second glance, the cited research differs from ours, in that:

– The ranking of alternative redundancy configurations is determined once, whereas
our algorithm allows to re-evaluate throughout the system’s operational life. In
other words: ours has the advantage that it can periodically re-evaluate the
cost-benefit ratio and adjust the redundancy configuration. However, our
colleagues can cover the entire possible space of redundancy configurations,
whereas in our solution, we cannot afford to solve such computationally intensive
calculation without introducing significant latencies at runtime.

4For true mission-critical systems where the protection of the environment, the society or the
operation itself is paramount, the additional cost would obviously be justifiable. Nonetheless, any
approach that could result in a cost reduction would be welcomed, as long as it can be proved that
system’s dependability will not suffer from its application.
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– From our understanding, the attribute values are assessed upfront, and are
calculated once for one particular redundancy configuration (at the level of the
NVP composite). In our A-NVP solution, such information is collected at runtime,
at the end of each voting round, for each individual version, then consolidated
so that it can be used for adjusting the redundancy configuration in subsequent
voting rounds (feedback loop). We believe our approach is better suited to capture
unforeseen exogenous factors, in which case another redundancy configuration
may prove more effective.

– Both approaches foresee a means to compensate on resource expenditure,
although the approach is quite different: in [160], this is a trade-off that is used
in computing an acceptable, properly performing redundancy configuration,
whereas in our model, the availability of the system is of primary order, and
economising on resource allocation is of secondary order. Only after a prolonged
period of redundancy overshooting, the system will assume it is safe to reduce the
employed degree of redundancy.

9.3 Recommendations for Future Research and Practical Applications

9.3.1 Combining Different Techniques into an Enhanced Hybrid Solution

It was already pointed out that A-NVP was ranked as second best technique for
software fault tolerance in [93]. In their final conclusion, the authors argue that the
ideal solution would be a hybrid solution that would include “A-NVP for adaptiveness,
two-pass adjudication (TPA) for diversity, and acceptance voting (AV) for adjudica-
tion”. Although such solution remains out of scope, we will briefly cover its feasibility.

“The AV pattern is a hybrid pattern, which represents an extension of the NVP
approach by incorporating [in] this approach [... the concept of ...] acceptance
test [... commonly] used in the RB approach” [161]. Each ballot is presented to an
acceptance test to determine if the output is reasonable; only accepted results will
be used by the voting algorithm to adjudicate the final outcome of the scheme. In
its basic form, the AV technique seems to assume the application of PV, but other
voting algorithms like MV can easily be used as well. “The tests need not be as
vigorous as those used in RB because of the presence of a voting [algorithm]. They
are to serve as coarse filters so that clearly erroneous results are not presented” and
therefore not taken into account by the voting algorithm [71, pp. 162–172].

As the name implies, two-pass adjudication includes two voting round passes:
the first pass is fed with the original inputs; if that fails to adjudicate an outcome, a
second pass is initiated, which is fed by re-expressed parameters [71, pp. 218–231]. If
an outcome can be adjudicated at the end of the first pass, TPA is identical to normal
NVP. Otherwise, a second pass is initiated and the original inputs are run through
data re-expression algorithms (DRAs) to be normalised. A second voting round
(with the same redundancy configuration applied) is then fed the re-expressed
data as input, hoping this will allow an outcome to be determined nonetheless. A
DRA is an algorithm that is used to transform the original input data sent upon
invocation of a redundancy scheme. Rather than replicating the inputs, they can be
preprocessed so that normalised and/or slightly rounded or rectified values are used
for the subsequent version invocation requests. It is a form of data redundancy that
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can be used for tolerating software faults, primarily in software implementations
that are fed with noisy or imprecise data, or that include lots or arithmetic operations
on floating-point numbers5 [71, p. 21].

Although there is no impediment to extending our A-NVP algorithm and
simulation toolbox to include the AV and TPA techniques, a few remarks are in
place though:

– To include support for AV, it would suffice to add an additional state validate
ballot in Fig. 2.2 immediately after the state request handled, just before the
corresponding ballot will be processed by the voting algorithm. Or, put differently,
this additional state should occur immediately before state (c) in Fig. 2.1. Ballots
that do not qualify will simply be classified in P (C,`)

F . Note however that acceptance
tests are by nature very implementation-specific. Furthermore, not all functionality
and implementations will allow to define effective acceptance tests to check the
correctness of the results they deliver (ballot validation).

– A TPA-based redundancy scheme is essentially a process with one mandatory
voting round (pass 1), optionally followed with an additional voting round (pass 2)
in case the first pass was not able to successfully adjudicate an outcome. The
inclusion of DRA is as simple as inserting an additional state re-express input
between the states request initialised and request sent in Fig. 2.2. This would
involve only a small additional layer on top of the existing simulation models,
which in itself is quite easy to implement. However, there remain quite some
open questions. In the second pass, should the same redundancy configuration
be used as in the first pass? Should we just see both passes as two stand-alone
voting rounds, or do we need redefine the normalised dissent metric to issue a
single reward/penalty (at the end of whatever pass results in a valid outcome
for the scheme? If we consider a TPA invocation as a single voting round, what
measures should be redefined? And to what extent will we need to re-engineer the
computation of measurements to consider these aggregated values (execution
time, resource consumption etc.)? For sure, we would need to adjust the notation
to identify individual version invocations into 〈C,`, p, i 〉, with p ∈ [1,2] indicating
a specific pass.

– Both techniques will introduce additional latency and runtime overhead; although
negligible for AV, it will be considerable for TPA in case a second pass is required.
Hence, any application consuming the service exposed and protected by a
redundancy scheme should not be very latency-sensitive. For TPA specifically, the
functionality implemented by the different versions should be idempotent (which
is in line with our implicit assumption of stateless service implementations).

In Sect. 1.3.2.1, a reference was made to the hybrid approach published in [72]
which combines NVP and RB. Although the approach bears great resemblance
with our approach, in that runtime QoS measurements are used to determine, at

5It was in this context, where situations in which multiple (in)correct ballots would impede the
adjudication of an outcome, that TPA was originally designed.
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runtime, an optimal redundancy scheme and strategy6, the computational footprint
is significantly higher. Nonetheless, it would be useful to study to what extent part
of the principles behind it could be incorporated in our A-NVP. Clearly, A-NVP is
a dynamic parallel strategy; however, it does not foresee in a dynamic sequential
strategy (which is a combination of a basic retry scheme and RB). It might also be
useful to pursue the same idea of varying the voting algorithm used7, and to vary it
in time based on, e.g., dtof and even RTT times.

9.3.2 Enhancing A-NVP’s Proactiveness by Integrating Techniques to
Anticipate and Prevent Failures from Occurring

In its current form, A-NVP is purely reactive, in the sense that it will only act once
contextual knowledge was deduced at the end of individual voting rounds, and once
a specific trend or risk was identified after correlation. Indeed, the algorithm will
identify how many disturbances have been masked by the redundancy scheme,
and will assess how effective the applied redundancy configuration was (and how
trustworthy the underlying versions are). Although our experimentation shows
that this approach is able to adjust the redundancy configuration, and to apply a
redundancy level close to, though above, the contextual redundancy, additional
techniques may add proactiveness to the approach and actually prevent failures
from occurring (or recurring) and affecting the availability and effectiveness of the
redundancy scheme at all8.

Such capabilities could be added to the algorithm itself, or one could foresee an
additional component as part of the A-NVP architecture. The former approach has
several drawbacks:

(i) The additional complexity is likely to result in additional overhead and latency
in determining the redundancy configuration, or at the end of the voting
procedure itself. Furthermore, the additional implementation logic should not
be intrusive, and should be isolated from the core A-NVP logic9. Furthermore,
such logic may be very application-specific, whereas A-NVP was designed to
be completely application-agnostic.

(ii) Such additional detection and prevention capabilities may be able to more
rapidly detect trends or anomalies in the system. If embedded in the A-NVP

6The NVP-RB hybrid approach considers the time required before a response is obtained from
versions, and estimations of the individual failure rates. It does not consider load distribution.
Furthermore, it relies on prediction of RTT, a calculation that involves recursion. In case NVP is chosen as
the most applicable redundancy strategy for a subsequent voting round, the model will predict the RTT
for n!/u!·(n−u)! combinations, with u < n and u odd, and n any n(C,`). Perhaps this procedure will not be
triggered for every newly initiated voting round, but it should be repeated periodically and frequently to
ensure the redundancy strategy is still effective.

7The approach taken in [72] is a combination of AV and PV, in which MV is applied to the u
properly-returned responses. This could be added by introducing a threshold-base PV-like mechanism.
However, an impact analysis remains to ensure the maximum accuracy of dtof measurements, and, by
consequence, normalised dissent values.

8One may consider two levels of granularity here: one could focus on avoiding failure of the scheme
itself, or one could focus on the (un)availability of individual versions.

9To achieve proper separation of concerns, it would be better to isolate different concerns into
different architectural building blocks. As mentioned in Sect. 8.3, one could realise such separation by
encapsulating each functional capability in a dedicated manageability capability.

206



algorithm itself, this would mean they can only be triggered at the start or
at the end of each voting round, which may not leverage to the full extent
the functionality such capabilities would bring. Housing these capabilities in
dedicated components could support increasing the sampling rate to as little
as few hundreds of milliseconds.

(iii) Additional diagnostic or detection capabilities will usually use a different
type of knowledge base data, and are likely to monitor the system and its
components on a periodic basis, trying to deduce meaningful conditions that
might benefit from immediate or proactive intervention or system reconfigu-
ration. The so-called diagnostic rounds are not likely to coincide with voting
rounds, which depend on specific conditions like arrival rates, service times
etc. [5, 77].

Because of this, it is recommendable to add such additional logic to the system by
encapsulating it within one or more dedicated software component(s). However,
what additional capabilities may be useful to include? And how can they improve the
overall dependability and timeliness of the scheme and the underlying redundant
resources? A few potential candidates are listed below:

– Versions can be invoked periodically, a technique often referred to as probing.
This is typically combined by some kind of soundness check to check if the
response is valid10 (very much comparable to the concept of an acceptance test
in RB). The technique will result in additional background load, which may
affect the selection of versions by the replica selection algorithm — v. Sect 2.7,
5.1 and 5.3. Periodic polling by dedicated software components may help to assess
the responsiveness of individual versions, as well as their availability. It could be
used to more proactively detect potential crash failures, e.g. when observing an
increased recurrence rate for intermittent failures. For example, after observing
x successive failed trials, one could mark the version as untrustworthy, and
temporarily exclude it from the redundancy configuration used for subsequent
voting rounds. Probing should continue in the background, to evaluate if the
failure behaviour is intermittent or eventually resulting in crash mode, in which
case the version should be permanently excluded/disabled. This technique is
very similar to the work of [114, Fig. 1], where faulty versions are isolated and
re-integrated upon recovery.

– The flexibility and velocity of deployment in virtualised (cloud) environments
allows to take techniques like chaos engineering11 and recovery-oriented com-

10Various options are available here: in microservices-based or service-oriented architectures, a
simple check of the HTTP response might be sufficient to indicate failure (response codes in the 20x
range may indicate success, whereas the 50x range may indicate failure). In specific scenarios, some
logical validation of the actual response value or payload may be more suitable.

11“Chaos Engineering is the discipline of experimenting on a [distributed computing] system in
order to build confidence in the system’s [ability] to withstand turbulent conditions [and unexpected
conditions] in production” — definition as per https://principlesofchaos.org. The basic idea is
to formulate a hypothesis about the system’s steady state, and — in a way similar to reflective variables
— to define some measurable measures to reflect wellbeing or aberrant behaviour (potentially after
aggregation and/or analysis) — v. Sect. 8.4.1. This can reveal anomalies at various layers, ranging from
disruptions of the service at application layer, malfunctioning hardware, unusual workload patterns etc.
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puting to another level and to rapidly and proactively rejuvenate whenever a
drop in performance or trustworthiness is observed (by deploying a new replica
and undeploying the previous instance) — a technique used in [63, 162]. This
highly relies on the assumption that software components (deployments) are
reliable in the early phases of their operational life, and that there is some kind of
software aging over time — a phenomenon confirmed in [45, Sect. 11.8].

– In [163], the authors point out that such fidelity drifting may occur at random
times, but that in some cases, it is hard-bound and guaranteed to occur after a
certain time in operational mode [31]. As an example, they refer to the incident
with the Patriot missile-defense system during the Persian Gulf War, which failed
to reliably track and intercept an incoming hostile missile, thereby causing un-
needed death and severe injury to several dozens of people. Therefore, the
detection of gradual behavioural driftings, if any such technique can be devised,
is indicative of a drop in trustworthiness, for which rejuvenation might help as a
compensatory control.

– Another approach would be to rely on machine learning (ML) and other artifi-
cial intelligence (AI) techniques that can help to understand and anticipate
trends, e.g. patterns of disturbances that are about to occur, or periods of system-
environment (mis)match. In the assumption that such techniques would be
effective and reliable, they could be used to classify the next x time slots (e.g. voting
rounds), and see if a chosen redundancy configuration is expected to properly
mask the disturbances of the environment. Such analysis would best run in
isolation of the core A-NVP logic, to avoid additional latencies during the selection
of the redundancy configuration and the voting procedure12. However, the
predicted outcomes could be used while determining the redundancy configura-
tion — mainly from a quantitative, but also from a qualitative point of view —
v. Chapt. 5. For instance, if a prediction indicates a risk of undershooting — failure,
that is — one could contemplate more aggressive upscaling to prevent service
disruption and/or unavailability. Reversely, one could use the prediction as an
additional confirmation that it is safe to scale down resource consumption and,
in doing so, prevent unneeded resource and power consumption.

9.3.3 Reducing A-NVP Computational Overhead

Although A-NVP was designed in such a way to avoid significant impact on end-to-
end response times, one could wonder if the actions of determining the redundancy
configuration and of voting may contribute to a non-negligible latency, thus in
case assumptions (A37) and (A38) would be violated. One could record the actual
latencies for voting procedure (including the extraction of context information and
the updating of the windows of context information), as well as for the computation
of the redundancy configuration — v. Fig. 5.1, p. 82. In addition, A-NVP could be
extended with an upper bound on the overall response time for individual voting

12Of course, there might be a need to share contextual data between A-NVP and these additional
ML/AI modules: the actual data will likely be harvested during the voting procedure (or by additional
modules with dedicated diagnostic and/or detection capabilities). How that data is shared remains
undefined and should be evaluated based on the characteristics of the system: it is likely shared memory
will be preferred in case of embedded systems.
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rounds, unlike the upper bound tmax set on the end-to-end response times for
subordinate version invocations. By doing so, hard time limits could be enforced
for voting round processing, which would include the latencies resulting from the
algorithm itself and the voting procedure.

Although very unlikely, if one would notice that the algorithm would cause
non-negligible overhead (and therefore occasionally translate in performance failures
at composite level), one could consider several optimisations:

– One could accept the algorithm in its current form, yet reduce the frequency
with which the redundancy configuration is computed. By default, it will be
determined at the start of every subsequent voting round. Yet, one may consider
to only aperiodically update the configuration. Examples could be once every x
voting rounds. Obviously, such approach will increase the risk of undershooting,
as rapid changes in the amount of failure occurrences may not be considered
in due time to realise a swift and decisive reconfiguration of the allocation of
redundant resources.

– One may also update the redundancy configuration on a periodic basis, e.g.
every x seconds. That would require moving the logic for the redundancy dimen-
sioning and replica selection models into some sort of scheduled task — v. Sect. 5.2
and 5.3. The same drawback as before would apply, in that in some cases —
especially in cases of elevated load — the approach might not be able to upscale
or select a more appropriate replica selection in time. The knowledge base, also
known as the window of contextual information, will be shared between the
core (A-)NVP logic (encompassing the logic for the voting algorithm, including
extraction of context data and populating records in the knowledge base) and the
entity containing the logic for determining the redundancy configuration, and
scheduling that activity (in fact the consumer of that context data).

– For this second option, one could simply share the same data structure, or one
could also isolate the knowledge base in a separate component. During voting,
once context data has been deduced, it can be pushed to this additional dedicated
component, typically by means of a robust message queue solution. Note that the
adjudication procedure (voting algorithm) by its very nature is an integral part
at the end of any voting round, and this latency must be absorbed in any time
constraint defined at the level of the redundancy scheme.

Note that some overhead, most particularly queuing delays, will stem from the
architectural choices made during the design of the system. Throughout this thesis,
the focus was set to distributed applications, which is reflected in assumption
(A07). Because of this, and the assumption of using modern MoM platforms in the
software platform layer, little or no waiting times should be expected. However,
in resource-constrained environments, or in case of embedded systems, similar
workloads would probably result in more requests being stalled in the waiting
buffer (unless the workload pattern would be different, e.g. periodical, evenly-paced
arrivals of requests).

As a final note, in specific cases, one could potentially vary the voting algorithm
used at runtime. Such approach was foreseen in [72], where AV and MV voting
algorithms are used, depending on the predicted response times. Although this may
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help to reduce latencies and overhead, it will usually increase the risk of inaccurate
or erroneous outcomes being adjudicated. The impact of different voting algorithms
is illustrated in Fig. B.1, 226.

9.3.4 Safeguarding A-NVP’s Availability by Tolerating Failures in the
Underlying Platform Layers

In Sect. 1.3.2.2, we elaborated on synergistic approaches in which multiple error
mitigation and resilience techniques are applied at different abstraction layers to
defend against (functional) errors occurring and to prevent them from propagating
to higher-level layers. Layers that are commonly observed in the design of digital
systems include the hardware platform layer, the underlying devices or electronic
circuitry, the platform software stack (including operating system, runtime engines
and/or interpreters, and middleware solutions), and the actual application layer [42,
Fig. 1]. Of particular concern here is to ensure that the core A-NVP functionality —
residing in the upper application layer — will remain reliable, and that its availability
and integrity is not affected by failures affecting the lower abstraction layers. Specific
error mitigation techniques can be applied at different layers to prevent failure
propagation, allowing to abstract away the details of lower layers and assuming
these layers will perform as expected.

Apart from that, in a context of embedded systems, it is conceivable that specific
failure classes affecting, e.g. the hardware platform layer or dedicated circuitry,
would require a very fast reaction time to mask such failure occurrences (and thus
contain them and prevent them from propagating to higher abstraction layers).
Unfortunately, A-NVP will only act during the initialisation of a new voting round,
by selecting an adequate redundancy configuration and excluding suboptimal
or unreliable versions. With (A-)NVP relying on fault masking by means of an
adjudication (voting) algorithm, such redundancy schemata will not be able to
swiftly and decisively act to recover from the described types of failures classes.
In the end, it will be the workload characteristics that will determine when the
redundancy configuration may be next adjusted. So for the described failure classes,
additional specific hardware support would be needed to detect and contain the
disturbance and compensate its detrimental effects.

Another approach could be to include auxiliary dedicated entities for fault
monitoring to detect disturbances as soon as they occur, so during voting round
execution, and not at the end when the voting procedure is triggered. This could
even result in a more accurate view on how well versions behave, and by how
many disturbances they are struck13. Such additional diagnostic capabilities could
then be used to more accurately detect/predict faults, the rate with which they
(re)occur, and potentially also the specific conditions under which they occur. They
would allow to exclude faulty versions more rapidly, without the need to await the
completion of the voting round during which those disturbances were triggered.
In doing so, we eliminate the dependency on the workload pattern (determining
arrival and duration of new voting rounds).

13Note that so far, because a disturbance is deduced from dissentient or missing ballots, the algorithm
will be aware only of a single failure, more specifically the failure class of highest failure severity — v.
Fig. 2.3, p. 45. For instance, if a version is affected by an RVF followed by an EVF disturbance, only the
latter will be detected during voting.
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9.3.5 Including Context Parameters and their Causal Relationship
Towards Failure

The notion of context has been used so far to refer to attributes reflecting how well
a redundancy scheme is functioning, with respect to the environment in which it
is operating. This includes various measures to assess the system-environment
(mis)match — including, e.g. normalised dissent, nett redundancy etc. — as well as
a handful of operational measures that reflect load- and timing-related performance
characteristics — v. Fig. 5.1.

However, it might be useful to consider context parameters for specific operating
conditions that could in their own right affect the functional and/or parametric
reliability of the system and the underlying components. Examples could be found
in temperature and humidity levels. Specific ranges of values could be identified
that could potentially significantly increase the risk of malfunction. Obviously this
would be applicable to embedded systems that would include dedicated circuitry. At
a higher level, an example could be rain- or snowfall in the context of autonomous
vehicles, rendering specific sensors or algorithms — versions — less accurate or even
unreliable. In such situations, the use of alternative sensor types may be considered,
and it may even be useful to use different sensor (types) in parallel to filter out
inaccuracies or noise, albeit at the expense of increased power consumption [164].
If the causal relationship between specific context parameters and potential failure
occurrence could be discovered during the design phase, the overall dependability
of the system would benefit from keeping track of these parameters by recording
measurements and using them to adjust the system whenever needed or
recommendable.

So how then should the A-NVP framework be enriched to enhance its teleological
behaviour? Because of the nature of these additional context parameters, measure-
ments will likely be sampled periodically. Because of this periodic sampling, it is
recommendable to include an additional component whose sole responsibility
would be to keep track of and measure these environmental context properties14.

Changes in this perceived environmental state — the context in which the
redundancy scheme is operating, that is — can be used to trigger reconfiguration
of the underlying redundancy configuration. It can also be used to trigger specific
reconfiguration of individual components, if it is possible to adjust their configuration
at runtime (e.g. to temporarily accept a lower degree of accuracy, but to prolong
service availability and avoid downtime as a whole)15. This could be done as part
of the replica selection procedure (and if the redundancy level would be affected,
the redundancy dimensioning model as well). Or, one may act directly from the
dedicated module. This last option seems to be the preferred way, since the core
A-NVP algorithm is completely application-agnostic, and this type of actuation
rules/logic are typically very specific to the application/system itself.

14Note that A-NVP relied on apperceptional abilities to interpret the context properties listed
throughout Chapt. 5. For context parameters like temperature and humidity, the operating conditions
could be directly sampled, which adds true perceptional abilities.

15In the classification of resilience techniques proposed in [42], this approach would correspond
to the concepts of internal functionality reuse and operating conditions control (in case of platform
software, respectively hardware). The basic idea is that by adjusting some parameters of the platform, a
more resilient execution can be achieved.
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Note that in some cases, it might be useful to vary the voting algorithm throughout
time. For example, to filter out outlier ballots (and thus noise), a technique called
weighted voting was used in [164]. Or it could be useful to temporarily activate
some normalisation and validation logic to preprocess the acquired ballots before
feeding them into the voting algorithm — very similar to the use of DRAs applied to
input values (request message payloads, that is).

9.3.6 Potential Next Steps that Remain Unexplored

Although we believe to have evaluated the proposed A-NVP algorithm well, and ran
a sufficient amount of discrete event simulations to corroborate our statements, it
may be worth pursuing this research and zoom in on a number of open research
questions that remain:

– The research on autonomous redundancy management in NVP-based redundancy
schemata should be continued: new policies should be devised and their effective-
ness should be analysed. We believe we have paved the way to ease future
development and experimentation by implementing an extensible and modular
discrete event simulation framework.

– Further experimentation on the first set of policies presented throughout Chapt. 7
would be useful, particularly to assess their effectiveness under various failure
occurrence and load patterns. Another potential topic could be to investigate
how a dynamic safety margin may help to improve the scheme’s resilience when
submitted to a deployment environment that exhibits graver whimsicality. Detailed
fault models reflecting the internal structure of a version’s programming logic and
composition of software components can further help to zoom in on real-world
failure occurrence patterns.

– As pointed out before, it remains extremely challenging to properly model (design)
faults, both in terms of manifestative behaviour as well as occurrence patterns.
Consensus cannot be found in the literature, nor a common agreement or empiri-
cal evidence on failure (occurrence) rates. All of this is aggravated by an ever
increasing complexity of (software) systems. Even though one can find promising
work to characterise failure behaviour in [123, 127], few (recent) publications
can be found to approximate the amount of residual design faults in software
implementations.
The lack of clear guidance here have forced us to formulate a set of assumptions
and to conduct discrete event simulation to verify the effectiveness of A-NVP. One
might be interested to further investigate two things here:

(i) First, in order to further substantiate the findings reported in Chapt. 7
and corroborate our claims about the effectiveness of A-NVP, one could
consider emulation by means of the implementation described in Chapt. 8.
One could programmatically inject software disturbances (i.e., a hybrid
emulation/simulation model), or simply purposefully introduce design
faults in the source code for the functional behaviour of the application.
Either way, if available, one could use representative failure occurrence
data and emulate the failure behaviour one would expect to see in a specific
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target deployment environment. One could deploy this implementation in a
cloud environment, similar to the approach taken in [165], to obtain realistic
end-to-end response times and network connectivity issues (e.g. congestion
or varying RTT times). Such approach could be used as an experimental
validation of our simulation results, and to confirm that the distributions
used throughout our experimentation match reality (or at the very least
to discover more representative distribution parameters). This type of
emulation will also be able to validate the assumptions made with respect
to the processing capacity and queuing model of the underlying MoM
— v. Sect. 8.5. Emulation does come with specific drawbacks compared
to discrete event simulation: no strict control can be exerted on specific
environmental parameters — something that was already pointed out in
Sect. 1.4.
The approach described above may also be used to collect real-world data
that can be used to feed into our discrete event simulation framework —
a technique commonly referred to as profiling. The framework could be
extended to inject disturbances based on the failure occurrences detected
in a production environment, and to reflect the actual end-to-end response
times. And although collecting experimental data that is gathered during
emulation will be more representative of the target deployment environment,
one would have to be willing to take the risk and put the system in production,
which in itself incurs risk. One could consider to profile the behaviour of
the system in pre-production environments, but oftentimes, the workload
would be completely different from what would be observed in production.
Apart from that, the acquired data could be used to calibrate the simulation
model, and to determine the root causes that lead to suboptimal perfor-
mance during specific intervals.

(ii) Second, the discrete event simulation framework described in Chapt. 6
was based on the Stochastic Simulation in Java™ (SSJ) library developed at
the Université de Montréal. That library was chosen because it provided a
robust foundation on top of which specific (and at times complex) models
can be developed. Other, more widely accepted simulation tooling that
does not seem to offer the same flexibility or freedom of doing so, which
would impose tool-specific boundaries and limitations.
Reliability and performability assessments of NVP redundancy schemata
have been successfully performed by simulation based on generalised
stochastic Petri nets (GSPN), which support to simulate timed transitions
that fire after a random delay sampled from exponentially distributed ran-
dom variables associated to each specific transition [166–169]. Even though
it may be technically feasible to define the models defined in Chapt. 2
as GSPNs, the assumption of using exponential distributions would be
limitative and would contradict research stating that realistic service and
response times are more precisely characterised by other distributions
[30, 45, 165]. An extension can be found in stochastic activity networks
(SAN) that allow to define alternative distributions and that offer a more
practical high-level language for modelling system behaviour16 [170]. But

16SANs have been used to evaluate the effectiveness of the α-count approach proposed in [77], a
technique that inspired the normalised dissent measure defined in Chapt. 4.
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even then, it would be extremely challenging to try and define all aspects
of our discrete event simulation models into a combination of SANs, and
this would become even more challenging if we would include other failure
classes (e.g. hardware or network failures). Either way, it should be techni-
cally possible to translate A-NVP into a SAN model.

– We have demonstrated that an A-NVP redundancy scheme can take a snapshot of
the environmental conditions and act to ensure and/or regain a normal operational
state, thereby regaining or further sustaining the scheme’s dependability. There
is a whole spectrum of environmental conditions, and only one scenario was
explored where design faults materialise. As per the previous remark, fault models
can be explored that are highly likely, but also very unlikely (when analysing the
behaviour in exceptional situations).
Moreover, one could also study the system behaviour from a cybersecurity point
of view. As an attacker would exploit system vulnerabilities (which include more
than just design faults), (s)he would be able to force the system to become
unavailable. In this case, one would also have to try and identify the environmental
conditions and the evolution thereof that are representative of advanced attacks.

– Throughout this thesis, the emphasis has been placed on the effect design faults
have on the dependability of redundancy schemata. The impact of disturbances
that affect the underlying network and hardware infrastructure can easily be
analysed by implementing the relevant models using our simulation framework.
Likewise, if, for any reason at all, the reader would disagree with any of the
assumptions listed, the default artefacts can easily be adjusted to analyse the
effect of such change.
It would also be worthwhile to study the potential impact of hardware faults, e.g.
electrical failures, on the functioning and availability of the software running on
top, and to zoom in into these types of complex fault models. Such analysis would
become even more important in the context of embedded and real-time systems,
where the complexity of the hardware technology cannot easily be abstracted or
decoupled from the firmware/software running on top of it17. One would also
want to analyse how specific workload patterns may lead to a gradual build-up of
parametric failures that may exacerbate the reliability of the underlying electrical
circuits, and how that may (in)directly translate into disturbances in the hardware
and software layers [56, 171]. Any new insights in these complementary research
domains might suggest additional potential techniques for mitigating the detrimen-
tal effects on system reliability, whereby specific protections could be introduced
at different layers.
As a lot of research has already been done on analytical models to approximate
hardware fault models [3]. A valid research question that most definitely is
worthwhile to investigate is if accuracy would benefit if these models were to
be combined with runtime methods like our approach (for calibration and
profiling).

– It will be considerably harder to apply autonomous adjustment of the applied
redundancy configuration in RB-based redundancy schemata, for the norma-

17For software applications, the hardware would be mostly abstracted away by the operating system,
development tools (like compilers/interpreters) and/or supporting software libraries.
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lised dissent measurements will be updated less frequently. This is because RB
will invoke the underlying versions in sequence, rather than in parallel, which
obviously leads to a significant reduction in version invocations. We expect it
will be much more difficult to devise solutions that are meaningfully effective to
realise similar objectives. However, researchers can build upon our framework to
model software components, to implement the fault-tolerant logic underpinning
specific RB-based redundancy schemata, and to implement novel policies and
algorithms and analyse their effectiveness and performance.

– The approach to perceive a change of the environment — including disturbances
affecting specific versions — indirectly through changes in measurements for
the normalised dissent may be enhanced to improve the actual awareness of
the redundancy scheme, and various techniques for failure detection may be
considered [36, 98, 99, 172].

– Throughout this thesis, we have considered a relaxed form of majority voting,
mainly to reduce the average response times recorded for NVP invocations, and
to lessen the amount of required computing power [7]. For those interested in
the matter, it may be useful to investigate the effects of applying an alternative
voting/adjudication mechanism, both in terms of dependability and timeliness,
and — indirectly — the impact this change may have on resource expenditure.

– The use of machine learning (ML) and other techniques for artificial intelli-
gence (AI) to optimise the redundancy configuration used by NVP redundancy
schemata has not been explored to date, nor was it part of this research. If
we would be able to rely on ML/AI techniques to reliably anticipate how the
environment will evolve in the near future, our algorithm could proactively and
aggressively upscale when needed, or prepare a parsimonious, yet safe allocation
of system resources. Or, we might be able to use ML/AI to self-assess how effective
the selected redundancy configurations were in the context of specific properties
observed as the current system-environment fit, and use that to anticipate what
(change in) configuration might be beneficial. In fact, it is the only property
that is missing in order for A-NVP to qualify as a computationally antifragile
system [90, 150, 163]:

4 it is “able to exercise teleological behaviour [— meaning that a feedback loop
is involved —] that evolve the system and its identity in such a way as to
systematically improve the fit with [the] environment” in which it was set to
run [90];

4 the model aims to keep an accurate view on and is aware of the current
system-environment fit, based on dtof and normalised dissent measurements;

4 in cases where the environmental behaviour is stable, the algorithm may
gradually adjust the applied redundancy configuration so as to improve the
overall system-environment fit;

6 although capable to assess how effective a specific redundancy configuration
was at a given point in time, the algorithm does not apply any real form
of (machine) learning — although it can steer the redundancy allocation
process towards intervals of elastic (maintain specific redundancy level),
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entelechial (strive towards a certain level of fault tolerance) or antifragile
(steer the system towards an optimal system-environment fit) planning
behaviour;

4 contextual data is cached and metrics are computed and tracked to ensure
the observed behaviour can be interpreted and used in subsequent voting
rounds to optimally sustain the scheme’s non-functional requirements (avai-
lability in particular) — v. Sect. 5.1.

However, if it were technically possible to meaningfully apply ML techniques to
further enhance re-configuration planning, one may expect to see a non-negligible
impact on the scheme’s overhead, resulting from markedly higher CPU and
memory consumption.

– Nonetheless, “ML systems can [...] benefit from [...] a multi-version approach”,
with research being reported in which multiple ML models are combined within
an NVP scheme, mainly to improve system reliability, but especially to improve
prediction accuracy and to overcome perturbations that might lead to corruption
of input data [157]. The main applications can be found in the research on
autonomic vehicles, and include use cases such as steering angle prediction and
stop sign recognition [157, 164].
In [164], a technique referred to as weighted voting scheme is introduced. As in
regular NVP, its purpose is to improve the overall robustness by tolerating and
masking occasional failures. It includes an innovative mechanism to (i) detect and
exclude outlier ballots from the voting procedure, and (ii) to adjudicate outcomes
with a higher accuracy. The outcome itself is computed based on the acquired
ballots, in such a way that the differences between ballots observed in prior voting
rounds is taken into account.
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APPENDIX A
Auxiliary Lemmas

Theorem A.1 For any voting round (C,`) during which the employed redundancy
configuration V (C,`) proved to be cr -dependable, an additional amount of
b(n(C,`)−cr (e(C,`)))/2c = dtof (C,`) −1 disturbances could have been tolerated.

Considering the definition of the function cr :N0 7→N+ introduced in Sect. 3.1 as a
means to quantify the contextual redundancy, and the notion of cr -dependability
introduced in Sect. 3.1.3, several presuppositions can be stated to hold:

(a) For a redundancy configuration V (C,`) to be cr -dependable, implies that,
throughout the course of the voting round (C,`), it was subject to a number of
disturbances e(C,`) É n(C,`) −m(C,`), such that the exact result is obtained from
the existence of a unique consensus block P (C,`) = b0 constituted by a majority
of consentient replicas — cf. (A30) Sect. 3.1.

(b) Recall that d (C,`) was defined as a measure so as to intuitively represent how
many of the versions in V (C,`) returned either a syntactically invalid response, or
a response that differs from the majority, if any such majority could be identified
at the end of round (C,`) — cf. Sect. 3.1. The premiss above excludes the
adjudication of an incorrect result, as would have been the case had
e(C,`) Ê |V (C,`)

r v f | Ê m(C,`). Given these conditionalities, one can see that

d (C,`) = e(C,`), for d (C,`) was defined as n(C,`) − c(C,`)
max , and c(C,`)

max = |P (C,`)| Ê m(C,`).

(c) Finally, a redundancy configuration V (C,`) is cr -dependable if and only if
n(C,`) Ê cr (e(C,`)), which in itself implies the adjudication procedure outlined
in (a), as well as dtof (C,`) Ê 1, in line with Eq. 3.2 — cf. Sect. 3.1.

In regard to the premisses mentioned hereabove, one can now simply determine
the corresponding values for the measures b(n(C,`)−cr (e(C,`)))/2c and dtof (C,`) −11, for
integral values n(C,`) Ê c(C,`)

max Ê m(C,`) — cf. (b):

1Note that this second measure can be easily computed as c(C,`)
max −m(C,`), for Eq. 3.3 is applicable in

view of (b) and (c).
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c(C,`)
max d (C,`) cr (e(C,`)) b(n(C,`)−cr (e(C,`)))/2c

7 → 0 → 1 → 3

6 → 1 → 3 → 2

5 → 2 → 5 → 1

4 → 3 → 7 → 0

7 → 4 → 3

6 → 3 → 2

5 → 2 → 1

4 → 1 → 0

c(C,`)
max dtof (C,`) dtof (C,`) −1

Table A.1: Illustrating agreement between both measures for an odd degree of

redundancy n(C,`) = 7 (c(C,`)
max Ê m(C,`) = 4).

Comparing the quantities obtained from both measures confirms the correlation

between either of these two measures, for eligible values c(C,`)
max . We will now elaborate

on this correlation and provide formal proofs in case of an odd or even amount of
redundancy n(C,`).

Proof (for n(C,`) odd):
Let us start with the observation that the notions of e(C,`) and d (C,`) coincide, as put
forth in premiss (b). Multiplication by −1 then allows the sign to be flipped in both
sides of the initial equation, after which m(C,`) −1 is added to both sides. Applying
some rewriting in the right-hand side, we obtain dtof (C,`) −1 in (A.1.2):

e(C,`) = d (C,`)

−e(C,`) =−d (C,`)

(m(C,`) −1)−e(C,`) = (m(C,`) −1)−d (C,`) (A.1.1)

= (m(C,`) −d (C,`))−1

= dtof (C,`) −1 (A.1.2)

Next, the underlined minuend of the subtraction in the left-hand side of (A.1.1) is
rewritten by substituting m(C,`) by its representative value, as defined in Eq. 3.1 in
Sect. 3.1. Immediately after, the right-hand side of (A.2.1) is rearranged by using
the proposition that states that dxe+n = dx +ne, for any integer n ∈Z and x ∈R, as
stated in [173, Eq. 3.6a]. Considering that n(C,`) −1 is an even number, (n(C,`)−1)/2 is
known to be a positive integer number x ∈Z, for which goes that dxe = bxc = x [173, p. 68].

m(C,`)
. . . . . . . −1 =

⌈
n(C,`) +1

2

⌉
−1 by Eq. 3.1, Sect. 3.1

=
⌈

n(C,`) +1

2
−1

⌉
by [173, Eq. 3.6] (A.2.1)

=
⌈

n(C,`) −1

2

⌉

=
⌊

n(C,`) −1

2

⌋
by [173, p. 68] (A.2.2)
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We can now carry on with the left-hand side of (A.1.1) and proceed by the substitution
of the underlined term for its alternative representation as per (A.2.2). By analogy
with (A.2.1), the right-hand side is now rearranged such that the outer term is moved
inside the floor expression. To do so, we make use of the proposition that states
that bxc+n = bx +nc, for any integer n ∈Z and x ∈R [173, Eq. 3.6b]. Some further
rewriting yields the expression shown in (A.3).

(m(C,`) −1)−e(C,`) =
⌊

n(C,`) −1

2

⌋
−e(C,`)

=
⌊

n(C,`) −1

2
−e(C,`)

⌋

=
⌊

n(C,`)

2
− 2e(C,`)

2
− 1

2

⌋

=
⌊

n(C,`) − (2e(C,`) +1)

2

⌋
(A.3)

Finally, synthesis of (A.1.2) and (A.3), combined with the definition of the function
cr (e(C,`)) = 2e(C,`) +1 as defined in Sect. 3.1, provide adequate grounds to conclude
this proof:

⇒ dtof (C,`) −1 =
⌊

n(C,`) − cr (e(C,`))

2

⌋
ä

Similar to Table A.1, one can empirically show that, for any even n(C,`) and for

eligible values c(C,`)
max Ê m(C,`), both b(n(C,`)−cr (e(C,`)))/2c and dtof (C,`) −1 will take the

same value whenever the premisses (a)–(c) hold:

c(C,`)
max d (C,`) cr (e(C,`)) b(n(C,`)−cr (e(C,`)))/2c

6 → 0 → 1 → 2

5 → 1 → 3 → 1

4 → 2 → 5 → 0

6 → 3 → 2

5 → 2 → 1

4 → 1 → 0

c(C,`)
max dtof (C,`) dtof (C,`) −1

Table A.2: Illustrating agreement between both measures for even degree of

redundancy n(C,`) = 6 (c(C,`)
max Ê m(C,`) = 4).

Proof (for n(C,`) even):
The argumentation in this proof exhibits close resemblance to its counterpart for an
odd degree of redundancy. As before, we start with the equality e(C,`) = d (C,`), and
seek to reduce both left- and right-hand sides into a desired form, i.c. one of the
measures under investigation. The measure dtof (C,`) −1 in (A.4.2) is obtained by
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some simple rewriting of the intermediate equation in (A.4.1) that in itself originates
from flipping the sign and then adding m(C,`) −2 in both sides of the initial equation:

e(C,`) = d (C,`)

−e(C,`) =−d (C,`)

(m(C,`) −2)−e(C,`) = (m(C,`) −2)−d (C,`) (A.4.1)

= (m(C,`) −d (C,`) −1)−1

= dtof (C,`) −1 (A.4.2)

Again, m(C,`) is substituted by its representative value in the left-hand side of (A.4.1),
yielding (A.5.1) after splitting the fractional argument of the floor function. As
it is known that n(C,`) is an even number in N+, x = n(C,`)/2 ∈N+. Per definition,
dx + r e = x +1, if and only if x ∈Z and r ∈R]0,1]. Some additional rewriting consequen-
tially results in (A.5.2), which in itself is another integer x ∈N0, for which goes that
x = bxc, such that (A.5.3) is eventually attained [173, p. 68].

m(C,`)
. . . . . . . −2 =

⌈
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2
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2
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2

⌉
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⌊

n(C,`)
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−1

⌋
=

⌊
n(C,`) −2

2

⌋
(A.5.3)

Rearranging the left-hand side of (A.4.1) by splitting the fraction (n(C,`)−2)/2, moving
the outer term −e(C,`) inside the floor expression, and some simple rewriting results
in (A.6.1) [173, Eq. 3.6a].

(m(C,`) −2)−e(C,`) =
⌊

n(C,`) +2

2

⌋
−e(C,`)

=
⌊

n(C,`)

2
− 2e(C,`)

2
− 2

2

⌋

=
⌊

n(C,`) − (2e(C,`) +1)

2
− 1

2

⌋
(A.6.1)

=
⌊

n(C,`) − (2e(C,`) +1)

2

⌋
(A.6.2)

The reduction of (A.6.1) into (A.6.2) is justified by reason of the closure properties
of integer addition, subtraction and multiplication. Given n(C,`),e(C,`) ∈N, then
2e(C,`) +1 ∈N+, and n(C,`) − (2e(C,`) +1) ∈Z+ — cf. premiss (c). Since n(C,`) is even
and cr (e(C,`)) is odd, the numerator x = n(C,`) − (2e(C,`) +1) in (A.6.1) is odd, hence
there exists a number i ∈N0 such that x = 2i +1. Then x/2 = i + 1/2, and by definition
bi + 1/2c = i = bic [173, p. 68]. Working backwards, the correlation between (A.6.1)
and (A.6.2) can now be motivated as follows:

bic =
⌊
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2
− 1

2

⌋
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Finally, the proof can be concluded by replacing the subtract 2e(C,`) +1 in the
numerator of (A.6.2) with cr (e(C,`)), and combining the result with (A.4.2):

⇒ dtof (C,`) −1 =
⌊

n(C,`) − cr (e(C,`))

2

⌋
ä

A.1 Epilogue

The second proof clearly illustrates that a redundancy configuration encompassing
an even amount of redundancy n(C,`) = 2e(C,`) +2 can tolerate no more failures than
its counterpart that involves an odd number of versions cr (e(C,`)). The attentive
reader may already have considered the overall ineffectiveness of the spare version
in addition to the required cr (e(C,`)) versions, and may wonder if the use of even
levels of redundancy may be useful at all — cf. Fig. 3.1 in Sect. 3.1. Indeed, previous
work in the domain of reliability engineering on n-version programming schemata
seems to support this conjecture, in that it has mostly been presented with the
implicit assumption of an odd degree of redundancy [3, Sect. 3.4.1, 3.7.3].

Maintaining an odd degree of redundancy throughout the operational lifetime
of an NVP composite by consistently adjusting the employed level op redundancy
by (multiples of) 2, may however result in a downscaling procedure which proves to
be too aggressive — cf. Strategy A, p. 151. Such a redundancy management scheme
may bring about discontinuities in the piecewise constant redundancy function
nc , with oscillations that can drive the employed redundancy level straight into an
undershooting region.

Furthermore, a tendency can be observed in contemporary distributed system
design to discriminate fault messages on the basis of syntactical validity, a matter
addressed in Chapt. 8 in the domain of service-oriented architectures (A44). Specific
types of fault messages may be anticipated to carry a meaningful payload, and may
be recognised as syntactically valid response messages that may contribute to the
intended behaviour of the system. When such a message is received in response to
some invocation, the invocation under consideration should not be considered to
have been affected by a disturbance of higher severity than an RVF failure (unlike EVF
failures whose syntactically invalid payload does signal non-persistent disturbances
of higher severity) — cf. (A19) and Sect. 2.6.5. For instance, an implementation
of a square root function without support for complex numbers should issue a
fault message when it is invoked with a negative radicand rather than returning
an arbitrary value. Supposing that, within the scope of some voting round, this
version would be used in conjunction with another version that does offer support
for complex numbers, then one or more RVF failures will emerge.

Regardless of the voting algorithm employed, the scheme will always attempt to
identify a sufficiently large degree of consent amongst versions vi ∈V (C,`) based on
the equivalence of syntactically valid response values acquired from the correspon-
ding invocations 〈C,`, i 〉 — cf. Sect. 3.1 and 2.6.1. No notice is taken of the remaining
versions vi whose invocation 〈C,`, i 〉 reported an invalid response value and that
were classified into P (C,`)

F accordingly. As disturbances originate unexpectedly and
their manifestative behaviour cannot generally be anticipated, there is no certainty

that an odd amount of the n(C,`) engaged versions are classified in℘(C,`)\P (C,`)
F . And

even if there were, ambiguity cannot be excluded.
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The redundancy dimensioning and replica selection models were introduced
in Sect. 5 as loosely coupled algorithms that operate autonomously on the basis of
contextual information that has been harvested throughout the system’s operational
life span. The decision to maintain an even degree of redundancy by the former
model (especially in the course of a downscaling procedure) should be considered
as an intermediate, transitionary redundancy level during which the latter can
attempt to substitute poorly performing replicas by alternative, idling replicas,
before instructing the use of a lesser (odd) redundancy level.
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APPENDIX B
Alternative Voting Algorithms

An NVP redundancy scheme relies on a decision algorithm in an attempt to overcome
any disparities in the results acquired for each of the subordinate invocations 〈C,`, i 〉,
and to adjudicate a satisfactory result to be returned for the voting round (C,`)
nonetheless. Many different types of decision algorithms have been developed,
which are usually implemented as generic voters. And although a procedure inspired
by formalised majority voting was used throughout this chapter for the adjudication
of a result from at least m(C,`) consentient versions amongst the n(C,`) participating
versions, many other voting mechanisms have been devised: examples include,
amongst others, active, plurality and unanimity voting [7] [5, Chapt. 4]. Related
research question(s): RQ-1.

B.1 Formalising Unanimity Voting

Even though the adaptive fault-tolerant strategy introduced in Chapt. 5 was designed
with (formalised) majority voting in mind, its applicability is not inherently limited to
this specific type of voting mechanism, and support for alternative voting algorithms
may require only few modifications. In particular, some formulae may require
change so as to preserve the semantics of the measures and concepts introduced
throughout this chapter.

In what follows we will outline which changes are required in order to support
unanimity voting (UV). The term unanimity emphasises the requirement for all
participating versions vi ∈V (C,`) to be in mutual agreement before a response
can be adjudicated, i.e. m(C,`) = n(C,`) — cf. Sect. 3.1. Note that the likelihood
of such agreement materialising may increase when an “inexact notion of equality
between version outputs” is used, such as the equivalence relations Rd set forth
in Sect. 2.6.1.1 [7]. Given this reformulation of m(C,`), it follows that an NVP/UV
scheme is not tolerant of any failures at all, as it is resilient to withstand disturbances
affecting at most n(C,`) −m(C,`) = 0 of the n(C,`) versions participating in round (C,`)
— cf. Sect. 3.1.1. Even though such type of decision algorithm may be perceived to
have limited applicability and to squander valuable system resources while at the
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same time not offering a significant improvement in availability, there do exist some
applications for which it is preferable to return all but an incorrect result.

The dtof measure was originally introduced in Sect. 3.1.1 as a measure to quantify
the proximity of hazardous situations in which the scheme would have failed to
adjudicate a result, had the current redundancy configuration been exposed to
additional disturbances. Whenever a result can effectively be determined for some
voting round (C,`), the current redundancy configuration V (C,`) should have an
associated value dtof (C,`) Ê 1. However, as a redundancy scheme based on unanimity
voting requires unanimous consensus, the total amount n(C,`) of redundancy used
is consistently exhausted; a single (additional) disturbance would have caused a
failure of the scheme to determine a result. Considering that the scheme cannot
tolerate any failures in spite of a strictly positive dtof value, one can see that the nett
redundancy dtof (C,`) −1 yields 0 — cf. Sect. 3.1.2. Hence, Eq. (3.2b) and (3.2c) are to
be replaced by Eq. (B.1b), in which a critically low value dtof (C,`) = 1 is attributed
to the redundancy configuration V (C,`). The slightest difference between version
outputs will, however, result in the (temporary) unavailability of the scheme, and the
inadequate redundancy configuration will be judged according to Eq. (B.1a), which
is identical to Eq. (3.2a). Ran(dtof ) will therefore narrow to [0,1], which is captured
accurately by the following equation:

dtof (C,`) =
{

0 c(C,`)
max < n(C,`) (B.1a)

1 P (C,`)
F =;∧|℘(C,`)\P (C,`)

F | = 1∧ c(C,`)
max = n(C,`) (B.1b)

The normalised dissent measure D(C, v) was gradually introduced throughout
Chapt. 4 as a means to approximate the reliability of an individual version v by
iteratively issuing penalties and rewards reflecting the impact on its operational
context, i.e. a redundancy scheme C within which it operates. We will now provide a
rundown of any required changes for and the implications of supporting unanimity
voting.

The pivotal iterative updating procedure formalised by Eq. (4.2) in Chapt. 4 does
not require change at all, and initialisation and penalisation and reward mechanisms
will account for any deduced contextual information as before. A side-effect of
using unanimity voting is, however, that premiss dtof (C,`) > 0 implies unanimous
consent, i.e. P (C,`) =V (C,`), which excludes the possibility of the existence of other
equivalence classes. For that reason, Eq. (4.2b) can and will never occur.

Another aspect to bear in mind is that, even if this premiss holds and a result
can be adjudicated, the robustness of the redundancy configuration is consistently
jeopardised. Observe how the denominator in Eq. (4.3b) will evaluate to 0, for it
was already argued that a scheme based on unanimous voting is not resilient of
any failures. For that reason, the definition of the robustness measure provided in
Eq. (4.3) in Sect. 4.1 will be replaced by Eq. B.2, in which the repeated exhaustion of
the available redundancy is revealed:

w (C,`)
e = 1 (B.2)

Careful examination of the premisses shows that Eq. (4.5a) of the penalisation
mechanism is used by Eq. (4.2b) to determine the penalty that needs to be inflicted
on some dissentient version. However, both equations have the premiss dtof (C,`) > 0
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in common, which, in case of unanimity voting, implies unanimous consensus
and thus P (C,`) =V (C,`), such that a reward should be awarded to each of the
participating versions by means of Eq. (4.7b) rather than inflicting a penalty. Versions
returning a syntactically invalid response message are penalised as before according
to Eq. (4.5c). Apart from this, penalties can only originate from Eq. (4.5b), initiated
by Eq. (4.2c). Recall how c(C,`)(v) was introduced in Sect. 4.1 as the cardinality of
the consensus block in which version v was classified throughout round (C,`). As
there is no mutual agreement between the engaged versions in V (C,`), dtof (C,`) = 0,
therefore eligible values for c(C,`)(v) and c(C,`)

max lie in N[1,n(C,`)[ and thus

Ran(p(C,`)(v)) =R]0,1]. The severity of the penalty inflicted on a version is inversely
proportionate to the relative degree of consent within the equivalence class in which
it was classified; refer to Sect. 4.2 for more information.

Finally, we consider the reward model that was introduced in Sect. 4.3. Recalling
that Eq. (4.7b) is used to obtain a reward factor in view of Eq. (4.2e), which requires a
strictly positive dtof value, one can observe that all engaged versions are attributed
the maximum reward value k1. This prudent downscaling of the accumulated
penalties is motivated by the increased vulnerability and poor robustness of an
NVP/UV scheme, which was captured by Eq. (B.2). On the whole, the downward
evolution of normalised dissent values may be expected to be significantly more
gradual than it would be the case for a scheme based on majority voting that would
operate in a similar environment, with comparable redundancy configurations
exposed to identical disturbances. This can be further supported when reasoning
about Eq. (4.7a): let us consider a redundancy scheme C using a static redundancy
configuration. Then, given an identical failure occurrence model, values for
#consent(C, v) may reasonably be expected to be lower if the scheme is using
unanimity voting rather than majority voting. As unanimous consensus is required
for the NVP/UV scheme to be able to adjudicate a result, as opposed to a mere
qualified majority for an equivalent NVP/MV scheme, the former may fail to deter-
mine a result, whereas the latter may have succeeded — note that the inverse is
not true. The use of unanimity voting will therefore result in a more rapid increase
of the normalised dissent values for participating versions, which is reflected in

larger values of w (C,`)
i (v), and in turn may delay re-integration of idling versions —

cf. Eq. (4.8b) and Eq. (4.7a).

B.2 Ramifications of Voting Mechanism

When contemplating the use of an alternative voting mechanism, one should be
aware of the repercussions of doing so. Depending on the type of voting mechanism
used, the perceived responsiveness of an NVP composite could be sped up by
returning an adequate result for a voting round (C,`) as soon as one can be uniquely
ascertained, possibly ahead of the completion of the partitioning procedure and
before a result has been acquired for each of the subordinate invocations 〈C,`, i 〉. In
spite of pre-emptively returning a result for an ongoing voting round (C,`), execution
of the remaining, pending invocations 〈C,`, i 〉 will proceed as before — cf. the voting
round state transition model in Fig. 2.1. The conditionalities are specific to each type
of voting mechanism, which can only inspect the (partially) constructed partition
immediately after each successive partition update, i.e. whenever a result for some
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version vi ∈V (C,`) has been acquired and the version has been classified into some
equivalence class in ℘(C,`) accordingly. Recall that a generic result value is used for
invocations that failed to return a response before the tmax timeout has lapsed since
their initialisation, which is indicated by the hatched area in Fig. 2.1 and B.1. It is at
this stage of the lifecycle of a voting round (C,`), i.e. the transition into state (c),
that a result has been secured for all of the subordinate invocations 〈C,`, i 〉 of the
involved versions vi ∈V (C,`) — either by having received a response message, or
because of a performance failure having occurred. It also marks the completion of
the partitioning procedure, during which each of the engaged n(C,`) versions were
classified. Contextual information is then extracted by means of the measures listed
in Sect. 3.1 and 3.4 and fed into the models defined in Chapt. 4 and Sect. 5.2 and 5.3.

We will now elaborate on the impact of a chosen voting mechanism on the
response time of NVP redundancy schemata. Throughout our discussion, we will
refer to Fig. B.1 in which a single voting round is depicted involving n(C,`) = 5
versions. The length of the curved pink lines is indicative of the relative response
time observed for an invocation 〈C,`, i 〉. Should it extend beyond the dashed line
inside the area hatched in orange, a predefined result message will be used to signal
a performance failure for the corresponding version vi . This scenario is exemplified
in Fig. B.1 by version v4, which failed to return a response within the imposed tmax

timeout because of a late response failure (omission failures would be caught in
a similar way) — cf. Sect. 2.6.4. Recall that it is assumed that, within the scope of
a given voting round (C,`), versions vi ∈V (C,`) are classified in the order in which
their responses are acquired from the corresponding invocations 〈C,`, i 〉 (increasing
response times) — cf. (A18), Sect. 17. The order in which versions affected by
performance failures are classified remains undefined, though this procedure takes
place precisely when the tmax timeout has lapsed. In discussing the response time
of a scheme and the adjudication of a result, one needs to discriminate between
a response (value), often denoted by the term outcome, or a failure message to be
returned.

a db c

decision algorithm
℘(C,`) constructed

request arrived, voting
round (C,`) initialised

forward input message
to replicas vi ∈ V (C,`)

AV/MV/PV: worst-case

〈C,`, i1〉

AV: best-case
UV: best-case

〈C,`, i2〉

MV/PV: best-case

〈C,`, i3〉

performance failure
UV: worst-case

〈C,`, i4〉

〈C,`, i5〉

Figure B.1: Comparison of scheme response times for active, plurality, majority and
unanimity voting. Blue cases relate to adjudication of outcomes; red ones to failures.
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An outcome can only be adjudicated for an invocation (C,`) of a scheme using
unanimity voting when a syntactically valid response has been timely secured
for all of the subordinate invocations 〈C,`, i 〉 of the involved versions vi ∈V (C,`)

and all versions returned equivalent responses under an equivalence relation Rd .
In other words: unanimity voting does not allow for a pre-emptive return of an
outcome; a failure message could be considered to be issued pre-emptively when
the timeout has expired. If all versions return an equivalent response before the
timeout, the response time for an outcome equals the maximum response time of
the n(C,`) subordinate invocations. Failures can be issued as soon as a new result
has been acquired for a participating version that exhibits anomalous behaviour.
Content failures mark a violation of the requirement of unanimity; RVF failures
would typically result in the creation of additional consensus block(s), whereas EVF
failures will cause the affected versions to be classified in P (C,`)

F accordingly. The
worst-case response time for identifying a failure is the occurrence of performance
failures after all received responses (if any) reported equivalent response values. The
best-case scenario would be if, from the first result retrieved from an invocation
〈C,`, i 〉, the version vi is perceived to have been affected by an EVF failure.

Another, less commonly used voting mechanism is active voting (AV), in which
the first acquired syntactically valid response from an invocation 〈C,`, i 〉 will imme-
diately be returned as the outcome for round (C,`), i.e. version vi was classified

in some class in ℘(C,`)\P (C,`)
F . If no eligible response can be acquired before the

timeout, a failure message will be issued to signal that an outcome could not be
adjudicated. Although a substantial reduction in response time can be realised by
this approach, it is not suitable for applications designed with stringent correctness
concerns, as it cannot overcome discrepancies that may occur due to RVF failures.

Finally, we move on to the majority voting and the closely related plurality
voting (PV) mechanisms. They differ in that the latter may adjudicate a result
from a consensus block that does not form a qualified majority, as opposed to a
threshold m(C,`) required by the former — cf. Sect. 3.1 [7]. A unique response can

be adjudicated as soon as there exists a consensus block P (C,`) different from P (C,`)
F

of cardinality greater than or equal to m(C,`). In that case, the outcome can be
returned for either of the two voting mechanisms. The best-case response time
for determining an outcome of the scheme corresponds to a scenario in which
the first m(C,`) responses from invocations 〈C,`, i 〉 were acquired before the tmax

timeout, and were found to be equivalent under the applicable relation Rd . If no
such qualified majority has been identified before the timeout expires, a failure
message will be returned for an NVP/MV scheme. An NVP/PV scheme may, however,
still return an outcome based on the (unique) consensus block of largest cardinality.
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APPENDIX C
Optimisation of WS-BPEL

Workflows through Business
Process Re-engineering Patterns

For the sake of completeness, this appendix reports on research activities
that were conducted at an early stage, and that were discontinued due to
a lack of mature, open-source software implementations and libraries of
the investigated tools and specifications. Although the reported research
activities are by no means directly related to or in line with the main
research track reported throughout this dissertation, there is a small
overlap with the contributions described in Sect. 8.4. With the courtesy
and permission of the publisher IGI Global, this appendix includes
publication [86] in full, which is an improved and extended version
of the research that was previously published as [68] and [85]. It has
been included to further substantiate the claim that some of the available
linguistic constructs in WS-BPEL can be used to implement redundancy
schemata like NVP and RB, and that such an approach can help to
achieve a clear separation of concerns by isolating the actual business
logic encapsulated within the underlying web services — versions —
from the dedicated fault-tolerant orchestration logic. Related research
question(s): RQ-4.

This chapter appeared in Technological Innovations in Adaptive and Dependable
Systems: Advancing Models and Concepts edited by Vincenzo De Florio. Copyright
2012, IGI Global. Posted by permission of the publisher.

With the advent of XML-based SoA, WS-BPEL swiftly became a widely accepted
standard for modelling business processes. Even though SoA is said to embrace
the principle of business agility, WS-BPEL business processes are still manually
crafted into their final executable version. While SoA has proven to be a giant leap
forward in building flexible IT systems, this static WS-BPEL workflow model should
be enhanced to better sustain continual process evolution. In this seminal paper,
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we point out the potential for adding business intelligence with respect to business
processes re-engineering patterns to the system to allow for automatic business
processes optimisation. Furthermore, we point out how these re-engineering
patterns may be implemented leveraging techniques that were already applied
successfully in computer science. Several practical examples illustrate the benefit of
such adaptive process models. Our preliminary findings indicate that techniques
such as the resequencing and parallelisation of instructions, further optimised
by introspection, as well as techniques for achieving software fault tolerance, are
particularly valuable for optimising business processes. Finally, we elaborate on
the design of people-oriented business processes using common human-centric
re-engineering patterns.

C.1 Introduction

A cutthroat competition is currently raging between enterprises in which companies
are compelled to constantly evolve in order to realise a competitive advantage.
This goal of attaining market leadership is pursued by iteratively altering business
processes1 and strategies aimed at improving operational efficiency [174]. Business
processes are thus continuously refined, mainly to resolve recurrent issues and as
such rectify process performance. This concept is commonly referred to as business
process re-engineering (BPR)2.

Large enterprises have extensively deployed information technology (IT) systems,
and have recently started to automate their business processes. Regrettably enough,
most of these volatile business processes are enlaced into rigid IT systems and this
imposes limitations with respect to the speed with which changes are possible.
In the beginning of this decade, this issue led to the concept of service-oriented
architectures (SoA) in which IT is flexibly structured to better alleviate the re-enginee-
ring of processes by splitting up so-called business logic into a number of software
components that are exposed as services [22]. With service (operations) as an
implementation for individual process activities, a business process can be automa-
ted by appropriately orchestrating and coordinating a set of services. Actually this
service-oriented computing paradigm has adopted the best practices in distributed
computing of — roughly estimated — the past twenty years, and commercially
backed by major industry concerns, SoA continues to gain adherence [175].

As one possible SoA implementation technology, web services have managed to
become the de facto standard for enterprise software in which various distributed,
heterogeneous software systems are integrated in support of corporate e-business
and e-commerce activities [22]. A web service is typically exposed through a well-
defined open XML interface described in the Web Services Description Language
(WSDL) document that formally describes the syntax of application-specific messages
in XSD Schema format [18] [54]. Clients communicate with a web service through
an endpoint reference that represents the address and context path where the

1The notion of business process is defined as an orchestration of several process activities carried
out by computer systems or people within an enterprise with the objective of supplying a product or
service to the customer.

2Because of the vague definitions found in most text books, the BPR acronym is commonly used
interchangeably for business process re-engineering as well as business process redesign. The former
has an evolutionary character, while the latter is revolutionary. For more information, we refer to [174].
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service is deployed [133]. The Web Services Business Process Execution Language
(WS-BPEL) XML language is one of the standards that resulted from intensive
standardisation initiatives by industrial consortia, and shortly became a widely
accepted standard for workflow modelling [143]. The benefit of the central WS-BPEL
orchestration component is that the process definition is no longer interwoven
inside the implementation code of the business logic. Because of this separation,
SoA is said to alleviate the transformation and restructuring of business processes
using highly reusable services that can easily be re-orchestrated into WS-BPEL
workflows [22].

The service-oriented paradigm turned out to be a giant leap forward in the
construction of flexible IT systems indeed. XML-based SoA with WS-BPEL further
added to business agility, allowing for the quick development of new business
processes leveraging service-wrapped legacy IT assets (i.e. business process redesign).
But in spite of the popularity of WS-BPEL and its clear separation of process and
business logic, there remain some shortcomings [85, 176]. One of these issues is
that a WS-BPEL process definition is extremely static: it is designed manually using
some software tools and is then loaded into the WS-BPEL engine. Since service
orchestration and business processes are at the core of SoA, it is imperative to
continuously optimise WS-BPEL process definitions to achieve an increase in system
performance, besides having economic implications in realising a competitive
advantage required by the actual continual process evolution.

Although the BPR methodology originated in the early Nineties, until recently,
businesses were still generally managed using an approach based on experience and
intuition. As BPR is gaining adherence, we are on the verge of unifying the IT-driven
service-oriented paradigm and the BPR managerial methodology: automatically
applying prevailing BPR principles to WS-BPEL process definitions can help in the
further optimisation of these process models, thereby help sustain process evolution.

This article starts with an introduction on how BPR patterns can be applied to
WS-BPEL process definitions using established techniques from computer science
(Sect. C.2). Next, in Sect. C.3, we illustrate the applicability of BPR patterns to
WS-BPEL workflows, and show how this can result in performance improvements,
such as a reduction in execution time. Sect. C.3.1 to C.3.3 will then elaborate on the
resequencing and parallelisation of process activities, further optimised by intro-
spection, after which the relationship is examined between techniques for achieving
software fault tolerance and critical process activities. Lastly, Sect. C.3 will highlight
the key role we envisage for human-centric re-engineering patterns in the design of
people-oriented business processes.

C.2 Business Process Re-engineering and WS-BPEL

Numerous BPR principles (best practices, design patterns, heuristics) have been
proposed in the literature, yet there has not been any thorough inquiry into combining
IT and BPR so far [177]. In order to support a higher level of process agility, we
propose to design an intelligent system able to optimise the WS-BPEL processes in
accordance with these conceptual BPR principles. An overview of some potentially
useful patterns for WS-BPEL process improvement is shown in Table C.1.

The WS-BPEL XML language defines a set of primitives with which business
processes can be modeled: basic activities (receive, assign, invoke, reply, etc.) can
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be set in order using control and data flow supported by structured activities (e.g.
sequence, loop, pick) [22,143]. These rudimentary structural activities turn out to be
limited to the common control and decision structures available in most imperative
programming languages.

It is no surprise, then, that we can spot similarities between the techniques for
program optimisation in computer science, operating on atomic units of instructions
and the BPR patterns for business processes, acting on coarser units of instruction
blocks with a variable size: service operations. Consequently, it is plausible to try
and automate economic BPR patterns leveraging existing techniques from computer
science.

BPR directives basic techniques
human-
centric

Sect.

resequencing data and control flow analysis [178] no C.3.1

parallelisation Tomasulo, scoreboarding [179] no C.3.1

exception control flow and flow variable no C.3.2

knock-out (minimise process cost) speculation [179] no C.3.3

reliability transactional support [180] no C.3.4.2

dependability redoing, design diversity [67, Chapt. 1, 2] no C.3.4.3

order assignment & distribution chain of execution [145] yes C.3.5.2

flexible assignment nomination [145, 146] yes C.3.4.3

specialist-generalist nomination [145, 146] yes C.3.4.3

split responsibilities 4-eyes principle [145] yes C.3.5.4

case manager delegation, escalation, yes C.3.5.5

process administrator role [145]

Table C.1: some business process re-engineering patterns

One possibility to combine both disciplines is to add BPR intelligence into
workflow design tools that will preprocess and transform the process model prior to
its execution. Alternatively, attributing business intelligence to SoA could allow for
the dynamic application of BPR principles to the original static WS-BPEL process
definitions, aiming at the optimisation of the process at runtime depending on
the system’s current state and resource availability. This runtime information may
be used to adjust either the overall process model or individual process instances.
Obviously, this second approach is more powerful than the former which is operating
exclusively at design-time, as it enables the system to tune a process taking into
account the system’s running internal state as well as environmental conditions.

C.3 Business Process Re-engineering Patterns

In this section, some examples will illustrate that applying BPR patterns to WS-BPEL
processes can have a beneficial influence on the overall performance of the process
model. We suggest some techniques from computer science with the potential to
implement these patterns. For the purpose of clarity, the examples are presented in
Business Process Model and Notation (BPMN), a common graphical representation
of the actual XML WS-BPEL definition. This does not limit our contribution, as
WS-BPEL can easily be mapped to BPMN and vice versa [181]. For detailed informa-
tion about the WS-BPEL 2.0 specification, please refer to [143].
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C.3.1 Resequencing and Parallelisation BPR Patterns

The execution of a WS-BPEL process is essentially sequential, though the WS-BPEL
specification also contains syntactical facilities for executing activities in parallel
[143]. As a primary BPR pattern, the execution order of process activities, i.e.
service invocations, can be optimised by considering data flow dependencies so
as to execute mutually independent activities in parallel [177]. The underlying
idea of simultaneously executing activities and advancing activity initialisation is
that some time can be gained by avoiding performance-degrading stalls caused
by dependencies. Throughout this paper, we assume an SoA-based environment
aggregating a set of distributed IT system allowing for optimisation by parallel
execution, but the amount of parallelism that can actually be achieved is also limited
by the number of resource (web services or employees) replicas and their processing
capacity in the system.

Data dependencies can arise between different activities and relate to variables
defined in the WS-BPEL process definition. For instance, a service invocation activity
has a read-dependency on whatever variable is used to hold the input message for
the service to be invoked, and also a write dependency to the variable that will
ultimately store the service’s reply. Assignment statements normally construct and
write to a variable after reading values from one or more other variables. Structural
activities may also read certain variables during the evaluation of control flow
variables.

A

B

C

D

A

C

B

D

Figure C.1: On the left the original WS-BPEL process definition; on the right
the optimised process. The rhombic symbols stand for parallel execution, i.e.
AND-split/join.

Techniques for the dynamic scheduling of instructions, such as the Tomasulo
approach and scoreboarding, have been successfully used in numerous domains of
computer science and allow for an optimised, out-of-order execution of sequential
streams of program instructions, which could be used as the basis for individual
process instances [179]. These techniques could be extended and applied to WS-BPEL
activities to avoid pointless waiting as the result of data dependencies. However,
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these approaches are limited to basic blocks of non-branching sequences of instruc-
tions, cf. one sequential scope in WS-BPEL, and can benefit from techniques such
as speculation to work around control flow statements and as such artificially
increasing the number of instructions in these basic blocks (cf. Sect. C.3.3). The
Tomasulo approach exploits the knowledge on dependencies unraveled at runtime;
thus it clearly outperforms all strategies that statically analyse the data and control
flow of the WS-BPEL process; nevertheless, it is considerably easier to analyse and
restructure the overall WS-BPEL process model at design-time [178].

The process model in Fig. C.1 merely represents successive service invocation
activities. It is furthermore assumed that an unaltered output message from a
particular service invocation is stored in a WS-BPEL variable, which is used as input
for invoking another service. Note that the dashed arrows representing these data
dependencies are not part of the official BPMN notation and have been added for
improved readability. The start event corresponds to the reception of a message that
triggers execution of a new WS-BPEL process instance and the end event represents
the process replying to its requester. The solid arrows in the diagrams indicate
sequential flow. Supposing the respective execution times for activities A, B , C and
D (invocation of an operation on a service) are 9, 4, 12 and 6 seconds, the execution
time in the original process would simply be 31 seconds, whereas the optimised
version would result in an execution time of 27 seconds. Obviously, the time required
for the new scope containing the parallel flows to complete is determined by the
branch that takes most time to complete (A – C ).

C.3.2 Exception BPR Pattern

In re-engineering business processes, it is common to isolate the exceptional part
from the normal process flow. Techniques like speculation are already applied in
compiler optimisations to improve control flow, branches in particular [179]. This
can be accomplished by conditionally executing the branch with highest probability,
and compensating in case of misprediction. Moreover, the amount of parallelism
that one can exploit is also limited by control dependencies. Speculation is a
technique that can be used to overcome the penalty of control dependencies in some
cases by shifting highly probable activities to eliminate control dependencies so as to
match the parallelism offered by the execution environment. To achieve speculation
techniques in WS-BPEL process definitions, scopes of activities may be shifted,
provided that an estimation on the probability of each branch is available. This
information can either be a constant value chosen at design time, or alternatively
be gathered at runtime, during the execution of the program, through a monitoring
component (as it is the case e.g. in feedback loops and autonomic computing
systems) [50].

Consider for instance the example in Fig. C.2. Imagine the left branch in the
original process model has a 30% chance of being executed. For the service
invocations A, B , C and X , we suppose execution times being 15 seconds each.
Then the execution of the original process model would take about 45 seconds for
sequentially executing activities X , A and B , or 30 seconds for the other execution
path comprising activities X and C . The time required to evaluate control flow
structures, e.g. branch variables, is considered negligible.
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Applying speculation will restructure the initial model to always execute C
(because of the 70% chance the containing branch is chosen). The branching
condition remains identical as long as the result of invoking service C is not written
to a variable that is used for evaluating the branching condition. In case the process
instance proceeds accordingly, the execution time equals 30 seconds. However,
speculation may deteriorate and delay process execution in case the execution does
not fit: because of the undoing3, the best-case execution time of the speculated
WS-BPEL process is now 60 seconds.

X

A

B

C

X

C

UNDO

A

B

X C

UNDO

A

B

Figure C.2: From left to right: the original process, which is then restructured using
speculation (phase 1), and finally the version optimised using parallelisation (phase
2). The rhombic symbols in the original process denote conditional branches.

Consequently, speculation in itself does not necessarily result in an enhanced
process model, but combined with parallelisation, a significant gain in execution
time can be harvested. In the absence of data dependencies between activities X
and C , the intermediate model that was transformed using speculation can now be
restructured to execute C in parallel to X . In case of the normal process flow (the
branch comprising C in the original model), there is a considerable improvement: 15
seconds instead of 30 seconds (a speedup by factor 2). In the worst case, should the
time required to execute C not exceed the time lapse for the execution of the other
parallel flow of activities, the performance degradation is given by the overhead for
undoing, and the alternative flow will perform no worse than in the original model.

In conclusion, the exception re-engineering pattern should only be applied
if there are no data dependencies between the activities in the branch that is
most likely to be chosen (the normal flow) and the activities before the branching
condition. Furthermore, we suggest this pattern to be applied only if the difference

3As the service-oriented computing paradigm promotes the development of stateless web services,
the overhead of the undo activity may be considered negligible.
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in probabilities of the alternative branches exceeds a minimal threshold. In that case,
the overall performance might benefit from speculation, and the negative impact of
non-fitting WS-BPEL instances might be subdued.

C.3.3 Knock-out BPR Pattern

Business processes generally contain a number of knock-outs, conditional checks
that may cause the complete process instance to cease, skipping all subsequent
process activities. Upon occurrence, the WS-BPEL process instance should be
abandoned, possibly compensating in order to reverse the service invocations that
were required for evaluating the knockout conditions. The knock-out BPR pattern
is a special version of the resequencing pattern aiming to manipulate the process
yielding on average the least costly execution by arranging knock-outs in decreasing
order of effort and increasing order of termination probability [177]. The rationale
behind this pattern is that knock-outs should be inserted in the process flow as early
as possible to avoid the allocation of resources during the execution of other process
activities for process instances that halt. We illustrate this principle in Fig. C.3:

B

K2

A

K1

C D

A

K1

B

K2

C D

Figure C.3: An example to illustrate the knock-out BPR pattern.

Suppose knock-out condition K1 has a 40% probability of evaluating negatively
and it takes 2 seconds to invoke service A and compute this branching condition.
Likewise, for knock-out K2, these values respectively equal 65% and 4 seconds
including the invocation of service B . Then the ratio 0.40/2 for K1 is higher then
0.65/4 for K2. Hence, assuming the absence of data dependencies, application of the
knock-out pattern should restructure the arrangement of knock-outs in the upper
diagram shown in Fig. C.3 into the lower process model, i.e. K1 should be checked
before K2.

As time goes by and more process instances have been executed, for both the
speculation and knock-out re-engineering patterns, the estimated probabilities of
the branching conditions might change, which in turn may trigger new changes to
the process model at runtime, resulting in adaptive business processes.

C.3.4 Dependability Aspects

During its execution, failures may occur that impede a WS-BPEL process instance
from proceeding correctly or even worse, simply terminate it. Moreover, a process
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may contain a number of business-critical scopes that require a higher degree of
reliability or some form of transactional support. In this section, we present a survey
on how processes can be designed for increased reliability using proven techniques
for application-level fault tolerance.

C.3.4.1 WS-BPEL and Fault Tolerance

Fault-tolerant mechanisms can only be expressed in a syntactically adequate linguistic
structure [11]. In spite of numerous WS-* specifications related to reliable messaging
and security, little emphasis has been placed upon the fault tolerance aspect of
SoA [176, 180]. In this section, we first introduce the syntactical constructs for
error recovery as well as their semantics in the WS-BPEL specification. We will
then point out that these features prove to be inadequate for complex scenarios
aiming at increasing dependability by means of transactions and fault tolerance. A
WS-BPEL process definition consists of a number of scopes that typically represent a
particular piece of functionality, most likely a complex activity. Similar to high-level
programming languages, scopes can be nested within the overall process definition
as the outer scope. Three types of handlers can be defined upon a scope [143]:

– The purpose of WS-BPEL fault handlers is similar to that of catch blocks and
exceptions in the Java™ programming language: to undo the partial and
unsuccessful work of a scope and performing forward error recovery with the aim
of re-attaining a state where the execution of the WS-BPEL instance can resume.
A web service may explicitly throw a SOAP fault message when it is invoked from
a WS-BPEL process. WS-BPEL also defines a number of standard faults that will
be thrown by the WS-BPEL runtime as a consequence of erroneous conditions
during process execution, for instance, a join failure. Furthermore, the process
designer may include application-specific knockouts that throw WS-BPEL faults
when deviations from normal behavior are detected (self-checking pattern) [5].
Faults are identified by an XML qualified name. Two types of fault handlers can
be attached to a scope for intercepting faults thrown during the execution of
the activities contained inside the scope: a fault handler can either handle one
specific type of fault, or a “catch-all” fault handler can handle all faults for which
no specific handler was defined. When a fault is raised, all remaining activities
in the current scope are terminated, and an appropriate handler that is capable
of handling the fault will be selected and activated. If a fault cannot be treated
by the handlers pertaining to the current scope, it is recursively forwarded to the
enclosing scope. If the fault is not caught by any fault handler, the process instance
will exit, triggering the default termination handler. Note that fault handlers are
only enabled when the execution of a scope is in progress.

– Compensation handlers represent the application-specific undo process for rolling
back the effects of scoped activities that were already executed (forward error
recovery). If compensation is triggered, for instance from within fault handlers,
all nested scope will have their compensation handlers activated recursively.

– Lastly, termination handlers can be used kick in a series of activities when a
WS-BPEL process exits unexpectedly. The default compensation handler will
trigger compensation.

237



Apart from its compensation and fault handing, the WS-BPEL syntax is limited
to describe the functional part of workflows. Moreover, these standard WS-BPEL
recovery mechanisms prove to be inadequate to define sophisticated recovery
patterns/procedures, for example rollback or the execution of alternative web
services [85, 180]. Finally, a hidden assumption in WS-BPEL is that designers have
complete knowledge of the fault and system model of the partner services, so that
they are able to define a process flow that contains all the required strategies for
recovering from faulty situations [176]. We believe this assumption not to be a
realistic one.

C.3.4.2 Transactional Support

The WS-AtomicTransaction specification, part of the WS-Transaction family of
specifications, enables the coordination of distributed transactions using the two
phase-commit protocol with ACID-compliant transaction features (atomicity,
consistency, isolation, durability) [22]. Even though backward error recovery
techniques such as this commit and rollback approach are generally not suitable to
apply to long-running WS-BPEL workflows, there are situations where consistency
should be guaranteed during short-lived subprocesses (service invocations in a
particular scope). WS-BPEL’s compensation mechanism, which allows undoing
the effects of completed activities, cannot cope with atomic transactions, as the
coordination model of WS-BPEL is local to the process definition. As there is no
external coordination, a partner service in the transaction may not be notified by
the process, which may leave the system in an inconsistent state. The WS-BPEL
enhancements published in [180] enable the use of atomic transactions and business
activities in the context of WS-BPEL processes by using aspects to inject WS-BPEL
code to use the external coordination mechanism defined in WS-AtomicTransaction.

C.3.4.3 Redoing and Design Diversity

This section will demonstrate the feasibility of using WS-BPEL to apply proven
techniques for application-level fault tolerance.

Redoing and Recovery Blocks Recovery blocks is a technique that addresses
residual software design faults. It is similar to the hardware fault tolerance approach
known as “stand-by sparing”. The approach works as follows: on entry to a recovery
blocks, the current state of the system is checkpointed. A primary alternate is
executed. When it ends, an acceptance test checks whether the primary alternate
successfully accomplished its objectives. If not, a backward recovery step brings the
system state back to its original value and a secondary alternate takes over the task
of the primary alternate. When the secondary alternate ends, the acceptance test is
executed again. The strategy goes on until either an alternate fulfills its tasks or all
alternates are executed without success. In such a case, an error routine is executed.

The effectiveness of recovery blocks rests to a great extent on the acceptance test.
A failure of the acceptance test is a failure of the whole recovery blocks strategy.
For this reason, the acceptance test must be simple, must not introduce huge
run-time overheads, and it must not retain data locally. Recovery blocks have been
successfully adopted throughout 30 years in many different application fields. It
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has been successfully validated by a number of statistical experiments and through
mathematical modelling [67, Chapt. 1].

Retrying is not directly supported by WS-BPEL, nor is WS-BPEL capable of
checkpointing the initial system state. Assuming stateless web services as alternates,
consider a scope with a structured sequence activity. First it will invoke an operation
on service A. Then, a conditional branch will evaluate the acceptance test on
the service response message. If the acceptance test is successful, the process
execution proceeds. However, in case the acceptance test fails, a fault is thrown. This
fault is caught by a fault handler attached that in turn triggers compensation. The
compensation handler contains another scope with precisely the same activities,
only this time an alternate service B will be invoked. By nesting scopes inside
compensation handlers recursively, WS-BPEL allows to redo a web service invocation
[182].

n-version programming n-version programming (NVP) systems are built from
generic architectures based on redundancy and consensus. NVP is defined by its
author as “the independent generation of n > 1 functionally-equivalent programs
from the same initial specification” [6]. These n programs, called versions, are
developed for being executed in parallel. This system constitutes a fault-tolerant
software unit that depends on a generic decision algorithm to determine a consensus
or majority result from the individual outputs of two or more versions of the unit.

Such a strategy has been developed under the fundamental conjecture that
independent designs translate into random component failures. Such a result would
guarantee that correlated failures do not translate into immediate exhaustion of the
available redundancy, as it would happen, e.g., by using n copies of the same version.
Replicating software would also mean replicating any dormant software fault in the
source version.

NVP is different from recovery blocks in that the latter is a sequential strategy,
whereas NVP allows concurrent execution. Moreover, recovery blocks require the
user to provide a fault-free, application-specific acceptance test, while NVP adopts
a generic consensus or majority voting algorithm that can be provided by the
execution environment. Finally, recovery blocks allow different correct outputs from
the alternates, while the general-purpose character of the consensus algorithm of
NVP calls for a single correct output. The two models collapse when the acceptance
test of recovery blocks is done as in NVP, i.e., when the acceptance test is a consensus
on the basis of the outputs of the different alternates.

A
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C

voting
procedure

assign

Figure C.4: n-version programming will execute multiple service implementations
and perform majority voting to verify the result

Fig. C.4 shows how NVP may be implemented in WS-BPEL. Assuming stateless
services A, B and C have the same WSDL interface, we concurrently execute the
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same method on the three available services (n = 3). After joining, the voting
procedure will compare the values returned. Finally, if the outcome of the voting
procedure is negative, a WS-BPEL fault will be thrown to signal failure, or the value
for which there is consensus will be stored in a variable, after which the process will
continue.

C.3.5 Human-centric BPR in People-oriented Business Processes

Human interactions frequently occur in business processes for the manual execution
of tasks, e.g. an approval [145]. Expenses resulting from employment of people are
still a major cost factor in enterprises. Therefore, an efficient allocation of the staff is
imperative, and IT can also help to achieve this goal.

This brings us to another shortcoming of WS-BPEL, which is rightly blamed of
being too automation-centric since it lacks the recognition of employees in process
workflows [143,145]. The WS-BPEL4People and WS-HumanTask specification drafts,
recently submitted to OASISr for ratification, allow for hybrid SoA in which human
actors occur next to customary IT systems exposed as web services [146]. Consequen-
tly, we claim people-centric WS-BPEL4People processes should be designed baring
human-centric BPR patterns in mind, so that the system can automatically determine
which employees should take care of a process activity, depending on the current
availability of these human resources. To our knowledge, this idea has not been
previously investigated. Table C.1 shows a few of these patterns and points out
relevant procedures defined in the WS-BPEL4People specifications. Most of these
patterns deal with the issue of assigning the task to the best suitable person available.

C.3.5.1 Introduction to BPEL4People and WS-HumanTask Specifications

The term WS-BPEL4People actually covers two specifications that have been devised
in a modular approach as an attempt to cover the complete spectrum of human-to-
process interaction. WS-HumanTask proposes an industry standard for defining
and managing human-based activities in a WS-BPEL4People process:

– It stipulates the syntax and semantics for defining human tasks in XML format,
where a task is considered as an indivisible unit of work performed by a human
process actor. Similar to a subprocess, the execution of a task is closely related to
the context of the parent process. The interoperable WS-HumanTask coordination
protocol has been conceived to attain a tight coupling with synchronisation of
state between the task and the process, where state changes can be propagated in
either direction.

– New tasks are usually offered to a task inbox, the central point of interaction
for human actors. WS-HumanTask defines a comprehensive client API interface
for the implementation of task boxes that can be used for manipulating tasks
and controlling their life cycle in accordance to the WS-HumanTask coordination
protocol. A task inbox is capable of rendering the user interface that is associated
with a particular type of task so that all relevant information is displayed and the
employee can successfully complete the work.
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On a higher level, the WS-BPEL4People extension defines a number of features
layered on top of WS-BPEL to seamlessly integrate WS-HumanTask tasks into
WS-BPEL process definitions. Three concepts are at the core of WS-BPEL4People:

– People activities were introduced as a new type of basic activity, to allow the
integration of user interactions within WS-BPEL processes. WS-HumanTask tasks
can be declared either inside the activity declaration, or may be remotely deployed
as a web service that supports the WS-HumanTask coordination protocol (though
the service is not implemented by a piece of software, but by a task box such that
a user will eventually perform the work manually). A people activity declares
the inputs and outputs required to invoke the task, just like its equivalent invoke
activity used for calling a web service.

– Similar to partner links which are used to bind a web service to a WS-BPEL
process, people links bind a group of people to a business process. People links are
generally associated with the generic human roles defined in WS-BPEL4People
and WS-HumanTask and represent a group of people who are associated with the
execution of a particular people activity.

– In order to determine the actual group of individuals involved in dealing with a
particular activity, the action of people resolution has to be performed by assigning
people queries to people links. An example of a people query may be an XPath
expression to be evaluated against a people directory, a database describing an
organisational model to represent the employees of some company or department
(WS-BPEL4People only describes the entity and the XSD schema type the query
should return; the actual implementation is not covered). People resolution is
actually a two-phase procedure: first the people query is evaluated to determine
the set of people that have the potential owner generic human role. The task
infrastructure will subsequently offer the task to all potential owners who are
eligible to claim that activity. Eventually a single potential owner that claimed the
activity will become the actual owner and will be responsible for completing the
activity.

One may wonder whether these specifications cover most commonly used
constellations of human-to-process interaction. Extensive studies with regard
to this issue were already published in [144] and [183]. Having compared these
specifications against the universal transaction pattern as the core of the
communication theory formalised in the Design and Engineering Methodology
for Organisations (DEMO), we concluded that the specifications support a vast
majority of the human-process interaction scenarios [26].

C.3.5.2 Order Assignment BPR Pattern

The order assignment pattern prefers the same employee to work on several
successive process activities for a particular process instance. This is directly suppor-
ted by the WS-BPEL4People concept of chain of execution, where the actual owner
that took care of the previous activity is selected as the sole potential owner for
the task at hand (see Lst. C.1, activities A and B). In addition, an escalation action
should be defined to offer the task to the regular set of potential owners in case the
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default scenario would fail (i.e. the owner of the previous activity does not claim the
task before the expiration deadline). Assigning several consecutive process activities
to one person should result in a reduction of execution time as this person has got
acquainted with the case. The side effect, however, is that the employee’s workload
will slightly increase compared to his or her colleagues.

Listing C.1: Assuming a sample process comprising human tasks A and B (in that
order), this excerpt from the WS-BPEL4People process definition illustrates the
language constructs for chaining the execution of B to A.

<bpel:extensionActivity>
<b4p:peopleActivity name="B">

<htd:task name="B">
<htd:peopleAssignments>

<htd:potentialOwners>
<htd:from>b4p:getActualOwner("A")</htd:from>

</htd:potentialOwners>
</htd:peopleAssignments>

</htd:task>
</b4p:peopleActivity>

</bpel:extensionActivity>

C.3.5.3 Flexible Assignment and Specialist-Generalist BPR Pattern

Next, according to the flexible assignment BPR pattern, and supplemented by the
specialist-generalist pattern, one should distinguish between highly specialised
human resources and generalist employees that can be assigned to execute a diversity
of tasks. The availability of generalists adds more flexibility to the business process
and can lead to a better utilisation of resources. Unfortunately, the generic human
roles defined in the specifications are insufficient, and the people query facility and
the organisational people directory that is searched by this query, both proposed
in the above mentioned specifications, remain undefined. We should find a way to
annotate people in this directory describing their skills, capabilities and permissions
so that the system can reason about the degree of an individual’s specialisation. We
envision an important role for techniques such as semantic processing and semantic
matching in particular. The mutual assistance community, as it was proposed in
[184], aiming to provide elderly people with the services they require in a timely and
cost-effective way, introduces a system where human resources are registered with a
semantic description according to an OWL-S ontology model [185]. Further research
is required on semantic WS-HumanTask annotation before this type of service-
wrapped registry can be used to determine the potential owners of a task.

C.3.5.4 Split Responsibilities BPR Pattern

Assigning different tasks within a process to people from different functional units
should be avoided (split responsibilities pattern). Again, enhancing the expressive-
ness of people queries and the structure of the people directory could allow the
system to optimise the dispatching of human tasks to the appropriate available
human resources at runtime. Related to this pattern is the concept of segregation
of duties, also referred to as the 4-eye principle in which mutually independent
individuals each perform an instance of the same task for the purpose of combating
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fraud and avoiding disastrous mistakes [146]. An example is shown in Lst. C.2, where
activity C may not be executed by whomever performed task A.

Listing C.2: Assuming a sample process comprising human tasks A and C (in
that order), this excerpt from the WS-BPEL4People process definition illustrates
the language constructs for separation of duties: activity C cannot be handled by
whomever completed activity A.

<bpel:extensionActivity>
<b4p:peopleActivity name="C">

<htd:task name="C">
<htd:peopleAssignments>

<htd:excludedOwners>
<htd:from>b4p:getActualOwner("A")</htd:from>

</htd:excludedOwners>
</htd:peopleAssignments>

</htd:task>
</b4p:peopleActivity>

</bpel:extensionActivity>

C.3.5.5 Case Manager BPR Pattern

The case manager BPR pattern originally introduced an additional process actor
— the case manager — that is responsible for a business process. However, as the
emphasis is on the management of the process rather than actually participating
in its execution, the case manager is not necessarily the only resource that will
work on process tasks. Providing a single point of contact from a client perspective,
detour patterns, such as delegation and escalation which are directly supported
in WS-BPEL4People, can result in delegating process activities to other people
[144, 145]. Apart from this single point of contact, the case manager is also the
person accountable for correcting mistakes. Fortunately, the business administrator
and process stakeholder generic human roles, defined in the WS-BPEL4People
specification, can be used to represent the case manager respectively when managing
the entire process or merely a single process case [145].

In a situation where the execution of a process has gone astray, chances are
that it will jam and require manual intervention of the case manager in order not
to aggravate the situation. Therefore, one-way WS-HumanTask notifications can
be used to notify the case manager of noteworthy events, or application-specific
administration tasks for forward or backward recovery may be embedded inside
WS-BPEL fault or termination handlers.

As a final consideration, human-computer interaction faults were rarely
considered in fault tolerance designs as, in the past, they were considered external to
the system boundaries. The WS-BPEL4People specifications finally allow extending
these boundaries by seamlessly integrating human tasks and service-wrapped
software components into hybrid WS-BPEL workflows that can consequently realise
a higher degree of dependability. Also, because of WS-HumanTask, such interaction
faults can be detected and dealt with by adding additional checks, possibly with the
intervention of an external case manager.

Combining human-computer interaction by means of the WS-BPEL4People and
WS-HumanTask specifications with BPR patterns for automatically and intelligently
dispatching workload to human system resources is an exciting research challenge
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with the potential for a substantial performance improvement in process execution,
which may lead to increased productivity and competitiveness. At the same time
this also endorses the significance of WS-BPEL4People in SoA, and we plead for a
speedy ratification of the specification drafts.

C.4 Conclusion

We started this paper by briefly introducing BPR as a relatively new managerial
methodology and SoA as a way to sustain the volatility of business processes resulting
from the fierce competition in the market. It was pointed out that the static nature of
WS-BPEL process definitions imposes limitations to quickly and easily re-engineer
business processes in the quest for operational efficiency.

SoA strongly embraces the principle of business agility. Hence, incorporating
BPR system intelligence into the WS-BPEL engine allows for the dynamic application
of BPR principles to the original static WS-BPEL process definitions, with the goal
of optimising the process at runtime with respect to the system’s current state and
runtime environment.

We propose an innovatory approach in which BPR principles are explicitly
applied to WS-BPEL processes by means of established techniques and practices
from computer science so that the process semantics are preserved and whereby
at the same time the process execution is being optimised. It is expected that this
will allow for a reduction in execution time, e.g. as the result of parallelisation. This
conjecture has been corroborated by several small examples. We then addressed
the issue of process reliability using a bottom-up approach starting from proven
techniques for software fault tolerance. Furthermore, the WS-BPEL4People standard
enables to design people-oriented business processes such that human-centric BPR
patterns are applied at runtime to intelligently dispatch human tasks to suitable
human process actors depending on availability.

Furthermore, BPR-aware SoA have the potential to turn static WS-BPEL process
definitions into adaptive workflows that match the current environmental and
systemic conditions so as to make a more efficient use of these system resources thus
achieving higher performance. The WS-BPEL specification need not be modified:
this ensures a smooth transition in adopting these ideas. Complex BPR patterns can
be implemented using runtime system information and possibly service metadata
and annotations. We are still in the early phase of elaborating on the ideas presented
in this paper. As a proof of concept, we intend to develop a prototype illustrating
the feasibility of the exemplified BPR patterns. Research on the introduced human-
centric BPR patterns will depend on the ratification process of the WS-BPEL4People
specification draft, and the availability of compliant implementations.

We conclude that BPR-aware SoA environments, automatically applying re-
engineering patterns to WS-BPEL processes, result in adaptive business processes,
which is a crucial requisite for achieving an enhanced form of business agility and
as such better sustaining process evolution.
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APPENDIX D
Nederlandstalige Samenvatting

Van bedrijfs- en missiekritische gedistribueerde applicaties wordt in toenemende
mate verwacht dat ze uiterst betrouwbare kenmerken vertonen, met name op gebied
van beschikbaarheid en tijdigheid. Voor dit soort toepassingen zal een volledige
stopzetting of een subnormale prestatie van de dienst die ze geacht worden te
leveren, evenals laattijdige of ongeldige resultaten, met grote waarschijnlijk leiden
tot aanzienlijke financiële verliezen, milieurampen of menselijk letsel. Software-
componenten die deel uitmaken van gedistribueerde computersystemen kunnen
echter lijden onder de beperkingen en uitdagingen die inherent zijn aan zulke
omgevingen, zoals variabele responstijden of tijdelijke onbeschikbaarheid en
onbereikbaarheid.

Het toepassen van klassieke redundantie-gebaseerde fouttolerante ontwerppa-
tronen, zoals NVP, in zeer dynamische gedistribueerde computersystemen leidt niet
noodzakelijkerwijs tot de verwachte verbetering van de betrouwbaarheid. Dit komt
voornamelijk voort uit statische en vooraf gedefinieerde redundantieconfiguraties
die binnen dergelijke betrouwbaarheidsstrategieën toegepast worden, d.w.z. een
vast redundantieniveau en een vaste selectie van functioneel equivalente software
componenten, wat op zich een negatieve invloed kan hebben op de algehele effecti-
viteit van het systeem, ten minste vanuit de volgende twee invalshoeken.
Ten eerste kan een statische, context-agnostische redundantieconfiguratie op termijn
leiden tot een snellere uitputting van de beschikbare redundantie. Daardoor is het
mogelijk dat eventuele verstoringen van de operationele status (context) van de
onderliggende componenten niet naar behoren kunnen worden gecompenseerd.
Ten tweede bepaalt de hoeveelheid redundantie, in combinatie met het stemalgo-
ritme, hoeveel simultaan falende versies een NVP-schema kan tolereren. Een
vooraf bepaald niveau van redundantie is echter niet kosteneffectief: wanneer het
werkelijke aantal storingen lager zou zijn dat wat tijdens de ontwerpfase vooropge-
steld werd, dan zou een kleinere hoeveelheid redundantie (tijdelijk) kunnen
volstaan, waardoor de computationele kost gereduceerd kan worden, en mogelijk
tevens de kost van het daaraan geassocieerde energieverbruik.

In dit proefschrift wordt een nieuwe betrouwbaarheidsstrategie geïntroduceerd
die geavanceerd redundantiebeheer toevoegt aan NVP, met als doel de interne
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redundantieconfiguratie autonoom af te stemmen op de waargenomen verstoringen.
Deze adaptieve fouttolerante strategie is ontworpen om een hoge beschikbaarheid
en betrouwbaarheid te handhaven en kan redundantieniveau en de selectie van
functioneel equivalente componenten die door het redundantieschema worden
gebruikt, dynamisch aanpassen. Daarbij berust het algoritme op een aantal metrie-
ken om de doeltreffendheid van de redundantieconfiguratie en de gebruikte onder-
liggende componenten te evalueren, op vlak van betrouwbaarheid en tijdigheid.
Simulatietechnieken werden aangewend om de kenmerken van het algoritme, het
systeem en de omgeving waarin het zal functioneren te modelleren. Hierdoor kon
de doeltreffendheid van het algoritme geanalyseerd worden, en werd aangetoond
hoe het algoritme de tekortkomingen aanpakt die typisch verbonden zijn aan het
gebruik van de conventionele NVP-techniek.
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List of Acronyms

A/S/c/k/n/D A commonly used notation to theoretically classify queuing models,
and to denote their analytical properties [115, Chapt. 1]. More
specifically, the notation allows to characterise the input or
arrival process A, the service time distribution S, the number
of available server instances c, the buffer size k, the size of
the calling population n, as well as the scheduling discipline D.
Throughout this thesis though, it is assumed that k = n =∞, while
considering an FCFS-based scheduling discipline D, allowing the
use of the shortened notation A/S/c — cf. assumption (A07).
A queuing model can be seen as some processing facility where requests
arrive at random times, where they receive service, after which they
depart. The (inter-)arrival times are characterised by the arrival process
A, whereas the service (processing) times are characterised by the
service time distribution S. The system encompasses a waiting queue
buffer, in which a maximum of k requests may be temporarily kept on
hold before they can be served. At any time, at most c requests can be
simultaneously serviced by the processing facility. When the processing
facility becomes available, the scheduling discipline D is responsible
for deciding which deferred request is to be served next. The cardinality
of the set of all types of requests permissible in the system is denoted
by n — cf. (A41), p. 193.

AV The technique of acceptance voting refers to a hybrid approach in
which a traditional NVP scheme is extended to include the concept of
acceptance tests that is commonly found in RBs. Here, the acceptance
test will be used to validate the correctness of individual ballots prior
to feeding them to the voting algorithm [71, pp. 162–172]. See also: RB,
NVP.

AV Active voting: a decision algorithm for use in NVP redundancy
schemata in which, for a given invocation of the NVP composite, all n
versions are queried simultaneously, and the first acquired syntactically
valid response will be returned. Although it does succeed in masking
EVF failures, this voting algorithm may fail to mask RVF failures — v.
Sect. B.2.
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BPMN In contrast to the W3Cr and OASISr specifications mentioned
throughout this dissertation, which are all XML-driven specifications,
the Business Process Model and Notation specification is a
standardised graphical notation to model business processes. It
was proposed by the OMGr [95].

CORBAr The Common Object Request Broker Architecture is a set of (protocol)
specifications that emerged from intense standardisation initiatives
coordinated by the OMGr, and has been designed as an “open,
vendor-independent architecture and infrastructure” for bridging the
technological disparities when integrating software components during
the implementation of distributed computing applications.

DES Discrete event simulations have proven to be extremely useful in
analysing the behaviour and properties of complex systems. They can
be seen as computer programs written in such a way that they mimic
the behaviour of the system under investigation [73, pp. 380–382] [74].
In modelling the system, it is formalised from 2 distinct perspectives.
Firstly, a set of variables and/or class objects is identified that can
represent and reflect the state the system is currently in. Secondly,
the system’s operational and the environment’s behaviour is analysed,
resulting in a set of dedicated simulation entities (events). Each of these
events have a specific life cycle, during which they can affect the system,
its state and/or its environment. It is the aggregate result of the state
changes brought about by these identified events that approximates
the actual system’s behaviour.

DRA A data re-expression algorithm is an algorithm that is used to
transform the original input data sent upon invocation of a redundancy
scheme. Rather than replicating the inputs, they can be preprocessed
so that normalised and/or slightly rounded or rectified values are used
for the subsequent version invocation requests. It is a form of data
redundancy that can be used for tolerating software faults, primarily in
software implementations that are fed with noisy or imprecise data, or
that include lots of arithmetic operations on floating-point numbers [71,
p. 21].

dtof The distance-to-failure metric was designed to assess the effectiveness
of a given redundancy configuration used throughout the life span of a
single completed voting round (C,`) from a dependability perspective.
It can serve as an indication of the proximity of potentially hazardous
situations that may necessitate the adjustment of the currently
employed redundancy configuration so as to ensure the sustainment of
the availability of the composite’s service — v. Sect. 3.1.1 and Chapt. 4.
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EDA Event-driven architectures rely on publish-and-subscribe models
for the asynchronous exchange of specific data fragments called
events [138, Sect. 10.6]. In such type of models, there is an interested
party — the event sink — that issues a subscription request, i.e. it
states its interest in a specific type of events. The other party —
commonly referred to as the event source, or the publisher — may
accept the request, thereby pledging to send out event messages
asynchronously [22, Sect. 7.7]. That is to say, events are published
without delay, avoiding the need for the client to periodically poll. See
also: WS-Notification and invocations in the context of the traditional
client-server distributed model.

EPR An endpoint reference is an XML fragment that encapsulates the
information necessary for identifying a web service endpoint, such
that SOAP messages can be addressed and routed to the corresponding
target web service. A URI is commonly used to identify the destination,
supplemented by additional reference parameters [54, Sect. 18.2].

EVF Erroneous value failures may emerge from the activation of a latent
software design fault, causing the normal flow of execution to be
interrupted abruptly by means of an exception — fault message, that is
— being thrown — v. Sect. 2.6.2.

FCFS First come, first served: a type of scheduling discipline D that, despite
its simplicity, is commonly used to ensure the principle of fairness in
scheduling requests that are awaiting processing by the service facility.
See also: the Kendall notation A/S/c/k/n/D .

FCU A fault containment unit is a well-structured (software) solution that
encapsulates a specific fault-tolerant scheme, and that is designed
so as to “confine the effects of a fault [originating from the use of
underlying resources]” to a limited locality, and “prevent the effects
of that fault from propagating throughout [the] system” in which it is
used [3]. Examples include NVP and RB schemata.

G/G/c A specific, though abstract type of queuing model in which a general,
unspecified distribution G is used to emphasise independent arrival
and service times. See also: the Kendall notation A/S/c/k/n/D .

HTTP Emerging from a joint standardisation effort coordinated by IETFr and
W3Cr, the HTTP protocol has become the foundation for (textual) data
exchange over the Internet [28, Sect. 7.3.4]. It is commonly used in
XML-based SoA solutions to exchange SOAP messages amongst web
services. Related: TCP/IP.

IETFr The Internet Engineering Task Force is an open standardisation
organisation whose primary objective is to propose, define, and
promote standards related to Internet architecture. Standardisation
initiatives are channelled through and published as Request for
Comments (RFC): these memoranda are authored by the voluntarily
participating members and describe the proposed innovations,
methods and behaviours. The principal achievement emerging from
the numerous standardisation initiatives is, without doubt, the Internet
Protocol Suite (TCP/IP).
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LAN Local area network: a network offering connectivity between
computing devices located into the same geographical entity.

LRF When invoking a processing facility, the invocation is said to suffer from
a late response failure whenever the system fails to deliver a response
within the specified time constraints. This type of failure is usually
caught and signaled by means of a performance failure — v. Sect. 2.6.4.

MAPE-K The MAPE-K control loop structure is an abstract view on the essential
capabilities that are needed to implement autonomic computing. It
was originally published in [49] in an attempt to apply the concept of
feedback loops to distributed computing environments. Such control
loops are able to monitor the environment in which they operate,
analyse the perceived environmental behaviour and characteristics, in
order to plan the adjustment of their configuration, that will eventually
be applied (executed). These four capabilities rely on the presence of
contextual knowledge.

MoM A message-oriented middleware solution is a set of software libraries
that collectively support the sending and receiving of messages that
result from requesting the service and functionalities exposed by a
distributed computing system. MoM solutions are available both as
commercial and open-source offerings; either type usually incurs a
license fee. They come with an embedded application server, and
software runtime libraries to support various specifications in support
of common tasks and duties like message processing, transaction
management, orchestration, service discovery and federation, security
and access control, etc. Examples include specifications that are part of
the WS-* stack, or the Java™ platform.

MoWS Part of the WSDM specification, the Management of Web Services
specification outlines how web services themselves can be used and
managed as WS-Resource-compliant entities using MUWS. It also
outlines a list of service-level and operation-level metrics and status
models, as well as a request processing state model, which was derived
from the WSLC specification.

MTBF The mean time between failures is the average time span between
any two successive points in time when the service the system is
aiming to provide, suddenly becomes unavailable (again). Each such
period is immediately proceeded by a period during which the system
behaved correctly and the availability of the service is seeks to provide
is sustained in full — v. Sect. 6.1.3. See also: MTTF, MTBF, and MTBFO.

MTBFO A useful measure for approximating the failure rate of a specific software
entity, the mean time between failure occurrences is defined as the
average time between any two consecutive failure occurrences, both
of which result in disturbances affecting the availability of the software
entity under consideration — cf. MTBF.

MTTF Mean time to failure: the average duration of all periods throughout the
system’s operational life during which its availability is sustained in full
and without interruption, i.e. it behaves in line with its (non-)functional
specifications — v. Sect. 6.1.3. See also: MTTR and MTBF.
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MTTR Mean time to repair: the average duration of all periods throughout
the system’s operational life, each of which is characterised by a
prolongment of unavailability, as the system continuously fails to meet
the objectives defined in its (non-)functional specifications, resulting
from the occurrence of disturbances — v. Sect. 6.1.3. See also: MTTF
and MTBF.

MUWS Part of the WSDM specification, the Management Using Web Services
specification defines a set of foundational manageability capabilities,
each of which defines a set of operations, events, WSRF-RP-compliant
metadata and other semantics supporting a particular management
aspect of a WS-Resource service. Apart from a set of predefined
foundational manageability capabilities, the specification also outlines
how domain-specific capabilities can be designed, which comprise
customised manageability logic, and which may extend any of the
foundational capabilities as appropriate.

MV Majority voting: a decision algorithm commonly used in NVP
redundancy schemata in which, for a given invocation of the NVP
composite, a qualified (absolute) majority is sought amongst the n
acquired outputs in order to determine the result [7] — cf. Eq. 3.1, p. 67.
See also: PV.

NVP In reliability engineering, n-version programming has been
successfully used as a design diversity pattern for achieving software
fault tolerance [5, Chapt. 4] [4, pp. 60–66] [2, Sect. 7.3]. An n-version
module constitutes a fault-tolerant software unit — a client-transparent
replication layer in which all n > 1 functionally-equivalent programs,
called versions, receive a copy of the user input and are orchestrated to
independently perform their computations in parallel. It relies on a
decision algorithm to determine a result from the individual outputs of
the versions employed within the unit — v. Sect. 2.1.

OASISr The Organization for the Advancement of Structured Information
Standards: a global consortium whose primary objective is to “drive
the development, convergence and adoption of open standards for the
global information society”, especially for e-business and web service
standards.

OMGr The Object Management Group: an “international, open membership,
non-profit technology standards consortium” whose objective is
to develop “enterprise integration standards for a wide range of
technologies”. The consortium primarily focusses on modelling system
properties and behaviour, resulting in popular standards like UML™
and BPMN.

PNPN Priority-based queue: a type of scheduling discipline D that is
commonly used to enforce various SLA levels in scheduling different
types of requests that are awaiting processing by the service facility. See
also: the Kendall notation A/S/c/k/n/D .

251

https://www.oasis-open.org/
http://www.omg.org/


PV Plurality voting: a decision algorithm occasionally used in NVP
redundancy schemata in which, for a given invocation of the NVP
composite, a non-qualified majority is sought amongst the n acquired
outputs in order to determine the result [7] — cf. Sect. B.2 and Eq. 3.1,
p. 67. See also: MV.

QoE Quality of experience: see QoS.

QoS Quality of service: an indication of the overall performance of a
networked telephony or computing solution, as perceived by the
end-user. Hence the synonymous use of the term quality of experience
(QoE).

RB In reliability engineering, recovery blocks has been successfully
used as a design diversity pattern for achieving software fault
tolerance [4, pp. 60–66] [2, Sect. 7.3]. The iterative behaviour of recovery
blocks schemata stands is sharp contrast to the parallel constellation
applied in NVP schemata, in that each of the n functionally-equivalent
versions is probed in sequence. More specifically, each iteration
involves the invocation of a single version, and encompasses 3 phases:
(i) checkpointing, i.e. saving the system’s current state information, (ii)
invoking the next version and waiting for a response to be secured, and
(iii) subject the acquired result to an acceptance test. In case the test
evaluates positively, the result will be returned, and no further actions
will be taken. Otherwise, the system will be rolled back to its previously
checkpointed state, and another iteration will be initiated, given that
there remain untested versions.

RPT Request processing time: the duration during which the request is
being serviced by the processing facility. In discrete event simulations,
RPT values are commonly generated by drawing random variates from
the service time distribution S, and are therefore commonly referred to
as request service times.

RTT Throughout this dissertation, the round-trip time is considered to be
the time required for transferring the request and response messages
to/from a G/G/c processing facility throughout the invocation of an
operation exhibiting a request-response message invocation pattern.
The RTT does not include the RPT at the processing facility, nor
potential waiting times.

RVF Despite being classified as failures, the occurrence of response value
failures will usually not make the system appear to fail — cf. Fig. 2.3
on p. 45. Rather, the content of the response returned via the service
interface is syntactically correct, though diverges from implementing
the service’s functional specification — v. Sect.2.6.1.

SDLC The term software development lifecycle refers to all activities required
to create and deliver software, ranging from requirements analysis,
architecture and design, implementation (development), quality
assurance (testing), system operations (deployment, monitoring, etc.).
It also includes activities like project and change management and the
like.
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SLA A service level agreement is a formal definition of particular qualitative
aspects of the service as it is expected to be delivered by some software
entity. It is “agreed upon by the respective owners of a service [provider]
and its requestors” [22, 140].

SoA Service-oriented architecture: a popular, multi-disciplinary paradigm
used in the design of enterprise architectures [22, 186]. Throughout this
thesis, SoA is used to denote contemporary distributed systems with a
particular focus on software components wrapped as XML-based web
services.

SOAP The Simple Object Access Protocol is a lightweight procotol intended
for exchanging structured information between XML-based web
services. Valid SOAP messages should be structured as envelopes, in
which the message body carrying the payload is clearly separated from
the optional SOAP headers which carry specific information in support
of the WS-* feature set. Among SOAP header blocks, WS-Addressing
elements are commonly found. Valid messages are usually exchanged
over HTTP, although other transmission protocols are available [17] [54,
Chapt. 11].

SSJ Stochastic Simulation in Java™: a Java™-based software library
developed at the Université de Montréal which provides numerous
facilities for programming discrete event simulations [81]. Is has
been used for conducting performance analyses of the algorithms that
emerged from the research activities reported in this dissertation —
v. Chapt. 6 and 7.

TCP/IP The Internet Protocol Suite comprises a set of networking protocols
upon which the Internet and most computer networks rely. Maintained
by the IETFr, the relevant RFCs describe protocols for data
packetisation, addressing, transmission, and routing. Together, they
provide a robust solution for end-to-end networked connectivity. The
Internet Protocol (IP) defines how packets ought to be structured
from an addressing perspective, such that source and destination
information is carried alongside the encapsulated payload [28,
Sect. 5.6]. The Transmission Control Protocol (TCP) is responsible
for “regulating the flow of internetwork [IP datagram] packets”,
and comes with a robust error detection scheme for retransmitting
unacknowledged packets, as well as facilities for transmitting chunks of
data and keeping packets properly ordered [28, Sect. 6.5]. Packetised
network traffic resulting from HTTP sessions is usually transmitted over
TCP/IP-enabled networks.
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TMR A term used to denote a redundancy scheme in which three redundant
resources (versions) are used to mask failures. The concept can be
applied to hardware as well as software redundancy patterns — an
example of the latter being RB and NVP schemata. As the emphasis is
placed on NVP, the term is used to indicate an NVP redundancy scheme
with a fixed degree of redundancy n = 3 — regardless of whether a
static or dynamic redundancy configuration (replica selection) applies.
Similarly, for other redundancy levels, the term n-modular redundancy,
or NMR, is used.

TPA As the name implies, the technique of two-pass adjudication includes
two voting round passes: the first pass is fed with the original inputs; if
that fails to adjudicate an outcome, a second pass is initiated, which is
fed by re-expressed parameters [71, pp. 218–231]. See also: DRA, NVP.

UDDI Despite the attempt to position the Universal Description Discovery
and Integration specification as a core web service standard, it has
often been perceived as overly complex and has never seriously gained
ground. It was proposed by OASISr as a platform-independent,
XML-based registry in which enterprises can publish web services, and
which can be interrogated by regular SOAP messages so as to locate
suitable web services [187].

UML™ The Unified Modelling Language is a popular “general-purpose
visual modelling language [proposed by the OMGr] that is used
to specify, visualize, construct, and document the artifacts of a
software system” [188].

URI With syntactical guidelines set out in RFC 3986, uniform resource
identifiers enable to effectively identify, name, and address network
(internet) resources by means of a compact sequence of characters.
They are used to identify web service endpoints by means of endpoint
references [189].

UV Unanimity (or consensus) voting: a decision algorithm rarely used
in NVP redundancy schemata. The term unanimity emphasises the
requirement for all n versions to be in mutual agreement before a
response can be adjudicated. Despite its limited applicability and
inability to mask failure occurrences, it does lend itself to applications
for which it is preferable to return all but an incorrect result — v.
Sect. B.1.

W3Cr The World Wide Web Consortium: an international organisation
whose primary objective is the definition of web standards.

WAN Wide area network: a network offering connectivity between
computing devices situated across multiple local area networks.
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WS-* A set of web services specifications that emerged from numerous
W3Cr - and OASISr-driven standardisation initiatives. Due to the
complementary approach in the way most of these specifications
have been defined, the resulting web service protocol stack has
proved to be extremely useful in defining, locating, and implementing
XML-based web services, as well as making services interact with
each other. As can be seen in Fig. 8.2 on p. 184, the WS-* stack
covers transport, messaging and eventing, description, discovery,
management, and security protocols (the latter are not shown
though) [22, Chapt. 6–7, 17].

WS-Addressing The Web Services Addressing specification was set out by the W3Cr

as a set of “transport-neutral mechanisms that allow web services to
communicate addressing information” and conversational attributes. It
has become an essential part of the web services specifications, defining
a series of XML vocabularies for identifying and communicating
references to concrete web service endpoints, enriching the
expressiveness of regular endpoint references. With WS-Addressing
information being carried as SOAP header blocks, the specification
effectively contributes to supporting message transmission and delivery
over message-oriented middleware solutions, thereby offering a
valuable solution to potential issues frequently caused by processing
nodes such as gateways and firewalls. Furthermore, it outlines the
fundamentals for establishing conversational contexts and message
correlation [133] [54, Chapt. 18–19] [22, Sect. 7.1].

WS-BPEL As its name implies, the OASISr Web Services Business Process
Execution Language is a standardised executable XML-based language
in which business process activities can be described by orchestrating
data flows, in which information is retrieved from and communicated
to web service endpoints [143]. See also: WS-BPEL4People and
WS-HumanTask.

WS-BPEL4People The WS-BPEL4People specification emerged as an OASISr

standardisation initiative in an attempt to cover the complete
spectrum of human-to-process interaction so as to fully support the
modelling of hybrid, people-centric business processes. In this type of
processes, human actors may participate in specific process activities,
next to the customary IT systems exposed as web services. Its purpose
was primarily to address the shortcomings of WS-BPEL, which had
previously been regularly criticised for being too automation-centric,
since it lacked the recognition of employees in process workflows. The
WS-BPEL4People extension defines a number of features layered on
top of WS-BPEL to seamlessly integrate WS-HumanTask tasks into
WS-BPEL process definitions. For more information, please refer to
App. C. See also: WS-BPEL and WS-HumanTask.
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WS-HumanTask Ratified by OASISr, WS-HumanTask proposes an industry standard
for defining and managing human-based activities in people-centric
business processes. On a higher level, the WS-BPEL4People extension
defines a number of features layered on top of WS-BPEL to seamlessly
integrate WS-HumanTask tasks into WS-BPEL process definitions.
The main contributions of this extension are (i) an interoperable
coordination protocol that was conceived to attain a tight coupling with
the synchronisation of state between the task itself — an individual unit
of work to be processed by a human actor — and the process instance
which it is part of, and (ii) the concept of a task box as a central point
of interaction through which human actors may manipulate tasks and
control their life cycle. For more information, please refer to App. C. See
also: WS-BPEL and WS-BPEL4People.

WS-MEX A W3Cr standardisation initiative to define an interface and operations
for retrieving all or part of the metadata associated with a specific
web service endpoint, e.g. WSDL interface definitions, or WSRF-RP
documents [134] [22, Sect. 7.5]. See also: WS-RMD, WSRF.

WS-Notification Web Services Notification: a set of OASISr WS-* specifications that
form the foundation for building event-driven architectures (EDAs) in
SoA. More specifically, the WS-BaseNotification specification covers
event message formats and a set of predefined operations which apply
the concepts of publish-and-subscribe models to web services [139]
[24]. Supplementing the WS-Notification specification, the WS-Topics
specification by OASISr describes various filtering options with which
the subscriber can express its particular interests, e.g. by means of an
XPath query that is validated against the notification message payload.
A competing, albeit inferior standard, is WS-Eventing, which resulted
from a W3Cr initiative.

WS-Policy Authored by the W3Cr, the Web Services Policy family of WS-*
specifications encompasses a number of complementary specifications
designed for associating non-functional constraints and requirements
to web service endpoints, primarily in the areas of security and quality
of service. Examples might be required security tokens, supported
encryption algorithms or coordination protocols. An extensible
mechanism is put forth (i) for advertising such attributes by means
of policy assertions, and (ii) for the validation and enforcement of
compliance to such attributes by service requestors [190] [22, Sect. 7.4]
[54, Chapt. 16–17].

WS-Resource Part of the OASISr-driven WSRF standardisation initiative, the
foundational Web Services Resource Framework: Resource
specification outlines how a WS-Resource results from the composition
of a (stateful) resource and a web service through which the resource
can be accessed, controlled and/or monitored. Several specifications
from the WSRF and WSDM family may be required to support such
features though.
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WS-RMD An OASISr specification for defining metadata for resource properties,
which allows to enforce value restrictions and access control,
supporting, e.g. mutability and modifiability [137]. See also: WSRF-RP
and WS-MEX.

WSDL Without doubt the predominant W3Cr specification in the WS-*
stack, the Web Services Description Language specification has been
widely and successfully used as an XML-based interface description
language [18]. It outlines the details for structuring and describing
the functionality offered by web services, port types, i.e. the set of
exposed operations, and the permissible message (payload) data types
and interaction patterns [22, Chapt. 7–9].

WSDM Web Services Distributed Management: a family of OASISr-driven
WS-* specifications conceived to expose a web services-based
manageability layer for applications and/or stateful resources, resulting
in improved controllability and interoperability, even across enterprise
and organisational boundaries [109]. It is comprised of the MUWS
and MoWS specifications. The underlying resource is wrapped inside a
WS-Resource-compliant entity, through which the manageability layer
can be accessed by means of a single, coherent WSDL interface. See
also: WSRF.

WSLC Web Service Management: Service Life Cycle: a W3Cr-driven
initiative to standardise the life cycles of web services, and request
processing [94]. Formally expressed by means of state transition
diagrams, they lay the foundation for the service and request processing
state models defined in the MoWS specification.

WSRF The Web Services Resource Framework is a family of specifications
authored by OASISr that aim to “define a generic and open framework
for modelling and accessing stateful resources using web services”.
It builds on two foundational specifications: WS-Resource and
WS-BaseFaults, the latter intent on outlining an extensible mechanism
for defining rich SOAP faults. The other members of the family build on
top of these:
– WS-ResourceLifetime: defines an interface and operations to manage

the lifecycle of potentially short-lived WS-Resource resources;
– See also: WSRF-RP and WSRF-SG.
Related: WS-RMD. The manageability features targeted by WSDM
heavily rely on WSRF.

WSRF-RP Web Services Resource Framework: Resource Properties: an
OASISr-driven WS-* standardisation initiative which outlines an
extensible mechanism for exposing additional, stateful information
by means of a set of typed values — called resource properties — in
the WSDL interface of a WS-Resource, and protocols for querying,
reading and manipulating these metadata properties in a standardised
format [136].
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WSRF-SG Part of the OASISr-driven WSRF standardisation initiative, the Web
Services Resource Framework: Service Group specification comes
with interfaces and operations for managing service groups, i.e.
“[potentially] heterogeneous by-reference collections of web services”.
It can be used as a lightweight alternative for UDDI, for it can serve
as a lightweight service registry solution, capable of structuring entire
federations of web services.

XML The widely used eXtensible Markup Language specification was set
out by the W3Cr as an open standard for encoding documents,
and arbitrary data held within, in a self-descriptive format that is
both machine- and human-readable. Tagging is used to annotate
the data held within documents, such that metadata is syntactically
distinguisable from basic text values. WS-* specifications heavily rely
on XML, primarily for defining the structure of standardised message
formats that are exchanged when interacting with web services.

XPath Authored by the W3Cr, the XML Path Language specification
describes a compact syntax for selecting nodes and values within
an XML document. It operates on the “logical [tree] structure of an
XML document” and proposes a set of operators for navigating the
underlying DOM tree, as well as a basic set of operators for performing
simple computations on (node) values [191]. Related to: WS-Topics.

XSD XML Schema Definition: a W3Cr extension of the XML specification,
which can be used to formally describe the intended structure and
content of XML documents. XSD schemas, which are themselves
structured as XML documents, are commonly used for validation
purposes: they allow to verify that XML fragments are syntactically
correct and therefore interpretable in specific application contexts.

258

https://www.oasis-open.org/
http://www.w3.org/
http://www.w3.org/
http://www.w3.org/


List of Terms

ballot A ballot is the response value or failure message returned from a single
subordinate invocation of one specific version used within an NVP
redundancy scheme. Ideally, whilst processing a request, the scheme
will be able to secure n ballots, one for each underlying version. These
will then be analysed by the adjudication mechanism so as to overcome
eventual discrepancies and determine a single satisfactory outcome to
be returned.

business process From a service-oriented perspective, a business process can be seen as
a well-structured workflow, and the corresponding data flow, defined on
a set of process activities, each of which is to be carried out by computer
entities, computer systems and/or people within an enterprise, with the
final objective of supplying a product or service to the customer [68, 86].
With web service (operations) encapsulating and exposing accessible
implementations of individual process activities, a business process
can be automated by appropriately orchestrating and coordinating a
set of services by means of a WS-BPEL process definition.

disturbance The event of a single request being struck by some type of failure,
resulting in the perturbation and, consequently, the (temporary)
unavailability of the service that the software entity that is processing
the request is expected to provide.

error Resulting from the activation of a fault, an error makes the affected
entity transition into an inconsistent state, inhibiting the entity to
pursue its normal operations as specified. The (in)direct effect this
may have on the associated service is called a failure.

failure A failure or malfunction is any situation, resulting from the activation
of an error, under which the delivered service by the affected entity is
behaving in an unexpected way, and deviates from the expected service
as it was anticipated and specified.

fault An unintentional defect, a design or implementation flaw that was
overseen during the engineering and testing of a software entity. When
activated, it will manifest itself in an error.
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invocation In the traditional client-server (distributed) model, when issuing a
request for service, there are two software entities involved: a client
entity, and a server entity. The invocation of the server entity is initiated
by the client entity by issuing a request message destined for the server
entity. As soon as the request message has been handed over to the
server entity, the request will be served and processed, after which a
response message will be sent back to the client entity. The lifecycle
of a single invocation is modeled in the lower part of Fig. 2.1. When
invoking an entity, a single operation — a handle to a specific software
processing routine — is called that is defined in the entity’s interface. As
the subject matter of this dissertation is on redundancy management
within NVP-based systems, only operations are considered that are
accessible through a request-response message exchange pattern [22].
In XML-based SoAs, these operations would be defined in the WSDL
interface definition, as would be the XSD definition of the permissible
payload that will be transmitted inside the body of the SOAP request
and response messages. The terms invocation and request are used
interchangeably.

operational life Once a software entity is deployed, the operational life is the total time
in which the entity is running and processing requests, starting from the
moment the entity is launched, i.e. it is instructed to start its operations,
until the system ceases its operations, either because it is explicitly
instructed to do so, or because of a crash failure.

pending request A request is said to be pending as long as it it is being serviced, or
planned to be serviced by the software entity being queried. As a
software entity is essentially a processing facility, whose properties
can be characterised by some queuing model, it corresponds to that
part of the invocation’s lifecycle during which it has entered, but not
yet left the model — v. Fig. 2.1. In other words, the invocation has been
received and accepted for treatment by the processing facility.

redundancy scheme A commonly used architectural style for designing fault containment
units, in which “some form of redundancy — time, information, [...]
hardware and/or software redundancy — [is exploited]” for masking
potential disturbances [11, Sect. 2.2]. Redundancy schemata rely on
dedicated circuitry and/or logic in support of the execution, and for
adjudication purposes in particular. When applied to software, the n
underlying redundant resources correspond to functionally-equivalent
software entities that supply the same service and functionality,
though each has been designed and implemented by independent
development teams. Examples are NVP and RB schemata.
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software entity Considering the compositional nature of many large-scale distributed
applications and the role of software components as building blocks, the
abstract notion of software entity is used for generalisation purposes.
At the lowest level, it can be used to refer to single-component software
entities, as well as composite software entities that encapsulate logic for
properly orchestrating other software entities encompassed or used
within. A component of the former type shall be referred to as version.
Redundancy schemata such as, for instance, NVP serve well to exemplify
this latter type of software entities. At the highest level of composition,
the term is used to refer to a (distributed) application in its entirety, that
is to say the software system itself.

software system At the highest compositional level, this type of software entities refers
to software applications composed of multiple interconnected software
entities, possibly deployed on top of a dedicated network infrastructure,
in which lower-level software entities are arranged so as to provide
an automated end-to-end software solution in support of specific
functionality and/or a specific set of business processes. The term will
be occasionally used to refer to a large-scale distributed computing
solution in its entirety, and is used as synonymous with enterprise
application.

version A single-component software entity. The term is particularly used in
the context of redundancy-based fault-tolerant schemata; software
entities in which multiple versions are utilised for masking potential
failure occurrences. It is in that context that each version is expected to
encapsulate an “independent[ly developed] functionally-equivalent
program[..., all sharing] the same initial specification” [6].
See also: RB, NVP.
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List of Assumptions

In order to improve readability, all of the assumptions, hypotheses and design
choices introduced throughout this dissertation have been summarised and listed
here below. The abstract notion of software entity is used for generalisation purposes:
it can be used to refer to single-component software entities, which shall be referred
to as version, as well as composite entities that encapsulate logic for properly
orchestrating other software entities encompassed or used within. Redundancy
schemata such as, for instance, NVP serve well to exemplify this latter type of
software entities.

(A01), p. 41 Request processing will commence as soon as the scheduling
discipline removes the request from the waiting queue buffer and
hands it over to the processing resource — version — cf. (A07).
From that point on, until it has been completely treated, the request
is said to be pending, and will receive service from the processing
resource handling it, which will apply the business logic held within.

(A02), p. 45 Throughout this dissertation, the notion of disturbance is used
to denote the (temporary) unavailability of the service that the
affected version is expected to provide. It is the result of the
activation and manifestation of one or more latent design faults
in the underlying business logic, and is triggered when handling
pending requests. Although not explicitly considered, other types of
defects also qualify, including hardware and network connectivity
issues.

(A03), p. 45 The processing of a request is assumed to yield a result compliant
to the functional specification of the software component (version)
that is responsible for its servicing, provided that this component
was not affected by any type of disturbance during the request
processing time. See also: (D01) and (D02).

(A04), p. 45 Contemporary distributed computing systems are assumed to
exhibit the properties of a timed asynchronous distributed system
model. The behaviour and the potential anomalies that may cause
disturbances are characterised by means of four properties on p. 45.

(A05), p. 46 When a software component is struck by a crash failure, it will
persistently exhibit omission failures for a prolonged period of time.
Affected components usually never recover without administrative
intervention by the system operator. See also: software
rejuvenation (p. 96).
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(A06), p. 46 Since the scope of this thesis is largely situated in the area of
application-level fault tolerance, the emphasis is primarily placed
on software design faults. The network datagram service, the
middleware deployment environment and the NVP composite itself
— including the embedded decision algorithm — are assumed to
behave properly without any disturbances appearing.

(A07), p. 46 Throughout this thesis, it is assumed requests are admitted for
processing by a specific version based on a G/G/c queuing model
that relies on an FCFS scheduling discipline. Recent advances in
computer hardware and in distributed clustering technologies have
allowed distributed computer systems to scale and measure up to
virtually any demand, supporting the simplification that k = c =∞.

(A08), p. 47 The activation of a dormant design fault pertaining to a specific
software entity will directly result in the emergence of a disturbance,
and thus immediately manifest into a failure without any delay,
resulting the perturbation of the entity’s availability.

(A09), p. 47 The manifestation of a non-persistent disturbance originating
from the activation of a software design fault can only affect the
availability of the corresponding software entity within the scope
of execution resulting from a single invocation of the entity. Given
that the disruptive effects of such disturbance be confined to a
specific scope, other invocations of the same software entity, which
may be serviced simultaneously, will remain unaffected. This
does not apply to persistent disturbances — crash failures, that is.
See also: (A21).

(A10), p. 47 The potential disruptive effects caused by non-persistent
disturbances will dissipate as soon as the scope of execution
from which they emerged due to the activation of a design
fault, has completed, and a result is handed over to the
middleware environment for transmission to the requesting party.
See also: (A21).

(A11), p. 48 Software design faults can only manifest as content or crash failures
— cf. Fig. 2.3 on p. 45.

(A12), p. 48 Content failures can emerge only when a latent software design
fault is activated along the execution path of the business logic
held within a software component. This can occur only when the
component is actually processing requests.

(A13), p. 48 As an essential part of any voting round, a decision algorithm
is responsible for securing all ballots and adjudicating a single
outcome. To do so, it will compare the ballot values acquired, and
create a partition to categorise these into equivalence classes.

(A14), p. 49 When classifying and comparing response values, a distance
function can be used to determine whether any two values are
equivalent. This function determines the equivalence classes that
will be generated as elements of the partition — cf. (A14).
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(A15), p. 50 Response values can be sampled as random variates drawn
from a normally distributed random variable. In doing so,
outlier response values are less likely to occur than minor
deviations from the exact result. The exact result is the
expected result that should be generated when a request was
processed in full without triggering disturbances in the underlying
software component during the request request processing time.
See also: (A17) and (D02).

(A16), p. 50 Related to (A13), (A14) and (A15): each equivalence class will
accommodate the same amount of variability in the response values
obtained for the versions classified within, in comparison to the
exact value.

(A17), p. 51 Response values can be sampled as random variates drawn from
a uniformly distributed random variable. Compared to (A15),
this is likely to cause more divergence of the generated response
values, which typically reduces the ability to adjudicate a consensus
(majority) due to a significantly smaller expected cardinality of
the equivalence classes in the generated partition — cf. Fig. 2.5.
See also: (D02).

(A18), p. 52 For performance reasons, we assume that response values are
classified in the order they are acquired. Although this does
affect the construction of the partition that is used by the decision
algorithm, this does allow to return an outcome before all ballots
have been secured. See also: (A13).

(A19), p. 54 The exceptional behaviour caused by the occurrence of an EVF
failure is transient and will disappear immediately such that it will
only affect the relevant pending request(s) that were being serviced
at the time the failure occurred. See also: (A20).

(A20), p. 54 EVF failures can only affect pending requests that were being
serviced by the affected software component. See also: (A12)
and (A19).

(A21), p. 55 When a crash failure is activated during the servicing of a specific
invocation of a software entity, the entity will become permanently
unresponsive. The entity will henceforth exhibit omission failures
for any pending request it was servicing at the time of failure
occurrence, as well as any subsequent request it was offered for
processing after the failure had originally occurred. See also: (A08)
and (A10).

(A22), p. 55 Crash failures can only arise as the result of the activation of a latent
software design fault along the current execution path followed
while the affected software component was busy processing one or
more pending requests.
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(A23), p. 55 The activation of a crash failure is assumed to affect only the
availability of the affected software component, and does not affect
the behaviour of the deployment environment. Consequently,
since the software component is assumed to be managed within a
queue-based processing facility, inbound requests will be accepted
and buffered in the waiting queue without ever receiving service —
cf. (A07).

(A24), p. 55 For requests susceptible to crash failures, the associated omission
failure will manifest as performance failures. See also: (A25).

(A25), p. 56 A performance failure manifests only when a response for a request
could not be acquired in due time.

(A26), p. 56 A performance failure does not necessarily emerge due to
the activation of a design fault; it can materialise from the
interplay of several endogenous and exogenous conditions like
the computational capacity, load pattern, etc.

(A27), p. 60 During the course of its lifetime, a request may be affected by
multiple types of disturbances.

(A28), p. 60 During the RPT, a request can be affected by multiple occurrences
of a particular type of failure class. Within the scope of a single
request, these occurrences are assumed to be idempotent and need
not necessarily all be treated by the simulation model — cf. (D01)
and (D02). This does not apply to performance failures though: at
most one such failure can occur for a given request.

(A29), p. 63 Intuitively, the business logic is a set of software routines, each
of which is exposed as an operation in the interface that is
published for a specific software component. Throughout this
dissertation, unless explicitly stated otherwise, it was assumed
that a software component exposes only a single operation. This
does not restrict the applicability of our contribution and merely
serves as a simplification to reduce complexity. Generally speaking,
different units of context information should be maintained for
each specific software routine. Since each software routine is
expected to implement different functional specifications, the
proposed algorithm will treat each as completely isolated units.
See also: Sect. 2.7 and 5.4 and (A36).

(A30), p. 67 Even if a majority can be found by the voting algorithm, this
outcome does not necessarily match the exact value — cf. (A18),
(A03) and (A13). See also: App. B.

(A31), p. 68 Continuing on (A30): if the decision algorithm manages to find a
majority, this will be assumed to match the exact value (allowing for
some reasonable deviation). The inability to establish a majority,
however, will be regarded as a failure of the redundancy scheme.
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(A32), p. 82 Within the scope of an NVP redundancy scheme applying a majority
voting-based decision algorithm, a given voting round is observed
to have completed successfully if a sufficiently large degree of
consent could be found between the acquired ballots such that
a qualified majority could be found. Here, each ballot is the
contribution of a specific version selected by the redundancy
configuration applied for that voting round — cf. (A31).

(A33), p. 82 Applying more aggressive redundancy management policies may
result in an incautious downscaling of the redundancy, which in
itself might lead to failure of the redundancy scheme in subsequent
voting rounds. Furthermore, temporarily refraining from increasing
the employed degree of redundancy after observing a potentially
hazardous situation might prolong the scheme’s unavailability. See
also: (A34).

(A34), p. 83 When applying defensive redundancy management policies, the
degree of redundancy is proactively adjusted upwards whenever
potantially hazardous situations are detected. This would come at
the price of a more aggressive upscaling strategy though, in which
system resources would be allocated rather lavishly — cf. (A33).
Moreover, such type of policies typically translate in a delayed
downscaling of the employed degree of redundancy, at the expense
of postponing the relinquishment of excess redundancy.

(A35), p. 84 It is assumed the environment in which the system is operating
behaves unpredictably, mainly due to exogenous conditions
(primarily request arrival patterns, since request processing may
trigger the activation of design faults) — cf. (A12), (A20) and (A22).
As a result, the number of disturbances materialising at any point
in time may vary considerably.

(A36), p. 93 It is assumed that the service exposed by a given software entity
is remotely accessible as a set of software routines exhibiting a
request-response message invocation pattern. A one-way message
invocation pattern is not suitable given our current focus on NVP
redundancy schemata, in which a comparison algorithm relies on
the assumption that a version is expected to produce a result [22].
When exposing the service as a true XML-based web service, a
formal service contract will be advertised by means of a WSDL
document, in which each exposed software routine corresponds to
an operation — v. Chapt. 8. See also: (A29).
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(A37), p. 94 Within the scope of execution of a single invocation, once the
actual processing is complete, it is assumed there is no further
delay before the response is actually sent back to the requesting
party over the network — cf. Fig. 6.1 on p. 91. The duties imposed on
the message-oriented middleware to take the computed response
value, serialising it and embedding it in a syntactically correct
response message and have this sent to the intended recipient
are assumed to occur instantaneously, without introducing any
further delay. We argue that middleware solutions are optimised
to achieve extreme levels of performance in dealing with these
messaging-related tasks, and that careful capacity planning for
outbound network traffic is achievable by proper analysis of the
processing facility’s queuing model — v. Sect. 6.1.1.

(A38), p. 94 The client-specific overhead resulting from preparatory and
concluding activities before and after requesting service, are
assumed to be negligible, especially when compared to the overall
end-to-end response time.

(A39), p. 96 When a software entity is placed into operation, it initially performs
correctly, fully in line with its (non-)functional specifications.
The assumption is valid for mature software solutions that were
submitted to rigorous testing routines in order to ensure the
removal of critical software defects. Software is commonly assumed
to age throughout its operational life span, and, by doing so, to
become increasingly vulnerable to disturbances.

(A40), p. 97 A mission-critical system is not expected to be placed in production
until it is found to be sufficiently mature, and has been submitted
to rigorous testing routines to detect and remove as many defects
as possible. Given that such systems often rely on redundancy
schemata, faulty underlying components are deliberately kept
running in the assumption that disturbances may be of transient or
intermittent nature, and that faulty components can consequently
recover and resume normal behaviour. It is assumed that the
vast majority of defects that may translate in crash failures can
be eliminated by ample and adequate testing.

(A41), p. 193 Throughout this dissertation, the processing resource managed
within a queuing model is assumed to be a remotely deployed,
network-accessible software component, e.g. a web service, which
is referred to as version or replica.

(A42), p. 194 The queuing model underpinning a contemporary
message-oriented middleware solution constitutes a
multiple-channel, single-phase process waiting line structure.
Multiple channels are available, since multiple requests can be
independently processed in parallel — cf. Sect. 8.5.2. Request
handling involves a single phase, as any potential form of
compositionality of the underlying business logic is fully masked
and unknown to the client (service requestor). See also: (A07).
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(A43), p. 194 Each of the underlying versions in a redundancy scheme
corresponds to a software component containing a self-contained,
short-lived atomic unit of business logic. The redundancy scheme
itself is a composition of versions.

(D01), p. 45 When simulating request handling, a fault manifestation model
is used to indicate the type(s) of disturbance(s) the request was
affected by during its processing. Although a request can be affected
by multiple types of disturbances, the total order defined in Sect. 2.4
will ensure only the correct (most severe) type will be reported. See
also: (A27) and (A28).

(D02), p. 49 In simulating the processing of individual version invocations,
no specific request, response and fault messages/values are used.
Instead, the simulation model will apply the fault manifestation
model outlined in Sect. 2.4 to indicate the appropriate type of
disturbance each of the requests was affected by (if applicable).
Within NVP constellations, this ensures sufficient information is
available when securing ballots to support voting and adjudication
of an outcome. See also: (A15) and (A17).

(D03), p. 62 While undergoing service, any pending request is susceptible to
crash failures affecting the software component — version — that
is currently processing it.

(D04), p. 64 Load statistics are maintained for each version (operation) by the
underlying deployment environment (middleware) — cf. (A29)
and (A36). These are relayed to the NVP composite by means of an
asynchronous publish-and-subscribe model. The potential timing
overhead of such type of messaging model is accounted for by the
counter update discrete event model defined in Sect. 2.7. See also:
Sect. 1.1 and 8.2.3.

(D05), p. 79 The redundancy configuration to be used throughout a voting
round is determined upon the arrival of the request at the NVP
composite, and will take place prior to forwarding the incoming
request message to each of the selected versions.
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