
University of Antwerp
Faculty of Science

Department of Mathematics &
Computer Science

Research group IDLab

Multi-technology Management of Heterogeneous
Wireless Networks
Multi-technologie beheer van heterogene draadloze
netwerken

Tom De Schepper

Submitted in fulfillment of the
requirements for the degree of

Doctor in Science: Computer Science
Academical year 2018 - 2019

University of Antwerp
Faculty of Science

Department of Mathematics &
Computer Science

Research group IDLab

Members of the jury:

prof. dr. Chris Blondia (chair)
University of Antwerp, Belgium

prof. dr. Steven Latré (promotor)
University of Antwerp, Belgium

prof. dr. Jeroen Famaey (promotor)
University of Antwerp, Belgium

prof. dr. Roberto Riggio
FBK CREATE-NET, Italy

prof. dr. Jeroen Hoebeke
Ghent University, Belgium

dr. ir. Michael Peeters
imec, Belgium

University of Antwerp
Faculty of Science

Department of Mathematics & Computer Science
Sint-Pietersvliet 7, B-2000 Antwerp, Belgium

Submitted in fulfillment of the
requirements for the degree of

Doctor in Science: Computer Science
Academical year 2018 - 2019

Acknowledgments

In ancient Greek mythology, heroes, often demigods, had to prove that they could
go the distance by completing a series of challenges or quests. Arguably, the
most famous amongst these demigods is Heracles. He is, among others, known
for slaying the nine-headed Hydra, defeating the Nemean Lion, and cleaning the
Augean stables in a single day. Other heroes that achieved glory are, for example,
Theseus, Perseus, and Jason.

Comparing a Ph.D. candidacy to a hero’s quest in ancient Greek times could be
considered bold, arrogant, and a perfect example of Hubris. It can be interpreted
as nothing less than asking the twelve Olympians to either strike you down with a
thunderbolt, feeding you to the Minotaur, or throwing you directly into Tartarus.
However, I can’t help but notice several strong resemblances. First of all, bearing
the burden of a nearly impossible task, while your faith is often out of your own
hands. Furthermore, the hurdles that need to be taken although being counteracted
by all kinds of evil forces (like reviewers). Finally, also the sweet taste of success
at the end of the four-year journey is similar to the great warm welcome that awaits
a hero. Now, when writing the final sentences of this dissertation, I am proud and
grateful that I am able to look back on the traveled journey and its experiences.
Although a Ph.D. study is largely an individual crusade, I would not have been
able to complete it without the support, patience, and advice of many people.

While Greek heroes were typically trained and mentored by Chiron the cen-
taur, I had the privilege of being supervised by both prof. dr. Steven Latré and
prof. dr. Jeroen Famaey. As such, they together definitely met the four-legged stan-
dard that was defined in ancient Greece. Throughout the past four years, I learned
a lot from them and without a doubt, I would not be the researcher I am today if
it wasn’t for Steven and Jeroen. They both complemented each other nicely and,
looking back, I could not have wished for better promoters. I appreciated very
much the open communication style, the critical judgment, the ambitious goals,
and the open door when needed. The non-hierarchical supervision style allowed
for interesting and open-minded discussions, while there was also room for own
ideas and input. This dissertation would not have been possible without their con-
fidence, insights, and feedback. I am also grateful for getting the opportunity to
pursue a Ph.D. title in the first place. While I originally took some time to provide
a positive answer to the job position in 2015 and had some doubts along the road,
I am happy to have done this Ph.D. study in the end. I would also like to explic-
itly thank both Steven and Jeroen for offering me an interesting position in their
respective teams after finishing my Ph.D. candidacy.

ii

Furthermore, I like to thank all members of the jury for being willing to read
through this dissertation of over 200 pages and providing the additional insightful
feedback that made it possible to finalize this manuscript. I have met all jury
members at different times and locations the past four years throughout this Ph.D.
study, or even before. While I have worked more closely together with some of
them, I had interesting talks, discussions, and collaborations with all of them. On
that note, I want to express my appreciation for the collaboration with Michael, in
particular, for his efficient management style and constructive criticism, over the
past year on the B-budget project.

Over the years, I had the opportunity to work together with a large number of
different people, both from within or outside of the IDLab research group. To-
gether, we conquered research challenges, made presentations, held brainstorm
meetings, guided master theses or internships, constructed demos, conducted job
interviews for future colleagues, and most importantly wrote papers, rewrote pa-
pers, and even re-rewrote papers. As such, all of them were involved in this Ph.D.
research. I want to thank two people by name since I worked very closely with
them over longer periods. First of all, Patrick, with whom I have shared all three
offices that I have occupied in the past four years. Despite his profound love for
cursing out loud, we worked successfully together on a very regular basis through-
out the majority of the past four years. Second, I also want to mention Miguel, with
whom I had a great collaboration over the last year where we worked together on
the topic of traffic recognition.

In Greek mythology, the faith of all was bestowed upon the three Moirai as
they controlled the thread of life for every mortal. As such, they were able to
decide over life and death. Within our research group, this power resides in the
hands of Lynn, Anne, and Hanne. On a daily basis, the three of them were always
available for assisting in navigating the administrative and financial labyrinth, pro-
viding ice creams on hot summer days, handle orders, organize Easter egg hunts,
etc. Without a doubt, they were a tremendous and well-appreciated help on many
occasions, including finishing up my Ph.D. study. Furthermore, I really appreci-
ated the willingness of Johan to help out with all kinds of questions or problems
and Maxim for providing his template as a starting point for this Ph.D. book.

Overall, it has always been an exquisite pleasure of being a part of the IDLab
research group in Antwerp. This is mainly due to the privilege of working together
with an international band of wonderful, interesting, friendly, open-minded, and
(sometimes) slightly odd colleagues. While I acknowledge that I often skipped
coffee breaks or bar visits, I had many interesting talks, discussions, and laughs
with most of you. In particular, I would like to thank Anne, Carmen, Hanne, Kath-
leen, Lynn, Paola, Serena, Bart (all four of them), Carlos, Chris, Daniel, Dimitri,
Ensar, Esteban, Glenn, Jakob, Jeremy, Jeroen, Johan, Johann, Kevin, Le, Matthias,
Maxim, Michael, Miguel, Niels, Patrick, Pedro, Ruben, Steven, Werner, Yorick,
etc. Moreover, I have always welcomed the distractions of the intensive and very
high standing ping pong games with Jakob, Ruben, and Matthias. I also enjoyed
the attempts of speaking Spanish with Carmen, Maria, Carlos, Esteban, Johann,
Miguel, or Paola and the conversations on tram 7 with Lynn.

iii

The travels of Greek heroes were mostly situated in the Eastern Mediterranean
region. In contrast, I had the luxury of visiting three different cities on three dif-
ferent continents. The trips to, respectively, Guadalajara, Tokyo, and Rome were
absolutely memorable. My travel companions and the people that I met locally
have strongly contributed to this. For this, I would like to thank Christian, Jakob,
Steven, Anika, Maria, Ensar, José, Michael, and Patrick. Remarkable moments
were, among others, the adventurous blitz visit of the center of Guadalajara, the
tequila museum, the Senso-ji temple, the dazzling Robot Restaurant, meeting the
Pope, and eating original Roman dishes a couple of meters underground. More-
over, it was not always necessary to leave the country for nice remarkable experi-
ences. For instance, I will surely remember my participation in the science battle
by presenting my research for primary school students or transporting a bag full of
Lego on a tram during rush hour and building that Lego afterwards.

While pursuing a Ph.D. is a more than full-time occupancy, there is of course
also a life outside of the Ph.D. research. For many people outside of the work
environment, it is often unclear what a Ph.D. is all about and, even more, what the
actual research is about. However, many people still supported me along the way
of this four-year quest. Therefore, I want to thank my family and friends. First
of all, I want to thank my parents who have always made sure that my brothers
and I came in the first place, enabling the best possible future for the three of us.
Without their efforts and choices, it would have been impossible to study at the
university and, afterwards, pursue a Ph.D. I would also like to thank Chantal and
Eric for letting me work in an asocial fashion behind my laptop for most weekends
in the Ardennes. Furthermore, I have the luxury of having the best possible dis-
traction to everyday life on the dance floor. A big thanks to Carla, Joeri, and the
other Yoly’s for the warm atmosphere and support on the dance floor, at the bar,
and everywhere else in between those two places. Speaking of distractions, I also
enjoyed the far too few, but unforgettable, co-working moments and office visits,
as well as the usual craziness with Michelle. Finally, there is still one important
name missing in this, already longer than expected, acknowledgment section. I am
genuinely grateful to my girlfriend Laura, my partner on and off the dance floor,
for the traveled journey and the road ahead. Thank you for sticking up with me,
being able to cope with my very flexible and flue working hours, and enduring the
technical conversations on multiple occasions. On a more practical note, I am also
indebted for prepping my lunchbox in the mornings when I was still trying to get
out of bed (which occurred quite often in the past two years) and, more recently,
helping me out with constructing the RF-shielded box.

Antwerp, September 2019
Tom De Schepper

iv

Samenvatting
– Summary in Dutch –

Tijdens de afgelopen decennia is er een enorme toename geweest in het gebruik
en de beschikbaarheid van allerhande draadloze netwerken en toestellen. In 2017
waren er 18 miljard toestellen verbonden met het internet en men verwacht een
verdere toename tot 28.5 miljard in 2022. Naast de meer traditionele toestellen
zoals Personal Computers (PCs) en laptops, bestaat de grote meerderheid van
de verbonden toestellen vandaag uit mobiele apparaten en toestellen gerelateerd
aan het Internet der dingen (IoT). Voorbeelden hiervan zijn smartphones, tablets,
en verschillende soorten sensoren. Verder blijft ook het aantal beschikbare com-
municatietechnologieën steeds groeien dankzij de ontwikkeling van nieuwe tech-
nologieën zoals 5G, IEEE 802.11ax, en IEEE 802.11ay. Het aantal en de vari-
atie van toestellen en technologieën zal enkel toenemen, vooral wanneer steeds
meer applicatiedomeinen, zoals slimme steden en industrie 4.0, het IoT paradigma
uitrollen op grote schaal. In parallel, zijn de eisen en verwachtingen van gebruik-
ers omtrent connectiviteit, bandbreedte, kwaliteit, en functionaliteit, nog nooit
zo hoog geweest. Dit is in het bijzonder het geval voor moderne multimedia-
applicaties, zoals Virtual Reality (VR), video op aanvraag (VOD), en gaming. Het
is dus duidelijk dat deze evoluties hebben geleid tot een complexe en heterogene
omgeving waar verschillende toestellen, applicaties, en technologieën naast elkaar
bestaan op identieke of overlappende fysieke locaties. Hierdoor beconcurreren ze
elkaar voor dezelfde draadloze hulpbronnen.

De bovenstaande situatie heeft geleid tot een toename van de management-
last en tot het volgende conflict: enerzijds, zijn er de strikte kwaliteitseisen die
kenmerkend zijn voor moderne diensten en applicaties. Anderzijds, zijn er de
unieke capaciteiten van communicatietechnologieën (b.v. de afstand en capaciteit)
en toestellen (b.v. de ondersteunde technologieën). Helaas kan het bestaande
netwerkbeheer typisch niet omgaan met de hele dynamische en heterogene om-
standigheden van draadloze netwerken. Dit komt door de afwezigheid van coördi-
natie tussen verschillende communicatietechnologieën en toestellen. Ondanks dat
moderne toestellen zijn uitgerust met verschillende netwerkinterfaces, opteren ze
typisch voor het statisch selecteren van één van de beschikbare technologieën (b.v.
Wi-Fi of LTE) of toegangspunten (b.v. access points (APs) of base stations) op
basis van op voorhand gedefinieerde prioriteiten. Daarnaast, is de samenwerk-
ing tussen verschillende technologieën onmogelijk doordat een technologie kan
gezien worden als een silo, geı̈soleerd van andere technologieën. Dit is geen in-

vi

herent probleem maar is een gevolg van de architectuur van de lagere lagen van het
OSI-netwerkmodel. Nochtans is deze samenwerking nodig om functionaliteiten,
zoals naadloze handovers tussen verschillende technologieën of de verdeling van
de netwerkbelasting over verschillende connecties of componenten (load balanc-
ing), mogelijk te maken. Het gevolg is dat beslissingen worden overgelaten aan de
applicaties, of nog erger, aan de gebruiker. Het is dus onmogelijk om automatisch
te reageren op de onvermijdelijke dynamische onderbrekingen of veranderingen
binnen de draadloze omgeving. Ten slotte, beconcurreren verschillende technolo-
gieën elkaar vaak binnen dezelfde frequenties. Dit is, bijvoorbeeld, het geval voor
Wi-Fi, ZigBee, en Bluetooth binnen de 2.4 GHz frequentie. In het algemeen, is het
duidelijk dat er nood is aan intelligent beheer over de verschillende technologieën
heen en het meer efficiënt gebruiken van de draadloze hulpbronnen.

Er bestaan reeds een aantal controle- en beheersoplossingen hiervoor, maar
deze zijn vaak afhankelijk van een bepaalde technologie en richten zich op een
specifiek soort netwerk domein of use case. Hoewel sommige oplossingen in staat
zijn om te coördineren over heel het netwerk, bieden ze meestal slechts controle
aan op het niveau van datastromen. De meest noemenswaardige oplossingen zijn
MPTCP, de IEEE 1905.1 standaard, LTE-LWA, en op Software-Defined Network-
ing (SDN)-gebaseerde oplossingen. Deze oplossingen bieden typisch enkel be-
heersfunctionaliteiten (b.v. handovers) aan en bevatten geen intelligentie of al-
goritmen die effectief in staat zijn om het netwerk te gaan optimaliseren, zoals
het bepalen van het meeste geschikte pad voor elke datastroom. Bestaand werk
omtrent het verdelen van de netwerkbelasting binnen heterogene netwerken focust
meestal op de ontwikkeling van theoretische modellen en houdt geen rekening met
de bijzondere aard van draadloze netwerken. In tegenstelling tot de bestaande op-
lossingen, proberen we in dit proefschrift de opgenoemde uitdagingen op te lossen
in een transparante en fundamentele manier. De belangrijkste leidraad hierbij is
dat een gebruiker zich enkel bewust zou mogen zijn van het feit dat zijn toestel
verbonden is met het internet, terwijl het netwerk alle onderliggende beslissingen
neemt en de benodigde voorzieningen beschikbaar maakt. Als zodanig, wordt er
een betere Quality of Service (QoS) en gebruikservaring aangeboden.

Een eerste contributie is de introductie van het ORCHESTRA-raamwerk dat
naadloos beheer over verschillende technologieën heen mogelijk maakt. De op-
lossing bestaat uit twee componenten: een virtuele MAC (VMAC) laag en een
gecentraliseerde controller. De VMAC zorgt voor een enkel verbindingspunt voor
de hogere lagen door de onderliggende netwerktechnologieën op een transparante
manier samen te voegen. Dit maakt handovers tussen de verschillende technolo-
gieën, het verdelen van de netwerkbelasting, en de duplicatie van datastromen mo-
gelijk op het niveau van individuele datapakketten. Hiervoor maken we gebruik
van regels die worden afgetoetst aan elk pakket. Daarnaast zorgt de gecentrali-
seerde controller voor een globaal overzicht van het netwerk door de ontvangst
van gedetailleerde monitoringsinformatie van elke VMAC. Omgekeerd, kan de
controller de netwerkconfiguratie aanpassen door instructies te geven aan indi-
viduele VMACs, bijvoorbeeld om specifieke regels aan te passen. Om een gradu-
ele uitrol mogelijk te maken, ondersteunt de ORCHESTRA-omgeving communi-

vii

catie met reeds bestaande netwerkcontrollers en gaat het transparant om met legacy
toestellen. We stellen een alledaags prototype voor dat in staat is om de verschil-
lende voorgestelde functionaliteiten te demonstreren over verschillende communi-
catietechnologieën zoals Ethernet, Wi-Fi, en LTE. Uit de evaluatie blijkt dat onze
oplossing beter presenteert dan MPTCP, de standaardoplossing gebruikt door de
industrie. Dit terwijl ook UDP-dataverkeer mogelijk is.

Bovenop de geı̈ntroduceerde ORCHESTRA-oplossing, is er nood aan intelli-
gentie die in staat is om de functionaliteiten van het raamwerk te gebruiken om
het netwerk optimaal te gaan configureren. Daarom stellen we een aantal algo-
ritmen voor die trachten de toegelaten hoeveelheid verkeer (throughput) binnen
een netwerk te verhogen. We maken in het bijzonder gebruik van methodes die
steunen op lineair programmeren om op een wiskundige manier het probleem
te formuleren. Hierbij is het essentieel dat we de specifieke aard van draadloze
netwerken (b.v. de impact op de totale bandbreedte van verschillende toestellen die
elkaar beconcurreren) in rekening brengen. Een eerste algoritme concentreert zich
op het berekenen van de beste paden voor datastromen over verschillende Ethernet
en Wi-Fi verbindingen. Uitgebreide NS-3 simulaties en een kleinschalig proto-
type tonen aan dat gemiddeld een verbetering van 20 % mogelijk is, in vergelijk
met een statische baseline. Nadien, breiden we dit algoritme uit om rekening te
houden met verschillende toegangspunten en de mobiliteit van de gebruikers. We
tonen aan dat het optimalisatieprobleem om verschillende gebruikers te verdelen
over verschillende toegangspunten en het plannen van datastromen over verschil-
lende verbindingen en technologieën, exponentieel schaalt. Daarom stellen we
twee heuristieken voor die het probleem opsplitsen en de deelproblemen sequen-
tieel oplossen. We tonen aan dat de greedy heuristiek in staat is om meer dan
dubbel zoveel dataverkeer mogelijk te maken binnen het netwerk en ook schaal-
baar is tot netwerken met 10000 toestellen.

Ten slotte, onderzoeken we of het mogelijk is om dataverkeerspatronen te
detecteren in het radiospectrum. Deze informatie kan gebruikt worden door be-
heersalgoritmen om het netwerk verder te optimaliseren, in het bijzonder in sit-
uaties met verschillende overlappende netwerken. Deze methode staat haaks op
traditionele methodes zoals Deep Packet Inspection (DPI) met een meer intrusief
gedrag. We ontwerpen een Deep Learning architectuur die gebruikt wordt om
drie verschillende classificatiemodellen te bouwen. Deze modellen zijn, respec-
tievelijk, in staat om TCP- en UDP-datastromen, datastromen met verschillende
patronen, en datastromen met verschillende groottes (rates) te onderscheiden. Als
invoer voor deze modellen vergelijken we het gebruik van afbeeldingen die het
spectrum voorstellen doorheen de tijd of als spectrogrammen. Daarnaast stellen
we ook een nieuwe datarandomisatiemethode voor die het mogelijk maakt om
op grote schaal synthetische data te genereren door het combineren van twee re-
cente simulatoren. Een evaluatie met een test dataset, bestaande uit synthetisch
gegenereerde data, toont aan dat alle modellen een accuraatheid van minstens
96 % behalen. Verder is het mogelijk om binnen een realistische omgeving nog
verschillende groottes van datastromen (rates) te herkennen met een accuraatheid
van ongeveer 87 %.

viii

Samengevat, stelt dit proefschrift meerdere verbeteringen voor binnen de con-
text van netwerkbeheer over verschillende communicatietechnologieën heen. Er
zijn verschillende contributies: als eerste stellen we de ORCHESTRA-omgeving
voor die verschillende functionaliteiten biedt, zoals naadloze handovers tussen
verschillende technologieën of de verdeling van de netwerkbelasting op pakket-
niveau. Verder ontwikkelen we meerdere algoritmes die bovenop ORCHESTRA
gebruikt kunnen worden om het netwerk te optimaliseren en meer verkeer binnen
een netwerk mogelijk te maken. Ten slotte, introduceren we verschillende mod-
ellen om specifieke informatie van datastromen te detecteren in het radiospectrum.

Summary

Over the last decades, we have witnessed a tremendous increase in the utilization
and availability of wireless networks and devices. The number of connected de-
vices has reached 18 billion in 2017 and it is predicted that it will further grow
to 28.5 billion in 2022. Besides the more traditional devices like Personal Com-
puters (PCs) and laptops, the vast majority of connected devices these days are
mobile and Internet of Things (IoT) devices, such as smartphones, tablets, and all
kinds of sensors. Similarly, the number of available communication technologies
is constantly growing as well due to the releases of new technologies such as 5G,
IEEE 802.11ax, and IEEE 802.11ay. The amount and variety of devices and tech-
nologies will only grow, especially when more and more application domains, such
as smart cities and Industry 4.0, adopt the IoT paradigm on a larger scale. In par-
allel, the demands and expectations of users, in terms of connectivity, bandwidth,
quality, and services, have never been higher. This is particularly the case for mod-
ern multimedia applications, like Virtual Reality (VR), Video-On-Demand (VOD),
and gaming. It is clear that these evolutions have led to a complex and heteroge-
neous situation where different devices, applications, and technologies consist next
to each other at identical or overlapping physical locations, often competing for the
same wireless resources.

The aforementioned situation has increased the management burden and raised
the following conflict: at one hand the stringent quality requirements that are typ-
ical for modern services and applications. On the other hand, the unique capabil-
ities of communication technologies (e.g., range and capacity) and devices (e.g.,
supported technologies). Unfortunately is existing network management typically
unable to cope with the very dynamic and heterogeneous conditions of wireless
networks, as no coordination exists across different communication technologies
and devices. Despite being equipped with multiple network interfaces, modern
devices tend to statically select one of the available technologies (e.g., Wi-Fi or
LTE) or connection points (e.g., access points (APs) or base stations) based on
predefined priorities. Similarly, cooperation across different technologies to en-
able features like seamless handovers or multi-path load balancing is not possible
as each technology can be seen as a silo, isolated from the others. The latter is
not an inherent problem but is due to the design of the lower layers of the OSI
network stack. As such, decisions are left to the applications or, even worse, the
user and it is impossible to automatically react to the inevitable dynamic disrup-
tions or changes in the wireless context. Furthermore, different technologies tend
to compete against each other in the same frequency bands. This is, among others,

x

the case for Wi-Fi, ZigBee, and Bluetooth in the 2.4 GHz band. Overall, it is clear
that there is a need for intelligent inter-technology management and more efficient
use of wireless resources.

A number of control and management approaches already exist, however, they
are typically technology dependent and target a specific network domain or use
case. While some solutions do offer network-wide coordination, they typically
only offer flow-level control over the network. The most notable solutions are
MPTCP, the IEEE 1905.1 standard, LTE-LWA, and Software-Defined Network-
ing (SDN)-based solutions. Furthermore, these solutions typically only enable
management features (e.g., handovers) but do not contain the intelligence or algo-
rithms to actually optimize the network, such as selecting the most suitable path(s)
per traffic flow. Existing work on load balancing in heterogeneous networks fo-
cuses mostly on the development of theoretical models and neglects the specific
nature of wireless networks. In contrast, in this dissertation, we try to tackle the
aforementioned challenges in a more transparent and fundamental manner. The
main idea is that a user is only aware of the fact that its device is connected to the
Internet, while the network takes care of all the underlying decision-making and
the provisioning of resources. As such, an improved Quality of Service (QoS) and
user experience is offered.

A first contribution is the introduction of the ORCHESTRA framework for
seamless inter-technology management. The framework consists of two compo-
nents: a Virtual MAC (VMAC) layer and a centralized controller. The VMAC
offers a single connection point to the upper layers, while transparently bond-
ing over the underlying network technologies. As such, it introduces packet-level
inter-technology handovers, load balancing, and duplication across the different
underlying links by using packet matching rules. Furthermore, the centralized
controller maintains a global network overview by receiving detailed monitoring
information from each VMAC and can in return enforce instructions (i.e., prop-
agate rule changes). In order to support a gradual network-wide roll-out, the
framework supports communication with existing network controllers and oper-
ates transparently towards legacy devices. We present a real-life prototype that
is capable of demonstrating the different proposed features across different com-
munication technologies like Ethernet, Wi-Fi, and LTE. A performance evaluation
shows that the ORCHESTRA framework outperforms the default industry solution
MPTCP, while also supporting UDP traffic.

On top of the introduced ORCHESTRA framework, intelligence is needed that
can utilize the features of the framework to actually optimize the network. To this
extent, we present a number of algorithms that aim to increase the network-wide
throughput based purely on real-time monitoring information. In particular, we
make use of linear programming approaches to construct mathematical problem
formulations. Key in this is that the specific nature of wireless networks (e.g., the
impact of competing stations on the maximum capacity of the network) is consid-
ered. A first algorithm focuses on calculating the best paths for traffic flows across
Ethernet and Wi-Fi links. Extensive NS-3 simulations and a small-scale prototype
show that improvements of on average 20 % can be made, in comparison to a static

xi

baseline. Afterwards, we extend this algorithm in order to include multiple con-
nection points and client mobility. We show that the problem of optimally load bal-
ancing stations across different infrastructure devices and scheduling flows across
different connections and technologies scales exponentially. Consequently, we
present two heuristic approaches that sequentially solve these two problems. We
show that the greedy heuristic can more than double the network-wide throughput
and can scale up to scenarios of 10000 devices.

Finally, we explore the option of detecting traffic patterns in the wireless spec-
trum. This information can be used by management algorithms to further optimize
the network, especially in areas with multiple overlapping networks. This strongly
contrasts with more-intrusive methods like Deep Packet Inspection (DPI). In par-
ticular, we design a Deep Learning architecture to construct three different classi-
fication models that differentiate between TCP and UDP traffic, burst traffic with
different duty cycles, and traffic with different transmission rates. As input to these
models, we explore the use of images that represent the spectrum in time and time-
frequency domain. Furthermore, we present a novel data randomization approach
to generate large amounts of synthetic data by combining two state-of-the-art sim-
ulators. Validation with a synthetic test dataset shows that all models achieve an
accuracy of above 96 %. In a real-life setting, it is still possible to recognize dif-
ferent rates with an accuracy of around 87 %.

To summarize, this dissertation provides improvements in the area of inter-
technology network management. Different contributions are made: first, the OR-
CHESTRA framework enables different multi-technology management features
such as seamless handovers or load balancing. Next, we present different algo-
rithms that can be deployed on top of this framework to optimize the configuration
of the network and to increase the network-wide throughput. Finally, we present
different models to detect traffic information in the wireless spectrum.

Contents

Acknowledgments i

Samenvatting v

Summary ix

Acronyms xxiii

1 Introduction 1
1.1 Context . 1
1.2 Problem Statement . 6
1.3 Hypothesis . 9
1.4 Research Questions . 10
1.5 Research Contributions . 12
1.6 Dissertation outline . 17
1.7 Publications . 17

1.7.1 A1: Journal publications indexed by the ISI Web of Sci-
ence ”Science Citation Index Expanded” 18

1.7.2 P1: Proceedings included in the ISI Web of Science ”Con-
ference Proceedings Citation Index - Science” 18

1.7.3 C1: Other publications in international conferences 19
1.7.4 Patent applications . 20

2 State-Of-The-Art 21
2.1 Introduction . 21
2.2 Multi-technology control and management solutions 22

2.2.1 Media Independent Handover (IEEE 802.21) 22
2.2.2 IEEE 1905.1 standard 23
2.2.3 Software-Defined Networking-based approaches 23
2.2.4 3GPP and Tunneling approaches 25
2.2.5 Multipath Transmission Control Protocol 27
2.2.6 Other solutions . 28
2.2.7 Comparison and summary 29

2.3 Multi-technology load balancing approaches 31
2.3.1 Load balancing in heterogeneous local area networks . . . 32
2.3.2 Load balancing in HetNets and mobile (LTE) networks . . 33

xiv

2.3.3 Summary . 34
2.4 Traffic recognition approaches 34

2.4.1 Traditional traffic recognition approaches 34
2.4.2 Cognitive radio approaches 35
2.4.3 Summary . 36

3 ORCHESTRA: seamless multi-technology management 37
3.1 Introduction . 37
3.2 Framework architecture . 39

3.2.1 Virtual MAC layer . 39
3.2.1.1 Building blocks 42
3.2.1.2 Features . 44

3.2.2 Controller . 47
3.2.2.1 Communication and interfacing 47
3.2.2.2 A global view in one location 49

3.3 Applicability to different wireless technologies 50
3.3.1 IEEE 802 . 50
3.3.2 LTE . 50

3.3.2.1 LTE-LWA . 51
3.3.2.2 MEC architecture and Local Breakout 52

3.4 Use cases . 54
3.4.1 Enhanced satellite networking solutions 54
3.4.2 Enabling autonomous driving 55
3.4.3 Edge computing for large IoT deployments 55
3.4.4 Extended coverage in rural areas 55
3.4.5 Wireless community networks 56

3.5 Prototype Implementation . 56
3.5.1 Incoming traffic . 57
3.5.2 Outgoing traffic . 57

3.6 Evaluation and discussion . 58
3.6.1 Experimental setup . 58
3.6.2 Seamless and transparent multi-technology handovers . . 59
3.6.3 Fine-grained packet-level load balancing 62
3.6.4 Duplication of critical data in unreliable environments . . 67

3.7 Conclusion . 68

4 Real-time flow management for heterogeneous networks with both wired
and wireless connections 69
4.1 Introduction . 69
4.2 Flow-Based Scheduling MILP Formulation 70

4.2.1 Network Model . 71
4.2.2 MILP formulation . 72
4.2.3 TCP fairness . 74
4.2.4 Complexity analysis . 75

4.3 Group-Based Scheduling MILP Formulation 75

xv

4.3.1 Network Model . 76
4.3.2 MILP formulation . 78
4.3.3 Technology capacity estimation 80
4.3.4 Dynamic determination of Alpha and Beta parameters . . 80
4.3.5 Complexity analysis . 81

4.4 Deployment and parameter determination 81
4.4.1 Workflow description 82
4.4.2 Estimating flow and network parameters 84

4.5 Evaluation and discussion . 85
4.5.1 Evaluation setup . 85
4.5.2 Parameter values . 87
4.5.3 Home and office scenarios 87
4.5.4 Impact of network load and scalability 90
4.5.5 Dynamic scenarios . 94
4.5.6 Impact of link failure 95
4.5.7 Prototype . 97

4.6 Conclusion . 100

5 Scalable load balancing and flow management for mobile heteroge-
neous wireless networks 101
5.1 Introduction . 101
5.2 Multi-technology load balancing formulation 103

5.2.1 Network model . 103
5.2.2 MILP formulation . 104
5.2.3 Parameter estimation . 106
5.2.4 Deployment and interaction with underlying framework . 107

5.3 Heuristic approaches . 108
5.3.1 Near-optimal two-step linear programming approach . . . 108
5.3.2 Greedy heuristic . 110

5.4 Evaluation and discussion . 112
5.4.1 Evaluation setup . 113
5.4.2 Selection of parameters 114
5.4.3 Static flow rate scenarios 117
5.4.4 Impact of network load and scalability 121
5.4.5 Dynamic flow rate scenarios 125

5.5 Conclusion . 128

6 Recognition of traffic patterns in the wireless spectrum 129
6.1 Introduction . 129
6.2 Traffic recognition models . 131

6.2.1 Problem definition . 131
6.2.2 Input spectrum representation and traffic labels 131
6.2.3 Convolutional Neural Network for traffic recognition . . . 133

6.3 Data collection framework . 135
6.3.1 Motivation . 135

xvi

6.3.2 Architecture . 138
6.4 Evaluation and discussion . 141

6.4.1 Description of generated training datasets 141
6.4.2 Evaluation using generated synthetic data 144
6.4.3 Validation using real-life data 146
6.4.4 Prototype demonstrator 154

6.5 Conclusion . 155

7 Conclusions and Perspectives 159
7.1 Review of problem statements 159
7.2 Review of the hypothesis and research questions 162
7.3 Future perspectives . 165

7.3.1 Seamless inter-technology network management 165
7.3.2 Load balancing algorithms 167
7.3.3 Traffic recognition in the wireless spectrum 168

References 170

List of Figures

1.1 A timeline showing the exponential growth of the number of con-
nected devices and the consecutive release dates of a selection of
important wireless communication technologies. Releases of the
same technology are highlighted in the same color, with the ear-
liest release highlighted by the darkest color tone, and the most
recent one in the lightest tone. Technologies without a follow-up
release listed are colored in grey. 2

1.2 Example of a near-future environment, consisting of a large variety
of different heterogeneous networks, application domains, tech-
nologies, and devices. 5

1.3 Overview of how the different research contribution are linked to-
gether and address the issue of heterogeneous wireless network
management. 16

2.1 Overview of the introduced abstraction layer by the IEEE 1905.1
standard. 23

2.2 Architecture of the MPTCP stack with a prominent role for the
scheduler. 27

3.1 Overview of the VMAC layer with its position in the OSI model,
its buildings blocks, and its offered functionality. 40

3.2 Illustration of internal and external interfaces in a backhaul scenario. 42
3.3 The controller architecture and its communication. 47
3.4 LTE-LWA user plane architecture with external Wi-Fi AP (left)

and internal Wi-Fi AP (right). 52
3.5 Basic MEC architecture . 53
3.6 The implementation graph for Click showing the different ele-

ments used. 56
3.7 The setup of the prototype including all devices. 58
3.8 Handover performance of MPTCP and ORCHESTRA in terms of

throughput. 60
3.9 Handover performance of MPTCP and ORCHESTRA in terms of

latency. 60
3.10 Comparison of handover performance for ORCHESTRA and legacy

devices for TCP traffic. 61

xviii

3.11 Comparison of handover performance for ORCHESTRA and legacy
devices for UDP traffic. 62

3.12 Load balancing performance of MPTCP and ORCHESTRA in terms
of throughput. 63

3.13 Load balancing performance of MPTCP and ORCHESTRA in terms
of latency. 64

3.14 6 Mbps TCP flow load-balanced over two technologies with a
weight change from 50/50 (Wi-Fi/LTE) to 30/70 to 50/50 to 70/30. 65

3.15 6 Mbps TCP flow load-balanced over two technologies with a
weight change from 50/50 (Wi-Fi/LTE) to 30/70 to 50/50 to 70/30. 66

3.16 6 Mbps UDP flow load-balanced over two technologies with a
weight change from 50/50 (2.4 GHz/5 GHz) to 30/70 to 50/50 to
70/30. 66

3.17 Duplication performance of MPTCP and ORCHESTRA for through-
put. 67

3.18 Duplication performance of MPTCP and ORCHESTRA in terms
of latency. 68

4.1 Example of a simple heterogeneous network topology together
with its multi-graph network model representation. 72

4.2 Example of a simple heterogeneous network topology together
with its new multi-graph network model representation. 77

4.3 Flow chart illustrating the different steps of the proposed framework. 83
4.4 Throughput as a function of time for different scenarios, compar-

ing our proposed algorithms to the static interface selection baseline. 89
4.5 Throughput as a function of network load, error bars depict the

standard error. 91
4.6 Scalability of GBSF in terms of stations and SCGs. 94
4.7 Throughput as a function of Poisson parameters, error bars depict

the standard error. 96
4.8 Throughput as a function of time for a scenario where a link failure

occurs at time 20 s. 97
4.9 Architecture of the prototype setup 98
4.10 Throughput over Ethernet and Wi-Fi interfaces as a function of

time for an illustrative scenario on the real-life prototype. 99

5.1 Normalized score, network-wide throughput (normalized), and max-
imal load difference over different scenarios for different values of
the weight in the MILP objective function. 116

5.2 Throughput as a function of time for the home scenario, comparing
the MILP formulation, the two heuristics, the random algorithm,
and the baseline. 118

5.3 Throughput as a function of time for the small office scenario,
comparing the MILP formulation, the two heuristics, the random
algorithm, and the baseline. 119

xix

5.4 Throughput as a function of time for the large office scenario, com-
paring the two heuristics, the random algorithm, and the baseline. 120

5.5 Throughput as a function of network load, error bars depict the
standard error. 123

5.6 Scalability of the split-MILP heuristic in terms of stations and APs. 125
5.7 Scalability of the greedy heuristic in terms of stations and APs. . . 126
5.8 Throughput as a function of poisson parameters, error bars depict

the standard error, for short flow lengths between 5 and 15 s. . . . 126
5.9 Throughput as a function of poisson parameters, error bars depict

the standard error, for long flow length between 10 and 30 s. . . . 127

6.1 CNN architecture for traffic recognition. 134
6.2 Illustration of the domain randomization approach. 138
6.3 Architectural overview of the data generation framework. 139
6.4 Three images in time domain with different channel and noise ef-

fects. 142
6.5 Three images in time-frequency domain with different channel and

noise effects. 143
6.6 Normalized confusion matrices for the traffic pattern model. . . . 145
6.7 Normalized confusion matrices for the traffic protocol model. . . . 147
6.8 Normalized confusion matrices for the traffic rate model. 148
6.9 Overview of the real-life setup. 149
6.10 Normalized confusion matrices for the traffic pattern model. . . . 151
6.11 Normalized confusion matrices for the traffic protocol model. . . . 152
6.12 Normalized confusion matrices for the traffic rate model. 153
6.13 Normalized confusion matrices for the prototype 156
6.14 Overview of accucaries obtained using difference window sizes. . 157
6.15 Normalized confusion matrices for the prototype using a combi-

nation of 5 snapshots . 158

xx

List of Tables

2.1 Comparison of existing multi-technology control and management
solutions. 30

4.1 Overview of the devices in the scenarios with their supported tech-
nologies. 86

4.2 Overview of the devices in the scenarios with their supported flow
rates. 86

4.3 Topology parameters for the two scenarios. 88
4.4 Overview of the distribution of flows over the different technolo-

gies for the home and office scenarios. 90
4.5 Comparison of the execution time of the proposed FBSF and GBSF

algorithms. 93
4.6 Comparison of the execution time of the proposed FBSF and GBSF

algorithms, under an increased number of flows. 93

5.1 Overview of the devices, and the supported flow rates, used in the
scenarios. 114

5.2 Setup for static scenarios. 117
5.3 Impact of mobility on throughput. 122
5.4 Comparison of the execution time for the MILP and heuristic so-

lutions, under increasing network load. 124

6.1 Shared hyperparameters among all the models. 136
6.2 Specific dropout rate per model. 137
6.3 Overview of tunable parameters for data generation. 140
6.4 Accuracy of all three models, using training, validation, and test

datasets. 144
6.5 Accuracy of all three models using the real-life dataset. 150
6.6 Traffic classes and their characteristics for prototype. 155

7.1 Comparison of the ORCHESTRA solution to the state-of-the-art. . 161

xxii

Acronyms

Symbols

2G Second Generation

3G Third Generation

3GPP Third Generation Partnership Project

4G Fourth Generation

5G Fifth Generation

A

ACK Acknowledgement

AP Access Point

API Application Programming Interface

AR Augmented Reality

ARP Address Resolution Protocol

AWGN Additive White Gaussian Noise

B

BGP Border Gateway Protocol

BLE Bluetooth Low Energy

BSS Basic Service Set

C

CBRS Citizens Broadband Radio Service

CNN Convolutional Neural Network

CR Cognitive Radio

xxiv

CSMA/CA Carrier Sense Multiple Access with Collision Avoidance

D

DHCP Dynamic Host Configuration Protocol

DL Deep Learning

DNN Deep Neural Network

DPI Deep Packet Inspection

DSA Dynamic Spectrum Access

DSL Digital Subscriber Line

E

eNB Evolved Node B

EPC Evolved Packet Core

F

FBSF Flow-Based Scheduling Formulation

FDD Frequency Division Duplex

FFT Fast Fourier transform

FTP File Transfer Protocol

G

GAN Generative Adversarial Network

GBSF Group-Based Scheduling Formulation

GEO Geosynchronous

GPRS General Packet Radio Service

GPU Graphics Processing Unit

GSM Global System for Mobile communications

GTP GPRS Tunneling Protocol

H

HetNet Heterogeneous Network

xxv

HP HomePlug

I

ILP Integer Linear Programming

IoT Internet of Things

IP Internet Protocol

IQ In-phase and Quadrature

ISP Internet Service Provider

L

LAN Local Area Network

LBO Local Breakout

LBT Listen-Before-Talk

LCG Link Collision Group

LEO Low Earth Orbit

LLDP Link Layer Discovery Protocol

LowRTT Lowest Round Trip Time First

LSTM Long Short-Term Memory

LTE Long-Term Evolution

LTE-LAA LTE License Assisted Access

LTE-U LTE-Unlicensed

LTE-V Long-Term Evolution-Vehicular

LVAP Light Virtual AP

LWA LTE-WLAN Aggregation

LWAAP LTE-WLAN Aggregation Adaptation Protocol

M

M2M Machine-to-Machine

MAC Media Access Control

MCS Modulation and Coding Scheme

xxvi

MEC Multi-access Edge Computing

MF-TDMA Multi-Frequency Time-Division Multiple Access

MIH Media Independent Handover

MIHF Media Independent Handover Function

MILP Mixed Integer Linear Programming

MIMO Multiple-input and Multiple-output

MINLP Mixed Integer Non Linear Programming

ML Machine Learning

MMS Multimedia Messaging Service

mmWave Millimeter-Wave

MoCA Multimedia over Coax

MPTCP Multipath Transmission Control Protocol

N

NAS Network-attached Storage

NAT Network Address Translation

NETCONF Network Configuration Protocol

NFC Near Field Communication

NFV Network Function Virtualization

NN Neural Network

NR New Radio

O

OFDM Orthogonal Frequency Division Multiplexing

OS Operating System

OSI Open Systems Interconnection

OVS Open vSwitch

P

P2P Peer-to-Peer

xxvii

PAN Personal Area Network

PC Personal Computer

PDA Personal Digital Assistant

PDCP Packet Data Convergence Protocol

PLC Power line communication

PNG Portable Network Graphics

Q

QoS Quality of Service

R

RAN Radio Access Network

ReLU Rectified Linear Unit

RF Radio Frequency

RSSI Received Signal Strength Indicator

RTT Round Trip Time

S

SAP Service Access Point

SCG Station Collision Group

SD-WAN Software-Defined Wide Area Networks

SDN Software-Defined Networking

SDR Software-Defined Radio

SIP Session Initiation Protocol

SL Supervised Learning

SMS Short Message Service

SNR Signal-to-noise Ratio

STFT Short Time Fourier Transform

T

xxviii

TCP Transmission Control Protocol

TDD Time Division Duplex

TDMA Time-Division Multiple Access

U

UDP User Datagram Protocol

UE User Equipment

UMTS Universal Mobile Telecommunications Service

UTP Unshielded Twisted Pair

V

VAN Virtualized Access Network

VANET Vehicular AdHoc Network

VAP Virtual AP

VMAC Virtual MAC

VNF Virtualized Network Function

VOD Video on Demand

VoIP Voice over IP

VoLTE Voice over LTE

VR Virtual Reality

W

WAN Wide Area Network

Wi-Fi IEEE 802.11

WiMAX IEEE 802.16 Worldwide Interoperability for Microwave Access

WWW World Wide Web

1
Introduction

“The beginning is the most important part of the work”

– Plato (427 - 347 B.C.)

1.1 Context
While the year 1969 is most famous for the first moon landing, it also marked the
beginning of the Internet. In October 1969, for the first time in history, two remote
computers were connected with each other over the so-called ARPANET [1]. This
was the first network where data was divided into various (smaller) packets that
could be routed differently across the links of the network. Such a type of net-
work is known as a packet-switching network [1, 2]. The number of connected
computers grew steadily from 4 by the end of 1969 to 213 in 1981. In order to pro-
vide connectivity across different physical sites and networks, such as ground and
satellite networks, the Transmission Control Protocol (TCP) / Internet Protocol
(IP) stack and protocols were introduced [1, 2]. Thus, allowing for an end-to-end
connection, abstracting away the internal structure of the network and its building
blocks. Although the ARPANET was decommissioned in 1990, it was the foun-
dation of the Internet as we know it and key principles, such as robustness and
encapsulation, have been mainstream ever since.

Over time, the number of devices connected to the Internet continued to grow:
from around 100000 devices at the beginning of the nineties when the World Wide
Web (WWW) was born, up to 500 million in 2003 [1,3]. The number of connected
devices surpassed the number of human beings in 2008 and nearly doubled by
2012, reaching 12.5 billion [3]. Five years later, in 2017, there were 18 billion

2

0

5

10

15

20

25

30

35

40

45
Billions

IE
EE

80
2.1

1a
d

Bl
ue

to
ot

h 4
.0

(B
LE

) /

IE
EE

 8
02

.11
p

/ L
TE

-A

IE
EE

80
2.1

1a
h

Lo
Ra

W
AN

LT
E-

V

1990 20222003 2012 2017

IE
EE

80
2.1

1a
y

Number of connected devices Predicted number of connected devices

G
SM

 (2
G

)

UM
TS

 (3
G

)

LT
E

(4
G

)

LT
E-

Un
lic

en
se

d

IE
EE

80
2.1

1a
/b

IE
EE

80
2.1

1

IE
EE

80
2.1

1g

IE
EE

80
2.1

1n

IE
EE

80
2.1

1a
c

IE
EE

80
2.1

1a
x

Bl
ue

to
ot

h

Figure 1.1: A timeline showing the exponential growth of the number of connected devices
and the consecutive release dates of a selection of important wireless communi-
cation technologies [7,10–14]. Releases of the same technology are highlighted
in the same color, with the earliest release highlighted by the darkest color tone,
and the most recent one in the lightest tone. Technologies without a follow-up
release listed are colored in grey.

devices connected to the Internet and it is expected that this number will grow
further and reach between 25.4 and 42.6 billion by 2022 [4–6]. Cisco keeps it at
28.5 billion by 2022, or 3.6 times the world’s population [4]. This great expansion
over time, as depicted in Figure 1.1, is founded on two major technology shifts:
mobile devices and the Internet of Things (IoT) [1, 2]. While the first decades
mostly traditional devices like Personal Computers (PCs) were connected to the
Internet, this changed with the introduction of devices such as cellphones, Personal
Digital Assistants (PDAs), and laptops in the second half of the nineties. The real
boost occurred with the massive worldwide adoption of smartphones and tablets,
which allowed for relatively cheap and easy Internet access [3, 7]. Nowadays,
mobile devices are everywhere and account for a large portion of all consumer
devices (8.6 billion on a total of 18 billion in 2017) [4]. IoT is a second major
paradigm shift where all kinds of everyday devices are being connected to the
Internet [8]. While the idea was launched earlier, the adoption and roll-out only
started the last decade, for instance, with the releases of smart televisions and home
automation [3,8]. The amount and variety across IoT devices will only grow, when
more and more application domains, such as smart cities and industry 4.0, adopt
the new paradigm on a larger scale [4, 9].

Similar to the connected devices, the communication technologies that can be

3

used to connect to the Internet have also evolved drastically. This is illustrated in
Figure 1.1 that lists a selection of important (wireless) communication technology
releases throughout the last 20 years. Going back to the beginning years of the
Internet, connecting a machine to the ARPANET was only possible using a wired
connection. While wired technologies (i.e., Ethernet) can still be found in, for in-
stance, Local Area Networks (LANs), wireless technologies have gained massive
popularity, with IEEE 802.11 (Wi-Fi) and cellular being the two most dominant
technologies [10–12]. The most available technology, up to now, has been Wi-Fi
because of its ease of use, relatively low cost, flexibility, and mobility [10, 11].
Since the first release, in 1997, a multitude of different Wi-Fi standards have been
released, as depicted in Figure 1.1 [7]. Consecutive releases of Wi-Fi, highlighted
in different tones of blue, have mainly focused on increasing the capacity (in terms
of bandwidth), Quality of Service (QoS), and the number of supported users in
order to meet growing customer demands. Recent releases have diversified from
the mainstream Wi-Fi in order to address specific needs like very high throughput
(i.e., IEEE 802.11ad) and low power (i.e., IEEE 802.11ah). In the coming years, a
number of follow-up releases are expected to further increase the QoS and user ex-
perience, while more efficiently using the wireless spectrum (e.g., IEEE 802.11ax,
IEEE 802.11ay, ...) [10,11]. In parallel, the original Second Generation (2G) stan-
dard (including Global System for Mobile communications (GSM) and General
Packet Radio Service (GPRS) technologies) that allowed for digital services like
Short Message Service (SMS) and Multimedia Messaging Service (MMS), has
evolved into the Third Generation (3G) (i.e., Universal Mobile Telecommunica-
tions Service (UMTS)) and Fourth Generation (4G) (i.e., Long-Term Evolution
(LTE)) standards [12, 15]. All of them are highlighted in different shades of pur-
ple and pink. These newer standards introduced worldwide mobile Internet access
via cellular networks, offered by all telecommunication operators. The highly
anticipated Fifth Generation (5G) technology will be the next step in this evolu-
tion, offering, among others, massive bandwidths and high-speed mobile connec-
tions [12]. As such, it will drastically change our ways of communication and al-
low for new interactions and applications, both between humans mutually, between
humans and machines, and between machines mutually. Furthermore, the IoT
paradigm has also introduced a number of specific wireless communication tech-
nologies. For instance, LoRaWAN and Sigfox for long-range Machine-to-Machine
(M2M) communication, Bluetooth Low Energy (BLE) and ZigBee for short-range
communication (e.g., for wearables or home automation), and IEEE 802.11p and
Long-Term Evolution-Vehicular (LTE-V) for vehicular communications [13, 14].

The increased number and variety of connected devices and communication
technologies have enabled the development of a large multitude of different appli-
cations. After the launch of the ARPANET, applications such as File Transfer Pro-
tocol (FTP) and email were first developed [1,2]. This was followed by web brows-
ing and Peer-to-Peer (P2P) services like Napster in the nineties. When bandwidth
capacities and connection speeds increased with the release of new technologies in
the 2000s, multimedia services started to appear. These multimedia services have
dominated the Internet traffic landscape ever since, in particular since the rise of

4

mobile devices that are equipped with all kinds of actuators, sensors, and features.
Currently, 75 % of all Internet traffic is video traffic and this is expected to rise to
82 % by 2022 [4]. Multimedia applications like Virtual Reality (VR), Augmented
Reality (AR), Video on Demand (VOD), and gaming will only increase in popu-
larity the next years [4]. With this boost of popularity, the expectations and QoS
demands of end-users and companies also raised [16]. In the case of multimedia
services, key aspects in order to have a smooth video experience are high through-
put and low latency. The IoT paradigm has also boosted the Internet traffic by
introducing new applications relying particularly on M2M communications [13].
Examples of such applications are control, either manually or automatically, of the
heating, air-conditioning, lights, and other home appliances. Similarly, based on
sensor data, production lines, robots, and other machines can be controlled on a
fine-grained level in an Industry 4.0 setting. Low power and low latency communi-
cations are key for these types of applications [17]. Furthermore, a large number of
other applications exist, such as vehicular applications (e.g., platooning, infotain-
ment, and safety messaging) that demand reliable real-time communications [14].
The amount of and diversity among applications and their demands will only grow
further in the future [4, 10, 16].

The previous paragraphs have clearly illustrated how the Internet has drasti-
cally evolved throughout the years, with a tremendous increase in the utilization
and availability of (mostly wireless) communication technologies, connected de-
vices, and applications. This has led to the complex and heterogeneous situation
of today where different devices, applications, and technologies consist next to
each other at identical or overlapping physical locations, often competing for the
same resources such as bandwidth and airtime [18, 19]. Furthermore, most mod-
ern devices are equipped with multiple communication technologies that can be
employed to connect to the Internet or to communicate with other devices. This is,
for instance, the case for smartphones that are equipped with, among others, mul-
tiple Wi-Fi standards, LTE, BLE, and Near Field Communication (NFC). Each
of these devices, applications, and communication technologies has unique capa-
bilities (e.g., bandwidth and range) and requirements (e.g., latency or power con-
sumption) that should be respected [10, 17, 20]. Not respecting these capabilities
and requirements can lead to significant QoS disruptions, which in turn can cas-
cade into a dramatic impact on user experience and application behavior. As the
diversity and number of devices and technologies, and the stringent requirement
of applications will only grow in the future, the complexity will consequently in-
crease as well. This scenario is depicted in Figure 1.2 where a large number of
networks coexist next to each other and are occupied with a large variety of de-
vices. At the left top side of the figure we see a LAN environment, consisting
of multiple Access Points (APs) offering a number of different wireless technolo-
gies (e.g., directional 60 GHz communication, a sub-1 GHz low power technology,
and more standard 2.4 GHz and 5 GHz Wi-Fi). Similarly, at the top right side of
Figure 1.2, we show an Industry 4.0 use case where a combination of IoT tech-
nologies and Wi-Fi is used. Furthermore, we see a number of Vehicular AdHoc
Networks (VANETs) (using IEEE 802.11p or LTE-V) that provide both connectiv-

5

P

80
2.

11
ah

 (8
68

 M
H

z)

LT
E-

V

LT
E-

V
LT

E

LT
E

80
2.

11
p

80
2.

11
ad

 (6
0

G
H

z)

80
2.

11
ac

80
2.

11
ax

80
2.

11
n

Lo
R

aW
A

N

80
2.

15
.4

e

Figure 1.2: Example of a near-future environment, consisting of a large variety of different
heterogeneous networks, application domains, technologies, and devices.

6

ity between different vehicles mutually and between vehicles and road-side units
while requiring reliable real-time communication.

1.2 Problem Statement
As presented in the previous section, the wireless networks of today and tomor-
row are continuously becoming more heterogeneous and complex. This has in-
creased the management burden and raised the following conflict: at one hand the
stringent quality requirements that are typical for modern services and applica-
tions. On the other hand, the unique capabilities of communication technologies
(e.g., range and capacity) and devices (e.g., supported technologies). Furthermore,
these networks are typically being managed statically, delegating decisions to the
application layer, or even worse, to the user. This makes it impossible to automati-
cally react in a timely fashion to disruptions that cause QoS degradations. As both
modern connected devices (like consumer, infrastructure, or backhauling devices)
and wireless networks are equipped with multiple communication technologies,
allowing devices to simultaneously use different technologies or to switch in real-
time between them, would lead to network optimizations. Such optimizations, like
multipath routing, load balancing, and dynamic path reconfiguration, can increase
the overall network performance, QoS, and end-user experience [21]. In this dis-
sertation, we focus on providing both the technical innovations to enable such
optimizations and the network management algorithms to achieve them. More
specifically, the following problems are identified and tackled in this thesis:

1. Communication technologies operate fully independently of each other.
As introduced in the previous section and indicated in Figure 1.1, the set
of available communication technologies is expanding rapidly. The Open
Systems Interconnection (OSI) model is the standard model for end-to-end
network communication and partitions a communication system into 7 dif-
ferent abstraction layers, each with a specific purpose and functionality, in
order to achieve interoperability of different systems, standards, and net-
works [7, 22]. However, each communication technology (e.g., Wi-Fi or
LTE) defines its own lower layers of this network stack (in particular the
Media Access Control (MAC) and physical layers) and gets assigned indi-
vidual network addresses. Each of these technologies operates completely
independently, isolated from each other, making cooperation between them
infeasible [22–24]. This isolation is not an inherent problem but is due to the
design of the lower layers of the OSI network stack. This despite the fact that
cooperation between technologies is needed to enable optimization features
such as inter-technology handovers (also known as vertical handovers) or
load balancing. These inter-technology handovers are key to enable seam-
less mobility of devices and traffic offloading across different networks or
links [25, 26]. Besides the independent operation of technologies, there are
also multiple management actors present across different use cases (e.g.,

7

homeowners, enterprises, or telecommunication operators), each with their
expectations and priorities. Furthermore, limited by the amount of available
spectrum, more and more technologies are operating within each other’s
frequency bands, which leads to significant QoS degradations and perfor-
mance loss [18, 19, 24]. This is, for instance, the case for LTE and Wi-Fi in
the 5 GHz frequency band and Wi-Fi, ZigBee, and Bluetooth in the 2.4 GHz
frequency band [19, 27, 28]. In order to fully utilize the available resources
(e.g., bandwidth) of, in particular, wireless technologies, there is the need
for intelligent and fine-grained control over both devices and traffic streams.

2. Autonomous and real-time coordination, across the different devices in
a network, is missing. As mentioned above, (wireless) networks are cur-
rently typically being managed in a static manner. In general, each device
decides for itself to which infrastructure device (e.g., AP or base station)
it will connect [29]. This leads to sub-optimal behavior and unfairly bal-
anced network traffic [21, 30]. Furthermore, the decision to activate and
use a specific technology, or to perform a handover between different tech-
nologies, is left to the Operating System (OS), application (e.g., by bind-
ing a socket on a specific interface), or user (e.g., by means of a button).
This static behavior makes it impossible to react to dynamic changes to the
network environments. Examples of such dynamic events are, among oth-
ers, link failure, congestion, and arrivals or departures of devices and traffic
flows. Autonomous traffic rerouting mechanisms are needed to cope with
such events and lift responsibility away from the user and applications [31].
Moreover, coordinated real-time intelligence can help in fairly distributing
the load across different technologies and infrastructure devices [21, 31].
The efficiency of such a dynamic approach will only increase as more and
more technologies, such as 60 GHz and sub-1 GHz communications, are in-
troduced to the environment of wireless networks. However, it is key that
these intelligent mechanisms take into account the specific nature of wireless
technologies (e.g., the shared bandwidth amongst different devices) [26,32].

3. Tailored management systems, that account for mobility and the ever-
growing set of devices, are lacking. The growth of the networks of today
and tomorrow is mainly funded by the shift towards mobile and IoT devices
and networks, as discussed in Section 1.1. Both paradigms introduce addi-
tional challenges to the network management systems [3,10,17,26,29]. This
complements the need for seamless mobility on a per-device level, as dis-
cussed in the first problem listed in this section. First of all, the heterogene-
ity of the network further increases because of the strong differences, across
the different devices: the speed differs (e.g., a connected car compared to
a cleaning robot), the movement patterns are unique (an autonomous drone
compared to a laptop), and there are still devices that are not mobile at all
(e.g., a smart television or production line machines). Second, because of
the mobility, the load across different infrastructure devices can vary heav-
ily over time. When a single device moves from one area to another (for

8

instance, different rooms or floors within a building), it is possible that a
connection is established to an already saturated infrastructure device or
network. Consequently, the performance and experience of both the mov-
ing device and the already present devices can be highly impacted. For
larger groups of mobile devices, the problem will only increase. Note that
these two raised challenges clearly further complicate the already existing
management problem related to the different requirements and capabilities
of devices and technologies, as described in the previous paragraph. Ad-
ditionally, the ever-growing amount of devices is even more cumbersome,
as management systems need to support this growth and scale accordingly.
In particular, the previously introduced real-time coordination still needs to
be feasible within a network of, for instance, hundreds, thousands, or even
more devices. Examples of such networks are, among others, large office
or conference networks, Industry 4.0 deployments within a harbor, or a ve-
hicular network on a highway [4, 8, 9]. Network operators that offer mul-
tiple (wireless) technologies can, among others, benefit from these tailored
management systems. Especially, since we notice that telecommunication
operators increasingly often provide, next to the traditional wired en cellular
connections, also Wi-Fi technologies (e.g., hotspots) and IoT technologies.

4. The coexistence of neighboring technologies and networks is heavily be-
ing pressured. In Figure 1.2 we have shown how different types of networks
are coexisting next to each other. With the ever-rising number of devices,
technologies, and applications, this coexistence is being pressured [18, 19].
Within the problem context of the independent operation of technologies,
we already highlighted the potential QoS degradations and performance loss
when technologies are competing with each other in the same frequency
bands [10, 18, 24]. For instance, the direct use of LTE in the unlicensed
spectrum (i.e., LTE-U) could lead to severe performance degradation (up
to more than 90 %) of coexisting Wi-Fi systems, especially in the 5 GHz
band [19, 33]. However, even when inter-technology management mech-
anisms are in place, the question remains how to cope with neighboring
networks that are not under your control. Examples of such uncontrollable
networks are neighboring LANs in a residential area or apartment building
or, from an operator point of view, the network of a competitor. The latter
is, for instance, the case when different operators deploy LTE technologies
in the 5 GHz frequency band or when different actors operate in the 3.5 GHz
band (i.e., Citizens Broadband Radio Service (CBRS)). Furthermore, for
instance for Wi-Fi, it is possible to divide different APs across distinct chan-
nels, but there are only a limited amount of different channels available.
This means that for crowded areas (e.g., an apartment building) it is impos-
sible to provide a single channel per infrastructure device. Note that while
operating on separate channels, two APs can still interfere with each other,
for instance, due to inappropriate transmit power levels [34]. Additionally,
technologies like Wi-Fi can also suffer from external interference sources

9

such as microwaves, cordless phones, or game controllers [35]. As such it
is clear that there is a need for the efficient and intelligent use of spectral
resources [10,36]. In order to have such adaptive management systems, it is
crucial that these systems have access to accurate and real-time information
of the state of the wireless spectrum.

1.3 Hypothesis
In the previous section, we have identified four distinct problems within the scope
of the heterogeneous (wireless) networks of today and tomorrow. In order to ad-
dress these issues and to provide the next generation of Internet communication,
we formulate the following hypothesis:

Intelligent and dynamic inter-technology network management is needed to
support the ever-evolving heterogeneous wireless networks.

We have mentioned previously that there is no coordination and cooperation
among the different adjacent communication technologies on modern commu-
nication devices due to, among others, the design of the lower layers of the OSI
network stack. As a result, the scarce inter-technology management takes place
at the higher layers of the stack, following either a device driven or infrastructure
driven approach. In the first case, the management is fully distributed and it is up to
the devices (i.e. the application, operating system or user) to decide which techno-
logy will be used and, for instance, to which infrastructure device a connection will
be established [25, 37]. In the second approach, the management control resides
in the network infrastructure or the cloud and enforces certain policies or actions
on the devices without user or application intervention. This is, for instance, the
case with band steering to push certain devices to a specific technology or the
use of tunnels to hide the underlying technology. The traditional manner to cope
with the ever-growing stringent requirements of users and modern (multimedia)
services has always been to boost the capacity by expanding the set of available
frequencies and channels, increasing the channel widths, or introducing additional
antennas [7,10]. This despite the significant changes required to the available hard-
ware. However, as mentioned previously, the increased amount of technologies has
lead to radio spectrum scarcity since both licensed and unlicensed spectrum bands
are getting extremely crowded [18,19,24]. Furthermore, the over-provisioning of,
among others, connection points is typically not beneficial in a wireless context.
Existing approaches fail to deliver the required fine-grained seamless management
and are often only applicable to certain technologies or networks. While they are
also not fit to cope with the growing number of devices and neighboring technolo-
gies, nor provide the necessary flexibility.

In stark contrast, we envision an approach that solves the problem of manag-
ing different communication technologies in a more fundamental manner that is
also adaptable and robust towards future evolutions within the area of, in particu-

10

lar, wireless communications. We believe that it should not be up to the user or
application to make network connectivity decisions, such as which technology
to use or to which infrastructure device to connect to [38, 39]. Instead, a single
connection should be offered to the higher layers that combines the underlying
technologies in a transparent manner. This would allow for seamless manage-
ment, such as handovers, as the underlying technologies are completely abstracted
away. Essentially, the encapsulation and abstraction principles introduced by the
ARPANET and the OSI stack are extended and evolved to the multi-technology
nature of current and future networks.

In addition, a centralized entity offering advanced intelligence should be
introduced in the network [26]. This entity can dynamically enforce certain
policies and instructions (e.g., the roll-out of an inter-technology handover) on the
different heterogeneous devices, independent of the type of these devices (e.g.,
consumer, infrastructure, or backhaul). Such a centralized entity is feasible as
more and more technologies are enrolled next to each other, under control by the
same operator. It allows for the introduction of intelligent routing of traffic flows
and load balancing of devices to the network in order to optimize network-wide
performance. The envisioned routing approach will redistribute traffic flows across
the existing connections in the entire network when needed to meet the traffic de-
mands and respond to dynamic events such as link failure or increasing traffic vol-
umes. Furthermore, instead of letting devices simply connect to the closest APs or
base stations, a more intelligent load balancing mechanism can, for instance, take
into account the amount of traffic already going over that particular infrastructure
device. By taking into account the different characteristics of the devices (e.g.,
available technologies or paths) and technologies (e.g., bandwidth or range), the
approach can cope with the heterogeneity across the network and account for the
mobility and the growing number of devices, as highlighted in Section 1.2. Finally,
through the deployment of novel monitoring functions this entity can have a more
detailed insight in neighboring networks and detect traffic related patterns in order
to optimize its own controlled network.

Summarized in layman’s terms, we envision a system where a user should only
be aware of the fact that its device is connected to the Internet, while the network
takes care of all the underlying decision-making and provisioning of resources, as
such offering an improved QoS and user experience. This idea can be formulated
as connectivity as a service.

1.4 Research Questions
In order to validate the formulated hypothesis, we define four research questions.
Each of these questions is targeting one of the stated problems in Section 1.2.
Respectively, we have the following research questions:

1. How can we enable seamless inter-technology management transpar-
ent to all actors? From the previous sections, it is clear that there is a

11

strong need for reliable and seamless inter-technology management. A key
observation is that this problem exists in all kinds of different networks
and devices. In order to provide a generally applicable solution, the key
requirement is the transparency towards individual technologies, end-users
and their applications, and the network itself (e.g., other devices). Further-
more, management operations such as inter-technology handovers should
take place in a seamless manner with no noticeable impact on the user expe-
rience or application behavior. While also the impact on the network should
be mitigated through centralized control over all actors. However, intro-
ducing centralized control requires management communication channels
between the controller and the enabled devices. Finally, in general, we need
to make sure that the effort of deploying the envisioned solutions is kept
minimal. Especially since a modification to all kinds of connected devices
is considered, we need to carefully introduce this and make sure that legacy
support and intermediate steps are available as well.

2. Can intelligent routing of traffic streams significantly improve network
performance? The envisioned intelligent traffic routing is needed to cope
with the stringent requirements of modern services. It could also allow in-
creasing the available bandwidth that traffic flows can consume, without the
need for lowering the offered quality of the traffic flows or introducing addi-
tional hardware (e.g., infrastructure devices like Wi-Fi APs) to the network.
The main question is how significant the impact of such an approach on
the network-wide performance will be. If this is only a few percentages,
users will barely notice any differences when consuming services or using
applications. Furthermore, the approach should be able to address issues
or provide optimizations as fast as possible, based on the current state of
the network. For instance, upon link failure, a fast and adequate response is
needed to minimize the loss of performance and experience. Furthermore, as
network environments can be very diverse, the approach should be indepen-
dent of technologies and the different network management solutions that
are in place to enable, among others, inter-technology handovers. Finally,
in order to provide an adequate solution, the demands of traffic flows need
to be known, while also the actual capacities of the technologies need to be
taken into account. The latter is especially important and more challenging
for wireless connections and technologies.

3. Can the impact of mobility and the growing number of devices and tech-
nologies be countered by introducing intelligent load balancing? As mo-
bile devices are a key segment within the group of current and future con-
nected devices, it is clear that network management needs to take the aspect
of mobility into account. An intelligent approach should leverage different
aspects, such as among others load, distance, and different demands in order
to provide the best QoS possible by dividing devices and their traffic across
various technologies and network paths. Moreover, in order to be generally
applicable, this load balancing approach should be able to take into account

12

different unique mobility patterns of devices amongst the different networks.
This on top of the already previously mentioned independence towards, for
instance, technologies. Because of the fact that mobility can vary often, the
importance of a responsive approach is even higher than stated in the pre-
vious research question. Within the scope of the ever-growing amounts of
connected devices, it is clear that maintaining this responsiveness is criti-
cal. The envisioned load balancing approach needs to take this into account
and scale along these rising numbers. In order to guarantee this, an inves-
tigation towards the trade-off between scalability and optimality should be
conducted.

4. Can we detect traffic patterns of neighboring networks using spectral
data? Because of the interference between neighboring networks and tech-
nologies, their coexistence is becoming non-trivial. To this extent, network
management solutions should be upgraded with a novel monitoring mech-
anism that allows them to detect and mitigate this interference. Based on
spectral data it is already possible to detect interference of external sources
like neighboring technologies or devices such as a microwave. However, if
it would be possible to detect traffic patterns within a certain technology like
Wi-Fi, management systems could use this information to increase the per-
formance of their network. Existing traffic recognition approaches operate
on a packet-level, which typically requires that the listening device is part
of the corresponding network. For instance, imagine a scenario wherein
neighboring network traffic is being transmitted in a burst pattern of 0.3 s
per interval of 1 s on a certain technology and channel. This means that
no interference will occur when using the other 0.7 s of that interval for the
transmission of traffic within the controlled network. When management
systems are capable of detecting these interference-free periods, traffic can,
for instance, be offloaded to these channels or technologies during these
free slots. The key challenge will be to construct a model that is capable
of detecting these traffic patterns at the spectral level, to enable the required
monitoring capabilities without the need of being connected to the different
networks under observation. In order to train this model, sufficient amounts
of data need to be collected. Furthermore, such a model needs to be robust in
order to cope with the very dynamic characteristics of the different wireless
environments.

1.5 Research Contributions

This dissertation aims to improve the inter-technology management of wireless
networks. In particular, we validate the previously stated hypothesis and inves-
tigate the four formulated research questions. To this extent, the following four
main contributions can be identified:

13

1. The ORCHESTRA framework for seamless inter-technology network
management in heterogeneous networks (Chapter 3)

• Design of an inter-technology management framework that consists
of two components: a Virtual MAC (VMAC) layer and a centralized
controller.

• The VMAC offers a single connection point to the upper layers, while
transparently bonding over the underlying network technologies.

• Introduction of packet-level inter-technology handovers, load balanc-
ing, and duplication across the different underlying links by using
packet matching rules.

• The centralized controller maintains a global network overview by re-
ceiving detailed monitoring information from each VMAC and can in
return enforce instructions (i.e., propagate rule changes).

• Support for gradual network-wide roll-out through the transparency
towards standard (i.e., legacy) devices and the possibility to interact
with existing network controllers.

• Definition of a number of highly relevant use cases that are suited for
fast adoption of the framework.

• Design and implementation of a real-life prototype that is capable of
working with Ethernet, Wi-Fi (in both the 2.4 GHz and 5 GHz bands),
and LTE.

• An in-depth evaluation, using the prototype setup, demonstrates the
seamless inter-technology management and compares the performance
of the listed features of ORCHESTRA to Multipath Transmission Con-
trol Protocol (MPTCP), the standard solution used by industry.

2. A real-time dynamic flow management approach to optimize network-
wide throughput (Chapter 4)

• Design of an Mixed Integer Linear Programming (MILP) formulation
that calculates the optimal path configuration in order to maximize the
throughput of all individual traffic flows across the network, taking into
account TCP fairness mechanisms.

• Design of an MILP formulation that calculates the optimal path con-
figuration in order to maximize the throughput across all different col-
lision groups (encapsulation of a group of interfering links or stations)
within the network.

• The flow management approach is constructed fully independent of the
underlying network management tools (e.g., the previously introduced
ORCHESTRA framework or a Software-Defined Networking (SDN)-
based setup).

14

• The decision-making process is based only on real-time gathered mon-
itoring data, allowing a fast response to dynamic network events.

• The specific nature of wireless networks (e.g., the impact of compet-
ing stations within the network) is considered. Moreover, a dynamic
method is presented to estimate the actual capacity of wireless network
technologies. Note that within the scope of this dissertation, we denote
the capacity of a technology as the total amount of transmittable data
at a given moment.

• Thorough evaluations across a wide range of scenarios using an NS-3
based framework show a promising increase with respect to a default
static baseline.

• A small-scale prototype setup is used to demonstrate how the approach
can be used to improve the performance of a video stream upon the
presence of a large download transfer.

3. A scalable device and traffic load balancing approach taking into ac-
count the mobility of the connected devices (Chapter 5)

• Design of an MILP formulation that optimizes the path configura-
tion and station associations within wireless networks to maximize the
overall network throughput.

• Design of a near-optimal two-step heuristic approach that splits the
overall problem and optimally solves the problems of station associ-
ation and traffic scheduling separately. To this extent, two different
MILP formulations for the respective problems are solved after each
other.

• Design of a greedy heuristic approach that also considers the problems
of stations association and traffic scheduling individually, after one an-
other.

• These approaches operate fully independently of the underlying frame-
work, based on only real-time monitoring information acquired from
the network. As such, honoring the properties stated in the previous
research contribution.

• A dynamic fingerprinting-based approach is proposed to capture the
effect of mobility and distance on the maximum possible data rate per
station. In other words, take into account the reduction in achievable
data rate due to the decrease in Modulation and Coding Scheme (MCS)
values and the increase in distance.

• Using an NS-3 based framework, the three algorithms are evaluated
across an extensive series of varying scenarios. A significant improve-
ment, up to more than 100 %, towards a static baseline is demonstrated.

• A scalability analysis shows that by using a heuristic approach, wire-
less network management can be provided for networks up to 10000
devices.

15

4. A Machine Learning (ML) model to detect traffic patterns on a spectral
level (Chapter 6)

• Design of a ML approach that is capable of detecting traffic patterns
(e.g., interval occupancy, specific protocols, or rates) on spectral data
of uncontrolled neighboring networks.

• A domain randomization-based approach is proposed that uses large-
scale synthetic generated data to train the model, as such allowing for
a more robust model cable of coping with the very dynamic and ever-
changing nature of wireless environments.

• A framework is constructed that combines two state-of-the-art simu-
lators, namely the NS-3 simulator and the Matlab toolbox, in order to
generate large amounts of synthetic data to train different ML models.

• We present a Convolutional Neural Network (CNN) architecture that
forms the basis for prediction models to recognize TCP and User Data-
gram Protocol (UDP) traffic, burst traffic with different duty cycles,
and different transmission rates. These models are trained using the
aforementioned synthetic data.

• We explore and compare two different approaches to represent the
sensed spectrum as the input of our models: time and time-frequency
image representations. Furthermore, we show that all models, using
both approaches, have an accuracy of more than 96 %, when being
validated with a synthetic test dataset.

• We present a validation with real-life data that indicate the applica-
bility of a domain randomization approach in a wireless context. It
is possible to detect different transmission rates with an accuracy of
86.9 %.

• A small-scale prototype setup is presented to demonstrate how one of
the proposed models can be used in a real-life setting.

In order to solve the challenge towards the management of heterogeneous wire-
less networks, the combination of the different research contributions is required.
Figure 1.3 illustrates how the four contributions are aligned together. First of all,
the ORCHESTRA framework is installed on all devices in the network, in order to
enable the different multi-technology features such as seamless inter-technology
handovers. For instance, within a LAN (as shown in the left side of Figure 1.3) the
ORCHESTRA VMAC is installed on all devices, both consumer and infrastructure
devices. The controller is placed somewhere in the infrastructure (e.g., on a mo-
dem or a separate connected device). Furthermore, the ORCHESTRA framework
can also be deployed in a multi-technology backhaul network controlled by a net-
work operator, as depicted at the right side of Figure 1.3. This allows to efficiently
utilize the capacity of both wired (e.g., Digital Subscriber Line (DSL) or fiber) and
wireless (e.g., Wi-Fi or LTE) networks. Research contributions 2 and 3 provide
the intelligence needed on top of the management framework of the first research

16

In
te

rn
et

O
RC

HE
ST

RA
1

3

2

4

1
O

RC
HE

ST
RA

: S
ea

m
le

ss
 in

te
r-t

ec
hn

ol
og

y
m

an
ag

em
en

t (
ch

ap
te

r 3
)

2
Fl

ow
 m

an
ag

em
en

t f
or

 h
et

er
og

en
ou

s n
et

w
or

ks

w
ith

 w
ire

d
an

d
w

ire
le

ss
 c

on
ne

ct
io

ns
 (c

ha
pt

er
 4

)

3
Sc

al
ab

le
 lo

ad
 b

al
an

ci
ng

 fo
r m

ob
ile

he

te
ro

ge
no

us
 w

ire
le

ss
 n

et
w

or
ks

 (c
ha

pt
er

 5
)

4
Re

co
gn

iti
on

 o
f t

ra
ffi

c
pa

tt
er

ns
 (c

ha
pt

er
 6

)

Figure 1.3: Overview of how the different research contribution are linked together and
address the issue of heterogeneous wireless network management.

17

contribution, in order to optimize the network. The intelligence is installed on top
of the ORCHESTRA controller and uses the framework to acquire real-time mon-
itoring information and to roll-out policies across all devices (e.g., to perform an
inter-technology handover). The bottom left area of Figure 1.3 visualizes a net-
work, consisting of both wired and wireless technologies, that is managed by the
work of the second research contribution. Similarly, the middle part of Figure 1.3
illustrates how research contribution 3 allows managing a network consisting of
mobile wireless devices. Finally, the fourth research contribution allows wire-
less infrastructure devices to listen to the spectrum and identify traffic patterns
of neighboring networks. This information can via the management framework
be shared with the network management algorithms, for further exploitation and
network optimization.

1.6 Dissertation outline

This dissertation is in total composed of seven main chapters. Following this intro-
duction, Chapter 2 offers a detailed view of the state-of-the-art in the area of (wire-
less) network management. In particular, we discuss existing work in the areas of
inter-technology management and handovers, load balancing, and traffic recogni-
tion. The next four chapters focus on different research contributions. Chapter 3
introduces the ORCHESTRA framework for seamless inter-technology network
management (Research contribution 1). Chapter 4 provides the intelligence that
can be run on top of the ORCHESTRA framework (Research contribution 2). In
particular, the focus lays on the flow management and traffic steering part. This
work is continued in Chapter 5 where the focus shifts towards the applicability of
load balancing in mobile wireless networks (Research contribution 3). Further-
more, heuristics are provided to cope with the growing sizes of the networks of
today and tomorrow. In Chapter 6 the possibility of detecting traffic patterns on
the physical level of spectral data is explored (Research contribution 4). Finally,
in Chapter 7, we draw conclusions and list possible future research related to all
the different contributions of the dissertation.

1.7 Publications

The research results obtained during this PhD research have been published in
scientific journals and presented at a series of international conferences. Further-
more, there is also a patent application submitted for the contributions regarding
the ORCHESTRA framework. The following list provides an overview of the
publications and patent applications during the PhD research.

18

1.7.1 A1: Journal publications indexed by the ISI Web of Sci-
ence ”Science Citation Index Expanded”

1. Tom De Schepper, Steven Latré, and Jeroen Famaey. Flow Management
and Load Balancing in Dynamic Heterogeneous LANs. Published in IEEE
Transactions on Network and Service Management (TNSM), vol. 15, no.
2, pp. 693-706, June 2018. doi: 10.1109/TNSM.2018.2804578. [Impact
factor: 3.286]

2. Tom De Schepper, Patrick Bosch, Ensar Zeljković, Farouk Mahfoudhi, Jet-
mir Haxhibeqiri, Jeroen Hoebeke, Jeroen Famaey, and Steven Latré. OR-
CHESTRA: Enabling Inter-Technology Network Management in Heteroge-
neous Wireless Networks. Published in IEEE Transactions on Network and
Service Management (TNSM), vol. 15, no. 4, pp. 1733-1746, December
2018. doi: 10.1109/TNSM.2018.2866774. [Impact factor: 3.286]

3. Tom De Schepper, Steven Latré, and Jeroen Famaey. Scalable Load Bal-
ancing and Flow Management in Dynamic Heterogeneous Wireless Net-
works. Published in Journal of Network and Systems Management (JNSM),
June 2019. doi: 10.1007/s10922-019-09502-2. [Impact factor: 1.750]

4. Tom De Schepper, Patrick Bosch, Ensar Zeljković, Jakob Struye, Carlos
Donato, Farouk Mahfoudhi, Jeroen Famaey, and Steven Latré. ORCHES-
TRA: Supercharging Wireless Backhaul Networks through Multi-technology
Management. Submitted to IEEE Journal on Selected Areas in Communi-
cations (JSAC), January 2019. [Impact factor: 7.172]

5. Tom De Schepper, Miguel Camelo, Jeroen Famaey, and Steven Latré. Traf-
fic recognition at the spectrum level using synthetically trained deep learn-
ing models. Submitted to International Journal of Network Management
(IJNM), August 2019. [Impact factor: 1.231]

6. Patrick Bosch, Tom De Schepper, Ensar Zeljković, Jeroen Famaey, and
Steven Latré. Orchestration of Heterogeneous Wireless Networks: State of
the Art and Remaining Challenges. Submitted to Computer Communica-
tions, July 2019. [Impact factor: 2.613]

1.7.2 P1: Proceedings included in the ISI Web of Science ”Con-
ference Proceedings Citation Index - Science”

1. Tom De Schepper, Bart Braem, and Steven Latré. A virtual reality-based
multiplayer game using fine-grained localization. In proceedings of the
Global Information Infrastructure and Networking Symposium (GIIS), Gua-
dalajara, Mexico, pp. 1-6, October, 2015. doi: 10.1109/GIIS.2015.7347176.

2. Tom De Schepper, Alexander Vanhulle, and Steven Latré. Dynamic BLE-
based fingerprinting for location-aware smart homes. In proceedings of the

19

IEEE Symposium on Communications and Vehicular Technology (SCVT),
Leuven, Belgium, pp. 1-6, November, 2017.
doi: 10.1109/SCVT.2017.8240316.

3. Ensar Zeljković, Tom De Schepper, Patrick Bosch, Ian Vermeulen, Jet-
mir Haxhibeqiri, Jeroen Hoebeke, Jeroen Famaey, and Steven Latré. OR-
CHESTRA: virtualized and programmable orchestration of heterogeneous
WLANs. In proceedings of the International Conference on Network and
Service Management (CNSM), Tokyo, Japan, pp. 1-9, November, 2017.
doi: 10.23919/CNSM.2017.8255999.

4. Tom De Schepper, Jakob Struye, Ensar Zeljković, Steven Latré, and Jeroen
Famaey. Software-Defined Multipath-TCP for Smart Mobile Devices. In
proceedings of the International Conference on Network and Service Man-
agement (CNSM), Tokyo, Japan, pp. 1-6, November, 2017.
doi: 10.23919/CNSM.2017.8256043.

5. Ian Vermeulen, Patrick Bosch, Tom De Schepper, and Steven Latré. Di-
Mob: Scalable and seamless mobility in SDN managed wireless networks.
In proceedings of the International Conference on Network and Service
Management (CNSM), Tokyo, Japan, pp. 1-6, November, 2017.
doi: 10.23919/CNSM.2017.8256048.

6. Patrick Bosch, Tom De Schepper, Ensar Zeljković, Farouk Mahfoudhi,
Yorick De Bock, Jeroen Famaey, and Steven Latré. A demonstration of
seamless inter-technology mobility in heterogeneous networks. In proceed-
ings of the IEEE International Symposium on a World of Wireless, Mobile,
and Multimedia Networks (WoWMoM), Chania, Greece, pp. 1-3, June,
2018. doi: 10.1109/WoWMoM.2018.8449788.

7. Tom De Schepper, Steven Latré, and Jeroen Famaey. Load balancing and
flow management under user mobility in heterogeneous wireless networks.
In proceedings of the International Conference on Network and Service
Management (CNSM), Rome, Italy, pp. 1-7, November, 2018.

8. Miguel Camelo, Tom De Schepper, Paola Soto, Johann Marquez-Barja,
Jeroen Famaey and Steven Latré. Detection of traffic patterns in the ra-
dio spectrum for cognitive wireless network management. Submitted to the
IEEE International Conference on Communications (ICC), August, 2019.

1.7.3 C1: Other publications in international conferences
1. Tom De Schepper, Steven Latré, and Jeroen Famaey. A transparent load

balancing algorithm for heterogeneous local area networks. In proceedings
of the IFIP/IEEE International Symposium on Integrated Network Manage-
ment (IM), Lisbon, Portugal, pp. 160-168, May, 2017.
doi: 10.23919/INM.2017.7987276.

20

2. Tom De Schepper, Patrick Bosch, Ensar Zeljković, Koen De Schepper,
Chris Hawinkel, Steven Latré, and Jeroen Famaey. SDN-based transpar-
ent flow scheduling for heterogeneous wireless LANs. In proceedings of the
IFIP/IEEE International Symposium on Integrated Network Management
(IM), Lisbon, Portugal, pp. 901-902, May, 2017.
doi: 10.23919/INM.2017.7987404.

1.7.4 Patent applications
1. Patrick Bosch, Tom De Schepper, Ensar Zeljković, Jeroen Famaey, and

Steven Latré. Network stack for a plurality of physical communication in-
terfaces. European patent application EP17171131.0, submitted May 2017.

2
State-Of-The-Art

“Don’t ask me who’s influenced me. A lion is made up of the lambs he’s digested,
and I’ve been reading all my life.”

– Charles de Gaulle (1890 - 1970)

2.1 Introduction
In order to solve the challenges and problems in the complex and heterogeneous
wireless networks of today and tomorrow, this dissertation introduces intelligent
inter-technology management solutions. As the underlying problems in these het-
erogeneous environments are rather substantial and have a large impact on the
performance of the network, the behavior of applications, and the experience of
the end-user, efforts and innovations have already been presented within this do-
main. In this section, we discuss the relevant state-of-the-art in detail and aim to
provide a clear overview of the missing features and aspects.

In particular, we first discuss existing multi-technology management solutions
in Section 2.2. This corresponds to the first research contribution and the work
presented in Chapter 3. Second, we focus on existing load balancing approaches
within different domains in Section 2.3. This provides the starting point for the
work covered by the second and third research contributions and their correspond-
ing Chapters 4 and 5. Section 2.3 covers existing work focusing on traffic recogni-
tion, which corresponds to the fourth and final research contribution and the work
proposed in Chapter 6. For each of these different areas covered, a clear summary
is provided at the end of their respective sections.

22

2.2 Multi-technology control and management solu-
tions

In the last decade, a number of approaches have been proposed to facilitate inter-
technology handovers and multi-technology load balancing, the key features of the
envisioned intelligent and seamless inter-technology management. In this Section,
we first focus on highlighting the most relevant solutions. These works are pre-
sented by approximately following the order of the OSI stack, starting from the
more technology-specific solutions, up to the higher layers. Afterwards, a sum-
mary is provided in Section 2.2.7, where the different solutions are compared to
each other and the missing aspects and features are identified.

2.2.1 Media Independent Handover (IEEE 802.21)

Traditionally, efforts were made to streamline and facilitating the process of intra-
technology handovers or roaming across different infrastructure devices within a
single technology such as Wi-Fi or 3G/4G. For instance, the IEEE 802.11k, r, and
v amendments for Wi-Fi. After the introduction of mobile devices, multi-homed
devices started to appear that were enabled with multiple technologies and could
as such connect to different networks. In order to introduce similar seamless mo-
bility across those different networks (in particular between LANs and Wide Area
Networks (WANs)), and to speed up mobile IP handovers, the Media Independent
Handover (MIH) standard was proposed in 2007 [40,41]. This standard allows for
the continuation of IP sessions across different technologies and networks, by the
introduction of inter-layer messages that are exchanged through the Media Inde-
pendent Handover Function (MIHF). However, in order to enable this, adaptations
to the underlying technology standards are required, such as the introduction of
a new link layer (called Service Access Point (SAP)) to handle the inter-layer
messages. Communication between MIHFs of different wireless technologies is
managed by event notifications, commands, and information services. An event
notification can include a warning about dropping signal quality, while a command
can be used to initiate a handover between technologies. Information services are
used to exchange information between the different layers and the MIHF. The MIH
standard can be used with various IP protocols, including Session Initiation Proto-
col (SIP) and Mobile IP, to facilitate handovers. The latter is, for instance, the case
for Mobile IPv6 [42]. However, no guarantees on the handover (e.g., in terms of
duration) are given [43]. Moreover, it has been shown that the execution time for
the handovers is high in highly dynamic networks [43]. Another disadvantage of
MIH, is that it requires a single legal network entity for each mobile node, in order
to provide security [43]. The standard provides information to allow handovers to
and from Ethernet, Wi-Fi, IEEE 802.16 Worldwide Interoperability for Microwave
Access (WiMAX), IEEE 802.15, and 3G/4G networks. Amendments have been
proposed to enhance security and authentication mechanisms [43, 44].

23

MAC/PHY SMEs

HLE LLC

IEEE 802.3 PHY IEEE 802.11 PHY IEEE 1901 PHY MoCA PHY

IEEE 802.3 MAC IEEE 802.11 MAC IEEE 1901 MAC MoCA MAC

LLC/SNAP LLC/SNAP Ethernet Convergence Layer

1905.1 Abstraction Layer

1905.1 Interface SAP1905.1 Interface SAP1905.1 Interface SAP1905.1 Interface SAP

Forwarding Entity
1905.1 Abstraction Layer

Management Entity (ALME)

ALME SAP 1905.1 MAC SAP

Data PlaneManagement Plane

Figure 2.1: Overview of the introduced abstraction layer by the IEEE 1905.1 standard [45].

2.2.2 IEEE 1905.1 standard
A key aspect in terms of user-friendliness and experience is the abstraction from
network connectivity, as users do not want to struggle with the low-level specifics
of each network technology. One of the main focal points so far has been the de-
velopment of a unified high bandwidth environment that exploits the multiple in-
terchangeable available network technologies on most devices [46]. Earlier work
towards a converged gigabit home network and an Inter-Mac architecture, eventu-
ally resulted in the definition of the IEEE 1905.1 standard in 2013 [45,47,48]. This
architecture, as shown in Figure 2.1 introduces an abstract (or virtual) MAC layer
on top of the current data link layer (i.e., OSI layer 2) to combine all the heteroge-
neous MAC interfaces in a transparent manner [49]. A unique virtual MAC address
is assigned to represent each device on the network. Packet header matching rules
can be used to transparently hand over flows and to load balance different flows
across the different interfaces. As such, the implementation of the IEEE 1905.1
standard results in a simplified set-up, configuration, and operation of network de-
vices with heterogeneous technologies and allows for dynamic rerouting of flows.
The standard targets in particular LANs as it supports Ethernet, Wi-Fi, (Power-
line) HomePlug (HP), and Multimedia over Coax (MoCA). Despite its potential,
IEEE 1905 was never really adopted by industry, and only a few products exist
that support it (e.g., Qualcomm Hy-Fi). Since its release in 2013, no follow-up
releases or developments have been proposed.

2.2.3 Software-Defined Networking-based approaches
An alternative for using modified data link layers or a hybrid MAC layer can
be found in the popular SDN principle, especially as it is being introduced in
LANs [39, 50]. The separation between control and data plane, and the notion of

24

network programmability, is typically enabled through the OpenFlow communica-
tion protocol that gives access to the different infrastructure devices in the network.
The installation of an SDN-enabled switch, like Open vSwitch (OVS), makes it
possible to perform transparent handovers between the different available tech-
nologies, such as Ethernet, 2.4 GHz Wi-Fi, and 5 GHz Wi-Fi [51]. An OpenFlow
controller (e.g., Ryu or Floodlight) is used to query the OpenFlow-enabled devices
for real-time monitoring information to identify different data flows and their re-
quirements by the exchange of OpenFlow stats request and reply messages [51,52].
Link quality information can be acquired in a similar fashion. Furthermore, the
controller can initiate the handover of a subset of flows to another technology by
changing the outgoing OpenFlow port.

Recently, the focus of research has expanded towards the management of the
network’s wireless segment [26, 53]. To this extent, ODIN is one of the first wire-
less SDN controllers [53, 54]. Its goal is to make dense wireless networks more
manageable, provide a smooth Wi-Fi experience to users, and support QoS for a
wide array of applications and use cases. Key in its design is the introduction of the
Light Virtual AP (LVAP) abstraction, as an addition to the default virtualization of
APs (i.e., Virtual APs (VAPs)). This concept virtualizes the association state and
separates this from the physical AP. Stations will now connect to their unique
LVAP instead of the underlying physical AP. This allows for the seamless mobility
of stations as they will remain associated, and only the corresponding LVAPs are
transferred to other physical APs. The ODIN architecture consists of two parts: the
ODIN master (i.e., controller) and the ODIN agent running on the physical APs
(using OpenWRT). The ODIN master is implemented on top of the Floodlight
OpenFlow controller. As such, it supports full OpenFlow capabilities and main-
tains a global view over the network, including the status of APs, stations, and
OpenFlow switches. Furthermore, ODIN employs the principle of a split-MAC
where time-critical operations (e.g., transmission of Acknowledgements (ACKs))
are performed by APs, and non-time-critical operations (e.g., station association)
are handled by the controller [26, 54].

A recent SDN-based wireless orchestration architecture is the 5G-EmPOWER
networking framework [55, 56]. It is inspired by, and builds further on top of,
the principles of the previously mentioned ODIN framework [26]. In particular,
5G-EmPOWER also uses the principle of LVAPs in order to manage the mobil-
ity of stations. Remaining faithful to the SDN principle, 5G-EmPOWER moves
the intelligence away from the infrastructure devices (e.g., Wi-Fi APs) to a (cen-
tralized) controller. However, compared to ODIN, it extends the programmability
of the network through either a number of Python interfaces or a REST Applica-
tion Programming Interface (API) and offers an increased amount of Virtualized
Network Functions (VNFs) [26, 55]. As such, it offers increased control and in-
sight in the available resources in the network (e.g., available bandwidth or load
per physical AP). Currently, its focus is on the following control aspects: wireless
clients state management, resource allocation, network monitoring, and network
reconfiguration [26, 55]. These features can be exploited, through the northbound
interfaces, by applications running on top of the controller that get their own net-

25

work slice (i.e., virtual network) assigned [55, 56]. Finally, it is key to highlight
that the offered functionalities are not only available for Wi-Fi networks but that
there is also support for cellular networks (currently 3G/4G, but in the future also
5G technologies) and devices (virtualization of LTE Evolved Node B (eNB)) [55].

As wireless SDN controllers and frameworks have become a popular research
topic, a multitude of other solutions have been proposed. Dezfouli et al. present a
recent and extensive overview of these existing solutions [26]. Most of the listed
works reuse or reformulate previously mentioned ideas (such as VAPs, LVAPs, or
the notion of a split-MAC) while focusing on specific use-cases or features. No-
table examples are, for instance, Ethanol that claims that the standard OpenFlow
protocol is not suited to provide QoS in wireless networks or Virtualized Access
Network (VAN) that targets residential environments and allows to share band-
width with neighbors [26, 57, 58]. Similarly, the European Horizon 2020 Wi-5
project employs these principles with the goal to manage Wi-Fi APs more effi-
ciently, offering inter-provider cooperation and interference mitigation [59]. De-
spite the large amount of existing work, remaining challenges are, among oth-
ers, coping with the coexistence of overlapping channels and networks, managing
dense networks, offering scalable solutions, and supporting high-throughput or
legacy clients [26].

2.2.4 3GPP and Tunneling approaches
In order to cope with the ever-growing bandwidth and traffic speed demands, es-
pecially towards the highly hyped 5G networks, the Third Generation Partnership
Project (3GPP) community began exploring the wireless spectrum outside of the
traditional licensed 3G/4G bands. Two different approaches have been proposed
to offload traffic from the cellular networks: first, the use of unlicensed spectrum
(i.e., LTE-Unlicensed (LTE-U) and LTE License Assisted Access (LTE-LAA))
and, second, the addition and use of Wi-Fi technologies (i.e., LTE-WLAN Ag-
gregation (LWA)) [60–62]. In the first case, LTE is directly used in the unlicensed
spectrum (specifically the 5 GHz band). However, this can potentially cause severe
performance degradations in coexisting Wi-Fi systems [19,27]. Furthermore, note
that different LTE-U deployments of different operators can also interfere with
each other [63]. In contrast to LTE-U, LTE-LAA contains a Listen-Before-Talk
(LBT) protocol and employs a so-called freeze period, where LTE leaves free air-
time for other technologies. This allows LTE-LAA to be used on a larger scale
and provides better coexistence with, for instance, Wi-Fi technologies. It has been
shown that the throughput per Wi-Fi AP, under coexistence with LTE-LAA, is
comparable to cases where the AP shares its spectrum with other IEEE 802.11 de-
vices. LTE-LAA has been standardized in 3GPP Release 13 (downlink traffic) and
Release 14 (uplink traffic and dynamic channel selection).

On the other hand, LTE-LWA proposes to combine an LTE eNB with one
or more Wi-Fi APs by either a physical integration or an external network in-
terface [62,64]. While the 5 GHz band will still be more heavily utilized, the LWA
approach introduces fewer coexistence issues, and no hardware changes are re-

26

quired on the infrastructure [27]. From a user perspective, both LTE and Wi-Fi are
used seamlessly as mobile traffic flows are tunneled over the Wi-Fi connection and
can be handed over between both technologies. Current research for LWA focuses
mainly on achieving high performance and low latency handovers. This is, for
instance, achieved by decreasing the overhead of handovers and scheduling them
properly, which leads to a reduced handover duration [65,66]. Currently, only two
LWA deployments are planned worldwide (in Singapore and Taiwan), while al-
ready over 30 trials and deployments (both planned or launched) exist for LTE-U
and LTE-LAA [67].

Outside of the 3GPP community, the MulteFire Alliance tries to fill the mar-
ket for small cells and local deployment, also known as private LTE [68, 69]. The
first version of MulteFire was specified in 2017 and is based on LTE-LAA. It sup-
ports an LBT protocol, as well as private deployments and mainly works in unli-
censed and shared spectrum, in particular the 5 GHz and the 3.5 GHz (i.e., CBRS)
frequency bands. Contrary to standard LTE deployments, no service provider is
necessary, but it can be connected to a public network as a neutral host. As such,
deployment and operation is similar to simplicity offered by IEEE 802.11 deploy-
ments. While currently no cooperation with other technologies is considered, it
is very likely that MulteFire products will be roll-out in parallel with upcoming
Wi-Fi technologies (e.g., IEEE 802.11ax).

Furthermore, in light of the ongoing roll-out of 5G technologies, the 3GPP
community issued Release 15 in 2018. This release, also informally called 5G
phase 1, introduced the first 5G standards that specify, among others, the New
Radio (NR) idea [70, 71]. NR is a novel radio interface that eventually will re-
place the existing 3G/4G technologies, and as such, also the LWA, LTE-LAA, and
LTE-U technologies. In contrast to these previous technologies, NR will support
from the start operation in all frequencies from below 1 GHz up to 52.6 GHz [71].
Key in this will be the support for the frequencies above 6 GHz, as such intro-
ducing Millimeter-Wave (mmWave) communications to 5G, in order to find free
spectrum to support massive bandwidth and high throughput requirements [70].
mmWave communications rely on beams between multiple directed antennas and
Multiple-input and Multiple-output (MIMO) to offer Gigabit connections. How-
ever, critical elements are, among others, beamforming and the interworking (e.g.,
handovers) between the higher and lower frequencies [70, 71]. Such features are
currently still under (further) development, as NR is only at the beginning stages
of development [70].

Finally, some other commercially available products exist that use a simi-
lar tunneling approach to hide away the underlying communication technologies.
These products typically target LANs, and in particular office environments. A
tunnel is configured between a so-called pro-active router or modem and an in-
stance in the cloud, while the different technologies under the hood (e.g., DSL,
fiber, satellite or LTE) are concealed. The router decides which underlying techno-
logy to use per traffic flow, based on QoS parameters. This technique is also known
as Software-Defined Wide Area Networks (SD-WAN) bonding. It is, among oth-
ers, offered by the companies Mushroom Networks and Peplink [72, 73].

27

Application Layer

Standard Socket API

Multipath TCP

Transport Layer

TCP
subflow

Network Layer

1 2 3 4 5
Send-queue

1 2 3
Send-queue

TCP
subflow

4 5
Send-queue

Multipath TCP Scheduler

Figure 2.2: Architecture of the MPTCP stack with a prominent role for the scheduler [74].

2.2.5 Multipath Transmission Control Protocol

In 2013, the MPTCP standard was released as an extension to regular TCP [75].
This extension enables the transmission and reception of data concurrently on mul-
tiple network interfaces in order to maximize resource usage and increase redun-
dancy in multi-technology networks [75, 76]. Multiple regular TCP connections
(denoted as subflows), are offered as one to the application layer, while under the
hood each subflow can follow different paths through the network. Based on the
ever-changing network characteristics (e.g., increased Round Trip Time (RTT)),
the MPTCP scheduler can divide or duplicate application data across these sub-
flows to attain a higher throughput or increased reliability [74]. The concept of
MPTCP is illustrated by Figure 2.2. Additionally, one sub-flow can be kept idle
and serve as a back-up stream in case the main sub-flow would break or to use as
a channel to send retransmissions. In this case, the fallback sub-flow is already
established, meaning the handover can occur very quickly and fully transparent to
upper layers. However, research has shown that these handovers are not seamless
and can take up to 2-3 s [77, 78]

Moreover, as MPTCP is fully backwards-compatible with regular TCP, an
MPTCP-aware host attempts to use MPTCP when establishing a new connection,
but falls back to regular TCP gracefully when the other endpoint does not indi-
cate it is MPTCP-aware. The key component in the whole MPTCP architecture
is the scheduler that must decide which subflow(s) will be used to send each TCP
segment [74,79]. The most used scheduler, part of the default MPTCP implemen-
tation, is the Lowest Round Trip Time First (LowRTT) scheduler that selects the
subflow with the lowest RTT when a segment is to be scheduled. Once a subflow
is chosen, all the following segments are also sent using that subflow, until its con-
gestion window is filled [74]. However, it is important to note that this schedul-
ing is done per connection between two hosts and not on a network-wide scale.

28

Besides the scheduler, it has been shown that the maximum buffer size can also
have significant impact on the performance of MPTCP [79–82]. Having a limited
buffer size can lead to significant throughput degradations in heterogeneous net-
work environments, especially when links have different characteristics [80, 81].
The latter is especially true for heterogeneous wireless environments where it has
been demonstrated that the overall performance of MPTCP can be worse than reg-
ular TCP [79,82]. Furthermore, MPTCP has proven to be very aggressive towards
other non-controlled TCP connections in the network, sometimes even without
providing added benefits for the MPTCP users [83].

Originally, MPTCP was designed with multi-homed devices such as smart-
phones (enabled with both Wi-Fi and mobile interfaces) or servers (that are set
up with multiple Ethernet interfaces) in mind [75]. Currently, indeed, MPTCP is
actively being used on a large scale in Android and iOS devices (e.g., by Siri) [84].
However, multiple telecommunication operators also employ MPTCP to split traf-
fic across both wired and wireless backbone networks (called hybrid access net-
works). This is, in particular, the case for DSL and LTE solutions, to circumvent
the limited capacity of DSL wires (also known as DSL-LTE bonding or hybrid-
DSL). Such a solution is, among others, offered by the company Tessares [85].
Furthermore, MPTCP is also used to facilitate the transmission of video record-
ings from remote television crews in the field to the broadcasting headquarter,
using a combination of satellite, 3G/4G, and Wi-Fi uplinks [86].

Finally, as the name suggests, MPTCP only supports TCP traffic. While it is
possible to tunnel UDP packets over TCP, this introduces additional overhead to
the already saturated wireless environments. Internet traffic is currently still domi-
nated by TCP traffic, however, its share is decreasing as new applications and pro-
tocols are being launched that use UDP to reduce the network overhead [87, 88].
Examples of this are, the introduction of large scale M2M communications due
to the adoption of IoT and the introduction of the UDP-based QUIC protocol
by Google. To this extent, a multipath version of QUIC has recently been pro-
posed [89].

2.2.6 Other solutions
So far, the most solutions discussed are located at the network or transport lay-
ers of the network stack. However, some solutions positioned at the application
layer, are also available. First of all, the Border Gateway Protocol (BGP) is a
decentralized routing protocol that has been around since the beginning days of
the Internet [90]. It is based on TCP and used for routing between different au-
tonomous networks and domains [90, 91]. Each (routing) device opens a TCP
port and listens, as well as sends, keep-alive messages. As such a connectivity
graph can be constructed that shows reachability between different networks and
devices. This makes it possible to make routing decisions based on the available
connections, enforce network policies, or configure network rules [91, 92]. While
BGP is most known for its use in the routing of the core networks of the Internet
(e.g., between different Internet Service Provider (ISPs)), it can be used for inter-

29

technology or intra-technology handovers in smaller autonomous networks, such
as wireless networks, as well.

SIP on the other hand, especially with its extensions, focuses on session mobil-
ity across different connections [93]. Each device is registered at a registrar which
manages the current reachability of the device through its identifier. When the net-
work or technology changes, the devices updates its IP address with its registrar,
which in turn forwards it to registrars of currently connected devices. This allows
for fast handovers, but there is a short downtime until the IP address is updated.
SIP is currently used by Voice over LTE (VoLTE) to allow for voice calls over the
mobile data connection [94].

Finally, it should be noted that recent OSs also focus on cross-technology in-
tegrations and bonding. First of all, this is the case for platforms targeting mobile
devices such as smartphones or tablets. For instance, the latest smartphones can
near seamlessly hand over connections between technologies, by closely monitor-
ing Wi-Fi and LTE parameters. This is mainly achieved by reacting early on and
preferring the more stable technology. This feature (integrated in the OS proto-
col stack) is, among others, known as Wi-Fi assist [95]. Second, the Linux kernel
contains a module that offers a method of bonding (i.e., joining) two or more phys-
ical interfaces into one virtual interface [96]. The exact behavior can be specified
through several available policies [97]. Examples of these policies are round-robin
load balancing, backup (only 1 interface is used, while the others are kept as back-
ups), or broadcast (all packets are transmitted over all interfaces). The feature
originates from 2000, with the latest update in 2011 [96]. It is designed to increase
the throughput or redundancy across two or more Ethernet links but requires sup-
port at both endpoints. As such, the main use cases are found in data centers or the
wired backbone, although some enthusiasts have also proposed this in the context
of Network-attached Storage (NAS).

2.2.7 Comparison and summary
In the previous sections, we have presented the most relevant multi-technology
control and management solutions that operate on different layers of the OSI stack.
Table 2.1 positions the different solutions next to each other and compares different
features such as network domains, supported technologies, level of control, and
supported transport protocols.

In general, we can say that nearly all listed approaches are technology depen-
dent and/or target a specific network domain or use case. LANs are targeted by
nearly all discussed technologies, except for the cellular ones. MPTCP and SDN
solutions were originally designed for wired networks (e.g., in data centers, or in
the core network) but are now also being applied to home and office networks. In
terms of communication technologies, nearly all listed solutions support multiple
communication technologies, with Wi-Fi being the most popular one. The excep-
tions are, in the first place, once again the 3GPP solutions, although LTE-LWA
does combine LTE with Wi-Fi. Some older approaches, like BGP and the network
bonding capabilities of the Linux kernel, target only Ethernet links.

30

Fe
at

ur
es

IE
E

E
80

2.
21

IE
E

E
19

05
.1

SD
N

-b
as

ed
LT

E
-L

W
A

M
PT

C
P

A
pp

lic
at

io
n

N
et

w
or

k
do

-
m

ai
ns

L
A

N
-W

A
N

L
A

N
L

A
N

L
A

N
-R

ad
io

A
cc

es
s

N
et

-
w

or
k

(R
A

N
)

A
ny

(e
nd

-t
o-

en
d)

A
ny

Te
ch

no
lo

gi
es

3G
PP

,W
i-

Fi
,

IE
E

E
80

2.
16

,
E

th
er

ne
t,

H
P,

W
i-

Fi
,M

oC
A

W
i-

Fi
,3

G
PP

W
i-

Fi
,L

T
E

A
ll

A
ll

C
oo

rd
in

at
io

n
N

on
e

G
lo

ba
l

G
lo

ba
l

L
oc

al
(w

ith
in

ce
ll)

B
et

w
ee

n
en

d-
po

in
ts

L
oc

al

C
on

tr
ol

-
le

ve
l

Fl
ow

-b
as

ed
Fl

ow
-b

as
ed

Fl
ow

-b
as

ed
Fl

ow
-b

as
ed

Pa
ck

et
-b

as
ed

(s
ub

-fl
ow

s)
Fl

ow
-b

as
ed

Tr
an

sp
or

t
pr

ot
oc

ol
s

A
ny

A
ny

A
ny

A
ny

O
nl

y
T

C
P

A
ny

B
ac

kw
ar

d
co

m
pa

tib
il-

ity

Y
es

N
o

N
o

Y
es

Y
es

Y
es

Ve
rt

ic
al

H
an

do
ve

rs
Y

es
Y

es
Y

es
Y

es
(w

ith
in

ce
ll)

Y
es

(b
et

w
ee

n
su

b-
flo

w
s)

Y
es

N
ee

ds
cl

ie
nt

ch
an

ge
s

Y
es

(s
ta

n-
da

rd
s)

Y
es

N
o

Y
es

Y
es

N
o

Pr
od

uc
ts

av
ai

la
bl

e
N

o
Q

ua
lc

om
m

H
y-

fi
O

di
n,

5G
E

m
-

PO
W

E
R

,.
..

Tw
o

pl
an

ne
d

de
pl

oy
m

en
ts

A
nd

ro
id

,i
O

S,
Te

ss
ar

es
,.

..
Vo

LT
E

Table 2.1: Comparison of existing multi-technology control and management solutions.

31

Furthermore, the above listed approaches operate in general on a flow-level,
being able to reroute or hand over traffic flows across different network paths or
connections. The major exception to all of this is MPTCP. MPTCP has already
been applied in multiple domains and use cases, while being fully independent
of the underlying communication technologies. It is also the most fine-grained
solution that exists, as it allows to set up multiple sub-flows that can be used to
transport the individual packets of a single traffic flow. However, MPTCP comes
with two major drawbacks as it only supports TCP traffic and coordination is only
possible between two endpoints and not network-wide.

This important network-wide coordination is currently only offered by the
IEEE 1905.1 standard and SDN approaches (e.g., ODIN or 5G-EmPOWER) as
they introduce a centralized controller to the network. Other approaches, such as
LTE-LWA and application layer protocols, have a more local and distributed form
of coordination by exchanging messages between the different involved devices.
However, on the other hand, the IEEE 1905.1 standard and SDN approaches do
not support legacy devices by default, while for instance LTE-LWA or MPTCP
can easier fall back to, respectively, previous releases or standard TCP. More-
over, MPTCP, LTE-LWA, and IEEE 1905.1 require changes to the consumer de-
vices, typically through a software update. Furthermore, although all listed ap-
proaches introduce intra- and inter-technology handovers, the seamlessness and
performance of these operations can differ significantly. Typically, no guarantees
can be provided on the duration of the handover. Finally, MPTCP is the only ap-
proach that, in addition to the handovers, also introduces features like duplication
or packet-based load balancing. It should also be noted that both the IEEE 802.21
and IEEE 1905.1 standard have never really been adopted by industry, in stark
contrast to, for instance, MPTCP.

Summarized, it is clear that the existing approaches fail to address the multi-
technology problem in a fundamental manner, without targeting specific com-
munication technologies or application domains. Furthermore, in order to boost
network-wide performance there is a need for centralized coordination, accompa-
nied by more fine-grained control, to also support packet-level operations and not
only flow-level operations. The most relevant approach is MPTCP, followed by
the IEEE 1905.1 standard, SDN-based solutions, and LTE-LWA.

2.3 Multi-technology load balancing approaches
All the approaches listed in the previous Section 2.2 define to some extent the fea-
tures to enable multi-technology network management operations (e.g., handovers
or load balancing). However, they do not define the intelligence or algorithms to
actually optimize the network, such as selecting the most suitable path(s) per flow.
In this dissertation, we mostly focus on intelligent load balancing. Within the con-
text of this work, load balancing is considered to be the principle of balancing
the effort of communication (between two or more devices), as much as possible,
across all available components of the network infrastructure (e.g., nodes or links).

32

This is especially the case in the context of limited capacities and high demands.
For instance, if multiple APs or base stations are present, the connecting devices
should be balanced across all present infrastructure devices, and not all devices
should be connected to the same infrastructure devices. Similarly, if devices are
equipped with multiple communication technologies, not all devices should use
the same technology, especially if the capacity is insufficient.

To this extent, we discuss existing load balancing algorithms in the areas of
LANs and the so-called Heterogeneous Networks (HetNets) or RANs, respectively
in Subsections 2.3.1 and 2.3.2. While load balancing techniques have also been
applied in other types of networks (e.g., cloud networks) and domains (e.g., queu-
ing), LANs and HetNets are the most relevant areas. Afterwards, a short summary
is provided in Section 2.3.3.

2.3.1 Load balancing in heterogeneous local area networks
A number of contributions have been made that propose load balancing between
wired and wireless links or between different wireless links mutually to cope with
the increased traffic volumes in LANs. First of all, a per-flow decentralized load
balancing technique is proposed by Sahaly and Christin, as part of a framework for
heterogeneous home networks [98]. It is capable of reactively distributing incom-
ing flows on the available links. However, the load balancing technique only takes
local parameters per device into account and only a theoretical description is given
without any real-life results. Furthermore, Macone et al. present a per-packet load
balancing algorithm [49]. Per-packet load balancing can better exploit the network
resources and thus theoretically provides better results. However, per-packet load
balancing in combination with TCP can result in unnecessary retransmissions, due
to the out-of-order arrival of packets. This results in severe throughput fluctuations
in real-life systems when combined with standard TCP protocols. Furthermore, the
algorithm runs centralized on the gateway and assumes full instantaneous knowl-
edge of network resources and conditions.

Another decentralized load balancing algorithm, specifically for heterogeneous
wireless access networks, is proposed by Oddi et al. [99]. This algorithm relies on
a multi-connection transport layer in order to cope with the drawbacks of per-
packet load balancing in the case of TCP. The proposed algorithm is based on the
Wardrop equilibrium and does not take into account the fact that users do not have
dedicated wireless network resources and are subject to contention and interfer-
ence. In general, Olevera-Irigoyen has shown that determining the actual available
bandwidth on the links has a big impact on the results of load balancing the flows
in a (wireless) network, in particular with the time-varying capacity of Wi-Fi and
Power line communication (PLC) [32]. Additionally, there are also load balancing
solutions for LANs that focus on energy optimization by, for instance, selecting
the most energy efficient link while still providing a good QoS [100, 101]. How-
ever, this is done by assuming the energy consumption model is known in advance,
and not by real-time measurements.

While the previously listed approaches focus on balancing and scheduling

33

across different technologies, proposals have also been made towards load bal-
ancing across different infrastructure devices within a single technology. The typ-
ical application is balancing the load of associated stations across multiple Wi-Fi
APs. Popular approaches to tackle this problem are game theory and mathematical
programming formulations [102–104]. For instance, Yen et al. show that a Nash
equilibrium exists, and overall fairness and bandwidth are improved, in a game
where stations greedily select an AP purely to maximize their own achievable
throughput [102]. A more general game setup, taking into account the resources
of different operators, is proposed by Malanchini et al., while using mathemati-
cal programming to optimally solve the game [103]. Similarly, a Mixed Integer
Non Linear Programming (MINLP) formulation, taking into account the differ-
ences among the bandwidth demand of the different stations, has also been pro-
posed [104]. Furthermore, Coronado et al. present a station association approach,
that first assigns different channels to different APs in order to mitigate interfer-
ence and collisions [105].

2.3.2 Load balancing in HetNets and mobile (LTE) networks
In HetNets, most research proposes technology-specific solutions that are capable
of load balancing or performing handovers across only two technologies [106]. In
particular, between either LTE and Wi-Fi or between Wi-Fi and WiMAX. The load
balancing decisions are typically made centrally on the base station but sometimes
also on a separate controller. Commonly, load balancing policies are based on the
number of connected devices to a base station. Furthermore, a number of deci-
sion strategies have been proposed, among others, using utility functions, multiple
attributes decision-making, Markov chains, and game theory [106–109]. For in-
stance, a fully distributed algorithm based on the Nash equilibrium, for fair station
assignments across Wi-Fi and WiMAX, is introduced by Coucheney et al. [110].
While Ye et al. propose a distributed dual decomposition-based algorithm, relaxing
physical constraints, to provide a near-optimal solution for an optimal logarithmic
utility maximization problem for equal resource allocation [111]. More recently,
Harutyunyan et al. introduce an Integer Linear Programming (ILP) formulation for
traffic-aware balancing devices across LTE and Wi-Fi infrastructures [112]. Note
that this latter work, partially, extends the work presented in Chapter 4 by focusing
on station association in RAN. Very recently, in light of the proposed NR principle
for 5G networks interest has grown in handover and load balancing approaches for
mmWave communications [70, 71]. For instance, a user association scheme based
on MINLP has been proposed [113]. However, further research and optimizations
are needed within this specific area [70].

In general, the listed strategies take only a limited number of parameters into
account, with Received Signal Strength Indicator (RSSI) and Signal-to-noise Ratio
(SNR) being the most popular ones [108,114]. Open issues include, among others,
the development of more generic solutions, better support for mobility, the use of
multi-criteria decision functions, supporting different QoS classes, coping with
asymmetric characteristics of downlinks and uplinks, and taking into account the

34

capacity of backhaul links and User Equipment (UE) [108,109,115]. To conclude,
current solutions are technology specific and do not take actual application or QoS
parameters and objectives into account, making them unsuitable for use with QoS-
sensitive or mission-critical services.

2.3.3 Summary
To summarize, most existing work on load balancing in heterogeneous networks
focus on the development of theoretical models that are unusable in real environ-
ments as they assume the detailed knowledge of flow throughput requirements and
dynamic network conditions. The specific nature of wireless networks (e.g., in-
terference, link quality variability) and the typical behavior of TCP traffic flows
are also ignored. Furthermore, developed algorithms tend to be technology spe-
cific (e.g., only operate on Wi-Fi or WiMAX) and are not suited for matching QoS
requirements of modern services and end-users.

2.4 Traffic recognition approaches
In order to increase the spectrum efficiency and to cope with neighboring networks,
we propose to recognize traffic patterns at the level of wireless radio signals. How-
ever, traditionally, traffic recognition takes place at higher layers of the network
stack. To this extent, we discuss these traditional methods in Section 2.4.1. Next,
in Section 2.4.2, we take a look at the efforts made in the area of Cognitive Radio
(CR). Finally, we also provide a summary in Section 2.4.3.

2.4.1 Traditional traffic recognition approaches
Traffic recognition commonly takes place at gateways or routers in a (wired) net-
work aiming to identify individual traffic streams or applications entering or exit-
ing the controlled network environment. The typical use cases are network man-
agement (e.g., providing QoS or billing) by ISPs and intrusion or anomaly detec-
tion in the area of network security [116–118]. A very straightforward approach of
traffic recognition is the association of port numbers with applications [117, 118].
Combining this information with the MAC and IP addresses of the source and des-
tination of the traffic flow, allows to identify individual applications, flows, and
users. Despite its strong inaccuracy (e.g., multiple applications using the same
port or port and address translations), this approach is still often used in practice,
because it is simple to deploy and provides very fast continuous monitoring [118].

Two more advanced approaches exist: Deep Packet Inspection (DPI) and meth-
ods based on (IP) packet traces. Historically, DPI has long been the default ap-
proach where information is extracted from the headers and payload of individual
packets, typically in a rule-based system. Especially towards network security, it
can take place at different layers of the network stack (varying from the MAC to
application layer) [117]. While DPI methods are very accurate, they require a lot

35

of computational power, are very intrusive (i.e., towards privacy), and often require
manual signature maintenance [116]. The intrusive nature of DPI is cumbersome
in light of the recent global focus on data transparency and privacy regulations
(e.g., GDPR). Furthermore, DPI can not always cope with the encryption of many
modern end-to-end services. To this extent, recent work leverages the trade-off
between encryption and privacy on one hand, and the functionalities and informa-
tion exposed by DPI on the other hand [119]. The authors propose a set of novel
protocols and encryption schemes that make it possible to perform DPI directly on
the encrypted traffic, without compromising the privacy of the captured data.

As an alternative to DPI, statistical and ML-based methods have been proposed
that do not require packet inspections but are based on captured packet traces, typi-
cally at the IP level [116,120,121]. These methods are based on traffic flow statis-
tics like packet sizes, flow durations, inter-packet times, source and destination
ports, and IP addresses [116, 122]. Both clustering (e.g., Expectation Maximiza-
tion or K-Means), supervised learning (e.g., Naive Bayes or Genetic Algorithms),
and semi-supervised learning (e.g., a combination of clustering and label mapping)
techniques have been applied previously [122]. For instance, semi-supervised
learning has been proposed to cope with zero-day applications, previously un-
known to the traffic classification systems [123]. Overall, these methods can han-
dle encrypted traffic, offer a lower computational cost than DPI methods, while
still acquiring a rather high accuracy for flow classification (up to 99 %) [116,122].
Lately, deep learning approaches have also been proposed [120,124]. Lotfollahi et
al. propose a combination of a stacked autoencoder with 5 fully connected layers
and a one-dimensional CNN with as input IP layer packets [120]. The approach
can identify applications with an accuracy of 98 % and traffic characteristics with a
precision of 93 %. Furthermore, a CNN architecture is also proposed to detect mal-
ware traffic [124]. The model is trained on images, that are acquired by converting
packets (pcap to idx format). Open issues include, among others, the questionable
performance under non-perfect circumstances (e.g., packet loss, jitter, and packet
fragmentation), while also only a limited amount of accurately labeled training
data sets are available [116, 122]. Note that these available datasets only include
data captured on wired links.

2.4.2 Cognitive radio approaches
The principle of CR has been introduced, comprising a large number of differ-
ent approaches, to allow the coexistence of different technologies (both licensed
and unlicensed) and networks over the same spectrum [36]. Within this domain
of CR, the detection and classification of wireless radio signals are important to
optimize spectrum usage. So far, the focus has been mostly on the recognition of
modulation schemes and technologies. The detection of different technologies is
typically done by exploiting key differences in, for instance, the channel access
methods of the different technologies [125, 126]. Typical methods that have been
applied are likelihood-based and feature-based, using high-order statistics features
such as moments, cumulants and cyclic cumulants. For instance, Shi et al. pro-

36

pose a method to differentiate single carrier from Orthogonal Frequency Division
Multiplexing (OFDM) signals, using the fourth order cumulants as features [125].
Karami et al. show how to discriminate between spatial multiplexing OFDM and
Alamouti-coded OFDM for MIMO systems by relying on the second-order sig-
nal cyclostationarity [126]. Furthermore, they are also capable of distinguishing
between GSM and LTE transmissions [127]. Finally, Liu et al. present an ap-
proach that uses the differences in RSSI distribution at Sub-Nyquist sampling rate
to successfully recognize different technologies (e.g., Wi-Fi or LTE) [128].

Recently, deep learning techniques have gained momentum and are applied to
classifying wireless signals. Schmidt et al. apply a CNN architecture to discrimi-
nate, with an accuracy of 95 %, between 19 different variants of modulation types
and symbol rates within the 2.4 GHz band [129]. Similarly, Jeong et al. also apply
a CNN to recognize different modulation types based on spectrograms, while Ra-
jendran et al. apply a Long Short-Term Memory (LSTM) model that can classify
11 modulation types with an accuracy of 90 % [130, 131]. Both O’Shea et al. and
Kulin et al. show how CNNs significantly outperform expert learning systems for
the task of radio signal classification [132, 133]. They both compare multiple dif-
ferently structured CNNs that are trained on processed In-phase and Quadrature
(IQ) samples.

Within the context of CR, limited research exists that focuses on traffic recogni-
tion. First of all, a CNN has been developed to detect different interfering sources
for an IEEE 802.15.4 sensor network, using RSSI traces [134]. The approach
allows to detect with an accuracy of 93 % Wi-Fi beacons, Wi-Fi video stream-
ing, Wi-Fi file transfer, iBeacon, and microwave oven interference in the 2.4 GHz
band. Lately, Testi et al. have also shown that is it possible to use ML techniques
to distinguish YouTube form WhatsApp traffic in a real-life setting [135]. The
best results were achieved with a Neural Network (NN), achieving an accuracy of
above 90 % under different SNR levels.

2.4.3 Summary
We have shown that traffic recognition is historically always performed at the
higher layers of the network stack by DPI and methods that are based on IP packet
traces. These methods are, in general, very accurate and are actively being used
(e.g., by ISPs) but are only employed on wired networks. Furthermore, the popular
DPI method is computational intensive and does not respect the privacy require-
ments of modern users or applications. In contrast, efforts have been made recently
in the area of CR, often based on deep learning and in particular using a CNN ar-
chitecture. While most approaches target the recognition of wireless technologies
and modulation schemes, recent work has directed attention towards identifying
specific traffic patterns as well. However, these works target only specific and very
distinct types of traffic (e.g., differentiating YouTube from WhatsApp) and more
generic traffic classes or transport protocols have not yet been considered. Over-
all, we can conclude that applying traffic recognition directly at the level of the
wireless spectrum is still a completely open research challenge.

3
ORCHESTRA: seamless

multi-technology management

“It’s his M.O., isn’t it? I mean, what are we, a team? No, no, no. We’re a chemical
mixture that makes chaos. We’re... we’re a time-bomb”

–Bruce Banner/The hulk (The Avengers, 2012)

The contributions presented in this chapter are based on the publications titled
”ORCHESTRA: Enabling Inter-Technology Network Management in Heteroge-
neous Wireless Networks” and ”ORCHESTRA: Supercharging Wireless Backhaul
Networks through Multi-technology Management”.

3.1 Introduction
In Chapter 1, we introduced the heterogeneous and ever-growing nature of the
wireless networks of today and tomorrow. Examples of technologies found across
these diverse networks are Wi-Fi, LTE, Bluetooth, ZigBee, and satellite commu-
nication. These networks are typically managed in a static manner and each tech-
nology operates completely independent from one another. As such, leading to
uneven load distributions among different technologies and infrastructure devices,
suboptimal and inefficient use of wireless resources, performance degradations,
and potential connection losses. Introducing the required coordinated manage-
ment to these wireless environments is highly challenging, as each technology has
unique capabilities and serves specific use cases

38

To address these problems, several solutions have been proposed at differ-
ent layers of the network stack. The most notable solutions are MPTCP, the
IEEE 1905.1 standard, LTE-LWA, and SDN-based solutions. Arguably, the most
popular solution nowadays is MPTCP, capable of load balancing TCP flows across
multiple network interfaces [75, 76]. However, MPTCP lacks intelligence and
works only between two endpoints. IEEE 1905.1 is a data link layer solution,
which allows dynamic flow redirection through an abstract MAC layer [45]. How-
ever, the downsides of IEEE 1905.1 are twofold. First, it only provides flow-
level control, while packet-level control is needed for, among others, fine-grained
load balancing that is fully utilizing all wireless capacity. For instance, consider
the following hypothetical scenario: two links each have a capacity of 10 Mbps,
while there are three traffic flows each having a rate of 6 Mbps. In this case, flow-
level management is insufficient, while packet-level control could divide one of
the flows across both links to have in total 9 Mbps of traffic on both links. Second,
it was designed for specific network technologies (Ethernet, Wi-Fi, powerline, and
MoCA) and does not support mobile networks. In contrast, a solution for mobile
networks exists in the form of LTE-LWA that extends tradition LTE networks by
offloading traffic over a Wi-Fi connection using tunnels [60,61]. Furthermore, also
SDN-based solutions have been proposed that introduce a flow and device level
of control over wireless devices and typically focus on seamless mobility [26]. In
general, existing solutions lack intelligence, fine-grained control, and full indepen-
dence towards communication technologies, protocols, and application domains.

To this extent, we introduce the ORCHESTRA framework that uses SDN prin-
ciples to enable seamless multi-technology management of devices in heteroge-
neous networks. The framework consists of two components: (i) a fully trans-
parent VMAC layer that unifies the various communication technologies under-
neath, offering a single point of connection to the upper layers. (ii) a centralized
controller that is capable of managing both VMAC-enabled and legacy devices
across the entire network based on received real-time monitoring information. On
top of this controller, algorithms can be executed to optimize the overall network
state and to increase network performance and user experience. In particular, the
framework allows for the enabling of features such as seamless intra- and inter-
technology handovers, packet-level load balancing and duplication of critical data,
and dynamic path reconfiguration.

The remainder of this chapter is structured as follows: first, we introduce the
ORCHESTRA framework in Section 3.2, discussing all the different buildings
blocks and features in detail. Next, we describe how the framework can be used
with different underlying communication technologies, such as Wi-Fi and LTE,
in Section 3.3. We follow up by stating a number of relevant use cases where
the framework can be adopted relatively fast in Section 3.4 and the presentation
of a real-life prototype implementation in Section 3.5. Finally, we conclude with
the results and a discussion in Section 3.6, where we provide an evaluation of the
performance of the ORCHESTRA solution in comparison to MPTCP.

39

3.2 Framework architecture
The goal of the proposed framework is to offer a single solution to manage all dif-
ferent technologies within a network, regardless of the technologies and the type
and scope of the network. The ORCHESTRA framework consists of two main
parts: first, the transparent VMAC layer that manages physical interfaces on a
device without modifying the underlying layers. It can be deployed on any de-
vice, both end-user or being part of the network (e.g., an edge or core node), and
introduces seamless interactions between the different technologies. Second, fol-
lowing the SDN principle, we introduce the ORCHESTRA controller that has a
global view of the network. The main responsibility of the controller is to manage
the different VMACs across the network, based on real-time monitoring informa-
tion. Both components are extensively discussed in the next subsections, where
we highlight, among others, the different building blocks, features, and interac-
tions with legacy (i.e., non-ORCHESTRA) devices.

3.2.1 Virtual MAC layer
In order to provide continuous and reliable connectivity, a key feature is the en-
abling of inter-technology handovers and roaming. As identified in Chapter 1, the
current structure of the OSI network model obstructs this behavior. All communi-
cation technologies or standards operate completely independent from each other,
as they each define their own lower layers of the network stack (in particular the
MAC and physical layers). This means that connectivity is currently handled on
an interface basis as each interface has its uniquely assigned network address and
applications tend to bind on a single, specific interface. Consequently, changing
between interfaces results in connection loss. We solve this issue by introducing a
virtual MAC layer (VMAC) and abstracting connectivity from the user and appli-
cations. It also enables the implementation of functionality (e.g., load balancing)
that works across multiple technologies. The general architecture and capabilities
of the VMAC are shown in Figure 3.1.

The novel layer is placed above the existing data link layer and below the
network layer, appearing transparent to both of them. The main responsibility
of the VMAC is to forward incoming packets from the network layer to one (or
multiple) of the underlying interfaces (i.e., technologies) under its control, or vice
versa, forward packets received from the data link layer to the above network layer.
Existing layers are thus not modified, do not require knowledge of the presence
of the VMAC, and packets are still regularly passing through them. As such,
abstraction and encapsulation, key principles of the OSI stack and the Internet, are
maintained.

One of the main advantages is that there is only one interface (i.e., the VMAC)
visible to the network and upper layers, while the underlying technologies, and
their respective layers, are hidden away. This also means that also only a single
IP address per device is needed, without requiring any additional overhead. In
contrast to the IEEE 1905.1 standard, no unique virtual MAC address is required.

40

T
1

T
2

T
3

...
Tn

Ph
ys
ic
al
 la
ye
r

Lo
ad
-

ba
la
nc
in
g

H
an
do
ve
r

R
ep
lic
at
io
n

D
up
lic
at
e

fil
te
ri
ng

R
eo
rd
er
in
g

M
on
it
or
in
g

R
ul
es

R
ou
ti
ng

D
H
C
P

D
is
co
ve
ry

A
R
P
ca
ch
e

V
ir
tu
al
 M
A
C
 la
ye
r

A
dd
r
1

A
dd
r
2

A
dd
r
3

...
A
dd
r
n

D
at
a
lin
k
la
ye
r

D
at
a

D
at
a

N
et
w
or
k
la
ye
r

U
ni
fie
d
IP
 A
dd
re
ss

Figure 3.1: Overview of the VMAC layer with its position in the OSI model, its buildings
blocks, and its offered functionality.

41

As such, the interaction with existing standards and protocols does not need to be
altered. Furthermore, as the VMAC is capable of managing all the different in-
terfaces, and these interfaces can be connected to different networks, it also needs
to be able to route packets between different networks. For instance, between an
edge network, that might be wireless, and a core network, that might be wired.
Therefore, the VMAC incorporates the required bridging functionality as well.

Because of the single interface to the upper layers, and the abstraction of and
control over all the underlying technologies, the VMAC captures all traffic and
can therefore seamlessly handover between technologies. In particular, the VMAC
introduces the following advanced functionalities:

1. Seamless handovers within a single technology between wireless endpoints
or between different technologies to support mobility and leverage the best
QoS available for a node across different technologies.

2. Packet-based load-balancing (and reordering at the other end) between two
or more technologies to maximize network utilization.

3. Duplicating (and deduplicating at the other end) individual packets across
several technologies to support high reliability.

The features stated above are enabled by the introduction of packet matching
rules, to which incoming packets are matched. Additionally, statistics are gathered
and forwarded to the central controller, while in turn, rules and commands are
(ideally) received from the controller. This interaction is in more detail discussed
in Section 3.2.2.1. Based on these rules (e.g., send all traffic to a specific node
over a single interface) and commands (e.g., to perform a handover), the VMAC
decides which interface handles the received packet and let the lower MAC layer
take care of the actual transmission. With this granularity, the virtual layer can
support packet-level control instead of flow-based handling, which allows for more
versatility and control (cf. the hypothetical example in Section 3.1). This is in
strong contrast to existing solutions such as IEEE 1905.1 and LTE-LWA.

Considering the general packet-flow, the VMAC introduces only minimal dif-
ferences: on a sending node, when a packet arrives from the upper network layer,
it enters the VMAC instead of directly going to the MAC of one of the underly-
ing interfaces. Depending on the rule, that matches the header information of the
packet, the VMAC decides to hand the packet over to the correct underlying in-
terface, or in the case of duplication, multiple interfaces. On the receiving side,
the incoming traffic is pushed from the data link layer interfaces to the VMAC,
instead of directly being passed to the upper layers. In the specific cases of du-
plication and load balancing, some additional processing has to be done on the
VMAC, before passing the packet upwards. We discuss these intermediate steps
in Section 3.2.1.2.

The VMAC can be installed on any device, both consumer (i.e., endpoint) or
infrastructure side, and applied in all kinds of networks (e.g., LANs, RANs, back-
haul networks). However, we mentioned earlier that the VMAC requires bridging

42

InternetWLAN

External
Internal

Edge
Device

Core
Device

Figure 3.2: Illustration of internal and external interfaces in a backhaul scenario.

functionalities in the sense that it is capable of forwarding packets from, for in-
stance, a wireless backhaul or edge network to a (wired) core network and vice
versa. Note that this bridging functionality is typically required in ISP or back-
hauling use cases. In this case, we need to make a distinction between the inter-
faces, controlled by the VMAC, according to their functionality. We discriminate
two types of interfaces: internal and external interfaces. The internal interfaces are
part of the wireless backhaul network, meaning that they handle the traffic to and
from edge nodes. In many cases, this might appear as its own subnet without di-
rect access to an outside network. On the other hand, there is at least one external
interface, which is part of the core network or an external network. This interface
has outside connectivity and needs to handle packets from a different subnet and
translate the IP addresses to the internal interface and vice versa. The VMAC is
also responsible for handling the routing between the different subnets to ensure
connectivity. The difference between internal and external interfaces is illustrated
in Figure 3.2. Note that this functionality is not required on all nodes, for in-
stance, not for endpoints at the edge of a network. A modified implementation
(more lightweight) can be provided for such devices, in particular in the context of
resource-constrained devices.

Subsequently, we first describe the basic building blocks that are necessary
for the VMAC architecture. Afterwards, we explain in detail the features that the
virtual layer has to offer.

3.2.1.1 Building blocks

Unified IP: In order to have a stable connection on the transport layer, it is vital
that the IP addresses of the endpoints do not change. For this purpose, the VMAC
only uses a single IP address for all interfaces. This IP address is (arbitrary) re-
quested by the VMAC through one of the interfaces under its control. In the case
of a handover, the IP address remains the same, while only the physical interface
changes. As a consequence, the VMAC has to take care of Dynamic Host Config-
uration Protocol (DHCP) and relieve higher layers of it, otherwise the operating
system gets into conflict with the network configuration as the same IP cannot be
present on multiple interfaces. Furthermore, this also gives the controller an im-
portant role in actually managing all the different technologies and the VMAC in

43

informing the controller correctly about what technologies it controls.

Dealing with multiple interfaces: When there are multiple interfaces active at
the same time, for example when load balancing a traffic flow across multiple
technologies, the normal Address Resolution Protocol (ARP) table of the oper-
ating system is not sufficient anymore. An operating system only matches an IP
address to one of its interfaces, but if multiple interfaces are active (under the same
IP address), the operating system would continuously overwrite the entry. There-
fore, to cope with multiple simultaneously active interfaces and legacy devices, the
VMAC needs to take care of the ARP handling. As such, keeping track of which
IP address is reachable over which interface and if (potentially) an IP address is
reachable over multiple interfaces. For this purpose, the VMAC maintains its own
ARP cache and, upon receiving an ARP, stores the MAC address of the interface
on which it received the ARP reply. The VMAC signals on all interfaces that it
is available and remembers which IP to MAC tuple is available on which inter-
face. To cope with the fact that an IP address can be reachable over more than one
interface, a separate ARP cache is maintained per interface. This allows having
multiple active connections at the same time, without experiencing problems re-
garding routing and discovering the other endpoint. When the VMAC receives an
ARP request on a specific interface, the VMAC issues the transmission of an ARP
reply only on that particular interface. This way a VMAC-enabled device can still
communicate with legacy devices, both on the client or infrastructure side.

Monitoring: There is a continuous stream of configuration and monitoring in-
formation from the VMAC to the controller, allowing the controller to have a de-
tailed and global view over the network. The configuration information includes
what interfaces are available on the device and what their properties and capabil-
ities are. An example of such an interface might be an LTE connection with a bit
rate of 150 Mbps. Furthermore, also the state of a specific interface, if it is up or
not, can be shared. In addition, the monitoring information includes statistics about
these interfaces and the traffic going through them. This includes, for instance, the
received packets or bytes per second, QoS information, recorded signal strength
values for wireless links, and latency information. This monitoring information is
sent to the controller using simple UDP packets.

Rules: The behavior of the VMAC is defined in the form of rules, typically set
by the controller. On one hand, there are configuration instructions that specify the
frequency of the transmission of monitoring reports to the controller. On the other
hand, there are the rules that define how incoming packets (from both data link
and network layers) should be handled. The latter includes the use of advanced
functionalities such as load balancing or duplication. These rules consist of two
parts and can be, conceptually, compared to OpenFlow rules. The first part states
which packets should match the rule. This can, for instance, be done using source

44

and destination IP addresses, port numbers, transport protocol types, and/or se-
quence numbers. The second part of the rule defines how the matching packets
should be processed. This includes, for instance, simple forwarding over a single
interface, load-balancing, or duplicating over multiple interfaces. For example, it
is possible to directly forward all packets arriving within a specific IP range to
one interface, while we balance a video stream across two or more interfaces to
increase its throughput.

Furthermore, rules are sent to the VMAC by UDP packets. While the OR-
CHESTRA controller can handle this by a standard (UDP) socket, the VMAC
checks the packet headers of incoming packets from the data link layer for the
IP address of the controller and then extracts the required data from these packets.
Note that the VMAC can also work without a controller present in the network and
decide on its own transmission rules if necessary. It is also possible that the VMAC
(or a local application running on top) decides to update the packet matching rules
itself, for instance, in case of a disruptive network change (e.g., an interface going
down). This is in order to minimize the impact on network traffic. Afterwards, the
controller can, if needed, update these rules again, based on the received monitor-
ing information and the global view, to have an optimal configuration across the
entire network. This can, to some extent, be compared to the split-MAC principle
employed by SDN controllers such as Odin [26, 54].

Discovery: When a device equipped with a VMAC joins a certain network, it
needs to discover available controllers. Therefore, it broadcasts a (UDP) discovery
message, to which the controller (or the most suited in case of multiple distributed
controllers) responds. While the VMAC is not associated with a controller, it does
not yet know the IP address of the controller. Consequently, the above-described
procedure of receiving the controller’s instructions based on the IP address is not
yet possible. This can be solved by using a unique identifier in the UDP discov-
ery message. Afterwards, the VMAC parses every incoming UDP packet, until a
packet is received that is marked with the identifier at the beginning of the payload
(first 64 bytes), and the IP address of the controller is learned.

3.2.1.2 Features

Handovers: A handover is an act of moving from one connection endpoint, like
an AP or base station, to another connection endpoint. This can be done both
within a single technology (referred to as intra-technology or vertical handover) or
across different technologies (referred to as inter-technology or horizontal hand-
over). Furthermore, different devices can perform a handover, for instance, a client
device in a LAN or cellular network and an edge node in a (wireless) backhaul
network. The decision for a handover is typically made centrally by the controller
and it informs the respective VMAC about it. In the case of an inter-technology
handover, only a single interface is currently used for the transmission of data and
this interface is considered to be the active interface. The goal of the handover is
to transfer the status of the active interface to another interface. Consequently, the

45

packet matching rules are updated to reflect the change and to, instead, use the new
active interface. In the case of an intra-technology handover, the active interface
stays the same, but its endpoint is changing.

The following procedure is executed: first, the VMAC buffers outgoing packets
on the active interface (for a brief moment of time), before either switching the
endpoint of the active interface or changing the active interface to the new one. In
case the active interface is changed, it sends out a gratuitous ARP to announce that
the IP address is now associated with the MAC of the new interface and all relevant
devices can update their routing tables. If the interface is not connected yet, the
VMAC takes care of connecting it (e.g., performing an association procedure) and
then switching to it. As a fail-safe, if it is not possible to set up a connection, the
VMAC switches back to the old connection. When the handover is successful,
the VMAC releases the buffer and starts transmitting again. Additionally, without
instructed by the controller, in case of a link failure, the VMAC can decide to
switch interfaces or connections by itself to maintain a connection on a certain
technology.

To efficiently hand over a device, make sure all traffic streams are correctly
delivered, and minimize the overhead, a protocol and synchronization steps need
to be in place. This is done by exchanging several messages between all involved
parties (e.g., the client device, the APs with the corresponding technologies, and,
if necessary, switches) and agreeing on a time to perform the actual handover be-
tween technologies. In the described process we assume that a handover takes
place between a client and the two different APs, but the procedure is identical
for a handover between any other types of devices. As mentioned above, the pro-
cess starts when the controller informs the different VMACs that a handover is
imminent. All VMACs acknowledge this and one of them (typically the station
or endpoint) starts a synchronization timer, which is also communicated to the
other devices involved, as such agreeing on the current time. Next, each of the
three devices announces the time window δ, needed to perform the actual hand-
over. First, all parties agree (by exchanging ACKs) on the largest time δ among
all actors. While, afterwards, in a similar fashion they also agree on a time t to
initiate the handover. Finally, the handover is executed and afterwards the con-
nection is tested. In case, the handover fails, both nodes fall back to the previous
configurations. During the time δ of the handover, the VMACs on both the client
and the new AP buffer the packets and transmit them after the handover has been
completed and acknowledged.

In case the AP, in the previously described setup, is not equipped with a
VMAC, a handover is still possible if the AP is managed by a SDN/Network Func-
tion Virtualization (NFV) controller, as such offering a form of legacy support.
Otherwise, if the AP is operating fully independently, a VMAC-enabled device
can still perform a handover and buffer its packets to lower the overall packet loss.
However, no guarantees can be given on the overall duration of the handover and
the overall performance, as this completely depends on the configuration of the
APs in question.

46

Load-balancing: In contrast to a handover, while performing load-balancing,
multiple interfaces are active and the network traffic is distributed according to a
certain scheme to each interface. Opposite to most existing approaches, the VMAC
introduces load-balancing at a packet level. For this, a simple weighted Round
Robin load-balancing is used where a fixed number of packets are assigned to a
specific interface before moving on to another interface. This can be done without
introducing overhead as the VMAC only needs to forward the packet to another
interface that is active. However, if packets that are part of a continuous data flow
are being sent across different interfaces, no guarantees can be made on the order
of arrival at the other endpoint, especially in a wireless context (e.g., due to dif-
ferent latencies across different technologies or external interference). Therefore,
at the other end, packets need to be reordered in the VMAC before being passed
to the upper layer. Otherwise, transport layer protocols, especially TCP, will react
in an unpredictable way. This reordering is done on a flow basis, per TCP ses-
sion, and according to the transport layer protocol header, more specifically, the
port number and the sequence number. Additionally, the source and destination IP
addresses are used to assign different packets to a flow. The VMAC keeps track of
the sequence numbers and buffers packets when a sequence number is missing. If
the out-of-order packet arrives, it will be forwarded immediately, while the previ-
ously buffered packets are forwarded afterwards in the correct order, until a next
out-of-order packet is identified. As some packets may never arrive at the receiv-
ing end, a timeout for missing packets is provided. This timeout depends on the
rate of the traffic flow as this determines the turnaround of sequence numbers, used
to identify out-of-order packets. Furthermore, the timeout is dynamically adjusted
by monitoring the throughput and kept as low as possible to minimize negative
effects on the transport layer protocol. When the timeout is reached, all packets
that are available are forwarded in an ordered fashion to the network layer.

Duplication: Duplication is a useful method to achieve high reliability as it
strongly increases the probability of a packet to arrive at the other endpoint. At the
sending side, the VMAC enables this by copying an incoming packet and trans-
mitting it across different interfaces (depending on the specified rule). However,
at the receiving side, the VMAC cannot simply push the receiving packets to the
network layers, as the same packet can potentially be forwarded multiple times.
In turn, this can trigger unwanted behavior on the application layer or a reaction
of the transport protocol (especially in the case of TCP). As such, the receiving
VMAC is responsible for filtering out these duplicates (i.e., performing deduplica-
tion). This is done in a similar manner to the reordering of packets upon perform-
ing the packet-level load-balancing, as described above. The VMAC maintains a
hash map of packets that it already received. The packets are identified by source
and destination IP address, transport layer protocol, IP identifier and IP fragmen-
tation offset. A timeout is in place to prevent memory over usage. This timeout
is, similar to the one used for missing packets, depending on the actual flow rate
and therefore monitoring is necessary to adjust it appropriately. As the maximum

47

ORCHESTRA
controller

ORCHESTRA
controller

SDN/NFV
controller

AP/SwitchClient

VMAC

Monitoring Configuring SDN/NFV controller
commands

AP/Switch

VMAC

Figure 3.3: The controller architecture and its communication.

number of duplicates that can arrive is known, the entry can be deleted as soon as
this number is reached. Otherwise, the entry is deleted after the timeout. Note that
none of the existing methods discussed in Chapter 2 allows for such a fine-grained
form of duplication.

3.2.2 Controller
While the VMAC allows for fine-grained MAC-level control inside individual de-
vices, the ORCHESTRA controller is the heart of the proposed framework and en-
ables multi-technology management and orchestration across the entire network.
Following the SDN principle, the controller takes control from the individual de-
vices and their respective VMACs. The controller keeps track of all connected
VMACs and issues instructions and updates to all of them to optimally configure
the entire network. Furthermore, the controller is also capable of communicating
with (other) SDN controllers, as well as individual infrastructure devices such as
APs and switches. This is done by operating at a new and higher hierarchical layer,
above of existing SDN controllers. An overview of the architecture can be seen
in Figure 3.3. The architecture allows for more network control and a single cen-
tral point to implement management logic. This contrasts with existing solutions
like MPTCP and LTE-LWA. The communication with existing SDN controllers or
infrastructure entities, allows for legacy support and an easier roll-out of the OR-
CHESTRA solution. This in opposition to, for instance, the IEEE 1905.1 standard,
which requires more disruptive network changes and was never widely adopted.
Additionally, the controller can also be distributed to increase scalability and relia-
bility. In the next subsections, we elaborate more on the details of the controller, in
particular on the communication aspect and the offered management possibilities.

3.2.2.1 Communication and interfacing

Here, we discuss all the interactions that are possible between the ORCHESTRA
controller and the different entities in the network.

48

VMAC: The communication between the controller and the VMAC is light-
weight and was already introduced before. In particular, the discovery of the
VMAC and the two-way communication between the VMAC and the controller
to, respectively, transmit monitoring information and rules, are discussed in Sec-
tion 3.2.1.1.

Other SDN controllers: As it is unlikely that all devices within the managed
network are immediately equipped with the novel VMAC, it is important to sup-
port legacy devices. In many networks, SDN controllers are already in place that
offer certain management functions that can be exploited for devices not using
the virtual layer. Examples of such frameworks, like ODIN and 5G-EmPOWER,
are discussed in Section 2.2.3 [54, 55]. Interfacing with these SDN controllers re-
quires more effort than the lightweight communication with the VMAC, as they
usually do not support a built-in so-called northbound interface that is accessible
through external communication. However, most controllers (e.g., the Ryu Open-
Flow and the 5G-EmPOWER controller) offer application support insofar as you
can write an application on top of the controller that interfaces with the controller
and implements some higher-level functionality. This can be exploited by creating
a northbound interface running, as such an application on top of the controller.
The application handles the communication and translation of information from
the SDN controller to the ORCHESTRA controller as well as commands from
the ORCHESTRA controller to the SDN controller. The ORCHESTRA controller
typically enforces station handovers (identified by MAC addresses) towards wire-
less SDN controllers (e.g., 5G-EmPOWER). While towards wired SDN controller
(i.e., OpenFlow controller) the focus lays on traffic flow management and routing
(e.g., adding flows, deleting flows, changing output ports). Vice versa, all SDN
controllers provide the ORCHESTRA controller with the information that is avail-
able within the framework. For instance, traffic information (e.g., source and des-
tination addresses, port numbers, or throughput), device information (e.g., MAC
addresses or capabilities), and network conditions (e.g., link capacities or signal
strengths). As such, we allow the ORCHESTRA controller to have an overview
of, and to optimize, the various networks or segments managed by different con-
trollers. Note that the exact communication can be realized through different kinds
of communication frameworks or protocols, for instance, using the lightweight and
performant ZeroMQ framework [136].

Infrastructure devices: However, not all devices in the networks of today are
managed by SDN controllers. While client devices cannot be managed at all with-
out the presence of a VMAC or a SDN controller, infrastructure devices, such as
APs, can in most cases be controlled through a variety of standardized protocols.
This typically depends on the specific type of device. For instance, continuing
the popularity of the SDN paradigm, OpenFlow is prevalent as the communication
protocol towards switches. This means that switches can be controlled directly by
utilizing the OpenFlow protocol and send flow-based rules. For APs this is less

49

straightforward, but they often support configuration through the Network Con-
figuration Protocol (NETCONF) with Yang as the modeling language. As such, a
Yang model can be developed for every type of device, according to the exact capa-
bilities of that device. Finally, in theory, it is also possible to extend the supported
protocols, but this would require updates to the devices as well. If the option exists
to update the (endpoint) devices, it might be better to move directly to either an
SDN solution or the installation of the proposed VMAC.

Distributed ORCHESTRA controllers: To ensure scalability and reliability,
the ORCHESTRA controller can be distributed. The communication between
these different distributed ORCHESTRA controllers is handled in a similar fash-
ion as the communication with other SDN controllers. The controller maintains an
eastbound interface that includes the discovery of other controllers through broad-
casting, as well as the transmission of heartbeats to maintain the connection. Only
relevant information to other controllers is exchanged to reduce network traffic.
This information includes common devices that are in the range of multiple con-
trollers, especially if a device might be moved from one controller to another.
Information is exchanged either by request or by informing another controller that
one of the nodes is leaving the control of the current controller. For instance, con-
sider a device that is in the range of two APs and is connected to one of them.
One of the APs is in the region of the first controller, while the other AP is man-
aged by a second controller. As both controllers have information on the device,
the state is shared among both controllers. If a handover is needed, because of a
newly computed assignment would place it in the region of another controller, the
controller currently responsible for the device, informs the other controller to take
over the device. The new controller, in turn, updates its flow rules and AP config-
uration and acknowledges the handover. Afterwards, the old controller deletes the
remaining flow rules and the AP configuration and only further monitors the de-
vice. Note that this entire exchange happens fully transparent to the moved device
and its VMAC. Finally, as the communication between different ORCHESTRA
controllers is similar to the interactions with other SDN controllers, the same un-
derlying communication frameworks and protocols can be used.

3.2.2.2 A global view in one location

The ORCHESTRA controller has two other components besides the communi-
cation interfaces. The first part consists of a data store where all received infor-
mation is aggregated and combined into one state model, representing the whole
network under consideration. This includes information about the VMACs (e.g.,
throughput, RSSI, latency), about infrastructure devices (e.g., how many clients
are connected, the capabilities, and performance), and about the SDN controllers
(e.g., the local view of that controller). All of this information is stored in a single
format in a large store or database that can be shared among the potential several
controllers.

50

Second, the controller also offers a northbound interface which applications,
running on top of the controller, can use. This allows for implementing decision-
making logic and algorithms on a single location in the network, managing differ-
ent devices and network technologies in a ubiquitous manner. As network tech-
nologies are abstracted and the controller takes care of the abstraction layer, this
greatly simplifies the implementation of such management logic applications. In
Chapters 4 and 5, we introduce such algorithms that optimize the network-wide
throughput. Other algorithms can, for instance, also focus on Time-Division Mul-
tiple Access (TDMA)-based scheduling or even on energy efficiency. The intelli-
gence schemes use the aggregated information of the storage as input to provide a
certain configuration for the network. For instance, in the case of the algorithms in
Chapters 4 and 5, a device to connection point to technology mapping is created,
as well as routes for all traffic flows. Based on this configuration, the necessary
commands are issued to the corresponding devices across the network to actually
roll-out the particular configuration.

3.3 Applicability to different wireless technologies
In this section, we discuss how underlying communication technologies can be
used in conjunction with the ORCHESTRA framework. We focus mainly on
IEEE 802 and 3GPP technologies, and highlight, in the case of LTE, potential
challenges that can be encountered when integrating the technologies.

3.3.1 IEEE 802
The IEEE 802 standards define a physical layer and a MAC layer for different tech-
nologies, such as Ethernet (IEEE 802.2), Wi-Fi (IEEE 802.11) or wireless Personal
Area Networks (PANs) such as ZigBee (IEEE 802.15). These two layers define the
physical transmission over the medium and how the medium should be accessed.
For instance, in the case of Wi-Fi the MAC defines a Carrier Sense Multiple Ac-
cess with Collision Avoidance (CSMA/CA) scheme. The IEEE 802 standards do
not define any layer higher than the MAC layer, which means any network layer
communication can be used. By default, this is IP, as it is the prevalent network
protocol. Integrating IEEE 802 technologies into the VMAC is therefore straight-
forward and can be seen as plug and play. As the VMAC is positioned on top
of the existing MAC layers of the technologies, it simply receives the incoming
packets from the MAC layer and similarly, injects the outgoing packets into the
appropriate MAC layer(s). No modifications to the underlying technologies are
necessary, as intended.

3.3.2 LTE
Similarly, to the IEEE technologies, 3GPP technologies are defined by specifying
a physical layer and a MAC layer. The transmission over the medium is defined

51

by the physical layer, while the access to the medium is defined by the MAC layer,
offering the possibility to use Frequency Division Duplex (FDD) or Time Division
Duplex (TDD) modes. Contrary to IEEE 802 technologies, 3GPP technologies
split the control and management plane from the data plane, comparable to the key
principle of the SDN paradigm. For this reason, 3GPP specifies a set of entities
responsible to provide authentication and connectivity to the UEs. The following
procedure is followed: when a UE tries to connect to a network, it first talks with
the eNB, which notifies the Evolved Packet Core (EPC) to authenticate the user
subscription. If a valid subscription is found, the eNB establishes a GPRS Tunnel-
ing Protocol (GTP) tunnel to the gateway to grant the UE access to the network
of the operator. If there is no valid subscription, the eNB cannot simply create a
tunnel to the gateway and therefore, the client does not get connectivity with the
network. A series of different interfaces are defined between the management en-
tities and the access to external networks still utilizes GTP tunnels as a means of
transportation.

As such, we can say that LTE by default carries legacy functionality in the
form of these GTP tunnels. While GTP tunnels might have an advantage in man-
aging clients in a traditional sense and in providing a secure channel across another
technology than LTE (e.g., in LTE-LWA), it has the downside that all (data) traffic
flows through the gateway, the endpoint of the tunnel. When considering use cases
that provide services that are close to the edge of the network (i.e., close to the
user device), this is a major disadvantage as you are producing additional traffic
in the core network. Furthermore, in the scope of the proposed VMAC this also
introduces limitations as, among others, packet-based load balancing and duplica-
tion becomes infeasible. This is due to the fact that the GTP tunnels do not allow
to detect individual traffic flows, and it becomes infeasible to aggregate data flows
that originate from another technology and network. As such, the standard LTE
core architecture is not compatible with the VMAC. This can be addressed by in-
cluding an additional header in the packet with flow information, but this would
create additional overhead. However, alternative solutions are available.

3.3.2.1 LTE-LWA

As introduced in Section 2.2.4, the 3GPP community introduced the coopera-
tion of LTE and Wi-Fi technologies in order to offload traffic from the cellu-
lar networks [60, 61]. In particular, LTE-LWA was introduced in 3GPP Release
13 [62, 64]. As shown in Figure 3.4, LTE-LWA allows for both a co-located and
a non-co-located deployment of the two technologies. In the first case, shown at
the left of Figure 3.4, the Wi-Fi AP and LTE eNB are connected through an ex-
ternal interface, denoted as Xw. On the other hand, the physical integration of
the AP in the eNB is also possible, as shown at the right of Figure 3.4. In both
cases, the aggregation of user plane data flows, transmitted over the two different
technologies, occurs in the Packet Data Convergence Protocol (PDCP) layer. In
turn, the LTE-WLAN Aggregation Adaptation Protocol (LWAAP) is responsible
for encapsulating the data packets to tunnel them over the Wi-Fi connection.

52

PDCP

RLC

LTE

LTE

MAC
LTE

PHY
LTE

LWAAP
LTE

MAC
802.11

PHY
802.11

WLAN APLTE eNB

Integrated LTE eNB
and WLAN AP

PDCP

RLC

LTE

LTE

MAC
LTE

PHY
LTE

LWAAP
LTE

MAC
802.11

PHY
802.11

LTE-Uu 802.11 LTE-Uu 802.11

S1-u S1-u

WT

Xw

Figure 3.4: LTE-LWA user plane architecture with external Wi-Fi AP (left) and internal
Wi-Fi AP (right) [62].

This LTE-LWA architecture provides an aggregation point for the LTE and Wi-
Fi technologies, before traffic flows disappear in the GTP tunnels. As the VMAC
is intended to bind over different interfaces, offering a single upwards connec-
tion, the aforementioned architecture can also be used for the installation of the
VMAC. The VMAC can replace (or be merged with) the PDCP layer, offering
additional features like packet-level load balancing and duplication. Furthermore,
the deployment of the VMAC architecture removes the need for the tunnel over
the Wi-Fi connection, as the VMAC is fully IP-based. As this adapted architecture
requires changes to the current standards, it counteracts our initial idea of trans-
parency to upper and lower layers, while potentially limiting the adoptability of
the presented approach. Note that also only a select number of LTE-LWA deploy-
ments is currently planned world-wide, as mentioned in Section 2.2.4.

3.3.2.2 MEC architecture and Local Breakout

To allow for more flexibility and control over network resources, shorter routes,
and the introduction of an IP interface, it was proposed to break open the above-
mentioned GTP tunnels for data traffic [137]. This idea originates from the desire
of telecommunication operators to have more insight in, and control over, the data
traffic [138]. Furthermore, it is also proposed to enable edge computing, more
efficient access to resources and services for clients (e.g., for gaming), and for 5G
connectivity in VANETs [139–141]. Within the context of edge computing, the
Multi-access Edge Computing (MEC) architecture has been developed, as shown
in Figure 3.5. The essential part is located in the base station, where user IP data
packets can be intercepted by decapsulating GTP packets. Those IP packets are
rerouted to the edge network (i.e., MEC server/gateway) by the introduction of a
breakout rule that changes the path. This mechanism, known as Local Breakout
(LBO), was standardized in 3GPP Release 15 [142, 143]. Note that it does not
affect the management part of LTE that still uses the standard GTP tunnels. The

53

S-GW P-GW

EPC

Internet /
External network

UE
eNB

MME HSS

MEC
Server

SGiS5/S8

S6a

S11

LTE-Uu

S1-u

Edge network

S1-MME

Local
Breakout

Figure 3.5: Basic MEC architecture

main advantage of this architecture is that the local traffic can be offloaded from the
RAN to reduce the end-to-end latency of edge services and save core network load.
The MEC system was developed independently from the already existing LTE
networks. However, it is currently being considered in the further development
of the 5G technology, since edge computing has been marked as one of the key
elements required to enable future IoT services [144].

The MEC architecture, and in particular the LBO, opens opportunities for the
use of the VMAC layer in an 3GPP context. First of all, it is possible to integrate
the presented VMAC layer with the MEC architecture by installment on the MEC
server. This enables the use of the ORCHESTRA features, like seamless hand-
overs or load balancing, over the LTE connection and the other present communi-
cation technologies (e.g., Wi-Fi) in the edge network. Furthermore, in a non-edge
computing context, we can still use the LBO to intercept the IP packets from the
connected UEs that are ORCHESTRA-enabled. These IP packets are then routed
to whichever VMAC layer is installed at the infrastructure side. Ideally, the VMAC
is positioned close to the edge of the network. As such, flows that are split across
different routes can be merged as early as possible, limiting the differences in, for
instance, latency and arrival time, for the split flows due to the different link condi-
tions. The VMAC can, for instance, be installed on an additional device connected
to the eNB, similar to the MEC server. From this device, the merged flows can be
routed again to the core network (if required) in order to reach the Internet or ex-
ternal networks. The VMAC layer can also be installed in the core network itself
or on intermediate nodes between the eNB and the EPC. This all depends on the
network architecture of, for instance, the telecommunication operator. Essential is
that the VMAC is positioned in such a manner that split flows going over different
routers (i.e., technologies) can be routed to it. Note that using the LBO technique
and routing the IP packets directly, removes the need and overhead of the GTP tun-
nels (for data traffic). In Section 3.5, we present such a prototype implementation
that utilizes the LBO mechanism to allow for an ORCHESTRA setup with Wi-Fi
and LTE technologies. Furthermore, future work should study the placement of the
VMAC layer in the RAN in more detail. The latter is discussed in Section 7.3.1.

54

3.4 Use cases

Two of the most straightforward use cases for the deployment of the proposed
ORCHESTRA framework are LANs and RANs. These environments are occupied
by a significant number of different communication technologies that can be used
simultaneously. This can benefit the modern services and applications that produce
various traffic streams and have stringent quality requirements, as described in
Chapter 1. In this section, we discuss other use cases as well, to demonstrate
the versatility and applicability of the ORCHESTRA framework. For each use
case we clarify the advantages for end-users (e.g., better services) and the gains
for the network operators (e.g., additional chargeable services or easier network
management). Furthermore, in contrast to the LANs and RANs scenarios, these
additional use cases require no modifications on the consumer devices, as such
providing a more straightforward deployment.

3.4.1 Enhanced satellite networking solutions

As still two-thirds of humankind has no access to wired or wireless Internet, in-
terest has grown in satellite networks with global coverage capabilities [145,146].
Furthermore, satellite technologies are also being used to provide Internet access
(i.e., Wi-Fi) on board of ships. Initially, Geosynchronous (GEO) satellites were
used to provide connectivity to a large area, at the cost of a very low data rate and
high latency because of the long distance to the satellites. Therefore, a hierarchical
spot-beam architecture has been proposed where a GEO satellite controls a group
of Low Earth Orbit (LEO) satellites that each offer connectivity to a smaller area
on the ground [146]. However, because of the use of the mobility of LEO satellites,
a much more dynamic environment is created, which requires advanced SDN so-
lutions to manage the frequent horizontal handovers between satellites [146]. This
is where ORCHESTRA comes into the picture as it can manage the handovers in
a more transparent way, thereby reducing the management burden for the satellite
network operator. Because of the fact that recalibrating and positioning the satel-
lite receiver to a new satellite (i.e., a handover) takes time, dual-receiver solutions
have been proposed, where a second receiver is directed to another satellite, while
the first one remains connected with the old satellite. In this case, ORCHESTRA
can provide a smooth handover and manage both interfaces to the receivers.

As satellite networks, by nature, introduce a relatively large delay and con-
nectivity issues can occur, the cooperation with other technologies brings clear
advantages. For instance, a ship that travels near a coastline can be in range of
land-based LTE networks, which often offer better QoS than a satellite link. The
implementation of ORCHESTRA in the ship’s receiver (i.e., the edge node) allows
for the simultaneous use of both LTE and satellite networks. This results, among
others, in a more stable and performant Wi-Fi network on board of the ship for the
crew and passengers.

55

3.4.2 Enabling autonomous driving

The vehicles on our roads are becoming more intelligent and will, eventually, be-
come fully autonomous. An essential aspect of this evolution is the communication
between these vehicles and (road-side) infrastructure and between vehicles mutu-
ally. This communication is required to support features like platooning, provide
updates on the condition of the road and traffic ahead, or even optimal lane usage.
Currently, two main concurrent technologies have been developed: IEEE 802.11p
(the base for the IEEE 1609 and European ITS-G5 standard) and LTE-V [14,147].
As both technologies will be deployed, for instance, alongside our roads and in
our cars, load balancing can be used to off-load traffic and devices across the two
technologies. This can help, among others, to keep latency low and allow for high-
speed communication. Furthermore, the duplication of critical data can be used to
offer more reliable communications. Finally, note that ORCHESTRA can also be
considered for the in-car network, as these autonomous vehicles will also typically
provide Internet connectivity in the car for there passengers.

3.4.3 Edge computing for large IoT deployments

Edge computing is the paradigm where intelligence and computational resources
are (partially) moved away from the traditional cloud environment to the edge of
network [148]. As such, it allows addressing concerns like response time, battery
life constraints, bandwidth efficiency, and data safety or privacy [148]. Edge com-
puting has been identified as one of the key enablers of the large-scale adoption
of the IoT paradigm [144, 148]. For this reason, it is also a critical aspect of the
5G technology roadmap and research [138, 144]. At the edge, large numbers of
interconnected devices (e.g., sensors, cameras, intelligent displays, end-user de-
vices, ...) will be present, while different communication technologies will be
used. In this heterogeneous environment, ORCHESTRA can aid by offering inter-
technology network management to, among others, enable more efficient commu-
nication to reduce energy consumption and offload traffic streams to support large
volumes of data and users. An interesting direction for future work is the applica-
tion of ORCHESTRA in the MEC architecture, as discussed in Section 3.3.2.2.

3.4.4 Extended coverage in rural areas

While a majority of people live in hyper-connected cities, there is still a significant
amount of people that live in more rural areas, for instance, in the southern part
of Belgium. These houses often have an old DSL line, originally for telephone
communications, that is used for Internet access. However, the limited capacity
of these lines is not sufficient to meet the growing demands of end-users. As
houses are sparsely distributed with large distances between them, it is also too
expensive for telecommunication companies to deploy high-speed broadband so-
lutions. Therefore, recently, hybrid-DSL with LTE solutions have been proposed
where the home gateway is capable of receiving both [85]. This is also known

56

SuperDeveth0

SuperDevwlan0

SuperDevwlan1

SuperDevwlanN

Su
pe

rF
ro

m
D

ev

C
la

ss
if

ie
r

D
yn

A
R

P
R

es
po

nd
er

DynARPQuerier

Strip(14)

C
he

ck
IP

H
ea

de
r

IP
C

la
ss

if
ie

r

DynIPClassifier

DHCPClient

Incoming
Packet

Manager

MeshTun tun0

Outgoing
Packet

Manager

CheckIPHeader

Control (handover, loadbalance, duplicate)
Duplicate

D
up

lic
at

e

Su
pe

rT
oD

ev
ic

e

Standard element

Implemented element

Figure 3.6: The implementation graph for Click showing the different elements used.

as DSL-LTE bonding. Traffic is divided among both links, thereby increasing the
available capacity. Often, MPTCP is deployed at both endpoints to utilize both
interfaces. However, each MPTCP connection needs to be created at one end and
split again at the other end, which raises the management burden. Furthermore, the
network operator needs to manage all the different MPTCP connections going to
all end-users. The deployment of the ORCHESTRA framework heavily reduces
the complexity of the management as it transparently handles all interfaces and
traffic flows without the need for merging and splitting flows. Moreover, it also
supports other traffic types than TCP. Note that we compare the performance of
the ORCHESTRA solution to MPTCP in Section 3.6.

3.4.5 Wireless community networks
Because of the high availability, low-cost, and ease-of-deployment of wireless
LAN equipment, wireless community networks have emerged [149]. In these wire-
less communities, broadband connectivity and a number of free services (e.g., free
community-wide Voice over IP (VoIP)) is offered by a dense deployment of APs
connected in a wireless mesh with fixed wireless access. These wireless commu-
nity networks are traditionally connected to the Internet through a mobile network
(e.g., 3G or 4G) and/or one or more Wi-Fi point-to-point links, possibly over a long
distance. Note that a nearly identical use case can also be found on large events
or festivals, where a wireless mesh is deployed to provide connectivity for visitors
or services, while a wireless backhaul network is installed [150]. In both cases,
the ORCHESTRA framework can be introduced to manage the wireless backhaul
network. This enables features such as transparent handovers and load balanc-
ing between the different paths and technologies while reducing the deployment
and management effort. Moreover, ORCHESTRA can also be used to manage the
wireless community network itself.

3.5 Prototype Implementation
The current implementation of the prototype uses the Click modular router on a
Ubuntu 16.04 machine [151]. We opted for Click as it allows for fast and high-level

57

prototyping, which is handy for ongoing research. This is in contrast to a kernel-
level implementation for a more finalized framework. While we use existing Click
elements for basic packet handling, we implemented the VMAC logic in new el-
ements to support the proposed functionality. The basic packet flow is shown in
Figure 3.6. Multiple interfaces are connected to the SuperFromDevice and Super-
ToDevice block which take, respectively, care of forwarding packets from and to
interfaces. Below we discuss the packet flows for both incoming and outgoing
traffic.

3.5.1 Incoming traffic

For incoming packets, the header is stripped and the class of the packet is detected.
This is done in the elements Classifier, Strip (14), CheckIPHeader, IPClassifier,
and DynIPClassifier in Figure 3.6 (denoted in grey). As the VMAC takes care of
the generation of ARP requests and replies, it needs to filter out ARP at this point.
A received ARP reply indicates that the virtual layer did send out a request because
a packet in the buffer is waiting to be transmitted. If the arrived packet is an
ARP request however, the virtual layer immediately replies (DynARP responder).
Furthermore, as the VMAC does not provide a DHCP server or similar, it has to
forward DHCP requests to the interface that is connected to the corresponding
network. However, the VMAC has a DHCP client of its own that takes care of
requesting IP addresses (DHCPClient). This is necessary as the VMAC uses only
one IP address for all interfaces. Note that we do not implement in this prototype
the different internal and external interfaces, as discussed in Section 3.2.1.

If the incoming packet is determined as data traffic, the next step is the In-
comingPacketsManager which implements the logic of the proposed features (e.g.,
deduplication or reordering). As it is incoming traffic, packets need to be reordered
or deduplicated if load balancing or duplication is used. The VMAC also checks
for controller traffic at this point and consumes the packet if this is the case, in or-
der to change its configuration or rules. Afterwards, the data packet is forwarded
to the Tun interface and made available to higher layers.

3.5.2 Outgoing traffic

In the other way around, outgoing traffic is handled in a similar manner. After
identifying the packet, there are two main components. First, the OutgoingPackets-
Manager which implements load balancing, duplication, and the handover logic.
This component decides to which interface a packet is forwarded. Furthermore,
the commands regarding which rules should be used are managed by this com-
ponent as well. Second, there is the DynARPQuerier. Here, ARP requests are
generated and transmitted across multiple interfaces, while an outgoing packet is
buffered if no ARP entry exists for the requested IP. As soon as a reply arrives or
if the entry exists, the packet is forwarded to the underlying interface, which takes
care of the actual transmission.

58

DHCP
LTE
EPC

V
M
A
C

2.4 GHz AP

5 GHz AP

eNB

Edge
node

V
M
A
C

2.4 GHz

5 GHz

LTE
S
w
i
t
c
h

Core
node

Figure 3.7: The setup of the prototype including all devices.

3.6 Evaluation and discussion

In this section, we compare the capabilities of the ORCHESTRA framework to
MPTCP for the three described key functionalities. First, we start with a descrip-
tion of the evaluation setup. Next, we show the results for handovers between
two interfaces, followed by load balancing across two interfaces, and ending with
duplication across two interfaces. Each interface is using a different technology,
namely Wi-Fi and LTE.

3.6.1 Experimental setup

The prototype setup consists of several components, displayed in Figure 3.7. The
prototype represents the setup for the deployment of the VMAC on the devices
in a wireless backhaul scenario. The core components that are equipped with the
VMAC are the following: (i) the edge node, which is close to the end-user and
consists of a device that acts as an LTE UE and a Wi-Fi client. (ii) the core node,
which is connected to the wired core network and connected over Ethernet to an
LTE eNB and a Wi-Fi AP. Additionally, there is an EPC that manages the LTE
network (e.g., authentication), and an external DHCP server. Both are connected
via a switch to the core node. Note that the setup would be the same for deployment
in LAN, except for the fact that the edge node would be replaced by a client device,
and the core node would be called an infrastructure device.

The AP consists of an APU2c4 board using the LEDE operating system with
an IEEE 802.11n Wi-Fi card using a 20 MHz channel [152]. Furthermore, it is
configured through OpenWrt as a bridge between the wireless and wired network.
The base station is installed on a computer with an Intel core i7 8700k processor
and 16 GB of RAM with a USRP B210 Software-Defined Radio (SDR) using a
15 MHz channel. It uses a modified srsLTE implementation to create an eNB that
allows to remove GTP tunnels. The eNB is managed by the OpenAirInterface
EPC [153]. The edge device, the core device, and the EPC device are all Intel
NUCs with a core i5 4250U processor and 16 GB of RAM. For the UE, a Huawei
E3372 LTE USB stick is used, while the DHCP router is an arbitrary home router.
Note that previous versions of the prototype also contained an Ethernet connection.

59

In the following scenarios, except stated otherwise, LTE and Wi-Fi (on the
5 GHz frequency band) are employed for the two interfaces. We evaluate our so-
lution with both TCP and UDP streams, generated through iperf, while comparing
it to MPTCP version 0.94 [154]. All tests are conducted in an office environment
where there is a distance of 2 m between the edge node and both networks. Each
scenario is repeated 10 times, and average results are reported.

3.6.2 Seamless and transparent multi-technology handovers
In this scenario, we consider that a handover between Wi-Fi and LTE (or vice
versa) is initialized every 30 seconds, which is indicated by the vertical lines in
the figures. Furthermore, we consider a 1 Mbps flow of traffic for 120 seconds.
Figures 3.8 and 3.9 show, respectively, the results in terms of throughput and
latency. MPTCP can handle handovers with a 1 Mbps stream to a limited extent
in terms of throughput (it loses connection, but can reestablish it), as can be seen
in Figure 3.8. However, latency increases heavily as MPTCP loses connection and
first needs to establish a new sub-flow. In contrast, ORCHESTRA can seamlessly
switch between technologies and maintains a constant throughput, while keeping
the latency low (cf. Figure 3.9). In particular, we see that there is a downtime of
21 % for MPTCP, while this is 0 % for ORCHESTRA. The two handovers from
Wi-Fi to LTE (at 30 s and 90 s) result in a connections loss of respectively 3 and 2 s.
This corresponds to values reported in literature [77,78]. However, switching from
LTE to Wi-Fi at 60 s, results in a connection loss of 30 s, as the connection is lost
until switching back to Wi-Fi. The reason for this significantly higher connection
loss is unclear, and is potentially caused by some misconfiguration. Finally, note
that the seamless connectivity provided by ORCHESTRA is the case for both TCP
and UDP streams. This is also in contrast to MPTCP which, by its nature, only
supports the TCP protocol.

In order to demonstrate the backward compatibility of ORCHESTRA, an ad-
ditional small experiment was performed where we tested three variations in the
configuration of an AP and station. Note that we do not use the wireless backhaul
scenario here, as a difference in configuration is more likely to occur in a LAN sce-
nario. In the first configuration both the AP and station are ORCHESTRA-enabled
devices with a VMAC. The second configuration consists of an ORCHESTRA-
enabled AP as before, while the station is a legacy device (without a VMAC). The
third considered configuration contains two legacy devices. For the legacy de-
vices, we used two Intel NUCs with Ubuntu 16.04 installed. As Ubuntu machines
are used, we had to simulate the handover of devices without a VMAC layer. By
default, Ubuntu reacts very slow, if at all, when a connection is breaking down
and multiple technologies are available. For a wireless connection, this can easily
take 15 s or more, in which case the connection completely drops. The value of
15 s was experimentally determined. Note that this value for more end-user ori-
ented OSs, like Windows or macOS, will typically be lower. Therefore, to have
iperf not break down, a script monitored the link continuously and if no traffic
was detected for four seconds, it switched the route to the correct interface. This

60

0 20 40 60 80 100 120

Time (s)

0

5

10

15

20

25
Th

ro
ug

hp
ut

 (M
bp

s)

MPTCP
ORCHESTRA TCP

ORCHESTRA UDP
Handover

Figure 3.8: Handover performance of MPTCP and ORCHESTRA in terms of throughput.

0 20 40 60 80 100 120

Time (s)

0

20

40

60

80

100

120

140

La
te

nc
y

(m
s)

MPTCP
ORCHESTRA TCP

ORCHESTRA UDP
Handover

Figure 3.9: Handover performance of MPTCP and ORCHESTRA in terms of latency.

approach can, to some extent, be compared to band steering where an AP forces a
station to another frequency, except for the monitoring script. We show throughput
results for both a TCP and UDP traffic flow of 6 Mbps.

61

0 20 40 60 80 100 120

Time (s)

0

5

10

15

20

25

T
hr

ou
gh

pu
t(

M
bp

s)

Double ORCHESTRA
ORCHESTRA and legacy
Double legacy
Handover

Figure 3.10: Comparison of handover performance for ORCHESTRA and legacy devices
for TCP traffic.

From Figures 3.10 and 3.11 it is clear that all three variations result in different
throughput patterns and that connection drops occur under the presence of legacy
devices. For the scenario with two legacy devices, we see that after performing a
handover the traffic drops completely because the underlying connection was lost
as there is no coordination between the two devices. On the other hand, iperf with
TCP tries to overcompensate by increasing the amount of traffic until on average a
throughput of 6 Mbps is reached, as soon as the connection is reestablished. This
can clearly be seen in Figure 3.10, as the throughput heavily increases and reaches
up to 23 Mbps for Wi-Fi and 8 Mbps for LTE. This means that the application has
to handle the connection loss and as soon as it detects it, it needs to reestablish the
connection, causing a significant downtime. Note that not all applications can cope
with this behavior. UDP traffic exhibits a similar behavior, as shown in Figure 3.11.
However, it is more resilient to sudden link failure as it does not require ACKs and
packets are sent regardless if a connection exists or not.

In the second case, consisting of one VMAC-enabled and one legacy device,
different behavior is experienced as the VMAC, can detect much faster than the
OS if a connection is dropping. Upon a connection loss, it can easily switch
to another technology and send packets over the new connection. This can be
seen in Figures 3.10 and 3.11 as the drop in throughput is not as long as with
the two legacy devices. While improving the downtime, the drop itself is not
completely avoidable as the handover is done without informing the other device.
This is still in stark contrast to the third scenario with two ORCHESTRA devices

62

0 20 40 60 80 100 120

Time (s)

0

2

4

6

8

10

12

14

T
hr

ou
gh

pu
t(

M
bp

s)

Double ORCHESTRA
ORCHESTRA and legacy
Double legacy
Handover

Figure 3.11: Comparison of handover performance for ORCHESTRA and legacy devices
for UDP traffic.

where drops are completely mitigated and seamless handovers are performed. Fig-
ure 3.10 shows that TCP itself is not reacting at all to the handovers and that the
throughput remains constant throughout the run of the experiment. This heavily
improves performance and the traffic flow (i.e., the underlying TCP protocol) does
not need to overcompensate for the time the connection is down. The responsibil-
ity to take care of the network connectivity is removed from the application and
is completely in control of the network intelligence or the network operator, who
have a better overview of the network.

3.6.3 Fine-grained packet-level load balancing

In order to demonstrate the packet-level load balancing capabilities of ORCHES-
TRA using our prototype, the two interfaces are actively used at the same time.
Both for a TCP and UDP stream we configure the VMACs on the two devices
to balance the traffic evenly (i.e., according to a 50/50 distribution) across both
the Wi-Fi and LTE interface. We compare this to MPTCP that is configured to
use the default (round-robin) RTT scheduler. This scheduler sends a fixed number
of packets over a specific interface, before rotating to the next interface. For this
experiment, we once again use a traffic flow of 6 Mbps.

The results in terms of throughput and latency are shown in, respectively, Fig-
ures 3.12 and 3.13. On average the desired rate of 6 Mbps is achieved by both
MPTCP and ORCHESTRA. The latter does this for both TCP and UDP traf-

63

0 20 40 60 80 100 120

Time (s)

4.5

5.0

5.5

6.0

6.5

7.0

7.5

8.0

Th
ro

ug
hp

ut
 (M

bp
s)

MPTCP
ORCHESTRA TCP

ORCHESTRA UDP

Figure 3.12: Load balancing performance of MPTCP and ORCHESTRA in terms of
throughput.

fic flows. Figure 3.13 indicates that there is a significant increase in latency (of
40.6 %) for the TCP stream when using ORCHESTRA. We clearly see that la-
tency builds up for the first 20 to 25 s before stabilizing. While, in contrast, the
UDP flow and the TCP flow with MPTCP experience lower amounts of latency
throughout the experiment.

The explanation for the behavior experienced with TCP when using the OR-
CHESTRA framework is twofold: First of all, the challenge in load balancing the
individual packets of a traffic flow across two different wireless technologies lays
in the different latency properties of those technologies. This potentially results
in out-of-order packet arrivals. MPTCP circumvents this problem as its scheduler
sends out a fixed number of packets after each other on the same interface before
using the other one. This results in a 67 %/33 % distribution of packets across both
interfaces in favor of Wi-Fi. As the Wi-Fi connection has lower latency, this par-
tially explains the difference in latency with ORCHESTRA that really balances
all packets evenly in a 50 %/50 % distribution. Furthermore, with the MPTCP
protocol, large amounts of packets are sequentially sent on the same interface.
This series of packets will thus always arrive in order at the receiver side (under
circumstances with no packet-loss, as is the case here). However, note that the
throughput of the TCP flow also slightly fluctuates, due to differences in latency
when the scheduler switches between the interfaces.

Second, ORCHESTRA uses a reordering mechanism at the receiving VMAC
to cope with the potentially out-of-order packet arrivals (as explained in Sec-

64

0 20 40 60 80 100 120

Time (s)

0

10

20

30

40

50

60

70

La
te

nc
y

(m
s)

MPTCP
ORCHESTRA TCP

ORCHESTRA UDP

Figure 3.13: Load balancing performance of MPTCP and ORCHESTRA in terms of la-
tency.

tion 3.2.1.2). For TCP, this reordering is necessary because no assumptions can be
made about the capabilities of the upper layer. In this case, out-of-order packets
are placed in a hash map, until missing packets have been received (or a timeout is
triggered). The packets are reordered according to TCP sequence numbers before
being delivered to the upper layers. Since packets are distributed across both tech-
nologies according to a perfect 50/50 scheme, frequent reordering is needed, caus-
ing the increase of latency before stabilizing. The smaller fluctuations throughout
the remainder of the experiment are caused by the TCP rate control mechanisms
that react on the slightly varying inter-packet times. Note that the UDP flow does
not experience this behavior, due to the lack of rate control algorithms.

In order to further demonstrate the functionality of the packet-based load bal-
ancing, and to investigate the impact of the reordering, the following experiment is
conducted: similarly to before, we transmit both a 6 Mbps TCP and UDP flow that
is split across two interfaces of the prototype, namely the 5 Ghz Wi-Fi interface,
and the LTE connection. However, in contrast to the previous experiment we do
not only balance the load evenly but vary the percentages: at the start the traffic
stream of 6 Mbps is balanced 50/50 % across both available interfaces. After 30 s
this is altered into 30 % of traffic over Wi-Fi and 70 % over LTE. At the 60 s mark
we return to the initial 50/50 % configuration, before ending up with a 70/30 % for,
respectively, Wi-Fi and LTE.

From the results for both TCP and UDP, shown in Figures 3.14 and 3.16, it
is clear that the packet-based load balancing works as intended, as the traffic is in

65

0 20 40 60 80 100 120

Time (s)

0

2

4

6

8

10

12

14

T
hr

ou
gh

pu
t(

M
bp

s)

Average throughput Wi-Fi
Average throughput LTE
Average end-to-end throughput
Average end-to-end throughput no reordering
Weight change

Figure 3.14: 6 Mbps TCP flow load-balanced over two technologies with a weight change
from 50/50 (Wi-Fi/LTE) to 30/70 to 50/50 to 70/30.

both cased distributed across both interfaces according to the set weights. Both the
TCP and UDP flows achieve a stable throughput of 6 Mbps. The need for packet
reordering is clearly shown in Figure 3.14 where the TCP flow only achieves a
throughput of 3.2 Mbps when reordering is disabled. Furthermore, Figure 3.15
shows the observed latency across the entire length of the experiment with TCP
traffic. Similar to the previous experiment, latency increases for the first 25 s of
the experiment. Afterwards, latency varies depending on how the packets of the
flow are scheduled across the two technologies.

Overall, we can say that the increased throughput and flexibility of the packet-
based load balancing with reordering, comes at the cost of a slightly increased
latency (in comparison to MPTCP). This should be addressed in future work to try
to close the gap in latency between ORCHESTRA and MPTCP in this scenario.
However, we clearly demonstrate that the technology abstraction of the VMAC
layer is working as intended and that, even with TCP, we can precisely (on a
packet-level) load balance a flow (both TCP and UDP) among multiple technolo-
gies with different characteristics. This MAC-level scheduling can be extended in
future work to include packet scheduling across different competing technologies
to minimize interference.

66

0 20 40 60 80 100 120

Time (s)

0

20

40

60

80

100

L
at

en
cy

(m
s)

Average latency Wi-Fi
Average latency LTE

Average end-to-end latency
Weight change

Figure 3.15: 6 Mbps TCP flow load-balanced over two technologies with a weight change
from 50/50 (Wi-Fi/LTE) to 30/70 to 50/50 to 70/30.

0 20 40 60 80 100 120

Time (s)

0

2

4

6

8

10

12

14

T
hr

ou
gh

pu
t(

M
bp

s)

Average throughput Wi-Fi
Average throughput LTE
Average end-to-end throughput
Weight change

Figure 3.16: 6 Mbps UDP flow load-balanced over two technologies with a weight change
from 50/50 (2.4 GHz/5 GHz) to 30/70 to 50/50 to 70/30.

67

0 20 40 60 80 100 120

Time (s)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Th
ro

ug
hp

ut
 (M

bp
s)

MPTCP
ORCHESTRA TCP

ORCHESTRA UDP

Figure 3.17: Duplication performance of MPTCP and ORCHESTRA for throughput.

3.6.4 Duplication of critical data in unreliable environments

For the duplication scenario, there are, similar to the load balancing scenario, two
continuously active interfaces with LTE and Wi-Fi as their respective technologies.
However, instead of balancing the traffic flow, each incoming packet is copied and
sent out over both interfaces. We emulate an unreliable environment by dropping
packets on each link, with a chance of 25 % per packet per link. A flow of 1 Mbps
is used for both TCP and UDP traffic. In both cases, duplicates need to be detected
and removed by the deduplication functionality in the VMAC. Below, we will ex-
plore the implications and performance of that, compared to MPTCP. For MPTCP
the redundant scheduler is used instead of the default RTT scheduler [155]. This
redundant scheduler sends the data replicated through all of the active subflows
available, while back-up subflows are established to send retransmissions.

The results of this scenario are shown in Figures 3.17 and 3.18, respectively, for
throughput and latency. For MPTCP we notice a large drop in throughput since in-
stead of 1 Mbps, only around 0.5 Mbps is achieved. Furthermore, a corresponding
increase in latency can be noted as well. In contrast, ORCHESTRA achieves the
full 1 Mbps while the average latency stays below 20 ms as well. This is the case
for both TCP and UDP traffic. ORCHESTRA achieves this by duplicating packets
transparent to the transport protocol compared to MPTCP, which uses different
TCP subflows that each suffers from packet loss. Moreover, the small fluctuations
in TCP and UDP throughput (in the ORCHESTRA case) are due to the fact that
some packets are still not reaching the receiver as the duplicates can be dropped

68

0 20 40 60 80 100 120

Time (s)

0

10

20

30

40

50

60

La
te

nc
y

(m
s)

MPTCP
ORCHESTRA TCP

ORCHESTRA UDP

Figure 3.18: Duplication performance of MPTCP and ORCHESTRA in terms of latency.

on both links (with a chance of 12.5 %). However, it is clear that ORCHESTRA
significantly increases redundancy, especially in unreliable environments.

3.7 Conclusion
This chapter presents the ORCHESTRA framework that enables seamless inter-
technology network management. It consists of two main components: a VMAC
layer and a centralized controller. The VMAC layer transparently bonds differ-
ent physical interfaces into one connection towards the upper layers, while the
central controller enables coordination and a global view over the entire network.
The framework enables features like inter-technology handovers, packet-level load
balancing, and duplication. Furthermore, we present the implementation of OR-
CHESTRA in a real-life prototype that supports the following communication
technologies: Ethernet, Wi-Fi (in both the 2.4 Ghz and 5 Ghz), and LTE. Our eval-
uation shows that all features work as intended for both TCP and UDP traffic, as
such outperforming the default industry solution MPTCP.

Disclaimer
The work presented in this chapter regarding the ORCHESTRA framework was
equally contributed by Patrick Bosch, Ensar Zeljković, and myself.

4
Real-time flow management for

heterogeneous networks with both
wired and wireless connections

“Intelligence is the ability to adapt to change”

– Stephen Hawking (1942 - 2018)

The contributions presented in this chapter are based on the publications titled
”A transparent load balancing algorithm for heterogeneous local area networks”
and ”Flow Management and Load Balancing in Dynamic Heterogeneous LANs”.

4.1 Introduction
The ever-growing numbers of consumer devices and communication technologies,
together with the increasing volumes of traffic, have raised a management puz-
zle. On one hand, there are the stringent quality requirements of modern services
(especially multimedia applications) that are sensitive to network disruptions and
degradations. On the other hand, the static management of wireless networks and
devices. Despite supporting multiple technologies, modern devices tend to con-
nect to the Internet using a single technology, based on predefined priorities. For
instance, they opt for Ethernet, before 5 GHz Wi-Fi, before 2.4 GHz Wi-Fi. In
some cases, the user or OS can (manually) override these priorities, but no auto-
matic methods exist for dynamically switching between interfaces or using multi-
ple ones simultaneously.

70

In Chapter 3, we introduced the ORCHESTRA framework to enable seamless
inter-technology management for all kinds of networks. This framework enables,
in a coordinated manner, features like inter-technology handovers, flow rerouting,
or packet-based load balancing. However, we did not yet define the intelligence
that utilizes these features to optimize the network and its performance. Existing
algorithms for multi-technology environments (i.e., LANs or RANs) focus mostly
on the development of theoretical models that assume detailed knowledge of both
flow throughput requirements and dynamic network conditions. Furthermore, the
existing approaches are technology specific and not suited for coping with QoS
requirements as they neglect the specific nature of wireless networks (e.g., inter-
ference, link quality variability) and the typical behavior of, for instance, TCP
traffic flows.

In contrast, we introduce in this chapter a dynamic flow management approach
that aims to increase network-wide throughput in networks that have both wired
and wireless connections, for instance, LANs. We compare two different MILP
formulations that both calculate the optimal path configuration for all traffic flows
in the network. The first formulation does so by maximizing the throughput of
the different individual traffic flows, taking into account TCP fairness mecha-
nisms. Furthermore, we introduce the notion of collision groups as the encap-
sulation of a group of interfering links or stations, respectively, denoted as Link
Collision Groups (LCGs) and Station Collision Groups (SCGs). The second for-
mulation provides the optimal configuration to maximize the throughput across all
the SCGs. In particular, we improve upon existing solutions in three ways. First,
rather than assuming to know flow throughput requirements and dynamic network
conditions, this is estimated using real-time monitoring information. Second, our
approach takes into account the specific nature of wireless networks, where users
do not have dedicated network resources but a shared medium instead. Third, our
approach offers improvements in terms of scalability and computational efficiency,
thereby allowing for more realistic use cases.

The remainder of this chapter is structured as follows. In Sections 4.2 and 4.3
we present the two mathematical programming formulations that, respectively, use
a flow-based or collision group-based approach. Next, we discuss in Section 4.4
how the algorithms can be deployed on top of a network management solution
(e.g., ORCHESTRA) and how parameters are determined. Finally, in Section 4.5,
we round-up this chapter by providing an evaluation of the proposed approach,
using a combination of thorough simulations and a prototype implementation.

4.2 Flow-Based Scheduling MILP Formulation
In this section, we present the first out of two MILP formulations that aim to opti-
mize the network throughput. This algorithm targets heterogeneous environments
with both wired (e.g., Ethernet) and wireless (e.g., Wi-Fi) connections. The for-
mulation is denoted as Flow-Based Scheduling Formulation (FBSF) throughout
the remainder of this chapter.

71

4.2.1 Network Model
The architecture of the network is modeled as a multi-graph defined as a quadruple
(N,T, L,GL) where:

• N is the set of nodes {n1, n2, ..., nn}. These nodes represent the different
devices within the network.

• T is the set of technologies {t1, t2, ..., tt} and ct ∈ R≥0 represents the ca-
pacity of t ∈ T . We define capacity as the total amount of data (typically
measured in Mbps in this dissertation) that can be transmitted over the tech-
nology (or connection) in question, at a certain moment in time. This set T
can, among others, consist of Ethernet and Wi-Fi. Note that two instances
of the same technology with different characteristics are modeled as differ-
ent technologies. For instance, an Ethernet cable of 10 Mbps and one of
100 Mbps are modeled separately. The same can be said about Wi-Fi in,
respectively, the 2.4 and 5 GHz band.

• L is the set of links. A link is characterized by a triple < sl, dl, tl > with
sl ∈ N the source node, dl ∈ N the destination node and tl ∈ T the
technology.

• GL is the set of all Link Collision Groups (LCGs). An LCG g ∈ GL is
defined as: {l1, l2, ..., li ∈ L | tl1 = tl2 = ... = tli ∧ ctl1 = ctl2 = ... = ctli
}. In other words, an LCG encapsulates all the links that share the capacity
of a technology and where the transmissions can interfere with each other.
For instance, if two devices (or nodes) are connected by Wi-Fi with an AP,
the links between the devices and the AP are in the same LCG, as their
capacity is shared.

An example of a simple (LAN) topology is shown in Figure 4.1a. This net-
work consists of a gateway (that also serves as a Wi-Fi AP), a switch and three
devices, a PC, a laptop, and a smartphone. Both the PC and laptop are connected
via a switch to the gateway, while there is also a Wi-Fi connection for the laptop
and the smartphone. This network can be represented by means of the previously
described model, as is shown in Figure 4.1b. Each of the devices is represented
by a node {n0, n1, n2, n3, n4}. There are also two different technologies {t0, t1},
representing the Ethernet cables (assuming that all cables have the same capac-
ity) and the Wi-Fi connection. In an actual network representation there will likely
also be a second Wi-Fi network (e.g., a 5 GHz connection in addition to the present
2.4 GHz connection), but this was omitted from this example for readability rea-
sons. For each of the connections between the nodes, there are two links present
in the model. One link per direction. For instance, the Ethernet connection be-
tween the gateway and the switch is described by the links < n0, n1, t0 > and
< n1, n0, t0 >. In this example there are seven LCGs: there is one LCG that con-
sists of the four links corresponding with the Wi-Fi connection {< n0, n3, t1 >,
< n3, n0, t1 >, < n0, n4, t1 >, and < n4, n0, t1 >}. All other links have their

72

Switch GatewayLaptop

PC
Smartphone

(a) Network topology

𝑛"𝑛#

𝑛$

𝑛%

𝑛", 𝑛',𝑡#

𝑛", 𝑛%,𝑡#

𝑛#,𝑛", 𝑡"

𝑛", 𝑛#,𝑡"

𝑛#,𝑛$, 𝑡"𝑛$, 𝑛#,𝑡"

𝑛#,𝑛%, 𝑡"

𝑛%, 𝑛#,𝑡"

𝑛'

𝑛%, 𝑛",𝑡#

𝑛', 𝑛"	𝑡#

(b) Multi-graph representation

Figure 4.1: Example of a simple heterogeneous network topology together with its multi-
graph network model representation.

own LCG, due to the fact that Ethernet is full-duplex so there are no collisions
between the traffic in the two directions over the wired connection.

In addition to the network topology, traffic flows going through the network
also need to be modeled. Let us define F as the set of all flows. A flow is a triple
< sf , df , rf > with sf ∈ N the source node, df ∈ N the destination node and
rf ∈ R≥0 the desired rate of the flow. In our example, a flow of, for example,
1 Mbps from the gateway to the laptop is represented as the triple < n0, n3, 1 >.

4.2.2 MILP formulation

The flow scheduling problem under consideration is modeled as an MILP for-
mulation, which consists of the necessary inputs, decision variables, an objective
function, and a set of constraints. This model can be solved (i.e., to find the opti-
mal value of the decision variables, given the constraints, and objective function)

73

using a variety of optimization algorithms and heuristics, for instance, offered by
some commercial solvers like Gurobi and CPLEX [156, 157].

The inputs for the algorithm consist of the previously described network and
flow model, as well as the following sets:

• SLn : {∀l ∈ L | sl = n}; describes the set of all the links that have node
n ∈ N as source.

• DLn : {∀l ∈ L | dl = n}; describes the set of all the links that have node
n ∈ N as destination.

• SFn : {∀l ∈ L | sl = sf}; describes the set of all the links that have the
same source as flow f ∈ F .

• DFn : {∀l ∈ L | dl = df}; describes the set of all the links that have the
same destination as flow f ∈ F .

• XFn : {∀l ∈ L | dl = sf}; describes the set of all the links that have as
destination the source of flow f ∈ F .

• Y Fn : {∀l ∈ L | sl = df}; describes the set of all the links that have as
source the destination of flow f ∈ F .

We define the following decision variables:

• λl,f ∈ {0, 1}; this variable represents the path for every flow. If a flow
f ∈ F passes over a link l ∈ L then λl,f = 1, otherwise it equals 0.

• τf ∈ [0, rf]; this variable defines the assigned rate (bandwidth) of a flow
f ∈ F . Note that the upper bound of the interval is defined by the desired
rate of the flow (denoted as rf).

As an objective function, the model maximizes the total assigned rate (band-
width) over all flows:

• max
∑
f∈F τf

Finally, we define the following constrains:

• The capacity constraint makes sure that for each LCG, the total capacity of
the technology is not exceeded: ∀g ∈ GL :

∑
l∈g
∑
f∈F λl,f · τf 6 ctg .

Note that this constraint is not linear as it contains a multiplication of two de-
cision variables, however it can be linearized by replacing the multiplication
by a novel decision variable [158].

• The flow conservation constraints make sure that the links assigned to a flow
form a loopless path (from the start to the destination node of the flow):

– Every path has exactly 1 link departing from the start node of the flow:
∀f ∈ F :

∑
l∈SFn λl,f = 1

74

– Every path has exactly 1 link arriving at the destination node of the
flow: ∀f ∈ F :

∑
l∈DFn λl,f = 1

– Every path cannot have a link arriving at the start node of the flow:
∀f ∈ F :

∑
l∈XFn λl,f = 0

– Every path cannot have a link departing from the destination node of
the flow: ∀f ∈ F :

∑
l∈Y Fn λl,f = 0

– For every node on the path of the flow, except the start and destination,
there can be at most one link departing from that node: ∀f ∈ F,∀n ∈
N \ {sf , df} :

∑
l∈SLn λl,f 6 1

– For every node on the path of the flow, except the start and destination,
there can be at most one link arriving in every node of the path: ∀f ∈
F,∀n ∈ N \ {sf , df} :

∑
l∈DLn λl,f 6 1

– The total number of links departing from each node should be equal
to the total number of links arriving at that node, except for the start
and destination nodes: ∀f ∈ F,∀n ∈ N \ {sf , df} :

∑
l∈SLn λl,f =∑

l∈DLn λl,f

– Of all the links, in both directions, between two nodes n,m ∈ N ,
there can at most 1 link be part of each path: ∀f ∈ F,∀n,m ∈ N :∑
l∈SLn∩SLm λl,f ·

∑
l∈SLm∪SLn λl,f = 0

4.2.3 TCP fairness
Existing models and algorithms for load balancing assume that the rate τf of each
flow can be chosen by the algorithm. Although this offers an extra degree of free-
dom, and therefore often results in a better solution in terms of total throughput,
it is unrealistic. In reality, the transport protocol (e.g., TCP) determines the rate
of each flow, based on the chosen path and other coexisting flows. Since Internet
traffic is hugely dominated by TCP, the model assumes all flows follow the TCP
fairness rules. As such, we explore the impact of taking this behavior into account
by adding a constraint that approximates the fairness behavior of TCP.

Let Ot be the practical capacity correction factor, which represents the achiev-
able throughput on a technology as a fraction of its theoretical maximum through-
put. Its value depends on the transmission technology used by the link, as well
as protocol overhead and can be experimentally determined. The TCP fairness
constraint is subsequently defined as follows:

∀l ∈ L,∀f ∈ F : τf · λl,f ·
∑
h∈F

λl,h 6 Ot · ctl

This constraint, however, contains three decision variables and is thus not lin-
ear. Nevertheless, it can be transformed into another set of constraints that can
be solved by standard linear programming algorithms [158]. First, a new decision
variable needs to be defined:

75

• ∀l ∈ L,∀f, h ∈ F : ηl,f,h = λl,f · λl,h

The original fairness constraint can then be transformed as follows:

• ∀l ∈ L,∀f, h ∈ F : ηl,f,h 6 λl,f

• ∀l ∈ L,∀f, h ∈ F : ηl,f,h 6 λl,h

• ∀l ∈ L,∀f, h ∈ F : ηl,f,h > λl,f + λl,h − 1

• ∀l ∈ L,∀f ∈ F : τf ·
∑
h∈F ζl,f,h 6 Ot · ctl

4.2.4 Complexity analysis

In order to have a responsive algorithm that can cope with the highly dynamic net-
work environments, it is important to be able to rapidly solve the MILP. Typically,
a branch-and-bound algorithm is used by a solver for solving an MILP. However,
upfront different optimizations are performed to reduce the problem size (e.g. pre-
solve or cutting planes). Since the number of constraints in a model has a strong
impact on the complexity and solve time, we determine the number of constraints
of the formulated MILP.

The flow-based formulation consists of 10 constraints: first, the capacity con-
straint depends on the number of LCGs (denoted by |GL|). Second, there are 8
flow conservation rules of which 4 depend on the number of flows (denoted by
|F |), while 3 are depending on the number of flows and the numbers stations. Fur-
thermore, there is a last conservation rule per combination of a flow and a unique
pair of two stations. Finally, there is a TCP fairness constraint per combination
of each flow and collision group. Assuming the presence of 1 flow per station,
the number of stations equals the number of flows, which leads to the following
amount of constraints:

|GL|+ 4|F |+ (3|F | · 3|F |) + |F |3 + (|GL| · |F |)

4.3 Group-Based Scheduling MILP Formulation

In this section we present a second MILP formulation for the optimization of the
network throughput. While this algorithm targets the same heterogeneous net-
works as before, we now focus on better taking into account the impact of the
shared spectrum of wireless technologies and limiting the number of constraints.
Furthermore, the previous algorithm (FBSF) takes into account individual links
and flows, which can potentially lead to increased execution times for larger net-
work topologies. In contrast, we focus here on the abstraction level of collision
groups. This particular formulation is denoted as Group-Based Scheduling For-
mulation (GBSF) throughout the remainder of this chapter.

76

4.3.1 Network Model
Here, a heterogeneous network is modeled as a multi-graph defined as a tuple
(S,GS) where:

• S is the set of stations {s1, s2, ..., sn}. These stations represent the different
devices within the network, both consumer (e.g., a smartphone or laptop)
and infrastructure devices (e.g. a switch or gateway).

• GS is the set of all Station Collision Groups (SCGs) {g1, g2, ..., gn}. An
SCG g ∈ GS is defined as a set of stations {s1, s2, ..., sn} with si ∈ S
that share a common path to the gateway over a certain technology with a
specific capacity. In other words, an SCG encapsulates all the stations that
can interfere with each other since they share the capacity of a technology.
For a wired technology, like Ethernet, there will be an SCG for each device
that is directly connected to the gateway. For instance, all stations that are
connected to a switch, with that switch having a single connection to the
gateway, share one SCG. For wireless technologies, like Wi-Fi, there is a
single SCG per technology per AP, due to the shared medium inherent to
wireless technologies. As a consequence of this formulation, where no indi-
vidual links are taken into account, we only consider single-hop networks.
This is in contrast to FBSF that has a more general link-based formulation
that also allows for multi-hop networks. Note that this definition of a col-
lision group is different from the one used in Section 4.2.1 as it is here an
encapsulation of stations, instead of links.

Furthermore, we define the following sets and elements to complete the net-
work model:

• ∀g ∈ GS : ∃cg ∈ R0; represents the (theoretical) capacity of the SCG
g ∈ GS .

• ∀s ∈ S : Gs : {∀g ∈ GS | s ∈ g}; defines for each station the set of all
SCGs to which it belongs (i.e., one for each technology it supports).

• Finally, we also define two subsets to distinguish between different charac-
teristics of technologies:

– Gfdup ⊆ GS is the set of full-duplex SCGs.

– Ghdup ⊆ GS is the set of half-duplex SCGs.

– with Gfdup ∩Ghdup = ∅.

This distinction between full and half-duplex SCGs (and the corresponding
underlying technologies) is required because this has a significant impact
on the capacity and behavior of these technologies. Ethernet is probably
the best known full-duplex technology, while Wi-Fi is usually deployed as
half-duplex, with up- and downlink sharing the medium.

77

Switch GatewayLaptop

PC
Smartphone

(a) Network topology

𝑠"𝑠#

𝑠$

𝑠%

𝑠&

(b) Multi-graph representation

Figure 4.2: Example of a simple heterogeneous network topology together with its new
multi-graph network model representation.

Figure 4.2a shows the same simple heterogeneous network topology as in the
previous section. The present devices and the wired and wireless connections are
identical to those in Figure 4.1a. However, the network representation shown in
Figure 4.2b does differ and contains less elements. Each of the devices is repre-
sented by a station {s0, s1, s2, s3, s4}. In this example, there are two SCGs : the
first one contains all the stations connected by Ethernet since they share a common
link between the gateway and the switch. This first SCG consists of the following
stations {s0, s1, s2, s3} and is denoted by the full arrows in the figure. This group
is a full-duplex SCG. The second SCG, denoted by the dashed arrows, represents
the Wi-Fi connection between the stations {s0, s3, s4} and is thus half-duplex. In
contrast to the previous model described in Section 4.2.1, we do not model explic-
itly the separate links and technologies. This simplification helps in minimizing
the overall model size and limiting the number of constraints, allowing for appli-
cability in significantly larger scenarios, as we will demonstrate later on.

78

In addition to the network topology, traffic flows going through the network
also need to be modeled. Let us define F as the set of all flows. A flow f ∈ F is
a triple < sf , r

in
f , r

out
f > with sf ∈ S the station within the network that is the

source or destination of the flow within the network, rinf the incoming desired rate
of f ∈ R+ and routf the outgoing desired rate of f ∈ R+. Note that we do assume
that the gateway is always one of the two endpoints of the flow, while the other is
denoted by sf . Furthermore, we separate the desired rate of the flow between the
incoming and outgoing rates. This allows us to more precisely schedule all flows
across the different paths, and it is thus possible that incoming and outgoing pack-
ets of a flow are assigned a different route. To clarify, for a TCP flow originating
from some web server, the incoming rate is the rate of the data traffic, while the
outgoing rate is the one of the ACKs. In our example in Figure 4.2, a flow from
the gateway to the laptop, with, for instance, an incoming rate of 10 Mbps and an
outgoing rate of 1 Mbps, is represented as the triple < s3, 10, 1 >. Note that in
the FBSF algorithm, incoming and outgoing flows are considered as completely
separated flows. As such, we now reduce the size of the set F .

4.3.2 MILP formulation
The considered flow scheduling problem is again modeled as an MILP. However,
in contrast to the previous formulation in Section 4.2.2, the goal is to maximize
the throughput across all the SCGs, instead of calculating and maximizing the
rate assigned to individual flows. Note that, consequently, we do not explicitly
model the TCP fairness behavior in this formulation. In contrast, among others,
we model the specific degradation of the total capacity of a wireless technology,
upon increasing numbers of connected devices.

The inputs of the presented MILP consist of the previously described network
and flow model. We have thus the following sets as input: S, Gs, Gs, Gfdup,
Ghdup, and F .

Furthermore, we define the following decision variables:

• τ ing ∈ R+; this variable defines the total incoming rate assigned to an SCG
in g ∈ Gs. In other words, a summation over the rates of all incoming traffic
flows that will be using the underlying technology of the SCG.

• τoutg ∈ R+; this variable defines the total outgoing rate assigned to an SCG
in g ∈ Gs. In other words, this is identical to the previously defined decision
variable, but for outgoing traffic.

• λinf,g ∈ {0, 1}; this variable represents the path for the incoming traffic of
a flow. If the incoming traffic of flow f ∈ F is scheduled over an SCG
g ∈ Gs, then λinf,g = 1, otherwise it equals 0.

• λoutf,g ∈ {0, 1}; this variable represents the path for the outgoing traffic of a
flow. If the outgoing traffic of flow f ∈ F is scheduled over an SCG g ∈ Gs,
then λoutf,g = 1, otherwise it equals 0.

79

As an objective function, the model maximizes the total rate (bandwidth) of
the traffic, both incoming and outgoing, across the entire network:

• max
(∑

g∈Gs τ ing + τoutg

)
Finally, we define the following constraints:

• We first define three constraints that make sure the capacity of the individual
SCGs and their underlying technologies is not exceeded:

– For all full-duplex SCGs, the total incoming rate across all flows as-
signed to the SCG should not exceed the capacity of the group:
∀g ∈ Gfdup : τ ing 6 cg

– For all full-duplex SCGs, the total outgoing rate across all flows as-
signed to the SCG should not exceed the capacity of the group:
∀g ∈ Gfdup : τoutg 6 cg

– For all half-duplex SCGs, the total of the incoming and outgoing rate
across all flows assigned to the SCG should not exceed the SCG’s ca-
pacity: ∀g ∈ Ghdup : τ ing + τoutg 6 cg

• Next, we define two constraints that make sure that the rates assigned to an
SCG do not exceed the total rate of the traffic that is assigned to the SCG:

– The total incoming rate for an SCG should not exceed the total amount
that is desired by the flows:
∀g ∈ Gs : τ ing 6

∑
f∈F λ

in
f,g · rinf

– The total outgoing rate for an SCG should not exceed the total amount
that is desired by the flows:
∀g ∈ Gs : τoutg 6

∑
f∈F λ

out
f,g · routf

• The third group of constraints guarantees the conservation of flows in the
network:

– The incoming traffic for every flow needs to be assigned to exactly one
SCG that contains its endpoint station:
∀f ∈ F :

∑
g∈Gsf

λinf,g = 1

– The outgoing traffic, for every flow, needs to be assigned to exactly
one SCG that contains its endpoint station:
∀f ∈ F :

∑
g∈Gsf

λoutf,g = 1

– The incoming traffic of each flow, should be assigned to exactly one
SCG:
∀f ∈ F :

∑
g∈G λ

in
f,g = 1

– The outgoing traffic of each flow, should be assigned to exactly one
SCG:
∀f ∈ F :

∑
g∈G λ

out
f,g = 1

80

4.3.3 Technology capacity estimation
In the previous section, we defined the group-based MILP formulation and intro-
duced the notion of SCGs. These are the encapsulations of all the stations that
interfere with each other due to the sharing of the capacity of a certain techno-
logy. An important aspect that was not explicitly discussed is the determination
of the capacity of the SCGs and their underlying technologies. Since the goal of
the algorithm is to optimize the utilization of the network and schedule the flows
across the different technologies, the capacity of these technologies should be de-
termined as accurately as possible. The importance of this was already highlighted
in Section 4.2.3 where we introduced the practical correction factor Ot to correct
the theoretical capacity and acquire a more realistic value. Here, we go one step
further by proposing a formulation that takes into account the number of connected
devices for that specific technology (and the corresponding infrastructure device).
As such we account for the harder determination of the exact capacity of wireless
technologies, as this depends, among others, on the number of users, their traffic
and location.

To this extent, we define a linear function that will approximate the actual ca-
pacity of the different technologies, taking into account the number of stations that
are using that particular technology at a certain period in time. For a certain SCG
g ∈ Gs, we define:

γ(g, α, β) = α · (
∑
f∈F

λinf,g + λoutf,g) + β

The parameters α and β are technology specific and we will discuss their de-
termination in Section 4.3.4.

In the three capacity constraints defined in the previous section, we can thus
replace the theoretical capacity of the SCG by the function γ:

• ∀g ∈ Gfdup : τ ing 6 γ(g, α, β)

• ∀g ∈ Gfdup : τoutg 6 γ(g, α, β)

• ∀g ∈ Ghdup : τ ing + τoutg 6 γ(g, α, β)

4.3.4 Dynamic determination of Alpha and Beta parameters
The actual capacities of the different technologies, in particular for wireless ones,
are dependent on several parameters (e.g., the configuration of APs, interference
of other devices within or outside the network, and the amount of traffic in the
network). Estimating each of these parameters is very challenging and is in some
cases a separate research problem (e.g., interference modeling). In order to take
these parameters into account, without the need for complex models, we propose
an experimental method that can be applied in real-time. For each technology, a
series of experiments is conducted where the number of stations and the flow rates
are varied, each taking values from a predefined set. For instance, the number

81

of stations can be varied from one up to fifteen, while the traffic rate per station
can be varied between the theoretical capacity of that technology and a relatively
small value like 1 Mbps to cover both saturated and unsaturated cases. For each
number of stations, the achieved rate for all relevant scenarios is averaged and
stored. Scenarios where the desired rate of all stations is achieved, are not taken
into account since we want to determine the actual maximum capacity of the con-
nection. Afterwards, the list of stored maximum capacities is interpolated (using
linear regression) as a function of the number of stations, leading to the function
γ, as described above. Note that for Ethernet, due to its full-duplex capabilities,
it is sufficient to vary only the traffic as the number of connected nodes does not
affect practical link capacity. Therefore, the parameter α = 0 for Ethernet. This
method can be applied for each heterogeneous environment to capture the specific
characteristics and can be rapidly re-executed if needed. Note that similar ideas
have recently been adopted by commercial Wi-Fi management solutions, such as
Technicolor’s Wi-Fi doctor [159].

4.3.5 Complexity analysis
Similar to the previous MILP formulation, we again perform an analysis of the
complexity of the proposed GBSF. The group-based formulation contains only 9
constraints of which the first 5 only depend on the number of SCG (denoted by
|Gs|), and the last 4 only on the number of flows (denoted by |F |), if we respect
the order of definition in Section 4.3.2. As such, we have the following number of
constraints:

4|Gs|+ 5|F |

We can conclude that the presented model has a strongly reduced number of con-
straints, and thus a lower complexity, in comparison to the previously proposed
FBSF. This difference in complexity and the execution time is further compared
in Section 4.5.

4.4 Deployment and parameter determination
Our approach selects the optimal route for each traffic flow and thus provides the
intelligence that is not present in the current network management solutions them-
selves. The proposed algorithms (both FBSF and GBSF) are fully independent
of the underlying management framework and can be deployed on ORCHESTRA
and all of the dynamic flow redirecting solutions listed previously in Section 2.2.
However, each solution has its own characteristics and features, some of which
can heavily influence the performance or impact of our proposed approach. For
instance, our approach can relatively easily be deployed on top of SDN controllers
without any changes to client-side devices. However, the available functionality
depends on the SDN framework. For instance, with an OpenFlow controller and
OVS it is possible to reroute downstream traffic, but not upstream traffic (unless an
OVS is installed on the client-side as well). In contrast, the previously discussed

82

ORCHESTRA framework would be the most appropriate underlying framework
as it is the most complete and widely applicable solution. Due to its combination
of a centralized controller and VMAC, it is possible to perform coordinated and
seamless flow rerouting based on real-time monitoring information. As an alter-
native, the IEEE 1905.1 standard can be used as it also has a virtual/hybrid MAC
that enables the required seamless management features. Both solutions allow for
control over both up- and downstream traffic and for distributed intelligence. In
the remainder of this section, we discuss how the proposed algorithms can interact
with the underlying network management solutions and how the received monitor-
ing information is used to determine or estimate the needed inputs.

4.4.1 Workflow description
When deploying the envisioned approach, a number of different components will
interact with each other. For instance, in order to provide the necessary inputs to
the algorithms or to roll-out the optimal configuration. Furthermore, it also needs
to be determined when precisely an algorithm should be executed. All of these
interactions are shown in Figure 4.3. There are three main components (indicated
by the different colors): the monitoring, the scheduling of the algorithm, and the
execution of the MILP formulation(s). Upon initialization, the monitor loop is
started by sending for the first time a request message to all the devices in the
network (step 1). Afterwards, in step 2, a time-out is started, indicating the time
period in which the stations should respond. In parallel of step 1, upon initializa-
tion, the execution of the MILP is scheduled at the latest allowed time (denoted
by max interval) in step 8. This value denoted the maximum interval between two
consecutive runs of the MILP.

When the timeout for the receiving of monitoring information has passed (or
when all nodes have responded), the received information is processed and com-
pared with the previously received information (if existing) in step 3. We check
for three dynamic events in particular: a changed link state (i.e. a link or techno-
logy that has gone down or became available (again)), if new flows have arrived or
existing ones have stopped, and if the rate of the flows has changed substantially
(denoted by a threshold value). These checks are, respectively, denoted as steps
4 to 6 in Figure 4.3. If at least one such event is detected, the MILP formulation
is scheduled to be executed (if possible) in step 12, in order to allow the frame-
work to react to dynamic changes in the network. After checking for such changes,
the monitoring loop waits a certain period of time in step 7, denoted by an inter-
val value, before resending requests for monitoring information and restarting the
whole process by going back to step 1. Note that this process can be optimized,
depending on the available logic and network circumstances, by sending an initial
configuration message defining the interval for sending monitoring information.
As such, a request for monitoring information does not need to be sent for each
interval but only when this parameter should be adjusted. This means that moni-
toring information is provided in a push-based manner.

The rescheduling of the execution of the MILP (step 12) is only allowed when

83

Co
lle

ct
 in

pu
ts

fr

om
 m

on
ito

rin
g

Q
ue

ry
 a

ll
de

vi
ce

s

W
ai

t f
or

tim

e-
ou

t

Ex
tr

ac
t r

ea
l-

tim
e

in
fo

rm
at

io
n

St
ar

t

Ch
an

ge
d

lin
k

st
at

e?

N
ew

 /

st
op

pe
d

flo
w

s?

Ch
an

ge
d

flo
w

ra

te
?

W
ai

t
in

te
rv

al

So
lv

e
M

IL
P

Ro
ll-

ou
t o

pt
im

al

co
nf

ig
ur

at
io

n

La
te

st
 ru

n
lo

ng

en
ou

gh

ag
o?

Sc
he

du
le

 n
ex

t
ex

ec
ut

io
n

at
 c

ur
re

nt

tim
e

+
m

ax
 in

te
rv

al

W
ai

t u
nt

il
sc

he
du

le
d

tim
e

Ca
nc

el
 n

ex
t

sc
he

du
le

d
ex

ec
ut

io
n

Sc
he

du
le

ex

ec
ut

io
n

at

cu
rr

en
t t

im
e

+
m

ax
 in

te
rv

al

Sc
he

du
le

 a
t

cl
os

es
t n

ex
t

al
lo

w
ed

 ti
m

e

•T
op

ol
og

y
•F

lo
w

s
•C

ol
lis

io
n

gr
ou

p
In

pu
ts

•F
lo

w

co
ns

er
va

tio
n

•C
ap

ac
ity

Co

ns
tr

ai
nt

s

•P
at

h
pe

r f
lo

w
•T

hr
ou

gh
pu

t
pe

r f
lo

w
/g

ro
up

D
ec

is
io

n
V

ar
s

•M
ax

im
ize

 t
ot

al

th
ro

ug
hp

ut
O

bj
ec

ti
ve

fu

nc
ti

on

Ye
s

Ye
s

Ye
s

Ye
s

N
oN
o

N
o

N
o

1 2 3

4 5 6

7

8

9

1110

12

13 14 15 16

Figure 4.3: Flow chart illustrating the different steps of the proposed framework.

84

enough time has passed since the last execution of the MILP, denoted by min inter-
val, to avoid unnecessary oscillations and executions. If this interval has already
passed, the MILP can be solved immediately (by moving on to step 13). Other-
wise, the next execution is rescheduled to the earliest allowed time (steps 10 and
11). Furthermore, upon the execution of the MILP, the necessary information is
gathered from the stored monitoring data (step 13), before the allowance of a solver
to calculate an optimal configuration in step 14. After calculation, the configura-
tion is rolled-out across the entire network and the next execution is scheduled at
the latest allowed time, in respective steps 15 and 16. Note that only devices where
the configuration needs to be updated will receive such a configuration message.
At the right hand side of Figure 4.3 the different elements of the MILP formulation
are depicted.

4.4.2 Estimating flow and network parameters
One of the novelties of our work is the use of real-time monitoring information
to estimate the desired flow rates and dynamic network conditions, rather than as-
suming this information is fully known by the framework. With real-time we mean
that the information is processed as soon as it is captured, making it immediately
available as feedback. To enable this, as seen in Figure 4.3, our approach relies
on a monitoring component that collects the needed information. This monitoring
depends on the underlying management framework in place. For instance, OR-
CHESTRA and SDN solutions natively offer this feature through the reporting of
statistics from the managed devices to the controller (e.g., using the OpenFlow
protocol). Another option that can be utilized is Link Layer Discovery Protocol
(LLDP), a data link layer protocol that allows devices in a network to ask informa-
tion regarding link quality to their neighbors. Link metric reporting and querying
options can thus be defined based on the LLDP, in a similar fashion as is done by
the IEEE 1905.1 standard [45]. The typical queryable metrics are the number of
packet errors, the amount of transmitted and received packets, MAC throughput,
link availability, and theoretical physical rate. Metrics are periodically requested
and are valid for a certain amount of time. Note that the designed models currently
only require information on MAC throughput, theoretical physical rate, and link
state. To summarize, all flow and link parameters (e.g., source, destination, and
rate) are estimated in real-time and not known upfront. The network topology is
assumed to be known, as the discovery of devices and links is also provided by the
link metric reporting mechanism

Because of the fact that we use an estimation (the measured MAC layer rate
during the last interval) of the desired rate of a flow, it is possible that the MILP
provides a non-optimal solution as it does not know the actual desired rate of the
flow (which is application layer information that cannot be known at the network
or MAC layers). For instance, if a flow actually desires 12 Mbps while going
over a link with a theoretical capacity of 10 Mbps, the framework will only know
the measured throughput, which will be lower than the actual desired 12 Mbps.
In such a situation, the MILP might decide not to change the path of the flow,

85

while this would have been the case if the actual desired rate was known. This
aspect is considered in Section 4.5, where we compare, for a number of scenarios,
the performance of the algorithms, both when either estimating the flow rate or
knowing the desired flow rate of all present flows.

4.5 Evaluation and discussion
This section evaluates the proposed algorithms using simulation results obtained
from the NS-3 event-based network simulator [160]. In the end, we also provide
a demonstration of the flow scheduling approach in a small-scale real-life proto-
type. First, the evaluation setup and scenarios for the simulations are discussed.
Afterwards, the algorithms’ performance, in terms of achieved throughput and
execution time, is evaluated in a variety of static and dynamic scenarios. A com-
parison to a baseline, using pre-configured interface selection based on hard-coded
priorities is provided.

4.5.1 Evaluation setup
In terms of tools, the Gurobi Optimizer (6.5.1) is used to optimally solve the MILP
formulations, while the NS-3 event-based network simulator (version 3.25) is used
for the simulations [156, 160]. In this simulator, we implemented the entire OR-
CHESTRA framework, as described in Section 3.2. This allows for the transparent
switching of flows between network interfaces, without breaking the end-to-end
connection. We assume three technologies present: Ethernet, 5 GHz Wi-Fi, and
2.4 GHz Wi-Fi. In other words, we focus on environments such as LANs. The
Ethernet network is constructed of full-duplex Unshielded Twisted Pair (UTP) ca-
bles with a theoretical throughput of 100 Mbps. Furthermore, in every network
topology considered, there is at least one Ethernet switch present that is connected
to the gateway of the network. For the 5 GHz Wi-Fi network a 40 MHz channel
is assumed, in contrast to the 20 MHz channel for the 2.4 GHz Wi-Fi network.
This allows for a theoretical data rate of respectively 150 Mbps and 72.2 Mbps. To
avoid oscillations in the decision-making, we have experimentally determined the
following parameters for the scheduling of the algorithm: between two consecutive
executions of the MILP formulation should be at least 2 s and at most 10 s. More-
over, the threshold for indicating a changed flow rate is 25 %, while monitoring is
reported once every interval of 1 s and the timeout for receiving monitoring infor-
mation is 0.25 s. Note that besides the generated traffic flows themselves, also the
management traffic is considered in the simulations. In other words, the packets
that contain monitoring information and configuration instructions, sent between
the devices and the controller or vice versa, are also generated and transmitted. As
such, our results consider the overhead of management interactions.

In order to generate representative network topologies and conditions, several
types of consumer devices are defined, each with different types of interfaces and
flows. The device types and their supported interfaces are depicted in Table 4.1.

86

Device type Supported network technologies
Ethernet 5 GHz Wi-Fi 2.4 GHz Wi-Fi

Desktop PC ×
Laptop × × ×
HD Television × × ×
4K Television × × ×
Tablet × ×
Smartphone × ×

Table 4.1: Overview of the devices in the scenarios with their supported technologies.

Device type Rate boundaries per flow type
Download Video stream Video conference

Desktop PC 10–30 Mbps 8–20 Mbps 4–10 Mbps
Laptop 10–30 Mbps 8–20 Mbps 4–10 Mbps
HD Television 5–25 Mbps 10–20 Mbps 5–10 Mbps
4K Television 5–25 Mbps 15–25 Mbps 7.5–12.5 Mbps
Tablet 1–8 Mbps 2.4–9 Mbps 1.2–4.5 Mbps
Smartphone 1–8 Mbps 2.4–9 Mbps 1.2–4.5 Mbps

Table 4.2: Overview of the devices in the scenarios with their supported flow rates.

The exact number of each of these devices is randomly chosen between lower and
upper bounds and varies depending on the scenario. Furthermore, three different
flow types are defined, as shown in Table 4.2. We assume that the rate of each flow
is once again chosen uniformly at random between an upper and lower bound,
based on the involved device. Moreover, within the static scenarios, the flow rates
do not change over time, while in the other scenarios the download flows will con-
sume as much bandwidth as possible (reflecting their actual behavior). Assuming
a static flow rate for the first part of the evaluations, allows us to estimate the
difference of using monitored information for flow rate estimation compared to
knowing the desired rates. The size of the downloaded file is uniformly at random
chosen between 10 MB and 10 GB. We assign one flow per device and as such
do not assume the concurrent usage of both Wi-Fi interfaces, as this is generally
not supported by current hardware. The different boundaries for the flow rate per
traffic and device type, are depicted in Table 4.2. The flow rates were selected
based on representative numbers from literature, of existing applications in these
three categories [161]. We decided to focus on cases with only TCP traffic, as
current Internet traffic is dominated by TCP, despite a slight decrease in the last
few years [88]. For example, Lee et al. reported over 95 % of Internet traffic to be
TCP in 2010 [87].

Finally, for every described scenario, results are averaged over different ran-
domly generated flow and topology configurations. To this extent, each experiment
was repeated 20 times. We also report the standard error for each experiment over

87

these 20 repetitions. As a baseline for comparison, a static configuration is used
where all devices are connected to a technology according to the following pri-
orities: Ethernet, before 5 GHz Wi-Fi, before 2.4 GHz Wi-Fi. Furthermore, we
compare both the FBSF and GBSF algorithms that have been proposed in, respec-
tively, Sections 4.2 and 4.3. All simulation were done using a single core of an
Intel® Xeon® E5-2680 Processor running at 2.8 GHz and with 8 GB RAM.

4.5.2 Parameter values
In order to use realistic values for the bandwidth capacities for the different tech-
nologies (both wired and wireless) in our algorithm, a practical correction factor
was proposed in Section 4.2.3 and a linear approximation function was defined in
Section 4.3.3. First, for the practical correction factor, we experimentally deter-
mined the following factors: 0.985, 0.810 and 0.733 for, respectively, Ethernet,
2.4 GHz Wi-Fi, and 5 GHz Wi-Fi. To determine these factors, we ran multiple
experiments per technology over a link between two nodes, using the network
settings outlined above. These experiments compared the actual throughput with
the theoretical maximum under different circumstances: varying number of flows
(between one and four), and varying flow rates (between 8 Mbps and 120 Mbps).
Second, using a similar network setup we also determined the parameters α and
β per technology for the approximation functions. For Ethernet, 15 experiments
were conducted over a link between two nodes with s varying number of flows
and their rates: starting from one flow up to 15 and varying their rates between
8 Mbps and 120 Mbps. As such, both unsaturated and saturated scenarios were
evaluated. We report the following values: α is zero (due to the full-duplex char-
acter) and β is 0.9854 multiplied by the theoretical capacity of the Ethernet link
(in this case 100 Mbps). For the two different Wi-Fi technologies, the experiment
was repeated 30 times per technology. Besides flow count and rates, we also evalu-
ated the impact of an increasing number of stations starting from one up to fifteen.
The obtained values are, for α and β respectively: for 2.4 GHz Wi-Fi -1.7413 and
57.578, and for 5 GHz Wi-Fi -3.2085 and 112.99.

4.5.3 Home and office scenarios
To demonstrate the impact of our framework in LANs, two basic scenarios were
created that reflect two typical representative environments: a home and an office
network. For each setup, the exact number of devices per type and the possible
flows are depicted in Table 4.3. The results for the home and office scenario are
shown in Figure 4.4. The graphs compare the static baseline and the two proposed
load balancing algorithms FBSF and GBSF to the total sum of the desired flow
rates. Both scenarios show a strong improvement in the total throughput when
using the GBSF algorithm as compared to the baseline and FBSF.

For the home scenario, an average throughput of 117.01 Mbps (±0.66) for the
baseline is achieved. In contrast, the average throughput with GBSF increases
to 137.62 Mbps (±3.16). This means that there is an increase of 20.62 Mbps or

88

Device Home Office Flows
Switches 1 3 N/A
Desktop PC 1 11 Download
Laptop 3 7 Download / Video conference
4k TV 2 1 Video stream
Tablet 1 0 All types of flows
Smartphone 3 4 All types of flows
Total devices 10 23

Table 4.3: Topology parameters for the two scenarios.

17.62 %. Figure 4.4a shows that GBSF approximately reaches the desired traffic
rate for all flows combined. The difference between the framework and the total
desired rate is only 1.72 Mbps or 1.23 %. Figure 4.4a also indicates that FBSF
does not perform well and even performs worse than the baseline. The reason for
this lays in the fact that FBSF does not take into account the characteristics of
the wireless spectrum as detailed as GBSF and ignores the impact of interference
between different stations. Note that while performing this evaluation, we noticed
that the performance of FBSF is higher, and even offers an improvement towards
the baseline, for smaller scenarios. In these smaller scenarios, the capacity of the
Ethernet links is limited to 10 Mbps and the rates of the flows were more than half
the size of the current values. However, due to the fact that these values are rather
unrealistic, these results are omitted.

For the office scenario, an average throughput of 310.39 Mbps (±2.67) is re-
corded for the baseline, while the average throughput with GBSF increases to
329.52 Mbps (±3.03). This means that there is an increase of 19.13 Mbps or
6.16 %. Despite this improvement, one can see in Figure 4.4b that GBSF does
not reach the desired rates for all flows. The difference between the framework
and the total desired rate is 12.40 Mbps or 3.63 %. However, the reasons for this
can be found outside of our framework. First, this scenario is slightly oversatu-
rated. As such, the physical capacities of the network are being reached. Second,
since an approximation of the capacities of the wireless technologies is used, a
slight inaccuracy is possible. Third, because of the oversaturation, it is also harder
to estimate the actual desired flow rate, as discussed in Section 4.4.2. At the end
of this section, we discuss this in more detail. Figure 4.4b also clearly shows that
FBSF fails to provide any improvement in comparison to both baseline and GBSF.

For both scenarios, the increase in throughput offered by GBSF is made pos-
sible by scheduling the different traffic flows more appropriately across all tech-
nologies. Table 4.4 shows, for both the home and office scenario, the average load
distribution of flows across the three technologies for the different algorithms.
For the home scenario with 20 flows we see how for the baseline the Ethernet
technology is the bottleneck. This is explained by the static configuration of the
baseline where Ethernet is prioritized over the 5 GHz Wi-Fi network, while the
5 GHz Wi-Fi network is prioritized over the 2.4 GHz Wi-Fi network, as stated in

89

0 10 20 30 40 50 60
Simulation time (s)

0

25

50

75

100

125

T
hr

ou
gh

pu
t(

M
bp

s)

Baseline
FBSF
GBSF
Desired

(a) Home scenario

0 10 20 30 40 50 60
Simulation time (s)

200

250

300

350

T
hr

ou
gh

pu
t(

M
bp

s)

Baseline
FBSF

GBSF
Desired

(b) Office scenario

Figure 4.4: Throughput as a function of time for different scenarios, comparing our pro-
posed algorithms to the static interface selection baseline.

90

Algorithm Technology load distribution
Ethernet 5 Ghz Wi-Fi 2.4 Ghz Wi-Fi

Home Scenario
Baseline 16 flows 4 flows 0 flows
GBSF 7 flows 7 flows 6 flows
FBSF 2 flows 11 flows 7 flows

Office Scenario
Baseline 56 flows 8 flows 0 flows
GBSF 44 flows 12 flows 8 flows
FBSF 37 flows 16 flows 11 flows

Table 4.4: Overview of the distribution of flows over the different technologies for the home
and office scenarios.

Section 4.5.1. In contrast, GBSF succeeds in scheduling the flows optimally to
increase the network-wide throughput: on average, 7 flows are scheduled on Eth-
ernet, 7 flows on 5 Ghz Wi-Fi, and 6 flows on the 2.4 Ghz Wi-Fi. On the other
hand, FBSF overloads the two Wi-Fi networks, as only 2 flows are scheduled on
Ethernet. For the larger office scenario with in total 64 flows, similar load distri-
butions are obtained.

Furthermore, the impact of the implementation of the VMAC layer can clearly
be noticed as the actual technology switching of flows cannot be noticed in the
figure. The execution times for GBSF for the home and office scenario are, re-
spectively, 8.16 × 10−4 s (±2.62 × 10−5) and 1.84 × 10−3 s (±1.96 × 10−3).
For FBSF the execution times are higher, respectively, 0.11 s (±3.99× 10−3) and
5.61 s (±1.79). This clear difference in execution time shows an improvement in
performance of GBSF, compared to FBSF. This is discussed in more detail in the
next section.

In order to further assess the impact of the unknown desired flow rates, each
randomly generated scenario was executed a second time using the actual, rather
than the estimated, desired flow rates. For the home scenario nearly no difference
can be identified, while a slightly higher throughput can be noticed for the office
scenario: for the home scenario the average overall throughput for GBSF equals
137.64 Mbps (±3.15). This is only 0.02 Mbps higher than the throughput achieved
when using the real-time measured rate for each flow. In the case of the office
scenario, where the standard GBSF formulation does not reach the desired rate,
the impact of using the actual desired rates of the flows is more clear as it results
in an average throughput of 331.50 Mbps (±3.03), which is 1.98 Mbps higher than
the standard GBSF. This means that knowing the desired flow rates would offer an
additional improvement of 0.58 % in the larger office scenario.

4.5.4 Impact of network load and scalability

In order to further investigate the performance of the MILP formulation, we con-
ducted experiments with varying network loads. This is achieved by generating
a set of devices, each with a uniform randomly assigned flow that has, in turn, a

91

10 20 30 40 50 60 70
Network loads (%)

50

100

150

200
T

hr
ou

gh
pu

t(
M

bp
s)

Baseline
FBSF
GBSF
Desired

(a) Random types of devices

10 20 30 40 50 60 70
Network loads (%)

50

100

150

200

T
hr

ou
gh

pu
t(

M
bp

s)

Baseline
FBSF
GBSF
Desired

(b) Only Ethernet-enabled devices

Figure 4.5: Throughput as a function of network load, error bars depict the standard error.

92

randomly chosen type and rate. The total desired rate of all flows equals a cer-
tain percentage of total theoretical network capacity. Experiments were performed
for loads of 10, 20, 30, 40, 50, 60 and 70 % of the theoretical network capacity.
Furthermore, two scenarios were evaluated. First, using all types of devices, with
every device selected at random from the set of seven devices listed in Table 4.1.
For the second scenario, only devices that at least have an Ethernet interface were
selected. In other words, this scenario does not contain smartphones and tablets.
This way more traffic will initially pass over the Ethernet links, making it easier to
reach a saturated state on that interface.

Figure 4.5 illustrates that GBSF offers an increase in throughput under the
higher network loads. As the network load increases, so does the relative perfor-
mance of our proposed framework compared to the baseline, for both scenarios.
Furthermore, FBSF again fails to reach the level of the baseline.

For the first scenario, depicted in Figure 4.5a, from a network load of 50 %
onwards, GBSF start having a noticeable impact. The best result is noticed in
the case of a network load of 70 %. Here the baseline achieves an average total
throughput of 150.33 Mbps (±3.53), while running GBSF leads to an throughput
of 176.42 Mbps (±1.16). In other words, there is an increase of 26.09 Mbps or
17.35 %. The achieved rate of GBSF is 11.43 Mbps or 6.09 % below the desired
rate. On the other hand, FBSF only achieves 105.64 Mbps (±2.88) or 70 % of the
throughput of the baseline.

For the second scenario with only Ethernet-enabled devices, depicted in Fig-
ure 4.5b, GBSF provides an improvement from a network load of 40% onwards.
The biggest improvement can again be seen with a network load of 70% . We can
notice an improvement from 120.38 Mbps (±2.57) for the baseline to 174.25 Mbps
(±2.04) for GBSF. This is an increase of 53.87 Mbps or 44.75 % and is only
13.56 Mbps or 7.22 % below the desired rate. FBSF is consistent in its under-
performance as it only achieves a throughput of 91.86 Mbps (±4.64).

Similar to the previously discussed home and office scenarios, we also com-
pared the results of the framework with and without knowing the desired flow rates
upfront. A similar impact occurs when evaluating the home and office scenarios.
For the first scenario with all types of devices, the usage of the proposed frame-
work (GBSF) with knowledge of the rates results in a throughput of 179.99 Mbps
(±1.16) for the scenario with a load of 70% . This is an increase of 3.57 Mbps
compared to the normal execution. For the second scenario with only Ethernet-
enabled devices, running GBSF with the rates of the flows known, results in a
throughput of 177.05 Mbps (±2.17) for the same scenario. This is an increase of
2.80 Mbps with respect to the standard execution.

Next, we evaluated the time it takes to execute the MILPs and find the opti-
mal configuration. Table 4.5 shows the averages of the measured values for the
different runs for the first scenario. The table offers a comparison between the
execution times of both FBSF and GBSF, to the number of flows present across
the different network load percentages. The results, as depicted in Table 4.5, show
that the execution times of both algorithms scale exponentially. However, there
is a noticeable improvement in terms of execution time of GBSF, in comparison

93

Network Flows FBSF GBSF
Load (%) execution time (±SE) execution time(±SE)
10 4 0.01 s (±0.01) 1.89 ×10−4 s (±1.92× 10−4)
20 7 0.04 s (±0.01) 5.06 ×10−4 s (±1.11× 10−3)
30 11 0.11 s (±0.03) 7.74 ×10−4 s (±1.63× 10−3)
40 13 0.25 s (±0.14) 9.29 ×10−4 s (±6.84× 10−3)
50 16 0.43 s (±0.26) 1.17 ×10−3 s (±1.01× 10−2)
60 20 0.81 s (±0.50) 1.33 ×10−3 s (±8.75× 10−3)
70 23 1.46 s (±0.71) 1.75 ×10−3 s (±1.33× 10−3)

Table 4.5: Comparison of the execution time of the proposed FBSF and GBSF algorithms.

Network Flows FBSF GBSF
Load (%) execution time (±SE) execution time(±SE)
10 7 0.03 s (±0.02) 2.88 ×10−4 s (±1.36× 10−4)
20 12 0.18 s (±0.06) 6.63 ×10−4 s (±3.90× 10−4)
30 19 0.80 s (±0.33) 1.06 ×10−3 s (±1.85× 10−2)
40 24 1.80 s (±0.64) 1.28 ×10−3 s (±5.33× 10−2)
50 31 4.10 s (±2.16) 1.58 ×10−3 s (±3.44× 10−2)
60 38 8.68 s (±2.99) 3.07 ×10−3 s (±2.15× 10−1)
70 44 17.49 s (±8.26) 2.88 ×10−2 s (±7.79× 10−1)

Table 4.6: Comparison of the execution time of the proposed FBSF and GBSF algorithms,
under an increased number of flows.

with FBSF. The difference is the highest for a network load of 70 % where it takes
only 1.75 ×10−3 s to optimally solve the MILP formulation. This improvement,
as explained in Section 4.3, is due to the change of objective function where the
goal is to maximize the throughput across all the SCGs, instead of calculating and
maximizing the rate assigned to individual flows. To illustrate this further, we re-
run the first network load scenario (with randomized devices) but we halve the
lower and upper bounds for the rates of all flows. This way we artificially, ap-
proximately, double the number of flows, for each percentage of the network load.
The results in Table 4.6 show more clearly the increased execution time of FBSF
in terms of the number of flows. For a network load of 70 % it takes on average
17.49 s (±8.26) to execute FBSF. This is in strong contrast with GBSF that only
takes 2.88 ×10−2 s (±7.79× 10−1).

To further investigate the scalability of the proposed solution, we conducted an
experiment where we evaluated execution time in terms of the number of stations
and SCGs (i.e., technologies). We perform this evaluation only for GBSF, as this
formulation outperformed FBSF significantly in the previous experiments. Since
the scalability of the NS-3 simulator is limited, as each packet is actually gener-
ated, we conducted a number of emulations on an Intel NUC. We artificially pro-
vide the necessary inputs to the framework, thereby varying the number of stations

94

3 25 50 75 100 125 150 175 200

SCGs

10

250

500

750

1000

1250

1500

1750

2000

St
at

io
ns

0s

0.5s

1s

1.5s

2s

Figure 4.6: Scalability of GBSF in terms of stations and SCGs.

between 10 and 2000 and the number of SCGs between 3 (as in the simulations)
and 200. Furthermore, the same assumptions as stated in Section 4.5.1 apply. For
each pair of the number of stations and SCGs, we take the average across 20 exe-
cutions, each with a randomly generated topology. Figure 4.6 shows the resulting
heatmap, where every colored cell indicates the average time to solve the MILP
for a specific pair. We can see that the execution time does increase when the
number of stations and SCGs rises, but stays under the 2 s for all configurations.
In particular, it takes on average 1.67 s (± 0.01) to solve the MILP for the largest
configuration.

We summarize that the results confirm that the proposed GBSF improves in
terms of scalability and performance. The formulation can thus be solved fast
enough to react to dynamic network changes, even in large and dense networks.

4.5.5 Dynamic scenarios
So far we have only considered scenarios with static flow rates and arrival times,
as we assumed the flows to be present throughout the entire simulation. While
this helped in determining the performance of the framework, this is not always
realistic. Furthermore, an important performance metric of the framework is its
adaptability to dynamic conditions. To evaluate this aspect, we consider such a
dynamic scenario in this section. All download flows act as in reality and consume
as much bandwidth as possible (or assigned to them by the TCP rate control al-
gorithm), until the desired amount of data has been downloaded (or the maximum

95

flow length has been reached). Moreover, flows arrive according to a Poisson dis-
tribution and the flow length is uniformly at randomly chosen between bounds.
The impact of different arrival rates is evaluated (Poisson parameter λ) for two
scenarios with different flow lengths. They are randomly chosen between 5 and
15 s for the first scenario. For the second one, the bounds are doubled to 10 and
30 s. Note that we only evaluate the performance of GBSF based on the results of
the previous experiments.

Figure 4.7 shows the results for both scenarios. For all different arrival rates,
the framework outperforms the baseline significantly. For the scenario with the,
on average, smaller flow lengths, depicted in Figure 4.7a the improvement is quite
consistent, with a slightly smaller improvement for parameter values of 0.1 and
0.4. It is also clear that, in both scenarios, for the higher arrival rates, both the
baseline and framework reach the physical limits of the network. For the second
scenario, with longer flow lengths, the highest improvements by the framework
can be noticed for the arrival rates of 0.15 en 0.2. For the arrival rate of 0.15, there
is an increase from 131.71 Mbps (±11.09) to 150.10 Mbps (±13.37), or 13.96 %.
For the parameter value of 0.2, there is an increase from 148.26 Mbps (±8.70) to
173.30 Mbps (±8.86), or 16.89 %. It makes sense that these parameters result in
the highest increase because for the smallest values there is not enough traffic to
benefit from the improvements of the framework. On the other hand, for the higher
arrival rates with more overall traffic, the network capacity is a limiting factor.
Finally, we note that the standard error is quite large, indicating large differences
between the different individual experiments.

4.5.6 Impact of link failure
In a final scenario, we investigated the impact of a link failure, as this is a very
disruptive and plausible network event. For the topology we use the same setup as
for the home scenario, defined in Section 4.5.3 but we only replace one device (an
HD-TV replaces the PC). In this scenario we assume that the Ethernet connection
between the switch and gateway fails between the timestamps of 20 s and 40 s. In
order to get a representative baseline, we did a number of experiments to determine
realistic behavior upon link failure. We disconnected the Ethernet connection and
measured the time it takes to switch to Wi-Fi on a standard MacBook Air (13-inch,
early 2015). Afterwards, when the Ethernet connection was up again, we measured
how long it took the operating system to switch back to Ethernet. It turned out that
the disconnection is recognized almost immediately (below a second) and no real
disruption could be noticed. However, upon Ethernet reconnection, it took on
average at least 8 s before traffic was switched back from Wi-Fi to Ethernet. Our
baseline will thus act correspondingly with an immediate handover to Wi-Fi upon
link failure and a delayed handover (of 8 s) in the other direction.

The averaged results of this scenario are shown in Figure 4.8. For the base-
line, the impact of the link failure can clearly be noticed because of a drop in the
total throughput of more than 50 %. In strong contrast, for the proposed approach,
this drop is limited to less than 20 %. This difference is explained by the fact that

96

0.1 0.15 0.2 0.25 0.3 0.35 0.4
Poisson arrival rate

100

150

200

T
hr

ou
gh

pu
t(

M
bp

s)

Baseline
GBSF

(a) Short length of flow

0.1 0.15 0.2 0.25 0.3 0.35 0.4
Poisson arrival rate

100

125

150

175

200

T
hr

ou
gh

pu
t(

M
bp

s)

Baseline
GBSF

(b) Long length of flow

Figure 4.7: Throughput as a function of Poisson parameters, error bars depict the standard
error.

97

0 10 20 30 40 50 60
Simulation time (s)

0

25

50

75

100

125

T
hr

ou
gh

pu
t(

M
bp

s)

Baseline
GBSF

Desired

Figure 4.8: Throughput as a function of time for a scenario where a link failure occurs at
time 20 s.

our algorithms schedules the traffic more evenly across both links. As such, it is
more robust against a link failure. While the desired rate, before the link failure,
is almost reached by the algorithm, this is not possible anymore after the handover
because the capacity of the two Wi-Fi interfaces is simply not large enough. It is
also clear that when the Ethernet interface returns, the framework almost imme-
diately reschedules the flows across all three interfaces. Thus reaching the same
level of throughput as before the link failure. For the baseline, as discussed before,
it takes 8 s before the traffic is switched back. This behavior results in an aver-
age throughput of 82.12 Mbps (±0.60) for the baseline and an average throughput
of 113.54 Mbps (±2.36), compared to a desired rate of 129.14 Mbps (±3.38). In
other words, deploying the proposed approach introduces an improvement of 38 %.

4.5.7 Prototype
We have thus far evaluated the proposed approach under numerous scenarios in
a simulation environment. To further investigate performance, a real-life proto-
type was developed. The architecture of this prototype, as shown in Figure 4.9,
consists of two client devices with two interfaces. Instead of opting again for the
ORCHESTRA framework as the underlying network management solution, we
show the versatility of the proposed flow scheduling approach by utilizing an SDN
setup. First, each device has an Ethernet connection to the gateway over a single
switch. In other words, the physical link between gateway and switch is shared.
Second, both client devices also have a 2.4 GHz Wi-Fi connection. The rest of the

98

Server

2.4 GHz
Wi-Fi AP

OpenFlow-
enabled gateway

Switch

Client 1

Ryu controller with
MILP algorithm

Client 2

Figure 4.9: Architecture of the prototype setup

architecture consists of a server and an OpenFlow-enabled gateway. On this gate-
way, we have installed OVS, a virtual multi-layer switch that is controllable by the
OpenFlow protocol. The installation of an OVS allows us to perform transparent
handovers between the different available technologies, in this case, Ethernet and
2.4 GHz Wi-Fi. For the SDN controller we have opted for the Ryu implementation
since it is open source and is being actively developed. On this controller, we de-
ployed our intelligence that decides if and when a flow should be rerouted. For the
client devices, regular ASUS laptops are used. For the AP we used an off-the-shelf
Netgear N750, while all other devices are Intel NUCs. All Ethernet connections
are limited to 100 Mbps, except for the connection between the server and gateway
that has a capacity of 1 Gbps (as indicated by the slightly thicker line in Figure 4.9.

We consider the following scenario: the first client is watching a real-time
video stream, while after roughly 20 s the second client starts a download that lasts
for approximate 40 s. The GBSF algorithm is compared to a static baseline that
assumes that all traffic uses the Ethernet connections, as this is prioritized over the
wireless ones. For both the baseline and algorithm case, five different runs are con-
ducted and results are averaged. Figure 4.10 indicates that GBSF spreads the traf-
fic across the two technologies, as the video traffic is switched to the Wi-Fi route,
while the download flow remains on Ethernet. Figure 4.10a shows the impact for
all traffic on both interfaces in terms of data rate, while Figure 4.10b illustrates the
impact on the video flow that is switched. The use of the flow scheduling approach
results in an average overall data rate of 45.54 Mbps (±5.37), in respect to the base-
line of 40.66 Mbps (±4.77). In other words, there is an increase of 4.88 Mbps or
12.01 %. This increase can clearly be seen in Figure 4.10b, where the video traffic
on the Wi-Fi interface continues its burst behavior after the background traffic is
introduced. In contrast, in the baseline scenario, the video traffic is not able to
reach its desired rates, until the background traffic is removed (around 55 s). Even
more important than the improvement in data rate is the improvement in terms of
user experience: in the case of the baseline, the video stream is not able to reach
its required bandwidth causing the buffer of the client’s video player to drain and
thus introducing freezes to the video. This stands in strong contrast to the results

99

0 20 40 60
Time (s)

0

25

50

75

100

125

150
D

at
a

ra
te

(M
bp

s)

Baseline (Eth)
GBSF (Eth)

GBSF (Wi-Fi)

(a) All traffic

0 20 40 60
Time (s)

0

10

20

30

40

50

D
at

a
ra

te
(M

bp
s)

Baseline (Eth)
GBSF (Eth)
GBSF (Wi-Fi)

(b) Video traffic only

Figure 4.10: Throughput over Ethernet and Wi-Fi interfaces as a function of time for an
illustrative scenario on the real-life prototype.

100

of the framework, where at no point in time any impact on the video or its buffer
can be noticed, not even when the handover between the two technologies is exe-
cuted. Furthermore, we can also report that on average the Gurobi solver needed
3.00 × 10−4 s (±1.7407 × 10−5) to optimally execute the MILP. This is in line
with the reported execution times for the simulations.

4.6 Conclusion
In this chapter, we have introduced a dynamic flow management approach that
can be deployed on top of multi-technology management solutions such as OR-
CHESTRA or the IEEE 1905 standard. Based only on real-time monitoring infor-
mation, the approach aims to optimize the scheduling of traffic flows to increase
network-wide throughput. The notion of collision groups is introduced to capture
the shared medium of wireless networks where contention among users may affect
network capacity. An evaluation of the MILP formulations, through a combination
of extensive NS-3 simulations and a real-life prototype evaluation, shows that the
presented approach can indeed react in real-time to dynamic network changes and
offers a significant improvement in terms of throughput. Across different scena-
rios, an increase in throughput of around 20 % can be noticed compared to a static
baseline. Higher increases of up to 40 % can be achieved in some scenarios, for
instance, under the presence of link failures.

5
Scalable load balancing and flow

management for mobile heterogeneous
wireless networks

“You were the chosen one! It was said that you would destroy the Sith, not join
them, bring balance to the force, not leave it in darkness.”

–Obi-Wan Kenobi (Star Wars: Episode 3 - Revenge of the Sith, 2005)

The contributions presented in this chapter are based on the publication ti-
tled ”Scalable Load Balancing and Flow Management in Dynamic Heterogeneous
Wireless Networks”.

5.1 Introduction
In Section 1.1, we showed how the number of connected devices has known a
massive increase in the last decade. The two main reasons for this (r)evolution
are the worldwide adoption of mobile and IoT devices. These devices have fur-
ther increased the heterogeneity in the wireless networks due to their very diverse
characteristics in, for instance, moving speed or mobility patterns (e.g., the dif-
ference between a connected car and a laptop). This on top of the already ex-
isting management puzzle raised by the different demands and characteristics of
consumer devices and communication technologies, as discussed in the previous
chapter. Furthermore, mobile devices can have a significant impact on network
performance. Certain mobility patterns can cause a large number of devices to

102

connect to the network at (nearly) identical positions, overloading certain loca-
tions in the network infrastructure. Especially, since all devices typically connect
to the closest APs or base station, based on signal strength.

In order for a mobile device to remain connected to the Internet, it will typi-
cally need to perform multiple handovers between different infrastructure devices
or even technologies, along the length of its route. For instance, recall a scenario
where you are watching a live video on your smartphone or tablet and have to
leave the house. In order to continue watching the video, a handover between
the in-home Wi-Fi network and the cellular networks is likely appropriate. In
Chapter 3, we already presented the ORCHESTRA framework that enabled seam-
less inter- and intra-technology handovers for devices that are equipped with the
proposed VMAC. Furthermore, in the Chapter 4, we introduced intelligence that
could be deployed on top of network management solutions, such as ORCHES-
TRA, in order to optimize the APs selection and flow scheduling across the entire
network. The proposed algorithms are able to reroute flows across different wired
and wireless connections. However, while these algorithms are able to capture the
specific wireless context (in particular the shared medium), they did not take the
mobility of stations into account. Furthermore, as explained in Section 2.3, exist-
ing approaches from the state-of-the-art are technology depended and are based on
theoretical models that assume full knowledge about traffic and network parame-
ters.

To this extent, we extend our work presented in Chapter 4 in several ways.
First of all, the previous FBSF and GBSF algorithms focused exclusively on flow
scheduling and traffic offloading between wired and wireless links (as they are
typically found in LANs). As such, the mobility of connected devices was not
modeled. In contrast, we now focus specifically on wireless technologies and al-
low for multiple wireless infrastructure devices. Furthermore, we take the mobility
of users and the distance between connected devices and the network infrastructure
into account. In particular, we present three different algorithms: first, an optimal
MILP formulation is presented, taking into account the aforementioned elements.
These new elements, consequently, extend the complexity of the mathematical for-
mulation, which has a dramatic impact on execution time and scalability. There-
fore, we present two different heuristics that ensure scalability by sequentially
solving the different parts of the problem, instead of solving it globally.

The remainder of this chapter is structured as follows. First, we introduce the
mathematical problem formulation in Section 5.2. This section also discusses,
among others, the network model and the deployment of the load balancing al-
gorithms. Next, in Section 5.3 we propose two different heuristics to improve
scalability. Finally, we present a thorough evaluation in Section 5.4, where we
compare the three different algorithms across multiple scenarios.

103

5.2 Multi-technology load balancing formulation
In this section, we first introduce a model for heterogeneous wireless networks
and present an MILP formulation representing the load balancing problem. Af-
terwards, we discuss in detail the interaction with the network and how certain
parameters can be determined.

5.2.1 Network model
A heterogeneous wireless network is modeled as a multi-graph defined as a tuple
(S,T,B) where:

• S is the set of stations {s1, s2, ..., sn}. These stations represent all kinds of
connected devices, depending on the modeled network (e.g., smartphones,
sensors, vehicles).

• T is the set of technologies {t1, t2, ..., tn}. This can, for instance, be Wi-Fi
(e.g., IEEE 802.11ac, IEEE 802.11ad, ...) or LTE.

• B is the set of all Basic Service Sets (BSSs) {b1, b2, ..., bn}. A BSS is
defined as a set of stations {s1, s2, ..., sn} that are connected, over a specific
technology, to an AP, an LTE base station, or an equivalent infrastructure
device. In other words, a BSS encapsulates all the stations that can compete
with each other since they share the capacity of a technology. We assume
no interference between BSSs that are in the range of each other (i.e., the
use of different non-overlapping channels). Note that the concept of a BSS
is identical to that of an SCG in the previous Chapter 4, but the naming is
more appropriate within the context of wireless networks.

Furthermore, we define the following sets and elements:

• ∀s ∈ S : Ts; defines per station the set of all technologies t ∈ T that are
supported by that particular station.

• ∀b ∈ B : Bt; is the set of all BSSs that offer a certain technology t ∈ T .

• ∀s ∈ S : Bs; is the set of all BSSs to which a station s ∈ S can belong. In
other words, these are all the BSS of which the infrastructure device (e.g.,
AP) is in range of the station (for a supported technology).

• Finally, we define ds,b and bs,b to be, respectively, the data rate (depending
on the MCS) and bit error rate of the station s ∈ S for a specific BSS b ∈ B.
These values depend on the mobility and position of stations, with respect
to each BSS, and can change heavily over time. We discuss the estimation
of ds,b and bs,b later on (in Section 5.2.3).

In addition to the network topology, we also need to model traffic flows going
through the network. Therefore, we define F as the set of all flows. A flow f ∈ F

104

is a triple < sf , r
in
f , r

out
f > with sf ∈ S the station within the network that is

the source or destination of the flow within the network, rinf the incoming desired
rate of f ∈ R+ and routf the outgoing desired rate of f ∈ R+. Note that we do
assume that the entry to the network (e.g., a gateway) is always one of the two
endpoints of the flow, while the other is denoted by sf . Furthermore, we separate
the desired rate of the flow between the incoming and outgoing rates. This allows
us to more precisely schedule all flows across the different paths, as incoming and
outgoing packets of a flow can be assigned a different route. To clarify, for a TCP
flow originating from some web server, the incoming rate is the rate of the data
traffic, while the outgoing rate is the one of the ACKs. In the case of a UDP flow
originating from the same web server, the outgoing rate will be 0 as there are no
ACKs.

5.2.2 MILP formulation

The considered multi-technology load balancing problem is modeled as an MILP,
which consists of the necessary inputs, decision variables, an objective function,
and a set of constraints. The inputs of the presented MILP consist of the previously
described network and flow model. Additionally, we need one more input: we
define χb to be a linear function that approximates the capacity of the different
BSSs, taking into account the number of stations and the particular technology.
This corresponds to the linear approximation function that was defined within the
context of the GBSF algorithm (cf. Section 4.3.3). This is further discussed in
Section 5.2.3.

Next, we define the following decision variables:

• τ inf ∈
[
0, rinf

]
; the total incoming rate assigned to a flow f ∈ F .

• τoutf ∈
[
0, routf

]
; the total outgoing rate assigned to a flow f ∈ F .

• λinf,b ∈ {0, 1}; the path for the incoming traffic of a flow. If the incom-
ing traffic of flow f ∈ F is scheduled over BSS b ∈ Bsf , then λinf,b = 1,
otherwise it equals 0.

• λoutf,b ∈ {0, 1}; the path for the outgoing traffic of a flow. If the outgoing traf-
fic of flow f ∈ F is scheduled over BSS b ∈ Bsf , then λoutf,b = 1, otherwise
it equals 0.

• γs,t,b ∈ {0, 1}; represents the connection between a station and an infras-
tructure device. The decision variable equals to 1, if a station s ∈ S on
technology t ∈ St is part of the BSS b ∈ Bs ∩ Bt, otherwise it equals 0. In
other words, we assume that per technology a station can only be connected
to one AP or base station.

105

• δ ∈ [0, 1]; models the maximal load over all BSS. In other words, this rep-
resents the load of the BSS with the highest amount of traffic assigned to
it.

As an objective function, the model maximizes the total rate (bandwidth) of the
network-wide traffic, both incoming and outgoing, while minimizing the relative
maximal load over all BSS:

max(ω · (
∑
f∈F

τ inf + τoutf) + (1− ω) · (−δ) · (
∑
b∈B

χb))

This objective function consists of two weighted subfunctions that need to be
optimized (with the relative weight between them denoted by ω). The first sub-
function represents the total assigned rate across all flows (which needs to be max-
imized). The second part represents the division of the load across all available
BSSs. The idea is to minimize the maximal relative load, denoted by δ, across all
BSSs [162]. As many mathematical solvers do not allow the usage of maximiza-
tion or minimization functions within the objective function, δ is bounded by the
final constraint. Note that the multiplication of δ with

∑
b∈B χb is only needed

for normalization. While the goal is to maximize network-wide throughput, the
second objective is necessary to spread all connected devices over APs and tech-
nologies. This limits the probability that the BSS becomes overloaded when a new
device joins the network and connects to that BSS.

We complete the MILP formulation by defining several constraints. We first
define a constraint that limits the total rate over all traffic flows on a station, going
over a certain BSS, by the maximal rate supported by the configuration of that
station:

• ∀s ∈ S,∀b ∈ Bs :
∑
f∈Fs

λinf,b · τ inf + λoutf,b · τoutf 6 dsf ,b · bsf ,b

Note that this constraint can be linearized by replacing the multiplication by a
novel decision variable [158]. Next, we define two constraints that guarantee the
conservation of flows in the network (i.e., the right endpoints):

• ∀f ∈ F :
∑
b∈Bsf

λinf,b = 1

• ∀f ∈ F :
∑
b∈Bsf

λoutf,b = 1

Furthermore, we also need to make sure that a station can be connected to only
one BSS per technology (this corresponds to reality where a device is in general
only equipped with a single radio per technology):

• ∀s ∈ S, ∀t ∈ Ts :
∑
b ∈ Bs ∩Btγs,t,b = 1

• ∀s ∈ S,∀t ∈ Ts,∀b ∈ Bs ∩Bt,∀f ∈ Fs : λinf,b 6 γs,t,b

• ∀s ∈ S,∀t ∈ Ts,∀b ∈ Bs ∩Bt,∀f ∈ Fs : λoutf,b 6 γs,t,b

106

Finally, we define the constraint that bounds the value of δ for balancing the load
across BSSs, while also making sure that the capacity of the BSSs and their under-
lying technologies is not exceeded. This constraint can be linearized as mentioned
previously [158].

• ∀b ∈ B :
∑
f∈F λ

in
f,b · τ inf + λoutf,b · τoutf 6 δ · χb

5.2.3 Parameter estimation
In the next section, we explain how monitoring information is acquired from the
underlying framework and fed into the MILP to calculate the optimal configura-
tion. While some of the gathered monitoring information, like station and traffic
information, can be used directly without the need for further processing, some
other information is also required. A key element for determining an optimal con-
figuration is to have an accurate overview of the available bandwidth per BSS. The
big impact of determining the actual available bandwidth of wireless links on the
results of load balancing approaches has been shown in literature and in the pre-
vious Chapter 4 [32]. The actual bandwidth of wireless technologies depends on
several parameters such as the theoretical physical bandwidth, the configuration of
APs, interference of other devices within or outside the network, and the amount
of traffic in the network. Estimating each of these parameters is very challenging
and is in some cases a separate research problem on its own (e.g., interference
modeling). In order to avoid the use of complex and resource intensive theoretical
models, we make use of the approximation function χb to estimate the capacity
of the wireless technologies. Note that we reuse the definition as stated in Sec-
tion 4.3.3. For each BSS b ∈ B, we define χb as follows:

χb(α, β) = α · (
∑
f∈F

λinf,b + λoutf,b) + β

The parameters α and β are technology dependent and capture the specifics
of the wireless network under consideration. The previously described dynamic
approach (cf. Section 4.3.4) allows us to capture the specific characteristics of
individual heterogeneous networks. Moreover, as characteristics of the wireless
environment change over time, this method can be rapidly re-executed if needed.

Furthermore, the MILP also requires the data rate (depending on the MCS)
and bit error rate of the station s ∈ S for a specific configuration, respectively
denoted by ds,b and bs,b. For the two parameters a mapping can be constructed:
in case of the first parameter this is a mapping from measured RSSI values to
MCS values (and theoretical data rate). For the second parameter bs,b, a linear
function can map the measured RSSI values to packet loss, in order to correct the
theoretical achievable data rate. Both mappings can be experimentally determined
by using the well-known fingerprinting approach to record MCS and packet loss
values at different distances (and thus different RSSI values) in the network envi-
ronment [163]. These mappings can be recreated to adjust for dynamic changes to
the network environment, in a similar matter as for the α and β parameters.

107

5.2.4 Deployment and interaction with underlying framework

In the previous Chapter 4, and in particular in Section 4.4.2, we discussed how the
proposed algorithms could be deployed on top of different network management
solutions. The deployment considerations for the newly proposed load balancing
MILP formulation are identical to those previously discussed. As such, the OR-
CHESTRA framework seems the most appropriate framework to use, due to the
centralized control, monitoring features, and network management functionalities.
The interaction with the framework is summarized below.

Through the framework, we interact with the network and its devices in the
following ways: in a regular interval, all VMACs send monitoring information to
the controller that keeps the most recent information stored. For each flow, the
following information is stored: the number of transmitted and received packets,
the number of transmitted and received bytes, the source, the destination, and the
type. Furthermore, per link, information such as the number of packet errors, the
amount of transmitted and received packets, MAC throughput, link availability,
and the theoretical physical rate is reported. Finally, also information regarding
the wireless technologies is stored, like the RSSI values for all APs that are in
range per station, for a specific technology. The necessary information to calculate
the optimal configuration (e.g., flow rates, flow destinations, and available BSSs
per station) is gathered from the stored monitoring information and passed to the
MILP. In turn, after the MILP has calculated the optimal configuration, we trans-
late this configuration from the MILP variables to specific per-device VMAC rules.
Finally, the controller of ORCHESTRA handles the transmission of the updated
rules to each device and the configuration is thus rolled-out.

The question that remains is when exactly we have to run the load balancing
algorithm. This clearly depends on the dynamic characteristics of the network and
its environment as in a very static scenario it would only be a waste of resources
when the algorithm is running almost continuously. But in contrast, this could be
the right thing to do in a very dynamic scenario. An example of such a highly
dynamic environment could be the VANETs depicted in Figure 1.2. The topology
and devices in such networks are highly volatile depending on the number of cars
passing by while requiring reliable real-time communication. In order to have an
approach that can be utilized across a multitude of scenarios and networks, we
propose to trigger the execution of the algorithm when dynamic changes to the
network are detected in the monitoring information. This could, for instance, be
a variation in one of the flow rates of at least x %, or when flows have joined or
left the network, as discussed in more detail in Section 4.4.1. Note that while this
repetitive execution allows reacting to dynamic behavior such as station mobility
or changed traffic demands, this also requires a near execution time, of at most a
few seconds, of the algorithm. Otherwise, the algorithm can not be used within the
highly dynamic context of wireless networks and does not meet QoS requirements.

108

5.3 Heuristic approaches
Optimally solving the MILP problem formulation scales exponentially in terms of
the number of devices and flows in the network. As such, heuristic solutions are
needed for larger scenarios. To this extent, we propose two heuristic approaches
in this section.

When solving the multi-technology load balancing problem addressed in this
chapter, it is necessary to balance both stations across the available infrastructure
devices (i.e., BSSs) and flows across different paths (i.e., connections and tech-
nologies). Both are clearly linked together as flows can only be scheduled across
established paths or connections between the corresponding station and the infras-
tructure. However, it could be that the capacity of the technologies of the cur-
rent connections is not sufficient to schedule all the flows from a certain station.
This would mean that new connections need to be established to less occupied
infrastructure devices, if possible. The previously introduced MILP formulation
performs the station and flow load balancing jointly while finding the network
configuration with the highest possible overall throughput. In order to reduce the
complexity and computation time, we explore the following approach that consists
of two steps. First, we load balance stations across the available infrastructure de-
vices and resources. Second, we route the flows across the different available
paths, established in the first step. Furthermore, we make use of the same inputs
as the MILP formulation (defined in Section 5.2.1). Note that also the interac-
tion with the underlying network and the deployment considerations remain the
same. We propose two different heuristics that are based on this idea of splitting
the overall problem.

The inputs for the models are nearly identical to those of the previously defined
full problem formulation in Section 5.2.2. In other words, we reuse the network
model defined in Section 5.2.1 and the linear approximation function χb. Addi-
tionally, we define one more input:

• ∀s ∈ S,∀t ∈ Ts,∀b ∈ Bs ∩Bt : ∃qs,b,t; representing the quality of the con-
nection between the station s and the BSS b using technology t. This value
will vary according to the signal strength and distance between the different
devices. In practice, we use the monitored RSSI values for this. Note that
since RSSI values are negative, we take the negative of the recorded RSSI
values when mapping them to qs,b,t.

This additional input is required to help in the station association process, due
to the clear separation in sub-problems and the fact that rates, in particular, the
allowed data rate (denoted by ds,b) for a station, can only be considered in the flow
scheduling step.

5.3.1 Near-optimal two-step linear programming approach
In our first heuristic approach, we propose to sequentially solve the two sub-
problems, as identified above, using linear programming. This algorithm is de-

109

noted as Split-MILP throughout the remainder of the chapter. We construct, re-
spectively, for both sub-problems an MILP model. The inputs for the models are
described above and we start by defining the formulation for the station association
step.

We define the following decision variables:

• γs,t,b ∈ {0, 1}; represents the connection between a station and an infras-
tructure device. The decision variable equals to 1, if a station s ∈ S on
technology t ∈ St is part of the BSS b ∈ Bs ∩ Bt, otherwise it equals 0. In
other words, we assume that per technology a station can only be connected
to a single AP or base station.

• δ ∈ [0, |S|]: represents the relative maximal difference in load across all
BSSs. Note that this value is bounded by the total number of stations present
in the network, representing the extreme case that all stations are connected
to a single BSS.

As an objective function, we define the following:

• min

((∑
s∈S,t∈Ts,b∈Bs∩Bt

(
qs,b,t

max
b′∈Bs

(qs,t,b′)
· γs,t,b

))
+
(
δ
|s|

))
This objective function consists of two parts that, respectively, minimize the

RSSI values (denoted by qs,t,b) for a connection between s and b over technology t
and the load difference across the different BSSs (denoted by δ). The two fractions
in the function are needed for normalizing the respective parts to the interval [0, 1].
In other words, the goal of this model is to assign stations to infrastructure devices
(for every supported technology) that are as close as possible, while spreading to
load as best as possible.

To round up the model for station assignments, we define two constraints. The
first constraint calculates the difference in load (the number of connected stations)
between each unique pair of two BSSs:

• ∀b, b′ ∈ B : |Lb − Lb′ | 6 α with b 6= b′;
where Lb = ∀b ∈ B :

∑
s∈S

∑
t∈Ts

∑
b′∈Bs∩Bt

γs,t,b′ with b = b′

The second constraint makes sure that a station can be connected to only one BSS
per technology:

• ∀s ∈ S,∀t ∈ Ts :
∑
b ∈ Bs ∩Btγs,t,b = 1

Next, we define the model for the flow scheduling program. This is very similar
to the formulations defined in Chapter 4, with the difference that the mobility of
stations is taken into account (through the use of ds,b and bs,b). Note that in this
formulation we use the optimal values calculated for the decision variable γs,t,b,
during the first station association step, as an input.

The following decision variables are defined:

110

• τ inf ∈
[
0, rinf

]
; the total incoming rate assigned to a flow f ∈ F .

• τoutf ∈
[
0, routf

]
; the total outgoing rate assigned to a flow f ∈ F .

• λinf,b ∈ {0, 1}; the path for the incoming traffic of a flow. If the incom-
ing traffic of flow f ∈ F is scheduled over BSS b ∈ Bsf , then λinf,b = 1,
otherwise it equals 0.

• λoutf,b ∈ {0, 1}; the path for the outgoing traffic of a flow. If the outgoing traf-
fic of flow f ∈ F is scheduled over BSS b ∈ Bsf , then λoutf,b = 1, otherwise
it equals 0.

As an objective function, the model maximizes the total rate (bandwidth) of
the traffic, both incoming and outgoing, across all the traffic flows:

• max
∑
f∈F τ

in
f + τoutf

To conclude the model, we define several constraints. The first constraint guar-
antees that the capacity of BSSs and their underlying technologies is not exceeded:

• ∀b ∈ B :
∑
f∈F λ

in
f,b · τ inf + λoutf,b · τoutf 6 χb

Next, we define a constraint that limits the total rate over all traffic flows on a sta-
tion, going over a certain BSS, by the maximal rate supported by the configuration
of that station:

• ∀s ∈ S,∀b ∈ Bs :
∑
f∈Fs

λinf,b · τ inf + λoutf,b · τoutf 6 dsf ,b · bsf ,b

Furthermore, we define two constraints that guarantee the conservation of flows in
the network (i.e., the right endpoints):

• ∀f ∈ F :
∑
b∈Bsf

λinf,b = 1

• ∀f ∈ F :
∑
b∈Bsf

λoutf,b = 1

Finally, we make sure that flows are only scheduled across existing connections,
based on the optimal configuration from the station association:

• ∀s ∈ S, ∀t ∈ Ts,∀b ∈ Bs ∩Bt,∀f ∈ Fs : λinf,b 6 γs,t,b

• ∀s ∈ S,∀t ∈ Ts,∀b ∈ Bs ∩Bt,∀f ∈ Fs : λoutf,b 6 γs,t,b

5.3.2 Greedy heuristic
In contrast to our first heuristic (Split-MILP) that is based on linear programming,
we now present a more conventional greedy approach. The overall idea is to se-
quentially loop over all stations and assign them (per technology) one by one to
the most appropriate infrastructure device. The latter is determined by combining

111

Algorithm 1 First step: Station Association.

1: for s ∈ S do
2: for t ∈ Ts do
3: Let W [1 . . . |b|] be a new array . b ∈ Bs ∩Bt
4: for b ∈ Bs ∩Bt do
5: if max

b′∈B

∑
s′∈S

γs,t,b > 0 then

6: W [b]← rssis,b,t
max
b′∈Bs

rssis,b′,t
+

∑
s′∈S

γs,t,b

max
b′∈B

∑
s′∈S

γs,t,b

7: else
8: W [b]← rssis,b,t

max
b′∈Bs

rssis,b′,t

9: end if
10: end for
11: γs,t,b ← 1, with b ∈ Bs and W [b] = min

b′∈Bs

W [b′]

12: end for
13: end for

the distance and load values. In the second phase, we perform the same identical
procedure for scheduling flows to the connections with the most remaining capac-
ity. Note that all flows are scheduled, even if no unsaturated connections exist
anymore. In such a case, it is up to the underlying transport protocols to adjust the
rates of the different traffic flows.

In the first step, depicted in Algorithm 1, we start by iterating over all stations
in S. This list of stations can be sorted based on a number of criteria. For instance,
according to the arrival of the stations in the network or on the decreasing sum of
rates (across all flows) per station. We have opted for the first more neutral op-
tion, where stations with a large amount of traffic are not favored over others. For
each supported technology per station, we create a map with an assigned score per
available BSS (line 3). This score combines the relative distance from the station
to each infrastructure device with the load on that AP or base station (lines 4-10).
This score allows us to take into account the mobility of stations and the shared
spectrum per infrastructure device. We distinguish two cases. First, the most com-
mon case where already at least one station has been assigned to a BSS, meaning
the max load across all BSSs is larger than zero (line 6). Second, the initial case
where no load was assigned yet (line 8). Here, we only take into account the rela-
tive distance to avoid a division by zero. Next, the station is assigned to the BSS
with the lowest score (line 11).

The second step of the heuristic is shown in Algorithm 2. We first create an
array where we store the remaining capacity (initially the max capacity) per BSS
(line 1 and 2). A second array represents the total assigned rates per BSS (line 3).
We then iterate over all flows inF . Once again these flows can potentially be sorted
based on their rates. However, this could potentially benefit larger flows (also

112

Algorithm 2 Second step: Flow Scheduling.

1: Let C[1 . . . |B|] be a new array
2: C[b]← χb . ∀b ∈ B
3: Let T [1 . . . |B|] be a new array
4: for f ∈ F do
5: λinf,b ← 1 with γsf ,t,b = 1 and C[b] = max

γsf ,t,b′=1
C[b′] .

∀b′ ∈ Bsf ,∀t ∈ T
6: T [b]← T [b] + min

((
dsf ,b · bsf ,b

)
, rinf

)
7: C[b]← max (0, (χb − T [b]))
8: λoutf,b ← 1 with γsf ,t,b = 1 and C[b] = max

γsf ,t,b′=1
C[b′] .

∀b′ ∈ Bsf ,∀t ∈ T
9: T [b]← T [b] + min

((
dsf ,b · bsf ,b

)
, routf

)
10: C[b]← max (0, (χb − T [b]))
11: end for

denoted as elephant flows in some research areas). As such, we use the arbitrarily
order in which flows arrive in the network. For each flow, we first assign a path for
the incoming traffic by selecting the BSS with the most capacity remaining (line 5).
Next, we update the traffic assigned to the selected BSS by adding the minimum
from the allowed rate on the station (depending on the MCS) and the incoming
rate of the flow (line 6). On line 7, we also update the remaining capacity of the
selected BSS by subtracting the assigned rates from the approximation function χb.
By doing so, we account for the loss in maximal capacity of a wireless technology
when more and more devices are added. After the selection of the path for the
incoming traffic, we repeat the same for the outgoing traffic on lines eight to ten.
This procedure is repeated until all flows are scheduled over a certain path.

5.4 Evaluation and discussion

In this section, we evaluate the presented load balancing approach across a vari-
ety of scenarios. We focus on comparing the performance of the complete MILP
algorithm against the two heuristics and demonstrating the scalability and versa-
tility of the proposed load balancing approach. For this, we mainly make use of
simulation results obtained from the NS-3 event-based network simulator, com-
plemented with a direct algorithmic evaluation in Python. The structure of this
section is as follows. First, we discuss the evaluation setup and the topology of the
different scenarios. Note that this setup is similar to the one used for the evaluation
in Chapter 4. Next, we discuss in detail how we selected the values for the differ-
ent parameters. Afterwards, the performance of the approach, in terms of achieved
throughput and execution time, is evaluated across a variety of scenarios.

113

5.4.1 Evaluation setup

Most simulations are conducted using the NS-3.27 network simulator, where we
implemented the entire ORCHESTRA framework, the MILP problem formula-
tion, and the two heuristic approaches [160]. To optimally solve the MILP and the
Split-MILP formulations, we make use of the Gurobi Optimizer (7.5.2) [156]. All
experiments are conducted on a single core of an Intel® Xeon® E5-2680 Proces-
sor running at 2.8 GHz and with 8 GB RAM. Furthermore, we also extended the
basic NS-3.27 implementation to allow for multi-channel Wi-Fi networks. During
all of our experiments, we assume that two Wi-Fi technologies are present using,
respectively, 2.4 GHz and 5 GHz frequency bands. Note that as our load balancing
approach is fully technology independent, it is of less importance which technolo-
gies are selected for the evaluation. Every scenario has at least two APs that sup-
port both technologies. Dynamic rate adaptation for all devices is made possible
through the Minstrel rate adaptation algorithm. Besides the generated traffic flows
themselves, also the management traffic is considered in the simulations. In other
words, the packets that contain monitoring information and configuration instruc-
tions, sent between the devices and the controller or vice versa, are also generated
and transmitted. As such, our results consider the overhead of the management
interactions.

As NS-3 emulates all packets within a network, simulation time grows rapidly
when increasing the network size and traffic amount. In order to allow us to inves-
tigate the scalability of the approach to larger networks and to perform a rapid eval-
uation of algorithm parameters, we created a second experimental setup, outside
of the NS-3 simulator. In Python, we implemented, on a 2016 Intel NUC, both the
MILP and the two heuristic approaches. As before, the Gurobi Optimizer (7.5.2)
is used to solve the MILP and Split-MILP algorithms. Furthermore, we created a
framework that could artificially generate the required inputs for the algorithms.
This allows us to easily test the impact of varying configurations of stations, APs,
and flows, without the need for any network interaction or full network simulation.
This was mainly used to investigate the execution time and scalability of the ap-
proaches, and not for the analysis of optimality or network performance. For each
experiment, we will clearly specify the ranges of values that were evaluated.

For every scenario throughout the evaluation, we provide a comparison to a
fully distributed baseline, where each device decides for itself to which AP to con-
nect, based on the best RSSI values. Furthermore, we assume that when the RSSI
of the current connection drops below a certain threshold, a better connection is
selected (if present) for that device on that specific technology. The selection of the
threshold value will be discussed in the next section. In other words, the baseline
corresponds to the current state-of-the-art, where an arbitrary multi-technology
management solution is in place (either the VMAC from ORCHESTRA or one of
the ones discussed in Section 2.2), without the centralized intelligence, but with
seamless handovers. Furthermore, we also compare against the performance of a
fully randomized algorithm that selects uniformly at random for each station the
corresponding infrastructure device (i.e., BSS) to connect to, and for each incom-

114

Device type Rate boundaries per flow type
(and mobility) Download Video stream Conference call
Laptop (mobile) 10–30 Mbps 8–20 Mbps 4–10 Mbps
HD Television 5–25 Mbps 10–20 Mbps 5–10 Mbps
4K Television 5–25 Mbps 15–25 Mbps 7.5–12.5 Mbps
Tablet (mobile) 1–8 Mbps 2.4–9 Mbps 1.2–4.5 Mbps
Smartphone (mobile) 1–8 Mbps 2.4–9 Mbps 1.2–4.5 Mbps

Table 5.1: Overview of the devices, and the supported flow rates, used in the scenarios.

ing and outgoing flow its path.
In order to generate representative network topologies and conditions, several

types of devices are defined, each with different mobility characteristics and traffic
rates. This information is depicted in Table 5.1. The exact number of devices,
the assigned flow type, and the rate of the flow are chosen uniformly at random
between an upper and lower bound, based on the involved device and depending
on the scenario. Each mobile device (all devices except for the televisions) moves
around according to the Random Waypoint Model within a certain area, with a
random start position and a uniformly random chosen speed between 0.3-0.7 m

s .
The size of the area and the wait times at the waypoints depend on the scenario.
Moreover, in the static scenarios, the flow rates do not change over time, while in
the other scenarios the download flows will consume as much bandwidth as possi-
ble (reflecting their actual behavior) and traffic flows arrive and leave the network
dynamically. Assuming a static flow rate for the first part of the evaluations allows
us to better estimate the impact of only the mobility aspect and to verify the impact
of using monitored flow rates. The size of the download is uniformly at random
chosen between 10 MB and 10 GB. We assign one flow per device and as such do
not assume the concurrent usage of both Wi-Fi interfaces, as this is generally not
supported by current hardware. Note, that the flow rates were selected based on
representative figures from literature of existing applications [161]. We decided to
use only TCP traffic flows, as current Internet traffic is dominated by TCP [87].
Finally, for every described scenario, results are averaged over 20 different ran-
domly generated flow and topology configurations.

5.4.2 Selection of parameters
Both in the algorithms themselves as in the interaction with the network there are
a number of parameters that can potentially have a large impact on the evaluation
results. Below we discuss all parameters one by one and clearly highlight how the
values are selected.

• Weight w for MILP objective function: as the objective function of the
MILP is built out of two sub-functions, respectively, the throughput max-
imization function and the load balancing function, a weight is needed to
combine both goals. Using our Python experimental setup, we optimally

115

solved the MILP for a large number of scenarios, testing out a range of
weights per scenario. We use Gurobi to calculate the optimal configuration
for a specific scenario and weight. As such, we perform a parameter sweep
to determine the best value of w. In order to determine the best value of w,
we calculate for every scenario a score. This score is based on two things.
First the objective score calculated by Gurobi for that specific scenario and
weight. This objective score indicates the amount of achieved network-wide
throughput. Second, we generate a random number (uniformly distributed)
of additional flows with certain rate requirements. We try to arbitrarily as-
sign these flows to the previously calculated configuration. The amount of
capacity requested by the flows that is available in the network (normalized
over the total capacity of the network), is added to the previously calculated
objective score for that specific scenario and weight. In case no capacity is
available for the additional flows, the objective score is not altered. In this
manner, we obtain a score that takes into account the existing throughput
requirements of the network and the robustness towards additional traffic in
the nearby future. Note that the latter is the main reason behind the load
balancing requirement.
Per specific combination of scenario and weight, we repeated this 20 times.
In total we varied the number of stations between 5 and 15, the number of
APs between 2 and 5, and the number of additional flows between 1 and
half of the number of stations selected. While considering weights between
0 and 1 with a step-size of 0.01 between the different considered values.
Finally, we averaged results per weight across all scenarios and normalized
the scores between 0 and 1.
Results are depicted in Figure 5.1. The figure shows for each weight (aver-
aged over the 20 runs), the calculated score, the network-wide throughput
achieved by the MILP algorithm, and the maximal difference in load be-
tween two BSSs (denoted as MILP load difference). From the figure, it is
clear that the best performance was achieved when using a weight of 0.91.
Furthermore, we see that for the value of 0.91, the network-wide through-
put (as calculated by the MILP) is at its highest, while the difference in
load between the different BSSs is not at its lowest, but also not at its high-
est. Intuitively, this clearly shows that the major objective is to maximize
network-wide throughput. However, to account for the dynamic behavior
of traffic, the weight needs to be selected where the difference in load is
minimized as much as possible, without strongly impacting network-wide
throughput. During all the following experiments, the weight of 0.91 will
be used. Note that for visualization reasons, we do not show the weights
below 0.5, as they scored the lowest of all, while also the MILP throughput
is normalized between 0 and 1.

• Parameters α and β for the χb capacity approximation function: here we
applied the method as described in Section 5.2.3. Per technology, we con-
sidered a number of stations between 1 and 15, while varying the flow rates

116

0.5 0.6 0.7 0.8 0.9 1.0
Weight w

0.0

0.2

0.4

0.6

0.8

1.0

Score (normalized)
MILP throughput (normalized)

MILP load difference

Figure 5.1: Normalized score, network-wide throughput (normalized), and maximal load
difference over different scenarios for different values of the weight in the MILP
objective function.

between the theoretical data rate of the particular technology and 1 Mbps.
We determined the following parameters: for the function χb, α and β are
respectively, for 2.4 GHz Wi-Fi -1.74 and 57.58, and for 5 GHz Wi-Fi -3.21
and 112.99.

• Algorithm execution parameters: the execution of the algorithm (either the
MILP or one of heuristics) is triggered by the real-time monitoring com-
ponent when dynamic changes to the network have been detected (e.g., a
variation in one of the flow rates of at least 25 %, or the arrival of a new
flow) or when it has been 10 s since the last execution. The latter ensures
that the network configuration is optimized on a regular base, even in very
static environments. The value of the parameter can be chosen based on the
applicable environment. The first value (of 25 %) was chosen based on a
similar experiment as conducted for the weight of the objective function. In
our NS-3 implementation, we tried out different values and selected the one
with the highest impact. Furthermore, to avoid oscillations in the decision-
making and allow changes to occur in the network, there should be at least
2 s between two consecutive executions. The other two values were selected
based on expert knowledge.

• MILP time limit: to ensure the continuation of experiments and thus ending
simulations in a feasible amount of time, a time limit is set for solving the

117

Number of devices
Device type Home Small Large Flow types

office office
(20x10 m) (25x10 m) (30x15 m)

APs 2 3 4 N/A
Laptop 2 9 12 Download/Conf. call
HD TV 0 1 1 Video stream
4k TV 1 0 1 Video stream
Tablet 2 1 2 All types of flows
Smartphone 3 5 8 All types of flows
Total 10 19 28

Table 5.2: Setup for static scenarios.

MILP. Here, a value of 900 s was chosen. Note that this value was chosen a
magnitude larger than the amount of time maximally available between two
executions and required for reactive real-time optimizations. This allows us
to sufficiently investigate the scalability of the MILP in terms of execution
time and show that it is not feasible to solve the MILP in real-time.

• Baseline RSSI threshold: as mentioned in the previous section, a threshold
is used to determine when a device needs to handover to a better connection
(if existing). We chose a threshold of -75 for this, as this value is considered
to still correspond to an average connection quality. Note that during some
of the following experiments, we also tried out other threshold values (e.g.,
-65, -70, and -80), but this only led to limited differences.

5.4.3 Static flow rate scenarios
In order to get a first impression of the performance of the different approaches,
we created three basic scenarios with varying topologies. As depicted in Table 5.2,
these scenarios grow in size and density. The results for all three scenarios are
shown in, respectively, Figures 5.2, 5.3, and 5.4. The graphs compare the base-
line, random algorithm, MILP formulation, and the two heuristics (respectively,
denoted as split-MILP and greedy heuristic) to the sum of the desired flow rates.
The latter is known as fixed flow rates are used here. Across all graphs, we clearly
see a significant improvement by our presented algorithms in comparison to the
distributed baseline and to the random algorithm. Moreover, we see nearly no dif-
ferences, in terms of achieved network-wide throughput, between the heuristics
and the optimal MILP approach.

For the home scenario, we can report the following rates (± the standard er-
ror), respectively, for the baseline, random algorithm, MILP, split-MILP, and the
greedy heuristic: 81.61 Mbps (±2.62), 87.34 Mbps (±2.24), 90.32 Mbps (±2.34),
90.15 Mbps (±2.31), and 89.96 Mbps (±2.38). As such, there is an improvement
of, respectively, 10.67, 10.40 and 10.16 % compared to the baseline for the optimal

118

0 10 20 30 40 50 60
Time (s)

40

50

60

70

80

90

100
T

hr
ou

gh
pu

t(
M

bp
s)

Baseline
Random
MILP

Split-MILP
Greedy Heuristic
Desired

Figure 5.2: Throughput as a function of time for the home scenario, comparing the MILP
formulation, the two heuristics, the random algorithm, and the baseline.

and heuristic solutions. Similarly, there is an increase of, respectively, 3.41, 3.22,
and 2.86 % towards the random algorithm. Note that the random algorithm per-
forms better than the baseline due to the fact that by selecting connections and flow
routes at random, a simple form of load balancing is performed (on average). Fur-
thermore, the differences of 0.17 Mbps between the MILP and the split-MILP and
of 0.36 Mbps between the MILP and the greedy heuristic, are negligible. As the to-
tal desired rate is 90.40 Mbps (±2.35), it is clear that our approach succeeds in pro-
viding the optimal network configuration. Similarly for the small office scenario,
the following average network-wide rates are achieved: 131.46 Mbps (±3.73),
179.85 Mbps (±3.52), 193.90 Mbps (±3.76), 190.40 Mbps (±3.31), 192.63 Mbps
(±3.14), for respectively, the baseline, random algorithm, MILP, split-MILP, and
greedy heuristic. The increases towards the baseline are larger than for the home
scenario: 47.50, 44.83, and 46.53 %, while also the increase towards the ran-
dom algorithm is larger (respectively, 7.81, 5.87, and 7.11 %). The difference
between the two heuristics and the optimal MILP solution are, respectively, 3.50
and 1.27 Mbps, which is once again negligible. The same can be said for meet-
ing the requirements of the flows as the total desired rate is 195.21 Mbps (±3.46).
For the large office scenario, the largest network considered, it was impossible
to calculate solutions for the MILP within the time limit of 900 s. For, respec-
tively, the baseline, random algorithm, and the two heuristics the following rates
are achieved: 179.71 Mbps (±3.61), 239.41 Mbps (±3.41), 270.25 Mbps (±3.36),
and 283.60 Mbps (±3.31). This means that there is an increase 90.54 Mbps or

119

0 10 20 30 40 50 60
Time (s)

75

100

125

150

175

200
T

hr
ou

gh
pu

t(
M

bp
s)

Baseline
Random
MILP

Split-MILP
Greedy Heuristic
Desired

Figure 5.3: Throughput as a function of time for the small office scenario, comparing the
MILP formulation, the two heuristics, the random algorithm, and the baseline.

50.38 % for the split-MILP in comparison the to the baseline. For the greedy
heuristic this increase is 103.89 Mbps or 57.81 %. Compared to the random algo-
rithm, there is an increase of 12.88 % for the split-MILP and of 18.46 % for the
greedy approach. If we compare the throughput of the heuristics to the overall de-
sired rate, we see that the split-MILP is 28.76 Mbps off, while the greedy heuristic
is 15.41 Mbps off. This difference towards the desired rate is a bit higher than in
the other two cases. The reason for this is that the limits of the wireless technolo-
gies are being reached. This is also the reason for the fluctuations that can be seen
in the throughput of the heuristic in Figure 5.4.

While it is clear from the above discussion that both heuristics offer a perfor-
mance that is relatively close to the optimal MILP solution (in terms of through-
put), a significant difference can be noticed when comparing the two heuristics
against each other. This is especially the case for the two largest scenarios. For
the home scenario, the greedy heuristic is barely outperformed by the split-MILP.
However, in the case of the small office scenario the split-MILP achieves only
an average throughput of 190.40 Mbps (±3.31), in contrast to the 192.63 Mbps
(±3.14) that is achieved by the greedy heuristic. This difference grows in the large
office scenario to, respectively, 270.25 Mbps (±3.36), and 283.60 Mbps (±3.31).
This is unexpected as both heuristics exploit the same principle, while the split-
MILP solves the sub-problems optimally. However, upon investigating we noticed
that the underperformance of the split-MILP is caused by the fact that the real flow
rates are unknown and the real-time monitoring information is used. If we would

120

0 10 20 30 40 50 60
Time (s)

100

150

200

250

300
T

hr
ou

gh
pu

t(
M

bp
s)

Baseline
Random
Split-MILP

Greedy Heuristic
Desired

Figure 5.4: Throughput as a function of time for the large office scenario, comparing the
two heuristics, the random algorithm, and the baseline.

use the desired flow rates: the following results would be achieved for, respec-
tively, the small and large office scenario: 193.12 Mbps (±3.92), and 287.41 Mbps
(±3.61). These results are slightly above the ones achieved by the greedy heuris-
tic, as expected. Note that the other algorithms, both the optimal MILP and the
greedy heuristic, do not experience this issue when using the real-time rates of the
traffic flows and the improvement of using the desired flow rates is comparable to
the results reported in Section 4.5.3. For instance, for the greedy algorithm in the
small office scenario, a throughput of 192.81 Mbps (±3.35) is achieved when us-
ing the desired flow rates. This is in contrast to the 192.63 Mbps (±3.14), reported
earlier when using the real-time monitoring information.

As already mentioned, it proved to be infeasible to optimally solve the MILP
for the large office scenario. While it was possible to find a solution for the first
two scenarios, the execution time was high: respectively, 16.38 s (±4.28) and
736.58 s (±39.71). Note that these execution times are significantly above the
minimal interval (of 2 s) between two consecutive runs of the algorithm. Luckily,
the two heuristics perform significantly better in terms of execution time. For the
split-MILP, we report the following execution times, respectively, for the three
scenarios: 1.12 × 10−2 s (±8.48 × 10−3), 4.29 × 10−2 s (±2.44 × 10−2), and
8.86 × 10−2 s (±3.24 × 10−2). For the greedy heuristic, the following solve
times apply: 8.23 × 10−5 s (±3.92 × 10−5), 1.93 × 10−4s (±1.24 × 10−5), and
5.23 × 10−4s (±2.58 × 10−5). When comparing the execution times for both
heuristics, we notice that the times of the greedy heuristic are a magnitude lower

121

than those of the split-MILP. We will discuss the scalability of both the MILP and
the two heuristic approaches in more detail in the next section but the trends are
already clearly illustrated.

Finally, we consider the impact of mobility on the overall throughput. There-
fore, we varied the waypoint wait times for all scenarios by additional experiments
for times between 0-10 s and 10-20 s. The results, listed in Table 5.3, show that the
algorithms consistently and significantly outperform the baseline and the random
algorithm. Note that for the case with the highest mobility (and lowest wait times),
the baseline performs significantly better, than in the other cases. We believe this
to be due to the higher number of handovers, triggered by the mobility and its more
reactive nature. Furthermore, the split-MILP heuristic continues to underperform
for larger scenarios, when using the real-time monitoring, in comparison to the
greedy heuristic.

5.4.4 Impact of network load and scalability
To investigate the scalability of the different algorithms in terms of traffic and
execution time, the following scenario was created: a set of devices was randomly
generated, each with a uniform randomly assigned flow with a randomly chosen
type and rate. The total desired rate of all the generated flows equals a certain
percentage of the total theoretical network capacity. Experiments were performed
for loads of 10, 20, 30, 40, 50, 60, and 70 % of the theoretical network capacity.
Moreover, the presence of 3 APs was assumed in a space of 20 by 15 m with a
waypoint wait time of 5-15 s.

From Figure 5.5 it is clear that our heuristic approaches offer a significant
improvement compared to the baseline. This improvement grows when the per-
centage of network traffic increases. Furthermore, the figure also shows the in-
creasing difference in performance between the two heuristics for the larger sce-
narios. For instance, for a load of 60 % there is an increase from 135.57 Mbps
(±2.50) for the baseline and 226.45 Mbps(±1.79) for the random approach, to
252.76 Mbps (±3.68) and 267.60 Mbps (±3.04) for, respectively, the split-MILP
and the greedy heuristic. This is an increase of, respectively, 86.44 % and 97.39 %,
towards the baseline. Compared to the random algorithm, this is an increase of,
respectively, 11.62 % and 18.17 %. As mentioned in the previous section, the per-
formance of the split-MILP drops upon increasing the size of the scenarios due
to the higher susceptibility towards the usage of real-time monitoring information
(i.e., flow rates). If the known rates are used, a throughput of 269.03 Mbps (±2.89)
is achieved by the split-MILP for a network load of 60 %

More importantly, we see that the proposed algorithms (in particular the greedy
heuristic) allow, in general, to satisfy the traffic demands of all flows. Only at 60 %
and 70 %, there is a difference of, respectively, 35.58 Mbps and 61.35 Mbps be-
tween the desired rates and the achieved throughput. However, this is largely due
to reaching the limits of the wireless technologies as our network loads are based
on the theoretical capacities, which can not be met in reality due to capacity loss
at the higher layers (e.g., back-off timers, retransmissions, etc). Furthermore, we

122

Sc
en

ar
io

W
ai

t
tim

es
B

as
el

in
e

R
an

do
m

M
IL

P
Sp

lit
-M

IL
P

G
re

ed
y

H
eu

ri
st

ic

H
om

e

0-
10

s
83

.1
6

M
bp

s
(±

3.
31

)
86

.9
4

M
bp

s
(±

2.
2
0)

89
.8

1
M

bp
s

(±
2
.3
5

)
89

.7
6

M
bp

s
(±

2.
1
5

)
89

.7
4

M
bp

s
(±

2.
3
1)

5-
15

s
81

.6
1

M
bp

s
(±

2.
62

)
87

.3
4

M
bp

s
(±

2.
2
4)

90
.3

2
M

bp
s

(±
2
.3
4

)
90

.1
5

M
bp

s
(±

2.
3
1

)
89

.9
6

M
bp

s
(±

2.
3
7)

10
-2

0
s

80
.3

2
M

bp
s

(±
2.
88

)
87

.8
5

M
bp

s
(±

2.
3
0)

90
.2

4
M

bp
s

(±
2
.2
9

)
89

.5
8

M
bp

s
(±

2.
3
0

)
89

.3
5

M
bp

s
(±

2.
2
5)

Sm
al

lO
ffi

ce

0-
10

s
15

7.
19

M
bp

s
(±

4.
70

)
17

8.
06

M
bp

s
(±

3.
6
5)

19
3.

23
M

bp
s

(±
3
.5
7

)
18

9.
64

M
bp

s
(±

3.
2
3

)
19

1.
03

M
bp

s
(±

3.
8
0)

5-
15

s
13

1.
46

M
bp

s
(±

3.
73

)
17

9.
85

M
bp

s
(±

3.
5
2)

19
3.

90
M

bp
s

(±
3
.7
6

)
19

0.
40

M
bp

s
(±

3.
3
1

)
19

2.
63

M
bp

s
(±

3.
1
4)

10
-2

0
s

13
5.

46
M

bp
s

(±
3.
98

)
17

9.
89

M
bp

s
(±

3.
9
5)

19
4.

58
M

bp
s

(±
3
.7
6

)
19

1.
56

M
bp

s
(±

3.
2
7

)
19

3.
16

M
bp

s
(±

3.
1
9)

L
ar

ge
O

ffi
ce

0-
10

s
22

9.
47

M
bp

s
(±

6.
22

)
23

8.
78

M
bp

s
(±

3.
6
7)

N
/A

26
9.

17
M

bp
s

(±
3.
4
8

)
28

2.
91

M
bp

s
(±

3.
6
2)

5-
15

s
17

9.
71

M
bp

s
(±

3.
61

)
23

9.
41

M
bp

s
(±

3.
4
1)

N
/A

27
0.

25
M

bp
s

(±
3.
3
6

)
28

3.
60

M
bp

s
(±

3.
6
1)

10
-2

0
s

17
8.

73
M

bp
s

(±
5.
06

)
23

9.
27

M
bp

s
(±

3.
9
3)

N
/A

27
4.

82
M

bp
s

(±
3.
1
3

)
28

6.
56

M
bp

s
(±

3.
3
0)

Table 5.3: Impact of mobility on throughput.

123

10 20 30 40 50 60 70
Network load (%)

50

100

150

200

250

300

350

T
hr

ou
gh

pu
t(

M
bp

s)

Baseline
Random
MILP
Split-MILP
Greedy Heuristic
Desired

Figure 5.5: Throughput as a function of network load, error bars depict the standard error.

can also point out that there is nearly no difference between the optimal (MILP)
solution and the heuristic approaches, in terms of achieved network-wide through-
put. For instance, at a load of 30 % there is only a difference of 0.37 Mbps and
0.71 Mbps between the results of the optimal solutions and, respectively, the split-
MILP and greedy heuristic. Note that there are no throughput results depicted for
the MILP formulation for the network loads of 40 % and more due to the high
computation time. This is similar to the large office scenario in the previous sec-
tion.

We measured for all three algorithms the time that it takes to calculate a so-
lution. Table 5.4 shows the averages of the measured values across the different
network loads. It is clear that the computation time for the MILP scales exponen-
tially. For instance, for only 14 flows (i.e., load of 30 %) it takes already 478.36 s
(±36.39) to compute the configuration. For higher loads, it was infeasible to cal-
culate a solution within the time limit of 900 s. This clearly indicates that the MILP
solution cannot be used in very dynamic real-life wireless networks. In contrast,
the computation times reported when using the heuristics are drastically lower. For
instance, for the same scenario with a network load of 30 % and 14 flows, it takes
only 3.39× 10−2 s (±1.07× 10−2) and 1.85× 10−4 s for, respectively, the split-
MILP and greedy heuristics to find a solution. Moreover, for the scenarios with
higher amounts of network load, it remains feasible for both heuristics to provide
a solution in a real-time fashion. However, when comparing the two heuristics
throughout the different scenarios, we note that the difference in execution time

124

Network
Load

Flows Execution
time MILP

Execution time
split-MILP

Execution time
greedy heuristic

10 6 8.17 s (±
1.08)

8.35 × 10−3 s
(±2.22× 10−3)

4.17 × 10−5 s
(±1.62× 10−5)

20 10 29.75 s (±
6.84)

1.65 × 10−2 s
(±8.15× 10−3)

1.25 × 10−4 s
(±7.21× 10−5)

30 14 478.36 s (±
36.39)

3.39 × 10−2 s
(±1.07× 10−2)

1.85 × 10−4 s
(±8.81× 10−5)

40 19 N/A 5.14 × 10−2 s
(±2.32× 10−2)

2.16 × 10−4 s
(±1.81× 10−4)

50 24 N/A 8.92 × 10−2 s
(±3.30× 10−2)

3.29 × 10−4 s
(±2.06× 10−4)

60 29 N/A 1.19 × 10−1 s
(±5.59× 10−2)

4.90 × 10−4 s
(±2.26× 10−4)

70 34 N/A 1.46 × 10−1 s
(±7.13× 10−2)

5.11 × 10−4 s
(±2.22× 10−4)

Table 5.4: Comparison of the execution time for the MILP and heuristic solutions, under
increasing network load.

grows. For instance, for the case with a network load of 70 % and 34 flows, it
already takes the split-MILP 1.46 × 10−1 s (±7.13 × 10−2) to provide a solu-
tion, while the greedy heuristic does provide a (better) solution in 5.11 × 10−4 s
(±2.22× 10−4).

To further investigate the scalability of the heuristic approaches, we performed
a separate experiment emulating larger networks. For this, we employed the Python-
based setup, as discussed in Section 5.4.1. We artificially provide the necessary in-
puts to the heuristic, thereby varying the number of stations and APs, while assum-
ing the presence of 4 technologies. Depending on the heuristic, different ranges
of values are used. For the split-MILP, we vary the number of stations between
10 and 300, and the number of APs between 2 and 50. On the other hand, for the
greedy heuristic, we vary the number of stations between 100 and 10000 and the
number of APs between 10 and 1000. For each pair of the number of stations and
APs, we take the average of 20 executions, each with a randomly generated topol-
ogy. Figures 5.6 and 5.7 show the resulting heatmaps, where every colored cell
indicates the average time to solve the respective heuristic for a specific pair. First
of all, we can see that the execution time for both algorithms mainly depends on
the number of stations (and thus flows), and less on the number of APs (and their
BSSs). Furthermore, we can clearly see that the greedy heuristic scales to larger
topologies than the split-MILP approach. While the execution time increases when

125

2 5 10 15 20 30 40 50

APs

10

25

50

75

100

150

200

300

St
at

io
ns

0s

0.5s

1s

1.5s

2s

2.5s

3s

Figure 5.6: Scalability of the split-MILP heuristic in terms of stations and APs.

the number of stations grows up to 10000, it stays under 3 s for all configurations
when using the greedy heuristic. In particular, it takes on average 2.95 s (± 0.07)
to calculate a solution for the largest configuration. In contrast, the execution time
of the split-MILP scales already up to roughly 3 s for a topology with 300 stations.
As such, this means that the greedy heuristic algorithm allows the best to react
to dynamic network changes and allows us to perform optimizations in real-time,
even for very large networks.

5.4.5 Dynamic flow rate scenarios
Up to now, we have only considered scenarios with static flow rates and arrival
times, as this helped in determining the impact of mobility and the use of real-time
monitoring. We will now consider a more dynamic scenario, as this is more real-
istic and the adaptability to dynamic conditions is also key for our approach. All
download flows thus act as in reality and consume as much bandwidth as possi-
ble until the desired amount of data has been downloaded (or the maximum flow
length has been reached). Moreover, flows arrive according to a Poisson distribu-
tion and the flow length is uniformly at randomly chosen between 5 and 15 s and
10 and 30 s, respectively for the first and second scenario. We evaluate the impact
of different values for the Poisson arrival rate (λ). Furthermore, given the results
from the previous sections that showed that the greedy heuristic is the best per-
forming heuristic (in terms of achieved network-wide throughput and execution
time), we only evaluate this particular algorithm.

126

10 50 100 200 400 600 800 1000

APs

100

500

1000

2000

4000

6000

8000

10000

St
at

io
ns

0s

0.5s

1s

1.5s

2s

2.5s

3s

Figure 5.7: Scalability of the greedy heuristic in terms of stations and APs.

0.1 0.15 0.2 0.25 0.3
Poisson arrival rate

100

150

200

250

300

350

T
hr

ou
gh

pu
t(

M
bp

s)

Baseline
Random
Greedy Heuristic

Figure 5.8: Throughput as a function of poisson parameters, error bars depict the standard
error, for short flow lengths between 5 and 15 s.

127

0.1 0.15 0.2 0.25 0.3
Poisson arrival rate

100

150

200

250

300

350

T
hr

ou
gh

pu
t(

M
bp

s)

Baseline
Random
Greedy Heuristic

Figure 5.9: Throughput as a function of poisson parameters, error bars depict the standard
error, for long flow length between 10 and 30 s.

Figures 5.8 and 5.9 show that for all different arrival rates, the greedy heuristic
approach significantly outperforms the distributed baseline and the random ap-
proach, across both scenarios. For the first scenario we see that for 0.1 as Pois-
son interval, the baseline random algorithm, respectively, achieve a throughput
of 100.60 Mbps (±9.23) and 156.65 Mbps (±9.91), while the greedy heuristic
allows for a network-wide throughput of 197.87 Mbps (±21.48). When using
a parameter value of 0.25, throughputs of 151.07 Mbps (±2.94), 246.18 Mbps
(±12.73), and 328.77 Mbps (±9.35) are achieved, respectively for the baseline,
random algorithm, and heuristic approach. Equivalently, for the second scenario
we see that for 0.1 as parameter value, the baseline achieves a throughput of
104.43 Mbps (±9.23), the random algorithm attains 152.61 Mbps (±17.13), while
with the heuristic 183.58 Mbps (±19.94) is achieved. For 0.25 as parameter value,
the baseline and random approach achieve, respectively, a throughput of 152.30 Mbps
(±2.86) and 241.87 Mbps (±13.51). In contrast, the algorithm allows for a through-
put of 351.02 Mbps (±9.58). This is a gain of, respectively, 130.48 % and 45.13 %.
Similarly to the experiments with varying network loads, the throughput of the
baseline and heuristic does not further grow for the last parameter value (of 0.3),
as the total network capacity has been reached. Finally, note that we have also re-
peated this experiment for other ranges of flow lengths, but the results were nearly
identical and are therefore omitted.

128

5.5 Conclusion
We have addressed in this chapter the combined problem of load balancing mobile
connected devices across different connection points and scheduling flows across
different technologies. To this extent, we have presented three algorithms. First,
an optimal MILP formulation was proposed. Afterwards, a near-optimal heuris-
tic that sequentially solves two mathematical formulations and a greedy heuristic
were presented. We compare the performance of the three approaches using NS-
3 simulations in a variety of scenarios. We showed that the greedy heuristic has
the best scalability, up to networks with 10000 devices, while an improvement
of potentially more than 100 % is possible, towards the fully distributed baseline,
depending on the scenario.

6
Recognition of traffic patterns in the

wireless spectrum

“If the road is easy, you’re likely going the wrong way.”

–Terry Goodkind (The Sword of Truth Series: Soul of the Fire, 1999)

The contributions presented in this chapter are based on the publication titled
”Detection of traffic patterns in the radio spectrum for cognitive wireless network
management”.

6.1 Introduction
In the previous chapters, we have shown how different, mostly wireless, networks
can be managed in a more dynamic and intelligent manner to increase user experi-
ence and network performance. This intelligence is based on real-time monitoring
information, provided by underlying management solutions such as ORCHES-
TRA (cf. Chapter 3). However, we focused on manageable networks and did not
yet look at coping with other coexisting, uncontrollable, networks or technologies.
The later becomes grows more important as the wireless spectrum is becoming
(over)crowded, especially in the unlicensed frequency bands, due to the continuous
development and deployment of new communication technologies and increasing
amounts of traffic. These different wireless technologies coexist next to each other
at identical or overlapping physical locations, often competing for the same finite
and limited radio spectrum resources such as bandwidth and air-time. This situ-
ation combined with the increasing traffic demands can often lead to significant

130

QoS degradations and performance loss [19]. This is, among others, the case for
LTE-U and Wi-Fi in the 5 GHz frequency, as well as Wi-Fi, ZigBee, and Blue-
tooth in the 2.4 GHz band. In order to address this problem, it is clear that there is
a need for intelligent and more efficient use of spectral resources [10,36]. Further-
more, in order to provide the management solutions and optimization algorithms
with the necessary information about the state of the spectrum, in order to cope
with neighboring networks and technologies, fine-grained monitoring systems are
required.

The principle of Cognitive Radio (CR) has been introduced to allow the coex-
istence of different technologies and networks in the same spectrum bands [36].
One of the most known methods to increase spectral efficiency, within the domain
of CR, is Dynamic Spectrum Access (DSA) [36]. In order to perform DSA, the
sensing capability of the CR system is fundamental as it allows to identify if an
(un)known technology is accessing the spectrum at the same frequency and time.
As such, appropriate measures can be taken to combat performance degradation
due to interference or collisions. However, detecting a given technology is often
not enough to increase spectrum efficiency, as no information is provided about the
exact spectrum usage within the transmitted signal of the technology in question.

One way to solve this problem is by augmenting the identification of technolo-
gies with information about the network’s traffic patterns. However, traffic identifi-
cation is traditionally performed by using intrusive methods based on Deep Packet
Inspection (DPI) and (IP) packet traces [116, 117]. These methods are typically
available when the listening or monitoring device is part of the network. In con-
trast, we believe that a better approach is to learn the traffic behavior of the other
networks directly by observing the spectrum and then offload own traffic during
the interference-free parts of the spectrum, given the learned pattern. This allows
to significantly increase spectrum efficiency, especially in places with a dense and
overlapping presence of wireless networks. To this extent, we explore the option
of performing traffic recognition directly using spectral data. To the best of our
knowledge, this is a novel research direction that has not been studied before.

In particular, we present a Deep Learning (DL)-based approach to recognize
different traffic patterns. A Convolutional Neural Network (CNN) architecture is
designed that forms the base of three different prediction models that can differen-
tiate TCP and UDP traffic, recognize constant and burst traffic with different duty
cycles, and identify different transmission rates. This strongly contrasts the afore-
mentioned more intrusive methods, as the listening device does not need to be part
of the network and modern privacy requirements are respected. Furthermore, as
mentioned in Section 2.4.1, existing ML-based approaches for traffic recognition
typically operate on packet traces obtained from wired networks. Since existing
CR approaches focus on the recognition of different technology or modulation
schemes, we present the first approach to detect traffic information on spectral
data. Additionally, we combine two state-of-the-art simulators, namely the NS-3
network simulator and the Matlab toolbox, in a domain randomization approach.
This allows generating, relatively easy, large amounts of synthetic data that can be
used to train more robust models, capable of coping with the uniqueness of differ-

131

ent wireless environments. The performance of these synthetically trained models
is evaluated in a real network environment.

The remainder of this chapter is structured as follows. First, we introduce the
problem and construct the different traffic recognition models in Section 6.2. Next,
we present our data collection framework in Section 6.3. Finally, we present an
evaluation of the different traffic models in Section 6.4.

6.2 Traffic recognition models
In this section, we start with the introduction of a formal problem definition of
recognizing traffic patterns at a spectral level. Afterwards, we discuss how the
spectrum data is used and define the necessary labels. We round up this section by
presenting the shared CNN architecture and the three different prediction models.

6.2.1 Problem definition
Our goal is to explore if it is possible to detect traffic patterns directly in the wire-
less spectrum. We propose to use a Supervised Learning (SL) approach to see if
patterns can be detected at all. The following problem formulation is defined:

Let X =
{
x1, x2, . . . , xN

}
and Y =

{
y1, y2, . . . , yN

}
be the sets of N ex-

amples and their corresponding labels, respectively, where xi ∈ X and yi ∈ Y
for all i ∈ [N] :=

{
1, 2, . . . , N

}
. In SL, the goal is to learn a mapping from X

to Y given a training set of pairs
(
xi, yi

)
, where yi is the label of the ith example

xi. In other words, given the sets X and Y , SL tries to find a function f such that
y = f(x).

Within the scope of performing traffic recognition using spectrum data, the
problem is to find a function f that given a representation of the spectrum xi ∈ X
(e.g., raw IQ samples or Short Time Fourier Transform (STFT) of the IQ samples),
is able to predict yi ∈ Y . In this case, Y is a set of labels that represent the proper-
ties of the transmitted traffic that we are trying to identify. These traffic properties
can, among others, be the employed transport protocol, transmission rate, or the
traffic pattern of the application (e.g., burst or constant). In the next sections, we
propose to use DL architectures to solve the above-described problem. In partic-
ular, we employ CNN models to build the function f through a combination of
many less complex functions that are connected hierarchically [164].

6.2.2 Input spectrum representation and traffic labels
Before designing and implementing a CNN for traffic recognition tasks using spec-
trum data, we need to define the type of input data that represents the radio spec-
trum. A popular method within the area of CR is the use of IQ samples. IQ refers
to two sinusoids in which a radio signal can be decomposed. Those two sinusoids
have the same frequency and are 90° out of phase (hence in quadrature). By con-
vention, the I signal is a cosine waveform, and the Q signal is a sine waveform. For

132

completeness, the mathematical formulation for this can be seen in the following
equation:

s(t) = i(t) + q(t) = I(t) cos(2πfct) +Q(t) sin(2πfct)

With s(t) the original transmitted signal, i(t) the in-phase component, q(t) the
quadrature component, and fc the center frequency of the carrier. This approach is
widely used due to its relatively simple mathematical operations and its flexibility
to generate any modulation scheme by combining the appropriate I(t) and Q(t)
values. Note that IQ signals are always modulated based on the amplitude.

Typical CR tasks that make use of IQ samples are technology and modulation
identification, as highlighted in Section 2.4.2. These tasks discriminate between
different classes (e.g., different technologies) using features that are visible in short
periods (at most hundred of microseconds) [132,133]. For instance, let us consider
the task of modulation recognition, as presented by O’Shea et al. [132]. As input,
128 IQ samples are used that represent 128 us of the signal at a sampling rate of
1 million samples/s. However, in contrast to these related tasks, traffic recognition
is based on traffic features that are only visible in longer periods of time (at least in
a magnitude of hundreds of milliseconds). If we would consider the same sampling
rate as in the aforementioned example, representing 0.5 s of spectrum data for traf-
fic recognition would require 0.5 million of IQ samples. However, implementing
ML models that utilize this input size is impossible, due to the enormous amounts
of memory, computational resources, and storage required in order to train and run
such models.

With the need of having a broader view of the spectrum in time, while keeping
the input data as small as possible, it is clear that directly using IQ samples is not
an option. To this extent, we propose the following data transformation: given a
time window w (in seconds) and raw spectrum data as input (i.e., IQ samples), the
amount of data collected during the interval w is plotted and saved as an image (in
compressed format). In this work, we use a window sizew = 0.5 s (experimentally
determined), while the generated images are RGB (normalized between 0 and 1)
with a size ([height,width]) of [656,874] pixels. Each pixel represents an averaged
value of the transmission power observed at that particular moment. Furthermore,
images are saved in the Portable Network Graphics (PNG) format. As a result of
this data transformation, the size of the images, generated during this research,
varied in a range between 3.3 KB and 114 KB. In general terms, the required stor-
age for the image dataset is less than 1 % of the dataset based on raw IQ samples.
In Section 6.4, we provide more details on the resulting datasets. Intuitively, the
idea of converting IQ samples to images as input for DL models make sense, due
to the high success of applying DL techniques on pixel inputs [165–167].

Finally, in order to generate labels for the input dataset, we focus on the recog-
nition of three different properties of the generated traffic: the transport protocol
(TCP versus UDP), the traffic pattern (constant versus 3 types of burst traffic with
a duty cycle of, respectively, 25, 50, or 75 %), and the rate at which the traffic was
transmitted (100 Kbps, 1 Mbps, 10 Mbps, or 50 Mbps). Each generated image is

133

associated with a label for each of the three properties. More details on the process
and framework to generate the data are presented in Section 6.3.

6.2.3 Convolutional Neural Network for traffic recognition
In order to exploit the new representation of the input data as images, we design
and implement six different DL models based on a CNN architecture. CNN archi-
tectures are specifically designed for, and have proven their worth in, many com-
puter vision applications [168]. Moreover, they have become the de facto standard
in the area of computer vision [169]. Under this assumption, the forward function
(i.e., moving the data from the input to the output side through the neural network)
is more efficient and its computational complexity for learning is lower than tra-
ditional Deep Neural Networks (DNNs) based on fully-connected layers. This is
because a CNN connects the neurons of a given layer, called a convolutional (or
conv) layer, with only a few neurons of the next layer, reducing the number of
parameters that need to be trained. Furthermore, these kinds of DNNs have been
shown, as indicated in Section 2.4.2, to perform well in other related tasks such
as modulation recognition. These models work either directly with raw spectrum
data as input (e.g., IQ or Fast Fourier transform (FFT) samples) or with image
representations of that raw spectrum data [130, 132].

We design a baseline architecture that is shared by all the models. In total,
there are 6 models. For each classification task (three in total) there is a model for
both time domain data and time-frequency domain data. Overall, the architecture
consists of 5 different sequential blocks of layers, as can be seen in Figure 6.1.
The first three blocks, each consisting of 5 different layers, are used to detect fea-
tures. These blocks are built up by the following components: first, a convolution
layer that contains a number of feature maps (also known as kernels or filters).
These kernels are weighted matrices that are trained to detect and highlight certain
features (i.e., object shapes) in the data. The number of kernels increases through-
out the convolution layers of the three blocks, in order to step-by-step learn more
detailed features. Next, is a Rectified Linear Unit (ReLU) activation function, fol-
lowed by batch normalization and a Maxpooling function. ReLU is these days
the most common activation function, as it converges fast, is cheap to compute (in
terms of computational resources), and does not suffer from the vanishing gradient
problem in deep neural networks [170, 171]. The pooling layer downsamples the
given input, in order to further reduce the number of parameters, while also select-
ing the most relevant (hence the Maxpooling) inputs for the next block [172]. The
fifth dropout layer is employed to increase generalization, as it randomly disables
some of the neurons depending on the dropout rate (as shown in Table 6.2). This
forces each of the remaining neurons to learn different features, increasing over-
all robustness. Each of the three blocks of layers is capable of detecting features
at a certain level. Stacking multiple of such blocks (i.e., convolutional layers)
allows for more complex features to be detected [172]. Note that, by stacking
different layers, the chance of overfitting increases, as well as the amount of com-
putational power and time required to train the models. The chance of overfitting

134

Input: Image [192, 256, 3]

Conv 1

ReLU 1

Batch Norm 1

Maxpooling 1

Dropout 1

Conv 2

ReLU 2

Batch Norm 2

Maxpooling 2

Dropout 2

Conv 3

ReLU 3

Batch Norm 3

Maxpooling 3

Dropout 3

Dense 1

ReLU 4

Batch Norm 4

 Dense 2

Soft-Max/Sigmoid

Dropout 4

Time-frequency Time

Figure 6.1: CNN architecture for traffic recognition.

135

can be reduced by using large amounts of data or generalization techniques such
as the aforementioned random dropout. Furthermore, the last two blocks are used
for classification. The fourth block is a dense layer with, once again, ReLU as
the activation function. This layer also transforms the output of the last block of
convolutional layers into a one-dimensional vector. Afterwards, this output is de-
livered to the last block, which is composed of a dense layer where the number of
neurons equals the number of predefined labels for classification. If it is a binary
classification (e.g., to distinguish between TCP and UDP), a sigmoid activation
function is employed to map the input to the predefined labels. Otherwise, for
the case of multi-class classification (e.g., for the transmission rate and duty cycle
recognition models), a soft-max layer is used.

Figure 6.1 shows an overview of the resulting architecture, while Table 6.1 and
Table 6.2 list the parameters used on each layer per model. Some specific param-
eters for the optimizer (e.g., the optimizer, learning rate, and batch size), for each
layer (e.g., the number of filters, pool size, and dropout rate), and optimizer train-
ing, were determined using hyperparameter swapping. In total, the constructed
CNN models have 25.2 million trainable parameters. We trained the models dur-
ing 100 epochs using the Adam optimizer with a learning rate of 0.0005, cross-
entropy loss function, and mini-batches of 128 RGB images [173]. These images
were resized to [height,width] = [192,256] pixels due to memory constraints in the
Graphics Processing Unit (GPU). We implemented our models using the Keras
library and TensorFlow as the back-end [174, 175].

6.3 Data collection framework
One of the key challenges faced for the construction of any ML model, is the
collection of sufficient amounts of quality data, needed for training and validation.
In Section 2.4 we have mentioned how traditional traffic recognition approaches
are typically operating or being trained, with wired packet data. Furthermore, as
existing CR approaches are focusing on technology and modulation recognition,
no accurately labeled datasets for traffic recognition in the wireless spectrum are
currently available. To this extent, we present a new data collection framework
in this section. We start by giving a motivation for our approach and, afterwards,
present the architecture and features of the framework.

6.3.1 Motivation
A key concern is that the characteristics of wireless networks (e.g., interference, la-
tency, or topology) tend to differ significantly across different environments. This
means that it is not straightforward to train a model in a general fashion, appli-
cable to a wireless context. Typically, this requires large volumes of training and
validation data, gathered at different physical locations. Acquiring these amounts
of data is cumbersome and time-consuming. To this extent, the use of simulation
environments is very appealing as it allows to collect potentially large amounts of

136

M
od

el
D

at
a

D
om

ai
n

C
la

ss
ifi

ca
tio

n
Ta

sk
#

K
er

ne
ls

K
er

ne
lS

iz
e

(a
ll

C
on

v
la

ye
rs

)

Po
ol

si
ze

(a
ll

M
ax

Po
ol

la
ye

rs
)

D
en

se
1

#
N

eu
ro

ns

D
en

se
2

#
N

eu
ro

ns

C
N

N
1

Ti
m

e
Tr

af
fic

Pa
tte

rn

C
on

v
1

:1
6

C
on

v
2

:3
2

C
on

v
3

:6
4

5
x

5
2x

2
51

2

4
C

N
N

2
Ti

m
e-

Fe
qu

en
cy

C
N

N
3

Ti
m

e
Tr

an
sp

or
tP

ro
to

co
l

2
C

N
N

4
Ti

m
e-

Fe
qu

en
cy

C
N

N
5

Ti
m

e
Tr

an
sm

is
si

on
R

at
e

4
C

N
N

6
Ti

m
e-

Fe
qu

en
cy

Table 6.1: Shared hyperparameters among all the models.

137

Dropout

Rate
CNN 1 CNN 2 CNN 3 CNN 4 CNN 5 CNN 6

Layer 1 0.1 0.6 0.7 0.6 0.7 0.5

Layer 2 0.3 0.5 0.5 0.3 0.4 0.4

Layer 3 0.6 0.5 0.5 0.3 0.4 0.4

Layer 4 0.6 0.3 0.3 0.1 0.2 0.2

Table 6.2: Specific dropout rate per model.

(training) data in an easy, safe, and reliable manner without the need to perform
physical experiments. As such, limiting the effort of data collection. However, the
behavior of agents and models trained in simulator environments are often spe-
cific to the characteristics of the simulator [176,177]. This is due to the errors and
abstractions made by modeling the complex real world.

Recently, it has been proved that this so-called reality gap, between the real-
world and the simulators, can be bridged using a persevering form of randomiza-
tion. This technique, called domain randomization, trains learning models based
only on (low-fidelity) simulated data by randomizing all non-essential aspects of
the simulator [176, 177]. One of the core ideas behind this approach is that by
training on a wide enough variety of unrealistic procedurally generated samples,
the learned models will generalize to realistic scenarios [177]. This main principle
is illustrated in Figure 6.2 In other words, the model should consider reality, as just
another adaptation as the model only captures the bare essentials [178]. As such,
more robust models have been constructed that cope with more dynamic behavior
in the real world [176].

Up to now, the technique has mostly been used in the area of robotics and self-
driving vehicles where typically cameras and computer vision techniques are be-
ing used for object recognition. One of the main applications so-far has been robot
grasping, where a robot needs to be trained to pick-up or place certain objects. To-
bin et al. have shown that their grasping model, trained entirely using non-realistic
generated objects in simulation, can achieve high success rates: a successful grasp
was observed for 96 % upon the first 20 samples, while in general a success rate
of 92 % was achieved on realistic objects on the first attempt [177]. Furthermore,
applications and models for object recognition (e.g., detection of other cars in an
autonomous vehicle use case) have shown similar success rates. Here, aspects
such as lightning, pose, object textures, and colors are randomized in non-realistic
ways to force the neural network to learn the essential features [178, 179]. A key
observation is that these models could be used in real-world environments without
any retraining.

It is clear that domain randomization is an emerging and promising research
area. As such, we will further explore this principle in the significant different

138

Figure 6.2: Illustration of the domain randomization approach [177].

application domain of wireless networks. We want to investigate if by using this
approach, a robust traffic recognition model can be trained that can cope with the
dynamic wireless context. In the next section, we will present a data generation
architecture, as the first step towards a full data randomization approach.

6.3.2 Architecture

In Section 6.2.2 we have discussed that images, generated based on captured IQ
samples, are used as input data for the different models. This means that a sim-
ulation environment is needed that can generate such IQ samples at the physical
layer of the OSI stack. Furthermore, since we want to recognize traffic patterns,
the simulator should also contain the logic of the higher layers (e.g., transport
layer) of the OSI stack. Unfortunately, no simulator currently exists that exten-
sively covers all different layers of the network stack. As such, we combine two
state-of-the-art solutions that each cover a part of the network stack. We use the
discrete-event network simulator NS-3 (version 3.29) to cover the traffic genera-
tion and the higher layers of the stack [160]. This includes the transport layer that,
for instance, contains TCP rate control mechanisms. Regarding the lower layers,
we consider the Matlab toolbox, in particular, to address the physical layer, as
the toolbox can generate wireless signals and Radio Frequency (RF) spectrograms

139

Experiment
generator (1)

Input scenario

Experiment setup

NS-3 simulator (2) Matlab Toolbox (3)

Packet trace

IQ samples

Figure 6.3: Architectural overview of the data generation framework.

(i.e., IQ samples) [180]. We make use of the WLAN toolbox version 2.0 integrated
with Matlab R2018b.

The overall architecture of the proposed framework is depicted in Figure 6.3.
As can be seen, there are three main components. First, there is the experiment
generator that receives as input a scenario description in JSON format. This sce-
nario description contains for several selected parameters a list of values to be
considered in the simulations. The tunable parameters are depicted in Table 6.3.
Note that this formulation is easily extendable to include other features and pa-
rameters (e.g., MIMO, packet aggregation, or more complex applications). The
experiment generator (1) generates an experiment setup for each unique combina-
tion of all parameter values. For instance, consider the (theoretical) scenario where
two parameters A and B are specified, with the parameters having, respectively, the
following values: (A1, A2) and (B1, B2, B3). The experiment generator will in
total create six unique configurations (A1B1, A1B2, A1B3, A2B1, A2B2, A2B3).
Note that this experiment generator can potentially create a very large amount of
combinations, under a very large parameter space, making it infeasible to verify all
unique combinations. While this is not the case for the work currently presented
in this chapter, future work could explore surrogate modeling techniques to cope
with these massive data spaces.

Next, based on the generated experiment setup, the NS-3 simulator constructs
the desired network topology with the specified technology standard and the num-
ber of stations and APs. During the length of the simulation, the specified traffic

140

Considered parameters

Simulation simulation length

Network topology number of the nodes, their locations, and mobility pat-
terns

Traffic descrip-
tions

number of flows, transport protocol, traffic patterns, and
rates

Technology (Wi-Fi
parameters)

MCS, channel width, standard, and guard interval

Table 6.3: Overview of tunable parameters for data generation.

is generated through this network, while stations can move (if applicable) based
on the selected mobility pattern. Furthermore, a log file is generated that contains
all the transmitted packets and transmission information needed to generate the
transmitted waveform in Matlab. This log can be seen as a regular packet dump
(cf. a pcap file), but augmented with the following information: the specific type
of packet (e.g., beacon, association request, data), technology specific information
(e.g., for Wi-Fi: STBC, PSDU length, AMPDU), and the MCS value.

Afterwards, Matlab (3) performs the following three steps: first, a MAC packet
is generated per line of the previously generated trace file in combination with the
information provided. This MAC packet is used to generate a waveform that is
compliant with the 802.11 standards. The waveform is expressed as an array of
complex numbers that represent the IQ samples of the signal. After each packet
is generated, the IQ samples are stored in binary format in a file. Note that the
IQ samples are, at this stage, free of noise and do not include any channel effects.
Second, the generated IQ samples are augmented by passing them through both a
modeled fading channel (according to the 802.11 standards) and an Additive White
Gaussian Noise (AWGN) channel. The latter adds white Gaussian noise to the sig-
nal, with an SNR from 0 dB to 30 dB in steps of +3 dB. This means that per original
IQ sample, an additional amount of 12 IQ samples are created: 1 with only channel
fading effects, and 11 with channel fading and noise (each with a different SNR).
This is done in order to randomize the spectrum conditions. As such, following one
of the main principles behind the domain randomization technique, as discussed
previously. Third, based on the previously created IQ samples, we plot them in
time (amplitude of the IQ samples) and time-frequency (by applying the STFT on
the IQ samples) domain and save them to disk. This leads to two different input
datasets, which are compared in Section 6.4. Note that each created image repre-
sents a traffic snapshot of size w = 0.5 s, which is equivalent to 0.5 million of IQ
samples. To clarify, imagine an experiment length of 5 s. Since we take snapshots
of 0.5 s, 10 (experiment length divided by snapshot size) × 13 (the clean image +
the additional ones with channel fading and noise effects) images are created for
the specific scenario, for both time and time-frequency domain. Additionally, we

141

want to highlight that the presented approach is only a first step towards a full do-
main randomization approach, as a complete domain randomization approach also
considers directly changing the classification models and the use of non-realistic
randomized data.

To illustrate the generated datasets, we depict for both the time and time-
domain dataset three images in, respectively, Figures 6.4 and 6.5. The images are
one of the snapshots made for a scenario with a UDP traffic flow of 10 Mbps and a
duty cycle of 75 %. Each figure is composed of three images that respectively the
different steps in the data adaptation process, as described above. The top image
shows the created snapshot of the original signal based on pure IQ samples). Fur-
thermore, the middle image shows the effect of adding 802.11 channel effects to
the signal, while the adding of noise to the signal, using an SNR of 15 dB.

6.4 Evaluation and discussion
In this section, we evaluate the accuracy of the three traffic recognition models,
while also investigating the use of the models in real-life settings. First, we discuss
the details of the generated datasets for the training and validation of the presented
models. Next, we validate the models using data collected in a real-life setting.
Afterwards, we demonstrate the real-life usage of the models through a small-scale
prototype.

6.4.1 Description of generated training datasets
In order to evaluate the designed models, we use the data collection framework
presented in Section 6.3.2 to generate the training, validation, and test datasets
used for all experiments presented in Section 6.4.2. As a topology, we assume one
station connected to a Wi-Fi AP at a distance of 5 m. A single flow of traffic was
transmitted for 5 s between the two devices with varying rate (100 Kbps, 1 Mbps,
10 Mbps, and 50 Mbps), transport protocol (TCP, or UDP), and transmission pat-
tern of a so-called On-Off application (with 25, 50, 75, 100 % duty cycle). Fur-
thermore, we varied the following Wi-Fi parameters: the standard and frequency
(802.11n on 2.4 Ghz, 802.11n on 5 Ghz, 802.11ac on 5 Ghz), the channel width
(20 Mhz,40 Mhz), and guard interval (short, long), while assuming the presence of
the dynamic Minstrel Rate control algorithm (i.e., dynamic MCS values). Based
on these parameters 384 unique experiments were constructed and augmented,
leading to over 800 GB of IQ samples. As discussed in the previous section, these
samples are processed into two image datasets, time and time-frequency domain,
each one composed of 49920 images and requiring around 6 GB of storage. This
transformation reduces the storage requirement to less than 1% of the required
storage of the raw IQ samples dataset. Finally, each dataset was randomly split to
create the training (80%), the validation (10%), and the test (10%) datasets. In the
next section, we compare the performance of all constructed models, for the three
classification tasks using both datasets.

142

(a) Original signal (no channel or noise effects)

(b) Signal with channel effects

(c) Signal with channel and noise (SNR of 15 dB) effects

Figure 6.4: Three images in time domain with different channel and noise effects.

143

(a) Original signal (no channel or noise effects)

(b) Signal with channel effects

(c) Signal with channel and noise (SNR of 15 dB) effects

Figure 6.5: Three images in time-frequency domain with different channel and noise ef-
fects.

144

Model
Accuracy

Train Validation Test

CNN 1 Traffic

Pattern

Time 0.999 0.962 0.962

CNN 2 Time-Frequency 0.999 0.991 0.990

CNN 3 Transport

Protocol

Time 0.995 0.965 0.968

CNN 4 Time-Frequency 0.999 0.998 0.997

CNN 5
Tx rate

Time 0.987 0.979 0.978

CNN 6 Time-Frequency 0.999 0.999 0.998

Table 6.4: Accuracy of all three models, using training, validation, and test datasets.

6.4.2 Evaluation using generated synthetic data

Table 6.4 depicts the accuracy for each model, obtained with respectively, training,
validation, and test datasets, for both time (amplitude) and time-frequency (STFT)
domains. Overall, it is clear that all models, under all datasets, have an accuracy of
above 96 %. Below we discuss the results for each model individually and show the
resulting confusion matrices. These matrices, also known as error matrices, show
for each model how all data samples are classified. As such, additional insights
into the performance of the models are acquired.

As mentioned in Section 6.2.2, two models are trained to recognize 4 differ-
ent traffic patterns (burst versus constant) with a duty cycle of 25 % (low), 50 %
(medium), 75 % (high), or 100 % (constant). Table 6.4 shows the final accuracy of
the training, validation, and test datasets after training. CNN 1 denotes the model
trained with the dataset in time domain, while CNN 2 is the model that is trained
with time-frequency data. Both models, time and time-frequency, achieved above
96 % accuracy in validation and test. However, using time-frequency data leads
to higher accuracies above 99 %. This difference, confirmed by other literature
as well, is due to the fact that (high amounts of) noise together with fading chan-
nel effects have a bigger impact on images that represent the time domain [181].
Note that creating images in time domain is faster, as it requires less complex
mathematical computations than STFT. Figure 6.6 shows the confusion matrices,
respectively, for time and time-frequency domain data, obtained from evaluation
with the test dataset. According to the confusion matrices shown, the medium and
high traffic patterns were the hardest to discriminate, and some of the examples
were miss-classified as constant traffic. This is the case for both the time and time-
frequency domain. This behavior can be explained due to the MCS adaptation
algorithm. If the transmission of a signal is using a lower MCS, then more spec-
trum will be used in comparison to the same signal using a higher MCS. This in
respect to a certain transmission rate and the time window w that is used to create

145

(a) Using time domain images

(b) Using time-frequency domain images

Figure 6.6: Normalized confusion matrices for the traffic pattern model.

146

the images, in our case of w = 0.5 s.
For the task of discriminating between TCP and UDP traffic, we created two

models, one for time domain images and one for time-frequency domain data,
to discriminate between two different transport protocols (UDP and TCP). In Ta-
ble 6.4 we can see how both models have an accuracy more than 96 % in val-
idation and test. An accuracy of more than 99 % is even possible when using
time-frequency images. This is similar to the trend noticed above for recognition
of different traffic patterns. Figure 6.7 shows the confusion matrices, respectively,
for time and time-frequency domain data, obtained from evaluation with the test
dataset. These confusion matrices indicate that the miss-classification distribution
among the two classes is very similar. This result can be explained by the fact that
for scenarios with large traffic flows (i.e., high transmission rates and duty cycles),
the spectrum is very occupied and the snapshots and resulting images tend to be
more similar for both the TCP and UDP protocols.

For the third classification task of recognizing different traffic rates, we also
designed two models that can recognize the transmission rate of a transmitted traf-
fic flow, based on either time or time-frequency image datasets. The results in
Table 6.4 and Figure 6.8 show that it is possible to accurately discriminate be-
tween different TX rates. In Table 6.4, CNN 5 denotes the model trained with
the dataset in time domain, while CNN 6 is the model that is trained with time-
frequency data. CNN 5 has an accuracy for the test dataset of 97.8 %, while CNN
6 achieves a classification result of 99.8 %. Furthermore, the confusion matrices in
Figure 6.8 show that most of the miss-classification, across both domains, occurred
for transmissions of 10 Mbps, which were miss-classified as signals generated at
50 Mbps. When using time domain images, rates of 100 Kbps were also sometimes
miss-classified as 1 Mbps or 10 Mbps. Similar to the results of the aforementioned
classification tasks, combinations of a high transmission rate with a high duty cy-
cle can lead to samples that look very similar in the spectrum. This is especially
true if they are augmented with fading effects and noise, which may be difficult
to discriminate by the classifier. However, note these kinds of examples are also
responsible for providing a better generalization capacity to the DL models in or-
der to learn and generalize better to unseen data. This is also verified given the
high accuracy in both validation and test datasets. Finally, note that the task of
classifying traffic patterns and traffic rates can be replaced for more complex re-
gression models in order to predict continuous values of these datasets, instead of
using classification with predefined labels.

6.4.3 Validation using real-life data
In the previous section, we have used synthetic data, generated through our data
generation framework, as test datasets to evaluate the different constructed models.
As a next step, we perform an evaluation with data collected in a real-life setting.
Besides giving additional insights into the performance of the models, this also
presents us with an indication of the applicability of domain randomization within
the context of wireless networks. We create a setup consisting of 4 devices: two

147

(a) Using time domain images

(b) Using time-frequency domain images

Figure 6.7: Normalized confusion matrices for the traffic protocol model.

148

(a) Using time domain images

(b) Using time-frequency domain images

Figure 6.8: Normalized confusion matrices for the traffic rate model.

149

SDR
Store IQ
data

Trace
files SDR

Figure 6.9: Overview of the real-life setup.

Intel NUCs and two SDRs. Each NUC has an i5 core processor, 16 GB of RAM,
and an SSD of 500 GB. Each SDR is connected to one of the Intel NUCs, as can
be seen in Figure 6.9. The NUC at the left-hand side is responsible for generating
traffic that is transmitted by its connected SDR. The other SDR, at the right side
of the figure, captures IQ samples that are stored on the second NUC. There is a
distance of 3-4 m between the two SDRs. The captured IQ samples, are afterwards
converted into time-domain (amplitude) and time-frequency (STFT) images, using
a window size of 5 s. Note that this is the same procedure as for the synthetically
generated datasets.

For generating the traffic, we make use of the IQ samples that were generated
by our data generation framework. We replay those IQ samples using GNU Radio,
installed on the NUC connected to the transmitting SDR, that is capable of, among
others, transmitting IQ samples [182]. By replaying these samples, we can inves-
tigate the robustness of the different modules in a real-life setting, especially the
impact of real channel fading and noise effects on the performance. Note that we
use the pure IQ samples for this, before the addition of noise and channel fading
effects. In particular, we make use of 32 traces that combine all values of the label
of our classification models: 4 options for transmission pattern (25 %, 50 %, 75 %,
or 100 %)), 2 options for transport protocol (TCP, or UDP), and 4 options for trans-
mission rate (100 Kbps, 1 Mbps, 10 Mbps, or 50 Mbps). Finally, this experiment is
conducted in a real-life channel but we checked with a spectrum analyzer for the
absence of strong nearby interference sources.

Table 6.5 depicts the accuracy for each model, obtained with the real-life
dataset, for both time (amplitude) and time-frequency (STFT) domains. Over-
all, it is clear that there is a significant difference in comparison to the accuracies
reported in Table 6.4. Furthermore, the difference between the accuracies achieved
with time domain and time-frequency domain has also grown. We discuss below
the results per classification task.

The accuracies for the classification of traffic patterns are shown in Table 6.5
and the accompanying confusion matrices are presented in Figure 6.10. The model
trained with the dataset in time domain achieves an overall accuracy of 54.1 %,
while the model trained with time-frequency images obtains an accuracy of 59.1 %.
These values are significantly lower than the ones obtained previously: respec-
tively, 96.2 % and 99.0 %. The better accuracy is obtained by using the time-
frequency dataset, as motivated previously. From Figure 6.10, we see that the
model mostly miss-classifies the medium, high, and constant traffic patterns. More
precisely, medium traffic is roughly in 1 out of 3 cases miss-classified as low traf-

150

Model Accuracy

CNN 1 Traffic

Pattern

Time 0.541

CNN 2 Time-Frequency 0.591

CNN 3 Transport

Protocol

Time 0.591

CNN 4 Time-Frequency 0.782

CNN 5
Tx rate

Time 0.734

CNN 6 Time-Frequency 0.869

Table 6.5: Accuracy of all three models using the real-life dataset.

fic, while constant traffic is often miss-classified as high traffic and vice versa.
This is the case for both models. Furthermore, note that these miss-classifications
already occurred (at much lower scale) with the synthetic test dataset previously.
We motivated that behavior by the impact of the MCS adaptation algorithm. Here,
we can say that when using real-life data, the errors of the model are amplified.

Correctly discriminating TCP and UDP is successfully done in 59.1 % of the
time for the model in time domain, and 78.2 % of the time for the time-frequency
model. While both accuracies are still lower than reported previously with the test
dataset (respectively, 96.8 % and 99.7 %), the difference between the two models
is very large. The difference in accuracy for CNN 4 (time-frequency) using test
or real-life data is roughly only half the size of the difference recorded for CNN
3 (time). When considering the confusion matrices in Figure 6.11, the difference
between the two models is even more remarkable. The time domain model can
better classify UDP traffic, with an accuracy of 72.5 %, while the time-frequency
model can classify TCP traffic with an accuracy of 96.9 %. The latter value is rel-
atively close to the accuracy obtained with the test data (99.1 %), as reported in
Figure 6.7b. We believe that the reason for these results is two-fold. First, as men-
tioned previously, the spectrum looks rather similar for different scenarios with
high transmission rates and duty cycles, making it harder to distinguish between
TCP and UDP protocols. Second, the time-domain models and images are more
susceptible to channel effects and noise. This could make TCP ACK transmissions
harder to detect, as such explaining the significant lower accuracy of CNN 3 for
TCP classification.

The third classification task of detecting different transmissions rates achieves
clearly the best overall accuracies. As reported in Table 6.5, we see that CNN 5
(time) and CNN 6 (time-frequency) achieve, respectively, 73.4 % and 86.9 %. This
in contrast to the values reported earlier for the test dataset: 97.8 % and 99.8 %,
respectively. From the confusion matrices, shown in Figure 6.12, we can conclude
that the number of miss-classifications increases when increasing the transmission
rate. Across both models, the labels of 10 Mbps and 50 Mbps are the hardest to

151

(a) Using time domain images

(b) Using time-frequency domain images

Figure 6.10: Normalized confusion matrices for the traffic pattern model.

152

(a) Using time domain images

(b) Using time-frequency domain images

Figure 6.11: Normalized confusion matrices for the traffic protocol model.

153

(a) Using time domain images

(b) Using time-frequency domain images

Figure 6.12: Normalized confusion matrices for the traffic rate model.

154

classify. This can be explained by the strong similarity in the spectrum between
both cases, as mentioned above.

Overall, we can conclude that the different models can cope relatively well
with the unseen real-life data samples. This is especially the case for the clas-
sification of transport protocol and transmission rates, using time-frequency data
(i.e., CNN 4 and CNN 6). However, we also acknowledge that the presented mod-
els should be further improved to boost overall accuracy. The latter is especially
true for the classification of traffic patterns based on the duty cycle. When com-
paring the confusion matrices obtained from both synthetic and real-life valida-
tion, we notice that the already present miss-classifications of certain labels are
enlarged upon using real-life data. We can conclude that the ideas behind domain
randomization can indeed be applied to the recognition of patterns within wire-
less contexts and can help in making the models more robust. Future work should
consider enhancing the models, in order to reduce the miss-classifications for both
the synthetic and real-life datasets. Furthermore, we can also consider construct-
ing regression models for the recognition of different traffic rates and patterns, the
recognition of multiple flows, or the use of semi-supervised learning models to
better cope with unseen data. We will discuss this in more detail in Chapter 7.

6.4.4 Prototype demonstrator
So far, the performance of our models has been evaluated on infrastructures and
servers with considerable amounts of resources. However, we will now demon-
strate how our models can be used in a real-life setting. For this, we make use of
the setup created for the real-life data collection in Section 6.4.3 and illustrated
in Figure 6.9. The used hardware and the connections between the different de-
vices are identical. However, instead of using the Intel NUC at the receiving side
(at the right side of Figure 6.9) only for storage, we will now also implement the
data adaptation steps and a classification model. As such, demonstrating the real-
life applicability on more every-day devices. For this prototype, we implement
the classification model for transmission rate, using time domain images (denote
as CNN 5 before). Time domain images are chosen because they require less
complex mathematical computations than STFT, making them faster to generate,
which is important in a real-time setting. For the traffic flows, we select the gen-
erated IQ samples of four different scenarios with different characteristics. We
selected traces with different values for the transmission rate, while other label
values were chosen arbitrarily. As before, these IQ samples are transmitted us-
ing GNU Radio. The selected traffic classes and their characteristics are depicted
in Table 6.6. The experiment was conducted in both an interference-free and an
occupied channel in the 2.4 GHz frequency band.

The resulting confusion matrices for both runs can be seen in Figure 6.13. In
total, 250 snapshots of 5 s per traffic stream were created for each experiment. The
overall accuracy for the first experiment in the empty channel is 83.0 %. For the
second experiment in the occupied channel, an accuracy of 66.5 % is achieved.
From both confusion matrices, it is clear that the most miss-classifications oc-

155

Traffic class Pattern Protocol Rate

Trace 0 High (75 %) UDP 50 Mbps

Trace 1 Medium (50 %) TCP 1 Mbps

Trace 2 Low (25 %) UDP 100 Kbps

Trace 3 Medium (50 %) TCP 10 Mbps

Table 6.6: Traffic classes and their characteristics for prototype.

curred for the 10 Mbps traffic (i.e., trace 3). This is similar to the results presented
in the previous sections, where also 10 Mbps traffic was regularly classified as
50 Mbps traffic. Furthermore, we noticed that it took up to 5-6 s to convert the
captured IQ samples to the images in time domain. This was especially the case
for the 50 Mbps traffic, while the smaller 100 Kbps traffic took less than half of
that time. This data adaption time can be decreased by implementing this feature
directly in hardware or averaging IQ samples directly on the capturing interface,
before converting them to images.

Finally, so far we have always reported the accuracy for all the models by using
a single classification result. However, an application using the reported results
could take the average result over a number of snapshots. This can, for instance,
be done using a sliding window. We have tested this out for window sizes of 3,
5, and 7. Figure 6.14 shows the resulting accuracies across different window sizes
for both experiments The best results are obtained when using an average over 5
samples, per traffic class: 90.0 % and 75.0 %, respectively for the experiments with
an interference-free channel and an occupied channel. This means that there is an
increase of, respectively, 7 % and 8.5 %. The resulting confusion matrices for this
optimal window size are shown in Figure 6.15.

6.5 Conclusion
In this chapter, we have presented the first approach, to the best of our knowl-
edge, that performs traffic recognition on spectral data. This strongly contrasts
more intrusive traditional methods based on DPI or packet traces, as the listening
device does not need to be part of the network and modern privacy requirements
are respected. In particular, we have presented CNN models that are capable of
performing three classification tasks: differentiate between TCP and UDP traffic,
recognize constant and burst traffic with different duty cycles, and identify dif-
ferent transmission rates. Furthermore, we have successfully explored principles
behind domain randomization to generate large amounts of synthetic (input) data.
When evaluating the models with the test dataset with synthetic data, accuracies
of more than 96 % are obtained. Using time-domain data allows for even higher
accuracies of more than 99 %. Finally, we have performed a validation with real-

156

50
 Mbp

s

1 M
bp

s

10
0 K

bp
s

10
 Mbp

s

Predicted label

50 Mbps

1 Mbps

100 Kbps

10 Mbps

Tr
ue

 la
be

l
0.989 0.000 0.011 0.000

0.000 0.990 0.000 0.010

0.019 0.124 0.857 0.000

0.430 0.020 0.060 0.490

0.0

0.2

0.4

0.6

0.8

(a) interference-free channel

50
 Mbp

s

1 M
bp

s

10
0 K

bp
s

10
 Mbp

s

Predicted label

50 Mbps

1 Mbps

100 Kbps

10 Mbps

Tr
ue

 la
be

l

0.929 0.012 0.012 0.047

0.024 0.965 0.012 0.000

0.024 0.447 0.529 0.000

0.671 0.059 0.035 0.235

0.0

0.2

0.4

0.6

0.8

(b) Occupied channel

Figure 6.13: Normalized confusion matrices for the prototype

157

0 1 2 3 4 5 6 7
Window size

0.4

0.5

0.6

0.7

0.8

0.9

1.0

A
cc

ur
ac

y
(%

)

Interference-free experiment
Occupied channel experiment

Figure 6.14: Overview of accucaries obtained using difference window sizes.

life data. Here we noticed that the overall accuracies are lower, although it is still
possible to detect different transmission rates with an accuracy of 86.9 %. Overall,
we have successfully explored the possibility of detecting traffic patterns at the
spectral level and the use of synthetically generated training data. As such, a good
starting point is provided for further research.

158

50
 Mbp

s

1 M
bp

s

10
0 K

bp
s

10
 Mbp

s

Predicted label

50 Mbps

1 Mbps

100 Kbps

10 Mbps

Tr
ue

 la
be

l
1.000 0.000 0.000 0.000

0.000 1.000 0.000 0.000

0.000 0.095 0.905 0.000

0.300 0.000 0.000 0.700

0.0

0.2

0.4

0.6

0.8

1.0

(a) interference-free channel

50
 Mbp

s

1 M
bp

s

10
0 K

bp
s

10
 Mbp

s

Predicted label

50 Mbps

1 Mbps

100 Kbps

10 Mbps

Tr
ue

 la
be

l

0.941 0.000 0.000 0.059

0.000 1.000 0.000 0.000

0.000 0.235 0.765 0.000

0.706 0.000 0.000 0.294

0.0

0.2

0.4

0.6

0.8

1.0

(b) Occupied channel

Figure 6.15: Normalized confusion matrices for the prototype using a combination of 5
snapshots

7
Conclusions and Perspectives

“My watch has ended”

–Jon Snow (Game of Thrones: Season 6 Episode 3, 2016)

In this dissertation, multiple contributions in the area of multi-technology net-
work management are presented, in particular towards heterogeneous wireless net-
works. The proposed solutions either enable inter-technology management fea-
tures (like handovers or load balancing), optimize the configuration of different
wireless networks to increase network-wide throughput, or allow to detect traffic
patterns of neighboring networks. This concluding chapter summarizes how this
dissertation addresses the multiple problems identified in the area of wireless net-
work management and verifies if the hypothesis and research questions have, re-
spectively, been validated and answered appropriately. Furthermore, we conclude
by identifying different interesting challenges or research topics that can further
be addressed by the research community.

7.1 Review of problem statements
Each of the solutions proposed in the previous chapters addresses one of the prob-
lem statements presented in Chapter 1 as follows:

1. Communication technologies operate fully independently of each other.
This is mainly due to the design of the lower layers of the OSI network
stack. As such, this results in the inefficient use of wireless resources and
connection interruptions or losses, which both have a dramatic effect on the

160

performance of applications and the end-user experience. Chapter 3 intro-
duces the ORCHESTRA framework for inter-technology management. The
framework consists of two key parts: the VMAC layer and a centralized
controller. The VMAC offers a single connection point to the upper layers,
while transparently bonding over the underlying network technologies. On
the other hand, the controller introduces a single point of control and coordi-
nation across the entire network. Key features are seamless inter-technology
handovers, packet-level load balancing, and duplication. In contrast to many
existing approaches, the ORCHESTRA framework is completely indepen-
dent towards upper (e.g., applications or transport protocols) and lower lay-
ers (i.e., technologies), allowing the deployment of the framework in a multi-
tude of applications domains (e.g., LANs, backhauling networks, or satellite
networks). An in-depth evaluation, using a real-life prototype setup, demon-
strates that the presented features work as intended, and behave similarly or
better than the default industry solution MPTCP. Table 7.1 revisits the orig-
inal Table 2.1 from Chapter 2 and compares the proposed ORCHESTRA
solution to the most important existing solutions. It is clear that the main
novelty of ORCHESTRA lays in the combination of packet-level control
with network-wide coordination. MPTCP is the only solution that offers the
same level of control, but does so exclusively between two endpoints and not
globally. Due to this fine-grained control, ORCHESTRA can offer more ad-
vanced features like the packet-level load balancing, and the duplication of
critical data. Furthermore, ORCHESTRA is not limited to certain technolo-
gies and application domains, in contrast to approaches like IEEE 1905.1 or
LTE-LWA.

2. Autonomous and real-time coordination, across the different devices in
a network, is missing. Therefore, despite supporting multiple technologies,
devices tend to connect to the Internet using a single technology, based on
predefined priorities. Instead, we have presented a dynamic flow manage-
ment approach in Chapter 4. Based on real-time monitoring information,
the approach aims to utilize the full capacity of the network and react in an
autonomous fashion to the inevitable dynamic network changes and differ-
ences in traffic demands. This becomes increasingly more important as the
QoS and bandwidth requirements of modern services grow. In particular,
we compare two different mathematical programming formulations that aim
to maximize the network-wide throughput by dynamically rerouting the dif-
ferent traffic flows across all the available connections and network paths.
The approach can be deployed on top of different management frameworks,
especially on top of the proposed ORCHESTRA framework. A series of
NS-3 based evaluations show that, on average, a network-wide throughput
increase of 20 % can be obtained, while a small-scale prototype shows the
applicability of the approach in real-life.

3. Tailored management systems, that account for mobility and the ever-
growing set of devices, are lacking. This is because uneven load distribu-

161

Fe
at

ur
es

IE
E

E
80

2.
21

IE
E

E
19

05
.1

SD
N

-b
as

ed
LT

E
-L

W
A

M
PT

C
P

O
R

C
H

E
ST

R
A

N
et

w
or

k
do

-
m

ai
ns

L
A

N
-W

A
N

L
A

N
L

A
N

L
A

N
-R

A
N

A
ny

(e
nd

-t
o-

en
d)

A
ny

Te
ch

no
lo

gi
es

3G
PP

,W
i-

Fi
,

IE
E

E
80

2.
16

,
E

th
er

ne
t,

H
P,

W
i-

Fi
,M

oC
A

W
i-

Fi
,3

G
PP

W
i-

Fi
,L

T
E

A
ll

A
ll

C
oo

rd
in

at
io

n
N

on
e

G
lo

ba
l

G
lo

ba
l

L
oc

al
(w

ith
in

ce
ll)

B
et

w
ee

n
en

d-
po

in
ts

G
lo

ba
l

C
on

tr
ol

-
le

ve
l

Fl
ow

-b
as

ed
Fl

ow
-b

as
ed

Fl
ow

-b
as

ed
Fl

ow
-b

as
ed

Pa
ck

et
-b

as
ed

(s
ub

-fl
ow

s)
Pa

ck
et

-b
as

ed

Tr
an

sp
or

t
pr

ot
oc

ol
s

A
ny

A
ny

A
ny

A
ny

on
ly

T
C

P
A

ny

B
ac

kw
ar

d
co

m
pa

tib
il-

ity

Y
es

N
o

N
o

Y
es

Y
es

Ye
s

Ve
rt

ic
al

H
an

do
ve

rs
Y

es
Y

es
Y

es
Y

es
(w

ith
in

ce
ll)

Y
es

(b
et

w
ee

n
su

b-
flo

w
s)

Ye
s

N
ee

ds
cl

ie
nt

ch
an

ge
s

Y
es

(s
ta

n-
da

rd
s)

Y
es

N
o

Y
es

Y
es

Ye
s

Pr
od

uc
ts

av
ai

la
bl

e
N

o
Q

ua
lc

om
m

H
y-

fi
O

di
n,

5G
E

m
-

PO
W

E
R

,.
..

Tw
o

pl
an

ne
d

de
pl

oy
m

en
ts

A
nd

ro
id

,i
O

S,
Te

ss
ar

es
,.

..
N

o

Table 7.1: Comparison of the ORCHESTRA solution to the state-of-the-art.

162

tions among the available wireless technologies or network infrastructures,
lead to suboptimal and inefficient use of the wireless resources, causing
(significant) QoS degradations. To this extent, we continue the work pre-
sented in Chapter 4 by the contributions stated in Chapter 5. We present an
MILP formulation for the problem of load balancing devices across different
network connection infrastructures (e.g., Wi-Fi APs or LTE base stations),
while also optimally scheduling traffic flows across different technologies.
The goal of increasing the network-wide throughput and the objective of
only making decisions based on real-time monitoring information are main-
tained from the preceding work in Chapter 4. As the optimal mathematical
programming formulation scales exponentially, two different heuristics are
proposed. Thorough evaluations based on NS-3 simulations show that the
greedy heuristic is capable of increasing the network-wide throughput by
more than 100 % across a variety of scenarios. Furthermore, we also demon-
strate the scalability of the heuristic up to scenarios with 10000 devices.

4. The coexistence of neighboring technologies and networks is heavily
being pressured. This is due to the deployment of an increasing num-
ber of wireless technologies and networks at overlapping or neighboring
physical locations and increasing traffic volumes. In Chapter 6, we ex-
plore the possibility of detecting traffic patterns directly in the wireless spec-
trum. Detecting such patterns allows to increase the amount of information
available to management systems to optimize the networks under their con-
trol. For instance, when management systems are capable of detecting these
interference-free periods, traffic can be offloaded to these channels or tech-
nologies during these free slots. In order to address the difficulties faced
when constructing real-life datasets and to increase the overall robustness
of the models, we present a data generation framework that can be used to
acquire large amounts of synthetic training and validation data, according
to the domain randomization principle. We present a CNN architecture that
is shared all models that are, respectively, able to recognize TCP and UDP
traffic, burst traffic with different duty cycles, and different transmission
rates. We show that all models have an accuracy of above 96 %, when using
synthetic datasets containing both time and time-frequency image represen-
tations. A validation with real-life data samples and a small-scale prototype
implementation show the potential of traffic recognition and the use of do-
main randomization approaches in a wireless networking context.

7.2 Review of the hypothesis and research questions

In Chapter 1, we have stated the following hypothesis: Intelligent and dynamic
inter-technology network management is needed to support the ever-evolving
heterogeneous wireless networks. This hypothesis envisioned, in layman terms,
that a user is only aware of the fact that its device is connected to the Internet, while

163

the network takes care of all the underlying decision-making and provisioning of
resources, as such offering improved QoS and user experience (i.e., connectivity as
a service). In this dissertation, we have presented a number of contributions to fa-
cilitate this vision. As mentioned above, the ORCHESTRA framework solves the
problem of managing different communication technologies in a fundamental and
transparent manner. Additionally, the intelligence introduced in Chapters 4 and 5
can be deployed on top of the ORCHESTRA framework to optimize the network
and significantly increase the network-wide throughput. This is accompanied by
traffic recognition models, in Chapter 6, to increase the monitoring capabilities of
network management frameworks. Overall, we have clearly shown how our contri-
butions can increase the network management of, in particular, wireless networks.
For instance, by network-wide coordination, seamless inter-technology handovers,
decision-making based on real-time monitoring, etc. Furthermore, these contribu-
tions account already for the future growth in numbers and diversity in wireless
networks. Among others, the ORCHESTRA framework is technology indepen-
dent, can be used with future communication technologies, and can be deployed
in different application domains. Similarly, the proposed flow scheduling and load
balancing algorithms can scale along with the rising numbers of connected de-
vices and technologies. Note that when devices become equipped with more and
novel communication technologies, the algorithms can load balance traffic and de-
vices across even more connection points and network routes. Overall, we can
conclude that intelligent and dynamic inter-technology network management is
indeed needed to support the ever-evolving heterogeneous wireless networks.

The research questions formulated in Section 1.4, are answered as follows:

1. How can we enable seamless inter-technology management transparent
to all actors? The ORCHESTRA framework, presented in Chapter 3, in-
troduces the VMAC layer to transparently bond different physical interfaces
into one connection towards the upper layers. No changes to the underlying
IEEE 802 technologies are needed as they are fully compliant to the OSI
model. In contrast, the traditional 3GPP architecture used in existing LTE
networks is not suitable for the fine-grained control offered by the VMAC
layer. However, follow-up 3GPP releases have introduced mechanisms (i.e.,
LBO) and architectures (e.g., LTE-LWA) that do open opportunities for de-
ployment of the VMAC layer. Furthermore, the packet-based load balancing
and duplication features operate also transparent to the upper layer because
of the reordering and duplication functionalities at the receiving VMAC.
Since the VMAC takes care of handling, among others, DHCP and ARP
interactions, the VMAC appears transparent to the network as well. Fur-
thermore, the second component of the ORCHESTRA framework, the con-
troller, makes sure that all actions are coordinated across the network, as
such delivering the needed seamless inter-technology management. Finally,
in order to facilitate the roll-out of the framework, we made sure that com-
munication with non-ORCHESTRA devices or existing SDN solutions are,
to some extent, also possible. This can be seen as transparency towards

164

legacy devices and solutions.

2. Can intelligent routing of traffic streams significantly improve network
performance? In Chapter 4, we introduced an MILP formulation that can
dynamically reroute traffic flows across existing paths in the networks. We
target, in particular, environments with both wired and wireless links that
can benefit from offloading between the different technologies. The pre-
sented decision-making logic operates on top of, for instance, the ORCHES-
TRA framework and is based strictly on real-time monitoring information.
An important aspect is that the specific nature of wireless networks (e.g., the
impact of competing stations and the dynamic maximum capacity) is taken
into account. We also describe how it is possible to dynamically estimate the
maximum capacity of wireless technologies, a method that has recently been
adopted by commercial Wi-Fi management solutions. Thorough evaluations
show that the presented approach can indeed improve network performance
by on average 20 % across a variety of scenarios. These evaluations include
dynamic scenarios, a scenario with link failure, and a deployment of the
approach in a real-life prototype.

3. Can the impact of mobility and the growing number of devices and tech-
nologies be countered by introducing intelligent load balancing? Yes,
intelligent load balancing can indeed aid in coping with mobility and an in-
creasing number of devices and technologies. We show this in Chapter 5,
where we introduce an optimal mathematical load balancing formulation
and two heuristic load balancing approaches. All three algorithms focus on
balancing, for each supported technology, the connected devices across the
available infrastructure devices, and scheduling the flows across the differ-
ent connections. The load balancing is done by considering the traffic rates
of the different flows, the distance between the devices and the connection
points, the network load, and the maximum rates supported by the differ-
ent devices and technologies. This is in contrast to the default approaches,
where devices tend to connect to the AP or base station with the best SNR,
regardless of the network load or spectrum occupancy. We demonstrate that
our load balancing approaches can increase the network-wide throughput
up to 130 %. Furthermore, the greedy heuristic can calculate an improved
network configuration for 10000 devices in less than 3 s.

4. Can we detect traffic patterns of neighboring networks using spectral
data? Traditional traffic recognition approaches, such as DPI, operate on a
packet-level. This, typically, requires that the listening or capturing device
is connected to the corresponding network. In contrast, we have investi-
gated the detection of traffic patterns at the spectrum level. To the best of
our knowledge, this problem has not been studied before. In Chapter 6,
we have presented three prediction models that, respectively, can discrim-
inate between different transport protocols (TCP versus UDP), traffic pat-
terns (constant versus 3 types of burst traffic with a duty cycle of, respec-

165

tively, 25, 50, or 75 %), and transmission rates (100 Kbps, 1 Mbps, 10 Mbps,
or 50 Mbps). Furthermore, by using our proposed data generation frame-
work, we generate two different datasets containing images that represent
snapshots of the spectrum in either time or time-frequency domain. Our
evaluation shows that both approaches have an accuracy of more than 96 %
for all models upon validation with synthetically generated data. However,
the models trained with the dataset with images in the time-frequency do-
main, obtained after performing STFT, offer an even higher accuracy. This
difference is especially significant when validating with real-life data. Over-
all, we can say that traffic patterns can indeed be detected at the spectrum
level.

7.3 Future perspectives
This dissertation proposes multiple solutions to improve multi-technology network
management. As this is a challenging and ever-evolving area, we have identified
some remaining challenges and propose some ideas for future research. We list
these areas for future work according to the corresponding contributions and chap-
ters in this dissertation. Note that we bundle the topics related to Chapter 4 and
Chapter 5, as the latter is an extension of the work proposed in Chapter 4.

7.3.1 Seamless inter-technology network management
• Improve packet-based load balancing under TCP traffic. In Section 3.6,

we have compared the performance of the ORCHESTRA solution to the
MPTCP standard, which is the default solution used by industry these days.
While for handovers and duplication, the ORCHESTRA framework signif-
icantly outperforms the MPTCP solution, the packet-based load balancing
feature under the presence of TCP can be improved. The encountered prob-
lem is due to the differences in latency across different wireless links. To
this extent, we introduced a packet reordering mechanism, to make sure that
packets are delivered in order to the higher layer. However, the differences in
latency and the corresponding differences in packet arrival times, cause TCP
still to react and latency to increase. As such, future work should consider
better ways of minimizing the impact in terms of delay and TCP behavior
effects. One interesting approach to investigate is the use of ML models.
These models can, for instance, predict the future arrival rate of packets dur-
ing a certain interval in order to normalize the inter-packet arrival times at
the network layer.

• Cope with uncontrollable networks or technologies. The ORCHESTRA
framework, as presented in Chapter 3, enables various management features
across different communication technologies. The framework makes the
assumption that the underlying technologies are controllable. While, for in-
stance, for a backhauling use case, this is likely the case, this is not always

166

true. For instance, if a network operator wants to offload network traffic
from a (controlled) LAN to the cellular connection that is controlled by a
telecommunication company. Some existing commercial SDN solutions use
a tunnel from a router to a cloud-based instance as a workaround to this
problem. An interesting research idea could be to explore a cloud-based
controller and (receiving) VMAC, to which network traffic is rerouted, but
without the need to deploy tunnels (and thus avoid their overhead). How-
ever, the main challenge is that it becomes hard to identify individual pack-
ets at the cloud instance after they have passed through different networks.
A so-called hole punching approach could aid in coping with firewalls and
Network Address Translation (NAT), as such allowing to identify individual
packets, which is needed to utilize the full functionalities of the ORCHES-
TRA framework [183]. This option could also be employed to cope with
commercial LTE solutions that maintain the use of GTP tunnels. Further-
more, as mentioned in Section 3.3.2.2, the placement of the VMAC at the
infrastructure side of cellular networks should also be studied in more detail.
It is essential that the VMAC is reachable from all different technologies, in
order for split flows (because of the packet-based load balancing or duplica-
tion) to be merged again. One of the challenges is that different technologies
are typically placed in different subnetworks. This makes it hard to identify
individual flows, similar to difficulties experienced with GTP tunnels. Be-
sides the previously mentioned hole punching approach, alternatives that
can be considered are header rewriting (modification to the addresses) or the
incorporation of additional information in the headers of the data packets.

• Support for packet scheduling across different technologies. The OR-
CHESTRA framework, and in particular, the VMAC, enables MAC-level
packet-level control across different technologies. Current features that em-
ploy this level of control are the (packet-based) load balancing and dupli-
cation across different technologies. However, we could extend this by
looking at packet-level scheduling across different technologies. On top of
the existing medium access schemes in the technologies themselves (e.g.,
CSMA/CA for Wi-Fi), we could design a scheduling mechanism at the
VMAC layer that can consider transmission across different technologies.
This idea can be seen as Multi-Frequency Time-Division Multiple Access
(MF-TDMA) and could help in minimizing the inference across technolo-
gies or networks that operate in the same frequencies or channels. Note that
this research direction is related to MAC scheduling efforts within the area
of CR.

• Kernel-level implementation. In Section 3.5, we have presented a proto-
type implementation of the ORCHESTRA framework using the Click mod-
ular router. This prototype has proven its worth in evaluating the perfor-
mance of the framework and comparing it to MPTCP. However, to further
study the performance and capabilities of the framework, a kernel imple-
mentation, especially of the VMAC, is preferred. This would allow studying

167

the memory and CPU impact of the VMAC of, in particular, the reordering
and deduplication functionalities. Furthermore, such a kernel implementa-
tion would allow to export the framework to other devices like smartphones
or IoT devices. Finally, this would also encourage to use of the framework
by other researchers or companies.

7.3.2 Load balancing algorithms
• Other objective criteria. All algorithms presented in Chapters 4 and 5,

were designed to increase the network-wide throughput. The evaluation of
the algorithms, respectively, in Sections 4.5 and 5.4, have shown that the
proposed approaches indeed succeed in this goal. Future work could con-
sider other criteria as well, such as energy consumption, latency, or different
QoS classes. Energy consumption can, for instance, be taken into account
through the offloading of all traffic flows from a specific connection or tech-
nology. As such, this interface can be put into a sleep mode, which would
save energy. Naturally, this can only be done, if the topology of the network
and the traffic requirements allow it. Furthermore, different technologies
have also different energy consumptions, typically depending on parameters
such as MCS, link quality, distance, etc. The algorithms can be extended to
take this behavior into account. Additionally, taking into account different
QoS classes can, among others, allow the assignment of the required band-
width to priority flows. While the existing load balancing approaches can
optimize the best effort traffic as much as possible.

• Coping with high mobility environments. The different algorithms pre-
sented in Chapter 5 have been evaluated in scenarios with different mobility
parameters. In particular, we employed the Random Waypoint Model, with
a random start position, and a uniformly random chosen speed between 0.3
and 0.7 m

s . However, the impact of high mobility environments, such as
VANETs, has not been investigated. This could be an interesting area to
further explore. A good starting point could be the consideration of vehic-
ular scenarios in the NS-3 simulator, as presented by Katsaros [184]. Af-
terwards, real-time experiments could be conducted at the Smart Highway
testbed [185].

• Prediction of patterns. The different algorithms proposed in this disserta-
tion make decisions based strictly on real-time monitoring information that
is provided by the underlying frameworks, such as, ORCHESTRA. This is
an improvement to the current state-of-the-art that typically assumed full
knowledge about certain network or traffic flow information. However, we
could also further advance this by not only making decisions based on the
live state of the network but also consider predictions of the future state of
the network. Using ML techniques, we can try to predict future patterns
in terms of network load or mobility. This, in turn, can be used to further
improve the network configurations.

168

• Applicability in IoT environments. In this dissertation, we have mostly fo-
cused on evaluations in LANs. However, further validation of the developed
algorithms in real-life settings can be interesting to explore. Especially, the
deployment in IoT environments, like a smart city or industry 4.0 setting,
seems promising. This can be combined with adding energy consumption
objectives to the algorithms, as explained above.

7.3.3 Traffic recognition in the wireless spectrum

• Improve traffic recognition models. In Chapter 6, we have introduced
three models that are able to detect different traffic patterns at the level of
the wireless spectrum. However, because of the difference in accuracy be-
tween the validation with synthetic and real-life data, there is room for im-
provement. This can, for instance, be done by using a part of the real-life
datasets to retrain the models. It is also possible to generate additional train-
ing data based on the real-life data captures, using Generative Adversarial
Networks (GANs). Another option would be to investigate the performance
of semi-supervised learning methods that can better cope with unseen data.
Furthermore, in order to cope better with noise and interference, we can add
a noise filter to the data adaptation process, after capturing real-life samples.
Finally, in the evaluation with real data (cf. Section 6.4.3) we noticed that
the model for detecting traffic patterns achieves the lowest accuracy. Since
the goal of this classification model is to detect patterns in a time series, we
could explore the use of, or a combination with, Bayesian methods [186].

• Extend traffic recognition models. We have currently created six CNN-
based classification models using a supervised learning approach. However,
the current models for the detection of transmission rates and traffic pat-
terns (i.e., duty cycle) can only discriminate according to four predefined
labels. As real-life traffic cannot be expected to fall precisely within these
four classes, a better approach would be to consider the transmission rate
and the duty cycle as parameters to be identified. To this extent, the perfor-
mance of regression models can be investigated. Furthermore, our models
are currently trained to detect the characteristics of only a single traffic flow.
Future work should extend this to cope with the presence of multiple over-
lapping flows. Finally, we can also push the idea of traffic recognition to the
limit, by exploring the possibility of identifying traffic classes (e.g., video
or voice traffic) or detecting unique applications (e.g., Netflix or Skype).

• Further exploration of data randomization. In Chapter 6, we were the
first to explore the use of the domain randomization technique within the
context of wireless networks. In the data generation framework, we aug-
ment pure IQ samples with different levels of noise to randomize the channel
conditions. However, we believe that the full power of data randomization
techniques is worth to explore further. For instance, instead of adding noise

169

levels that are still realistic, we can investigate the impact of adding com-
pletely unrealistic values. This in light of the techniques used in the area
of robotics and autonomous vehicles, as mentioned in Section 6.3.1. Fur-
thermore, we can also try to randomize other aspects, such as Wi-Fi related
parameters (e.g., channel-width, frequencies, or MCS). Note that these ideas
can also be explored elsewhere within the area of wireless networks. For in-
stance, to train the aforementioned prediction models for network load or
mobility behavior.

• Utilization by network management algorithms. The traffic recognition
models presented in this dissertation, provide new insights into the occu-
pancy of the wireless spectrum. This information can be used by network
management algorithms to optimize the network usage and offload traffic to
frequencies, channels, or slots where bandwidth is still available. To this
extent, future work should consider the development of such algorithms
in order to close the loop. A particularly interesting research direction, is
the combination of the traffic recognition models with the cross-technology
packet-level scheduling extension to the ORCHESTRA framework, as men-
tioned above in Section 7.3.1. Traffic recognition models can help in pro-
viding the information needed to appropriate assign packets to the available
slots across different technologies. Furthermore, traffic recognition infor-
mation might also be valuable to construct traffic prediction models.

170

References

[1] B. M. Leiner, V. G. Cerf, D. D. Clark, R. E. Kahn, L. Kleinrock, D. C.
Lynch, J. Postel, L. G. Roberts, and S. Wolff. A brief history of the Internet.
ACM SIGCOMM Computer Communication Review, 39(5):22–31, 2009.

[2] N. Gershenfeld, R. Krikorian, and D. Cohen. The internet of things. Scien-
tific American, 291(4):76–81, 2004.

[3] Cisco. The Internet of Things: How the Next Evolution of the Internet
Is Changing Everything, 2011. Available from: https://www.cisco.com/c/
dam/en us/about/ac79/docs/innov/IoT IBSG 0411FINAL.pdf.

[4] Cisco. Cisco Visual Networking Index: Forecast and Trends, 2017-
2022, 2017. Available from: https://www.cisco.com/c/en/us/solutions/
collateral/service-provider/visual-networking-index-vni/white-paper-c11-
741490.pdf.

[5] I. Analytics. State of the IoT 2018: Number of IoT devices now at 7B
Market accelerating, 2018. Available from: https://iot-analytics.com/state-
of-the-iot-update-q1-q2-2018-number-of-iot-devices-now-7b/.

[6] Statista. Internet of Things (IoT) connected devices installed base
worldwide from 2015 to 2025 (in billions), 2016. Available from:
https://www.statista.com/statistics/471264/iot-number-of-connected-
devices-worldwide/.

[7] E. Perahia and R. Stacey. Next generation wireless LANs: 802.11 n and
802.11 ac. Cambridge university press, 2013.

[8] J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami. Internet of Things
(IoT): A vision, architectural elements, and future directions. Future gener-
ation computer systems, 29(7):1645–1660, 2013.

[9] N. Alliance. 5G white paper. Next generation mobile networks, white
paper, pages 1–125, 2015.

[10] M. S. Afaqui, E. Garcia-Villegas, and E. Lopez-Aguilera. IEEE
802.11ax: Challenges and Requirements for Future High Effi-
ciency WiFi. IEEE Wireless Communications, 24(3):130–137, 2017.
doi:10.1109/MWC.2016.1600089WC.

https://www.cisco.com/c/dam/en_us/about/ac79/docs/innov/IoT_IBSG_0411FINAL.pdf
https://www.cisco.com/c/dam/en_us/about/ac79/docs/innov/IoT_IBSG_0411FINAL.pdf
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white-paper-c11-741490.pdf
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white-paper-c11-741490.pdf
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white-paper-c11-741490.pdf
https://iot-analytics.com/state-of-the-iot-update-q1-q2-2018-number-of-iot-devices-now-7b/
https://iot-analytics.com/state-of-the-iot-update-q1-q2-2018-number-of-iot-devices-now-7b/
https://www.statista.com/statistics/471264/iot-number-of-connected-devices-worldwide/
https://www.statista.com/statistics/471264/iot-number-of-connected-devices-worldwide/

172

[11] B. Bellalta. IEEE 802.11 ax: High-efficiency WLANs. IEEE Wireless Com-
munications, 23(1):38–46, 2016.

[12] J. G. Andrews, S. Buzzi, W. Choi, S. V. Hanly, A. Lozano, A. C. Soong,
and J. C. Zhang. What will 5G be? IEEE Journal on selected areas in
communications, 32(6):1065–1082, 2014.

[13] S. Al-Sarawi, M. Anbar, K. Alieyan, and M. Alzubaidi. Internet of Things
(IoT) communication protocols. In Information Technology (ICIT), 2017
8th International Conference on, pages 685–690. IEEE, 2017.

[14] S. Chen, J. Hu, Y. Shi, and L. Zhao. LTE-V: A TD-LTE-based V2X solution
for future vehicular network. IEEE Internet of Things journal, 3(6):997–
1005, 2016.

[15] I. F. Akyildiz, D. M. Gutierrez-Estevez, and E. C. Reyes. The evolution to
4G cellular systems: LTE-Advanced. Physical communication, 3(4):217–
244, 2010.

[16] R. Trestian, I.-S. Comsa, and M. F. Tuysuz. Seamless multimedia delivery
within a heterogeneous wireless networks environment: Are we there yet?
IEEE Communications Surveys & Tutorials, 20(2):945–977, 2018.

[17] M. Chiang and T. Zhang. Fog and IoT: An overview of research opportuni-
ties. IEEE Internet of Things Journal, 3(6):854–864, 2016.

[18] V. Sagar, R. Chandramouli, and K. P. Subbalakshmi. Software defined ac-
cess for HetNets. IEEE Communications Magazine, 54(1):84–89, 2016.

[19] F. M. Abinader, E. P. Almeida, F. S. Chaves, A. M. Cavalcante, R. D. Vieira,
R. C. Paiva, A. M. Sobrinho, S. Choudhury, E. Tuomaala, K. Doppler, and
V. A. Sousa. Enabling the coexistence of LTE and Wi-Fi in unlicensed
bands. IEEE Communications Magazine, 52(11):54–61, 2014.

[20] O. Galinina, A. Pyattaev, S. Andreev, M. Dohler, and Y. Koucheryavy. 5G
multi-RAT LTE-WiFi ultra-dense small cells: Performance dynamics, archi-
tecture, and trends. IEEE Journal on Selected Areas in Communications,
33(6):1224–1240, 2015.

[21] M. Z. Hasan, H. Al-Rizzo, and F. Al-Turjman. A survey on multipath rout-
ing protocols for QoS assurances in real-time wireless multimedia sensor
networks. IEEE Communications Surveys & Tutorials, 19(3):1424–1456,
2017.

[22] H. Zimmermann. OSI Reference Model-The ISO Model of Architecture for
Open Systems Interconnection. IEEE Transactions on Communications,
28(4):425–432, 1980.

173

[23] R. Wang, H. Hu, and X. Yang. Potentials and Challenges of C-RAN Sup-
porting Multi-RATs Toward 5G Mobile Networks. IEEE Access, 2:1187–
1195, 2014. doi:10.1109/ACCESS.2014.2360555.

[24] M. Yang, Y. Li, D. Jin, L. Zeng, X. Wu, and A. V. Vasilakos. Software-
defined and virtualized future mobile and wireless networks: A survey. Mo-
bile Networks and Applications, 20(1):4–18, 2015.

[25] X. Yan, Y. A. Şekercioğlu, and S. Narayanan. A survey of vertical handover
decision algorithms in Fourth Generation heterogeneous wireless networks.
Computer networks, 54(11):1848–1863, 2010.

[26] B. Dezfouli, V. Esmaeelzadeh, J. Sheth, and M. Radi. A review of software-
defined WLANs: Architectures and central control mechanisms. IEEE Com-
munications Surveys & Tutorials, 2018.

[27] N. Zhang, S. Zhang, S. Wu, J. Ren, J. W. Mark, and X. Shen. Beyond Co-
existence: Traffic Steering in LTE Networks with Unlicensed Bands. IEEE
Wireless Communications, 23(6):40–46, 2016.

[28] R. G. Garroppo, L. Gazzarrini, S. Giordano, and L. Tavanti. Experimental
assessment of the coexistence of Wi-Fi, ZigBee, and Bluetooth devices. In
World of Wireless, Mobile and Multimedia Networks (WoWMoM), 2011
IEEE International Symposium on a, pages 1–9. IEEE, 2011.

[29] M. Ndiaye, G. Hancke, and A. Abu-Mahfouz. Software defined network-
ing for improved wireless sensor network management: A survey. Sensors,
17(5):1031, 2017.

[30] Y. Bejerano, S.-J. Han, and L. E. Li. Fairness and load balancing in wireless
LANs using association control. In Proceedings of the 10th annual interna-
tional conference on Mobile computing and networking, pages 315–329.
ACM, 2004.

[31] D. Macone, G. Oddi, A. Palo, and V. Suraci. A dynamic load balancing al-
gorithm for Quality of Service and mobility management in next generation
home networks. Telecommunication Systems, 53(3):265–283, 2013.

[32] O. Olvera-Irigoyen, A. Kortebi, and L. Toutain. Available Bandwidth Prob-
ing for path selection in heterogeneous home Networks. In IEEE Globecom
Workshops (GC Wkshps), pages 492–497, 2012.

[33] A. M. Cavalcante, E. Almeida, R. D. Vieira, S. Choudhury, E. Tuomaala,
K. Doppler, F. Chaves, R. C. Paiva, and F. Abinader. Performance evalua-
tion of LTE and Wi-Fi coexistence in unlicensed bands. In 2013 IEEE 77th
Vehicular Technology Conference (VTC Spring), pages 1–6. IEEE, 2013.

174

[34] F. I. Di Piazza, S. Mangione, and I. Tinnirello. On the effects of transmit
power control on the energy consumption of WiFi network cards. In Inter-
national Conference on Heterogeneous Networking for Quality, Reliability,
Security and Robustness, pages 463–475. Springer, 2009.

[35] S. Rayanchu, A. Patro, and S. Banerjee. Airshark: detecting non-WiFi RF
devices using commodity WiFi hardware. In Proceedings of the 2011 ACM
SIGCOMM conference on Internet measurement conference, pages 137–
154. ACM, 2011.

[36] S. K. Sharma, T. E. Bogale, S. Chatzinotas, B. Ottersten, L. B. Le, and
X. Wang. Cognitive radio techniques under practical imperfections: A sur-
vey. IEEE communications surveys and tutorials, 2015.

[37] S. Bayhan and A. Zubow. Optimal mapping of stations to access points in
enterprise wireless local area networks. In Proceedings of the 20th ACM
International Conference on Modelling, Analysis and Simulation of Wire-
less and Mobile Systems, pages 9–18. ACM, 2017.

[38] S. Palm. Home networks: From bits to gigabits: Lessons learned from
the Evolution of Home Networking. IEEE Consumer Electronics Magazine,
1(3):29–35, 2012.

[39] P. Gallo, K. Kosek-Szott, S. Szott, and I. Tinnirello. SDN@ home: A method
for controlling future wireless home networks. IEEE Communications Mag-
azine, 54(5):123–131, 2016.

[40] A. De La Oliva, A. Banchs, I. Soto, T. Melia, and A. Vidal. An overview of
IEEE 802.21: media-independent handover services. IEEE Wireless Com-
munications, 15(4):96–103, 2008.

[41] K. Taniuchi, Y. Ohba, V. Fajardo, S. Das, M. Tauil, Y.-H. Cheng, A. Dutta,
D. Baker, M. Yajnik, and D. Famolari. IEEE 802.21: Media independent
handover: Features, applicability, and realization. IEEE Communications
Magazine, 47(1):112–120, 2009.

[42] M.-S. Chiang, C.-M. Huang, P. B. Chau, S. Xu, H. Zhou, and D. Ren. A
forward fast media independent handover control scheme for Proxy Mo-
bile IPv6 (FFMIH-PMIPv6) over heterogeneous wireless mobile network.
Telecommunication Systems, 65(4):699–715, 2017.

[43] V. Sharma, J. Kim, S. Kwon, I. You, and F.-Y. Leu. An overview of 802.21 a-
2012 and its incorporation into iot-fog networks using osmotic framework.
In International Conference on Internet of Things as a Service, pages 64–72.
Springer, 2017.

[44] R. Marin-Lopez, F. Bernal-Hidalgo, S. Das, L. Chen, and Y. Ohba. A new
Standard for securing media independent handover: IEEE 802.21 A. IEEE
Wireless Communications, 20(6):82–90, 2013.

175

[45] IEEE Std. 1905.1-2013. IEEE Standard for Convergent Digital Home Net-
work for Heterogeneous Technologies, 2013.

[46] A. Crabtree, R. Mortier, T. Rodden, and P. Tolmie. Unremarkable net-
working: the home network as a part of everyday life. In the Designing
Interactive Systems Conference, pages 554–563, 2012.

[47] J.-P. Javaudin, M. Bellec, D. Varoutas, and V. Suraci. OMEGA ICT project:
Towards convergent Gigabit home networks. In 19th IEEE International
Symposium on Personal, Indoor and Mobile Radio Communications, 2008.

[48] T. Meyer, P. Langendörfer, M. Bahr, V. Suraci, S. Nowak, and R. Jennen.
An inter-MAC architecture for heterogeneous gigabit home networks. In
20th IEEE International Symposium on Personal, Indoor and Mobile Radio
Communications, 2009.

[49] D. Macone, G. Oddi, A. Palo, and V. Suraci. A dynamic load balancing al-
gorithm for Quality of Service and mobility management in next generation
home networks. Telecommunication Systems, 53(3):265–283, 2013.

[50] K. Xu, X. Wang, W. Wei, H. Song, and B. Mao. Toward software defined
smart home. IEEE Communications Magazine, 54(5):116–122, 2016.

[51] N. Soetens, J. Famaey, M. Verstappen, and S. Latré. SDN-based manage-
ment of heterogeneous home networks. In 11th International Conference on
Network and Service Management (CNSM), pages 402–405, 2015.

[52] A. Shalimov, D. Zuikov, D. Zimarina, V. Pashkov, and R. Smeliansky. Ad-
vanced study of SDN/OpenFlow controllers. Proceedings of the 9th Central
& Eastern European Software Engineering Conference in Russia on - CEE-
SECR ’13, pages 1–6, 2013.

[53] L. Sequeira, J. L. de la Cruz, J. Ruiz-Mas, J. Saldana, J. Fernandez-Navajas,
and J. Almodovar. Building an SDN Enterprise WLAN Based on Virtual
APs. IEEE Communications Letters, 21(2):374–377, 2017.

[54] L. Suresh, J. Schulz-Zander, R. Merz, A. Feldmann, and T. Vazao. To-
wards programmable enterprise WLANS with Odin. In Proceedings of the
first workshop on Hot topics in software defined networks, pages 115–120.
ACM, 2012.

[55] R. Riggio, M. K. Marina, J. Schulz-Zander, S. Kuklinski, and T. Rasheed.
Programming Abstractions for Software-Defined Wireless Networks. IEEE
Transactions on Network and Service Management, 12(2):146–162, 2015.

[56] 5G-EmPOWER. Available from: https://5g-empower.io/.

https://5g-empower.io/

176

[57] H. Moura, G. V. Bessa, M. A. Vieira, and D. F. Macedo. Ethanol: Soft-
ware defined networking for 802.11 wireless networks. In 2015 IFIP/IEEE
International Symposium on Integrated Network Management (IM), pages
388–396. IEEE, 2015.

[58] V. Sivaraman, T. Moors, H. Habibi Gharakheili, D. Ong, J. Matthews, and
C. Russell. Virtualizing the access network via open APIs. In Proceedings
of the ninth ACM conference on Emerging networking experiments and
technologies, pages 31–42. ACM, 2013.

[59] Wi-5: What to do with the Wi-Fi wild west. Available from: http://www.
wi5.eu.

[60] A. Mukherjee, J.-F. Cheng, S. Falahati, H. Koorapaty, D. H. Kang,
R. Karaki, L. Falconetti, and D. Larsson. Licensed-Assisted Access LTE:
coexistence with IEEE 802.11 and the evolution toward 5G. IEEE Commu-
nications Magazine, 54(6):50–57, 2016.

[61] C. Hoymann, D. Astely, M. Stattin, G. Wikstrom, J.-F. Cheng, A. Hoglund,
M. Frenne, R. Blasco, J. Huschke, and F. Gunnarsson. LTE release 14
outlook. IEEE Communications Magazine, 54(6):44–49, 2016.

[62] D. Laselva, D. Lopez-Perez, M. Rinne, and T. Henttonen. 3GPP LTE-
WLAN Aggregation Technologies: Functionalities and Performance Com-
parison. IEEE Communications Magazine, 56(3):195–203, 2018.

[63] X. Wang, S. Mao, and M. X. Gong. A survey of LTE Wi-Fi coexistence in
unlicensed bands. GetMobile: Mobile Computing and Communications,
20(3):17–23, 2017.

[64] P. Nuggehalli. LTE-WLAN aggregation [Industry Perspectives]. IEEE
Wireless Communications, 23(4):4–6, 2016.

[65] P. Sharma, A. Brahmakshatriya, T. V. Pasca S., B. R. Tamma, and
A. Franklin. LWIR: LTE-WLAN Integration at RLC Layer with Virtual
WLAN Scheduler for Efficient Aggregation. In 2016 IEEE Global Com-
munications Conference (GLOBECOM), pages 1–6, 2016.

[66] Y.-B. Lin, Y.-J. Shih, and P.-W. Chao. Design and Implementation of LTE
RRM With Switched LWA Policies. IEEE Transactions on Vehicular Tech-
nology, 67(2):1053–1062, 2018.

[67] G. mobile Suppliers Association (GSA). LTE in Unlicensed Spec-
trum: Trials, Deployments and Devices, 2018. Available from:
https://www.sata-sec.net/downloads/GSA/180117-GSA-Unlicensed-
spectrum-report-Jan-2018.pdf.

[68] D. Chambers. MulteFire lights up the path for universal wireless service.
Technical Report May, 2016.

http://www.wi5.eu
http://www.wi5.eu
https://www.sata-sec.net/downloads/GSA/180117-GSA-Unlicensed-spectrum-report-Jan-2018.pdf
https://www.sata-sec.net/downloads/GSA/180117-GSA-Unlicensed-spectrum-report-Jan-2018.pdf

177

[69] C. Rosa, M. Kuusela, F. Frederiksen, and K. I. Pedersen. Standalone LTE
in Unlicensed Spectrum: Radio Challenges, Solutions, and Performance of
MulteFire. IEEE Communications Magazine, 56(10):170–177, 2018.

[70] S.-Y. Lien, S.-L. Shieh, Y. Huang, B. Su, Y.-L. Hsu, and H.-Y. Wei. 5G new
radio: Waveform, frame structure, multiple access, and initial access. IEEE
communications magazine, 55(6):64–71, 2017.

[71] S. Parkvall, E. Dahlman, A. Furuskar, and M. Frenne. NR: The new
5G radio access technology. IEEE Communications Standards Magazine,
1(4):24–30, 2017.

[72] M. Networks. Truffle - Broadband Bonding Appliance. Available from:
https://www.mushroomnetworks.com/truffle/.

[73] Peplink. Multi-WAN Internet Load Balancer. Available from: https://www.
peplink.com/technology/internet-load-balancing/.

[74] C. Paasch, S. Ferlin, O. Alay, and O. Bonaventure. Experimental evaluation
of multipath TCP schedulers. In Proceedings of the 2014 ACM SIGCOMM
workshop on Capacity sharing workshop - CSWS ’14, pages 27–32, 2014.

[75] A. Ford, C. Raiciu, M. Handley, and O. Bonaventure. TCP Extensions for
Multipath Operation with Multiple Addresses. RFC 6824, RFC Editor, Jan-
uary 2013. Available from: http://www.rfc-editor.org/rfc/rfc6824.txt.

[76] Q. De Coninck, M. Baerts, B. Hesmans, and O. Bonaventure. A first anal-
ysis of multipath TCP on smartphones. Lecture Notes in Computer Sci-
ence (including subseries Lecture Notes in Artificial Intelligence and Lec-
ture Notes in Bioinformatics), 9631(September 2015):57–69, 2016.

[77] J. Kellokoski. Real-life multipath TCP based make-before-break vertical
handover. In 2013 IEEE Symposium on Computers and Communications
(ISCC), pages 000252–000256. IEEE, 2013.

[78] C. Paasch, G. Detal, F. Duchene, C. Raiciu, and O. Bonaventure. Exploring
mobile/WiFi handover with multipath TCP. In Proceedings of the 2012
ACM SIGCOMM workshop on Cellular networks: operations, challenges,
and future design, pages 31–36. ACM, 2012.

[79] K. W. Choi, Y. S. Cho, J. W. Lee, S. M. Cho, J. Choi, et al. Optimal load
balancing scheduler for MPTCP-based bandwidth aggregation in hetero-
geneous wireless environments. Computer Communications, 112:116–130,
2017.

[80] C. Paasch, R. Khalili, and O. Bonaventure. On the benefits of applying
experimental design to improve multipath TCP. In Proceedings of the ninth
ACM conference on Emerging networking experiments and technologies,
pages 393–398. ACM, 2013.

https://www.mushroomnetworks.com/truffle/
https://www.peplink.com/technology/internet-load-balancing/
https://www.peplink.com/technology/internet-load-balancing/
http://www.rfc-editor.org/rfc/rfc6824.txt

178

[81] S. H. Baidya and R. Prakash. Improving the performance of multipath TCP
over heterogeneous paths using slow path adaptation. In 2014 IEEE Inter-
national Conference on Communications (ICC), pages 3222–3227. IEEE,
2014.

[82] S. C. Nguyen and T. M. T. Nguyen. Evaluation of multipath TCP load shar-
ing with coupled congestion control option in heterogeneous networks. In
Global Information Infrastructure Symposium-GIIS 2011, pages 1–5. IEEE,
2011.

[83] R. Khalili, N. Gast, M. Popovic, and J.-Y. Le Boudec. MPTCP is not pareto-
optimal: performance issues and a possible solution. IEEE/ACM Transac-
tions on Networking (ToN), 21(5):1651–1665, 2013.

[84] F. Rebecchi, M. D. De Amorim, V. Conan, A. Passarella, R. Bruno, and
M. Conti. Data offloading techniques in cellular networks: A survey. IEEE
Communications Surveys and Tutorials, 17(2):580–603, 2015.

[85] Tessares. Hybrid Access Networks with MPTCP. Available from: https:
//www.tessares.net/.

[86] O. Bonaventure. Multipath TCP inside the beast. Available
from: http://blog.multipath-tcp.org/blog/html/2018/12/12/multipath tcp
inside the beast.html.

[87] D. Lee, B. E. Carpenter, and N. Brownlee. Media streaming observations:
Trends in udp to tcp ratio. International Journal on Advances in Systems
and Measurements, 3(3-4), 2010.

[88] D. Murray, T. Koziniec, S. Zander, M. Dixon, and P. Koutsakis. An analysis
of changing enterprise network traffic characteristics. In 2017 23rd Asia-
Pacific Conference on Communications (APCC), pages 1–6. IEEE, 2017.

[89] Q. De Coninck and O. Bonaventure. Multipath quic: Design and evalu-
ation. In Proceedings of the 13th International Conference on Emerging
Networking EXperiments and Technologies, pages 160–166. ACM, 2017.

[90] J. W. Stewart III. BGP4: inter-domain routing in the Internet. Addison-
Wesley Longman Publishing Co., Inc., 1998.

[91] Y. Rekhter, T. Li, and S. Hares. A Border Gateway Protocol 4 (BGP-4).
Technical report, Internet Engineering Task Force, 2005. Available from:
https://www.rfc-editor.org/rfc/pdfrfc/rfc4271.txt.pdf.

[92] D. Meyer, L. Zhang, and K. Fall. Report from the IAB Workshop on Routing
and Addressing. Technical report, Internet Engineering Task Force, 2007.
Available from: https://www.rfc-editor.org/rfc/pdfrfc/rfc4984.txt.pdf.

https://www.tessares.net/
https://www.tessares.net/
http://blog.multipath-tcp.org/blog/html/2018/12/12/multipath_tcp_inside_the_beast.html
http://blog.multipath-tcp.org/blog/html/2018/12/12/multipath_tcp_inside_the_beast.html
https://www.rfc-editor.org/rfc/pdfrfc/rfc4271.txt.pdf
https://www.rfc-editor.org/rfc/pdfrfc/rfc4984.txt.pdf

179

[93] R. Shacham, H. Schulzrinne, S. Thakolsri, and W. Kellerer. Session Initia-
tion Protocol (SIP) Session Mobility. Technical report, Internet Engineering
Task Force, 2009. Available from: https://www.rfc-editor.org/info/rfc5631.

[94] M. Wernersson, S. Wanstedt, and P. Synnergren. Effects of QoS scheduling
strategies on performance of mixed services over LTE. In 2007 IEEE 18th
International Symposium on Personal, Indoor and Mobile Radio Commu-
nications, pages 1–5. IEEE, 2007.

[95] Apple. About Wi-Fi Assist. Available from: https://support.apple.com/en-
us/HT205296.

[96] Kernel.org. Linux Ethernet Bonding Driver HOWTO, 2011. Available from:
https://www.kernel.org/doc/Documentation/networking/bonding.txt.

[97] Interserver.net. What is Network Bonding? Types of Network Bond-
ing, 2016. Available from: https://www.interserver.net/tips/kb/network-
bonding-types-network-bonding/.

[98] S. Sahaly and P. Christin. Inter-MAC forwarding and load balancing per
flow. In 20th IEEE International Symposium on Personal, Indoor and Mo-
bile Radio Communications, pages 1–4, 2009.

[99] G. Oddi, A. Pietrabissa, F. D. Priscoli, and V. Suraci. A decentralized load
balancing algorithm for heterogeneous wireless access networks. In World
Telecommunications Congress, pages 1–6, 2014.

[100] O. Bouchet, A. Kortebi, and M. Boucher. Inter-MAC green path selection
for heterogeneous networks. In IEEE Globecom Workshops (GC Wkshps),
pages 487–491, 2012.

[101] A. Kortebi and O. Bouchet. Performance evaluation of inter-mac green path
selection protocol. In 12th Annual IEEE Mediterranean Ad Hoc Network-
ing Workshop (MED-HOC-NET), pages 42–48, 2013.

[102] L.-H. Yen, J.-J. Li, and C.-M. Lin. Stability and fairness of AP selection
games in IEEE 802.11 access networks. IEEE Transactions on Vehicular
Technology, 60(3):1150–1160, 2011.

[103] I. Malanchini, M. Cesana, and N. Gatti. Network selection and resource al-
location games for wireless access networks. IEEE Transactions on Mobile
Computing, 12(12):2427–2440, 2013.

[104] L. Yang, Y. Cui, H. Tang, and S. Xiao. Demand-aware load balancing in
wireless lans using association control. In 2015 IEEE Global Communica-
tions Conference (GLOBECOM), pages 1–6. IEEE, 2015.

https://www.rfc-editor.org/info/rfc5631
https://support.apple.com/en-us/HT205296
https://support.apple.com/en-us/HT205296
https://www.kernel.org/doc/Documentation/networking/bonding.txt
https://www.interserver.net/tips/kb/network-bonding-types-network-bonding/
https://www.interserver.net/tips/kb/network-bonding-types-network-bonding/

180

[105] E. Coronado, R. Riggio, J. Villalón, and A. Garrido. Wi-balance: Channel-
aware user association in software-defined Wi-Fi networks. In NOMS 2018-
2018 IEEE/IFIP Network Operations and Management Symposium, pages
1–9. IEEE, 2018.

[106] M. Zekri, B. Jouaber, and D. Zeghlache. A review on mobility manage-
ment and vertical handover solutions over heterogeneous wireless networks.
Computer Communications, 35(17):2055–2068, 2012.

[107] G. Gódor, Z. Jakó, Á. Knapp, and S. Imre. A survey of handover manage-
ment in LTE-based multi-tier femtocell networks: Requirements, challenges
and solutions. Computer Networks, 76:17–41, 2015.

[108] J. G. Andrews, S. Singh, Q. Ye, X. Lin, and H. S. Dhillon. An overview of
load balancing in HetNets: Old myths and open problems. IEEE Wireless
Communications, 21(2):18–25, 2014.

[109] D. Liu, L. Wang, Y. Chen, M. Elkashlan, K.-K. Wong, R. Schober, and
L. Hanzo. User association in 5G networks: A survey and an outlook.
IEEE Communications Surveys & Tutorials, 18(2):1018–1044, 2016.

[110] P. Coucheney, C. Touati, and B. Gaujal. Fair and efficient user-network
association algorithm for multi-technology wireless networks. In IEEE IN-
FOCOM 2009, pages 2811–2815. IEEE, 2009.

[111] Q. Ye, B. Rong, Y. Chen, M. Al-Shalash, C. Caramanis, and J. G. Andrews.
User association for load balancing in heterogeneous cellular networks.
IEEE Transactions on Wireless Communications, 12(6):2706–2716, 2013.

[112] D. Harutyunyan, S. Herle, D. Maradin, G. Agapiu, and R. Riggio. Traffic-
aware user association in heterogeneous LTE/WiFi radio access networks.
In NOMS 2018-2018 IEEE/IFIP Network Operations and Management
Symposium, pages 1–8. IEEE, 2018.

[113] A. Alizadeh and M. Vu. Load Balancing User Association in Millimeter
Wave MIMO Networks. IEEE Transactions on Wireless Communications,
18(6):2932–2945, 2019.

[114] B. Ng, A. Deng, Y. Qu, and W. K. Seah. Changeover prediction model for
improving handover support in campus area WLAN. In Network Operations
and Management Symposium (NOMS), 2016 IEEE/IFIP, pages 265–272.
IEEE, 2016.

[115] S. Fernandes and A. Karmouch. Vertical mobility management architectures
in wireless networks: A comprehensive survey and future directions. IEEE
Communications Surveys & Tutorials, 14(1):45–63, 2012.

181

[116] Z. A. Qazi, J. Lee, T. Jin, G. Bellala, M. Arndt, and G. Noubir. Application-
awareness in SDN. ACM SIGCOMM computer communication review,
43(4):487–488, 2013.

[117] T. AbuHmed, A. Mohaisen, and D. Nyang. A survey on deep packet in-
spection for intrusion detection systems. arXiv preprint arXiv:0803.0037,
2008.

[118] A. Dainotti, A. Pescape, and K. C. Claffy. Issues and future directions in
traffic classification. IEEE network, 26(1):35–40, 2012.

[119] J. Sherry, C. Lan, R. A. Popa, and S. Ratnasamy. Blindbox: Deep packet
inspection over encrypted traffic. ACM SIGCOMM Computer Communi-
cation Review, 45(4):213–226, 2015.

[120] M. Lotfollahi, R. S. H. Zade, M. J. Siavoshani, and M. Saberian. Deep
packet: A novel approach for encrypted traffic classification using deep
learning. arXiv preprint arXiv:1709.02656, 2017.

[121] F. Pacheco, E. Exposito, M. Gineste, C. Baudoin, and J. Aguilar. Towards
the deployment of Machine Learning solutions in network traffic classifi-
cation: A systematic survey. IEEE Communications Surveys & Tutorials,
2018.

[122] T. T. Nguyen and G. J. Armitage. A survey of techniques for internet traffic
classification using machine learning. IEEE Communications Surveys and
Tutorials, 10(1-4):56–76, 2008.

[123] J. Zhang, X. Chen, Y. Xiang, W. Zhou, and J. Wu. Robust network
traffic classification. IEEE/ACM Transactions on Networking (TON),
23(4):1257–1270, 2015.

[124] W. Wang, M. Zhu, X. Zeng, X. Ye, and Y. Sheng. Malware traffic classi-
fication using convolutional neural network for representation learning. In
2017 International Conference on Information Networking (ICOIN), pages
712–717. IEEE, 2017.

[125] M. Shi, A. Laufer, Y. Bar-Ness, and W. Su. Fourth order cumulants in
distinguishing single carrier from OFDM signals. In MILCOM 2008-2008
IEEE Military Communications Conference, pages 1–6. IEEE, 2008.

[126] E. Karami and O. A. Dobre. Identification of SM-OFDM and AL-OFDM
signals based on their second-order cyclostationarity. IEEE transactions on
vehicular technology, 64(3):942–953, 2015.

[127] E. Karami, O. A. Dobre, and N. Adnani. Identification of GSM and LTE
signals using their second-order cyclostationarity. In 2015 IEEE Interna-
tional Instrumentation and Measurement Technology Conference (I2MTC)
Proceedings, pages 1108–1112. IEEE, 2015.

182

[128] W. Liu, M. Kulin, T. Kazaz, A. Shahid, I. Moerman, and E. De Poorter.
Wireless technology recognition based on RSSI distribution at sub-Nyquist
sampling rate for constrained devices. Sensors, 17(9):2081, 2017.

[129] M. Schmidt, D. Block, and U. Meier. Wireless interference identification
with convolutional neural networks. In 2017 IEEE 15th International Con-
ference on Industrial Informatics (INDIN), pages 180–185. IEEE, 2017.

[130] S. Jeong, U. Lee, and S. C. Kim. Spectrogram-Based Automatic Modula-
tion Recognition Using Convolutional Neural Network. In 2018 Tenth In-
ternational Conference on Ubiquitous and Future Networks (ICUFN), pages
843–845. IEEE, 2018.

[131] S. Rajendran, W. Meert, D. Giustiniano, V. Lenders, and S. Pollin. Deep
learning models for wireless signal classification with distributed low-cost
spectrum sensors. IEEE Transactions on Cognitive Communications and
Networking, 4(3):433–445, 2018.

[132] T. J. OShea, J. Corgan, and T. C. Clancy. Convolutional radio modulation
recognition networks. In International conference on engineering applica-
tions of neural networks, pages 213–226. Springer, 2016.

[133] M. Kulin, T. Kazaz, I. Moerman, and E. De Poorter. End-to-end learning
from spectrum data: A deep learning approach for wireless signal identifi-
cation in spectrum monitoring applications. IEEE Access, 6:18484–18501,
2018.

[134] S. Yi, H. Wang, W. Xue, X. Fan, L. Wang, J. Tian, and R. Matsukura. Inter-
ference Source Identification for IEEE 802.15. 4 wireless Sensor Networks
Using Deep Learning. In 2018 IEEE 29th Annual International Symposium
on Personal, Indoor and Mobile Radio Communications (PIMRC), pages 1–
7. IEEE, 2018.

[135] E. Testi, E. Favarelli, and A. Giorgetti. Machine Learning for User Traffic
Classification in Wireless Systems. In 2018 26th European Signal Process-
ing Conference (EUSIPCO), pages 2040–2044. IEEE, 2018.

[136] P. Hintjens. ZeroMQ: messaging for many applications. O’Reilly Media,
Inc., 2013.

[137] S.-Q. Lee and J.-u. Kim. Local breakout of mobile access network traffic
by mobile edge computing. In 2016 International Conference on Informa-
tion and Communication Technology Convergence (ICTC), pages 741–743,
2016. doi:10.1109/ICTC.2016.7763283.

[138] F. Giust, G. Verin, K. Antevski, J. Chou, Y. Fang, W. Featherstone,
F. Fontes, D. Frydman, A. Li, A. Manzalini, et al. MEC deployments in
4G and evolution towards 5G. ETSI White Paper, 24:1–24, 2018.

183

[139] T. Taleb, K. Samdanis, B. Mada, H. Flinck, S. Dutta, and D. Sabella. On
Multi-Access Edge Computing: A Survey of the Emerging 5G Network Edge
Cloud Architecture and Orchestration. IEEE Communications Surveys &
Tutorials, 19(3):1657–1681, 2017. Available from: http://ieeexplore.ieee.
org/document/7931566/, doi:10.1109/COMST.2017.2705720.

[140] Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief. A Sur-
vey on Mobile Edge Computing: The Communication Perspective.
IEEE Communications Surveys & Tutorials, 19(4):2322–2358, 2017.
doi:10.1109/COMST.2017.2745201.

[141] F. Giust, V. Sciancalepore, D. Sabella, M. C. Filippou, S. Mangiante,
W. Featherstone, and D. Munaretto. Multi-access Edge Computing: The
driver behind the wheel of 5G-connected cars. IEEE Communications Stan-
dards Magazine, 2(3):66–73, 2018.

[142] G. T. 23.501. Technical Specification Group Services and System Aspects:
System Architecture for the 5G System, Stage 2 (Release 15),V1.3.0, 2017.

[143] Y. Yu. SDN-based Local breakout for mobile edge computing in radio ac-
cess network. In 2018 IEEE Wireless Communications and Networking
Conference (WCNC), pages 1–6. IEEE, 2018.

[144] S. Kekki, W. Featherstone, Y. Fang, P. Kuure, A. Li, A. Ranjan,
D. Purkayastha, F. Jiangping, D. Frydman, G. Verin, et al. MEC in
5G networks, 2018. Available from: https://www.etsi.org/images/files/
ETSIWhitePapers/etsi wp28 mec in 5G FINAL.pdf.

[145] F. Khan. Mobile Internet from the Heavens. arXiv preprint
arXiv:1508.02383, page 8, 2015.

[146] S. Xu, X.-w. Wang, and M. Huang. Software-Defined Next-Generation
Satellite Networks: Architecture, Challenges, and Solutions. IEEE Access,
4(c):1–1, 2018.

[147] S. Al-Sarawi, M. Anbar, K. Alieyan, and M. Alzubaidi. Internet of Things
(IoT) communication protocols: Review. In 2017 8th International Confer-
ence on Information Technology (ICIT), pages 685–690, 2017.

[148] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu. Edge computing: Vision and
challenges. IEEE Internet of Things Journal, 3(5):637–646, 2016.

[149] P. A. Frangoudis, G. C. Polyzos, and V. P. Kemerlis. Wireless community
networks: An alternative approach for nomadic broadband network access.
IEEE Communications Magazine, 49(5):206–213, 2011.

[150] P. Bosch, J. Wyffels, B. Braem, and S. Latré. How is your event Wi-Fi do-
ing? Performance measurements of large-scale and dense IEEE 802.11n/ac
networks. In Proceedings of the IM 2017 - 2017 IFIP/IEEE International

http://ieeexplore.ieee.org/document/7931566/
http://ieeexplore.ieee.org/document/7931566/
https://www.etsi.org/images/files/ETSIWhitePapers/etsi_wp28_mec_in_5G_FINAL.pdf
https://www.etsi.org/images/files/ETSIWhitePapers/etsi_wp28_mec_in_5G_FINAL.pdf

184

Symposium on Integrated Network and Service Management, pages 701–
707, 2017.

[151] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. Kaashoek. The click
modular router. ACM Transactions on Computer Systems, 18(3):263–297,
2000. doi:10.1145/354871.354874.

[152] LEDE docs. Available from: https://lede.readthedocs.io/en/latest/.

[153] N. Nikaein, M. K. Marina, S. Manickam, A. Dawson, R. Knopp, and
C. Bonnet. OpenAirInterface: A flexible platform for 5G research. ACM
SIGCOMM Computer Communication Review, 44(5):33–38, 2014.

[154] MultiPath TCP - Linux Kernel implementation. Available from: https://
multipath-tcp.org/pmwiki.php.

[155] I. Lopez, M. Aguado, C. Pinedo, and E. Jacob. SCADA systems in the
railway domain: enhancing reliability through Redundant MultipathTCP.
In 2015 IEEE 18th International Conference on Intelligent Transportation
Systems, pages 2305–2310. IEEE, 2015.

[156] Gurobi Optimization. Available from: http://www.gurobi.com/.

[157] CPLEX Optimizer. Available from: https://www.ibm.com/analytics/cplex-
optimizer.

[158] L. C. Coelho. Linearization of the product of two variables. Available from:
https://www.leandro-coelho.com/linearization-product-variables/.

[159] Wi-Fi Doctor: Keeping your WLAN healthy - White Paper - The Future
Trust, 2014. Available from: https://www.slideshare.net/TechnicolorCo/
white-paper-wifi-doctor.

[160] T. R. Henderson, M. Lacage, G. F. Riley, C. Dowell, and J. Kopena.
Network simulations with the ns-3 simulator. SIGCOMM demonstration,
14(14):527, 2008.

[161] A. T. NoteTN2224. Best Practices for Creating and Deploying HTTP Live
Streaming Media for Apple Devices. Technical report, Apple, 2012. Avail-
able from: https://developer.apple.com/library/ios/technotes/tn2224/ index.
html.

[162] Y. Donoso and R. Fabregat. Multi-objective optimization in computer net-
works using metaheuristics. CRC Press, 2016.

[163] H. Liu, H. Darabi, P. Banerjee, and J. Liu. Survey of wireless indoor posi-
tioning techniques and systems. IEEE Transactions on Systems, Man and
Cybernetics Part C: Applications and Reviews, 37(6):1067–1080, 2007.

https://lede.readthedocs.io/en/latest/
https://multipath-tcp.org/pmwiki.php
https://multipath-tcp.org/pmwiki.php
http://www.gurobi.com/
https://www.ibm.com/analytics/cplex-optimizer
https://www.ibm.com/analytics/cplex-optimizer
https://www.leandro-coelho.com/linearization-product-variables/
https://www.slideshare.net/TechnicolorCo/white-paper-wifi-doctor
https://www.slideshare.net/TechnicolorCo/white-paper-wifi-doctor
https://developer.apple.com/library/ios/technotes/tn2224/_index.html
https://developer.apple.com/library/ios/technotes/tn2224/_index.html

185

[164] I. Goodfellow, Y. Bengio, and A. Courville. Deep learning. MIT press,
2016.

[165] F. Tschopp, J. N. Martel, S. C. Turaga, M. Cook, and J. Funke. Efficient
convolutional neural networks for pixelwise classification on heterogeneous
hardware systems. In 2016 IEEE 13th International Symposium on Biomed-
ical Imaging (ISBI), pages 1225–1228. IEEE, 2016.

[166] Y. Chen, J. Wang, B. Zhu, M. Tang, and H. Lu. Pixel-wise deep sequence
learning for moving object detection. IEEE Transactions on Circuits and
Systems for Video Technology, 2017.

[167] R. Guo, J. Liu, N. Li, S. Liu, F. Chen, B. Cheng, J. Duan, X. Li, and C. Ma.
Pixel-Wise Classification Method for High Resolution Remote Sensing Im-
agery Using Deep Neural Networks. ISPRS International Journal of Geo-
Information, 7(3):110, 2018.

[168] Y. LeCun and Y. Bengio. Convolutional Networks for Images, Speech, and
Time Series. In M. A. Arbib, editor, The Handbook of Brain Theory and
Neural Networks, pages 255–258. MIT Press, 1998.

[169] A. Voulodimos, N. Doulamis, A. Doulamis, and E. Protopapadakis. Deep
learning for computer vision: A brief review. Computational intelligence
and neuroscience, 2018, 2018.

[170] X. Glorot, A. Bordes, and Y. Bengio. Deep sparse rectifier neural networks.
In Proceedings of the fourteenth international conference on artificial intel-
ligence and statistics, pages 315–323, 2011.

[171] G. E. Dahl, T. N. Sainath, and G. E. Hinton. Improving deep neural net-
works for LVCSR using rectified linear units and dropout. In 2013 IEEE
international conference on acoustics, speech and signal processing, pages
8609–8613. IEEE, 2013.

[172] K. O’Shea and R. Nash. An introduction to convolutional neural networks.
arXiv preprint arXiv:1511.08458, 2015.

[173] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. In
International Conference on Learning Representations (ICLR), 2015.

[174] F. Chollet et al. Keras. Available from: https://keras.io.

[175] M. Abadi et al. TensorFlow: Large-Scale Machine Learning on Hetero-
geneous Systems, 2015. Software available from tensorflow.org. Available
from: https://www.tensorflow.org/.

[176] X. B. Peng, M. Andrychowicz, W. Zaremba, and P. Abbeel. Sim-to-real
transfer of robotic control with dynamics randomization. In 2018 IEEE
International Conference on Robotics and Automation (ICRA), pages 1–8.
IEEE, 2018.

https://keras.io
https://www.tensorflow.org/

186

[177] J. Tobin, R. Fong, A. Ray, J. Schneider, W. Zaremba, and P. Abbeel. Do-
main randomization for transferring deep neural networks from simulation
to the real world. In 2017 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pages 23–30. IEEE, 2017.

[178] J. Tremblay, A. Prakash, D. Acuna, M. Brophy, V. Jampani, C. Anil, T. To,
E. Cameracci, S. Boochoon, and S. Birchfield. Training deep networks
with synthetic data: Bridging the reality gap by domain randomization.
In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition Workshops, pages 969–977, 2018.

[179] J. Tobin, L. Biewald, R. Duan, M. Andrychowicz, A. Handa, V. Kumar,
B. McGrew, A. Ray, J. Schneider, P. Welinder, et al. Domain randomization
and generative models for robotic grasping. In 2018 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS), pages 3482–
3489. IEEE, 2018.

[180] Mathworks Products and Services. Available from: https://www.
mathworks.com/products.html.

[181] M. Kulin, T. Kazaz, I. Moerman, and E. De Poorter. End-to-End Learning
From Spectrum Data: A Deep Learning Approach for Wireless Signal Iden-
tification in Spectrum Monitoring Applications. IEEE Access, 6:18484–
18501, 2018.

[182] GNU Radio: The free & Open Software Radio Ecosystem. Available from:
https://www.gnuradio.org/.

[183] B. Ford, P. Srisuresh, and D. Kegel. Peer-to-Peer Communication Across
Network Address Translators. In USENIX Annual Technical Conference,
General Track, pages 179–192, 2005.

[184] K. Katsaros. Vehicular Communication Simulations with NS-3.
Available from: http://www.nsnam.org/tutorials/consortium15/Vehicular-
Comms.pptx.

[185] IDLab. CityLab: a unique edge-computing and multi-wireless-technology
smart cities testbed. Available from: https://www.uantwerpen.be/en/
research-groups/idlab/infrastructure/.

[186] C. Davidson-Pilon. Bayesian Methods for Hackers: Probabilistic Program-
ming and Bayesian Inference. Addison-Wesley Data & Analytics Series,
2016.

https://www.mathworks.com/products.html
https://www.mathworks.com/products.html
https://www.gnuradio.org/
http://www.nsnam.org/tutorials/consortium15/Vehicular-Comms.pptx
http://www.nsnam.org/tutorials/consortium15/Vehicular-Comms.pptx
https://www.uantwerpen.be/en/research-groups/idlab/infrastructure/
https://www.uantwerpen.be/en/research-groups/idlab/infrastructure/

	Front page
	Information page
	Acknowledgments
	Samenvatting
	Summary
	Acronyms
	Introduction
	Context
	Problem Statement
	Hypothesis
	Research Questions
	Research Contributions
	Dissertation outline
	Publications
	A1: Journal publications indexed by the ISI Web of Science "Science Citation Index Expanded"
	P1: Proceedings included in the ISI Web of Science "Conference Proceedings Citation Index - Science"
	C1: Other publications in international conferences
	Patent applications

	State-Of-The-Art
	Introduction
	Multi-technology control and management solutions
	Media Independent Handover (IEEE 802.21)
	IEEE 1905.1 standard
	Software-Defined Networking-based approaches
	3GPP and Tunneling approaches
	Multipath Transmission Control Protocol
	Other solutions
	Comparison and summary

	Multi-technology load balancing approaches
	Load balancing in heterogeneous local area networks
	Load balancing in HetNets and mobile (LTE) networks
	Summary

	Traffic recognition approaches
	Traditional traffic recognition approaches
	Cognitive radio approaches
	Summary

	ORCHESTRA: seamless multi-technology management
	Introduction
	Framework architecture
	Virtual MAC layer
	Building blocks
	Features

	Controller
	Communication and interfacing
	A global view in one location

	Applicability to different wireless technologies
	IEEE 802
	LTE
	LTE-LWA
	MEC architecture and Local Breakout

	Use cases
	Enhanced satellite networking solutions
	Enabling autonomous driving
	Edge computing for large IoT deployments
	Extended coverage in rural areas
	Wireless community networks

	Prototype Implementation
	Incoming traffic
	Outgoing traffic

	Evaluation and discussion
	Experimental setup
	Seamless and transparent multi-technology handovers
	Fine-grained packet-level load balancing
	Duplication of critical data in unreliable environments

	Conclusion

	Real-time flow management for heterogeneous networks with both wired and wireless connections
	Introduction
	Flow-Based Scheduling MILP Formulation
	Network Model
	MILP formulation
	TCP fairness
	Complexity analysis

	Group-Based Scheduling MILP Formulation
	Network Model
	MILP formulation
	Technology capacity estimation
	Dynamic determination of Alpha and Beta parameters
	Complexity analysis

	Deployment and parameter determination
	Workflow description
	Estimating flow and network parameters

	Evaluation and discussion
	Evaluation setup
	Parameter values
	Home and office scenarios
	Impact of network load and scalability
	Dynamic scenarios
	Impact of link failure
	Prototype

	Conclusion

	Scalable load balancing and flow management for mobile heterogeneous wireless networks
	Introduction
	Multi-technology load balancing formulation
	Network model
	MILP formulation
	Parameter estimation
	Deployment and interaction with underlying framework

	Heuristic approaches
	Near-optimal two-step linear programming approach
	Greedy heuristic

	Evaluation and discussion
	Evaluation setup
	Selection of parameters
	Static flow rate scenarios
	Impact of network load and scalability
	Dynamic flow rate scenarios

	Conclusion

	Recognition of traffic patterns in the wireless spectrum
	Introduction
	Traffic recognition models
	Problem definition
	Input spectrum representation and traffic labels
	Convolutional Neural Network for traffic recognition

	Data collection framework
	Motivation
	Architecture

	Evaluation and discussion
	Description of generated training datasets
	Evaluation using generated synthetic data
	Validation using real-life data
	Prototype demonstrator

	Conclusion

	Conclusions and Perspectives
	Review of problem statements
	Review of the hypothesis and research questions
	Future perspectives
	Seamless inter-technology network management
	Load balancing algorithms
	Traffic recognition in the wireless spectrum

	References

