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Existing literature on routing of school buses has focused mainly on build-

ing intricate models that attempt to capture as many real-life constraints and

objectives as possible. In contrast, the focus of this paper is on understand-

ing the problem in its most basic form. To this end, we define the school bus

routing problem (SBRP) as a variant of the vehicle routing problem in which5

three simultaneous decisions have to be made: (1) determine the set of stops

to visit, (2) determine for each student which stop he should walk to and

(3) determine routes that visit the chosen stops, so that the total traveled

distance is minimized. We develop an MIP model of this basic problem.

To efficiently solve large instances of the SBRP we develop an efficient10

GRASP+VND metaheuristic. Our method can be called a matheuristic be-

cause it uses an exact algorithm to optimally solve the subproblem of as-

signing students to stops and to routes. The results of our matheuristic

approach on 112 artificially generated instances are compared to those ob-

tained by implementing the MIP model in a commercial solver and solving15

it using a specially developed cutting plane procedure. Experiments show

that our matheuristic outperforms the exact method in terms of speed and

matched the exact method in terms of solution quality.

∗Corresponding author
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1 Introduction

In the Flemish region of Belgium, students that live within certain minimum and max-20

imum distances of their school have the right to free transport to and from the school.

The transport is organized by the Flemish transportation company, which uses school

buses that drive fixed routes. An additional requirement is that a bus stop should be

located at a distance of at most 750 metres from the home of each student. Each school

term, the Flemish transportation company determines which routes its buses will follow,25

and where they should stop so that each student has at least one stop he or she can

walk to. To this end, a set of potential stops is determined first in such a way that

each student lives within 750m of at least one stop. Routes are then determined for the

school buses so that all students are picked up at a stop they are allowed to use, while

making sure that the capacity of the buses is not exceeded. The Flemish transportation30

company is faced with problems where up to 3000 students have to be picked up and

brought to 7 different schools.

Contrary to most vehicle routing formulations, in which a set of stops is given and routes

need to be determined that visit each stop, this paper discusses a vehicle routing problem

in which a set of potential stops is given, but in which determining the set of stops to35

actually visit is a part of the problem formulation. The objective of this problem is to

simultaneously (1) find the set of stops to visit, (2) determine for each student which

stop he should move to and (3) determine routes that visit the chosen stops, so that

the total distance traveled by the buses is minimized. Figure 1 shows an example of

this problem, that we call the school bus routing problem or SBRP. In this figure, dots40

represent students, small squares represent potential stops and large square represents

the school. Dotted lines indicate which stops a student is allowed to walk to.

Figure 1: Unsolved problem
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Assuming that the capacity of the buses is 8, a possible (but not necessarily optimal)

solution to this problem is shown in figure 2.

Figure 2: A possible solution

In the problem discussed in this paper, we assume that all students represent a unit to

be transported and that the capacity of the buses can be expressed as an integer number45

of units. Students that can walk directly to school are not taken into account.

Even when the stops to use and the routes that visit these stops have been determined,

the sub-problem of allocating students to stops used by the routes is not trivial. When

students can be assigned to multiple stops in the same route, the allocation to a stop is

arbitrary. This is not usually the case if a student can be assigned to multiple stops in50

different routes. In this case, students should be assigned to stops in such a way that

the capacity of the buses is not violated. In figures 1 and 2, there is one student that

can move to a stop in both of the routes. However, given that the capacity of the buses

is 8, this student needs to be assigned to the route on the right. While the possibility

to assign students to different stops offers the possibility to incur potential savings, it55

introduces an extra decision level that makes the problem much more difficult to solve.

Next to the obvious school bus routing application, this problem formulation has other

applications. For example, large companies that want to organize common transport for

their employees are faced with the same problem. A related but different problem can be

found in some parcel delivery services which nowadays offer the option of delivering at a60

set of pre-defined drop-off points. This has obvious cost-saving advantages over delivering

at any location specified by the customer. Customers have to decide beforehand at which

drop-off point they wish to pick up their items. It can be envisaged that customers may
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be asked to specify more than one drop-off point and that the parcel delivery company

will then choose among the ones selected by at least one customer in such a way that65

routing costs are minimized but every customer can pick up his parcel at one of the drop-

off points he specified. Customers may e.g. be notified by a mobile phone message of

the specific drop-off point their package will be delivered at. In a more complex setting,

the price of the delivery may depend on the number of drop-off points specified by the

customer. Note that the capacity constraints in this case may have to be replaced by70

the more typical vehicle routing constraints, in which each order has a certain size and

the sum of all order sizes in a route may not exceed the vehicle capacity.

2 Literature review

Contrary to the literature on the ordinary vehicle routing problem and several of its

extensions (e.g. time windows), only a limited amount of research has considered the75

routing of school buses.

Most school bus vehicle routing formulations focus on formulating extra constraints

and/or objectives to take some student-related factors into account. Bodin and Berman

(1979), Braca et al. (1997), and Desrosiers et al. (1980), add a maximum travel-time

constraint for each student and/or a time window for arrival at the school. Bennett and80

Gazis (1972) add the total travel time of all children as an objective.

Thangiah et al. (2005) discuss the routing of school buses in rural areas. They develop a

system that is able to solve large-scale routing problems with a large number of complex

constraints and several objectives. Interestingly, the authors note that local government

subsidizing policies may result in very ineffective routings, e.g. maximizing the time that85

students spend on a bus instead of minimizing it.

Some papers exist that focus on the selection of stops as an integral part of the opti-

mization problem. In Dulac et al. (1980), students are assigned to an intersection of

streets adjacent to the street of their residence. A subset of these potential bus stops is

then selected and a VRP is solved. In Chapleau et al. (1985), potential stops are first90

clustered, after which stops are selected so that a maximum number of students has a

stop within walking distance. The school bus routing problem discussed in Bowerman

et al. (1995) includes a maximum walking distance for a student to his/her assigned bus
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stop. The authors develop a multi-objective optimization problem, one of the objectives

being the minimization of the total walking distance of all students.95

There exist similar problems outside the school bus routing context. The capacitated

m-ring star problem (Baldacci et al., 2004) differs from our school bus routing problem

in that there are no restrictions on which students can be assigned to which stops (or in

the case of the m-ring star problem, which customers can be assigned to which transition

points), rather an assignment cost is given. Moreover, the number of rings (tours) is100

pre-specified. In the multi-vehicle covering tour problem (Hachicha et al., 2000) the total

route length and the number of stops that can be visited in a route is limited, instead

of the total capacity in a route.

Previous research has focused on building intricate multi-objective models of school bus

routing problems, attempting to capture as many real-life constraints and objectives as105

possible. The aim of this paper is different: to study the problem in its most basic form

and develop both a mathematical programming model and an efficient metaheuristic

that uses some of the mathematical properties of the problem. More specifically, we find

that the problem can be decomposed in a master problem and a subproblem. The master

problem is an integer programming problem and consists of the selection of stops and110

the routing decisions. The subproblem decides on the allocation of students to stops.

Because of the mathematical properties of the subproblem, it can be efficiently solved

using an exact linear programming method, that we integrate into our metaheuristic.

The resulting matheuristic consists of two phases. The construction phase uses ideas

from GRASP or greedy randomized adaptive search procedure (Feo and Resende, 1989,115

1995), a constructive metaheuristic that attempts to balance greediness and randomness.

The improvement phase is a variable neighborhood descent (VND) method, a variant of

variable neighborhood search (VNS) (Mladenović, 1995; Hansen and Mladenović, 1997,

1999). VNS is one of the dominant paradigms in vehicle routing metaheuristics, and

a large number of successful applications has been reported (Hansen and Mladenović,120

2001a,b). The student allocation subproblem is solved exactly by the primal-dual la-

beling method of Ford and Fulkerson (1962) initially developed for the transportation

problem. Section 4.3 explains how the student allocation subproblem can be transformed

into a special case of the transportation problem.
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3 Problem formulation125

As mentioned, this paper focuses on a basic version of the problem of routing school

buses. Special attention is given to the stop selection aspect, that distinguishes this

problem from more traditional vehicle routing problems. We attempt to uncover the

relationship between allocation, selection, and routing decisions and use this information

to build a powerful metaheuristic to solve large instances quickly. We restrict ourselves130

in this paper to a single school, one type of student and one type of bus, with fixed

capacity. We optimize the standard vehicle routing criterion: the total distance traveled

by all vehicles. The basic school bus routing problem (SBRP) as described here is a

generalization of the basic vehicle routing problem (VRP) and therefore also NP-hard.

The SBRP can be expressed as an integer linear programming problem. We assume that135

the graph on which the problem is defined, is directed. The following formulation builds

on the formulation of Toth and Vigo (2001, p. 15). Table 1 discusses the symbols used

in the model.

Table 1: Symbols used in the mathematical model

Data

K Number of buses
C Capacity of the buses
V Set of all potential stops
E Set of all arcs between stops
S Set of all students
cij Cost of traversing arc from stop i to stop j

sli 1 if student l can walk to stop i and 0 otherwise
i = 0 Index for the school

Decision variables

xijk 1 if vehicle k traverses arc from i to j, 0 otherwise
yik 1 if vehicle k visits stop i, 0 otherwise
zilk 1 if student l is picked up by vehicle k at stop i, 0 otherwise

The mathematical programming formulation of the school bus routing problem (SBRP)

is the following.

min
∑

i∈V

∑

j∈V

cij

K∑

k=1

xijk (1)

s.t.
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K∑

k=1

y0k ≤ K k = 1, . . . ,K (2)

∑

j∈V

xijk =
∑

j∈V

xjik = yik ∀i ∈ V, k = 1, . . . ,K (3)

∑

i∈S

∑

j /∈S

xijk ≥ yhk ∀S ⊆ V \ {0}, h ∈ S, k = 1, . . . ,K (4)

K∑

k=1

yik ≤ 1 ∀i ∈ V \ {0} (5)

K∑

k=1

zilk ≤ sli ∀l ∈ S, ∀i ∈ V (6)

∑

i∈V

∑

l∈S

zilk ≤ C k = 1, . . . ,K (7)

zilk ≤ yik ∀i, l, k (8)

∑

i∈V

K∑

k=1

zilk = 1 ∀l ∈ S (9)

yik ∈ {0, 1} ∀i ∈ V, k = 1, . . . ,K (10)

xijk ∈ {0, 1} ∀i, j ∈ V |i 6= j (11)

zilk ∈ {0, 1} ∀i, j ∈ V |i 6= j (12)

The objective function (1) minimizes the total traveled distance by all buses. Constraints

(2) ensure that all buses start from the school. The maximum number of buses K140

obviously cannot exceed the number of stops. Constraints (3) enforce that if stop i is

visited by vehicle k, then an arc should be traversed by vehicle k entering stop i and

leaving stop i. Capacity cut constraints (4) check that each cut (V \ S, S) defined by

a student set S is crossed by a number of arcs not smaller than r(S), the minimum

number of buses needed to serve set S. These constraints serve as subtour elimination145

constraints. Constraints (5) guarantee that all stops are visited no more than once,

except the stop corresponding to the school. Constraints (6) ensure that each student

walks to a single stop he or she is allowed to walk to. Constraints (7) make sure that

the capacity of the buses is not exceeded. Constraints (8) impose that student l is not

picked up at stop i by vehicle k if vehicle k does not visit stop i. Constraints (9) enforce150

that all students are picked up once. Finally, constraints (10), (11), and (12) require

that all decision variables are binary. This corresponds to ensuring respectively that a

vehicle k either visits a stop i or it does not, a vehicle k either drives from one stop i to
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another stop j or it does not, and a vehicle k either picks up a student l at stops i or it

does not.155

By using this formulation, we implicitly make a number of assumptions. One assumption

is that a stop is only visited by one bus. This means that the number of students per

stop may not exceed the capacity of the bus. It also means that the students that go

to a bus stop may not be divided into groups which may then each take a different bus.

A second assumption is that all buses have equal capacity. Thirdly, one bus can only160

perform one route. Finally, as mentioned, we assume that each student counts as one

unit. These assumptions may be relaxed in future research.

4 A GRASP+VND matheuristic for the school bus routing

problem

In this section, we develop a hybrid exact/metaheuristic procedure to solve large in-165

stances of the school bus routing problem. Our matheuristic uses a GRASP construction

phase followed by a variable neighborhood descent (VND) improvement phase. These

two phases are executed sequentially and the resulting procedure is iterated nmax times,

after which the best solution is selected as the final solution. As mentioned, the student

allocation subproblem is solved by an exact method.170

4.1 GRASP construction phase

GRASP, or greedy randomized adaptive search procedure, is a well-known constructive

metaheuristic, that starts from an empty solution and builds a complete solution by

adding one element at a time. Most GRASP implementations use a restricted candidate

list (RCL), which is a subset of all candidate elements selected in a greedy fashion.175

Assuming a minimization problem, the RCL contains the elements whose incorporation

into the partially built solution would yield the smallest increase (or largest decrease)

in objective function value. From the RCL, an element is then selected at random,

after which the RCL is updated to reflect the fact that a new element was added to the

solution and is no longer available for selection. Selection of an element and update of180

the RCL are repeated until a complete solution has been built. The size of the RCL, α,

is a parameter of the GRASP algorithm that controls the balance between greediness

and randomness. If α is small, the construction is relatively greedy. If α is large, it is
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relatively random. In the extreme cases, α = 1 causes a completely deterministic greedy

construction. If α is equal to the number of elements in the solution, the construction185

is completely random.

The GRASP construction phase in our metaheuristic is based on the well-known Clark-

Wright savings heuristic (Clark andWright, 1964) for the vehicle routing problem (VRP).

This heuristic starts from a solution in which all stops are visited in separate routes.

The heuristic builds a savings matrix that contains for each pair of stops the decrease190

in cost (or “saving”) that would result from connecting the stops, thereby merging the

two routes that contain the stops. For two stops to be “connectable”, they have to be

in different routes. Moreover, one of the stops has to be the first stop in a route and the

other one the last. Also, the total capacity required by the two routes containing the

stops cannot be larger than the capacity of the vehicle. In each iteration, the original195

Clarke-Wright heuristic greedily selects the pair of stops to connect.

Like the original Clark-Wright heuristic, our GRASP procedure starts from a solution

in which each stop is used and visited in a separate route. After this initial setup,

students are assigned to these stops by solving the student allocation subproblem (see

4.3). Obviously, if no feasible allocation can be found, no feasible solution for the SBRP200

instance exists. If a feasible assignment of students to stops can be found, the algorithm

proceeds using a randomized variant of the Clarke-Wright heuristic connecting two stops

(and merging two routes) in each iteration. Unlike the Clarke-Wright heuristic for the

VRP, the feasibility of a solution after connecting two stops is more difficult to determine,

as it might involve reallocating the students over the different routes (using the student205

allocation subproblem algorithm).

To generate different solutions, our GRASP construction heuristic adopts a parameter-

free method to balance randomness and greediness. Instead of using a restricted candi-

date list, a roulette wheel selection procedure is introduced which selects candidate stop

pairs with a probability proportional to the saving that would result from connecting210

them. To save time, the roulette wheel mechanism does not take into account the fea-

sibility of the solution after connecting the selected pair of stops, as this would involve

solving many student allocation subproblems before selecting a pair of stops to connect.

If a pair of stops is selected that results in an infeasible solution when connected, the

move is not executed and removed from the list of stop pairs.215

Pseudo-code for the GRASP construction phase is shown in algorithm 1. After each

iteration of the GRASP construction phase, a feasible solution is found. This solution

9



is then subjected to the VND improvement phase.

Algorithm 1: GRASP construction phase for the SBRP

Input: initial solution with one route per stop
Calculate Clark-Wright savings matrix σij = ci0 + c0j − cij ;
Create list of stop pairs L containing all pairs (i, j);
repeat

Calculate probability of selecting stop pair (i, j) ∈ L as pij =
σij∑
i,j σij

;

roulette wheel selection: select stop pair (i, j) ∈ L with probability pij ;
if connecting stops i and j yields a feasible solution then

Connect stops i and j;
end

Remove pair (i, j) from L;
until L is empty ;

4.2 VND improvement phase

Variable neighborhood descent (VND) is a deterministic variant of the well-known vari-220

able neighborhood search (VNS) metaheuristic. Most implementations of VNS use a

sequence of nested neighborhoods, N1 to Nkmax
, in which each neighborhood in the

sequence is “larger” than its predecessor, i.e. Nk ⊂ Nk+1. VNS typically uses a per-

turbation move for diversification purposes. In our algorithm, diversity is introduced

by the different starting solutions generated by the GRASP construction phase and a225

perturbation phase is not needed. We therefore use the variable neighborhood descent or

VND variant. Pseudo-code for the VND improvement phase is given in algorithm 2.

Algorithm 2: Variable neighborhood descent for the SBRP

Input: Solution x obtained by GRASP
Initialize: k ← 1;
repeat

local search: perform local search using neighborhood Nk, starting from
solution x until it cannot be improved;
if x′ is better than x then

x← x′ (center the search around the new solution) and k ← 1 (search
again using the first neighborhood);

else
k ← k + 1;

end

until k = kmax ;
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Our VND improvement phase uses four neighborhood structures that are applied in the

order presented here. Neighborhood structures can be classified by the type of moves

they allow. The four move types defining the implemented neighborhood structures We230

first describe the different move types and then elaborate on the search strategy that

we use in these neighborhoods. The four move types are presented graphically in figure

3.

The first two are remove-insert within a route and remove-insert between routes. In these

typical VRP neighborhoods a stop is removed from its current location and inserted at235

another location in the solution. The distinction between relocating a stop within a route

or between routes is important because of the student allocation subproblem. When a

remove-insert move is applied within a single route no student reallocation or capacity

check has to take place. When a stop is moved to another route, the assignment of

students to stops is initially left unchanged. A simple capacity check shows whether the240

addition of the extra stop to the second route violates the bus capacity of this route. If

this is the case students are reallocated to the visited stops of the proposed solution. If

a feasible reallocation is found, the move is executed, otherwise it is discarded.

A third move type is called replace and is specific to the SBRP. This move removes a

visited stop from a route and adds another (unvisited) one. The move only attempts to245

remove stops that are not obligatory. An obligatory stop is one that needs to be visited

in each feasible solution because there exists at least one student for which this stop is

the only one he can walk to. The student allocation subproblem is always solved after a

replace move.

Finally, the remove move type reduces the total distance of the current solution by250

removing a stop from a route. To check the feasibility of the solution after a remove

operation, the student allocation subproblem is solved.

To save time generating solutions in a neighborhood, we adopt the following strategy.

When local search using a specific neighborhood structure is started from a given initial

solution all possible moves that form this neighborhood are sorted in descending order255

according to their respective savings. Only moves with a positive saving are considered.

The list of improving moves is then traversed in decreasing order of saving and moves

are executed as they appear on the list if (1) they result in a decrease in objective

function, (2) they can be executed and (3) the resulting solution is feasible. Remark

that some moves might yield a different saving than the one initially predicted or become260

impossible because of the prior execution of other moves on the list. However, we found

11



that the effort of updating the list of savings after each move does not outweigh the

additional benefits of increased accuracy. If a move becomes non-improving after some

other move(s), this move is simply discarded. This procedure ends when there are no

improving moves left in this list. The fact that there are no more improving moves on265

the list does not imply that the resulting solution is a local optimum with respect to

the current neighborhood. However, the structure of the VND ensures that the final

solution found is a local optimum in all four neighborhoods.

4.3 Solving the student allocation subproblem exactly

In our metaheuristic solution method, the SBRP is decomposed in a master problem and270

a subproblem. The master problem is a vehicle routing problem with stop selection, the

objective of which is to minimize the total traveled distance. Once the stops have been

selected and the routes have been fixed, a subproblem remains of allocating students to

stops in such a way that the capacity of the buses is not exceeded (see figure 4). This

subproblem is a constraint satisfaction problem in that it does not have an objective275

function. The existence of a feasible solution to this problem however implies that the

corresponding solution of the master problem is valid. A solution to the master problem

fixes both the stops that are used and the routes that are performed, i.e. it fixes the

values of variables yik and xijk. Thus, only the zilk variables need to be determined for

given values of yik and xijk. The subproblem can be written as an optimization problem280

as follows:

min
∑

l∈S

K∑

k=1

tklz
′

kl (13)

s.t.

K∑

k=1

z′kl = 1 ∀l ∈ S (14)

∑

l∈S

z′kl ≤ C ∀k = 1, . . . ,K (15)

z′kl ∈ {0, 1} ∀k = 1, . . . ,K, l ∈ S (16)

In this formulation z′kl =
∑

i∈V yikzilk is a decision variable equal to 1 if student l is

12
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Figure 3: Different move types
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picked up in route k. The variable tkl indicates the “cost” of assigning a student to a

route. That cost is 0 if student l can walk to at least one stop in k and 1 otherwise.

Constraints (14) ensure that each student is assigned to exactly one route. Constraints285

(15) ensure that the capacity of the buses is not exceeded. As already noted in original

formulation of the SBRP, a bus cannot perform more than one route. The number of

routes can be lower than the maximum number of buses K. This means that less than

K buses have to be used when this solution is implemented in practice.

This problem is a special case of the transportation problem. Because of the structure290

of the cost matrix (which is totally unimodular) and the integer right-hand-sides of the

constraints, we can relax the integrality constraints (16). Any feasible solution of the

relaxed subproblem is guaranteed to be integer. The subproblem can therefore be solved

to optimality by any algorithm for the transportation problem.

Figure 4: When the routes have been fixed, the allocation of students to routes is a
special case of the transportation problem

The objective function (13) minimizes the cost of assigning all students to a route. If295

there exists an allocation of all the students to the routes, the objective function will

equal 0, indicating that all students can be assigned to the current solution of the master

routing problem.

In our matheuristic, we solve the transportation problem using the well-known primal-

dual labeling method of Ford and Fulkerson (1962). For the details of this method, we300

refer to the cited paper.
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5 Experiments

5.1 Problem instance generation

We have designed and implemented an instance generator for this problem that can

generate random problem instances of any size. The generator requires 5 parameters per305

instance: np (the number of potential stops), ns (the number of students per stop), xd,

yd (the x and y-coordinates of the school) and wmax (the maximum walking distance).

The instances are generated on the Euclidean square defined by (0, 0) and (xmax, ymax).

It first generates np stops in this square. The coordinates (xi, yi) of stop i are uniformly

distributed in the intervals [wmax, xmax−wmax] and [wmax, ymax−wmax] respectively. In310

this way, no student is ever generated outside the boundaries (0, 0) and (xmax, ymax).

For each generated stop, ns student positions are generated at a distance of maximum

wmax from the stop. This is done by first generating for each student j an angle αj ∈

[0, 2π] and a distance wj from the stop. The student is then put at (x, y)-coordinates

equal to (xi + wj cosαj , yj + wj sinαj).315

The 112 instances considered for the experiments in this paper are available from the

authors upon request. The instance names are SSSS-sα-uβ-cγ-wδ for an instance

with α stops, β students, a bus capacity of γ and a walking distance of δ. For ex-

ample, the instance of which the best solution found appears in figure 5 is called

SSSS-s40-u200-c25-w10.320

5.2 Exact benchmark solutions

An exact algorithm using the MIP formulation proposed in this paper has been im-

plemented in a commercial MIP solver and used to solve (medium-sized) benchmark

instances. All the source code is written using the commercial ILP modelling language

Xpress-Mosel 1.6.0 and solved with the optimizer 16.10.07 from Dash Associates and325

executed on a Pentium 4, 3.20 GHz running linux.

To solve these instances we have implemented a cutting plane procedure. The MIP

model is solved by initially relaxing the subtour elimination constraints (4) and solving

the relaxed problem to optimality. Then, subtour elimination constraints are added

for each subtour encountered in the relaxed solution and the problem is solved again.330
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Table 2: Instance 1: details of the iterations

It. Subtours Cost CPU (s)

1 (5,8) (2,6) (4,9) 223.90 10686
2 (2,9) 235.17 19790
3 (2,4,9) 236.24 10900
4 (2,9,4) 236.25 10722
5 (3,9) (2,4) 243.81 6858
6 (6,9) (2,7) 252.57 10406
7 (3,6) 253.75 7892
8 (4,6) 254.33 9961
9 (3,9,4) 255.90 45045
10 (3,4,9) 255.90 27594
11 (2,6,4) 257.10 26829
12 (2,4,6) 257.10 5712
13 Manually stopped after 37369s

Unfinished after about 64 hours of CPU time

Table 3: Instance 2: details of the iterations

It. Subtours Cost CPU (s)

1 (6,10) (1,9) (5,8) 294.67 84
2 – 307.44 143

Optimal solution 307.44 227

This procedure is repeated until no more subtours are found, at which time an optimal

solution has been found.

The performance of the solver using our cutting plane procedure is unpredictable, which

is exemplified by the following two test cases, both with 10 potential stops and 50

students.335

The solution process for our procedure on the two instances is shown in tables 2 and

3. In these tables, the first column shows the iteration number. The Subtours column

shows the subtours present after that iteration. The column CPU (s) shows the number

of CPU seconds that were used for that iteration. The Cost column contains the cost

of the solution at this iteration. Whereas the second example is solved to optimality340

in about three minutes after only two iterations, the first example cannot be solved to

optimality in 64 hours.
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5.3 GRASP+VND matheuristic results

The experimental results on medium-sized instances (10 stops, 50 students) in the pre-

vious section show that our exact method exhibits a large variability in computation345

time, ranging from 2 minutes to more than 64 hours. One may argue that SBRPs are

tactical problems (school bus routes are only determined once every school term) and

that computational performance is not a major issue. However, managers and decision

makers generally want to have the opportunity to quickly assess solutions for different

scenarios. Moreover, next to the obvious school bus routing application, this problem350

formulation has other applications (e.g. parcel delivery service) in which fast running

times are required. Therefore, for large instances as we encounter in practice (50 stops,

500 students per school) exact methods are not expected to result in viable solution

techniques.

To test our matheuristic, a larger experiment of 112 instances was set up with problem355

sizes ranging from 5 stops and 25 students to 80 stops and 800 students. Also, four

maximum walking distances were considered: 5, 10, 20, and 40. The maximum walking

distance determines to a large extent how many stops the average student is able to

walk to. Clearly, the larger the maximum walking distance, the more degrees of freedom

there are in the student allocation subproblem. Below, the results are summarized by360

maximum walking distance. The vehicle capacity is either 25 or 50. For every instance,

the metaheuristic was stopped after 25 runs of the GRASP+VND, but only solutions

found within one hour were considered and reported.

Every summary consists of 5 columns indicating the number of stops, the number of

students, the vehicle capacity, the execution time of the matheuristic and the total365

travel distance of the best solution found respectively. Two columns were also added:

the execution time and travel distance of the optimal solution produced by the exact

algorithm described here above, for those instances which could be solved to optimality.

Maximum computing time of the exact algorithm was also one hour. The exact procedure

was able to find 32 optimal solutions within the time limit of one hour. However, the370

lower bounds obtained after one hour were generally very weak and are consequently

not reported. The largest instance that could be solved optimally, was an instance with

20 stops and 400 students. The best solution for a 40 stops, 200 students instance with

vehicle capacity of 25 and maximum walking distance of 10 can be found in figure 5.

The matheuristic experiments were conducted on a different computer than the exact375
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algorithm experiments, more specifically on a Pentium Centrino 2.20 GHz. The re-

ported CPU Time is scaled according to Dongarra (2009) such that CPU times can be

adequately compared.

The results of our experiments show that for every instance where the optimal solution

was found by the exact algorithm, the matheuristic also gives the optimal solution and380

is always clearly faster than the exact algorithm. The matheuristic is 1.25 to 800 times

faster, than the exact algorithm for those instances. Notwithstanding the fact that the

problem difficulty increases rapidly when the number of stops and students increases,

the matheuristic can generate high quality solutions for instances up to 80 stops and 800

students as opposed to the exact method.385

6 Conclusions and future research

In this paper, we have proposed an MIP formulation for a school bus routing problem

in which selection of stops from a set of potential stops and allocation of students to

stops are additional decision variables. We propose a GRASP+VND matheuristic that

uses an exact linear programming procedure to solve the subproblem of assigning stu-390

dents to stops. Experiments on 112 instances show that the proposed GRASP+VND

matheuristic finds all known optimal solutions and this up to 800 times faster than an

exact algorithm applied to the MIP formulation. The matheuristic can also produce

very good solutions within 1 hour for realistic instances of 80 stops and 800 students.

Our research efforts are now aimed in three directions. First, we are working on a cut-395

ting plane algorithm to obtain good lower bounds of the problem for larger instances.

Secondly, we are investigating ways to exploit the problem structure of the school bus

routing problem even more, e.g. to find out whether partial re-optimizations of the stu-

dent allocation problem after certain moves are possible and to use student allocation

problem information in specifically adapted neighborhoods. Thirdly, additional features400

may be added to the formulation to increase its realism. Such features include multiple

buses visiting a single stop, time window constraints, multiple schools, and buses that

do not start at the school.
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Figure 5: Best solution for 40 stops, 200 students, capacity 25 and maximum walking
distance 10 (instance SSSS-s40-u200-c25-w10)
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GRASP+VND MIP solver
stops students capacity CPU (s) distance CPU (s) distance

5 25 25 0.16 141.01 0.987 141.01
5 50 25 0.39 286.68 7.567 286.68
5 100 25 1.15 360.35 31.54 360.35
10 50 25 1.55 242.85 - -
10 100 25 2.93 407.20 - -
10 200 25 8.49 735.27 - -
20 100 25 8.85 520.24 - -
20 200 25 26.39 915.71 - -
20 400 25 234.66 1323.35 - -
40 200 25 62.04 862.33 - -
40 400 25 545.92 1433.20 - -
40 800 25 3529.15 2900.14 - -
80 400 25 946.21 1573.68 - -
80 800 25 3433.78 2527.96 - -
5 25 50 0.26 161.62 0.83 161.62
5 50 50 0.35 197.20 9.33 197.20
5 100 50 0.90 304.23 20.25 304.23
10 50 50 1.32 282.12 14.43 282.12
10 100 50 2.95 296.53 - -
10 200 50 4.45 512.16 - -
20 100 50 8.10 441.26 - -
20 200 50 15.03 499.40 - -
20 400 50 61.74 742.66 - -
40 200 50 42.18 615.87 - -
40 400 50 148.40 870.78 - -
40 800 50 1933.24 1370.39 - -
80 400 50 471.89 1048.56 - -
80 800 50 3051.47 1545.51 - -

Table 4: Summary results for instances with a maximum walking distance of 5
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GRASP+VND MIP solver
stops students capacity CPU (s) distance CPU (s) distance

5 25 25 0.39 182.14 3.572 182.14
5 50 25 0.43 193.55 20.21 193.55
5 100 25 2.08 294.21 148.95 294.21
10 50 25 2.45 244.54 1952.73 244.54
10 100 25 3.82 388.87 - -
10 200 25 27.17 513.00 - -
20 100 25 12.20 432.23 - -
20 200 25 40.49 620.56 - -
20 400 25 139.12 975.12 - -
40 200 25 69.27 734.83 - -
40 400 25 496.35 891.02 - -
40 800 25 3495.62 2200.57 - -
80 400 25 1647.16 1222.34 - -
80 800 25 3245.85 1811.43 - -
5 25 50 0.29 195.80 0.37 195.80
5 50 50 0.74 215.86 9.12 215.86
5 100 50 1.67 229.41 19.47 229.41
10 50 50 1.60 288.33 47.26 288.33
10 100 50 4.18 294.80 2005.70 294.80
10 200 50 12.09 475.21 - -
20 100 50 15.73 365.82 - -
20 200 50 28.76 462.77 - -
20 400 50 73.23 614.67 - -
40 200 50 51.57 489.55 - -
40 400 50 173.45 779.77 - -
40 800 50 2417.50 1037.46 - -
80 400 50 576.26 760.61 - -
80 800 50 3437.53 1189.03 - -

Table 5: Summary for instances with a maximum walking distance of 10
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GRASP+VND MIP solver
stops students capacity CPU (s) distance CPU (s) distance

5 25 25 0.49 111.65 0.92 111.65
5 50 25 1.68 130.53 17.38 130.53
5 100 25 2.89 134.95 85.72 134.95
10 50 25 2.86 108.98 - -
10 100 25 5.58 178.28 - -
10 200 25 25.61 347.29 - -
20 100 25 19.25 248.19 - -
20 200 25 50.39 373.21 - -
20 400 25 132.47 763.76 - -
40 200 25 88.60 351.04 - -
40 400 25 569.74 599.36 - -
40 800 25 3389.94 1409.39 - -
80 400 25 2143.93 587.04 - -
80 800 25 3271.80 1119.10 - -
5 25 50 0.52 103.18 3.43 103.18
5 50 50 1.69 96.26 13.83 96.26
5 100 50 2.88 144.42 17.96 144.42
10 50 50 2.28 157.48 129.70 157.48
10 100 50 7.98 175.96 - -
10 200 50 20.58 217.46 - -
20 100 50 13.82 185.88 - -
20 200 50 36.83 257.57 - -
20 400 50 90.54 298.47 - -
40 200 50 68.02 274.24 - -
40 400 50 242.91 395.95 - -
40 800 50 2744.55 618.06 - -
80 400 50 878.86 387.03 - -
80 800 50 3327.46 637.16 - -

Table 6: Summary for instances with a maximum walking distance of 20
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GRASP+VND MIP solver
stops students capacity CPU (s) distance CPU (s) distance

5 25 25 0.29 7.63 0.60 7.63
5 50 25 1.38 12.89 121.55 12.89
5 100 25 4.24 58.95 2655.31 58.95
10 50 25 2.84 32.25 - -
10 100 25 7.38 57.50 - -
10 200 25 33.35 102.93 59.78 102.93
20 100 25 20.17 53.19 - -
20 200 25 67.73 93.01 - -
20 400 25 307.20 239.58 1556.67 239.58
40 200 25 158.36 87.17 - -
40 400 25 777.28 213.97 - -
40 800 25 3506.44 399.77 - -
80 400 25 2555.72 149.74 - -
80 800 25 3454.54 349.65 - -
5 25 50 0.25 25.64 6.80 25.64
5 50 50 1.17 30.24 122.58 30.24
5 100 50 2.89 39.44 1359.96 39.44
10 50 50 2.76 36.66 - -
10 100 50 5.90 31.89 1679.45 31.89
10 200 50 18.50 56.61 - -
20 100 50 23.73 19.05 - -
20 200 50 46.04 46.66 - -
20 400 50 127.08 84.49 - -
40 200 50 139.33 63.28 - -
40 400 50 382.78 76.58 - -
40 800 50 2127.67 207.31 - -
80 400 50 1734.78 98.39 - -
80 800 50 3520.24 147.14 - -

Table 7: Summary results for instances with a maximum walking distance of 40
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