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Recurrent Dominant Mutations Affecting Two Adjacent
Residues in the Motor Domain of the Monomeric Kinesin
KIF22 Result in Skeletal Dysplasia and Joint Laxity

Eric D. Boyden,1,24 A. Belinda Campos-Xavier,2,24 Sebastian Kalamajski,1,24 Trevor L. Cameron,3

Philippe Suarez,2 Goranka Tanackovich,4 Generoso Andria,5 Diana Ballhausen,2 Michael D. Briggs,6
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Pierre-Simon Jouk,11 Rainer König,12 André Megarbané,13 Gen Nishimura,14 Ralph S. Lachman,15

Geert Mortier,16 David L. Rimoin,15,17 R. Curtis Rogers,18 Massimiliano Rossi,5 Hirotake Sawada,19
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Spondyloepimetaphyseal dysplasia with joint laxity, leptodactylic type (lepto-SEMDJL, aka SEMDJL, Hall type), is an autosomal domi-

nant skeletal disorder that, in spite of being relatively common among skeletal dysplasias, has eluded molecular elucidation so far. We

used whole-exome sequencing of five unrelated individuals with lepto-SEMDJL to identify mutations in KIF22 as the cause of this skel-

etal condition. Missense mutations affecting one of two adjacent amino acids in the motor domain of KIF22 were present in 20 familial

cases from eight families and in 12 other sporadic cases. The skeletal and connective tissue phenotype produced by these specific muta-

tions point to functions of KIF22 beyond those previously ascribed functions involving chromosome segregation. Although we have

found Kif22 to be strongly upregulated at the growth plate, the precise pathogenetic mechanisms remain to be elucidated.
Heritable disorders of skeletal growth and development

have revealed a surprising variety of underlying molecular

mechanisms, bringing this clinical and diagnostically

difficult field to the front of molecular genetics

research.1,2 Genes responsible for these disorders might

code for extracellular structural proteins, enzymes respon-

sible for the synthesis or degradation of matrix compo-

nents, hormones and signal transmission factors, nuclear

transcription factors, intracellular cytoskeletal proteins,

structural proteins of the endoplasmic reticulum, noncod-

ing RNAs, and most recently, genes involved in ciliary

assembly and transport. Here we report that mutations

in KIF22 (aka KID [MIM 603213]), which encodes a

monomeric kinesin,3–5 are the cause of spondyloepimeta-

physeal dysplasia with joint laxity, leptodactylic type

(lepto-SEMDJL; aka SEMD, Hall type [MIM 603546]).

This implicates this class of molecules in the pathogenesis

of human skeletal dysplasias and suggests a hitherto
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unknown role for KIF22 in skeletal growth and homeo-

stasis.

Lepto-SEMDJL is characterized by a flat face, perinatal

onset of short stature with shortening of both the trunk

and the limbs, generalized joint laxity with multiple dislo-

cations, and progressive scoliosis and limb deformity.6 The

radiographic pattern is that of a spondyloepimetaphyseal

dysplasia with moderately flattened vertebral bodies, stri-

ated metaphyses, and small and fragmented epiphyses

with delayed maturation. The most distinctive features

for differential diagnosis are the slender metacarpals and

phalanges (‘‘leptodactyly,’’ meaning slender fingers) and

the progressive degeneration of carpal bones; however,

the latter two features are evident only in older children

and young adults. The soft consistency of cartilage in the

airways leads to laryngotracheomalacia with proneness

to respiratory obstruction and inspiratory stridor in

infancy and childhood.7–9 Although the majority of cases
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Figure 1. Morphologic Features of Lepto-SEMDJL
(A, B, D, E and F) are all from subject 2 (family 1) at age 7.
(A) In this boy, stature is markedly below the normal range, with short-trunk type disproportion. There is frontal bossing with flattening
of the face and a sunken nasal bridge. There is left hip subluxation (F), leg length difference, and right genu varum (A). Joint laxity is
indicated by the scoliosis and the flat feet.
(B) The hand radiographs of this boy; there is a very marked delay in the maturation of all epiphyseal centers and of the carpal bones, as
well as metaphyseal irregularities at the distal radius and ulna.
(C) The hand X-ray of an unrelated boy, age 10. Also in this individual, there is a marked delay in all secondary ossification centers and
there is shortening of the distal ulna. The proximal phalanges and the metacarpals are slender; this feature, leptodactyly, that becomes
apparent only over time, is characteristic for this bone dysplasia.
(D) The moderate platyspondyly and the scoliosis (ligamentous laxity).
(E) The marked dysplasia of the metaphyses at the knee (distal femur, proximal tibia) and at the same time the small and dysplastic
epiphyses.
(F) A similar pattern at the proximal femurs with shortening of the femoral necks and the presence of epiphyses that are barely visible
andmarkedly small for age. The acetabula are not well developed; they are less well developed on the left than on the right; the left hip is
subluxated because of the acetabular dysplasia and associated ligamentous laxity.
(G) An electron microscopy image of a tendon biopsy section (subject 6 in Table 1) at right angle to the collagen fiber (magnification,
approximately 50003). The diameter of the fibers shows a significant variability.
have been sporadic in their families, dominant inheritance

has been documented.8,10–12 The condition is likely to be

both under- and misdiagnosed because the specific radio-

graphic findings appear only in late childhood.

The pathogenesis of lepto-SEMDJL has remained

obscure. Disturbed formation of the extracellular matrix

was suggested by the observation of highly abnormal

collagen fibers in a tendon biopsy of an affected indi-

vidual (Figure 1). This, and some phenotypic overlap

with two other conditions characterized by generalized

bone dysplasia and joint laxity, namely spondyloepiphy-

seal dysplasia congenita (a dominant collagen 2 disorder

[MIM 183900]) and pseudoachondroplasia (a dominant

disorder associated with mutations in cartilage oligo-

meric matrix protein [MIM 177170]) had led to the

investigation of these genes in a few cases, with negative

results.
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We studied a cohort of 32 affected individuals with

lepto-SEMDJL from 20 families of different ethnic origins

(Table 1). The study was approved by the cantonal ethic

committee of Lausanne, Switzerland. In 20 individuals

from eight families, the condition was inherited in an

autosomal dominant manner, whereas there was no family

history of disease in 12 individuals. Clinical and radio-

graphic features common to all affected individuals are

summarized in Figure 1. A significant proportion of cases

presented laryngotracheomalacia. We performed whole-

exome sequencing by using DNA from five unrelated

lepto-SEMDJL individuals (subjects 2, 6, 7, 30, and 32 in

Table 1) and 14 unrelated controls to identify gene variants

that were present in affected individuals and absent in

controls. Exome capture utilized the SureSelectXT Human

All Exon 50Mb kit (Agilent Technologies) following the

manufacturer’s protocol, except that we used adapters
er 9, 2011



Table 1. Clinical Features, Origin, Inheritance, and Mutations in KIF22 in All Individuals with Lepto-SEMDJL

Family Subject Origin
Short
Stature

Skeletal
Dysplasia

Laryngeal
Stenosis

Joint
Laxity

KIF22
Mutation
(cDNA)

KIF22
Mutation
(Protein)

Inheritance or
De Novo

1 1,2,3,4 Italy þ þ – þ c.443C>T p.Pro148Leu autosomal dominant

2 5,6 UK þ þ – þ c.443C>T p.Pro148Leu autosomal dominant

3 7,8,9 USA þ þ – þ c.446G>A p.Arg149Gln autosomal dominant

4 10,11 Italy þ þ – þ c.446G>A p.Arg149Gln autosomal dominant

5 12,13,14 Japan þ þ – þ c.446G>A p.Arg149Gln autosomal dominant

6 15,16 UK þ þ – þ c.446G>A p.Arg149Gln autosomal dominant

7 17,18 Belgium þ þ þ þ c.446G>A p.Arg149Gln autosomal dominant

8 19,20 USA þ þ not known þ c.446G>A p.Arg149Gln autosomal dominant

9 21 Lebanon þ þ not known þ c.446G>A p.Arg149Gln de novo

10 22 France þ þ þ þ c.446G>A p.Arg149Gln de novo

11 23 Greece þ þ – þ c.446G>A p.Arg149Gln de novo

12 24 UK þ þ þ þ c.446G>A p.Arg149Gln de novo

13 25 Germany þ þ not known þ c.446G>A p.Arg149Gln de novo

14 26 USA þ þ not known þ c.446G>A p.Arg149Gln de novo

15 27 USA þ þ not known þ c.446G>T p.Arg149Leu de novo

16 28 USA þ þ not known þ c.443C>T p.Pro148Leu de novo

17 29 Brazil þ þ þ þ c.443C>T p.Pro148Leu de novo

18 30 Germany þ þ þ þ c.443C>T p.Pro148Leu de novo

19 31 Japan þ þ þ þ c.443C>T p.Pro148Leu de novo

20 32 Italy þ þ not known þ c.443C>T p.Pro148Leu de novo
with 3 bp barcodes13 to allow multiplexing of samples

during capture. Captures were performed in seven inde-

pendent reactions with two to four samples per reaction

with 300–500 ng DNA per sample and then combined

into onemolarity-balanced library on which we performed

75 bp paired-end sequencing in seven lanes of one Illu-

mina HiSeq2000 flow cell. Sequence reads were debar-

coded with Novobarcode (Novocraft Technologies),

aligned to the reference genome (hg19) with BWA,14 and

culled of PCR duplicate reads with SAMtools.15 Variant

bases were called with SAMtools/BCFtools, and annotated

with ANNOVAR,16 filtered by presence in dbSNP132,

1000 g, and our 14 unaffected control samples, and prior-

itized according to putative functionality; splice site and

coding nonsilent variants were given the highest priority.

We identified one gene, KIF22, in which one of

two heterozygous missense mutations (p.Pro148Leu

[c.443C>T] or p.Arg149Gln [c.446G>A]) was present in

all five lepto-SEMDJL cases and absent in 2,500 exomes

from the National Heart Lung and Blood Institute Exome

Sequencing Project (accessed August 2011). The mutations

alter highly conserved residues within the KIF22 motor

domain near an ATP-binding site (Figure 2). Sanger

sequencing of KIF22 exon 4 in all 32 lepto-SEMDJL

affected individuals and available relatives revealed that
The American
all affected persons were heterozygous for either

p.Pro148Leu, p.Arg149Gln, or p.Arg149Leu [c.446G>T]

allele (Table 1) and that these mutations were not present

in unaffected relatives. We tested both parents (and unaf-

fected siblings when available) of each affected individual

and complete cosegregation of mutations with the pheno-

type was identified. Sequencing of exon 4 in 480 unrelated

control samples of European descent (Sigma-Aldrich) re-

vealed no mutations (data not shown).

We next tested whether the lepto-SEMDJL mutations

affect protein abundance, posttranslational processing, or

cytoskeletal architecture by using skin fibroblast cell lines

from three unrelated affected individuals (subjects 1, 10,

and 32 in Table 1) and controls as well as in tendon derived

fibroblast-like cells of subject 6 and a control cell line. We

observed no differences from control in KIF22 localization

or cytoskeletal architecture as determined by anti-KIF22

or anti-tubulin immunofluorescence (data not shown).

Because immunoblot performed with a commercial anti-

body against human KIF22 failed to reveal expression in

both skin fibroblasts and tendon fibroblast-like cells from

lepto-SEMDJL affected individuals and controls (data not

shown), we looked for specific expression in cartilage

growth plates of wild-type mouse tibia. Quantitative RT-

PCR in microdissected mouse growth plates, performed
Journal of Human Genetics 89, 767–772, December 9, 2011 769



Figure 2. Schematic Representation of KIF22 Protein and Mutations Found in Individuals with Lepto-SEMDJL
(A) Functional domains of KIF22; the mutations found in lepto-SEMDJL patients are located on two adjacent amino acid residues in the
motor/catalytic domain.
(B) Crystal structure of the motor domain of KIF22, generated with Research Collaboratory for Structural Bioinformatics-Protein Data
Bank (RCSB-PDB), viewer Protein Workshop (see Web Resources; deposition: 2007-11-22; release: 2007-12-04; last modified 2011-07-
13). The two contiguous residues mutated in lepto-SEMDJL (Pro148 and Arg149) are located close to the ATP/ADP binding site.
as previously described17 and with the housekeeping gene

Mrps16 as a reference, showed strong upregulation of Kif22

in the proliferative zone of the growth plate (Figure 3 and

Table S1, available online).

The observation that KIF22 mutations were restricted to

two adjacent codons in all examined lepto-SEMDJL indi-

viduals confirms the genetic homogeneity of this disorder

and the specificity of the diagnostic criteria as outlined by

Hall et al.6 and Kim et al.18 The findings also raise ques-

tions on the possible molecular mechanisms. Haploinsuffi-

ciency seems unlikely, because it would be extremely

unusual to have independent occurrence in a large number

of unrelated pedigrees clustering on two adjacent amino

acids; instead, the two residues must have a functional

role that is hitherto unknown. Previously ascribed func-

tions for KIF22, based upon knockout and knockdown

studies, involved spindle formation,19 chromosomal

movement,19 microtubule stabilization,5,20 genomic

stability, and cellular replication.21 However, the pheno-

type of lepto-SEMDJL does not have any feature that would

seem related to these functions. Several kinesins play

important roles in the transport of morphogens

(KIF3B),22 cell surface receptors (KIF17),23 and matrix met-

alloproteinases (KIF5B, KIF3A, and KIF3B).24–26 By analogy,

KIF22 might also have an important trafficking role in

chondrocytes or the motor domain missense mutations

might cause KIF22 to interfere with other motor domain

kinesins that function in cartilage. As an alternative expla-

nation, the mutations at residues 148 and 149might trans-

specify the protein, conferring to it some properties nor-

mally reserved to other members of the kinesin family.

This latter hypothesis is supported by the observation

that some kinesins do have Leu or Gln at position 149
770 The American Journal of Human Genetics 89, 767–772, Decemb
(Supplemental Data). Finally, the mutations might

produce a dominant negative effect if KIF22 heterodimer-

izes with other kinesins and/or interacts with other partner

proteins.

To date, few human monogenic diseases have been asso-

ciated withmutations in any of the 45 currently annotated

human kinesin genes. Recessivemutations in kinesin genes

have been associated with acrocallosal syndromes, Joubert

syndrome (KIF7),27,28 and hereditary sensory and auto-

nomic neuropathy type 2 (KIF1A).29 Dominant, recurrent

missense mutations in a methylated CpG dinucleotide in

the C-terminal domain of KIF21A cause congenital fibrosis

of extraocular muscles,30,31 and a dominant missense

mutation in the motor domain of KIF1B (p.Gln98Leu

[c.293A>T]) has been associatedwith Charcot-Marie-Tooth

type 2 disease in a single pedigree.32 Similar to the

p.Gln98Leu (c.293A>T) KIF1B mutation, the KIF22 muta-

tions found in lepto-SEMDJL affect the motor domain of

the kinesin and might therefore result in a loss of its motor

activity.32 However, as outlined above, simple loss of func-

tion is unlikely to explain the clustering of mutations on

the two adjacent amino acids. Because kinesins have not

been associated with human cartilage biology so far, our

findings also raise the possibility that KIF22might be impli-

cated in intracellular transport (and possibly, secretion) of

an extracellular matrix protein and/or in cilia-associated

transport mechanisms, two mechanisms that have been

evoked in Kif3a and Kif5b conditional chondrocytic knock-

outs.33,34 This hypothesis is supported by our expression

data in mouse growth plates. Strong expression of Kif22

in the proliferative zone of the growth plate with downre-

gulation in hypertrophic chondrocytes is compatible with

a broader role of KIF22 in the synthesis of extracellular
er 9, 2011



Figure 3. Quantitative RT-PCR Analysis of Kif22 Expression in
Wild-Type Mouse Growth Plate Cartilage Zones
qPCR was performed for Kif22 on cDNA derived from proliferative
and hypertrophic zones microdissected from 2-week-old wild-type
mouse tibial growth plates (n ¼ 3). qPCR was conducted with
three technical replicates. Kif22 expression was calculated relative
to the housekeeper gene Mrps16 and expressed as the fold dif-
ference in expression in the proliferative zone compared to
the hypertrophic zone. Statistical significance was calculated
with the Student’s t test. Error bars represent standard deviation.
Detailed quantitative expression data are reported in Table S1.
matrix rather than with a more restricted role in the hyper-

trophic zone, that would be a prelude to calcification and

vascular invasion. Alternatively, this finding might be ex-

plained by higher expression of KIF22 in proliferating cells

because of its likely involvement in chromosomal move-

ment during cell division.

The elucidation of the mechanism by which the specific

mutations at codons 148 and 149 of KIF22 result in

a phenotype restricted to bone and connective tissue will

require the design of knockin experiments with appro-

priate cellular or animal models. Given the relatively

high frequency of lepto-SEMDJL, its dominant inheri-

tance, and the diagnostic difficulty in infancy and early

childhood, we communicate our findings in order to allow

the clinical community and the affected families to benefit

from them and to inform basic scientists involved in the

study of KIF22 and other kinesins about these unexpected

aspects of KIF22 physiology.
Supplemental Data

Supplemental Data include one figure and one table and can be

found with this article online at http://www.cell.com/AJHG/.
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