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Preface  
 

To understand the structure-property relationship of nanomaterials and to trigger the synthesis of 

novel nanomaterials with predefined properties, a 3D investigation at the nanoscale and below is of 

key importance. To reach this goal, electron tomography is required. The technique has progressed 

significantly the last decade, but progress in materials science is leading to even higher demands 

concerning characterization. The growing interest in hetero-nanostructures requires clear knowledge 

on both the shape and chemical nature of the structure in 3D. Therefore, a need for spectroscopic 

electron tomography emerges. The ever increasing complexity in composition of novel nanostructures 

is often accompanied by an increasing sensitivity towards the electron beam. Depending on the degree 

of sensitivity, the conventional acquisition of a single projection image is already troublesome and 

low dose techniques are required. When expanding the investigation to 3D, the acquisition of a (large) 

set of images necessary for an electron tomography experiment is far from straightforward. Finally, 

although electron tomography yields very precise and local information in 3D of nanoparticles, a 

major drawback remains that it is not straightforward to perform statistically relevant studies in 3D as 

the technique is quite time-consuming. Therefore, one of the emerging challenges in the field is to 

increase the throughput of 3D reconstructions of nanoparticles. 

 Chapter 1 starts with a short introduction on functional nanoparticles. The different nanoparticles, 

which are studied in the thesis, and their properties are introduced in this chapter. In Chapter 2, an 

introduction on electron tomography is presented. After the motivation to perform electron 

tomography, a short historical overview of the development of the technique is presented. The 

remainder of the chapter focuses on the practical aspects of electron tomography. In Chapter 3, a 2D 

and 3D structural characterization of semiconductor CdSe nanoplatelets is performed. The use of  
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HAADF-STEM tomography enables us to characterize these nanoplatelets in 3D and to elucidate on 

the helicity of nanohelices. Different beam sensitive perovskite nanocrystals are investigated in 

Chapter 4. The use of alternative techniques emerges as specific perovskite nanomaterials do not 

even withstand the acquisition of a single HAADF-STEM projection image. Different techniques are 

used to study the atomic structure of these perovskite nanomaterials. With the growing interest in the 

use of core/shell semiconductor nanoparticles, a 3D characterization of both the structure as the 

chemical nature of the nanoparticles emerges. The results of such full 3D characterizations of several 

core/shell semiconductor nanoparticles are presented in Chapter 5. Here, the use of HAADF-STEM 

tomography is sufficient to perform both a structural as a chemical characterization since the 

difference in atomic number of the core and the shell is sufficiently large and will result in different 

intensity values for the core and the shell in the projection images. To perform a 3D chemical 

characterization for samples in which different components with comparable atomic numbers are 

present, the use of EDX tomography is proposed. In Chapter 6, the practical aspects of EDX 

tomography will be discussed and different acquisition approaches will be applied to metallic Au/Ag 

core/shell nanoparticles. During EDX tomography experiments, only a limited number of projection 

images can be acquired. This complicates an accurate and reliable 3D reconstruction of the chemical 

nature of a nanoparticle. Therefore, there is a need for the development of reconstruction algorithms 

which can handle such limited amount of projection images. A neural network based reconstruction 

algorithm is presented in Chapter 7. This reconstruction algorithm obtains reliable 3D 

reconstructions of highly limited HAADF-STEM tomography data. An extension towards chemical 

3D characterizations is also discussed. In Chapter 8, the ceria layer of a ceria-zirconia nanoparticle is 

investigated by high resolution EDX mapping. We aim for an atomically resolved EDX map as we 

want to reveal the chemical nature of each atom in the nanomaterial and retrieve the atomic thickness 

of the ceria layer. The applicability of such atomic resolution EDX maps for atom-counting is 

evaluated by the study of a ceria nanoparticle. We believe that the use of atom-counting will open up 

possibilities towards the 3D atomic resolution chemical characterization of hetero-nanostructures. 
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Nederlandstalige samenvatting  
 

Om de relatie tussen de morfologie en de eigenschappen van nanomaterialen te onderzoeken en de 

synthese van nieuwe nanomaterialen te leiden, is een driedimensionale (3D) karakterisering van deze 

nanomaterialen uitermate belangrijk. Conventionele transmissie-elektronenmicroscopie (TEM) is 

echter niet voldoende om een materiaal in 3D te karakteriseren aangezien deze techniek enkel 

tweedimensionaal (2D) beelden levert van een 3D object. Daarom wordt elektronentomografie 

gebruikt, een methode om een 3D reconstructie te verkrijgen uit een set van 2D projectiebeelden. 

Hoewel deze techniek enorm geëvolueerd is de laatste jaren, duiken nieuwe uitdagingen op. De 

groeiende interesse in hetero-nanostructuren, bijvoorbeeld, vereist kennis over zowel de morfologie 

als de chemische aard van de nanostructuur in 3D. Om deze uitdaging aan te gaan, moeten 

spectroscopische technieken gecombineerd worden met elektronentomografie. De groeiende 

complexiteit van de samenstelling van nieuwe nanostructuren gaat vaak gepaard met een toename in 

bundelgevoeligheid. Het onderzoeken van zo’n bundelgevoelige materialen in 2D vormt vaak al een 

obstakel. Daarom moeten alternatieve lage elektronendosis technieken uitgevoerd worden met het oog 

op de karakterisering van deze materialen in 3D. Tenslotte, hoewel elektronentomografie precieze en 

lokale 3D informatie van nanodeeltjes levert, is het verkrijgen van statistisch relevante informatie in 

3D niet eenduidig aangezien de techniek tijdsrovend is. Het reduceren van de tijd, die nodig is om een 

elektronentomografie experiment uit te voeren, vormt een grote uitdaging. 

In hoofdstuk 1 worden de verschillende functionele nanodeeltjes, die in de thesis bestudeerd worden, 

besproken. Drie klassen van nanodeeltjes worden geïntroduceerd: metallische, halfgeleider en 

katalytische nanomaterialen. Een korte bespreking over de groei, eigenschappen en toepassingen van 

de nanodeeltjes wordt besproken in dit hoofdstuk. 
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Hoofdstuk 2 geeft een inleiding over elektronentomografie. Vooraleer elektronentomografie 

uitvoerig word besproken, wordt een korte inleiding over transmissie-elektronenmicroscopie gegeven. 

Vervolgens, na een korte historische kadering, worden de verschillende stappen van een 

elektronentomografie experiment uitgelegd. Een elektronentomografie experiment bestaat uit de 

volgende stappen: opname van een tilt serie, de tilt serie uitlijnen ten opzichte van een 

gemeenschappelijke tilt-as, reconstrueren van het 3D volume en visualizeren en/of quantificeren. Elke 

stap wordt uitvoerig besproken in dit hoofdstuk. 

In hoofdstuk 3, wordt de karakterisering van halfgeleider CdSe nanoplaatjes behandeld in 2D en 3D. 

Twee types worden bestudeerd: dunne nanoplaatjes met laterale dimensies van enkele nanometers en 

dunne nanoplaatjes met laterale dimensies van een honderdtal nanometer. De rol van azijnzuur zout 

op de groei van het eerste type CdSe nanoplaatjes werd onderzocht aan de hand van hoge resolutie 

TEM. Het gebruik van cadmiumacetaat leverde diverse nanoplaatjes op, waarbij zowel de vorm als 

het type van de oppervlakte facetten varieerde. Door het cadmiumacetaat te vervangen door 

natriumacetaat werden CdSe nanoplaatjes gevormd met {110} facetten. Aangezien meer acetaat 

vrijkomt bij natriumacetaat, zal een stijgende selectieve groei van de facetten waargenomen worden 

en enkel de {110} facetten komen tot uiting. De CdSe nanoplaatjes met grotere laterale afmetingen 

worden opgerold waargenomen. Door middel van cryogene elektronentomografie werd de opgerolde 

morfologie van deze nanostructuren bevestigd. Cryogene elektronenmicroscopie wordt echter 

bemoeilijkt door de aanwezigheid van een ijslaag rond de nanostructuren en zal zorgen voor een 

gelimiteerde spatiale resolutie. Om de morfologie van deze nanoplaatjes grondiger te bestuderen 

werden ze daarom ingekapseld in een silica laag. Deze silica laag heeft geen invloed op de opgerolde 

morfologie van de nanoplaatjes en laat een elektronenmicroscopie onderzoek toe op 

kamertemperatuur. Het onderzoeken van de heliciteit van deze opgerolde CdSe nanoplaatjes kan niet 

aan de hand van 2D beeldvorming. Een 2D beeld van een links- of rechtshandige helix zal geen 

verschil tonen. Daarom werden ze hier met high angle annular dark field scanning transmissie-
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electronmicroscopy (HAADF-STEM) tomografie onderzocht, aangezien een 3D reconstructie ons zal 

toelaten om de heliciteit te bestuderen. 

In hoofdstuk 4 worden perovskiet nanostructuren onderzocht waarbij de karakterisering sterk 

bemoeilijkt wordt door de bundelgevoeligheid van de nanomaterialen. Een 2D karakterisering op 

atomair niveau wordt uitgevoerd op twee types perovskieten: cesium lood halogenide en organische-

inorganische lood halogenide perovskiet nanomaterialen. Cesium lood halogenide perovskieten 

werden onderzocht aan de hand van hoge resolutie HAADF-STEM beelden waarbij de verschillende 

types atoomkolommen bepaald konden worden. De karakterisering van organische-inorganische lood 

halogenide perovskieten vormt een grotere uitdaging aangezien deze materialen instantaan vervormen 

onder de elektronenbundel. Door middel van het gebruik van HAADF-STEM met een beperkte 

elektronendosis, werden beelden met een erg lage kwaliteit opgenomen. Een template-matching 

procedure werd vervolgens toegepast op deze beelden om een uitgemiddelde templaat te bekomen. 

Door deze uitmiddeling, neemt de kwaliteit van het templaat toe en kan de atomaire structuur van de 

organische-inorganische perovskiet gevisualiseerd worden. Deze aanpak geeft echter enkel een 

gemiddeld beeld van de atomaire structuur, lokale defecten kunnen hier bijvoorbeeld niet mee 

onderzocht worden. Het gebruik van exit wave reconstruction wordt toegepast om opnieuw de 

volledige structuur van de perovskiet te onderzoeken. Een 3D karakterisering blijft nog een uitdaging 

door de extreme bundelgevoeligheid van deze perovskieten. 

Halfgeleider materialen worden vaak gebruikt om kern/schil nanodeeltjes met geoptimaliseerde 

eigenschappen te groeien. Het bepalen van de locatie van de kern in het kern/schil deeltje is 

noodzakelijk om de groei van deze nanodeeltjes te onderzoeken en begrijpen. De combinatie van een 

kern en een schil bemoeilijkt echter de karakterisering aangezien deze onderscheiden moeten worden. 

Zowel de morfologie van het kern/schil nanodeeltje als zijn samenstelling moet gekarakteriseerd 

worden. In hoofdstuk 5  worden twee types halfgeleider kern/schil nanodeeltjes onderzocht: 

CdSe/CdS en CuInSe2/CuInS2. Aangezien in beide nanostructuren de kern Se bevat, kan deze 
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gelokaliseerd worden door middel van HAADF-STEM tomografie. De Se-bevattende kern zal 

intenser gevisualiseerd worden aangezien dit atoomtype zwaarder is dan S. Het verschil is echter niet 

al te groot waardoor de kern zwak waar te nemen is in de 3D reconstructie. Door het toepassen van 

een geavanceerde reconstructietechniek wordt de kern duidelijker gedecteerd in de 3D reconstructie. 

HAADF-STEM kan enkel gebruikt worden om spectoscopische informatie te verkrijgen als het 

atoomnummer van de kern en de schil erg verschilt. Het uitbreiden van spectroscopische 

elektronentomografie vereist een techniek die geen voorwaarde legt op het atoomnummer van de 

verschillende componenten in het nanomateriaal. In hoofdstuk 6 wordt energy dispersive X-ray 

(EDX) tomografie geïntroduceerd en worden de praktische aspecten van deze techniek besproken. De 

techniek was tot voor kort erg beperkt aangezien de detector enkel voldoende signaal opving bij 

bepaalde hoeken, wat een betrouwbare elektronentomografie experiment bemoeilijkt. De 

ontwikkeling van een nieuw detectorsysteem, waar vier detectoren symmetrisch opgesteld worden 

boven het specimen, verhogen de efficiëntie van de detector. Deze nieuwe set-up vereist een grondig 

onderzoek, waarbij moet nagegaan worden of elektronentomografie op een betrouwbare wijze kan 

uitgevoerd worden. Hiervoor worden metallische Au/Ag kern/schil nanodeeltjes onderzocht aan de 

hand van verschillende opname procedures. De resultaten van deze verschillende procedures worden 

zowel kwalitatief als kwantitatief vergeleken. De opname van een EDX tilt serie voor 

elektronentomografie bevat een beperkt aantal projectiebeelden in vergelijking met een conventionele 

HAADF-STEM tilt serie. Het ontwikkelen van reconstructie-algoritmen die betrouwbare resultaten 

opleveren bij een beperkt aantal beelden wordt daardoor noodzakelijk. 

In hoofdstuk 7  wordt een neuraal netwerk gebaseerde reconstructietechniek geïntroduceerd waarbij 

betrouwbare 3D reconstructies van Au nanodeeltjes behaald worden op basis van sterk gelimiteerde 

tilt series. Deze reconstructietechniek werkt met een leer fase en een reconstructie stap, waarbij in de 

leer fase 3D reconstructies van 151 HAADF-STEM projectiebeelden worden gebruikt. Na deze 

procedure, wordt het bekomen reconstructie-algoritme toegepast op een nanodeeltjes van dezelfde 
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samenstelling waarbij enkel 10 projectiebeelden beschikbaar zijn. De 3D reconstructies worden 

vergeleken met een standaard experiment zowel kwalitatief als kwantitatief. Een uitbreiding van deze 

reconstructietechniek om kern/schil hetero-nanostructuren te bestuderen wordt besproken. 

Hoofdstuk 8 bespreekt, tot slot, de uitbreiding van een chemische karakterisering in 3D tot op 

atomair niveau. Eerst worden ceria-zirconia nanodeeltjes onderzocht in 2D. De synthese van deze 

katalytische nanodeeltjes tracht nanodeeltjes te produceren met een erg dunne ceria laag. Aangezien 

de katalytische reactie plaatsvindt aan het oppervlak van de nanostructuren, moet ceria enkel 

aanwezig zijn als een oppervlaktelaag. Aangezien de hoeveelheid ceria erg laag is, neemt de opname 

tijd van een EDX map enorm toe. Aan de hand van twee orthogonale EDX mappen, wordt de 

aanwezigheid van de ceria laag rond de zirconia nanodeeltjes bevestigd op nanometer niveau. Om de 

exacte dikte van deze dunne ceria laag te bepalen moeten we echter een atomaire resolutie EDX map 

opnemen. De opnamen van een hoge resolutie EDX map vereist extreme stabiliteit van de 

elektronenmicroscoop aangezien een opname tijd van enkele minuten nodig is. We konden besluiten 

dat de ceria laag enkel twee atoomlagen dik is, na een succesvolle opname van een atomaire resolutie 

EDX map. Een volgende uitdaging is het uitbreiden van atomaire chemische karakterisering in 3D. 

Een combinatie van de lage detectie-efficiëntie en bundelgevoeligheid van de nanostructuren 

bemoeilijkt het opnemen van een tilt serie van EDX mappen op atomair niveau. Daarom stellen we 

hier voor om de toepasbaarheid van deze mappen voor atom-counting te onderzoeken. Op basis van 

statistical parameter estimation theory kan het aantal atomen in een atoomkolom bepaald worden in 

een hoge resolutie HAADF-STEM projectiebeeld. Op deze manier kan 3D informatie bekomen 

worden uit een 2D beeld. In dit hoofdstuk wordt op basis van een ceria nanodeeltje bevestigd dat 

atomaire resolutie EDX mappen gebruikt kunnen worden voor atom-counting. Dit resultaat zal de 

deuren openen naar een 3D atomaire resolutie chemische karakterisering van hetero-nanostructuren. 



XIII 

In hoofdstuk 9 wordt een vooruitzicht van de resterende uitdagingen gegeven. Verder onderzoek en 

verdere ontwikkelingen zijn vereist om bundelgevoeldige materialen in 3D te onderzoeken en om een 

3D atomaire resolutie chemische karakterisering van hetero-nanostructuren te bekomen. 
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photonic, polymeric or semiconducting nanoparticles can be obtained. Understanding the connection 

between the physical properties and the local structure or composition of nanoparticles is of crucial 

importance to provide the necessary input for predicting the properties and to guide the synthesis of 

novel nanomaterials with predefined properties. In the remainder of this chapter, the classes of 

nanoparticles which will be investigated in this thesis will be introduced and the motivation for their 

characterization will be discussed. It should be noted that the nanoparticles are introduced in different 

categories: metallic, semiconductor and catalytic nanoparticles; however, this is not the order in which 

they will be presented in the thesis. 

2. Metallic nanoparticles 

Metallic nanoparticles are among the most widely studied systems in nanoscience as they exhibit 

totally different properties when downsized to the nanometer level. For example, Au nanoparticles 

can be used as active catalysts for oxidation reactions while their bulk counterpart is inactive. The 

investigated metallic nanoparticles in this thesis are Au and Au/Ag core/shell nanoparticles. 

2.1. Au nanoparticles 

Throughout history, gold (Au) has been a popular subject of investigation in science. Since the 

properties of Au nanoparticles greatly differ from the properties of bulk Au, their study has emerged 

in nanoscience and nanotechnology. In addition to their stability, Au nanoparticles exhibit size-related 

electronic, magnetic and optical properties and are therefore ideal for numerous applications such as 

photovoltaics, optoelectronics, catalysis and biomedicine1–5. 

Over the last decade, there has been a tremendous progress in the synthesis of Au nanoparticles of 

various sizes and shapes with a good yield and monodispersity6–14. Figure 1.2 shows bright field 

transmission electron microscopy (BF-TEM) images of Au nanoparticles with different shapes 

obtained using different chemical environments. The synthesis of Au nanoparticles with a certain  
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3. Semiconductor nanoparticles 

Semiconductor materials are frequently present in everyday life and are used in many technologies. 

Colloidal semiconductor nanocrystals have gained significant interest because of the possibility to 

precisely tune their optoelectronic properties, by exploiting the quantum confinement effect27–29. This 

effect states that the properties of a semiconductor material will drastically change with size if the 

material has dimensions of only a few nanometers. For example, colloidal CdSe nanospheres with 

different sizes will have different photoluminescence energies and thereby different colours. By 

varying the size of these CdSe nanospheres from approximately 6 to 2 nm, the photoluminescence can 

be tuned from the red (6 nm) to the blue light (2 nm). The easy tunability of these CdSe nanocrystals 

makes them extremely interesting and show potential use in applications such as solar cells30 and 

light-emitting diodes31. The semiconductor nanoparticles which have been studied in the thesis are 

Cd-based, CuIn-based and Pb-based nanocrystals.  

3.1. CdSe nanoplatelets 

Recently, a lot of work has been reported concerning the growth of 0D and 1D colloidal 

semiconductor nanomaterials in solution27,32,33. The synthesis of such 2D nanomaterials requires a 

high level of control since the growth in the basal direction needs to be hindered where the growth in 

the lateral dimensions needs to be promoted. Novel developments in colloidal synthesis have enabled 

the synthesis of 2D colloidal semiconductor nanocrystals with well-defined atomic thickness34–39. A 

commonly used synthesis technique was proposed by Itthuria et al [34] in which Cd myristate is 

mixed with a powder of Se in octadene and heated to 240°. When a temperature of 180° is reached, an 

acetate salt, mostly Cd acetate, is added and CdSe nanoplatelets form. A HAADF-STEM image of 

such a CdSe nanocrystal is presented in Figure 1.4.a. In the case of CdSe, these nanocrystals, or so-

called nanoplatelets, are often only a few CdSe units thick with lateral dimensions in the range of 

nanometers. Extension of the lateral dimensions is of key importance for their use in devices. The 

combination of a limited thickness and larger lateral dimensions leads to CdSe nanosheets with a 

remarkably strong luminescence and an extremely narrow emission spectrum40,41. Measurements of 
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When the lateral dimensions increase (in the order of hundreds of nanometer), the ultrathin CdSe 

nanoplatelets are often observed to be rolled up34,35,38,42,43 or strongly wrinkled36,38,44. However, it 

remains unclear whether this wrinkled conformation is the native or colloidal state of such ultrathin 

CdSe nanoplatelets. In Figure 1.4.b a CdSe nanoplatelet is shown which seems to be rolled up. 

However, no conclusions on the shape can be made from this 2D image, which only represents a 2D 

projection of a 3D object. In order to study the helicity of a nanohelix, electron tomography is 

required. Therefore, these nanoplatelets and their conformation are studied by electron tomography in 

Chapter 3. The sample preparation for a TEM investigation needs to be optimized in such a manner 

that it has no effect on the conformation of the nanoplatelets. 

3.2. CdSe/CdS nanocrystals 

The properties and applicability of semiconductor nanocrystals is limited by the presence of dangling 

bonds at the surface of the nanocrystal. The growth of a shell of a higher band gap semiconductor 

around a semiconductor nanocrystal can thereby greatly improve the optical properties. More specific, 

both the photoluminescence quantum yield and the stability of the full system will enhance45,46. Due 

to these advances, core/shell nanostructures are frequently used as luminescent biological probes and 

as active materials in light-emitting diodes and optoelectronic devices47–49. 

However, the complex synthesis of these core/shell structures, in which multiple precursors need to 

controlled simultaneously, remains a major drawback. A first difficulty is the lattice mismatch 

between the core and the shell of the structures. This mismatch will introduce crystal defects at the 

core/shell interface and will prevent the growth of the shell when a large lattice mismatch occurs50,51. 

In addition, the possible diffusion of cations52 and anions53 which may occur during the shell growth, 

prevent the growth of a sharp interface. An additional parameter which should be controlled during 

the shell growth is the addition of ligands. The type of ligands which are used for the shell growth can 

influence the shape of the final nanostructure54,55 and the crystal structure of the shell, which can be 
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different than the crystal structure of the core56,57. An accurate characterization of the nanostructure 

therefore emerges to guide and optimize the synthesis procedure. 

For colloidal CdSe nanocrystals, it has been demonstrated that the growth of a shell of a higher 

bandgap semiconductor, such as ZnS and CdS, improves its properties. In Figure 1.4.c and d, 

CdSe/CdS core/shell nanocrystals with a different shape are shown. In Chapter 5, CdSe (core) / CdS 

(giant shell) nanocrystals are characterized since they have remarkable optical properties and are 

therefore of scientific and technological importance. In addition to a more complicated synthesis 

procedure, the characterization of these core/shell structures is more demanding since the core and the 

final nanostructure need to be studied. The growth of such core/shell nanostructures is initiated at the 

position of the core. Therefore, characterizing the position of the core in the nanostructure will lead to 

insights in their growth process.  

3.3. CuInSe2/CuInS2 nanocrystals 

As pointed out in the previous section, the combination of two (or more) different semiconductors 

offers a lot of possibilities to improve the properties of such semiconductor systems. By tailoring both 

the composition, size and shape of each component and the full architecture of the system, the final 

properties can be optimized in a controlled manner29. Over the last decades, Cd- and Pb-chalcogenides 

(CdX and PbX, with X = S, Se, Te) have been studied extensively and a high degree of precision has 

been achieved in the synthesis of these hetero-nanocrystals29,55,57,58. Although these materials exhibit 

exceptional optical properties57,59–61, large scale deployment of these nanocrystals is limited by the 

toxicity of Cd and Pb. This encouraged a worldwide research effort to produce alternative materials 

which have comparable photoluminescence properties and a low toxicity level. 

A suitable candidate was found in CuInX2 nanocrystals as their photoluminescence can be tuned from 

the visible to near-infrared light. This tunability is relevant for applications such as light-emitting 

devices or biomedical imaging62–66. The synthesis of such ternary nanocrystals, however, is very 

challenging as multiple precursor reactivities must be controlled in a simultaneous manner, which 
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hampers a direct synthesis protocol for colloidal CuInX2 nanocrystals43,67–71. In Chapter 5, colloidal 

CuInX2 nanorods which were developed using a novel method based on sequential cation exchange 

reactions are fully characterized by advanced 2D and 3D electron microscopy to evaluate the 

synthesis procedure. 

3.4. Metal halide perovskite nanoparticles 

The development of metal halide perovskites was originally driven by scientific curiosity. Over the 

past few years, it became clear that these materials can be incorporated in photovoltaic technologies. 

Their outstanding optoelectronic properties have brought them to the forefront of many research fields 

such as solar cells, light-emitting diodes, lasers and photodetectors72,73. The power conversion of 

metal halide perovskite solar cells has increased from approximately 3% to 20% in the last four 

years72,74–76. Most studies have concentrated on the development and optimization of hybrid organic-

inorganic lead halides, more specific mainly on CH3NH3PbX3 (X = Cl, Br, I). A closely related family 

of materials have gained interest in the last years, which are cesium lead halide (CsPbX3) perovskites. 

A short introduction on both types is given in the next sections. 

3.4.1. Organic-inorganic lead halide perovskites 

The high absorption coefficient at visible wavelengths of organic-inorganic lead halide 

perovskites72,77, which is attractive for solar energy conversion, has been the driving force for their 

synthesis. Planar perovskite-based photovoltaic devices consist of a thin perovskite CH3NH3PbX3 (X 

= Cl, Br, I) layer in between conductive scaffolds. Recent studies have shown that these devices 

exhibit power conversion efficiencies exceeding 20%78,79. The morphology and crystallinity of the 

perovskite layer are known to be crucial as they influence the device performance80–83. Nevertheless, 

the conventional synthesis methods produce perovskite films with large variations in grain 

morphology. The high defect density in a polycrystalline film is generally disadvantageous for charge 

carrier dynamics84,85. Therefore, the synthesis of high quality monocrystalline inorganic-organic lead 

halide perovskites is currently of high interest and could form the cornerstone of fundamental studies 



 
4. CATALYTIC NANOPARTICLES 

11 

or large-scale application in perovskite-based devices. In Chapter 7, these planar CH3NH3PbX3 

perovskites are investigated down to the atomic scale to investigate their crystallinity. The organic 

component in these perovskites makes a characterization study very challenging as the electron beam 

does not strongly interact with the organic component, which hampers a clear visualization. 

3.4.2. Cesium lead halide perovskites 

The synthesis of purely inorganic cesium-based perovskites is less straightforward as these ternary 

compounds are far less soluble in common solvents contrary to CH3NH3PbX3, which is necessary to 

form colloidal nanocrystals. Although the potential of CsPbX3 (X= Cl, Br, I) was already reported 

more than 50 years ago86, their colloidal synthesis has only been recently demonstrated87–91.  In Figure 

1.5, BF-TEM images of CsPbBr3 and CsPbI3 nanocrystals with a monodisperse shape are shown. 

These colloidal CsPbX3 nanocrystals exhibit high photoluminescence quantum yields, narrow 

emission line widths and considerable air stability. An advantage of these systems is the tunability of 

their bangap by altering their size and halide (X) composition. The tunable bandgap energies cover 

the entire visible spectral region with narrow and bright emission. Nowadays, alternative synthesis 

approaches are investigated to prepare high quality nanocrystals and to develop synthesis approaches 

which can tune the halide composition in a straightforward manner. In Chapter 4, colloidal CsPbX3 

nanocubes and nanowires are investigated at the atomic level by TEM. 

4. Catalytic nanoparticles 

4.1. Ceria-zirconia nanostructures 

Ceria-zirconia mixed oxides have shown great potential as catalysts for a variety of chemical 

processes related to environmental catalysis, the production of hydrogen for fuel cells and the 

production  of  other  chemicals92.  A  new  route  in  the  synthesis  of  heterogeneous  catalysts  is  the 

development of materials with reduced amount of noble metals and lanthanides. The reduction of  
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SEM uses a focused electron beam (up to a few nanometers) to scan the surface of the sample. The 

interaction of the beam with the sample generates a lot of different signals, the most commonly 

detected signal are the secondary electrons which are emitted by the atoms excited within the sample. 

The detection of these secondary electrons yields information on the topography of the sample. Also, 

analytical information can be obtained by the use of an energy dispersive X-ray (EDX) or wavelength 

dispersive X-ray (WDX) spectroscopy system. Nowadays, the ability of an investigation at 

environmental conditions is possible with the use of an environmental SEM (ESEM). The use of an 

ESEM can eliminate the need for conductive coating and will thereby open a new route towards the 

investigation of soft matter surfaces. However, SEM is limited to the investigation of the surface of a 

nanomaterial and will not provide one with information on the internal structure. Additionally, the 

spatial resolution of a SEM is far from optimal to study nanoparticles at the atomic level. 

TEM is an excellent technique to investigate nanomaterials. By using different TEM techniques, 

structural, chemical and even electronic information can be obtained on single nanostructures. The 

benefit of TEM, in comparison to PXRD, is that one is able to investigate single nanoparticles and 

that by the use of different TEM techniques a thorough characterization can be performed. 

Nevertheless, one should not forget that TEM images are only 2D projections of three-dimensional 

(3D) objects. Therefore, TEM has been expanded to 3D, which is referred to as "electron 

tomography"98,99. Most results have been achieved at the nanometer level100–105, but currently, imaging 

individual atoms in 3D is possible for model-like systems106–108.  

Throughout this thesis, the aim is to characterize different functional nanoparticles in 2D and 3D to 

understand their structure-to-properties connection. Therefore, different TEM techniques are applied 

and optimized to extract reliable structural and chemical information. In the next chapter, electron 

tomography will be extensively discussed as this technique will enable a 3D characterization, which 

forms the basis of this thesis. 



15 

 

Chapter 2  

Introduction to electron tomography 
 

   



 
CHAPTER 2. INTRODUCTION TO ELECTRON TOMOGRAPHY 

16 

1. Introduction to transmission electron microscopy  

Prior to introducing electron tomography, a brief overview of transmission electron microscopy 

(TEM) is given. A brief history of TEM, the build-up of a TEM and different TEM techniques are 

discussed. 

1.1. A brief history of TEM 

Ernst Ruska stated in 1930 that a TEM can be built using the same principle as for an optical 

microscope by only replacing the glass lenses by electromagnetic lenses109,110. The use of TEM 

enables us to acquire images with a spatial resolution which cannot be obtained using an optical 

microscope. The resolution of an optical instrument is determined as the ability to distinguish separate 

points of an object that are located at a small angular distance. The resolution of an optical 

microscope is limited by the wavelength of its radiation source, which is typically 400 െ 700	݊݉. 

The wavelength of accelerated electrons in a TEM depends on their energy ܧ. When neglecting 

relativistic effects, de Broglie’s equation is given by: 

 
ߣ ൌ

1.22
ଵ/ଶܧ

 
(2.1)

with ܧ in electron volts and ߣ, the wavelength, in nm. Typically, electrons in a TEM are accelerated 

by high acceleration voltages of 100 െ 300	ܸ݇ and result in electron wavelengths of approximately 

2 െ  .which is several magnitude orders smaller in comparison to an optical microscope ,݉݌	4

However, the resolution of a TEM is not only limited by the wavelength of the electrons, but also by 

the aberrations of the electromagnetic lenses in the microscope, which restricts the practical resolution 

to approximately 1 െ 2	Հ. Spherical aberration is the most prominent aberration which results in a 

focus difference for electrons which deviate from the optical axis. The idea of a TEM by Ruska was 

commercialised by Siemens and Halske in 1939. Ernst Ruska received the Noble Prize in Physics in 

1986 for his contribution to electron optics. 
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1.2. The build-up of a TEM 

As pointed out in section 1.1, the principle of a TEM is comparable to the principle of an optical 

microscope. From top to bottom, a TEM consists of an illumination system, a condensor lens system, 

the stage where the specimen is located and the imaging lens system. The electrons are generated by 

an electron source which is either a thermionic gun or a field emission gun, which is currently more 

often used. The required size, intensity and convergence angle of the electron beam are formed by the 

condensor system. By a set of electromagnetic lenses, the appropriate electron beam to investigate the 

sample is formed. A condensor aperture can be inserted to select the electrons that follow a path close 

to the optical axis, which will reduce the effect of the aberrations caused by the lenses in the 

condensor system. After passing the condensor system, the electrons interact with the specimen which 

is inserted with the use of a dedicated TEM holder. The objective lens, located close to the specimen, 

disperses the electrons and yields a diffraction pattern in the back focal plane of the objective lens. 

The diffracted beams recombine and form an enlarged image in the image plane of the objective lens. 

The use of an objective aperture in the back focal plane of the objective lens can reduce the effect of 

lens aberrations of the objective lens and/or select specific spots in the diffraction pattern. A selected 

area diffraction (SAD) aperture can be inserted in the image plane of the objective lens, which selects 

a specific region of the specimen from which information will be extracted. The projector lens system 

will form the final magnified projection image, which either uses the back focal plane or the image 

plane of the objective lens as its object plane. A fluorescent viewing screen or a charged coupled 

device (CCD) is located at the bottom of the TEM and will visualize the image. 

1.3. Different TEM techniques 

1.3.1. Bright field transmission electron microscopy 

When applying BF-TEM, the specimen is illuminated by a parallel beam of electrons. Figure 2.1 

represents a schematic overview of the electron ray diagram for BF-TEM imaging. In this imaging 

mode, elastically scattered electrons contribute to the image formation and two main mechanisms 
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1.3.3. Energy dispersive X-ray imaging 

Energy dispersive X-ray (EDX) spectroscopy is used in a TEM to map the chemical elements present 

in a specimen. Incoming electrons of the beam can excite inner shell electrons of an atom in the 

specimen, which will generate X-rays and create an electron hole. A higher energy electron from an 

outer shell will then fill this vacancy and an X-ray will be emitted with the difference energy. The 

specific energies of these X-rays are characteristic for the chemical elements that are present in the 

specimen. Thereby, the obtained characteristic X-ray spectrum can be used for a chemical 

characterization. Such a spectrum consists of a superposition of a background signal caused by 

Bremsstrahlung and the characteristic X-ray peaks. As the background signal is rather constant 

throughout the energy window, it is straightforward to extract a spectrum only consisting of the 

characteristic peaks. When EDX is combined with STEM imaging, a complete 2D elemental map can 

be obtained since each pixel in the 2D image contains a measured spectrum. In Figure 2.4 a schematic 

overview of the position of the EDX and HAADF-STEM detector are shown. The spectrum in each 

pixel can be evaluated and the characteristic X-ray peaks can be selected by an energy window around 

the characteristic energy to obtain 2D elemental maps. 

1.3.4. Electron energy loss spectroscopy 

Electron energy loss spectroscopy (EELS) is another technique, which can provide chemical 

information. Incoming electrons in a TEM can lose part of their energy due to interactions with the 

specimen. The energy loss of the scattered electrons can be recorded on a CCD. After interaction with 

the specimen, the electrons are deflected by a magnetic prism, before reaching the CCD. The radius of 

the deflection is dependent on the remaining electron energy which results in an energy dispersive 

plane. The electrons are then directed to the CCD camera by a drift tube and set of lenses. An energy 

slit in the energy dispersive plane can now be used to select a specific energy window, which will 

result in an image of a specific energy loss corresponding to a specific chemical element. This 

technique is referred to as “energy filtered TEM” (EFTEM). It is also possible to obtain an elemental 

map of a recorded EELS spectrum, as such a spectrum can be acquired pixel-by-pixel. Unfortunately,  
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the helicity of CdSe nanohelices is impossible using 2D imaging or understanding the growth process 

of core/shell nanostructures requires obtaining the 3D location of the core in the nanostructure. A 3D 

investigation of such materials is crucial to understand the relationship between the physical 

properties and the structure of these nanomaterials. To perform such studies, “electron tomography” is 

required, a technique from which a 3D reconstruction can be computed from a series of 2D projection 

images. The four steps of an electron tomography experiment are schematically visualized in Figure 

2.5. The first step corresponds to the acquisition of a tilt series of projection images of the investigated 

object over an angular range as large as possible, with tilt increments of typically 1° or 2°. After the 

acquisition, the tilt series of projection images is aligned with respect to a common tilt axis to 

eliminate relative shifts and rotations between the successive images. In the next step, a mathematical 

reconstruction algorithm is used to compute the 3D reconstruction. Nowadays, advanced 

reconstruction algorithms are often used, which benefit from prior knowledge concerning the 

specimen under investigation. During a last step, the outcome of the electron tomography experiment 

is analyzed, preferentially in a quantitative manner. 

3. History of electron tomography 

In 1917, Johan Radon outlined the mathematical principles behind the tomography technique112. 

Before the idea of Radon was adopted in materials science, Cormack proposed the idea of an X-ray 

tomography scanner (CAT-scan) for 3D medical imaging113, which was built by Hounsfield in 1971 

and for which they received a shared Nobel prize in 1979114,115. The first applications of tomography 

in electron microscopy were published in 1968. Rosier and Klug determined the structure of a 

biological macromolecule of which a single projection was sufficient for a 3D representation due to 

its helical symmetry116. Next, Hoppe showed that with a sufficient number of projection images, it is 

possible to retrieve the 3D morphology of a fully asymmetrical system117. In a third paper by Hart118, 

it was demonstrated that the quality of a tomographic reconstruction depends on the number of  
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monotonic function of a physical property of the investigated object integrated along the thickness of 

the specimen in the projection direction119. Different imaging modes and their applicability to electron 

tomography will be further discussed in section 4.1.1.  

4. Tomography in practice 

4.1. Acquisition of the tilt series 

As illustrated in Figure 2.5, an electron tomography experiment starts with the acquisition of a tilt 

series of projection images. Figure 2.6 shows a schematic overview of the acquisition procedure of an 

electron tomography experiment, where the sample is tilted with respect to the electron beam and a tilt 

series of projection images is acquired. This section will first discuss the applicability of different 

TEM imaging modes to electron tomography. Next, different tilt schemes for the acquisition of a tilt 

series and the possibility of the use of an automated acquisition procedure will be discussed. 

4.1.1 Imaging modes in electron tomography 

As discussed above, the projection images of a tilt series need to satisfy the projection requirement in 

order to be usable as input for the tomography experiment. In materials science, a broad range of 

nanostructures is investigated. Depending on the type of nanomaterial and the information which one 

wants to obtain, different imaging modes are better suited. In the next part of this section, the 

applicability of BF-TEM, HAADF-STEM and EDX mapping to electron tomography are discussed. 

Bright field transmission electron microscopy 

As discussed in section 1.3.1, the electron beam in BF-TEM mode is diffracted by the crystal lattice 

of the crystalline specimen. Due to the presence of such diffraction contrast in a BF-TEM image when 

imaging a crystalline specimen, the intensity in the image is not only related to the projected thickness 

of the specimen, but also depends on the orientation of the specimen. From Figure 2.2.a, it is clear that 

the intensity throughout the crystalline Au nanoparticles is not homogeneous, which is due to the  
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Thereby, it can be concluded that the projection requirement is satisfied for thin samples as the 

intensity scales with the thickness of the specimen. Due to the relation between the intensity and the 

average integrated atomic number of the elements in the specimen, relative chemical information can 

also be obtained. HAADF-STEM tomography was first introduced in materials science in 2003, 

which was used to study metal nanoparticles in a mesoporous silica support matrix125. Since then, a 

broad variety of specimens has been investigated successfully with HAADF-STEM 

tomography103,120,126–129.  

 

Energy dispersive X-ray imaging 

The intensity of a characteristic X-ray peak of an element present in the specimen in an EDX 

spectrum scales with the weight fraction, the fluorescence yield and the ionization cross-section of the 

element. Therefore, a 2D EDX map can in principle be used as a projection image for 

tomography130,131. In the past, the combination of tomography and EDX mapping was hampered by 

the directionality and inefficiency of the sample-detector geometry. Since the EDX detector is 

typically placed under a specific tilt angle of the specimen, only a maximum efficiency is obtained 

when the specimen is tilted towards the detector. At other angles, shadowing occurs and part of the 

generated X-rays does not reach the detector. With this set-up, only needle-shaped samples, where 

shadowing is avoided during the acquisition, were suitable for EDX tomography132–135. Recently, a 

new detector system was developed to reduce the X-ray blocking. The detector geometry uses four 

detectors which are symmetrically placed around the sample136, which is schematically presented in 

Figure 2.9. With the development of this geometry, EDX tomography becomes within reach137–140. 

The application of EDX tomography of nanoparticles will be discussed in Chapter 6. 

4.1.2. Tilt schemes 

As discussed in Section 4.1 of this chapter, a tilt series of multiple projection images needs to be 

acquired in the first step of an electron tomography experiment. As schematically depicted in Figure  
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Dual tilt axis acquisition 

Multiple tilt series of the same object can be used to reduce missing wedge artefacts in the final 

reconstruction142,143. When a dual tilt axis geometry is used, two tilt series of the same object are 

acquired. The tilt axis of the second tilt series is perpendicular to the tilt axis of the first tilt series, 

which is represented in Figure 2.11. From this Figure, it is also clear that the missing wedge of 

information in Fourier space is reduced to a missing pyramid. However, the need for a longer total 

exposure time and the time-consuming alignment and reconstruction of such acquisition schemes 

make these schemes less favourable. In addition, the sensitivity of the specimen to the electron beam 

limits the applicability of the dual tilt axis acquisition as degradation of the specimen can occur. 

Therefore, only single tilt axis acquisition schemes are used in this thesis. 

On-axis tilt axis acquisition 

A dedicated on-axis tomography holder has been developed to enable tilting of needle-shaped samples 

over a full tilt range of ± 180°. The possibility of acquiring a full range tilt series completely 

eliminates the missing wedge artefacts144,145. Such needle-shaped samples are prepared by focused ion 

beam (FIB) milling and afterwards the sample is mounted on the dedicated rod-shaped on-axis 

tomography holder. The quality of the 3D reconstruction will improve due to the elimination of any 

missing wedge artefacts. However, the technique remains less popular as the sample preparation is 

challenging, especially to prepare needle-shaped samples for nanoparticles146. 

4.1.3. Automated acquisition 

The acquisition of a tilt series requires a number of steps, which can be performed by the use of an 

automated acquisition software. It is important that the specimen is positioned at the correct eucentric 

height beforehand, to minimize the movement between successive tilt angles as tilting the dedicated 

holder results in a movement of the imaging field. It is however impossible to completely avoid these 

shifts, therefore a correction for these small shifts is necessary to track the investigated nanostructure 

and keep it in the field of view during the acquisition. The correction is calculated by cross correlation 
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methods and a band-pass filter can be applied to enhance the success of a reliable correction. A 

detailed description of the cross correlation will be explained in the following section. After centering 

the region of interest, the image needs to be focused. During the focus procedure implemented in the 

automated software, several images are acquired at different focus values. The variance in each image 

is measured and the image with the maximum variance is finally acquired as it holds the optimal 

focus. After the acquisition, the sample is tilted to the next tilt angle and the previous steps are 

repeated. Performing such an automated acquisition requires a careful choice of different parameters 

such as acquisition time for the different steps (tracking, focus, and final acquisition), focus interval 

and step size, image filters, maximum tilt angle and other parameters that are used during the 

acquisition process. These parameters should be optimized for each individual experiment as the 

automated acquisition needs to be finalized before beam damage occurs. Different types of automated 

acquisition software have been developed over the last years100,147–149. Here, the Xplore3D program 

from the FEI Company was used for the acquisition of the tilt series. 

4.2. Alignment of the tilt series 

During the acquisition of the tilt series, the dedicated tomography holder needs to make a mechanical 

rotation of a few degrees. With this rotation of the holder, a shift in the field of view will occur. The 

specimen is tracked back into the field of view at each tilt angle, which will induce local shifts 

between successive images. These relative shifts are measured and corrected for in the whole tilt 

series during the alignment. In practice, the shifts are measured by calculating the normalized cross 

correlation image between two succeeding projection images, which is illustrated in Figure 2.13. Such 

a cross correlation image is formed by calculating the inverse Fourier transform of the product of the 

Fourier transform of the first projection image and the complex conjugate of the Fourier transform of 

the second projection image. The position of the maximum intensity in this cross correlation image 

presents the relative shift between the two original projection images. As the two projection images 

are acquired at two different tilt angles, the correlation will not completely coincide. In order to 

improve the determination of the peak position, band-pass filters and morphological filters may be  
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4.3 Reconstruction of a tomographic tilt series 

4.3.1 Theory behind tomography 

The Radon transform 

In the remainder of this chapter, the mathematical principles of electron tomography are explained by 

considering a 2D object and its 1D projections. The extension to a 3D object is straightforward since a 

3D object can be regarded as a set of independent 2D slices. 

The Radon transform, which was introduced by Johan Radon in 1917, forms the basis of the 

mathematical principles for most tomographic techniques112,150,151. This transform describes the 

projection of an object  ݂ሺݔ,  ሻ, which is equivalent to a line integral through ݂ by a Radon transformݕ

ܴ, as: 

 
ܴ݂ ൌ ,ݐሺܨ ሻߠ ൌ න݂ሺݔ, ݏሻ݀ݕ ,

௅

 
(2.6)

where the function ݂ is integrated along ܮ with respect to line length. The ሺݐ,  ሻ-coordinates of theߠ

Radon transform of function ݂ሺݔ,  and the distance of the (ߠ) ሻ represent the projection angleݕ

projection line from the origin (ݐ). Figure 2.14 shows examples of a sphere (Figure 2.14.a) and a set of 

shapes (Figure 2.14.b) and their Radon transforms. A set of projections is also referred to as a 

sinogram. By taking the inverse Radon transform of the projections, the reconstruction of the object 

݂ሺݔ,  ሻ can be retrieved. However, the inverse Radon transform is an integral transform, whichݕ

requires an infinite number of projection images. As an infinite collection of projection images is 

experimentally impossible, this technique cannot be used in a straightforward manner on experimental 

data. Furthermore, this procedure can only be applied on parallel beam geometries as it utilizes a 

transformation along parallel lines. Due to these constraints, other reconstruction procedures were 

explored. 
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Choosing the slice perpendicular to the projection direction (ݒ ൌ 0) through this Fourier transform is 

then given by: 

 
,ݑሺܨ 0ሻ ൌ 	 න ቎ න ݂ሺݔ, ݕሻ݀ݕ

ାஶ

ିஶ

቏ ݁ିଶగ௜ሺ௫௨ሻ݀ݔ

ାஶ

ିஶ

 (2.9)

 
ൌ න ݔሻ݁ିଶగ௜ሺ௫௨ሻ݀ݔሺ݌

ାஶ

ିஶ

 (2.10)

which equals the Fourier transform of the measured projection ݌ሺݔሻ. When the proof needs to be 

generalized for an arbitrary direction, a rotation of axes needs to be included. By summing all the 

lines through the Fourier space of the object and calculating its inverse Fourier transform, a 

reconstruction can be obtained. However, it is not possible to sample over the full Fourier space 

because only a finite number of projections can be obtained in practice. As the projections are 

acquired at discrete angles, there are regular gaps in the Fourier space, which will hamper a perfect 

reconstruction of the investigated object. Additionally, this approach will lead to blurry 

reconstructions due to low frequency oversampling in Fourier space, which is illustrated in Figure 

2.16. The overestimation of the low frequencies can be compensated by using a weighting filter. The 

most commonly used filters are Hamming or Hann filters152,153 (Figure 2.17), which are more 

advantageous than a ramp filter. These filters simultaneously compensate for oversampling of the low 

frequencies and reduce the noise stemming from the higher frequencies. It must be noted that here an 

interpolation in Fourier space is required due to its radial symmetry to reconstruct the object. The 

interpolation becomes problematic when only a limited number of projections is used, which is the 

main reason that this approach becomes less popular in practical tomography applications.  
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4.3.2. Modern reconstruction techniques 

Filtered back projection 

The filtered back projection (FBP) technique is an analytical reconstruction technique where the 

acquired projection images are convoluted with a weighting filter and afterwards reprojected in their 

original projection directions154. The weighting filter reduces blurring in real space due to an uneven 

sampling of the spatial frequencies in Fourier space, which was explained in the previous section. 

This technique provides reliable results when a lot of projection images are obtained over a large tilt 

range. Therefore, the technique is nowadays standardly used for X-ray tomography. However, only a 

limited number of projection images are acquired over a limited tilt range during an electron 

tomography experiment, which makes the use of the FBP technique less accurate and thereby less 

favourable. Additionally, the presence of noise in the individual projection images further complicates 

the reconstruction process. As a result, iterative reconstruction techniques have been developed as 

they are more robust to noise and do not require an infinite number of projection images. Nowadays, 

such algorithms are commonly used for electron tomography investigations in materials science. 

 

Simultaneous iterative reconstruction technique 

The simultaneous iterative reconstruction technique (SIRT) is based on the Riemann back projection 

principle151. In the first step, the preliminary reconstruction is obtained by a regular back projection 

reconstruction. Next, this first reconstruction is reprojected along the original tilt directions which 

were used during the acquisition of the tilt series. These reprojections are then all compared 

simultaneously to the original acquired projection images. The difference or ratio between them is 

calculated for an additive SIRT algorithm (aSIRT) or a multiplicative SIRT algorithm (mSIRT), 

respectively. A reconstruction of the result is obtained and added (aSIRT) or multiplied (mSIRT) to 

the previous reconstruction. The final reconstruction is obtained in an iterative manner until 

convergence is reached. The number of necessary iterations is highly influenced by the presence of 
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in which the total variation is computed as the norm of the discrete gradient of the reconstructed 

object and the projection distance is preceded by a regularization parameter ߤ. A large value of ߤ will 

lead to a result which closely resembles a SIRT reconstruction and will thereby introduce noise and 

missing wedge artefacts in the final reconstruction. When ߤ is chosen too small, the high frequency 

details of the object will be lost in the reconstruction. Based on simulation studies, it was shown that 

ߤ ൌ 0.5 is considered as a good starting value157. Additional to the reduction of missing wedge 

artefacts, the segmentation of a TVM reconstruction can be performed in a more objective manner, in 

comparison to segmentations of FBP and SIRT reconstructions159. An explanation of the segmentation 

is given in the following section.  

4.4. Visualization and quantification of a tomographic reconstruction 

During the final step of an electron tomography experiment, a visualization and/or quantification of 

the 3D reconstruction is performed. To obtain a 3D visualization, three main techniques are often 

used: the isosurface, the voltex rendering and/or orthoslices. This last quantification step is far from 

straightforward and requires a segmentation of the reconstruction. During this segmentation, voxels 

with a certain intensity value are assigned to a specific class. It should be performed in a careful 

manner as an incorrect segmentation can lead to incorrect conclusions on the 3D character of the 

specimen under investigation. 

4.4.1. Isosurface rendering 

An isosurface rendering corresponds to a surface from a specific 3D dataset obtained by connecting 

all the voxels which have an equal grey value. In this manner, the 3D volume is reduced to a 2D 

surface, which can easily be inspected along different viewing directions. Due to the data reduction, 

the calculation of an isosurface rendering only requires a few seconds. In Figure 2.21, an example of 

an isosurface rendering of an Au core / Ag shell nanostructure is presented. 
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Chapter 3  

Investigation of semiconductor 
nanoplatelets by 2D and 3D electron 
microscopy 

This chapter is based on: Hutter, E. M., Bladt, E., Goris, B., Pietra, F., Van Der Bok, J. C., 

Boneschanscher, M. P., de Mello Donegá, C., Bals, S., Vanmaekelbergh, D. Conformal and 

atomic characterization of ultrathin CdSe platelets with a helical shape. Nano Letters, 14 

(2015) 6257–6262. 

Own contribution: Responsible for all the TEM acquisition and analysis.  
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1. Introduction 

Nowadays, ultrathin colloidal CdSe semiconductor nanoplatelets and their optical properties, 

including high fluorescence quantum yield34 and ultrafast fluorescence liftetime40, are the subject of 

extensive research37,160–164. The development of 2D semiconductor nanostructures is of technological 

interest for the development of miniaturized electronic165,166 and optoelectronic devices167. To 

implement these 2D structures efficiently in device fabrication, different synthesis procedures aim to 

obtain colloidal 2D structures with tunable lateral dimensions and preferably of a few hundred 

nanometers. Therefore, a structural characterization of the nanoplatelets is of key importance to 

evaluate the outcome of different synthesis approaches and guide those towards a desirable 

conformation. Here, we investigate ultrathin CdSe nanoplatelets with lateral dimensions in the order 

of tens of nanometer, which show a flat conformation. Next, the lateral dimensions of the ultrathin 

nanoplatelets are extended (in the order of hundreds of nanometer) but seem to lose their flat 

conformation34,35,42,43,168. Both types of CdSe nanoplatelets are studied in this chapter using 2D and 3D 

TEM. 

2. CdSe flat nanoplatelets: 2D problem 

In a first investigation, CdSe nanoplatelets with lateral dimensions in the order of tens of nanometer 

were studied by TEM. A commonly used synthesis technique was proposed by Itthuria et al [34] in 

which Cd myristate and a powder of Se in octadene are mixed and heated at 240°. When 180° is 

reached, an acetate salt is added and CdSe nanoplatelets form with {001} basal facets. The acetate salt 

is required for the formation of 2D CdSe nanostructures34. The final geometry of the nanoplatelets can 

be tuned to different morphologies using different acetate salts, as they have different ionizing 

capacities. Therefore, the acetate ion will have different binding properties and favour the growth of 

specific types of crystal facets. The aim of these synthesis methods in solution is to develop 

techniques which are easily processable and reproducible. The synthesis of nanoplatelets which are 

monodisperse in thickness, lateral dimensions, crystal structure and surface facets are favoured, as it 

confirms the high level of control of the synthesis procedure. Here, the effect of Cd acetate and Na 
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acetate on the growth of the nanoplatelets is evaluated. The questions which need to be resolved in 

order to fully characterize these platelets are: 

1. Which surface facets are favoured when using specific acetate salts during the growth 

reaction? 

2. How uniform are the obtained surface facets? 

3. What is the thickness of these ultrathin nanoplatelets? 

To answer these different questions, the nanoplatelets, produced with the use of these different acetate 

salts, are studied by TEM and the synthesis methods are evaluated based on the diversity in the 

synthesized nanostructures. 

2.1. Facet determination 

We will investigate the type of surface facets for two main reasons. The determination of the types of 

surface facets is of key importance in order to control and understand the growth process of the 

nanoplatelets. In addition, synthesis methods aim for the production of nanoplatelets with specific 

types of surface facets, as they influence the selectivity towards ligand binding. The acetate salt, 

which is used during the growth process, will selectively bind to certain types of facets and therefore 

their further growth will be hindered, resulting in the growth of the other specific type of facets. This 

kind of selective growth of facets can contribute to the synthesis of certain anisotropic hetero-

nanostructures for example CdSe/CdS or CdSe/PbSe, which are optoelectronically important 

materials. Additionally, monodispersity is required as this confirms a high level of control of the 

synthesis. 

The colloidal CdSe nanoplatelets are synthesized in solution, which is dropcasted onto a carbon-

coated support grid in order to investigate the structures by TEM. As a result, the CdSe nanoplatelets 

mostly spread out flat on the TEM grid, as visualized in Figure 3.1. In this manner, the surface facets 

can be investigated in a rather straightforward manner by 2D TEM. 
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3. CdSe nanohelices: 3D problem 

The applicability of 2D nanoplatelets in diverse applications drives their synthesis from nanoplatelets 

to nanosheets with large lateral dimensions. Recently, such ultrathin colloidal CdSe nanoplatelets with 

large lateral dimensions and a uniform thickness, controllable up to the atomic scale, were prepared. 

Such nanoplatelets often form scrolls of a few nanometers in diameter34,35,169,170,168. In order to 

evaluate the native conformation, when suspended in the organic solvent, of these nanoplatelets and to 

understand the structure-property relation, HAADF-STEM is used to reveal their native morphology 

and atomic arrangement. Therefore, a number of questions need to be resolved: 

1. Is the rolled-up morphology the native state of these nanoplatelets? 

2. Can we measure the thickness of these nanohelices?  

3. How are the nanohelices folded from a rectangular sheet into a helix? 

4. Are both left- and right-handed helices present? Or is there a preferential helicity?  

3.1. Native state 

As the conformal state of these CdSe nanoplatelets has not yet been precisely determined, it remains 

unclear whether this rolled-up conformation is their native state (in the organic solvent). When 

conventional TEM or STEM techniques are used, the colloidal suspension is dropcasted on a support 

grid and drying effects can alter the conformation of the nanoplatelets. Therefore, the nanoplatelets 

were investigated by cryo-TEM as rapid freezing of a colloidal suspension should reveal the native 

morphology of the suspended nanoplatelets. 

To perform a cryo-TEM study, the nanoplatelets are encapsulated in a thin layer of vitreous ice. The 

freezing procedure takes place fast and at very low temperatures, initiating an instantaneous freezing 

of the solution that inhibits any structural change. In this manner, the freezing procedure will 

encapture the nanoplatelets in their native state as illustrated in Figure 3.6 and the helical shape of the 

nanoplatelets was confirmed. This helical conformation is however not ideal for its applicability in 

certain devices, as the use of nanosheets is preferred. We believe that a complete characterization of  
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microemulsion method171–176, which immobilizes their conformation. We will first study the effect of 

a rigid silica shell on the native morphology of the nanoplatelets to ensure that the growth of such a 

shell does not change the morphology of the platelets. HAADF-STEM images in Figure 3.7.a-c show 

that the helical shape is perfectly preserved if the nanoplatelets are coated with silica inside a 

microemulsion with 29.9 wt % ammonia in the aqueous phase. One can observe that the nanoplatelets 

are rolled-up, but the type of helicity cannot be identified from these 2D images (Figure 3.7.a-c). We 

can however already observe that the nanoplatelets in Figure 3.7.a and in 3.7.c have a different 

morphology. As the silica shell is quite thick (up to 20 nm) under these growth conditions, relatively 

mild conditions (3.0 wt % ammonia) were also used to coat the helical nanoplatelets with an ultrathin 

uniform silica shell to facilitate the characterization study of the CdSe nanoplatelets. From Figure 

3.7.d it is clear that the native helical shape is still preserved under these mild conditions. 

Interestingly, if the incorporation process is slowed down even more (1.5 wt % ammonia), the 

nanoplatelets are flattened after encapsulation in silica (Figure 3.7.e). 

In general, the growth of a silica shell is not expected on a facet that is completely Se-terminated, 

since the negatively charged silica precursor preferentially attaches to Cd177. Considering that the 

initial growth is based on surface attachment of the negatively charged silica precursor176, the growth 

of a silica shell on both sides indicates that Cd atoms should be accessible for the silica precursor both 

on the inner and the outer surface. In this respect, a rearrangement of the atoms on the Se-terminated 

surface is required169. We believe that the change in surface energy resulting from this surface 

rearrangement is the cause of the observed helix conformation. Therefore, the observation that both 

the inside and the outside of the helical nanoplatelets are covered with silica indicates the accessibility 

of Cd on both these facets. It is clear that also for the CdSe nanoplatelets, grown at 3.0 wt % ammonia 

conditions, both the inner and the outer facet of the nanoplatelet are covered with a silica shell, which 

is visible in Figure 3.8. From this image, it can be concluded that the silica shell is between 1 and 2 

nm thick. Further investigations are focused on ultrathin CdSe helical nanoplatelets, grown at 3.0 wt 

% ammonia conditions. 



CHA

60 

Figure 

HAADF

microem

coated w

of growt

 

APTER 3. IN

3.7. Images

F-STEM ima

mulsion to w

with silica in 

th. 

NVESTIGAT

s of CdSe n

ages of silica

which 29.9 w

a microemu

TION OF SE

nanoplatelets

-coated CdS

wt % ammon

lsion with 3.

EMICOND

s coated wit

e nanoplatel

nia was adde

.0 wt % (d) a

UCTOR NA
3D

th silica she

ets, quenche

ed. (d,e) TEM

and 1.5 wt %

ANOPLATE
D ELECTRO

ells of diffe

d after 1 day

M images of

% (e) ammoni

ELETS BY 
ON MICRO

erent thickne

y of silica gro

f CdSe nano

ia, quenched

2D AND 
OSCOPY 

 

ess. (a-c) 

owth in a 

oplatelets 

d after 3 h 



 
3. CDSE

Figure 3

% ammo

silica sh

3.2. Thi

The acq

characte

image a

columns

atomic 

platelets

correspo

CdSe he

E NANOHE

3.8. Top view

onia conditio

hell has a sim

ickness deter

quisition of 

erize the atom

acquired alon

s present in 

arrangement

s are four m

onds to a thi

elices do not 

ELICES: 3D

w of a folde

ons. This ima

milar thicknes

rmination 

f standing n

mic thicknes

ng the [110

the image re

t, illustrated 

monolayers 

ickness of tw

amorphize a

D PROBLEM

d nanoplatel

age indicates

ss on both sid

nanoplatelets

ss of the pla

] direction o

epresent the 

in the inse

thick. Assu

wo CdSe uni

and therefore

M 

let which wa

s the presenc

des (∼2 nm)

s with high

atelets. In F

of a standin

heavier Cd 

ets in Figure

uming that t

it cells. Due

e the thicknes

as encapsulat

ce of silica at

. 

h resolution 

igure 3.9, a 

ng CdSe nan

atomic colu

e 3.9.a and 

these nanop

e to the enca

ss can be det

ted with a sil

t the inner an

HAADF-ST

high resolu

noplatelet is 

umns (in com

c, shows th

platelets are 

apsulation by

termined in a

 

lica shell wi

nd outer surf

TEM enable

ution HAAD

shown. Th

mparison to 

hat the helic

stoichiome

y the silica s

a reliable ma

61 

th 3.0 wt 

face. The 

es us to 

DF-STEM 

e atomic 

Se). The 

cal CdSe 

tric, this 

shell, the 

anner. 



CHA

62 

Figure 3

images s

show th

confirmi

toward t

 

Conside

thicknes

from the

arrangem

3.10.d. N

hexagon

APTER 3. IN

3.9. High-re

showing that

he stronger s

ing that the n

the center alw

ering these r

ss of four mo

e top of the 

ment. This pe

Note that thi

n. 

NVESTIGAT

solution HA

t the nanopla

scattering C

nanoplatelets

ways points i

results, the 

onolayers is s

 helix in Fig

erfectly corr

is is not the 

TION OF SE

AADF-STEM

atelets consi

d atoms). (b

s fold along 

in a [002] dir

pristine cry

shown in Fig

gure 3.9.a an

esponds to th

[111] direct

EMICOND

M image acqu

st of 2 CdSe

b,d) Fourier 

the [110] di

rection. 

ystallographi

gure 3.10. If 

and c, we fin

he 110ۧۦ dire

tion, in whic

UCTOR NA
3D

uired along t

e units in the

transforms 

irection. The

c structure 

we take a clo

nd that they 

ection of the

ch the Cd ato

ANOPLATE
D ELECTRO

he [110] dire

eir short dire

of the high

vector from

of a CdSe 

oser look at t

show an as

zinc blende 

oms are arra

ELETS BY 
ON MICRO

rection. (a,c) 

ection (the w

hlighted regi

m the curved 

nanoplatele

the Cd atom

symmetric h

e structure; se

anged in a sy

2D AND 
OSCOPY 

 

Detailed 

white dots 

ons (a,c) 

structure 

t with a 

ms viewed 

exagonal 

ee Figure 

ymmetric 



 
3. CDSE

Figure 

monolay

larger S

(b), the 

inner an

Note tha

the one o

 

3.3. Fold

High re

nanoheli

crystal l

can be c

with  oth

3.7.a-c, 

for the 

envelope

 

E NANOHE

3.10. Crysta

yers, corresp

e atoms and

top (Cd-term

nd outer surf

at the hexago

observed in F

ding format

esolution HA

ices. Figure 

attice in the 

concluded th

her  nanoplate

we could alr

nanoplatelet

e-rolled    mo

ELICES: 3D

allographic s

onding to 2 

d smaller Cd 

minated) an

face of the h

onal arrange

Figure 3.9. 

tion 

AADF-STEM

3.11 presen

[001] viewin

hat this nano

elets  confirm

ready differe

ts in Figure

orphology   i

D PROBLEM

structure of 

CdSe unit ce

atoms are r

d bottom (S

helices. Diffe

ment of the 

M imaging 

nts a high re

ng direction. 

oplatelet is fo

m  that  the  p

entiate two ty

e 3.7.b and 

is    visualize

M 

a zinc blend

ells, with lat

represented b

Se-terminated

ferent side vi

Cd atoms in

is used to

esolution HA

 Based on its

olded along 

platelets  alwa

ypes of morp

c. In Figure

ed.  Consider

de CdSe nan

eral dimensi

by yellow an

d) surfaces a

iews of the 

n the [110] d

 investigate

AADF-STEM

s Fourier tran

the [110] zo

ays  fold  alon

phologies. A

e 3.7.a, a n

ring    these  

noplatelet w

ons of 10 × 

nd black sph

are shown, c

nanoplatelet 

direction (d) 

e the foldin

M projection

nsform (inse

one axis. Sim

ng  the  [110]

A helical mor

nanoplatelet 

 helical    an

with a thickn

15 unit cells

heres, respect

correspondin

t are shown 

is in agreem

ng formation

n image show

et of Figure 3

milar results 

]  direction.  I

rphology is 

which resem

nd    envelope

63 

 

ness of 4 

s (a). The 

tively. In 

ng to the 

in (c−e). 

ment with 

n of the 

wing the 

3.11.b), it 

obtained 

In  Figure 

observed 

mbles an 

e-rolled  



CHA

64 

Figure 3

ammoni

that the 

 

morphol

we can p

flat recta

with the

to the [1

length, i

As mos

conform

Addition

are folde

fact that

correspo

 

APTER 3. IN

3.11. High-r

ia). (a,b) HA

large end-fac

logies of the

propose the 

angular nano

e [100] and [0

100] and vic

i.e., if the na

st of our C

mation in solu

nally, the hig

ed around th

t the vector 

onds to a [00

NVESTIGAT

resolution HA

AADF-STEM

cets of the he

e silica-coate

following m

oplatelet cur

010] axes, th

ce versa or (

anoplatelet sh

CdSe nanop

ution is close

gh resolution

he [110] dire

from the ed

2] direction 

TION OF SE

AADF-STEM

M projection s

elical structu

ed nanoplatel

model of foldi

rls along the 

he nanoplatel

(ii) an envel

hape become

latelets wer

er to a helix. 

n HAADF-ST

ection. The f

dge of the n

(Figure 3.9.b

EMICOND

M images of

showing that

ures are {100

lets, togethe

ing as presen

 [110] zone 

let now folds

lope-like stru

es closer to a

re rectangul

 

TEM image 

folding along

nanostructure

b and d). 

UCTOR NA
3D

f silica-coate

t the NPL fo

0} facets. Ins

r with the hi

nted in Figur

axis. Given 

s into (i) a he

ucture if the

a square, whi

ar rather th

in Figure 3.

g the [110] d

e toward the

ANOPLATE
D ELECTRO

ed CdSe nan

olds along the

et: FT of the

igh resolutio

re 3.12. For b

that this ax

elix if the [01

lateral dime

ich is illustra

han square-s

9 confirms t

direction is f

e center of t

ELETS BY 
ON MICRO

noplatelets (3

he [110] direc

e lower part. 

on projection

both morpho

xis forms a 4

10] is short c

ensions are 

ated in Figur

shaped, thei

that the nano

further prove

the curvatur

2D AND 
OSCOPY 

 

3.0 wt % 

ction and 

n images, 

ologies, a 

45° angle 

compared 

closer in 

re 3.12.b. 

ir native 

oplatelets 

en by the 

e always 



 
3. CDSE

Figure 3

(b) a squ

 

3.4. Hel

By 2D h

question

imaging

4. 

For exam

could ei

structure

helicity,

acquired

E NANOHE

3.12. Model 

uare-shaped 

licity of the n

high resolutio

ns concernin

g is however 

Are both lef

mple, the he

ither be a le

e appears to 

 electron tom

d with an an

ELICES: 3D

showing the

sheet. The fo

nanoplatelet

on HAADF-

g the thickn

not sufficien

ft- and right-h

licity of the 

eft- or a righ

be rolled up

mography is

ngular range

D PROBLEM

e folding of t

olding occurs

ts 

-STEM imag

ness and the 

nt to answer t

handed helic

nanoplatelet

ht-handed he

p. Any statem

 required. A

 of -70° to 

M 

the nanoplate

s along a ሾ11

ging in differ

folding form

the remainin

ces present? O

t in Figure 3

elix. From th

ment on the 

A tilt series o

+74°, with 

elets, starting

10ሿ zone axis

rent zone axe

mation of the

ng question:

Or is there a 

.9.a cannot b

his viewing 

helicity cann

of 37 HAAD

a tilt increm

g from (a) a r

s as visible in

es, we were a

e CdSe helic

preferential 

be determine

direction, w

not be made

DF-STEM pr

ment of 4°. I

 

rectangular s

n Figure 3.9.

able to solve

cal nanoplate

helicity?  

ed from this 

we can only 

e. To charact

rojection ima

In Figure 3.

65 

sheet and 

 

e the first 

elets. 2D 

image, it 

state the 

terize the 

ages was 

13.a, the 



CHA

66 

HAADF

tomogra

viewing 

are indee

of the he

Figure 3

silica-co

two conn

 

APTER 3. IN

F-STEM pro

aphy experim

 directions a

ed 2D nanop

elices only m

3.13. HAAD

oated CdSe h

nected helica

NVESTIGAT

ojection ima

ment is pres

are shown. T

platelets fully

make 1−1.5 tw

DF-STEM im

helices (3.0 w

al structures.

TION OF SE

ge at 2° of 

sented in Fi

he 3D tomog

y rotated ove

wists. Furthe

mage and its 

wt % ammo

. Both left- a

EMICOND

f a set of he

igure 3.13.b

graphic reco

er a diameter

ermore, regar

3D tomogra

onia, 3 h of g

and right-han

UCTOR NA
3D

elices is sho

b-d, where 3

onstruction co

r of approxim

rding the hel

aphic renderi

growth). An

nded helices a

ANOPLATE
D ELECTRO

own. The re

3D visualiza

onfirms that 

mately 20−25

icity of the n

ng at differe

angle of 90

are observed

ELETS BY 
ON MICRO

esult of the 

ations from 

t the observe

5 nm, and he

nanoplatelets

ent viewing a

0° is present 

d. 

2D AND 
OSCOPY 

electron 

different 

d helices 

nce most 

s we can 

 

angles of 

between 



 
4. CONCLUSION 

67 

conclude that the helices are not preferentially left- or right-handed. Both types of helicity are found 

throughout the sample. In Figure 3.13.b, the nanoplatelet along the z-direction (on the left) is a right-

handed helix and the nanoplatelet along the y-direction (on the right) is a left-handed helix. Along this 

viewing direction we can also remark that both nanoplatelets have a different folding formation. The 

nanoplatelet along the z-direction folds into an “envelope” conformation, as well as the one shown in 

Figure 3.7.a. From this reconstruction, we can also observe that the two helices are mutually 

orthogonal attached to each other, which is often observed. 

4. Conclusion 

By high resolution HAADF-STEM imaging, both the thickness as well as the surface facets of the flat 

ultrathin colloidal CdSe semiconductor nanoplatelets was determined. We could conclude that when 

Cd acetate is used, there is no preferential growth direction which leads to polydiverse nanoplatelets. 

The synthesis in presence of Na acetate yields more uniform nanoplatelets with {110} facets and a 

controllable thickness. 

The native morphology of ultrathin colloidal CdSe nanoplatelets with lateral dimensions in order of 

hundreds of nanometer was revealed by cryo-TEM. After a successful encapsulation in a silica shell, 

the thickness and folding formation of the helical nanoplatelets was determined by high resolution 

HAADF-STEM imaging. We confirmed the presence of both left- and right-handed helices by the use 

of electron tomography. 

The degradation at the edges of the CdSe nanoplatelets upon scanning of the electron beam 

complicated the acquisition of high resolution HAADF-STEM images. However, we were still able to 

acquire such images as there was sufficient time before the degradation occurred. In the next chapter, 

2D investigation studies of highly beam sensitive semiconductor perovskite nanostructures are carried 

out. These studies require alternative imaging techniques as the degradation or alteration of the 

nanostructure occurs faster. 
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Chapter 4  

2D investigation of beam sensitive 
perovskite nanostructures 
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Luminescent Cesium Lead Halide Perovskite Nanocrystals with Tunable Composition and Thickness 

by Ultrasonication. Angewandte Chemie International Edition, 55 (2016) 13887–13892; 
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Roeffaers M. B. J. Facile Morphology‐Controlled Synthesis of Organolead Iodide Perovskite 
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1. Introduction 

The outstanding optoelectronic properties of metal halide perovskites have brought them to the 

forefront of many research fields such as solar cells, light-emitting diodes, lasers and 

photodetectors72,73. Perovskite solar-cell efficiencies have gone from 3% to over 20% in the last four 

years72,74–76. It took decades for silicon solar cells to make that efficiency increase. Additionally, 

perovskite nanomaterials can be grown at room temperature, which is significant for low cost 

production. Two types are currently a topic of investigation: cesium lead halide perovskites (CsPbX3) 

and organic-inorganic lead halide perovskites (CH3NH3PbX3) (X = Cl, Br, I). By changing the halide 

composition, the bandgap energy can be tuned in the entire visible spectral region. Nowadays, 

different synthesis approaches are investigated to prepare high quality colloidal nanocrystals. An 

additional aim is to control and convert the halide composition in a straightforward and reproducible 

manner. The development of new synthesis approaches requires a thorough characterization of the 

obtained nanostructures. The perovskite nanostructures are investigated by high resolution HAADF-

STEM imaging and exit wave reconstruction to elucidate on the atomic structure of the 

nanostructures. The investigation of these materials is hampered by their sensitivity to the electron 

beam, which restricts the characterization to 2D. The organic-inorganic lead halide perovskites 

require even more care as the structures almost instantaneously change upon illumination. The use of 

dose limited TEM techniques emerges to reveal their atomic structure. 

2. Atomic resolution imaging techniques 

Different TEM imaging techniques can be used to obtain 2D images that yield atomic resolution. 

Depending on the information we want to retrieve, one technique can be more suitable than others. In 

this section, different high resolution imaging techniques will be discussed and their 

advantages/disadvantages will be explained. 
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2.1. High resolution HAADF-STEM imaging 

The intensity in a HAADF-STEM image is related to the projected thickness and the average atomic 

number of the specimen along the projection direction. When investigating small nanoparticles 

(approximately < 20 nm), the integrated intensity of each projected atomic column in a high 

resolution HAADF-STEM image scales linearly with the thickness of the specimen. This linear 

relation enabled the application of statistical parameter estimation methods to determine the number 

of atoms in each projected atomic column in a nanomaterial178–180. Additionally, the intensity-atomic 

number relation can be exploited to identify atomic columns based on their composition. A chemical 

characterization, however, can only be applied when the atomic number between different 

components is sufficiently large. Additionally, we have to keep in mind that we only observe the 

averaged intensity of all the different atoms in an atomic column, which complicates the identification 

of mixed columns. 

2.2. Exit wave reconstruction 

Information at the atomic scale can be provided by the use of exit wave reconstruction. An exit wave 

contains all the information about the specimen as it is the wave obtained after propagation of the 

electron beam through the specimen. Different to other imaging techniques, there is no direct 

inspection of the result of such an experiment as the exit wave cannot be directly measured in the 

electron microscope. In order to recover the exit wave, a focal series of BF-TEM images needs to be 

acquired181. A focal series consists of a large number of images acquired at a different focus value at 

the region of interest. Studies show that the phase of the exit wave is related to the thickness of the 

specimen and that, thereby, the number of atoms in an atomic column can be estimated using an 

Argand plot182,183. Such an Argand plot is a complex plane in which the real and imaginary parts of 

the complex pixel values of the exit wave are plotted in a Cartesian coordinate system. The need of a 

post-treatment of the focal series of BF-TEM images is a disadvantage in comparison to a direct 

visualization of the atomic structure, which is possible with high resolution HAADF-STEM. 

However, the use of a BF-TEM based technique could be advantageous towards investigating the 
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atomic structure of beam sensitive samples. The use of a parallel electron beam spreads the electron 

dose equally over the full field of view which causes less local damage -when working at high 

magnification- in comparison to STEM imaging where the dose is focused into one point by the 

convergent beam.  

3. Lead cesium halide perovskite nanostructures 

First synthesis approaches were focused on the production of perovskite nanocubes, which aim for a 

straightforward and reproducible approach. In section 3.1, CsPbBr3 nanocubes and their 

transformation into CsPbI3 after a halide ion exchange reaction are investigated. The use of perovskite 

nanowires is desired for their use in devices and therefore a straightforward synthesis is the next step 

after synthesizing nanocubes. High resolution HAADF-STEM imaging is used to evaluate a novel 

synthesis approach of CsPbBr3 nanowires in section 3.2. As the properties of these perovskite 

structures are tunable by their halide composition, a successful halide ion exchange reaction is 

desirable for the nanowires. The obtained CsPbCl3 and CsPbI3 nanowires after the exchange reaction 

are studied by high resolution HAADF-STEM imaging. The use of exit wave reconstruction is 

discussed as their sensitivity to the electron beam requires alternative techniques. 

3.1. Nanoparticles 

Recently, the investigation of hybrid metal halide perovskites has gained interest as they exhibit 

outstanding optoelectronic properties. Since these materials are inexpensive and solution-processable, 

they are attractive for a broad range of applications such as light-emitting diodes and lasers72,73. The 

success of these materials has led to the synthesis of inorganic cesium-based perovskite nanocrystals 

(CsPbX3)
87–91. A new single-step approach for the synthesis of these highly luminescent CsPbX3 

perovskite nanocrystals and nanoplatelets controls both the halide composition (X = Cl, Br, I) and the 

thickness. By tuning the nanoplatelet thickness, the relation to the optical properties can be 

investigated. By adjusting the halide content, the optical band gap energy can be tuned across almost 

the entire visible light range (approximately 410-700 nm), which is visualized in Figure 4.1. 
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through the first type of atomic row (indicated by the purple arrow in Figure 4.2.f) is shown. From a 

visual inspection of the HAADF-STEM image and the line profile, it is clear that one atomic column 

is much brighter than the neighbouring atomic column. The cubic unit cell of a perovskite structure 

ABX3 has type ‘A’ atoms at the cube corner positions (0, 0, 0), type ‘B’ atoms at the body center 

position (భ
మ
, భ
మ
,	భ
మ
) and the ‘X’ type atoms at the face centered positions (భ

మ
, భ
మ
, 0), which form BX6 

octahedra. We should note that a unit cell with A in the body center, B at the corners and X in the 

mid-edges are equivalent to the above described unit cell. Therefore, we expect in a CsPbI3 perovskite 

nanocrystal that the Pb and I form the PbI6 octahedra and that the Cs atoms are located in the center of 

these octahedra. In these perovskite nanocrystals, Pb are the heaviest atoms (ZPb = 82) followed by Cs 

and I which have a comparable atomic number (ZCs = 55, ZI = 53). In this manner, the bright atomic 

columns in the [100] zone are mixed Pb-I columns with an average atomic number of 67,5. As the 

structure consists of PbI6 octahedra, the neighbouring atomic columns in this row (Figure 4.3.a) are 

pure I columns. The I columns will appear less bright in a HAADF-STEM projection image due to its 

lower atomic number, which is confirmed by the integrated line profile in Figure 4.3.a. Investigation 

of the adjacent atomic rows (indicated by a white arrow in Figure 4.2.f) in Figure 4.3b shows 

comparable intensity values for neighbouring columns as these columns consist of Cs and I which 

have only a small difference in atomic number. We can only identify one column from another by a 

joint inspection of the adjacent atomic row. The Cs atomic columns are present in the center of four 

PbI6 octahedra in this projected view which is indicated in Figure 4.3.b. Based on the intensity 

difference and the prior knowledge on the cubic perovskite unit cell, all the atomic columns could be 

identified in this high resolution HAADF-STEM image. The significant difference in atomic number 

between Pb and the other two elements (Cs and I) makes HAADF-STEM imaging a suitable 

technique for elemental identification at the atomic level. From this image, important information  



76 

Figure 4

columns

 

with reg

atomic r

atoms, i

image is

Figure 

detailed 

C

4.3. Integrate

s and (b) alte

gard to the su

row containi

it is most lik

s shown in Fi

4.4. (a) Hig

view from w

CHAPTER 

ed line profi

ernating Cs a

urface termin

ing Cs and I

kely that the

igure 4.4, fro

gh resolution

which it is cle

4. 2D INVE

les from the 

and I columns

nation can be

 atomic colu

nanocrystal

om which the

n HAADF-ST

ear that the o

ESTIGATIO

 different ato

s. 

e obtained. T

umns (Figure

ls are passiv

e surface term

TEM image

outer surface

ON OF BEA

omic rows: (

The outer sur

e 4.2.f). As 

vated by Cs-b

mination can

 

e of the CsP

e ends in Cs-I

M SENSITI
NA

(a) alternatin

rface layer ca

the crystal is

bound alkyl 

n be clearly o

bI3 nanocrys

I atomic colu

IVE PEROV
ANOSTRUC

 

ng Pb and mi

an be identif

s terminated

chains. An 

observed. 

stal showing

umns.  

VSKITE 
CTURES 

ixed Pb-I 

fied as an 

d with Cs 

enlarged 

g a more  



 
3. LEAD CESIUM HALIDE PEROVSKITE NANOSTRUCTURES 

77 

3.2. Nanowires 

Over the past two decades, semiconductor nanowires have gained an important role in the evolution 

of nanodevice technologies for a wide range of applications such as sensing, optoelectronics, lasers, 

light-emitting diodes and photovoltaics185. Despite great progress in the synthesis of semiconductor 

nanowires, full tunability of the absorption and photoluminescence remains challenging. As discussed 

in section 3.1, the optical band gap energy of CsPbX3 perovskite nanocrystals can be tuned by 

controlling the halide composition. In fact, the direct conversion of precursor powders into CsPbX3 

nanocubes can significantly reduce the fabrication time, laborious effort and thus costs of production, 

which are key factors for commercialization. In addition to shape-controlled synthesis, self-assembly 

of nanocrystals is a crucial step for integrating them into devices.  Although self-assembly of 

conventional semiconductor and metal nanocrystals have been widely demonstrated by various 

techniques186,187, it has not yet been explored for perovskite nanocrystals. However, it is a promising 

research field with great potential, considering their broad range of applications in optical and 

optoelectronic devices. 

Here, we investigate a new synthesis approach in which a conversion  of precursor powders into 

crystalline CsPbBr3 perovskite nanowires by ultrasonication is aimed for. The emission colour of the 

nanowires can be tuned across the full visible spectrum by applying halide ion (Cl and I) exchange 

reaction on CsPbBr3 nanowires. Mechanistic studies revealed that nanowires are most likely formed 

through the oriented attachment of initially formed nanocubes. The oriented attachment of nanocubes 

into nanowires is investigated by HAADF-STEM imaging of an intermediate sample. Afterwards, the 

effect of the halide ion exchange reaction on the atomic structure of the nanowires will be studied. 

3.2.1. Oriented attachment	

The synthesis of colloidal CsPbBr3 perovskite nanowires was carried out by adapting the 

ultrasonication-assisted synthesis of perovskite nanocubes. A prolonged ultrasonication under similar 

reaction conditions leads to the evolution of nanowires together with a few percent of nanocubes, 
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The calculated tolerance factors for CsPbBr3, CsPbCl3 and CsPbI3 equal approximately 0.81, 0.82 and 

0.81, respectively and clearly show a deviation from the cubic tolerance factor. This means that Cs+ 

cation seems to be too small for the cuboctahedral voids of the perovskite framework, especially for 

CsPbI3, which could explain the displacements of the Cs+ cation. The coexistence of both the cubic 

and the orthorhombic phase was already observed for CsPbBr3 perovskites189. The orthorhombic 

phase of CsPbBr3 shows however a tilting of the PbBr6 octahedrons, which is not observed here.  

4. Organolead iodide perovskites at the atomic scale 

Next to cesium lead halide pervoskites, organolead halide perovskites have attracted attention because 

of their high absorption coefficient at visible wavelengths72,77. In combination with long-range 

electron-hole diffusion, they are ideal for solar energy conversion applications. The crystallinity and 

morphology of the organolead perovskite layer are known to have a significant impact on their device 

performance80–83. The development of such perovskite films is still at a first stage where they in 

general exhibit grain morphology. Similar to the cesium lead halide perovskites, a high defect density 

in a polycrystalline film is detrimental for the charge carrier dynamics and potential improvements 

can be offered by the use of monocrystalline organolead crystals. A recent morphology-controlled 

synthesis of methylammonium lead iodide (CH3NH3PbI3 or MAPbI3) perovskite nanocrystals obtains 

nanocrystals with improved stability in suspension. Scanning electron microscopy and 

photoluminescence spectroscopy revealed that the suspension of these organolead halide perovskites 

is stable for months in dark at room temperature. Here, high resolution imaging is used to examine the 

crystallinity of the nanocrystals. In comparison to the previous study on cesium lead halide perovskite 

nanocrystals, these MAPbI3 nanocrystals are extremely sensitive to the electron beam. A time series 

of EDX maps was acquired at the same region of interest in which multiple organolead perovskite 

nanocrystals were present. Upon scanning, both the I and N content seem to decrease (Figure 4.9). 

Additional to this spectroscopic investigation, HAADF-STEM imaging at the nanoscale shows that 

the nanostructures deform upon interaction with the highly energetic electron beam, which is clearly 

visible in Figure 4.10. Therefore, in order to perform an investigation at the atomic level, a relatively 
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low electron dose needs to be applied to study the native structure of the MAPbI3 nanostructures. A 

low-dose high resolution HAADF-STEM image of a single MAPbI3 nanocrystal is visualized in 

Figure 4.11.a. The low electron dose condition leads to a low signal-to-noise ratio and will therefore 

hamper the quality of the HAADF-STEM image. To improve the signal-to-noise ratio, a part of the 

HAADF-STEM image is statistically averaged by the use of a template-matching procedure, which 

was previously used in the investigation of silver clusters confined in zeolites190. In this template-

matching routine, specific regions are searched for in a given image that corresponds to a template. 

The result of such a procedure yields an averaged template image with an improved signal-to-noise 

ratio. In Figure 4.11.b, the template is shown from which a proper analysis is hampered by the low 

signal-to-noise ratio. After application of the template-matching procedure, the perovskite lattice is 

clearly visible in the averaged template in Figure 4.11.c. The averaged template image shows that the 

synthesized nanocrystals have a crystalline structure with a lattice parameter of approximately 6.4 Å, 

measured in the [100] zone. The different atomic columns can be identified by their intensity 

differences due to significant differences in the atomic number between the types of elements (Figure 

4.12). The bright atomic columns at the corners of the unit cell are mixed Pb-I columns. As the 

perovskite structure contains PbI6 octahedra, the lighter atomic columns located at the mid-edges 

consist of I. A very low intensity value is measured in the center of the cubic unit cell, which 

corresponds to the methylammonium. As the methylammonium is an organic component –only 

consisting of light elements–, the atomic columns in a HAADF-STEM image will appear very faint 

(Figure 4.12.d). 
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wave reconstruction is an alternative technique which can be used to study these beam sensitive 

perovskite nanomaterials. However, due to the sensitivity of these different perovskites, 

characterization studies are currently limited to 2D.  

Nowadays, the development of more complex core/shell semiconductor nanocrystals is emerging. To 

investigate these core/shell nanostructures, both a 3D characterization on the structure and chemical 

nature becomes necessary. The extension of a chemical characterization with the use of HAADF-

STEM tomography is discussed in the next chapter. 
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1. Introduction 

In Chapter 3, it has been shown that the use of HAADF-STEM tomography is valuable to obtain 3D 

structural information of nanomaterials. With the growing interest in complex hetero-nanostructures 

and more specific core/shell nanostructures, a next challenge towards a full characterization is the 

identification of different chemical components in the nanostructure. As pointed out in Chapter 2, the 

intensity in a HAADF-STEM image does not only scale with the projected thickness of the 

investigated nanostructure, but also with the atomic numbers of the elements present in that structure. 

Therefore, HAADF-STEM imaging can provide us information on the presence of different elements 

in a material. The only requirement is that the difference in atomic number between the elements is 

sufficient in order to visualize an intensity difference in the HAADF-STEM images. If this 

requirement is satisfied, we can extend the 3D characterization from structural to chemical by 

applying HAADF-STEM tomography, which makes the technique suitable for the investigation of 

complex hetero-nanostructures. 

In this chapter, two types of semiconductor core/shell nanostructures will be characterized in 3D and 

both structural as well as chemical information will be acquired. In the first part, the investigation of 

binary core/shell nanostructures will be carried out and a second part will focus on ternary 

semiconductor nanocrystals.  

2. Binary core/shell nanostructures 

Semiconductor colloidal nanocrystals consisting of different compositions are of great interest since 

their properties can be tailored by controlling the composition, size and shape of each semiconductor 

component29. Over the last decades, a remarkable degree of precision has been achieved in the 

synthesis of core/shell hetero-nanostructures based on Cd- and Pd-chalcogenides (CdX and PbX with 

X = S, Se, Te)29,55,57,58. These Cd-chalcogenides hetero-nanostructures have been studied extensively 

as they exhibit promising photoluminescence quantum yields for the application of phosphors and 

biological labels46,57,191–194. As a spin-off of this extensive research, it also became clear that the 
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exciton wave functions and related optical properties could be engineered by the chemical 

composition and dimensions of the shell. In such a manner, CdSe/CdS hetero-nanostructures were 

reported that (i) displayed a spatial separation of the electron and the hole wave functions195,196, (ii) 

reduced Auger recombination under high excitation densities197,198, (iii) reduced blinking when 

measured on the single quantum dot level199,200.  This so-called wave function engineering demands a 

high control of the atomic epitaxy of the shell material on the CdSe core and of the growth of the shell 

material in case of thicker shells201–203. For small PbSe (core) / CdSe (shell) hetero-nanostructures, it 

has been shown that a 3D atomic characterization of the hetero-interface can be obtained by HAADF-

STEM tomography106. This was enabled by the relative small size of the PbSe/CdSe hetero-

nanostructures and the large contrast between atomic columns containing Pb or Cd. It is however far 

from straightforward to determine the 3D atomic structure for much larger hetero-nanostructures, e.g. 

consisting of a core and a giant shell as well as for structures of which the expected contrast between 

the two materials when imaging in HAADF-STEM mode is not strong. 

In order to understand the initial growth, it is of crucial importance to locate the CdSe core in the 

hetero-nanostructure. In previous studies of CdSe/CdS core/shell nanorods, the location of the CdSe 

core could be retrieved from 2D TEM techniques such as strain analysis applied to high resolution 

TEM images55 and high resolution phase imaging204. Due to the large size and anisotropic shape of the 

bullets investigated here, 2D techniques can no longer be used. 

2.1. Characterization of the morphology 

Figure 5.1.a shows a HAADF-STEM overview image of the as synthesized CdSe (core) / CdS (giant 

shell) hetero-nanostructures. It is clear that the CdSe/CdS core/shell hetero-nanostructures have an 

anisotropic shape, with hexagonal and bullet-like projections. In Figure 5.1.b two hexagonal 

projections of the hetero-nanostructures are presented in more detail and an intensity difference in the 

center can be observed. This is further illustrated by the line profiles in Figure 5.1.c and d obtained 

along the white rectangles indicated in Figure 5.1.b. Two different types of profiles were observed: 
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Type 1 shows a decrease of the intensity in the center, whereas a higher intensity is observed for type 

2. Since the intensity in HAADF-STEM images scales with sample thickness, the presence of a 

brighter region could be related to an increment in the projected thickness of the hetero-nanostructure. 

However, the intensity in HAADF-STEM also scales with the atomic number Z. Intensity changes 

may therefore also be related to the presence of the CdSe core. In order to elucidate the origin of the 

intensity changes, we applied HAADF-STEM electron tomography. Tilt series of HAADF-STEM 

images were acquired for each type of nanoparticle over a range of ± 70°. 

In Figure 5.1.e-h, the 3D reconstructions are presented, showing two different bullet-type crystal 

shapes: both have a hexagonal base (Figure 5.1.g and h), but at the other end either a dip (Figure 

5.1.e) or a tip (Figure 5.1.f) is observed. This explains the intensity differences in the center of the 

hetero-nanostructures observed in the 2D HAADF-STEM images. It must be noted that 2D overview 

images enable us to estimate that both types of crystal shape are roughly equally present in the 

samples that we investigated. 

2.2. Identification of the core location 

Previous work on CdSe/CdS core/shell nanorods showed that the CdSe core can be located from 2D 

high resolution real-space or phase images204,205. Recently, EDX has been applied to visualize the 

CdSe core in a CdSe/CdS quantum dot in a 2D projection206. Because of the larger size of the crystals 

and the bullet shape, a 3D characterization is indispensable in the present case. Despite of the small 

difference in atomic number Z between the core (ZSe = 34) and the shell (ZS = 16), HAADF-STEM 

tomography is the preferred technique to investigate the location of the core. Although the use of 

chemical mapping such as EELS or EDX might be better suited to identify the CdSe core in the 

hetero-nanostructures, applying these techniques in 3D is not feasible since the required electron dose 

induced severe beam damage.  
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2.3. Facet determination 

As the two types of bullet-shaped nanocrystals yield a similar position for the CdSe core, the epitaxy 

and growth of the CdS crystalline shell is expected to be very similar for both types. In order to 

evaluate the surface energy of both types, the facets of the hetero-nanostructures need to be identified. 

Previous studies have shown that the facets of nanocrystals can be investigated by electron 

tomography101,208,209. Here, it is not straightforward because of the relatively small number of 

projection images in the tilt series. The lack of information will induce a more rounded shape, which 

hampers an unambiguous characterization of the facets from a 3D experiment. Therefore, we 

additionally used direct high resolution HAADF-STEM imaging to determine the facets of the 

CdSe/CdS bullets. Figure 5.3 shows a high resolution HAADF-STEM image acquired along the 

(long) [001] direction. The hexagonal arrangement of the atomic columns (Figure 5.3.c) at the base of 

the hetero-nanostructure demonstrates that the CdSe/CdS core/shell hetero-nanostructures have a 

wurtzite crystal structure. Since the wurtzite structure is non-centrosymmetric, anisotropic growth is 

expected, which is confirmed by the position of the CdSe core (see above). However, this is in 

disagreement with the principles of the successive ion layer adhesion and reaction (SILAR) 

method210,211 designed for layer-by-layer growth. It is well possible, that even in the SILAR method, 

the growth occurs by molecular attachment of CdS units instead of Cd and S in subsequent 

steps29,212,213. This would preserve the facet polarity and anisotropy. Moreover, a slight excess of the 

added precursors would enable preferential growth in the polar [00-1], S-terminated direction. Next to 

the identification of the crystal system, the lateral facets can be examined from the high resolution 

HAADF-STEM image (Figure 5.3.a) and its corresponding diffractogram (Figure 5.3.b). From these 

images, the lateral facets are identified as {-110} planes. In Figure 5.3.d, a schematic overview is 

shown to support the viewing directions with respect to the hexagonal base of a hetero-nanostructure. 

In order to investigate the facets that form the tip or the dip, high resolution images acquired along an 

edge between two lateral facets, corresponding to the [110]  direction, are evaluated. In this direction, 

the angle between a lateral facet and a facet forming the tip can be measured. In this manner, we  
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3. Ternary core/shell nanostructures 

The further deployment of Cd- and Pb-chalcogenides is limited by the toxicity of Pb and Cd. 

Therefore, a worldwide research effort to define alternative materials with comparable properties and 

less toxicity has been stimulated. Nanocrystals based on ternary I-III-VI semiconductors such as 

CuInX2 are an attractive option, since their photoluminescence is tunable from the visible to the near-

infrared light. Therefore, such materials are promising for applications such as light-emitting devices, 

biomedical imaging and solar energy conversion62–66. However, the synthesis of ternary nanocrystals 

is challenging since multiple precursor reactivities must be simultaneously controlled. Therefore, 

direct synthesis protocols for colloidal CuInX2 nanocrystals remain still largely underdeveloped67–71,217 

and do not offer the same level of control as available for Cd-based nanocrystals. To date, it has not 

been possible to grow luminescent anisotropic ternary nanocrystals, or to combine two different 

CuInX2 compounds into a single hetero-nanostructure by hetero-epitaxial overgrowth. A novel 

method was proposed in [207] where luminescent CuInSe2/CuInS2 (CISe/CIS) dot core/rod shell 

heteronanorods could be obtained by applying sequential topotactic cation exchange reactions (Cu+ 

for Cd2+ followed by self-limited partial In3+ for Cu+) to template Cd-chalcogenide hetero-

nanostructures. During these reactions, the size, shape and hetero-architecture of the template 

nanocrystals should be preserved. HAADF-STEM tomography is hereby applied to study this 

preservation as both a structural and a chemical characterization in three dimensions are indispensable 

when investigating these ternary semiconductor hetero-nanostructures.  

3.1. Characterization of the morphology 

The template Cd-chalcogenide hetero-nanostructures used in this approach are the well-known 

CdSe/CdS nanorods, which show efficient photoluminescence at 2.07 eV and an absorption spectrum 

dominated by CdS transitions. In Figure 5.7.a, a HAADF-STEM image of multiple CdSe/CdS 

core/shell nanorods is shown. A careful observation reveals that some of the nanorods have a rather  
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To elucidate on the lateral thickness of the nanorods, a visual inspection of the high resolution 

HAADF-STEM images is sufficient. In Figure 5.9.a, a high resolution HAADF-STEM image of the 

parent CdSe/CdS core/shell nanorods is visualized. Investigation of multiple CdSe/CdS core/shell 

nanorods shows that the parent nanorods have a lateral thickness of approximately 9 to 15 atomic 

layers, which corresponds to a thickness of approximately 2.87 to 5.02 nm. High resolution HAADF-

STEM investigation indicated that the intermediate Cu2Se/Cu2S core/shell nanorods (Figure 5.9.b) are 

not highly symmetrical which could correspond to the monoclinic structure (inset of Figure 5.9.b). As 

the nanorods are beam sensitive, a main zone could not be reached before the nanostructure was 

damaged, which prohibited a measurement of the thickness with atomic precision. However, we are 

most interested in the final product and characterized the lateral thickness of the CISe/CIS core/shell 

nanorods (Figure 5.9.c) as approximately 8 to 14 atomic layers thick, which corresponds to a 

thickness of 2.70 to 4.73 nm, approximately. One could still wonder whether the nanorods are 

symmetrical or that the thickness parallel to the electron beam is elongated. In order to retrieve this 

thickness information, atom-counting on the high resolution HAADF-STEM images is needed. To 

perform such atom-counting, the StatSTEM program was used to perform a model-based 

quantification of the atomic columns107,178,179. In Figure 5.10 the result of such counting for the parent 

CdSe/CdS nanorod is shown, from which we can conclude that the rod is symmetrical as also in that 

direction a maximum thickness of 15 atoms is found. From these thickness measurements, we can 

conclude that the size of the core/shell rods does not change by applying these sequential topotactic 

cation exchange reactions. Next to the investigation of the thickness with atomic precision, the crystal 

structure of the core/shell nanorods can be investigated by high resolution HAADF-STEM imaging. A 

fast Fourier Transform (FFT) analysis of the high resolution HAADF-STEM images confirms that 

both the parent CdSe/CdS and final CISe/CIS core/shell nanorods exhibit a wurtzite crystal structure. 

As the majority of the volume of the parent core/shell nanorods consists of CdS, the contribution of 

the CdSe core is not detected in the FFT analysis (inset of Figure 5.9.a). For the final core/shell 

nanorods, the same conclusion can be made as there is no contribution of the CISe core detected in the 

FFT image (inset of Figure 5.9.c). 
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4. Conclusion 

HAADF-STEM tomography was used to characterize both the shape and chemical components in 3D 

of CdSe/CdS core/shell nanobullets and CISe/CIS core/shell nanorods. An important question on 

core/shell hetero-nanostructures is the position of the core inside the nanostructures as from this 

position the growth of the nanostructure is initiated. Here, an asymmetric core position was found in 

these semiconductor binary nanobullets and ternary nanorods. A limitation to this approach is the 

need for sufficient intensity difference between the chemical components. If a hetero-nanostructure 

consists of two or more chemical components with comparable atomic numbers, HAADF-STEM 

imaging or tomography will not provide any chemical information on the nanostructure. In order to 

study a broader variety of hetero-nanostructures, a more general technique is necessary to investigate 

the chemical character of these structures. In the next chapter, a 3D spectroscopic technique is 

introduced to extend the chemical characterization towards a broader variety of complex hetero-

nanostructures. 
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1. Introduction 

In the previous chapter, it was shown that by using HAADF-STEM tomography, 3D chemical 

information can be obtained up to a certain extent. A careful analysis of the intensities in the 3D 

reconstruction is required to distinguish between certain elements and hence, this is only possible 

when their atomic numbers are sufficiently different. Therefore, alternative chemical characterization 

approaches should be explored. In Chapter 2, different imaging modes in electron tomography were 

discussed and it was mentioned that by the use of a novel detection system, EDX tomography 

becomes possible. As the Super-X detection system was only developed recently136, a thorough study 

on its applicability for quantitative 3D EDX is necessary. Au/Ag core/shell nanostructures will be 

used for this purpose since these particles are ideal to evaluate the technique since chemical 

information can also be retrieved using HAADF-STEM imaging and tomography. 

2. EDX from 2D to 3D 

2.1. 2D EDX mapping 

As explained in Chapter 2, EDX can be used to map the chemical elements present in a specific 

nanomaterial. To summarize, the incoming electrons of the electron beam transfer energy to an inner 

shell electron of an atom in the specimen, creating an electron hole. A higher energy electron from an 

outer shell will fill up the created electron hole and an X-ray will be emitted. The energy of the X-ray 

will equal the energy difference between the outer and inner shell energy. Thereby, the recorded 

elemental spectrum is characteristic to the elements which are present in the nanostructure. Recording 

these generated X-rays in a TEM results in an elemental map of the investigated material as in each 

pixel a spectrum is recorded. The intensity IA of the characteristic X-ray peaks for an element A 

present in the nanostructure equals to218: 

 
஺ܫ ൌ

ݏ஺߱஺ܳ஺ܥ

஺ܼ
, 

(6.1)
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with ܥ஺ the weight fraction of element A, ߱஺ the fluorescence yield, ܳ஺ the ionization cross-section, ݏ 

the thickness of the specimen and ஺ܼ the atomic number. As the intensity of the peak and thereby the 

number of generated X-rays, scales with the thickness ݏ of the specimen, a 2D elemental map can in 

principle serve as a projection image for electron tomography, as the projection requirement seems to 

be fulfilled. 

2.2. Practical aspects of EDX tomography 

2.2.1. Detector set-up 

As mentioned in Chapter 2, early attempts to perform EDX tomography were hampered by the 

sample-detector geometry since the EDX detector is typically placed under a specific tilt angle to the 

specimen219. The amount of detected X-rays will therefore depend on the sample position with respect 

to the detector. The optimal signal will be collected when the sample is tilted towards the detector, 

while at specific tilt angles the signal will be blocked by shadowing effects. Thereby, the first 3D 

EDX results were obtained on needle-shaped samples where shadowing effects are avoided during the 

acquisition of the tilt series134,135. 

A few years ago, a new detector geometry was introduced where four X-ray detectors are placed 

symmetrically around the sample136, which is schematically shown in Figure 6.1. The aim of this 

Super-X detection system was to reduce the blocking of the generated X-rays by the holder with 

respect to the position of the holder towards the X-ray detectors. With the design and production of 

this new EDX detector set-up, advances in EDX tomography become within reach. However, before 

performing an EDX tomography experiment, the Super-X detection system needs to be thoroughly 

examined to confirm its usability in electron tomography, which will be discussed in the next section. 
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Acquisition methodology 

With the Super-X set-up, it is expected that the shadowing effects due to the position of the holder 

towards the detectors are minimized and thereby that the total amount of detected characteristic X-

rays for a nanoparticle is independent of the tilt angle. This assumption, however, needs to be 

investigated with care, if we want to perform a reliable EDX tomography experiment. Therefore, we 

studied the detected X-ray counts of a nanoparticle for different dedicated microscopy holders at 

different tilt angles. As at all the different tilt angles, the whole nanoparticle is scanned, the total 

amount of characteristic X-rays should be constant. In a first experiment, we investigated the outcome 

for a conventional single tilt tomography holder (Fishione model 2020, Figure 6.2.a). Each 10°, an 

EDX map was acquired of a SiO nanoparticle from -70° to +70°. In Figure 6.2.a.1, the detected X-ray 

counts are visualized in function of these tilt angles for each individual detector. From this graph, it is 

clear that the detected X-ray signal is still dependent on the tilt angle. A clear decrease in the amount 

of detected X-rays at the lower tilt angles can be observed (Figure 6.2.a.2). This shows that still a 

large amount of generated X-rays does not reach one of the four detectors. At certain tilt angles the X-

rays are blocked by the holder, therefore its geometry determines the detected X-ray signal profile. 

The investigation of a Si needle mounted on an on-axis tomography holder (Figure 6.2.b) confirms 

that shadowing effects are largely reduced when investigating a needle-shaped sample, which is 

visualized in Figure 6.2.b.1-2. As we are focused on the investigation of nanoparticles, the use of 

needle samples is not straightforward as its preparation is challenging and time-consuming146. 

Therefore, this experimental design was mimicked by attaching a regular TEM grid to the tip of the 

on-axis tomography holder (Fishione model 2050). The experimental set-up is illustrated in Figure 

6.2.c, which shows that possible shadowing can only come from the support grid itself.  In Figure 

6.2.c.1-2, a reduction of shadowing effects can be observed in comparison to the use of a single tilt 

tomography holder, but there is still a dependence on the tilt angle. These studies have led us to a 

more novel dedicated tomography holder (Fishione model 2030, Figure 6.2.d), which uses the same 

principle as the experimental test set-up we designed. This novel holder was developed to keep the  
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shadowing to a minimum; however, even here an asymmetric collection efficiency of the separate 

detectors is still observed as a function of tilt angle. In Figure 6.2.d.1, the detected X-ray counts for 

the different detectors are visualized. In order to use EDX maps as reliable input for a tomography 

experiment, we therefore propose to combine EDX signals of certain detectors to obtain EDX maps 

which satisfy the projection requirement. By combining the signal of detector 3 and 4 at negative tilt 

angles and the signal of detector 1 and 2 at positive tilt angles, we overcome shadowing effects and a 

more linear signal in function of the tilt angle is found (Figure 6.2.d.2). With this investigation, we 

show that even with a more advanced detection system, one should be careful with the acquisition of a 

tilt series of EDX maps to obtain reliable 3D EDX information. 

Recently, the synergistic combination of quantified EDX maps and HAADF-STEM tomography was 

developed and successfully applied by Zanaga et al [220]. In this manner, the effect of shadowing is 

minimized and the spatial resolution of the 3D reconstruction is improved. The quantification of an 

EDX map will be explained in the next section. Another methodology was proposed by Slater et al 

[221], where a time-varied acquisition scheme is used to compensate for variations in the detected 

signal at each tilt angle. This approach ensures the fulfilment of the projection requirement and 

additionally more signal will be detected as at all times all the detectors are open. In section 3, 

different acquisition approaches are evaluated by their application on Au/Ag core/shell nanoparticles. 

By the development of the Super-X detection system and the use of these novel acquisition 

approaches, the efficiency of X-ray detection has largely improved. However, the acquisition time for 

a single EDX map requires typically a few minutes, which is much longer in comparison to the 

acquisition time of a HAADF-STEM image, which requires only a few seconds. This means that an 

increased electron dose is necessary for the acquisition of a tilt series of EDX maps, which could lead 

to beam damage during the acquisition. Not only the investigated nanostructure needs to resist these 

long exposures, but also the support grid has to be robust to the electron beam. If the support grid is 

damaged during the tomography experiment (Figure 6.3), there is a possibility that the nanostructure 

will move during the acquisition of the tilt series. Such a movement will hamper a reliable 3D 
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quality. The count rate in the maps is quite low and neighbouring pixels can differ severely. To reduce 

the changes in neighbouring pixels, EDX maps are often averaged to yield images with a more 

constant varying count rate. Remaining background pixels can be eliminated by using the HAADF- 

STEM images as a mask. Both the limited amount of projection images as the low signal-to-noise rate 

will complicate an accurate alignment of the tilt series. In the next section, we explain how a tilt series 

of EDX maps needs to be aligned in a straightforward and reliable manner. 

2.2.3. Alignment of tilt series 

As the detection system still suffers from quite low detection efficiency, the resulting EDX projection 

maps are relatively noisy. Additionally, as the acquisition time for these maps takes several minutes, 

we can only acquire a limited amount of projection images during the acquisition of an EDX tilt 

series. Therefore, these tilt series are less suitable for a conventional cross correlation alignment 

method, as the differences in the projected structure in two successive projection images may differ 

significantly. During the acquisition of an EDX map, a HAADF-STEM projection image is acquired 

simultaneously at each tilt angle. As a consequence, the HAADF-STEM tilt series can be aligned in a 

proper manner as they provide a better signal to noise ratio. After optimizing the alignment 

parameters for the HAADF-STEM tilt series, they can be applied on the EDX tilt series of the 

different chemical elements as the images are acquired at the same time. In this way, a consistent 

alignment of all data is obtained. 

3. Investigation of Au/Ag core/shell nanoparticles 

The different acquisition approaches, as discussed in section 2.2.2, are tested on a Au rod core / Ag 

cube shell nanoparticle. All the EDX tilt series were acquired with an angular range of ± 70°, a tilt 

increment 10° and a TVM algorithm was applied to reconstruct the tilt series. The use of TVM is 

beneficial as the low amount of noisy projection images will deteriorate the quality of a SIRT 

reconstruction. Since TVM is more robust towards low signal-to-noise ratio, artefacts in the EDX 

reconstruction will be reduced. 
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3.1. Qualitative results 

A first experiment was applied with the use of a single tilt tomography holder. All the detectors were 

used for the X-ray collection and each map was collected for 180ݏ. A 3D visualization of the EDX 

tomography result is shown in Figure 6.5.a. Corresponding orthoslices through the 3D reconstruction 

are shown in Figures 6.5.a.1-6. As discussed in section 2.2.2, the projection requirement is not 

satisfied with this acquisition approach due to shadowing, but still we are able to visualize both the 

Au core (green) and the Ag shell (grey) from these EDX tomography reconstructions. The orthoslices 

through the Ag shell Figures 6.5.a.1 and a.3 show some intensity variations which could originate 

from violation of the projection requirement. These artefacts will hamper a reliable quantification of 

the 3D reconstruction. 

Next, the Fishione 2030 holder was used in combination with the use of detectors 3 and 4 for the 

negative tilt angles and detectors 1 and 2 for the positive tilt angles. The outcome of this acquisition 

approach is visualized in Figure 6.5.b. This approach should minimize signal variations at different tilt 

angles. We can clearly characterize the Au core and the Ag shell, however some minor intensity 

variations in the orthoslices through the Ag shell are observed in Figures 6.5.b.1 and b.3 as was seen 

in the conventional approach. A careful analysis of the detected X-ray counts for this tilt series has 

shown that the signal still shows some fluctuations in function of the tilt angle. The position of the 

investigated nanostructure on the grid can affect the amount of blocking221, therefore the acquired 

count rate profile in Figure 6.2.d.1-2 can vary according to the exact position of the nanostructure. 

Deviations from this profile will result in fluctuations when using the optimized procedure. 

In the last approach, a time variation acquisition scheme was applied. The time factors were 

calculated based on the collected X-ray counts of the conventional approach. In this way, longer 

acquisition times are used at the lower tilt angles to compensate for blocking by the holder. The total 

acquisition time, and thereby dose, was kept constant in comparison to the first (and second) 

approach. In total 45 minutes were needed to acquire the full EDX tilt series. The result visualized in 

Figure 6.5.c shows less intensity variations in the orthoslices through the Ag shell (Figures 6.5.c.1 and 
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3.2. Quantitative results 

To compare the outcome of the different acquisition approaches in a quantitative manner, the 3D 

reconstructions of the HAADF-STEM tilt series, which are simultaneously acquired with the EDX tilt 

series, are used as a ground truth. Since the atomic numbers of Au and Ag are significantly different 

and the interface between the two components is sharp, a quantification from Au and Ag is possible 

by thresholding the HAADF-STEM reconstruction. The shape error is introduced as a quantitative 

measure and corresponds to the number of voxels that are misclassified in the segmentations of the 

EDX reconstructions in comparison to the reconstructions of the HAADF-STEM tilt series. Both the 

shape error for Ag and Au can be calculated with this approach. In Figure 6.6, the outcome of the 

different acquisition procedures of the Ag shell is visualized. Orthoslices through the HAADF-STEM 

and EDX reconstructions of Ag are shown for the conventional acquisition method (Figure 6.6.a and 

b), the Fishione 2030 holder in combination with the use of two detectors at positive and negative tilt 

angles (Figure 6.6.d and e) and the time variation method (Figure 6.6.g and h). For every method, the 

difference reconstruction is shown in Figure 6.6.c,f and i, respectively. A total shape error of 29% is 

found for the conventional method. From Figure 6.6.c, it is clear that the misclassification of voxels 

for the Ag is located at the inner and outer edges of the shell. Using the two approaches which reduce 

the effects of shadowing, the total shape error is reduced with a factor of 2. For the method where the 

2030 holder used in combination of the two detector set-up, the total shape error is reduced to 15%. A 

total shape error of 11% is found for the time variation acquisition method. The misclassified voxels 

are also in these reconstructions found at the inner and outer edge of the Ag shell (Figure 6.6.f and i). 

The shape error was also calculated for the Au core and shows again a large reduction when the two 

optimized acquisition approaches are used (Figure 6.7). The shape error for Au is only 1-2% for these 

approaches (Figure 6.7.f and i) in comparison to 6% for the conventional method (Figure 6.7.c). 

Therefore, the use of these optimized procedures shows a large improvement and more reliable results  
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4. Conclusion 

In this chapter, we have discussed the extension of EDX mapping from 2D to 3D and the challenges 

concerning performing a reliable EDX tomography experiment. We have carried out a careful 

analysis of the performance of the novel developed Super-X detection system and concluded that the 

acquisition procedure needs to be optimized in order to fulfil the projection requirement. Different 

approaches were evaluated by the application on Au/Ag core/shell nanoparticles. We have shown that 

a qualitative interpretation can be carried out with the different approaches –even when the projection 

requirement is not fully satisfied–. However, if we do not only want to know “where is what?” but 

also “how much?”, the development of novel reconstruction algorithms emerges. The low amount of 

projection images in combination with their low signal-to-ratio need to be properly dealt with, in 

order to obtain reliable 3D reconstructions from which quantitative results can be extracted. 
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Chapter 7  

A neural network filtered back 
projection approach  

 

This chapter is based on: Bladt, E., Pelt, D. M., Bals, S., Batenburg, K. J. Electron 

tomography based on highly limited data using a neural network reconstruction technique. 

Ultramicroscopy, 158 (2015) 81–88. 

Own contribution: Responsible for all the electron tomography acquisition and analysis of 3D 

reconstructions. 
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1. Introduction  

In the previous chapters, it was shown that electron tomography is necessary to perform a 3D 

characterization of nanostructures. In Chapter 3 and 5, HAADF-STEM tomography was applied to 

perform a structural and chemical characterization of semiconductor nanostructures. The use of EDX 

tomography to perform a 3D chemical characterization was investigated and optimized in Chapter 6. 

In general, electron tomography is often used to determine the size and shape of nanoparticles and 

nowadays, 3D reconstructions can even be obtained with a resolution at the atomic level107,209. 

Although these investigations provide very precise information on the nanoparticle morphology, both 

the acquisition of tilt series as well as the 3D reconstruction is very time-consuming and it is 

consequently not straightforward to acquire results in 3D that are statistically relevant, which is a 

major drawback e.g. when using electron tomography to optimize the synthesis of nanoparticles. This 

problem will be even more essential for anisotropic nanoparticles that are currently receiving a lot of 

attention because of the increased flexibility they provide to tune the final (optical) properties223–225. 

Since the optimization of the production of nanoparticles with a specific shape would largely benefit 

from statistical 3D results with a nanometer resolution, one of the emerging challenges in the field of 

electron tomography is to increase the throughput of 3D reconstructions of nanoparticles. At the same 

time, the quality of the reconstructions should be maintained and should enable one to obtain reliable 

and quantitative results concerning parameters such as particle size and surface morphology. 

Additionally, there is a high need for advanced reconstruction algorithms in EDX tomography, which 

can handle a low amount of projection images. As discussed in Chapter 6, a major drawback of EDX 

tomography is the need for longer acquisition times, which limits the acquisition of a high number of 

projection images. The development of completely novel 3D reconstruction techniques will expand 

the possibilities of EDX tomography. 

Here, we will determine the 3D shape and size of a large set of anisotropic Au nanoparticles by 

making effective use of a new approach for electron tomographic reconstructions that is based on 

artificial neural networks. The neural network filtered back projection method (NN-FBP) is a recently 

developed reconstruction technique that has been applied successfully to X-ray tomography226; 
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however the implementation for electron tomography is completely new. The proposed method will 

aim to reduce the number of necessary projection images for a 3D reconstruction by a factor of 5 or 

more. In this manner, the acquisition time and time that is necessary for a 3D reconstruction will 

significantly reduce, enabling 3D results that are of statistical relevance. Afterwards, the extension of 

the NN-FBP algorithm towards a chemical characterization will be studied. Both HAADF-STEM and 

EDX tilt series will be investigated by a NN-FBP implementation. 

2. Neural network filtered back projection method: structural characterization 

The investigated sample contains Au nanoparticles yielding different morphologies: nanorods, 

nanotriangles, nanoprisms and nanospheres. A HAADF-STEM overview image of the sample is 

provided in Figure 7.1.a. Although this image only corresponds to a 2D projection of a set of 3D 

objects, it is already clear that different morphologies occur. Since all the investigated nanoparticles 

have a thickness below 100 nm, the projection requirement for tomography is satisfied125,227. The 

projection requirement was explained in section 2 of Chapter 2. A conventional electron tomography 

experiment was performed to characterize the different morphologies present in the sample. The 

outcome of this procedure for the different nanoparticles in Figure 7.1.a is visualized in Figure 7.1.b. 

The reconstructions are calculated using the SIRT algorithm and are based on a series of 151 images, 

acquired over a tilt range of ±75°. Since the quality of 3D reconstructions based on the conventional 

approach is predominantly determined by the number of projection images151,154,155, these experiments 

are very time-consuming and require sufficient measurement time at the TEM. 

The key to increasing the image quality if only a small number of 2D projections are available, is the 

effective use of prior knowledge in the reconstruction. By exploiting rather generic features of the 

particles, without assuming a specific shape or morphology, this additional knowledge is used to 

compute a particle shape that better approximates the true morphology. Various algorithms involving 

prior knowledge are currently in use in electron tomography (e.g. the DART algorithm for discrete  
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In the reconstruction phase, the NN-FBP algorithm computes a reconstructed volume from limited 

projection data by combining multiple FBP reconstructions with different filters into a single 

reconstruction. A key ingredient of the algorithm is the application of a pixel-wise nonlinear scaling 

operation to each of the FBP images. Following this operation, the images are combined by taking a 

weighted sum of the scaled FBP images. As a final step, another nonlinear scaling operation is applied 

to this combined image (see reconstruction phase in Figure 7.2). 

Note that without these nonlinear scaling operations, the final reconstruction can also be obtained by 

first creating a weighted sum of the different filters, and performing a FBP with the resulting filter, as 

the FBP algorithm is a linear method with respect to the used filter. Because of this, such a method 

will not be able to produce more accurate reconstructions than standard FBP with an appropriately 

chosen filter. Also, because of the nonlinear scaling operation, it is not possible to directly compare 

the filters of the NN-FBP method with standard filters for FBP. 

By using the nonlinear scaling operation, the NN-FBP algorithm is able to reduce the artefacts that are 

usually present in standard FBP reconstructions when only a small number of projections are 

available. An example image with standard FBP, a linear combination of two FBPs, and a 

combination of two FBPs with nonlinear scaling is shown in Figure 7.3. As expected, the Figure 

shows that the linear combination is identical to a single FBP reconstruction, while the combination 

with nonlinear scaling is significantly more accurate. 

2.1.2. Learning phase 

The question remains how the different filters and weights have to be chosen, such that the method 

produces accurate reconstructions. It is shown that ideas from artificial neural network theory can be 

used to find optimal filters and weights226. Specifically, filters and weights can be learned by the NN-

FBP method in a separate learning phase, in which the method is presented with high-quality 

reconstructions of a set of training objects. In artificial neural network theory, this technique is called 

supervised learning. In the learning phase, the filters and weights are iteratively adjusted until the NN- 
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is computationally efficient as well, enabling high throughput of 3D reconstructions. An additional 

advantage is that existing implementations of the FBP algorithm can be used to easily implement the 

NN-FBP method. A final advantage is that it is possible to include the segmentation step in the NN-

FBP method by using segmented high-quality reconstructions of the training objects in the learning 

phase. In this case, the NN-FBP method will reconstruct objects with voxel values that are very close 

to their segmented value, and the final segmentation can be performed by simple rounding to the 

nearest segmented value. This removes the need for manual segmentation, which can be problematic 

for other methods when only a limited set of projections is available. Additionally, a build-in 

segmentation is less subjective in comparison to a manual segmentation. 

2.2. Results 

2.2.1. Qualitative results 

In a first experiment, tilt series of a nanosphere, a nanorod and a nanotriangle are acquired over an 

angular tilt range of ± 75° with a tilt increment of 1°. These three series and their 3D SIRT 

reconstructions are used as training input, resulting in a set of filters that will be used during the NN-

FBP approach. The resulting NN-FBP algorithm is applied to a limited tilt series that was acquired 

from a different nanotriangle. Although only 10 projection images obtained over a range of ± 75° are 

used during the NN-FBP reconstruction, it needs to be pointed out that we also acquired an extended 

series of 151 projection images. The SIRT reconstruction of the extended dataset was used as ground 

truth, in order to evaluate the NN-FBP outcome. Figure 7.4.a presents a volume rendering of this full 

range SIRT reconstruction of the investigated nanotriangle. In all experiments, we used 200 iterations 

for the SIRT reconstructions, which was empirically verified to produce accurate reconstructions. The 

result of the NN-FBP algorithm is shown in Figure 7.4.b. It must be stressed that in this case only 10 

projection images were used and that this nanotriangle was not used in the training step. It can be seen 

that the 3D volume visualization of the NN-FBP reconstruction is in very good agreement with the 

SIRT reconstruction of the full data series.  The top and side facet can clearly be distinguished in the  
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In Figures 7.5 and 7.6, results for a nanosphere and a nanorod are presented, respectively. Here, the 

training of the filters was again obtained by 3 training series. For the nanosphere, extended series of 

the nanorod and both nanotriangles were used. The training step for the nanorod was performed by the 

extended series of the nanosphere and both nanotriangles. These nanostructures yield fewer facets and 

as a consequence, the general morphology as visualized in Figures 7.5.b,c and 7.6.b,c appear to be 

better preserved when using only 10 projections. However, missing wedge artefacts can be clearly 

seen in the orthoslices presented in Figures 7.5.f,i,l and 7.6.f,i,l. Because of such artefacts, some 

features of the morphology indicated by white arrows in both the orthoslices through the full SIRT 

reconstruction (Figure 7.5.d,g,j) and the NN-FBP reconstruction (Figure 7.5.e,h,k) are not clearly 

visible in the orthoslices through the limited SIRT reconstruction (Figure 7.5.f,i,l). It has to be pointed 

out that the NN-FBP method does not train on specific shapes as the training can be performed on 

different shapes than the investigated object. 

2.2.2. Quantitative results 

As a quantitative measure, a difference reconstruction for the nanosphere is constructed by subtracting 

the SIRT (Figure 7.7.a) and NN-FBP reconstructions based on 10 projection images (Figure 7.7.b) 

from the full SIRT reconstruction of the nanosphere. The threshold value for the full SIRT 

reconstruction is obtained from the histogram. The histogram of the limited SIRT reconstruction, 

however, is largely influenced by the lack of projection images, which hampers an appropriate choice 

for the threshold value. In Figure 7.8, comparisons are shown between the histograms of the full SIRT 

reconstruction (blue) and the limited SIRT reconstruction (green) for each nanoparticle. Clearly, one 

would have trouble choosing correct threshold values on the basis of the limited SIRT histograms. 

Therefore, the same threshold value as the full SIRT reconstruction is used for the limited SIRT 

reconstructions. Since the NN-FBP reconstructions are already segmented, no threshold value is 

needed for them, which makes the quantification less subjective. Both from the visualization  in  

Figure  7.7.a,  as  well  as  the  corresponding  orthoslices  through  the  difference  
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3. Neural network filtered back projection method: chemical characterization 

After a successful implementation of the NN-FBP method on HAADF-STEM tomography of Au 

nanoparticles, an extension towards a chemical characterization is aimed for. In Chapter 5, it was 

shown that with HAADF-STEM tomography we can perform a 3D structural and chemical 

characterization of core/shell nanostructures if the difference in atomic numbers is sufficiently large. 

To extend the chemical characterization to a broader range of nanoparticles, the use of EDX 

tomography emerges, which was introduced in Chapter 6. Both the NN-FBP implementation on 

HAADF-STEM and EDX tomography of hetero-nanostructures is discussed in the next section. 

3.1. HAADF-STEM tomography 

In this section, we discuss the extension of the NN-FBP reconstruction method for the application on 

HAADF-STEM tilt series of core/shell nanostructures. The implementation becomes more 

challenging as not only the shape needs to be retrieved in a reliable manner, but additionally the core 

and the shell need to be characterized. To perform an accurate characterization of the two 

components, it is required that they have a distinct difference in atomic number as HAADF-STEM 

tomography is used. The difference in atomic number will lead to a noticeable intensity variation 

which is required to separate one component from the other. In Chapter 5, the intensity difference 

between CdSe and CdS in the HAADF-STEM projection images enabled us to detect the core in these 

CdSe/CdS nanobullets and nanorods. Here, Au/Ag core/shell nanoparticles are used as test objects to 

extend the NN-FBP approach. Since Au atoms (ZAu = 79) are much heavier than Ag atoms (ZAg = 47), 

Au will appear brighter in a HAADF-STEM image, which is illustrated in Figure 7.13. Three Au/Ag 

core/shell nanoparticles with a different shape are visualized in Figure 7.13. Both the growth of the 

shape of the Au core and the Ag shell is controlled. The three different nanoparticles from Figure 7.13 

are used in this Chapter. 
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the Ag shell in white. Some missing wedge artefacts in the z-direction can be observed in the xz- and 

yz-orthoslices (Figure 7.15.g and j, respectively). The result of the limited SIRT reconstruction is 

shown in Figure 7.15.b and its corresponding orthoslices are visualized in Figure 7.15.e,h,k. In these 

orthoslices, we notice that some Au core pixels are classified as Ag. These misclassified pixels will 

lead in a volume misinterpretation of the Au core and will contribute to the shape error. We can 

conclude that a reliable segmentation is hampered as there is no clear intensity difference between the 

two components. The NN-FBP reconstruction, based on 11 projections, of the Au/Ag core/shell 

nanoparticle is visualized in Figure 7.15.c. A visual inspection shows that the 3D NN-FBP 

reconstruction resembles the full SIRT reconstruction. There are no pixels in the Au core classified as 

Ag, which explained the shape error for the limited SIRT reconstruction. The shape error of the NN-

FBP reconstruction is caused by missing wedge artefacts, which can be observed in the xz- and yz-

orthoslices in Figure 7.15.i and l, respectively. The shape of the facets perpendicular to the z-direction 

is misinterpreted which increases the shape error. Increasing the number of projections for the training 

phase could result in an improvement of the 3D reconstructions, which is currently ongoing research. 

3.2. EDX tomography 

The need for novel advanced reconstruction algorithms emerges as the tilt series of an EDX 

tomography experiment is highly limited. In Chapter 6, it was shown that an EDX tilt series consists 

typically of only 15 images as the tilt increment is 10°. A critical issue regarding the use of NN-FBP 

for EDX tomography is the need of highly sampled training series. The Au/Ag core/shell 

nanostructures, which were investigated in Chapter 6 and the previous section, showed a deformation 

of the Ag shell after the acquisition of an EDX tilt series with a high number of maps. Therefore, 

these nanostructures cannot be used for the NN-FBP implementation as it is not feasible to acquire 

training data. Here, we investigate the NN-FBP implementation on EDX tilt series of FeOx-Au 

nanostars as these nanoparticles are less beam sensitive in comparison to the Au/Ag core/shell 

nanostructures. In Figure 7.16  both  a  HAADF-STEM  image  and  an  EDX  map  of  such  a  nanostar  is  

shown.  The  FeOx core is presented in purple in the EDX map, which is however not visible in the 
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4. Conclusion 

By the use of the NN-FBP reconstruction algorithm on HAADF-STEM tilt series of Au nanoparticles, 

we are able to yield reconstructions based on highly limited data with a comparable quality to a 

reconstruction based on a full data series with a tilt increment of 1°. The decrease in acquisition time 

and the use of an efficient reconstruction method enables us to examine a broad range of 

nanostructures in a statistical manner. Providing statistical information on the 3D shape of certain 

nanoparticles will provide the synthesis scientists with crucial information and more guided 

modifications can be made to the synthesis procedure. The NN-FBP algorithm also has promising 

prospects for the 3D investigation of beam sensitive samples, where only a limited amount of 

projection images need to be acquired. 

The extension of NN-FBP towards a 3D chemical characterization remains challenging. The 

implementation on HAADF-STEM tilt series of core/shell nanostructures showed some promising 

results, however more fine-tuning of the filters of the NN-FBP algorithm and/or more projection 

images in the learning phase are necessary to minimize missing wedge artefacts. The use of NN-FBP 

on EDX tomography is precarious as the acquisition of a high quality tilt series for the learning phase 

remains challenging. We conclude that the NN-FBP reconstruction algorithm is applicable on 

nanostructures consisting of one element from which projection images with a high signal-to-noise 

ratio can be acquired. 
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1. Introduction 

Recent advances such as the development of spherical aberration correction for electron 

microscopy231,232 and the development of the ChemiSTEM system233 have provided the opportunity to 

chemical mapping in STEM at the atomic scale. A simultaneous acquisition of a HAADF-STEM 

image and the collection of either EELS234–238 or EDX spectra239–244 enables us to determine directly 

the location of different atomic columns and the chemical structure of the investigated material. The 

need for long acquisition times or a long dwell time at each recorded pixel have limited the materials 

that can be investigated by chemical mapping at the atomic level. Typically, the longer dwell time 

causes electron beam damage to the investigated material unless they are (relatively) resistant to 

electron beam irradiation. Previous studies have reported the atomic-scale mapping of slabs of 

materials such as GaAs, SrTiO3 and interfaces such as InGaAs/InP, SrTiO3/PbTiO3 and 

La0.7Sr0.3MnO3/BiFeO3
239,241,243,245. Chemical mapping of a nanoparticle at the atomic level by EDX 

remains however unexplored. Both the need for extreme stability of the microscope and the limited 

thickness of the nanoparticle complicate the acquisition of a high quality EDX map at the atomic 

scale. 

Nowadays, the synthesis of ceria-zirconia nanocrystals as oxygen storage catalysts aims for a 

production of zirconia nanocrystals with a very thin ceria layer. The use of high resolution EDX 

mapping is tested to study the atomic thickness of the ceria layer. Next, the applicability of atomically 

resolved EDX maps for atom-counting is evaluated by the investigation of ceria nanoparticles. 

2. Ceria-zirconia nanocrystals at the atomic scale 

Ceria-zirconia nanocrystals with low ceria content are promising as catalysts for oxygen storage in a 

broad temperature range. The reduction of the active ceria layer around a zirconia nanocrystal towards 

atomically thin emerges in both an economic and geo-strategic point of view. A synthesis procedure is 

proposed which performs a Severe Reduction followed by Mild Oxidation treatment (SRMO) after 

the growth of ceria islands at the surface of the zirconia nanocrystal246. 
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HAADF-STEM imaging relies on Z-contrast in the image and as the atomic numbers of Ce and Zr are 

quite different (ZCe = 58 and ZZr = 40), an intensity difference in a HAADF-STEM image could be 

expected. Since, the nanocrystal consists of only 2% ceria, HAADF-STEM imaging will, however, 

not provide us with reliable chemical information. As the characteristic peaks of Ce and Zr have very 

different energies, EDX mapping is a suitable technique to examine the chemical composition of 

ceria-zirconia nanocrystals. The low amount of Ce requires however longer acquisition times to 

collect sufficient signal. An acquisition time of 20 minutes with a standard electron dose for 

spectroscopy (approximately 200 pA) is needed to detect sufficient signal for the low Ce content. The 

use of EDX tomography to retrieve the 3D chemical characterization of such nanocrystals is therefore 

less feasible as typically 15 projection images are required (-70°: 10°: +70°). Such experiments would 

require mapping of 5 hours, which will possibly induce beam damage, movement of the particle and a 

build-up of contamination. All these factors will hamper a reliable 3D chemical characterization. As it 

is expected that the Ce content is present as a shell around the nanocrystal, two orthogonal EDX 

projections are acquired at a tilt angle of -45° (Figure 8.1.b) and +45° (Figure 8.1.d). In these EDX 

maps, the Zr signal is indicated in red and the Ce signal is indicated in green. It is clear from the 

projected maps that a thin layer of ceria is formed at the surface of the nanocrystal. An integrated line 

profile across the nanocrystal (Figure 8.1.e) confirms the presence of Ce at the surface. From these 

results we can already conclude that the SRMO treatment was successful as the ceria islands formed a 

surface layer around the zirconia particle. 

We can however not identify the atomic thickness of this Ce layer based on these EDX maps at the 

nanoscale. In order to determine the thickness of this layer, atomic-scale chemical imaging is needed. 

Since the amount of Ce is extremely low (2%), the acquisition of an EDX map with high signal-to-

noise requires a long acquisition time and consequently a high stability is needed. In Figure 8.2.a, a 

high resolution HAADF-STEM image of a ceria-zirconia nanocrystal is shown. There is no clear 

intensity difference present at the outer surface of the nanocrystal which contains Ce. The white 

rectangle in Figure 8.2.a indicates the region which is investigated by EDX mapping. Figure 8.2.c and 

d  show  the  averaged  EDX  maps  of  the Zr  and  the  Ce  counts,  respectively.  The  corresponding  
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4. Conclusion 

Different TEM techniques are able to resolve chemical information of complex hetero-nanostructures 

at the atomic level. With the use of EDX mapping, the chemical character of a broad variety of 

nanostructures can be examined. Here, we successfully applied EDX mapping at the atomic level, to 

retrieve the atomic thickness of a very thin ceria layer in a ceria-zirconia nanocrystal. Up to our 

knowledge, this is the first experimental result of atomic resolution EDX mapping of a nanoparticle. 

We confirmed the applicability of atomically resolved EDX maps for atom-counting by studying a 

ceria nanoparticle. We foresee great potential using this approach to enable a 3D chemical 

characterization of nanostructures at the atomic scale. 
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1. Conclusion 

In this thesis, several challenges in the field of electron tomography were addressed. The application 

of HAADF-STEM tomography enabled us to study the helicity of CdSe nanohelices and the position 

of the core of several semiconductor core/shell hetero-nanostructures was obtained. The use of low-

dose imaging and template-matching was applied to beam sensitive inorganic-organic nanocrystals, 

which revealed their native atomic structure. A neural network based reconstruction approach was 

successfully implemented for HAADF-STEM tilt series of Au nanoparticles. This enabled us to 

extract quantitative 3D information in a statistically relevant manner. The applicability of atomically 

resolved EDX maps for atom-counting and eventually for 3D atomic resolution tomography was also 

investigated in this thesis. However, remaining challenges occur: 

 the 3D study of beam sensitive materials; 

 the development of robust reconstruction algorithms for spectroscopic tomography; 

 the 3D chemical characterization of nanostructures at the atomic level. 

2. The study of beam sensitive materials 

In Chapter 3, CdSe semiconductor nanoplatelets were successfully characterized by high resolution 

HAADF-STEM despite their degradation. The study of the atomic structure of perovskite 

nanocrystals was more challenging due to their extreme beam sensitivity. The use of high resolution 

HAADF-STEM enabled us to study the atomic structure of lead cesium halide perovskite nanocrystals 

in Chapter 4. Organolead iodide perovskites, however, could not be studied using a conventional 

approach, as beam damage occurred almost instantaneously. Therefore, the need of low dose imaging 

was required to study the nanocrystals at the atomic level. With the use of a template-matching 

algorithm, we were able to improve the signal-to-noise level and to retrieve the atomic structure 

before any degradation altered the structure. Additionally, the potential of exit wave reconstruction 

was discussed since it is of interest when investigating the atomic structure of the perovskite 

nanostructures. Less local damage occurred with the use of a TEM based technique in comparison to 

the damage obtained upon scanning. 
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The extension of this technique to 3D will require an ultrasensitive detection system to acquire focal 

series at different tilt angles in a time efficient manner. The drastic reduction of acquisition time will 

be crucial in the 3D atomic characterization studies of beam sensitive materials such as perovskite 

nanocrystals, porous samples or polymer based materials. 

3. Novel reconstruction algorithms for spectroscopic tomography 

The use of HAADF-STEM tomography was used in the thesis to obtain the 3D structure of 

nanoparticles, for example to elucidate on the helicity of CdSe nanoplatelets in Chapter 3. In Chapter 

5, the location of the core of semiconductor core/shell hetero-nanostructures could be determined by 

3D HAADF-STEM since a significant difference in the atomic number of the core and the shell was 

present. We conclude that extracting 3D chemical information is in some cases possible with the use 

of HAADF-STEM. EDX tomography, however, can be used as a more general approach since no 

restrictions on the atomic number of the elements in the hetero-nanostructure are necessary (Chapter 

6). The low amount of EDX projection images in combination with their low signal-to-noise level 

complicates the 3D reconstructions and obtaining quantitative 3D results remain troublesome 

(Chapter 5). 

Although very precise and local information on the 3D structure of colloidal nanoparticles can be 

obtained by electron tomography, a major drawback is the total duration of such experiments. Due to 

a combination of a long acquisition procedure and a time-consuming reconstruction process, it is not 

straightforward to obtain statistically relevant results in 3D. Moreover, in order to have a general 

understanding concerning the structure-property relation of functional nanoparticles, a large number 

of nanoparticles needs to be investigated. 

The need for novel reconstruction algorithms which are able to yield high quality 3D reconstructions 

based on a limited amount of projection images is emerging. Such algorithms can open up the 

possibility of performing statistical analysis on 3D parameters and eventually lead to high throughput 

electron tomography. The extension of advanced reconstruction algorithm to obtain 3D chemical 
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information needs some further efforts. For HAADF-STEM tilt series of hetero-nanostructures, 10 

projection images were not sufficient to develop a successful NN-FBP algorithm for hetero-

nanostructures. For EDX tomography tilt series, the NN-FBP approach is less suitable due to the low 

signal-to-noise ratio of the individual EDX projection maps. The combination of HAADF-STEM and 

EDX tomography is required to obtain reliable 3D chemical reconstructions from these tilt series. It 

has been shown that using compressive sensing, the main features in an image can still be retrieved 

when only 20% if the pixels in the scanned area are acquired249. Therefore, the use of compressive 

sensing should be evaluated since an amount of the pixels in an EDX map have a very low count rate.  

4. The extension towards a 3D chemical characterization at the atomic level  

In Chapter 8, we have confirmed the applicability of EDX maps for atom-counting by studying a ceria 

nanoparticle. This result will enable us to study the 3D chemical character of complex hetero-

nanostructures in 3D at the atomic level. 

A major drawback of EDX remains the need for long acquisition times. Therefore, only a limited 

amount of colloidal nanoparticles are suitable for EDX investigations, as others will deform or alter 

upon acquisition. With the development of the Super-X detection system, the detection efficiency 

already improved by a factor of 5 in comparison to the previous detector set-up, but it remains a 

limiting factor. The extension of such atomic characterization studies using EDX in 3D will be 

hampered by the limited detection efficiency. The acquisition of multiple atomically resolved EDX 

maps will therefore be hindered, which makes the application of atomic resolution EDX tomography 

problematic. We believe that the use of statistical parameter estimation theory to perform atom-

counting on a 2D EDX map will open up the possibility to retrieve the 3D atomic resolution chemical 

character of nanoparticles. 
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