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Solvability of the master equation for dichotomous flow

V. Balakrishnan* and C. Van den Broeck
Limburgs Universitair Centrum, B-3590 Diepenbeek, Belgium

~Received 25 April 2001; published 13 December 2001!

We consider the one-dimensional stochastic flowẋ5 f (x)1g(x)j(t), wherej(t) is a dichotomous Markov
noise, and use a simple procedure to identify the conditions under which the integro-differential equation
satisfied by the total probability densityP(x,t) of the driven variable can be reduced to a differential equation
of finite order. This generalizes the enumeration of the ‘‘solvable’’ cases.
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I. INTRODUCTION

The stochastic differential equation

ẋ5 f ~x!1g~x!j~ t !, ~1!

wherex is a scalar variable andj(t) is a colored noise mod
els the evolution of a wide variety of systems. In general i
a nontrivial matter to deduce the corresponding equa
obeyed by the probability densityP(x,t) of the driven vari-
able. Considerable progress can be made in the case in w
j is a stationary Gaussian noise~e.g., the Ornstein-
Uhlenbeck process!. In particular, using the special prope
ties of Gaussian processes, it is possible to identify the c
@i.e., the forms off (x) andg(x)# for which P(x,t) satisfies a
~partial! differential equation of second order@1#—the so-
called ‘‘solvable’’ cases. However, it is often relevant a
necessary to modelj by a dichotomous Markov proces
~DMP! @2,3#. ~Further, in various parameter limits the latt
can be shown@4# to reduce to white shot noise, Gaussi
white noise, etc.! Although the DMP is quite a simple sto
chastic process, the statistics of the~non-Markovian! driven
processx(t) then becomes remarkably complicated. In ge
eral, P(x,t) satisfies a rather intractable integro-different
equation in time, and that too with a kernel that involves
exponential of the gradient operator]x . While thestationary
solution Pst(x) to which P(x,t) tends in the limitt→` is
known under fairly general conditions@2#, there are very few
instances known in which the time-dependent equation
be solved. The best result to date in this regard is the e
solution obtained by Sancho@5# for the class of cases in
which the functionsf and g satisfy the relationg f82 f g8
5bg, whereb is a constant and a prime denotes the deri
tive with respect tox. The important special case of linea
drift ( f 5 a linear function ofx, g5 a constant! is already
included in this class.

In this situation, a question that arises naturally conce
the identification of the cases in whichP(x,t) can be shown
to satisfy a partial differential equation offinite order—and
that, therefore, are in this sense, ‘‘solvable’’ in principle.
this paper, we show that a relatively simple procedure ba
on the algebra of the operators concerned can be use
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enumerate systematically all these solvable cases. Our
mulation helps place the already solved cases in the pers
tive of a general setting, as it pin points exactly what
needed for solvability. The physically interesting case o
linear drift in one state of the DMP, alternating with a co
stant drift in the other state of the DMP, is shown to lead
an equation of thethird order forP(x,t). The same is shown
to remain true if the drift is proportional tox2, but not any
higher power ofx. The full set of solvable cases for polyno
mial f (x) andg(x) is also identified. Finally, we revert to th
second order equation satisfied by the individual probabi
densitiesP6(x,t) corresponding to a given state of the DM
and comment on the conditions under which one may exp
to obtain ‘‘closed form’’ solutions for these in terms of sta
dard functions.

II. MASTER EQUATION

To avoid inessential complications, we assume thatj(t) is
a symmetric DMP that flips between the values11 and
21 with the same mean ratel. Equation~1! describes the
random switching between the respective flowsẋ5 f 6(x)
[ f (x)6g(x). The ~total! probability density P(x,t)
[P1(x,t)1P2(x,t), whereP6 denote the individual prob-
ability densities in the two states of the DMP. For rea
reference, we recapitulate very briefly the outlines of t
rigorous derivation@5# of the master equation forP and de-
fine the operators,

D5]x~• !, A52]x~ f • !, B52]x~g• !. ~2!

The stochastic Liouville equation for the densityr(x,t) is
given by ṙ5Ar1Bjr, where an overhead dot denotes t
time derivative. From this, using Van Kampen’s lemm
^r(x,t)&5P(x,t) and the formula of differentiation@6# for a
functional of the noisej, one obtains the coupled equation

Ṗ5AP1BP1 , Ṗ15~A22l!P11BP, ~3!

whereP15^j(t)r@j(t)#&. We assume the sharp initial con
dition P(x,0)5d(x2x0). Together with the requiremen
P1(x,0)50, which follows from causality, these condition
make the solution of Eqs.~3! a well-posed problem. For
mally, P1 can be eliminated by integrating the second of E
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©2001 The American Physical Society01-1



in

e
th

a-

e
t

n

to

y

o

ss
r

n

n

nd

m
n-
n
the
se

s the

u-

e

a

it is
e-

BRIEF REPORTS PHYSICAL REVIEW E 65 012101
~3! and substituting the result in the first. One then obta
the ~integro-differential! master equation forP mentioned in
Sec. I, namely,

] tP~x,t !5AP~x,t !1BE
0

t

dt1 exp@~A22l!

3~ t2t1!#BP~x,t1!. ~4!

III. DIFFERENTIAL EQUATION FOR P

Instead of using Eq.~4! to proceed with the analysis, w
shall use a much simpler algebraic method directly on
coupled set of equations~3!, following the work of@5#. Dif-
ferentiating the first of Eqs.~3! and using the second equ
tion in the result yields

P̈52~A2l!Ṗ1~2lA1B22A2!P2C1P1 , ~5!

where

C15@A,B#52]x„~ f 8g2g8 f !•…. ~6!

Some classes of particular cases can be analyzed imm
ately, to exhibit where the known solved cases fit in and
lead us to the general result to follow.

Case 1. The most obvious one is

C150, i.e., f 8g2g8 f 50, ~7!

which is solved byg(x)5k f(x), wherek is a constant. Then
B5kA, so that Eq.~5! becomes a closed equation forP:

P̈52~A2l!Ṗ12lAP1~k221!A2P. ~8!

This can also be solved explicitly: we note that Eq.~1! is, in
this case, justẋ5(11kj) f (x). Settingq5*xdu/ f (u), this is
q̇511kj. Therefore, the processy5q2t satisfiesẏ5kj,
which is pure dichotomous diffusion for which the solutio
is well known ~see, e.g., Ref.@7#!.

~i! A subcase of interest isk51 or g(x)5 f (x), so that
f 2(x)50. This corresponds to ‘‘delayed evolution’’ in which
the deterministic dynamics governed by the flowẋ5 f 1(x)
52 f (x) is interrupted at random instants andx remains fro-
zen at its current value, till the noise switches back to its11
state and the evolution is resumed.

~ii ! Another subcase of special interest correspondsf
50, so that f 2(x)52 f 1(x). Equation ~1! becomes ẋ
5g(x)j, which reduces to dichotomous diffusion given b
Q̇5j for the variableQ5*xdu/g(u). Physically, this case is
of interest~for instance! in problems involving theexchange
of stability between two different fixed points in the tw
states of the DMP. An explicit example isf 6(x)56(1
2x2)1/2, xP@21,1#.

Case 2. Next comes the case

C15@A,B#52bB, or g f82g8 f 5bg, ~9!
01210
s

e
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o

whereb is a constant. As stated in Sec. I, this is the cla
fully solved by Sancho@5#. The master equation obtained fo
P(x,t) is

P̈5~2A22l1b!Ṗ1~2l1b!AP1~B22A2!P. ~10!

If g(x) is set equal to unity, it follows from Eq.~9! that f
must be a linear function ofx in order to be included in this
class. The solution forP(x,t) turns out to be expressible i
terms of hypergeometric functions. More generally@5#, using
Eq. ~9! in Eq. ~1! leads to the stochastic differential equatio
Q̇5bQ1j1K (K5constant) for the variable Q
5*xdu/g(u). Therefore, this reduces to the linear case, a
can be solved explicitly. The Ho¨ngler model@8# with f (x)
52tanhx, g(x)5sechx falls in this category.

IV. GENERALIZATION

A. Simplest extension

Cases 1 and 2 above exhaust the ones in whichP satisfies
a second order partial differential equation. It is clear fro
the foregoing that the origin of the problem lies in the no
commutativity ofA andB, which precludes a direct solutio
@9# using the properties of the Poisson process governing
DMP j(t). But it does suggest that it is the algebra of the
operators and their successive commutators that decide
question of solvability.

It is evident that an immediate generalization of Eq.~9! is

C15@A,B#52aA2bB, ~11!

wherea andb are constants. Thus, the algebra of comm
tators still closes at the level ofC1 itself. However, owing to
the presence of the term involvingA in C1, the elimination of
P1 requires an additional differentiation with respect tot.
Simplification then yields thethird order equation

] t
3P5~3A24l1b!P̈1„B223A21~6l1b!A

12l~b22l!…Ṗ1„A32AB22~4l1b!A21aAB

12lB212l~2l1b!A…P. ~12!

An important illustration of this case is provided by th
dichotomous flow that corresponds to auniform drift to the
right ( f 15c) randomly alternating with a linear flow to
stable fixed point at the origin (f 252gx). The stochastic
differential equation is

ẋ5
~c2gx!

2
1

~c1gx!

2
j~ t !. ~13!

It is easily checked thatC152g/2(A1B) in this case, so
that Eq.~11! applies.

B. Further extension

From the procedure used to analyze the cases above,
straightforward to deduce the following general result. D
fine the multiple commutatorCn recursively by
1-2
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Cn5@A,Cn21# ~14!

with C0[B. It is clear from Eqs.~3! and ~5! that C0P1 is
determined in terms ofṖ andP; C1P1 is determined in terms
of P̈, Ṗ, andP; and so on. Therefore, ifCn turns out to be a
linear combination of the precedingCi , that is, if

Cn52 (
i 50

n21

b iCi , ~15!

and n is the smallest integer for which this happens, th
P(x,t) satisfies a partial differential equation of ordern11.
On the other hand, if the linear combination involvesA as
well, i.e., if

Cn52aA2 (
i 50

n21

b iCi , ~16!

then P(x,t) satisfies a partial differential equation of ord
n12.

An interesting illustration is provided once again by t
case of a uniform drift (f 15c) alternating with flow to a
stable fixed point as in Eq.~13! above, but with aquadratic
drift f 252gx2 ~we considerx>0). Rescalingx and t to
(g/c)1/2x and (gc)1/2t, respectively, the stochastic flow
now given by

ẋ5
~12x2!

2
1

~11x2!

2
j~ t !. ~17!

~This model has a special symmetry: under the intercha
x↔1/x, the flowsf 1 and f 2 exchange roles, as do the fixe
points at 0 and̀ .! We find that C25@A,C1#5C0 itself.
Therefore,P(x,t) is guaranteed to satisfy an equation
order three in this case too.

A natural question to ask is whether this continues to
so for the general casef 15c, f 252gxn, whenn>3. The
answer is thatit does not: it is easily checked thatC2 now
has terms proportional tox2n22D and x2n23 ~whereD5]x
as already defined!, which then lead to even higher powers
x in C3, and so on. For alln>3, therefore,P does not satisfy
an equation of finite order.

C. Polynomial f „x… and g„x…

This brings us to the question: Iff andg are generic poly-
nomials inx, under what conditions does the probability de
sity P satisfy a partial differential equation of finite orde
We exclude the caseg(x)5k f(x), leading at once toC1
50, which has already been dealt with. Note also that iff 1

and f 2 are any two polynomials, thenf andg become poly-
nomials of thesameorder, which is a special case of th
more general one in whichf andg are arbitrary polynomials

The answer is found by examining the commuta
@Dxm,Dxn# (m,n5 natural numbers!: using the basic com
mutatorDx2xD51, this works out to

@Dxm,Dxn#5~n2m!Dxn1m21. ~18!
01210
n

e
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It is immediately obvious that ifm andn do not exceed unity,
higher powersx are not generated: indeed, it is easily show
that, whenf andg are arbitrary linear functions ofx, C2 is a
constant multiple ofC1. Therefore, in this caseP is guaran-
teed to satisfy an equation of order no higher than th
~which, as we have seen, may reduce to two in special cas!.
When eitherf or g is a polynomial of order>2, P does not
in general satisfy an equation of finite order—although
may do so in special cases when there are additional relat
between the coefficients of the polynomials concerned, a
the example of Eq.~17! above. As a corollary, we recover th
following ~presumably known! fact: Even in the case whe
the noise isadditive, i.e., g(x)5k5constant,P does not
satisfy a finite order equation if there is any nonlinearity
the drift f. In the present formalism, this follows at once fro
the fact that for f (x)5cxm, g(x)5k, we have C0
52kD, C152ckmDxm21, and

Cn5~2c!nkmDxn(m21))
j 50

n22

~ jm2 j 21! ~n>2!.

~19!

It is evident that the sequence$Cn% involves higher and
higher powers ofx for all m>2.

D. Solvability of the equations for PÁ

The question of solvability discussed in the foregoing c
also be viewed, in part, from another angle, that helps a
ment our understanding of the problem. We conclude wit
brief remark on this aspect.

As is well known, the individual probabilitiesP6(x,t)
obey the coupled equations

] tP152]x~ f 1P1!1l~P22P1!,

] tP252]x~ f 2P2!1l~P12P2!. ~20!

It is quite straightforward to eliminate either one of the tw
unknownsP6 , to obtain a second order equation for th
remaining one. Definingp6(x,t)5eltP6(x,t), we find

] t
2p612]x~ f 6] tp6!1]x@ f 7]x~ f 6p6!#2l2p650.

~21!

The case of physical interest generally corresponds to op
sitely directed flows, so thatf 1(x) f 2(x),0 in the region
concerned. The discriminant of Eq.~21!, f 6

2 2 f 6 f 7 , is then
positive so that the equation is hyperbolic. One may th
attempt to apply the standard method of characteristics@10#,
whose equations are given formally by

z65t2E dx

f 61~ f 6
2 2 f 6 f 7!1/2

,

h65t2E dx

f 62~ f 6
2 2 f 6 f 7!1/2

. ~22!
1-3
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The basic problem manifests itself here in the fact that
general, the required antiderivatives do not exist in clo
form. When they do, the next step is to invert these equat
to expressx and t in terms ofz6 andh6 , and then reduce
Eq. ~21! to canonical form. Here again, this inversion m
not be possible in terms of standard functions. For instan
consider the flow described by Eq.~13! above, in whichP
has been shown to satisfy an equation of the third order.
characteristics can be found in closed form in this case.
verting these, we find~for p1 , for instance! the rather in-
volved expressions

x5
c

g S f2S z1

h1
D21D , t5

1

g
lnS z1h1

f2S z1

h1
D21D , ~23!
01210
n
d
s

e,

e
-

where f stands for the inverse of the functionw5@(z
21)/(z11)#e2z, i.e., z5f(w). And finally, even after re-
duction to canonical form, the analytic solution of the equ
tions in terms of standard functions is, of course, poss
only in a very small number of cases.
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