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Solvability of the master equation for dichotomous flow
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We consider the one-dimensional stochastic fiowf (x) +g(x) £(t), where&(t) is a dichotomous Markov
noise, and use a simple procedure to identify the conditions under which the integro-differential equation
satisfied by the total probability densiB(x,t) of the driven variable can be reduced to a differential equation
of finite order. This generalizes the enumeration of the “solvable” cases.
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[. INTRODUCTION enumerate systematically all these solvable cases. Our for-
mulation helps place the already solved cases in the perspec-
The stochastic differential equation tive of a general setting, as it pin points exactly what is
_ needed for solvability. The physically interesting case of a
x=f(x)+g(x)&(t), (1) linear drift in one state of the DMP, alternating with a con-

stant drift in the other state of the DMP, is shown to lead to
wherex is a scalar variable ang(t) is a colored noise mod- an equation of théhird order forP(x,t). The same is shown
els the evolution of a wide variety of systems. In general it isto remain true if the drift is proportional t®?, but not any
a nontrivial matter to deduce the corresponding equatiomigher power ofx. The full set of solvable cases for polyno-
obeyed by the probability densi®(x,t) of the driven vari-  mial f(x) andg(x) is also identified. Finally, we revert to the
able. Considerable progress can be made in the case in whigcond order equation satisfied by the individual probability
§ is a stationary Gaussian noise.g., the Ornstein- densitiesP. (x,t) corresponding to a given state of the DMP,
Uhlenbeck processin particular, using the special proper- and comment on the conditions under which one may expect
ties of Gaussian processes, it is possible to identify the caseg obtain “closed form” solutions for these in terms of stan-
[i.e., the forms off (x) andg(x)] for which P(x,t) satisfiesa dard functions.
(partia) differential equation of second ordgt]—the so-
called “solvable” cases. However, it is often relevant and
necessary to modef by a dichotomous Markov process Il. MASTER EQUATION

(DMP) [2,3]. (Further, in various parameter limits the latter 14 ayoid inessential complications, we assume &gt is
can be showrj4] to reduce to white shot noise, Gaussiang symmetric DMP that flips between the values and
white noise, etg.Although the DMP is quite a simple sto- _ 1" \vith the same mean rate Equation(1) describes the
chastic process, the statistics of ttmon-Markovian driven o . .

: random switching between the respective flows f. (x)
process«(t) then becomes remarkably complicated. In gen'zf(x)tg(x). The (tota) probability density P(_x 0

eral, P(x,t) satisfies a rather intractable integro-differential _ o
equation in time, and that too with a kernel that involves the_, P (x,0) TP_(x,t), whereP.. denote the individual prob-

) . ; . ability densities in the two states of the DMP. For ready
exponential of the gradient operaigr. While thestationary reference, we recapitulate very briefly the outlines of the
solution PS(x) to which P(x,t) tends in the limitt—o is ’ P y brietly

known under fairly general conditiof], there are very few rigorous derivatior{5] of the master equation fd? and de-

instances known in which the time-dependent equation caﬁne the operators,

be solved. The best result to date in this regard is the exact

solution obtained by Sanchi®] for the class of cases in D=0dx(-), A=—d\(f-), B=-4d(9-). 2
which the functionsf and g satisfy the relationgf’ —fg’

=g, wherep is a constant and a prime denotes the derivaThe stochastic Liouville equation for the denspiyx,t) is

drift (f= a linear function ofx, g= a constantis already time derivative. From this, using Van Kampen's lemma
included in this class. (p(x,t))=P(x,t) and the formula of differentiatiof6] for a

In this situation, a question that arises naturally concerngnctional of the noise, one obtains the coupled equations
the identification of the cases in whiéh(x,t) can be shown

to satisfy a partial differential equation fihite order—and . .

that, therefore, are in this sense, “solvable” in principle. In P=AP+BP,, P;=(A-2\)P1+BP, ©)

this paper, we show that a relatively simple procedure based

on the algebra of the operators concerned can be used whereP,=(&(t)p[£(t)]). We assume the sharp initial con-
dition P(x,0)=4d(x—Xp). Together with the requirement
P.(x,0)=0, which follows from causality, these conditions

*Permanent address: Department of Physics, Indian Institute ahake the solution of Eq¥3) a well-posed problem. For-
Technology-Madras, Chennai 600 036, India. mally, P, can be eliminated by integrating the second of Egs.
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(3) and substituting the result in the first. One then obtainsvhere 8 is a constant. As stated in Sec. |, this is the class
the (integro-differential master equation foP mentioned in  fully solved by Sanch@5]. The master equation obtained for
Sec. |, namely, P(x,t) is

. . B . 2 a2
atP(x,t):AP(x,t)+Bj dt, ex (A—2\) P=(2A-2\+B)P+(2\+ B)AP+ (B —A%)P. (10

0 If g(x) is set equal to unity, it follows from Eq9) that f

X (t—t1)]1BP(X,ty). (4)  must be a linear function of in order to be included in this
class. The solution foP(x,t) turns out to be expressible in
terms of hypergeometric functions. More genergfly; using
Eqg. (9) in Eqg. (1) leads to the stochastic differential equation

Instead of using Eq(4) to proceed with the analysis, we Q=8Q+&+K (K=constant) for the variable Q
shall use a much simpler algebraic method directly on the= f*du/g(u). Therefore, this reduces to the linear case, and
coupled set of equatior(8), following the work of[5]. Dif-  can be solved explicitly. The Hhgler model[8] with f(x)
ferentiating the first of Eq93) and using the second equa- = —tanhx, g(xX)=sechx falls in this category.
tion in the result yields

Ill. DIFFERENTIAL EQUATION FOR P

) IV. GENERALIZATION
D— _ 2_p2 _
P=2(A=NP+(2AA+B = ATP=CyPy, ®) A. Simplest extension
where Cases 1 and 2 above exhaust the ones in whishtisfies
a second order partial differential equation. It is clear from
C.=[A,B]=—0d((f'g—g’f)-). (6) the foregoing that the origin of the problem lies in the non-
commutativity ofA andB, which precludes a direct solution
Some classes of particular cases can be analyzed immedg] using the properties of the Poisson process governing the
ately, to exhibit where the known solved cases fit in and tdPMP &(t). But it does suggest that it is the algebra of these

lead us to the general result to follow. operators and their successive commutators that decides the
Case 1 The most obvious one is question of solvability. _ o _
It is evident that an immediate generalization of E).is
c,=0, ie., f'g—g'f=0, (7) C,=[A.B]=— aA— 8B, (11)
which is solved byg(x) =kf(x), wherek is a constant. Then  \yhere @ and 8 are constants. Thus, the algebra of commu-
B=KA, so that Eq(5) becomes a closed equation fer tators still closes at the level ¢, itself. However, owing to
) ) the presence of the term involvigin C,, the elimination of
P=2(A—\)P+2 AP+ (k’>—1)AZP. (8) P, requires an additional differentiation with respecttto

Simplification then yields théhird order equation
This can also be solved explicitly: we note that Ef.is, in
this case, jusk=(1+ké)f(x). Settingg= [*dwf(u), thisis 9 P=(3A—4N+B)P+(B?=3A%+(6) +B)A
q=1+ké. Therefore, the procesg=q—t satisfiesy=k¢,

_ - 3_ 2__ 2
which is pure dichotomous diffusion for which the solution +2N(B—2\))P+(A°—AB*— (4N + B)A°+ aAB

is well known (see, e.g., Ref.7]). +2\B2+ 2\ (2N + B)A)P. (12
(i) A subcase of interest ik=1 or g(x)="f(x), so that
f_(x)=0. This corresponds todelayed evolutiohin which An important illustration of this case is provided by the

the deterministic dynamics governed by the flaw f,(x)  dichotomous flow that corresponds tausiform drift to the
=2f(x) is interrupted at random instants andemains fro- ~ fight (f.=c) randomly alternating with a linear flow to a
zen at its current value, till the noise switches back tetits ~ Stable fixed point at the originf( = —yx). The stochastic
state and the evolution is resumed. differential equation is

(ii) Another subcase of special interest corresponds to
=0, so thatf_(x)=—f,(x). Equation (1) becomesx
=g(x) &, which reduces to dichotomous diffusion given by
Q= ¢ for the variableQ = [*du/g(u). Physically, this case is
of interest(for instancg in problems involving thexchange
of stability between two different fixed points in the two

states of the DMP. An explicit example ik.(x)==(1 .
—x2)1’2, xe[—1,1]. B. Further extension

. (c—=yx) (c+yx)
X= 5 + 5 &(1). (13

It is easily checked thaC,=— y/2(A+B) in this case, so
that Eq.(11) applies.

Case 2 Next comes the case From the procedure used to analyze the cases above, it is
straightforward to deduce the following general result. De-
C,=[A,B]=—p8B, or gf' —g'f=2qg, (9) fine the multiple commutatoC,, recursively by
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C,=[A,C,_1] (14)  Itisimmediately obvious that iin andn do not exceed unity,
higher powers are not generated: indeed, it is easily shown
with C,=B. It is clear from Eqgs(3) and (5) that C,P, is  that, whenf andg are arbitrary linear functions of C, is a
determined in terms d? andP; C,P; is determined in terms  constant multiple ofC;. Therefore, in this cask is guaran-

of P, P, andP; and so on. Therefore, €, turns out to be a teec_i (o satisfy an equation of order no higher thgn three
linear combination of the precedin@ , that is, if (which, as we hav_e seen, may Teduce to two in special kases
When eitherf or g is a polynomial of ordee=2, P does not
n—1 in general satisfy an equation of finite order—although it
C,=—2> BiCi, (15 ~ May do so in special cases when there are additional relations
i=0 between the coefficients of the polynomials concerned, as in
the example of Eq17) above. As a corollary, we recover the
andn is the smallest integer for which this happens, thenfollowing (presumably knownfact: Even in the case when
P(x,t) satisfies a partial differential equation of ordet 1.  the noise isadditivg i.e., g(x)=k=constant,P does not
On the other hand, if the linear combination involvesas  satisfy a finite order equation if there is any nonlinearity in
well, i.e., if the driftf. In the present formalism, this follows at once from
- the fact that for f(x)=cx™, g(x)=k, we have C,
=—kD, C;=—ckmDx""!, and
Cn=—aA—iZO BiCi, (16)
n-2

—(_ )N (m-1) e

then P(x,t) satisfies a partial differential equation of order Cn=(~c)"kmDX’ on (jm=j-1) (n=2).
n+2. (19

An interesting illustration is provided once again by the
case of a uniform drift {, =c) alternating with flow to a It is evident that the sequendeC,} involves higher and
stable fixed point as in Eq13) above, but with aquadratic  higher powers ok for all m=2.
drift f_=—yx? (we considerx=0). Rescalingx andt to
(v/c)¥’x and (yc)Y%, respectively, the stochastic flow is

. D. Solvability of the equations for P..
now given by

The question of solvability discussed in the foregoing can

(1-x%)  (1+x?) also be viewed, in part, from another angle, that helps aug-

X=——F—+t——5 &, (17)  ment our understanding of the problem. We conclude with a
brief remark on this aspect.

(This model has a special symmetry: under the interchange As is well known, th_e individual probabilitie® . (x,t)
x«1/x, the flowsf, andf_ exchange roles, as do the fixed obey the coupled equations

points at 0 andw.) We find thatC,=[A,C,]=C, itself. P, =—a(f P )+N(P_—P.),
Therefore, P(x,t) is guaranteed to satisfy an equation of
order three in this case too.

A natural question to ask is whether this continues to be
so for the general cade.=c, f_=—yx", whenn=3. The
answer is thatt does not it is easily checked thaC, now
has terms proportional t&*"~?D andx?"~3 (whereD =g,
as already defingdwhich then lead to even higher powers of
xin Cz, and so on. For alh= 3, thereforeP does not satisfy
an equation of finite order.

aP_=—a(f_P_)+NP,—P_). (20)

It is quite straightforward to eliminate either one of the two
unknownsP.., to obtain a second order equation for the
remaining one. Defining. (x,t) =eP..(x,t), we find

atzpi+25x(fi5tpt)+3x[fiax(fip1)]_)\2ptzo-
(21

C. Polynomial f(x) and g(x) The case of physical interest generally corresponds to oppo-
This brings us to the question: filandg are generic poly- sitely directed flows, so that, (x)f_(x)<0 in the region
nomials inx, under what conditions does the probability den-concerned. The discriminant of E@1), f2 —f..f-, is then
sity P satisfy a partial differential equation of finite order? positive so that the equation is hyperbolic. One may then
We exclude the casg(x)=kf(x), leading at once taC;  attempt to apply the standard method of characterif1io}
=0, which has already been dealt with. Note also thdt.if whose equations are given formally by
andf_ are any two polynomials, thehandg become poly-
nomials of thesameorder, which is a special case of the
more general one in whichandg are arbitrary polynomials. {=t— f 5
The answer is found by examining the commutator fet(f2
[Dx™,Dx"] (m,n= natural numbeps using the basic com-
mutatorDx—xD=1, this works out to f dx
nN==1=

f:_(f?_*_f:f:)llz.

dx

—f. f)¥?

(22
[Dx™,Dx"]=(n—m)Dx"*M"1, (18
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The basic problem manifests itself here in the fact that, invhere ¢ stands for the inverse of the function=[(z
general, the required antiderivatives do not exist in closed-1)/(z+1)]e%, i.e., z= ¢(w). And finally, even after re-
form. When they do, the next step is to invert these equationguction to canonical form, the analytic solution of the equa-
to expressx andt in terms of{.. and 5., and then reduce tions in terms of standard functions is, of course, possible
Eq. (21 to canonical form. Here again, this inversion may only in a very small number of cases.

not be possible in terms of standard functions. For instance,

consider the flow described by E(L3) above, in whichP

has been shown to satisfy an equation of the third order. The ACKNOWLEDGMENTS

characteristics can be found in closed form in this case. In-
verting these, we findfor p., for instance the rather in-

volved expressions This work was supported in part by the Interuniversity

Attraction Poles Program of the Belgian Federal Govern-

c Z, 1 Comy ment. V.B. acknowledges Limburgs Universitair Centrum
X= —( ¢>2<—) —1), t=—In| —————1, (23)  during his visit there. We thank |. Bena for helpful discus-
4 7+ ¢2<§_+) -1 sions.
7+

[1] P. Jung, inStochastic Dynamigsedited by L. Schimansky-  [5] J.M. Sancho, J. Math. Phy25, 354 (1984.

Geier and T. Pschel(Springer-Verlag, Berlin, 1997 p. 23. [6] V.E. Shapiro and V.M. Loginov, Physica &, 563 (1978.
[2] W. Horsthemke and R. LefeveNoise Induced Transitions [7] V. Balakrishnan and S. Chaturvedi, Physica48 581(1988.
(Springer-Verlag, Berlin, 1994 Chap. 9. [8] M.O. Hongler, Helv. Phys. Act&2, 280(1979.

[3] C. Van den Broeck, inStochastic Dynamicsedited by L. 9] E' G?_V??gézl‘];(i%%sgn' M. Kac, and L.S. Schulman, Phys.
) ) . . : ev. Lett.53, .
Schimansky-Geier and T. Behel (Springer-Verlag, Berlin, [10] N.S. Koshlyakov, M.M. Smirnov, and E.B. Glinddjfferential

1997, p. 7. Equations of Mathematical Physi¢dlorth-Holland, Amster-
[4] C. Van den Broeck, J. Stat. Phy&l, 467 (1983. dam, 1964

012101-4



