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Abstract

In the Fleet Size and Mix Vehicle Routing Problem with Time Windows
(FSMVRPTW) customers need to be serviced in their time windows at
minimal costs by a heterogeneous fleet. In this paper new heuristics for
the FSMVRPTW are developed. The performance of the heuristics is
shown to be significantly higher than that of any previous heuristic ap-
proach.

1 Introduction

Although often assumed in theory, a trucking firm's vehicle fleet is rarely ho-
mogeneous. Vehicles differ in their equipment, carrying capacity, age and cost
structure. The need to be active in different market segments (e.g. confainer
and bulk transport) causes firms to buy vehicles with a container chassis, dutup
installation etc. Vehicles of different carrying capacity allow a dispatcher to
maximize capacity utilization by deploying smaller vehicles in areas with a lower



concentration of customers. Moreover it is also possible to service customers re-
quiring small vehicles because of accessibility restrictions (see e.g. Sewet (1995),
Rochat and Semet (1994)). The differences in equipment, carrying capacity and
the fact that vehicles might differ in age, causes them to have a different cost
structure.

Contrary to the classical Vehicle Routing Problem with Time Windows

(VRPTW), the objective of the Fleel Size and Mix VRPTW (FSMVRPTW) is
ta minimize hoth routing costs and vehicle costs (incurred by acquiring vehicles)
of a heterogenous fleet. Liu and Shen (1999) designed the first initial heuristics
for the FSMVRPTW, yielding good feasible solutions. Their parallel savings
heuristics are inspired by Solomon’s (1987) scquential insertion heuristics. In-
stead of linking routes, one route is inserted into another. Our approach to
the FSMVRPTW is sequential insertion-based. By extending Solomon’s (1987)
sequential insertion heuristic I1 with vehicle insertion savings, based on Golden
et al. (1984), significantly better solutions are obtained.
The paper is organized as follows. In Section 2 the FSMVRPTW is formulated.
Section 3 gives a brief review of the FSMVRP(TW) literaturc. Scction 4 de-
scribes our sequential insertion heuristic for the FSMVRPTW. Computational
results are reported in Section 5 and conclusions are made in Seclion 6.

2 Problem formulation

In the FSMVRPTW heterogeneously capacitated vehicles located at a depot are
required to service geographically scattered customers over a limited scheduling
period (e.g. a day). The distance d;; between each pair of customers is given.
Each customer i has a known demand ¢; to be serviced at time b; chosen by the
carrier. If time windows are hard, b; is chosen within a time window, starting at
the earliest time e; and ending at the latest time [; that customer ¢ permits the
start of service. In the soft time window case, a vehicle is allowed Lo arrive Loo
late at a customer but a penalty is incurred. In both cases, a vehicle arriving
too early at customer 7, has to wait until ;. In this paper, we will assume time
windows are hard. If £;; represents the direct travel time from customer 7 to
customer j, and s, the service time at customer i, then the moment at which
service begins at customer j, b;, equals max{e;, b; + s; + t;;} and the waiting
time w; is equal to max{0, = (bi+ Hi‘i‘tij}}- A time window can also be defined
for the depot in order to define a ‘scheduling horizon’ in which each route must
start and end (Potvin and Rousseau, 1993).

The objective of the FSMVRPTW is to minimize the sum of travel costs and
fixed vehicle costs of servicing the customers within the time window limits. The
vehicle fleet consists of K different types of vehicles. ay, is the capacity of the
vehicles of type k (a1 < a2 < ... < ag). fi is the fixed acquisilion cosl of a
vehicle of type k (f1 < f2 < ... < fk). Without loss of generality, the cost of
travelling a unit of time or distance is assumed to be equal to one.

Because the Vehicle Routing Problem (VRP) is A'P-hard, the FSMVRP
and the FSMVRPTW are N'P-hard by restriction. This implies that problems
ol real-life dimensions can only efficiently be solved by heuristic algorithms.
Gheysens et al. (1984) present a mathematical programming formulalion for
the fleet size and mix vehicle routing problem. This formulation is an extension
of the standard VRP formulation, in that a second term is added to the objective



function in order to cope with the fixed (or acquisition) cost of the vehicle fleet.

3 Literature review for the FSMVRP(TW)

In the literature 5 types of heuristic approaches to the traditional FSMVRI are
distinguished (Golden et al., 1984; Liu and Shen, 1999).

Adaptations of the Clarke and Wright (1964) savings eigorithm start by
generating a separate routc for each customer. At each step, two routes are
combined into one according to a savings criterion. For the FSMVRP, the
concept of savings not only includes savings in routing costs, but also savings in
fixed vehicle costs and so-called opportunity savings developed by Golden et al.
(1984). These opportunity savings, discussed in Section 4.2, can result from
replacing two vehicles (routes) by one—possibly larger—vehicle.

The matehing based savings heuristic developed by Desrochers and Verhoog
(1991) is a parallel route building heuristie. The matching based savings algo-
rithm concept for the classical VRP (Desrochers and Verhoog, 1989) considers
the savings associated with all feasible comhinations of two routes by using a
weighted matching problem to select them. This algorithm is adapted to the
FSMVRP by using the opportunity savings criteria of Golden et al. (1984) (see
section 4.2).

Giant Tour Algorithms (Golden et al., 1984) are examples of “route first—
cluster second” heuristics. They start by generating a single tour that visits
all customers (for example by a ‘I'SP algorithm). This tour is then divided into
subtours, until all problem constraints are satisfied. The subtours are contiguous
segments of the original tour with the first and the last customer connected to
the depot. In a subsequent step, the solution obtained by one of these algorithms
can be enhanced through an improvement post-processor such as 2-opt (Lin and
Kernighan, 1973) or Or-opt (Or, 1976).

A two-stage general assignment based heuristic is developed by Gheysens
et al. (1986). This heuristic uses Golden et al.’s (1984) lower bound procedure to
determine the fleet composition to be used in a generalized assignment heuristic
(Fisher and Jaikumar, 1981) in the second phase.

Salhi and Rand (1993) develop a seven-phase heuristic approach which tries
to improve the current solution at each phase. Their improvement modules
attempt to (1) match the total demand of a route to an appropriate vehicle, (2)
eliminate an entire route by inserting ite customers in another route, (3) move
customers from a certain route to another one if this means that the former
route can be serviced by a smaller vehicle, (4) combine roules with smaller
demand into larger ones and (5) split large routes into smaller ones. Moreover,
a relaxation procedure is implemented that permits a more flexible merging and
splitting of the routes.

Given the complexity of all variants of the VRP, several meta-hcuristic proce-
dures have been proposed for the FSMVRP and other similar problems. Semet
and Taillard (1993) develop and implement a tabu search metaheuristic for solv-
ing real-life vehicle routing problems. Their tabu search procedure is very flexi-
ble in that it allows for time windows, heterogeneous vehicles, vehicle-dependent
utilization costs, accessibility and other restrictions. Rochat and Semet (19941)
develop a tabu search approach for a FSMVRPTW which takes drivers’ breaks
and accessibility restrictions into account. Rochat and Taillard (1995) develop a



probabilistic diversification and intensification technique to improve local search
methods for vehicle routing problems. Brandio and Mercer (1997) develop a
tabu search procedure for the multi-trip vehicle routing and scheduling prob-
lem (MTVRSP), in which each vehicle can make several trips per day. Besides
the constraints commaon to Lhe FSMVRPTW, their algorithm allows for both
weight and volume capacity restrictions on the vehicles. Moreover, access can
be restricted for some vehicles to some customers, and driver’s schedules have
to respect maximum driving times.

Recently several authors have pointed out the importance of the quality of
initial heuristics on the performance of metaheuristics. Liu and Shen (1999) con-
clude from the results reported by Gareia et al. (1994), Thompson and Psaraftis
(1993), and Potvin and Rousseau (1995) that algorithms that only concentrate
on improving a poor initial solution do not perform very well within a lim-
ited computation time. Louis el al. (1999) repart on the impact of good ini-
tialization on solution quality and computational speed for genetic algorithms.
Van Breedam (2001) demonstrates the dependence of descent heuristics and
tabu search on the quality of the initial solution.

To alleviate this problem, Liu and Shen (1999) develop a number of insertion-
hased parallel savings heuristics capable of generating feasible solutions. Instead
of merging individual routes, the insertion of each route —in its original or re
versed order— is evaluated in all possible insertion places in all other routes
for different parameter settings. To take possible savings in vehicle acquisition
costs into account, Golden et al.’s (1984) savings criteria are modified. Solution
quality can be enhanced by a composite improvement scheme.

4 A sequential insertion heuristic for the FS-
MVRPTW

In this section, three new heuristics are developed for the FSMVRPTW, First,
the general outline of the heuristics is presented. Second, the vehicle savings
criteria used in the first part, are elaborated on.

4.1 The general outline

Because Liu and Shen’s (1999) heuristics evaluate the insertion of each route—in
its original or reversed order—in all possible insertion places in all other routes
for ditferent parameter settings, the heuristic is computationally expensive. We
extend Solomon’s (1987) sequential insertion heuristic to build a straightforward
and effeclive heuristic for the FSMVRPTW.

The sequential insertion heuristic starts by initializing the current route for
the smallest vehicle type. Routes can be initialized with the customer farthest
from the depot or the one with the earliest deadline. After starting the cur-
rent route with the initialization criterion, the sequential insertion heuristic uses
the insertion criterion ¢y (i,u, j) to calculate for each unrouted stop u the best
place and associated cost for insertion between two adjacent customers i and
4 in the current partial route (ig,41,...,im) in which ig and i,, represent the
origin and destination location of the vehicle (c.g. the depot). Insertion crite-
riem ¢1(i, 1, j) has to take into account both the additional distance e11(2,u, 7)




and time ¢12(i, u, j) needed to serve customer u plus the possible change in ve-
hicle costs. Solomon (1987) equals the additional time needed, cya(i,u, ), to
the difference hetween the new time at which service begins at customer j after
inserting u, b7¢%, and the original start of service at j, b;. We extend Solomon’s
(1987) sequential insertion heuristic by adding a third component to the inser-
tion criterion ¢;(i,u, 7). The vehicle savings insertion e13(i, , j) is equal to one
of the adapted savings concepts defined in Section 4.2. The cheapest insertion
cost and the associated insertion place is determined for each unrouted customer
u as

ety u,j) = mpin[c.l(ip Ltip), P=1Ll.,m (1)

in which

c1(iyu, ) = cxcnn (i, u, §) + aoers (3,4, 7) | aacra(dy u, ) with (2)
c11(i, t, 1) = don + duj — pdij b 2 0
C12(’i,u,j) = b;-‘ew — bj

c1a(i,u, ) = ACS, AOOS, AROS

As opposed to Solomon (1987) we no longer require the weighting factors oy
to sum up to 1.
In a sccond step, the customer that is best according to the selection criterion
ey(i,u, ) is selected. The selected customer u* is then inserted in the route
between ¢ and j.

coli,u*, j) = max[ea(i,u,j)] u unrouted and feasible (3)
u

e2(i,%, ) = Mdou + tou) + 5u + Fgqu) — c1(i,u, 5), A = 0 where (4)
8, = service time of customer u

Fl(gy) = flixed cost of the smallest vehicle capable of moving a load g,

If no remaining unrouted customer has a feasible insertion place, a new route
is initialized and identified as the current route.

The insertion criterion ¢ (i, u, 7) looks for that insertion place that minimizes
a weighted average of the additional distance and time needed to include a
customer in the current partial route, taking into account the effect on vehicle
costs. The weighting factors o; are used to guide the heuristic Lo dillerent (local)
optima. The selection criterion co(i,u,j) tries to maximize the benefit derived
from inserting a customer in the current partial route rather than on a new,
direct route. Following Gheysens et al. (1984), F(qy,) denotes the fixed cost of
the smallest vehicle capable of moving a load g,.

4.2 Specification of the vehicle savings insertion criteria

Golden et al. (1984) define three approaches to vehicle costs from a parallel
savings perspective: Combined Savings, Optimistic Opportunity Savings and
Realistic Opportunity Savings. The Combined Savings (CS) approach extends



the Clarke and Wright (1964) heuristic by taking the immediate vehicle cost
savings by joining two subtours ¢ and j. Let F(z) be the fixed cost of the
smallest, vehicle that can service a demand of size z for a subtour. Then the
combined savings &; are defined as

Sij = 8ij + I(z)+ F(Zj) — F(z + z_.,-} with (5)
Sij = Coi + Cug — Gy (6)

Both the Optimistic Opportunity Savings (OOS) heuristic and the Realistic
Opportunity Savings (ROS) heuristic extend the Combined Savings concept by
valuing the unused capacity of the vehicle servicing the combined subtours. The
0O0S heuristic 57; assumes that in a future combination of routes, the smallest
vehicle that can service the nnused capacity, I’(z), can be absorbed.

sty = 8+ F(Plai + 7) — % — ) (7)

The ROS heuristic s:j expects that only the largest vehicle that fits in the
unused capacity can be eliminated. To this end, F'(z) is defined as the fixed
cost of the largest vehicle whose capacity is less than or equal to 2. The binary
variable w makes that opportunity savings are only taken into accounf when the
combination of two subtours requires a larger vehicle. If this is not the case, it is
unnecessary to use opportunity savings to encourage the use of larger vehicles.

5i; = 8ij + 0(w)F (P(2 + 2;) — 2 — 2;) in which (8)
w:P(zi+zj)—P(max{zi,zj}) (9)

0 if w=0
&(w) = { 1 ;f iuu -0 (10)

To adapt Golden et al’s (1984) savings concepts for Lhe inserfion heuristic,
the load of a vehicle and its maximum capacity are denoted hy ) and @ respec-
tively. The new load of the vehicle and its possibly new capacity after inserting
a new customer is represented by Q™Y and Q"Y' respectively.

The Adapted Combined Savings (ACS) concept is defined as the difference
belween the fixed costs of the vehicle capable of transporting the load of the
route after and hefore inserting customer u, (F(Q™") — F(Q)).

To reflect the original notion of Golden et al.’s (1984) Optimistic Oppor-
tunity Savings, the Adapted Optimistic QOpportunity Savings (AOOS) concept
extends the ACS by subtracting F(Q"Y — Q"¥). This is the fixed cost of the
smallest vehicle that can service the unused capacity Q™% — Q"%.

The Adapted Realistic Opportunity Savings (AROS) concept takes the fixed
cost of the largest vehicle smaller than or equal to the unused capacity, F'(Q™"—
QM%) into account as opportunity saving. It only does so if a larger vehicle
is required to service the current tour after a new customer has been inserted.
The savings criteria are summarized in Table 1.

5 Computational results

Because we wanl to compare our heuristic's performance to Liu and Shen’s
(1999) heuristics, we used the same Solomon (1987) problem sets, vehicle ca-



Table 1: Savings insertion criteria

ALCORITHM GOLDEN E1 AL. (1984) SAVINGS FORMULA
CwW 8ij = Cp; + Coj — Cij

CS 8ij = sij | F(Z,;)+F(Zj)—F(z-;+Zj)
00S S:j =§; + _l"'(P(Zi | Zj) -2 — 2;.')
ROS 8y = 8ij + 8(w)F'(P(zi + 25) — % — )
ALGORITHM ADAPTED SAVINCS INSERTION FORMULA
ACS FQ™") - F(Q)

AOOS [F(Q) = F(Q)] — F(Qme — @)
AROS [F(@) — F(Q)] — d(w)F'(Q" — @™™)

pacities and costs (see Appendix). Note that because Liu and Shen (1999) do
not specify distance or time coefficients to value distance and time, they are
implicitly valued at 1. Solomon’s (1987) problem sets for the VRPTW consist
of 56 instances of 100 customers with randomly generaled coordinates (set R),
clustered coordinates (set C) or both (the so-called semi-clustered sets RC). The
R1, C1 and RC1 problem sets have a smaller average number of customers per
route than the R2, C2 and RC2 sets because of their shorter scheduling horizon
and smaller vehicle capacities.

An extended set of Solomon’s (1987) original paramcter settings is used to
test our heuristic. Solomon (1987) uses two initialization criteria: the far-
thest unrouted customer and the customer with the earliest deadline, and four
(1, N, @1, @) settings: (1,1,1,0), (1,2,1,0), (1,1,0,1), and (1,2,0,1). By
adding an additional term ej3(é,u,j) to the insertion ecriterion, a new weight
factor o is needed. As opposed to Solomon (1987), we no longer require that
the weighting factors a; sum up to 1. The following a; combinations are consid-
ered: (1,0,1), (0,1,1) and (1, 1,1). In each of the three o; combinations, ay = 1
to allow different solutions for the different savings approaches. If o = (1,1,1)
equal weights are given to the distance, time and vehicle savings related com-
poment of an insertion.

Liu and Shen (1999) use the total schedule time of a solution (excluding the
service times of Lhe customers) to measure solution quality. 'I'herefore we se-
lected the run with the lowesl schedule time of each of the 12 runs per problem
instance. Liu and Shen (1999) obtained the best results on Solomon’s (1987)
problem instances with their modified heuristics MCS_»_,, MOOS_, , and
MROS_)_,. The route shape parameter X is due to Golden et al. (1984) and
gives a different weight to the additional distance needed to combine two in-
dividual routes. The parameter 7 is used to control the construction of routes
during the parallel construction.

Our sequential heuristics clearly dominate Liu and Shen’s (1999) best heuris
tics for cost sbructures A and B (see Tables 2 and 3 and the Appendix). In
several cases the sequential insertion heuristic using ACS, AOOS or AROS is
able to reduce total schedule lime with more than 50%, even if an improvement
heuristic was invoked (MCS*,_, , MOOS:,_ ., and MROSL,_,). Tor cost
structure ¢, cost differences with Liu and Shen ( 1999) are smaller, but still sig-

nificant. Our heuristics are clearly more robust than MCS* , _, MOOSZ,_



Table 2: Comparison of our heuristic to Liu and Shen’s (1999) modified heuris-
fics (total schedule time excluding service times)

SET MCS_» , | MCS,_, ACS AR A
R1A 4562 4308 1665.32 63.50 62.13
R1B 2155 2066 1617.10 24.96 21.73
Rlc 1794 1716 1689.12 6.11 1.57

MOOS_,—, MOOS*, | AOOS A% A%
Ria 4575 401 THha8.h3 66.15 64.81
R1B 2152 2054 1574.66 26.83 23.34
Rlc 1802 1700 1576.58 1251 7.26

MROS_,_,] MROS:,_ | AROS A% A%
Rla 564 4403 1556.14 65.90 64.66
R1B 2149 2068 1557.38 27.53 24.69
Rlc 1788 1706 1557.85 1287 8.68
SET MCS_,_, | MC3%,_, ACS AV AT,
ClA 8042 ]007 1247.52 84.49 84.42
C1B 2803 2661 1163.78 58.48 56.27
Clc 1886 1749 1435.32 23.90 17.93

MOOS_»—,] MOOS*, | AOOS A% A%
IRy 8515 8205 | 124752 85.49 34.96
Cle 2626 2485 1126.01 £8.48 54.69
Clc 1870 1705 1282.51 23.90 24.78

MROS_,_, MROS*, | AROS A% A%
Cla 3042 8007 1166.09 85.50 85.44
Cl1B 2803 2661 1131.02 09.65 57.50
Clc 1886 1749 1155.45 38.74 33.94
Ser MCS_,_, | MCS®,_, ACS A% 7
RC1A 5483 5262 1777.62 67.58 66.22
RC1B 2366 2253 1780.94 24.73 20.95
RC1c 1926 1853 1887.07 2.02 -1.84

MOOS_,_,] MOOS5*,_,| AOQOS A% A%
RCla 55390 5184 1686.95 60.04 67.46
RC1B 2359 2252 1697.06 28.06 24.64
RC1c 1933 1859 1744.71 9.74 6.15

MROS_,_,] MROS*, I AROS A% A%
RC1A 5429 5108 1665.04 60.33 67.07
RC1B 2342 2235 1680.55 28.24 24,81
RCl1c 1929 1849 1689.92 12.39 8.60

T (Modified Savings — Adapted Savings)/(Modified Savings) x 100
* After invoking an improvement heuristic




Table 3: Clomparison of our heuristic to Liu and Shen'’s (1999) modified heuris-
tics (total schedule time excluding service times)

SeT | MCS_x_y | MCS",_, | ACS A% A%
R2A 3855 3809 1443.71 62.55 62.10
R2e 1915 1816 1456.78 23.93 19.78
R2c 1589 1513 1438.65 9.46 491

MOOS_5_,] MOOS-,_| AOOS A% A%
“R2a 077 3975 1435.33 64.79 63.89
R2B 1924 1797 1431.49 25.60 20.34
R2e 1610 1530 1419.81 11.81 7.20

MROS_»_, MROS*,_ | AROS A% A%
R2aA 3855 3809 1426.52 63.00 62.55
R2B 19150 1816 1446.10 24.49 20.37
R2C 1589 1513 144527 9.05 148
SET | MOS_,_, | MCS",_, | ACS A% A%
C2A 7058 6717 821.38 8836 87.77
C28 2054 1978 821.38 60.01 58.47
c2c 1373 1288 811.16 40.92 37.02

MOOS_,_,] MOOS—, | _AOOS A% A%
C2a 7354 3889 1072.28 85.42 72.43
028 2093 1970 931.80 75,48 52.70
C2c 1383 1300 828.13 40.12 36.30

MROS_»_,| MROSL,_| AROS A% A%
C2a 7058 G717 1043.42 85.22 84.47
C28 2054 1978 1043.42 49.20 47.25
C2¢ 1373 1288 1029.44 25.02 20.07
Ser | MCS_, , | MCS',_, | ACS A% A%
RC2A 5518 5324 1801.71 67.35 66.16
RC2B 2469 2339 1741.97 29.45 25.53
RC2¢ 2101 1994 1754.32 16.50 12.02

MOOS_,_,] MOOS™, | AOOS A% A%
RC2A | 5381 5973 T800.82 66.5 65.85
RC2B | 2432 2338 1783.61 26.66 23.71
RC2c 2066 1978 1741.75 15.69 11.94

MROS_»_,| MROS", | AROS A% A%
RC2a HA18 5324 1804.56 67.30 66.11
RC2B | 2462 2324 1770.23 28,10 23.83
RC2c 2101 1988 1962.27 16.12 11.356

I (Modified Savings — Adapted Savings)/(Modified Savings) x 100
* After invoking an improvement heuristic




Table 4: Hour and time cocfficients in Euros for 1999 (Blauwens et al., 2001)

Carrying capacity hour coefficient kilometer coefficient
delivery van 0.5 t 16.03 0.10
lorry 5 t 12 14 0.15
lorry 8 t 18.06 0.17
lorry 20 t 20.88 0.21
truck and trailer 28 t 21.75 0.24

Table 5: Cost structure in Duros for 1999 based on Table 4
Carrying capacity Vehicle cost Hour Kilometer
coefficient coeflicient

delivery van 0.5 t 144.27 0.27 0.10

lorry 5 t 154.26 0.29 0.15

lorry 8 ¢ 162.54 0.30 0.17

lorry 20 t 187.92 0.35 0.21

truck and trailer 28 t 195.75 0.36 0.24

and MROS®, . Liu and Shen’s (1999) modified heuristics’ solution quality
is highly dependent on the cost structure used. Our results are in line with
Solomon’s (1987) results' on the problem instances after removing service fimes
from the published total schedule time.

Because Liu and Shen (1999) do not specify a time and distance coefficient,
physical time and distance units arc used in the analysis. In cost structure ¢
the cost of possessing a vehicle of type A equals 5 units. Given that the implicit
cost of one unit of time or distance equals 1 and that a vehicle can be used
during 230 units of Lime (i.e. the length of the scheduling horizon in R1), cost
structure ¢ can be considered to be highly nmusual.

To illustrate this point, consider Tables 4 and 5. The figures in Table 4
are averages of sample data from different companies of vehicles with different
engine powers, They are calculated for firms respecting all statutory regulations
with wage-earning truck drivers.

Given the traditional assumption from the VRPTW that one unit of distance
equals one unit of time(Solomon, 1987), the figures from the above table have
to be slightly modified to become comparable to Liu and Shen’s (1999) cost
structure. Because a vehicle's fixed costs are expressed per hour, they have to
be multiplied with the maximum statutory driving time (9 hours) to obtain the
daily cost of owning the vehicle. If we assume an average speed of 60 km/h, the
hour and time coefficients are obtained as follows. The hour coeflicient from
Blauwens ot al. (2001) is divided by 60 to approximate the time coefficient &,
expressing the opportunity cost of time. Indeed, in the long run the average
opportunity cost of time equals the average cost of owning a vehicle. In the short
run, the opportunity cost depends on the carrier’s potential customers of that
moment, making it higher during peak periods than during off-peak periods.
The distance coefficient is equaled to the kilometer coefficient. Notice the level
of the different cost components and the presence of pronounced economies of

1For all problem sets except C1, the homogencous vehicle Heet in Solomon (1987) consists
of the largest vehicle type from Tin and Shen (1999).
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scale in Table 5. The cost of owning a vehicle with a carrying capacity of 2w
costs a lot less than two times the costs of an z-ton vehicle. In Liu and Shen’s
(1999) cost structure there are no economies of scale. Given the cost structure
in real-life FSMVRPTW problems, the advantage of our heuristics over Liu and
Shen’s (1999) can be expected to be important.

6 Conclusion

Our new heuristics for the FSMVRPTW are shown to significantly ountperform
Liu and Shen's (1999) heuristics. Depending on the cost structure used, solution
improvements of more than 50% can be easily attained. Because the solution
improvements arc the largest for the more realistic cost structures, we believe
that the heuristics can be used to generate high-quality initial solutions for
real-life FSMVRPTW metaheuristics.
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Appendix: Liu & Shen’s (1999) problem set data

VELICLE CAPACITY Ria Rls Rlc
A 30 50 10 8
B 50 80 16 8
C 80 140 28 14
D 120 250 50 25
E 200 500 100 50
VEHICLE CAPACITY Cla Cls Cio
A 100 300 60 30
B 200 800 160 80
C 300 1350 270 135
VEHICLE CAPACITY RC1a RC1B RCl1c
A 40 60 12 6
B B0 150 30 15
(64 150 300 60 30
D 200 450 90 45
VEHICLE CAPACITY R2a R2B R2c
A 300 450 90 45
B 400 700 140 70
c GO0 1200 240 120
D 1000 2500 500 250
VEHICLE CAPACITY C2A Cap C2c
A 400 1000 200 100
B 500 1400 280 140
o 600 2000 400 200
¢ 700 2700 540 270
VEHICLE CAPACITY RC2A RC2B RC2c
A 100 150 30 15
B 200 350 70 35
C 300 550 110 55
D 400 200 160 80
L 500 1100 220 110
F 1000 2500 500 250
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