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Highlights: 
 

 

 The phase diagram for the mixed spin-1 and spin-3/2 Ising ferrimagnetic 

system with two different random single-ion anisotropies was obtained. 
 

 To investigate the system Monte Carlo simulations were used. 
 

 Only second-order phase transition lines for any values of p and q was found. 
 

 A multicompensation behavior for some values of p and q was observed. 
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In this work, we have performed Monte Carlo simulations to study a mixed spin-1 and spin-3/2
Ising ferrimagnetic system on a square lattice with two different random single-ion anisotropies.
This lattice is divided in two interpenetrating sublattices with spins SA = 1 in the sublattice A
and SB = 3/2 in the sublattice B. The exchange interaction between the spins on the sublattices
is antiferromagnetic (J < 0). We used two random single-ion anisotropies, DA

i and DB
j , on the

sublattices A and B, respectively. We have determined the phase diagram of the model in the
critical temperature Tc versus strength of the random single-ion anisotropy D plane and we shown
that it exhibits only second-order phase transition lines. We also shown that this system displays
compensation temperatures for some cases of the random single-ion distribution.

I. INTRODUCTION

One of the most important and also interesting models
of statistical mechanics is the Ising model. The simplic-
ity of its variables, which assume values ±1 (two states)
makes it possible to model various systems (biological,
social, economic, magnetic, etc.). Its generalization has
led to other models with more than two states and with
other types of interactions besides exchange interaction
(Jij)[1–3]. Limiting only to the case of magnetic models,
today there are several models constituted with different
variables de spins, which are the well-known models of
mixed-spins [4–7]. These mixed-spins models are used to
describe the thermodynamic behavior of several new ma-
terials, such as [Fe(C5Me5)2][TCNE] molecular-based
magnetic materials [8–10], nanowires [11–14].

The mixed-spin Ising model has in recent years been
widely employed to study the theoretical aspects of ferri-
magnet systems, where the phase diagram presents com-
pensation temperature, in addition to multicritical be-
havior are much appreciated. In this model the system is
represented by two interpenetrating sublattices of spins
with different magnitudes. Here, the compensation tem-
perature is the temperature (below the critical tempera-
ture Tc) in which the magnetization of one sublattice can-
cels completely the effects of the magnetization of other
sublattice, causing the total magnetization to change sig-
nal. Of course, these systems are interesting not only
from an academic point of view (both theoretical and ex-
perimental), but there is a boost due to technological ap-
plications: thermomagnetic recording, ultra-high-density
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magnetic recording media, light-emitting diodes, lithium-
ion batteries, electronic and computer technologies, all
due to their outstanding magnetic, electronic and optical
properties. In this context, the study of the mixed-spin
Ising model of different magnitudes had a great attrac-
tion. Basically the focus was on the mixed-spin system
distributed in two sublattices, one with spins S = 1/2
and the other with spins S > 1/2 and with an addi-
tional crystalline field (single-ion anisotropy) and mag-
netic field. Thus, the systems formed by two sublattices
with different spin types have been a strong candidate
to model some types of ferrimagnetic and molecular-
based magnetic materials. There are many studies on
mixed-spin Ising systems that have been performed in
different topologies and methods: effective-field theory
(EFT)[15–25], mean-field approximation (MFA) [26–29],
renormalization-group technique (RG) [30], Monte Carlo
simulation (MC) [31–43] and Green’s function technique
[44, 45], etc. On the other hand, the effects of random
single-ion anisotropy has been even less investigated, but
in Refs. [46, 47] these effects are studied indicating the
appearance of new characteristics in the thermodynamic
properties of the systems. Souza et al. [29] obtained the
phase diagram of the mixed spin-1 and spin-3/2 Ising fer-
rimagnetic system on a square lattice with two different
random single-ion anisotropies using mean-field theory
based on the Bogoliubov inequality for the Gibbs free
energy.

Žukovič and Bobák [48] used MC simulation to explain
the phase diagram and the thermodynamic properties of
the mixed spin-1 and spin-3/2 Ising system with uni-
form single-ion anisotropy on a square lattice. They did
not find a re-entrant phenomenon and additional first-
order phase transition within the ordered ferrimagnetic
phase, as predicted by mean filed approximations, and
also the existence of a tricritical point at which the tran-
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sition would change from second-order to first-order one.
They found the multicompensation behavior, with two
compensation points observed. The purpose of this work
is to investigate the mixed spin-1 and spin-3/2 Ising fer-
rimagnetic system with two different random single-ion
anisotropies using MC simulations. This model is simi-
lar to the one studied in reference [29]. In this work, our
main motivation is to contribute to the knowledge of the
thermodynamic properties of the mixed-spin Ising ferri-
magnetic model with random anisotropies, going beyond
the mean field theory, such as the reference [29].

The paper is organized as follows: in Section II, we
describe the mixed spin-1 and spin-3/2 Ising ferrimag-
netic system and we present some details concerning the
simulation procedures. In Section III, we described the
results obtained. Finally, in the last Section, we present
our conclusions.

II. THE MODEL AND SIMULATIONS

The mixed spin-1 and spin-3/2 Ising ferrimagnetic sys-
tem consists of two interpenetrating square sublattices
A, with spin-1 (states SA = 0,±1), and B with spin-3/2
(states SB = ±1/2,±3/2). In each site of the sublattices
there is a random single-ion anisotropies DA

i and DB
j act-

ing on the spin-1 and spins-3/2, respectively. This system
is described by the following Hamiltonian model,

H = −J
∑

〈i,j〉
SA
i S

B
j −

∑

i∈A
DA

i (S
A
i )

2 −
∑

j∈B
DB

j (SB
j )2, (1)

where the first term represents the interaction between
the nearest neighbors spins on sites i and j located on
the sublattices A and B, respectively. J is the magni-
tude of the exchange interaction, and the sum is over all
nearest neighboring pairs of spins. Here, we have consid-
ered the antiferromagnetic exchange interaction, J < 0.
The second and third terms represent the random single-
ion anisotropies at all the sites of the sublattices A and
B, respectively. Therefore, the sums are performed over
N/2 spins of each sublattice.

The random single-ion anisotropies satisfy the follow-
ing probability distributions:

P (DA
i ) = pδ(Di) + (1− p)δ(Di −DA

i ), (2)

and

P (DB
j ) = qδ(Dj) + (1− q)δ(Dj −DB

j ), (3)

where the term pδ(Di) (qδ(Dj)) indicated that one frac-
tion p (q) of the spins on the sublattice A (B) are free
of the influence of random single-ion anisotropies, while
the terms (1 − p)δ(Di −DA

i ) ((1 − q)δ(Dj −DB
j )) indi-

cated that one fraction (1 − p) ((1 − q)) of the spins on
the sublattice A (B) are under to influence of the ran-
dom single-ion anisotropies. Thus, for instance, the case
p = q = 0 was studied using MC simulations in the ref-
erence [48], where all spins are subject to action of an

uniform single-ion anisotropies DA = DB ≡ D. We have
considered also here the case simplest where the random
single-ion anisotropies on the sublattices have the same
strength, i.e., DA

i = DB
j ≡ D, for each value of p and

q. This choice not has physical motivations, but just
for simplicity. Here we would like to point out that the
anisotropiesDA

i andDB
j are different, although they have

the same strength, but the difference lies in the values of
the parameters p and q, which indicate the percentage
of the sites in the sublattices with the presence of such
anisotropies.

In our simulations were used square lattice sizes ran-
ging from L = 20 up to 128. These lattices consist
in two interpenetrating sublattices, each one containing
L2/2 sites with periodic boundary conditions. The ini-
tial states of the system were prepared in a totally ran-
dom manner and updated by the Metropolis algorithm
[49]. For each sample of the system, the strength of the
random single-ion anisotropy D were distributed in the
sublattices according to the probability distribution func-
tions given by equations (2) and (3). For example, the
case p = 0.25 means that 25% of the spins in the sub-
lattice A are free of the influence of random single-ion
anisotropy D and another 75% of the spins are under
action of the such anisotropy. On the other hand, when
q = 0.75 we have the case where 75% of the spins in the
sublattice B are free of the influence of the single-ion ran-
dom anisotropyD and the 25% of the remaining spins are
under the action of this random anisotropy. Typically, we
used 5.0 × 105 MCs (Monte Carlo steps) for the calcu-
lation of average values of thermodynamic quantities of
interest, after discard 1.0× 105 MCs for thermalization.
Here, 1 MCs means L2 trials to change the state of a spin
of the lattice. After thermalization, the average over the
disorder was done using 100 independent samples for any
size lattice. Although not shown in the figures, the error
bars are smaller than the symbol sizes.

We have calculated the sublattice magnetizations per
site, mA and mB , defined as

mA =
2[〈MA〉]
L2

=
2
[〈∑

A S
A
i

〉]

L2
, (4)

and

mB =
2[〈MB〉]
L2

=
2
[〈∑

B S
B
j

〉]

L2
, (5)

where 〈· · · 〉 denotes thermal averages and [· · · ] denotes
average over the samples of the system. The total mag-
netization per site mT is defined as

mT =
[〈M〉]
L2

=
[〈MA +MB〉]

L2
=
|mA +mB |

2
. (6)

Since, for ferrimagnetic systems, the total magnetization
m vanishes in the ordered phase where we have intend
to observe the compensation temperature. Therefore, we
defined another order parameter that is convenient, the
staggered magnetization per site, mS , which is given by

mS =
[〈M〉]
L2

=
[〈MA −MB〉]

L2
=
|mA −mB |

2
. (7)
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Further, we also have calculated the following thermody-
namics quantities, the specific heat per site

c =
[〈E2〉]− [〈E〉]2

kBT 2L2
, (8)

where kB is the Boltzmann constant and E the total en-
ergy of the system. The total and staggered susceptibility
are denoted by, χT and χS , respectively. They are given
by:

χT =
[〈M2

T 〉]− [〈MT 〉]2
kBTL2

, (9)

and

χS =
[〈M2

S〉]− [〈MS〉]2
kBTL2

. (10)

In order to find the critical point, we used the total
UT
L and staggered US

L fourth-order Binder cumulants [50]
defined by:

UT
L = 1− [〈M4

T 〉]
3[〈M2

T 〉]2
, (11)

and

US
L = 1− [〈M4

S〉]
3[〈M2

S〉]2
. (12)

The transition temperature also can be estimated by the
position of the peaks of the response functions c and χS ,
but to obtain with greater accuracy in some cases, we
have used the intersection of the curves of fourth-order
Binder cumulants for different lattice sizes L.

The total magnetization per site mT vanishes at the
compensation temperature Tcomp [36, 37]. Then, the
compensation point can be determined by looking for the
crossing point between the absolute values of the sub-
lattice magnetizations. Therefore, at the compensation
point, we must have

|mA(Tcomp)| = |mB(Tcomp)|, (13)

and

sign[mA(Tcomp)] = − sign[mB(Tcomp)]. (14)

We also require that Tcomp < Tc , where Tc is the critical
point temperature. These conditions show that at Tcomp ,
the A and B sublattice magnetizations cancel each other,
whereas at Tc both are zero.

III. RESULTS AND DISCUSSIONS

The behavior of the magnetization play a crucial role
in obtaining to finite temperature the phase diagram of
the system. The phase diagram, temperature T versus
strength of the random single-ion anisotropy D, presents

Powered by TCPDF (www.tcpdf.org)
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(b)
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(c)
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(d)

FIG. 1. Staggered magnetization mS and susceptibility χS

as a function of strength of the random single-ion anisotropy
D and for fixed temperature T = 2.0. (a) and (b) are for
p = 0.25 and q = 0. (c) and (d) for p = 0 and q = 0.25. All
data were obtained for a lattice size L = 40.

curves in which one part is almost parallel to the D-axis
and another that is almost parallel to the T -axis. Thus,
for some situations is better to obtain the behavior of the
magnetization m as a function of strength of the random
single-ion anisotropy D than as a function of tempera-
ture T , and vice versa. Therefore, in the region where
the curve is parallel to the D-axis, we determined the
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critical point by observing the behavior of the magneti-
zationm as a function of temperature T and in the region
where the curve is parallel to the T -axis we observe the
behavior of the magnetizationm as a function of strength
of the random single-ion anisotropy D. In this work the
temperatures and the strength of the random single-ion
anisotropies are measured in units of |J |/kB and |J |, re-
spectively. The p and q are dimensionless parameter.

Firstly, we have shown in Fig. 1 that the staggered
magnetization mS curves go to zero continuously sep-
arating the ferrimagnetic from the paramagnetic phase
(second-order phase transition) and the strength of the
random single-ion anisotropy D at which magnetizations
become zero is a critical strength of the random single-ion
anisotropy Dc. Thus, the Fig. 1 presents the staggered
magnetization mS (Figs. 1(a) and (c)) and the staggered
susceptibility χS (Figs. 1(b) and (d)) as a function of
strength of the random single-ion anisotropy D and for
a fixed temperature T = 2.0. In Figs. 1(a) and (b) the
data are for p = 0.25 and q = 0, while in Figs. 1(c)
and (d) are for p = 0 and q = 0.25. Therefore, in order
to identify better the second- and first-order transitions
lines and compensation temperatures, it should be also
studied the thermal behaviors of the magnetizations.

The critical temperatures can be determined by the in-
tersection of the fourth-order Binder cumulants for sev-
eral lattices sizes or by the position of staggered sus-
ceptibility χS peaks. To study the phase transition in
more detail, we calculate the intersection of the staggered
fourth-order Binder cumulants US

L to estimate the critical
temperature Tc in which the transition occurs. According
to the theory of finite size scaling for continuous phase
transitions, the behavior of finite size is governed by the
ratio L/ξ where ξ is the correlation length. The scaling
relation for the fourth-order cumulant shows that, at the
critical temperature, where the correlation length is infi-
nite, all curves must intersect at a single point, since the
ratio L/ξ is zero for all sizes L [50]. In order to find the
critical temperature, we plotted (see Fig. 2) the cumu-
lants US

L versus temperature T for several system sizes L,
as indicated in the figures. Our estimate for the dimen-
sionless critical temperature with strength of the random
single-ion anisotropy fixedD = −1.0 is Tc = 1.884±0.005
for p = 0.25, q = 0 [Fig. 2(a)] and Tc = 1.938± 0.004 for
p = 0, q = 0.25 [Fig. 2(b)]. We have chosen these val-
ues to take as an example of the phase transitions which
occur in the system.

We also obtained the phase diagram of the system, crit-
ical temperature Tc as a function strength of the random
single-ion anisotropy D, as shown in Fig. 3 and it was de-
termined from the position of the staggered susceptibility
χS peaks by standard MC simulation for a fixed lattice
size L = 40. The results were obtained for some selected
values of parameters p and q, as indicated in the figure.
We also included the limit cases, for p = q = 1.0 (pure
model) solid line where critical temperature is constant
for any values of single-ion anisotropies D and the case
p = q = 0 [48], black-square point line. In the case of

Powered by TCPDF (www.tcpdf.org)

(a)

Powered by TCPDF (www.tcpdf.org)

(b)

FIG. 2. Staggered fourth-order Binder cumulants US
L as a

function of temperature T for various lattice sizes L, as indi-
cated in the figures. (a) We have obtained the critical tem-
perature Tc = 1.884 ± 0.005 for p = 0.25 and q = 0. (b)
The critical temperature is Tc = 1.988± 0.004 for p = 0 and
q = 0.25. All data were obtained for the strength of the ran-
dom single-ion anisotropy fixed D = −1.0.

D = 0, we estimated the critical temperature by crossing
fourth-order Binder cumulants for different lattice sizes
and found Tc = 2.36 ± 0.01. These results are in good
agreement with the one found in the literature [48]. In
the case q = 0 and p 6= 0, the critical temperature line
Tc does not vanishes at D = −2.0 as in case p = 0 and
q = 0, but tends to a fixed value that depends of p. For
example, for the case q = 0 and p = 0.25 the critical
temperature tends to a constant value, Tc = 0.26± 0.01,
for D ≤ −2.0. We have observed this same behavior for
other cases p = 0 and q 6= 0. When p and q → 1.0,
we found a value for the critical temperature constant
Tc = 2.36± 0.01 independent of the strength of the ran-
dom single-ion anisotropy D and which is the same value
for the case with D = 0. We also observed that for D ≥ 0
favours the states ±3/2, i.e., D → +∞ the sublattice A
with spin-3/2 behaves as a two level system with ±3/2
states. On the other hand, in the region where D → −∞
the states ±3/2 are suppressed and the system becomes
equivalent to a mixed-spin Ising model with spin-1 and
spin-1/2, in cases where the parameter q is large, which
leaves most of the spins S = 1 out of the influence of
the anisotropy D in the sublattice B . We did not find
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FIG. 3. Phase diagram critical temperature Tc as a function of
the strength of the random single-ion anisotropy D for several
values of p and q, as indicated in the figure. The solid and
black-square point lines represent the limit cases, p = q = 1.0
and p = q = 0, respectively. The point where all the lines
intersect is given by (D = 0, Tc = 2.36 ± 0.01). All lines are
second-order phase transitions.

first-order transitions, as we can see in Fig. 1, where
staggered magnetization and susceptibility as functions
of the strength anisotropy D are always all continuous
for any values of p and q. The phase digram of the sys-
tem exhibits only second-order phase transition lines for
any values of p and q.

FIG. 4. Total m and sublattice mA, mB magnetizations as
a function of temperature T for p = 1.0, q = 0 and D =
−1.975. In the insets we show the crossing of the sublattice
magnetizations. The compensation temperature is shown in
the figure and it is Tcomp = 0.84± 0.01.

The compensation temperature is a temperature below
the critical point in which the total magnetization van-
ishes. To see the presence of a compensation point in this

system, we shown in Fig. 4 the total m and sublattice
mA, mB magnetizations as a function of the tempera-
ture, for selected values of the parameters p = 1.0, q = 0
and D = −1.975, and we have found Tcomp = 0.84± 0.01
for compensation temperature. Tcomp exists only for the
case p 6= 0 and q = 0, i. e., the case that all spins of the
sublattice B suffer action of the strength of the random
single-ion anisotropy D.

We calculated the compensation temperature Tcomp as
a function of strength of the random single-ion anisotropy
D and for various values of p and for q = 0, as can be
seen in Fig. 5. For the case p = q = 0, which corresponds
to the case with uniform anisotropy, the system presents
the multicompensation behavior, as can see in reference
[48]. On the other hand, for some p 6= 0 and q = 0, we
found only one compensation temperature Tcomp in the
following range of −1.98 ≤ D ≤ −1.90 for p = 1.0 (down
diamond points), −1.98 ≤ D ≤ −1.93 for p = 0.75 (up
diamond points), −1.98 ≤ D ≤ −1.97 for p = 0.50 (circle
points). Now, for the case p = 0.25 (square points), the
system exhibits a multicompensation behavior and we
obtained two compensation temperatures for some val-
ues of D, −1.97 ≤ D ≤ −1.962. Indeed, when p increases
(the concentration of the spins on the sublattice A under
the influence of random single-ion anisotropy decreases)
and the range where the compensation temperature oc-
curs it is also increased.

Powered by TCPDF (www.tcpdf.org)

FIG. 5. Compensation temperature Tcomp as a function of the
strength random single-ion anisotropy D for several values of
p , as indicated in the figure, and q = 0.

IV. CONCLUSIONS

In this work, we have studied the effects of two different
random single-ion anisotropies in the mixed spin-1 and
spin-3/2 Ising ferrimagnetic system in a square lattice.
We have employed the MC simulation. We considered the
strength of the random single-ion anisotropy D = DA =
DB on the sublattices A and B governed by a bimodal
probability distribution P (DA

i ) and P (DB
j ), respectively.
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The case in which D is an uniform anisotropy, the
phase diagram of the system shown only second-order
phase transition by MC simulation [48] differently that
results from mean-field theory [28] where the phase tran-
sitions are first- and second-order. Here, in the our case
in which the strength of the single-ion anisotropy D is
randomly distributed, we found also a result different
from mean-field theories [28, 29] and similar to MC sim-
ulation in [48], namely, the phase digram of the system
exhibits only second-order phase transition lines for any
values of p and q. The compensation temperatures ap-
pear only in the case where q = 0, namely, in the case all

sites of the sublattice B suffers the influence of D, which
occurring for a range of 1.98 ≤ D ≤ 1.90 and for param-
eter 0 < p ≤ 1.0. We shown also the system exhibits a
multicompensation behavior for p = 0.25 and q = 0.
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