Modernising agriculture through a 'new' green revolution: the limits of the crop intensification programme in Rwanda

Reference:
Cioffo Giuseppe Davide, Ansoms An, Murison Jude.- Modernising agriculture through a 'new' green revolution: the limits of the crop intensification programme in Rwanda
Full text (Publisher’s DOI): http://dx.doi.org/doi:10.1080/03056244.2016.1181053
To cite this reference: http://hdl.handle.net/10067/1341050151162165141
Modernizing Agriculture through a ‘new’ Green Revolution:
The Limits of the Crop Intensification Program in Rwanda

Moderniser l’Agriculture par une ‘nouvelle’ Révolution Verte :
Les Limites du « Crop Intensification Programme » au Rwanda

Giuseppe Davide Cioffo, An Ansoms, Jude Murison

Abstract
Over the past decade, African agriculture sectors have been the object of numerous initiatives advancing a ‘new’ Green Revolution for the continent. The low productivity of African small-holders is attributed to the low use of modern, improved agricultural inputs. In short, African countries are expected to catch up with the Green Revolution in other parts of the world. This paper is a contribution to the debate on the new African Green Revolution. We analyse the Rwandan Crop Intensification Program (CIP) as a case-study of the application of the African Green Revolution model. The paper is based on research at the macro, meso and micro level. We argue that the CIP fails to draw lessons from previous Green Revolution experiences in terms of its effects on social differentiation, on ecological sustainability, and on knowledge exchange and creation.

Résumé
Pendant les dernières dix années, les secteurs agricoles des pays Africains ont connu un nombre important d’initiatives pour la promotion d’une ‘nouvelle’ Révolution Verte pour le continent. A cause de la faible productivité de leurs activités agricoles, en fait, il est demandé aux petits producteurs africains de rattraper leur désavantage par rapport aux pays de la Révolution Verte. Cet article est une contribution au débat sur la nouvelle Révolution Verte en Afrique. L’article analyse le Programme d’Intensification des Cultures rwandais (Crop Intensification Program, CIP) en tant qu’étude de cas de l’application du modèle de la Révolution Verte. La discussion présentée dans cet article dérive d’un effort de recherche à trois niveaux : macro, meso et micro. L’analyse révèle que le CIP ne prend pas en considérations les résultats des expériences précédentes de Révolution Verte, en particulier
pour ce qui concerne des questions de différentiation sociale, de durabilité environnementale et de création et diffusion des connaissances.

Keywords: agriculture; Green Revolution; Rwanda; modernization; livelihoods

1. Introduction

Discourse on agriculture modernization in Sub-Saharan African over the last decade have focused on the necessity of increasing the productivity of land and labour in order for African countries to fill the African ‘yield-gap’ (World Bank 2007, Lawrence 2007, Patel 2013). In the propositions of international donors and development agencies, the low productivity of African small-holders is to be attributed to low use of modern, improved agricultural inputs. In short, African countries must catch up with the Green Revolution in other parts of the world, in order to both boost their productivity and address the mainly rural character of poverty. Advocates of the new ‘Green Revolution for Africa’ argue that models of agricultural intensification based on off-farm industrial inputs such as improved seeds and chemical fertilizers may strengthen smallholders’ ability to increase yields and participate in national and international agricultural markets (World Bank 2007).

Rwanda is one of the countries that embarked on a process of agricultural modernization via a Green Revolution approach. Although internationally acclaimed for its success in terms of GDP growth, Rwanda remains a largely agricultural country, and agriculture remains the backbone of the Rwandan economy (MINAGRI, 2006). According to the third Integrated Household Living Conditions Survey (EICV III) (NISR, 2012) and World Bank data (2012), between seventy-five and seventy-eight per cent of the country’s active workforce is employed in the agricultural sector, either in wage labour or in independent farming activities. This mass participation in the agricultural economy occurs in the context of a small, landlocked country, with one of the highest population densities in the African continent – more than 430 people per square kilometre (World Bank 2012). As a result, Rwandan agriculture is mainly based on small-scale family farming units (with an average plot size of 0.75 hectare), concentrating their activities on production for household consumption and local market exchange (Ansoms, 2010). Moreover, with a population growth among the highest on the continent, the Rwandan
government is convinced that the agricultural sector has to do more, shifting ‘from producing enough to producing surplus’ (MINAGRI, 2011).

This article proposes a critique of the modernization process articulated through the Crop Intensification Programme (CIP onwards), the main policy initiative adopted by the government of Rwanda to bring about agricultural intensification. In particular, we assess the extent to which the Green Revolution offers a viable model of agricultural production for Rwandan smallholder farmers. The article adopts a ‘triangular’ approach, combining an analysis of the discourse on agricultural modernization in macro-level policy documents, with micro-level views from peasant communities, and with information collected at the level of district agronomists. We draw our data from three phases of field research carried out in 2011 (further referred to as ‘research 2011’), 2012 (further referred to as ‘research 2012’) and 2013, (further referred to as ‘research 2013’).

In the first part of the paper, we look at how the CIP ambitions fit into a broader Green Revolution rationale as promoted by international donors and the World Bank. We compare critical scholarship on previous Green Revolution experiences with the new Green Revolution model. The paper then focuses on three of the four specific aspects of the CIP in the Rwandan context: the implementation of land use consolidation, the distribution of fertilizers and improved seeds, and the provision of proximity extension services. We analyse the extent to which CIP policies address smallholder farmers’ livelihood challenges.

2. The ‘old’ and ‘new’ Green Revolution: criticism and challenges

The CIP assumes that the ‘Green Revolution in Asia and elsewhere was mediated by the facilitation of modern inputs such as improved seeds, fertilizers and pesticides’. This allowed the latter to ‘increase their crop production levels’ (MINAGRI, 2011:8). The ‘upgrading’ of the Rwandan agricultural sector, therefore, would require the ‘replication of such adoption of modern inputs by the smallholder farmers’ (ib). This discourse is in line with the emerging rhetoric of a ‘New Green Revolution for Africa’. It is the World Bank’s opinion, in fact, that ensuring food security and the profitability of agriculture for African farmers will require a ‘revolution in smallholder farming’ (World Bank, 2007: 1) based on the introduction of professionalised inputs such as improved seeds and chemical fertilizers and pesticides, distributed through private-friendly state interventions in input markets (ib: 135, 150-151).
The claim for a New African Green Revolution was welcomed by significant private actors, namely the Rockefeller Foundation and the Gates Foundation. Both foundations partnered in 2006 to fund the *Alliance for a Green Revolution in Africa* (AGRA), with the aim of making African farming systems more productive and competitive. The ambitions of such ‘new’ Green Revolution are largely inspired by the ‘old’ Green Revolution wave that took place in the 1960s and 1970s. The term refers to *the rapid growth in Third World grain output associated with the introduction of a new package of tropical agricultural inputs* consisting of *‘a combination of improved grain varieties, (...) heavy fertilizer usage and carefully controlled irrigation’* (Cleaver, 1972: 177).

As Patel points out (2013: 33), the ‘New Green Revolution for Africa’ rhetoric suggests that investments in improved agricultural methods had somehow and until now ‘bypassed’ sub-Saharan African, while ‘[T]here has been sustained investment in agricultural technology in Africa. Yet narratives of African agricultural development, (...) consistently represent Africa as the continent passed over by the Green Revolution’.

While in sub-Saharan Africa most of colonial agricultural investments were destined to large-scale settler agriculture (Bernstein 2010), the post-colonial state focused on the development of nation-wide systems of agricultural production based on the assumption that ‘(...) [T]he hand-hoe will not bring us the things we need today… We have got to begin using the plough and the tractor instead’ (Nyerere 1966: 183-4, cited in Coulson 1981: 71). The idea that market-oriented capital-intensive agriculture would foster economic development nourished the implementation of state-led programs of investments in agricultural villages (*ujamaa*) in Tanzania (Coulson 1981, Scott 1985) and of agricultural intensification in countries like Niger (Roberts 1981) and Ghana (Beckman 1981).

The guiding principle of such intervention was the idea that ‘traditional’ African farming is irresponsible to change, low-yielding and would not bear the technology needed to increase the productivity of land and labour (see Heyer et al. 1981, Williams 1981). Such assumptions were also the basis of interventions in the agricultural sector during the seventies and the eighties, the age of Structural Adjustment Programs and of market liberalisation (see Havnevik et al. 2007, Ponte 2002). While dismantling state support for agricultural modernization and pushing for the full commodification of inputs and output, both the state-led and the liberal model failed
to improve the livelihoods of African small-holder, while often increasing inequality and having adverse effects on smallholders’ production basis (Havnevik et al. 2007).

The classical criticism of the Green Revolution approach may be summarised in three main points. The first criticism calls into question the validity of the relationship between input use, increased agricultural output, and improved living conditions for smallholders. Advocates in favour of the 1960s and 1970s Green Revolution claim that a positive relation exists between increased input use on the one hand, and higher income for rural actors - including smallholder farmers - on the other. Lipton (1989) even frames it as a ‘necessary’ relation. The author points to the intrinsically higher productive potential of improved inputs, which should in turn raise income through two mechanisms: the marketing of the increased output and the larger amount of labour required to handle the increased output during the harvesting process. Moreover, it is also assumed that higher food production will push down food prices, thus increasing real wages (ib.) and improve overall food security (World Bank 2007).

However, as Das (2000) points out, this ‘necessary’ relation is not straightforward. First, the use of improved inputs tends to be expensive, which reduces access for resource-poor farmers. State subsidies might mitigate this problem, but such subsidy schemes tend to be temporary. This is problematic, given that research on input use trends in sub-Saharan Africa shows that subsidies are crucial to sustain high input use in the long term (Crawford et al., 2003:279-280). Second, the application of Green Revolution technologies does not necessarily enhance labour demand. On the contrary, large-scale production often requires mechanical harvesting through the use of tractors and other machineries, which tend to reduce the need for rural labour force (Das, 2000). The resulting surplus of labour would also ‘depress the increase in real wages brought about by low food prices.’ (ib: 63). The relation between small-holder farming and rural labour poses the crucial issue of rural class relations at the core of the social impact of Green Revolution programmes (Cliffe and Moorson 2007, see also Republic of Rwanda 2013; Gökgür, 2012), posing questions for the role of the state in the effective integration of newly dispossessed workers in capitalist agriculture (Lawrence 2015).

The second criticism questions the environmental sustainability of Green Revolution technologies, both in terms of the conservation of natural ecosystems and biodiversity, as in terms of the long-term productive potential of such farming models. The debate on the environmental effects of intensive input use is still ongoing. There is strong evidence that the
intensive adoption of monoculture arrangements raises the stress on water and soil resources (Singh 2000, Tilman 1998, Wilson 2000, Tilman et al. 2001, Patel 2013). As a result, fertilizer use becomes indispensable given that without it the important nutrient losses in the soil would make it impossible to achieve the spectacular Green Revolution yields. However, the intensive use of chemical fertilizers aggravates soil and water salinization, a process that also risks spreading to neighbouring ‘traditionally’ farmed plots (ib.).

Environmental sustainability is also important in terms of assuring long-term farming systems’ productivity. According to Weis (2010, 2007), environmental externalities not only represent the ‘hidden costs’ of capitalist industrial farming, but they also undermine the ‘operative logic’ of these farming models as they ‘mask the deterioration of the very biophysical foundations of agriculture. These include the undervaluation of the damage associated with: soil erosion and salinization, the overdraft of water and the threats to its long-term supply; the loss of biodiversity and crucial “ecosystem services” (...) and greenhouses (GHG) gas emissions’ (Weis, 2010: 316). Biodiversity represents a main concern for Thompson (2012), who sees the development and distribution of hybrid seeds in Africa by initiatives such as AGRA as a theft of African genetic biodiversity, ‘without benefit-sharing nor recognition back to those who developed the cultivars for centuries’ (ib., 345). Moreover, Cliffe and Moorson (2007) have showed how in Botswana changing rural class relations entailed changes in producers’ environmental stewardship, which can negatively affect agricultural productivity – a line of criticism which has also been taken up by classical political ecology (see also Blaikie 1987).

The third criticism points to the fact that the Green Revolution approach is often treated as the only possible body of agricultural knowledge at the expense of traditional knowledge and practices. From their original proponents to their contemporary counterparts, the Green Revolution discourse is framed in the language of modernization and seen as antithetical to ‘tradition’, which is associated with farmers’ knowledge and practices. Morgan and Murdoch (2000) highlight how Green Revolution debates represent a battlefield between, on the one hand, the bureaucratic standardized knowledge produced and administrated by scientific and rational institutions, and on the other hand ‘tacit knowledge’ seen as a context-specific experience-engendered corpus of knowledge accumulated by farmers on the ground. According to these authors, Green Revolution environments push farmers to ‘trade local knowledge for increased output’ (ib.:165). In fact, the exclusive attention of policy makers and of public and private institutions towards ‘scientific’ agricultural practices, results in the neglect of relevant
corpuses of indigenous or alternative knowledge (Schumacher and McMichael, 2009; Scott, 1985; Williams 1981: 28-36). While regarded as backward and somehow static, local-level knowledge can actually be rich in context-specific know-how on how to deal with cyclical adverse agro-ecological conditions.

Overall, these three points of criticism call into question the productive potential of Green Revolution technologies in the medium to long run, and their poverty-reducing potential. By situating the Rwandan experience against these three strands of criticisms, this paper aims at contributing to the debate on the viability of the African Green Revolution.

3. The Rwandan Effort to Agricultural Modernization: the Crop Intensification Programme

The Crop Intensification Programme (CIP) is the main policy adopted by the Rwandan government to bring about agricultural modernization. The CIP aims for the prioritization of six food crops (maize, wheat, cassava, beans, Irish potatoes, and rice), and at a uniformity in farming practices across the country. The programme focuses on 4 axes: (1) land use consolidation, (2) the distribution of fertilizers (namely DAP and UREA) and improved seeds, (3) the provision of proximity extension services, and (4) the improvement of post harvesting handling and storage.

Since its implementation, the CIP has led to encouraging results in terms of productivity. Production of maize, wheat and cassava tripled between 2007 and 2010, bean production doubled, and rice and Irish potato production increased by thirty per cent over the same time-span (MINAGRI 2011). However, there is a shared consensus that the implementation of Green Revolution policies will leave certain categories of farmers behind. According to the Ministry of Agriculture and Natural Resources, since the implementation of the CIP ‘some farmers were able to adopt Green Revolution more radically than others’ (MINAGRI 2011, 9). In the following sections, we will focus on the experiences of those farmers who have not been able to ‘radically’ adopt Green Revolution. We will do so by analysing their participation in three of the CIP axes: land use consolidation, the distribution of improved inputs, and the promotion of proximity extension services.
3.1. Land use consolidation

The first pillar of the CIP strategy is ‘land use consolidation’, a policy that aims for the rationalisation of land use for profit maximisation and ecological sustainability. Farmers keep their land rights, but they must use their land in such a way that ‘farmers in a given area’ grow ‘specific food crops in a synchronized fashion that will improve the productivity and environmental sustainability’ (MINAGRI 2011: 15). By the end of 2010, 254,000 hectares of land had been consolidated, mainly for the production of beans and maize. This represented – at that time - about eighteen percent of the total land in the country. The process is expected to continue as the government aims to consolidate seventy percent of the national agricultural land by 2017 (ib.).

The ambition to consolidate the use of land seems to fit within the rationale of previous Green Revolutions. As a strategy, it was crucial during the ‘second agricultural revolution’ in Europe, in order to increase productivity and yields (Bairoch, 1989). Also in India and South-East Asia, achieving increased output was considered to be only possible through the consolidation of large land holdings. This led to a reconfiguration in land ownership and use, favouring large landowners by pushing smallholders to lease or sell their plots (Das 2000). Others, however, have found an inverse relationship between farm size and productivity, even after a Green Revolution took place. On the basis of post-Green Revolution data from India for example, Carter (1984: 144) concluded that “these results suggest that small-scale agriculture warrants attention as a base for agriculture development in a land scarce economy”.

In the case of Rwanda, it is indeed questionable whether the consolidation of hill land use is leading to higher productivity rates. Blarel et al. (1992), for example, identified that in pre-1994 Rwanda, land fragmentation was advantageous to farmers’ risk management and productivity. For the post-genocide context (2001 dataset), Ansoms et al. (2008) found a strong inverse relationship between farm size and productivity, and a slight positive impact of plot fragmentation on productivity rates at farm level. The question is whether these findings will hold if land consolidation is accompanied by the other CIP policy measures. And, even if this would be the case, overall productivity is not the only concern.

In fact, another major issue is how land use consolidation is impacting on local food security. The implementation of the CIP implies that local agrarian systems will shift from auto-
subsistence based to being dependent upon market exchange, and that crops usually destined to food security are to be replaced by market-oriented crops. The assumption is that market integration and economies-of-scale effects will increase profitability and households’ well-being.

Our own in-depth field research material, however, suggests that this is not straightforward. In 2013, Cioffo gathered data on food security (on the basis of the HFIASiii questionnaire) and on land use for 150 householdsiv in two settings (onward referred to as setting A and B) in the Northern Province of Rwanda. The consolidation programme had been initiated in 2006-7 in setting A, and in 2008-10 in setting B. Households who participated in the study were identified on the basis of their socio-economic category, derived from the \textit{ubudehe} listsv, dividing the population in six ascending socio-economic categories. The sample was intentionally biased to include farmers who are poor and cultivate on small plots (between category 2 and 3), and who may engage in agricultural wage labour for other farmers or occasionally employ agricultural labourvi. Farmers in category 1 (extremely poor) and in categories 4 and 5 (better-off) are under-represented in the sample.

Table 1, and Figure 1 and 2 present the relationship between land consolidation and food (in)security. The rate of consolidation (r_C)vii is ratio of the number of consolidated plots (c_P) on the total number of plots (n_P)viii cultivated by the participating household. With a consolidation rate equal to zero, the household has no consolidated plots. When the consolidation rate is equal to one, all plots cultivated by the household are consolidated. The HFIAS category (Household Food Insecurity Scale Access indicator)ix is a measure for household food insecurity over the four weeks prior to the questionnaire. The data allow dividing households in four classes: 1 – food secure household, 2 – mildly food insecure household, 3 – moderately food insecure household, 4 – severely food insecure household. Figure 1 presents a histogram, figure 2 offers a whisker diagram for each HFIAS class in the sample, representing the distribution within each sub-sample with regards to the consolidation rate.
Table 1: Consolidation rate for the four HFIAS-category-based subsamples

<table>
<thead>
<tr>
<th>HFIAS Class</th>
<th>N</th>
<th>rC (average)</th>
<th>St. Dev.</th>
<th>rC (median)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>27</td>
<td>0.43</td>
<td>0.647</td>
<td>0.45</td>
</tr>
<tr>
<td>2</td>
<td>18</td>
<td>0.31</td>
<td>0.070</td>
<td>0.26</td>
</tr>
<tr>
<td>3</td>
<td>32</td>
<td>0.39</td>
<td>0.536</td>
<td>0.33</td>
</tr>
<tr>
<td>4</td>
<td>73</td>
<td>0.60</td>
<td>0.493</td>
<td>0.71</td>
</tr>
<tr>
<td>Total sample</td>
<td>150</td>
<td>0.49</td>
<td></td>
<td>0.48</td>
</tr>
</tbody>
</table>

Note: N=150; HFIAS equal to 1 = food secure household; equal to 2 = mildly food insecure household; equal to 3 = moderately food insecure household; equal to 4 = severely food insecure household. Source: own data

Figure 1: Histogram of Household Consolidation Rate and HFIAS class

Note: N=150; HFIAS equal to 1 = food secure household; equal to 2 = mildly food insecure household; equal to 3 = moderately food insecure household; equal to 4 = severely food insecure household; Source: own data
Note: N=150; HFIAS equal to 1 = food secure household; equal to 2 = mildly food insecure household; equal to 3 = moderately food insecure household; equal to 4 = severely food insecure household; Source: own data

On the basis of these figures, we see that there is no straightforward linear relationship between land consolidation on the one hand, and household food security on the other. The histogram of figure 1 indicates a high prevalence of severely food insecure households (HFIAS=4) among those who have consolidated all their plots (rC=1). The second highest concentration of severely food insecure households is to be found among the households who have consolidated none of their plots (rC=0). The comparison of the whisker plots (figure 2) and table 1 adds further complexity to the analysis. Food secure households (HFIAS=1) have a somewhat higher mean and median consolidation rate, whereas mildly and moderately food insecure households (HFIAS = 2 or 3) have the lowest consolidation rates. However, the subsample of severely food insecure households (HFIAS=4) has the highest mean and median consolidation rates.

Why are households with high consolidation rates so often severely food insecure? This is all the more intriguing given that consolidation schemes are generally set on fertile, better soils. As two respondents put it: ‘If you have good land, land which is productive, they will make you consolidate, and you will get poor. If you have land on which nothing grows (which is unproductive) they will not ask you to consolidate.’ (farmer 109, setting A, 2013, rc=1, HFIAS=4). ‘If you are poor and you consolidate, it is not good for you. But if you are poor and you do not consolidate, it probably means your land is worth nothing. (…)If you have a plot down
there on the mountains [referring to less fertile area], who is coming to ask you to consolidate? No one!’ (farmer 96, setting B, 2013, rc=0.86, HFIAS=1).

When cross-checking these quantitative data with qualitative data collected during the same field research (research 2013), three points emerge. First, the imposition of a particular crop type for the consolidated area reduces farmers’ ability to spread risk over a variety of plots and crops (see Ansoms, 2010; Musahara and Huggins, 2004). This is particularly relevant for poorer farmers with limited landholdings, who may prefer intercropping as a risk-management strategy. This was all the more relevant during 2013’s agricultural seasons, when a particularly long dry season followed very intense but particularly unpredictable rains (focus groups with aged farmers, setting A and B). As two respondents put it: ‘If the climate is good everything is good. If the climate is good everything is good. (...) But I don’t want to consolidate more than this, because then they would force me to do only one crop. They don’t allow you to mix crops, which is really bad, it is good to have a variety’ (Farmer 108, setting B, 2013, rC=1, HFIAS=4). ‘This season was very bad, the sun destroyed everything, (...) Then there was too much rain, which destroyed all the beans. Before we were mixing everything, sorghum, beans, potatoes... now we can’t do it anymore. So if the rain destroys all the beans, what do you eat?’ (Farmer 55, setting A, 2013, rC=0.33, HFIAS=4).

Second, land consolidation may entail a drastic reduction of available organic fertilising matter. The homogenisation of land use may curtail the availability of weeds, banana plants and other matters used for compost (we further explore this in the next section). Particularly households with small and few plots, or with irregular or short access to cash, may find it hard to find fertilising matter, which curtails productivity and food security. As one respondent put it: ‘If you can afford fertiliser, and you cultivate, and you have a lot of plots, you will have a lot. But if you don’t have anything, you won’t have anything’ (Farmer 110, setting A, 2013, rC=0.5, HFIAS=3).

Third, food security is also affected by the crop choice in the consolidation programme, a decision taken by bureaucrats at the national or district level. Farmers often do not recognise these crops as suitable for the local setting’s agro-climatic conditions (an issue we will also come back to in the next section). Moreover, a focus on market-oriented crop types is a risky undertaking for poorer farmers, as they lack access to insurance mechanisms or to storage facilities (Barret, 2008). This was the case for an overwhelming majority of the households in
our 2013 sample in the two settings in the Northern Province: the government agency which should have purchased the harvest arrived with a three month delay, forcing farmers to sell at prices forty to fifty percent lower than subsidised prices.

Issues of choice emphasize the top-down nature of the CIP. Land use consolidation is supposedly voluntary and consensual. However, from our interviews with district agronomists and rural communities, participation seemed to be a mere procedural concern. In our 2012 research with district agronomists, we asked whether opting out of land consolidation was possible. Agronomists claimed that there is no obligation to consolidate. However, farmers owning plots in the consolidated area have no choice but to consolidate. Moreover, farmers can only choose among the crops prioritized by the Ministry of Agriculture (research 2012). This was confirmed during several focus group discussions we had with farmers in 2013. In our own 2013 sample, several farmers only agreed after having been threatened with fines. Two farmers had spent a few nights at the local sector office for having cultivated non-consolidated crops.

The imposition of participation in land consolidation fits with the top-down decentralized structure of the Rwandan administration. Chemouni (2014) showed how the strict implementation of policy objectives through the performance contracts (*imihigo*) at every level of the administration provides a strong incentive for local authorities to achieve policy goals. In one focus group, farmers who were forced to grow cassava argued ‘*This is because of *imihigo* contracts. They have to say that a certain amount of people are cultivating cassava, so they obliged us. This is how they do*’ (Focus group with cassava producers, Southern Province, 2013).

The cross-check between quantitative and qualitative data presented in this section indicates that households with high consolidation rates are often severely food insecure due to a combination of bureaucratic commitment to policy implementation, crop choice and management, and non-policy factors. These effects unfold among lines of social inequality: they are less important for medium farmers who may combine production for the household and for the market.
3.2. Input distribution – Improved Seeds and Fertilizers

In line with the Green Revolution approach, the use of improved seed varieties and of insecticides and fertilizers is seen by Rwandan policy makers as a main driver for increased agricultural production and poverty-reduction (MINAGRI, 2011: 8).

Consequently, in 2011 Rwanda imported and distributed about 6000 tons of fertilizers through the CIP program (MINAGRI, 2011: 13). This further increased the use of fertilizers in the country, following an already spectacular raise from an average use of eight Kg/Ha in 2006 to twenty-three Kg/Ha in 2010 (IFDC, quoted in MINAGRI, 2011: 14). Moreover, about 5477 tons of improved seeds for maize and wheat were distributed between 2008 and 2011, generating an increase in the use of improved seeds of about thirty-seven per cent in comparison to the 2008 levels (Minagri, 2011: 13-14). Over the same period, about 138.000 tons of improved cassava bulks and 400 tons of improved sweet potatoes were distributed (Minagri, 2011).

The problems with the massive distribution of improved agricultural inputs are multiple. First, there is the issue of their accessibility. Chemical fertilizers, for example are distributed to farmers through a voucher systems that subsidizes fifty percent of the price of DAP, UREA and more recently also NPK. However, this voucher system is only accessible to those farmers who cultivate at least one hectare of land, an entry-barrier that is well above the average farm size in the country (farmers who do not cultivate enough land may group with others and collectively access seeds and fertilizer; this is however not so straightforward). Moreover, farmers interviewed in 2013 reported that the price of the fertiliser rose from about 18.000 Rwandan francs in 2009 up to 26.625 Rwf in 2013 (a 67 percent increase, research 2013).

Chemical fertiliser was often perceived by our 2013 interviewees as biased towards farmers who hold larger extensions and sufficient capital. As one farmer put it ‘[…] people who have a good harvest, that’s because they use fertilizer, while others do not. Chemical fertilizer, for example, if you have a job and you earn some little salary, you can go and buy it. This consolidation, it is good for the rich’ (Farmer 116, Setting B, 2013, rC=1, HFIAS=3). However, this does not mean that farmers who do not have any access to chemical fertilization remain untouched by modernization policies. These policies, in fact, have a profound impact upon households’ organic fertilisation strategies.
3.2.1. Limited access to fertilisers and improved seeds

In our 2013 research in the Northern Province, sixty-nine percent of the responding households found their access to organic fertilizer insufficient. In our qualitative interviews, respondents often linked the diminished availability of organic fertilizers to adverse weather conditions, but also to some of the CIP policy measures. Before detailing how these two factors may affect the availability of organic fertilizer, it is worth describing how such fertilizers were provisioned in the two settings before the start of the CIP. There were three ways through which households would produce organic fertilizer. First, household waste (comprising food waste and ashes from cooking) could be used to fertilize the cultivated plots while left fallow. Second, the remains of weeding work on the plots could be used to create ‘green manure’ (*engrais vert*). Third, animal manure would be used (often in combination with green manure) in order to produce on-farm organic fertilizer. While our 2013 interviewees often referred to the first of these three strategies as poorly effective, the second and the third strategy were seen as viable options.

The CIP policy affected the farmers’ ability to fertilise their plots in various ways. In fact, the policy of land use consolidation imposed the homogenisation of vegetal life on consolidated plots of land. Homogenisation naturally causes a decrease in the variety of plants available on the plots. Combined with a particularly long dry season (as experienced in 2013), this meant that less waste was available for producing green manure and for feeding manure-producing animals. Particularly in setting B, the large extension of consolidated land also meant that an important number of banana trees, one of the main sources of animal feed, had been cut. Moreover, the banana tree is ‘an important factory in terms of biomass production’, and the residue from banana beer production can be used in soil fertilization (Van Damme et al., 2013: 124). As one farmer put it: ‘It’s becoming hard to get (organic fertilizer), and that is essentially because people cannot use bananas anymore...the government has cut all the banana trees, because they say it is not productive and it is not modern, it is not development...’ (farmer 73, setting B, 2013, rC=0, HFIAS=0).

This dynamic translated to a lesser access to organic *and* industrial fertilizer for the poorest farmers in our 2013 sample. It is unclear whether this is similar for better-off farmers. On the one hand, they do have access to industrial fertilizers. On the other hand, they are subject to the same homogenisation of vegetal life and climate conditions. Especially if the long-term effects of industrial fertilizers on soil structure are taken into account, it is difficult to speculate whether
these farmers will be able of maintaining current levels of soil productivity. In short, when social differences and ecological constraints are taken into account, it is likely that overall the CIP has curtailed farmers’ ability to fertilize.

Furthermore, it is also debatable whether the twenty-nine per cent of crop-producing households currently using industrial fertilizers will be able to afford them once government subsidies are withdrawn. As Patel puts it (2012: 16), Green Revolutions ‘would not have succeeded without subsidies’. Unsubsidised input markets risk to compromise the economic viability of the smallest, resource-poor farmers (Feder and O’Mara, 1981). The Rwandan CIP policy seems to acknowledge this risk: ‘poor farmers bear the brunt of subsidy withdrawal leading [to] sharp declines in adoption rate, profitability and drops in agricultural productivity in smallholder farms’ (MINAGRI 2011:28). However, in our interviews with district agronomists (2012), there was much less awareness about this problem. Overall, the interviewed agronomists expressed optimism about the capacity of Rwandans smallholders to afford improved inputs, even in case the government would withdraw its subsidies. While recognised as a major problem from the long-term profitability of the programme, local agronomists seem blind to the structural challenges keeping smallholders from purchasing fertilisers. The problem of farmers’ reticence in input adoption is rather seen as an issue of ‘mindset’.

Seeds are, together with chemical fertilisers, part of the Green Revolution package. According to the 2010/11 EICV data, about 19 per cent of all crop-producing households used improved seeds within their farming systems (GoR, 2012). Our 2011 and 2013 research highlighted three main problems with the improved seed distribution systems. First, the conditions for access to and use of improved seeds are often set by cooperatives’ management, certainly in the case of marshland production. Our 2011 research in the Southern province suggested that - while in some cases the results were encouraging (see e.g. the example of ‘cooperative B’ in Ansoms and Murison, 2012) - in others, they were far from positive. In several settings, interviewees reported that cooperatives ‘had chosen the wrong seed several times in a row’ with extremely perverse consequences on overall output. In addition, many farmers pointed to the problem of not being allowed to regenerate seeds for the next season and resented being entirely dependent on cooperatives to decide ‘what to produce next’ (research 2011).
Second, our 2013 research indicates that the price for improved seeds remains a constraint for the poorest smallholder farmers. Indeed, it was true that farmers who managed to purchase the fertiliser pack receive free (hybrid or open-pollinated) maize and wheat seeds. However, seeds for other consolidated crops such as Irish potatoes often remained unaffordable for most farmers. Moreover, increased pressure on seed prices was also reinforced through the consolidation programme itself, as seed prices for traditional crops tend to rise. During our 2013 research, for example, in an area with Irish potatoes and maize were recommended crops, the price of sweet potatoes plants and sorghum seeds had skyrocketed (2013, setting B).

Moreover, non-traditional crops may perform important social functions (see also Cioffo 2014). In the case of setting B (2013 research), sorghum represented an important part of the food basket consumed in that region, and sorghum beer brewing had always been an important source of income. Moreover, sorghum requires less work and capital to be transformed into flour, while maize flour production requires a mill. Farmers reported increased stress as a consequence of changes in their food-consumption habits.

3.2.2. Inputs versus agro-climatic diversity and ecological sustainability

As mentioned in the previous section, ecological concerns are not only linked to environmental issues, they are also crucial to ensure long-term productivity gains (Moore 2010, Weis 2007, Woodhouse 2012). The regeneration of soil fertility has always been a major problem for Rwanda, a country with hilly, high-altitude cultivated land and high population pressure. ‘In 1991’, in fact ‘farmers estimated that approximately half their land exhibited declining soil fertility. By 2000A (agricultural season) the estimate was at 61% with 72% of farmers reporting a decline in soil fertility’ (Kelly et al. 2001). Such degraded land is spread over an important variety of agro-ecological conditions, requiring a case-by-case approach (Steiner 1998). Although a small country, in fact, Rwanda is ecologically rich, and presents a variety of different soils, at different altitudes, that require a diverse approach in order to preserve soil productivity (ib). As we have shown in the previous, the CIP approach tends to reduce rather than enhance diversity when dealing with soil management.

The massive introduction of improved seeds also imposes risks with regards to agronomic and ecological sustainability in the medium to long run (see also Yapa 2015). The homogenisation of agricultural practices is often not suitable for local-level agro-climatic and ecological
conditions. Rwandan local seed variety is reducing, while it is an important factor for eco-

system biodiversity, and provides a safety mechanism in case of pests and diseases (Van

Damme et al., 2014). Moreover, whereas authorities from the Ministry of Agriculture and the

Rwanda Agricultural Board interviewed in 2012 and 2013 claimed the opposite, farmer in both

settings included in the 2013 research reported that hybrid seeds were difficult or impossible to

replicate, forcing them to acquire seeds on the market

3.3. Proximity Extension Services

In the case of Rwanda, extension services exist at different levels, with the district and sector

agronomists as the most important providers. These agronomists are responsible for connecting

national policy makers with farmers on the ground. However, they lack budgetary and
decisional autonomy. Because of this, they input they provide farmers descends from a top-
down logic in policy implementation (see Ansoms, 2010; Ingelaere, 2010) with little concerns

for field realities.

However, even more problematic is the way in which agronomists themselves envision

peasants’ practices on the field. In several of our 2012 interviews with district agronomists,

peasants were regarded as ‘rétrograde’, somehow irrational and continuously trying to reject

‘modernity’. Agronomists saw resistance as the result of a lack of understanding or intelligence,

which training and sensitisation would help overriding, regardless of social differences or

ecological specificities. One agronomist, for example, mentioned: ‘With their [peasants’]

archaic practices, there was resistance at the beginning of the CIP. But with time and

sensitisation […] we have overcome them’.

This dissociation between a modernity to which agronomists and other service providers

belong, and a backward rural past in which peasants would be locked, is truly problematic. It

disregards a priori all forms of context-specific know-how engendered by the accumulation of

peasants’ experiences with their farming environments. Morgan and Murdoch (2000) find that

such pools of ‘tacit’ knowledge (Polanyi, 1966) - which could compete in terms of sustainability

with their ‘modern’ counterpart - tend to be lost as farmers give ‘way to the standardized,

codified knowledge accompanying chemical sprays’ (Morgan and Murdoch: 165). Polanyi’s
tacit knowledge is a concept akin to that of ‘vernacular’ knowledge introduced by anthropologist James Scott (1985).

Scott (ib.) notices that the replacement of vernacular knowledge with codified, scientific knowledge is essential for states to govern populations and space, and to extract economic surplus. While the link between state consolidation and land consolidation is not the object of this paper, it is worth noticing such double aim of codified knowledge. De Forges (2006) had already noticed how the RPF-led post-genocide Rwandan government identified traditional Rwandan farming practices as one of the main obstacles to make the country ‘governable, and to trigger economic accumulation. Thus, the diffusion of scientific knowledge on soil fertility and agricultural production continues to consolidate the presence of the Rwandan state in the countryside. Local agronomists appear as dispensers of agricultural modernity. Their role is threefold: to diffuse codified knowledge, to annihilate local repositories of tacit or vernacular knowledge, and to enact state presence. The obvious result of this process is the loss of specific practices and relations that, in the past, made Rwandan small-holder farming viable.

4. Conclusion: fundamental flaws in Rwanda’s Green Revolution approach

While drawing on the international discourse on a ‘new’ Green Revolution for Africa, the Rwandan CIP presents little novelty. Moreover, contrary to policy discourse, it seems to offer little opportunities to small-holder farmers. The data in this paper illustrated three areas in which the CIP fails to deliver its gains to smallholder farmers, the majority of the Rwandan population.

First, the increase in production seems to provide an advantage to medium and large farmers who are capable of engaging in capital intensive agricultural techniques, while curtailing economic choice for the poorest producers. This is made evident by failures of food security in the Northern Province, and by the inability of the poorest farmers to access improved, modern inputs. Second, the top-down, bureaucratic approach towards soil management and ecological diversity risks undermining biodiversity and farmers’ capacity to maintain the productivity of land and labour. Third, the same top-down approach has led to the forceful introduction of modern forms of knowledge, consolidating state reach and its capacity to appropriate value from farmers’ production while annihilating pre-existing forms of ecological stewardship and agricultural production.
The criticisms of Green Revolution presented in this paper together with field observations suggest that these three factors are already polarizing social differences in the countryside. While the government and more capital-intensive farmers are placed in the space of modernity and capitalist production, the poorest producers are left with feeble access to both industrial and on-farm productive inputs. Increasing inequality in access to agricultural inputs - when combined with the lack of off-farm jobs in the country (Republic of Rwanda 2013; Gökgür, 2012) - reveals the persistent class-bias of the Rwandan CIP and of the African Green Revolution. Such trend is worrying for the future of those farmers who will inevitably be pushed out of the agricultural sector while lacking wage-opportunities in the secondary and tertiary sector.

Bibliography

Steiner, K.G. (1998). ‘Using farmers ’ knowledge of soils in making research results more relevant to field practice : Experiences from Rwanda. *Agriculture, Ecosystems and Environment* 69, 191 – 200

1 Morgan and Murdoch use this concept in the same way as it was introduced by Polanyi in 1969.
2 The 2005 organic land law also follows this rationale (see Pottier 2006).
3 The Household Food Insecurity Access Scale (HFIAS) is a measure of food insecurity developed by USAID (see FANTA 2007). The HFIAS measure the food insecurity positions of household at a given point in time, and therefore does not provide indication of variation over-time (linked for example to seasonal variations, change in input availability, etc.), this is to be kept in mind during the discussion of the data. However, when triangulated with qualitative data it may provide a strong indication for the food security trends for the concerned households.
4 The initial sample included 154 households. However, one household did not consent to participate in the HFIAS assessment, while the other two only provided incomplete answers to the HFIAS questionnaire.
5 Ubudehe lists divide the population in six ascending socio-economic categories. The average ubudehe category of the selected household is 2.75. The use of ubudehe lists is problematic in itself, as our own fieldwork experience suggests that being placed in an ubedehe category rather than into another is often dependent on local politics rather than on household wealth. In our 2013 study, in fact, relatively wealthy households with good connections would often be placed in lower categories by local authorities. Similarly, poor household would often be placed by local categories in higher ubudehe classes, in order to meet poverty-reduction goals. Therefore, the sample was adjusted during the research through snowball sampling in order to correct these biases.
6 Households belonging to the first category are defined as ‘the most vulnerable’ (abatindi nyajujya), and own no land on which to cultivate. Farmers in the second, third and fourth ubudehe classes are respectively identified as: vulnerable (abatindi), owning very small surfaces and combining agriculture with agricultural wage work; poor (abakene), owning small surfaces from which they manage to feed their household and more rarely engaging in agricultural work; non-poor (abakene bifashije), working on their own plots and accumulating a small surplus. Farmers in the fifth and sixth category are respectively defined as: wealthy (abakungu), owning fertile land, cattle, savings and often employing agricultural work; and very wealthy (abakire) who mostly employ agricultural work, have access to savings and may live in urban centers (see Ansoms 2010: 100)
7 Ideally, we would have calculated the consolidation rate on the basis of the percentage of cultivated and consolidated surface out of the total surface the household cultivates. Although this would be a more accurate measure, data on exact household cultivated surface were only available for less than a half of the sample.
8 $rC = cP/nP$

* This could be explained as a result of the fact that households with only one plot of land are generally poorer and more food insecure. These households either have a consolidation rate of 0 (if their plot is not consolidated) or 1 (if their plot is consolidated).