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Abstract 

Vaccination programs generate direct protection, herd protection and, occasionally, side 

effects, distributed over different age groups. This study elicits the general public’s view on 

how to balance these outcomes in funding decisions for vaccines. We performed an optimally 

designed discrete choice experiment with partial profiles in a representative sample (N=1499) 

of the population in the United Kingdom in November 2016. Using a panel mixed logit model, 

we quantified, for four different types of infectious disease, the importance of a person’s age 

during disease, how disease was prevented—via direct vaccine protection or herd 

protection—and whether the vaccine induced side effects. Our study shows clear patterns in 

how the public values vaccination programs. These diverge from the assumptions made in 

public health and cost-effectiveness models that inform decision-making. We found that side 

effects and infections in newborns and children were of primary importance to the perceived 

value of a vaccination program. Averting side effects was, in any age group, weighted three 

times as important as preventing an identical natural infection in a child whereas the latter was 

weighted six times as important as preventing the same infection in elderly aged 65-75 years. 

These findings were independent of the length or severity of the disease, and were robust 

across respondents’ backgrounds. We summarize these patterns in a set of preference 

weights that can be incorporated into future models. Although the normative significance of 

these weights remains a matter open for debate, our study can, hopefully, contribute to the 

evaluation of vaccination programs beyond cost-effectiveness.   
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United Kingdom; age; side effects, herd immunity, cost-effectiveness analysis, decision 
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1. Introduction 

Economic evaluation methods such as cost-effectiveness analysis (CEA) are common 

components in public funding decisions for vaccines (Drummond, Sculpher, Torrance, 

O'Brien, & Stoddard, 2005; Walker, Hutubessy, & Beutels, 2010). They feature in the standard 

evidence considered by e.g. the Advisory Committee on Immunization Practices in the US, 

the Joint Committee on Vaccination and Immunization in England, the World Health 

Organization and non-governmental organizations such as the Bill & Melinda Gates 

Foundation (Ricciardi et al., 2015). At the same time, it is widely acknowledged that these 

evaluation frameworks have important shortcomings and that they alone offer insufficient 

basis for making fair and efficient vaccine funding decisions (Cookson, Drummond, & 

Weatherly, 2009; Dukhanin et al., 2018). There is a growing literature about the limits of CEA 

in assessing the value of vaccination (Barnighausen, Bloom, Cafiero-Fonseca, & O'Brien, 

2014; Bloom, 2011; Bloom, Fan, & Sevilla, 2018; Luyten & Beutels, 2016).  

One important criticism is that CEA is limited in how it values the consequences of vaccination. 

Summary outcome measures [such as e.g. infections prevented or Quality-Adjusted Life 

Years (QALYs) gained] neglect the particular social context in which these outcomes occur. 

Nonetheless, such contextual features are important aspects to consider when evaluating a 

vaccination strategy. Vaccination induces disease protection in those who become 

vaccinated, but it also creates herd protection (or indirect effects in third parties because of 

reduced pathogen transmission (Fine, Eames, & Heymann, 2011)) and, occasionally, adverse 

clinical side effects. There are qualitative differences between these direct, herd and side 

effects. Creating herd protection can be of particular ethical value (e.g. to protect vulnerable 

groups who otherwise cannot protect themselves) and there is a profound psychological 

impact of vaccine-induced side effects. Moreover, the distribution of these three different effect 

types over different age groups is important. Side effects can be concentrated in one age 

group despite indirect protection from reduced transmission benefitting either the wider 

population, or in some cases a different age group entirely (Anderson & May, 1991). Examples 

include protecting the elderly through childhood influenza vaccination or future generations 

through a polio eradication program. Such broader, distributive aspects of vaccination are 

important but they remain neglected in standard cost-effectiveness or public health impact 

models.  

Several notable examples illustrate that this broader social context of health outcomes needs 

to be considered in vaccine decision-making. For instance, vaccines against rotavirus 

(Rotashield®) and pertussis (whole cell pertussis vaccine) were withdrawn from many 

countries because of a perceived risk of side effects, even though from a medical perspective 
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the benefit from vaccination largely outweighed any potential risk (Blume & Zanders, 2006; 

Granstrom, 2011; Lynch et al., 2006). Also, despite persuasive economic and public health 

benefits of childhood influenza vaccination, few countries have actually implemented such a 

preventive strategy, due in large part to concerns about the social acceptability and equity of 

targeting vaccination at children to protect the wider population (McGuire, Drummond, & 

Keeping, 2016). And, in many countries introduction of an effective varicella vaccination 

program has been delayed because of concerns about the possible ‘exogenous boosting 

effect’ and its social repercussions, i.e. that reduced chickenpox transmission among children 

(due to varicella vaccination) might temporarily increase shingles incidence among older 

generations (Luyten, Ogunjimi, & Beutels, 2014).  

Misjudging ethical norms and social sensitivities in vaccination policy by over-relying on CEA 

can have important implications. It may affect the perceived equity of a program, its support 

by the public and its long-term sustainability (Charo, 2007; Feudtner & Marcuse, 2001; Salmon 

et al., 2006; Yaqub, Castle-Clarke, Sevdalis, & Chataway, 2014; Hornsey, Harris, & Fielding, 

2018; Tomeny, Vargo, & El-Toukhy, 2017). It can invoke public backlash to the vaccine, 

leading to reduced uptake, increased vaccine hesitancy and reduced overall effectiveness of 

the program (Bauch & Earn, 2004; Bhattacharyya, Bauch, & Breban, 2015; Ndeffo Mbah et 

al., 2012). Therefore, an empirical evidence-base is needed about the public’s view on the key 

value judgments that need to be made in vaccine funding decisions (Bombard, Abelson, 

Simeonov, & Gauvin, 2011; Field & Caplan, 2012; Luyten, Dorgali, Hens, & Beutels, 2013; 

Makarovs & Achterberg, 2017; Poland & Marcuse, 2011). Such evidence can complement 

formalized appraisals like CEA, stimulate deliberation and discussion on how to prioritize 

vaccines within a budget constraint and, moreover, it can be explored whether such evidence 

can become quantitatively integrated into formal decision frameworks in some sort of 

‘extended’ or ‘weighted’ CEA (Cookson et al., 2009; Fleurbaey, Luchini, Muller, & Schokkaert, 

2013).  

The objective of this study is to address this challenge by analyzing how the population in the 

United Kingdom prioritizes vaccination programs and to investigate whether its values diverge 

from the assumptions that are implicitly underlying CEA. We use a discrete choice experiment 

(DCE) among a representative sample of the population in the United Kingdom (UK) to 

investigate, for four different types of infectious diseases, the role played by different age 

groups in a program’s overall evaluation and the extent to which it matters whether these age 

groups are affected by either direct, herd or side effects. We summarize these findings into a 

set of social preference weights for health outcomes (e.g. QALYs) that could be incorporated 

into economic evaluation or public health impact models.  
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2. Methods  

DCEs are a widely used survey method to quantify individuals’ preferences (Louviere, 

Hensher, & Swait, 2000; Ryan, Gerard, & M, 2008) (for a general review of applications, see 

de Bekker-Grob, Ryan, & Gerard, 2012). Participants are presented with a series of choice 

sets, usually between two goods described by the same attributes but differing in their attribute 

levels. By observing respondents’ preferred choices, researchers can infer how the value of 

the competing options is determined by the attributes of the product. In our case, we observe 

how people prioritize between vaccination programs based on the number of direct, herd and 

side effects generated by the program, and their distribution over different age groups. This 

allows us to estimate a utility function that describes how the public values vaccination 

programs, taking into account the different types of vaccine effect and their distribution. 

 

2.1 Choice context 

For all of their choices, respondents were randomly assigned one of four disease scenarios 

(see Appendix A). These were introduced before the start of the DCE. After five choice sets 

this disease was presented again to the respondent as a reminder. The four disease profiles 

were described as (1) severe—lasting nine days, (2) mild—lasting nine days, (3) severe—

lasting 160 days, and (4) mild—lasting 160 days. Influenza and pertussis were used as proxies 

for an acute severe and a longer lasting milder disease, respectively (van Hoek et al., 2014; 

van Hoek, Underwood, Jit, Miller, & Edmunds, 2011). To avoid participants’ preconceived 

ideas, the diseases were unnamed and only described to participants by means of severity 

using the generic descriptors of the dimensions of a standard instrument to measure health-

related quality of life, the EuroQoL EQ-5D-3L, based on average reported values for both 

influenza and pertussis (van Hoek et al., 2011, 2014). To exclude considerations about age 

differences in remaining life expectancy, we explicitly told the participants that the diseases 

were not fatal.  

Before every choice set we told respondents the following: “the government has to choose 

between two vaccination programs that will each be used in 100,000 people. Considering your 

conviction about vaccination policy, which program do you think the government should 

choose? Both options are equally costly, and identical in every way except for the following 

differences.”  
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2.2 Attributes and levels of vaccination programs 

To develop the final attributes and levels of the vaccine programs included in the DCE, we 

followed a three stage iterative process. We performed a literature search of other vaccine-

related DCEs to assess the choice context and which attributes were typically considered. 

These attributes were disease incidence, case fatality risk, economic impact, duration of 

illness and duration of vaccine protection, severity of illness and severity of side effects, and 

various personal characteristics including age, gender and willingness/ability to get vaccinated 

(de Bekker-Grob et al., 2010; Hofman et al., 2014; Lambooij et al., 2015; Sadique, Devlin, 

Edmunds, & Parkin, 2013; Veldwijk, Lambooij, Bruijning-Verhagen, Smit, & de Wit, 2014). 

From this list, we took the attributes that were, in combination with the four disease profiles, 

best suited to answer our research question. We presented several attribute combinations to 

a convenience sample of lay persons, colleagues and collaborators at the market research 

company in a pilot questionnaire, which we revised in response to received comments. We 

re-iterated this process until we found the right form for the DCE from which, with a relatively 

simple set of in total five core attributes (Table 1), we could robustly calculate preference 

weights.  

The first two attributes described the age group targeted for vaccination and magnitude of the 

direct effects among those vaccinated. The third attribute described the number of side effects 

occurring among those vaccinated. The side effects of vaccination were presented in the DCE 

as identical to an episode of the disease that the vaccine usually prevents, in order to enable 

a direct comparison between the three effect types. Not doing so would have meant using a 

second health profile within one choice option (one for the disease and one for the side effects) 

and this would also have made the experiment substantially more difficult for the participants. 

The fourth and fifth attribute described the magnitude of the herd effects and the age group 

that received them. We decided to focus only on the morbidity aspects of illness because 

including mortality would require additional attributes for infected people in order to account 

for their differing life expectancy.  

For direct and herd protection we used 1000, 3000 or 5000 disease episodes prevented per 

100,000 people vaccinated (an attack rate of 1-5% for a vaccine with a 100% efficacy), and 

for side effects 100, 300 or 500 disease episodes per 100,000 people vaccinated (an attack 

rate of 0.1-0.5%). For direct protection and side effects, we considered the following three age 

groups: children aged between 3 months and 3 years of age, adults aged between 30 and 50 

years, and elderly aged between 65 and 75 years. The age groups for herd protection 

represented groups that, in the case of the first two, are often difficult to vaccinate for 
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immunological reasons: young children under 3 months, elderly above 80 years and 

unvaccinated adults between 30 and 50 years.  

We depicted both the age group and quantity of cases avoided or caused by vaccination using 

simple graphics (Ancker, Senathirajah, Kukafka, & Starren, 2006) (Figure 1). To explicitly 

investigate the assumption whether individuals ultimately look at the total impact of the 

program and to reduce the chance that respondents would adhere to a simple counting 

heuristic without reflection, we presented the net number of disease cases averted for each 

strategy separately (the sum of direct and herd effects minus side effects).  

 

2.3 Experimental design of the choice sets 

The design of a DCE refers to the number and composition of choice sets presented to each 

participant (Reed Johnson et al., 2013). A set of 45 choice sets was selected out of the 58,806 

possible choice sets (see Appendix B for more info on the selection process and distributed 

over three survey versions, so to limit the number of choice sets to be completed per 

respondent to 15. Therefore, each of the four disease profiles was represented in three 

different surveys (see Figure 2).  

The choice alternatives (i.e. profiles) themselves were ‘partial profiles’ (Kessels, Jones, & 

Goos, 2011, 2015). We varied and highlighted the levels of two to four of the five attributes in 

the choice sets and kept the remaining attribute(s) constant so that respondents did not have 

to simultaneously trade-off all five dimensions per choice (see Appendix B). Limiting the 

cognitive burden for respondents in a DCE increases the validity and reliability of their answers 

(Dellaert, Donkers, & van Soest, 2012). The design we generated was ‘D-optimal’ in a 

Bayesian framework fitting with a multinomial logit (MNL) model for the attributes’ main effects 

and six interactions between the two age attributes (direct and herd effects) and the three 

magnitude attributes we deemed to be important a priori. We chose a Bayesian framework to 

integrate prior information on the respondents’ likely preferences (Kessels, Jones, Goos, & 

Vandebroek, 2011) (see Appendix C). The Bayesian D-optimal design then results in the 

smallest possible standard errors for the utility estimates at the given sample size.   

 

2.4 Sample  

After the design, we tested our survey among a pilot sample of the online panel (N=69) to 

confirm that respondents could fully understand and complete the survey. Based on the 
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feedback from this pilot sample we judged that the experiment was understandable and that 

no further changes were needed.  

From a consumer panel of 1 million UK members, 9613 random panelists were approached 

to participate in “a scientific study on resource allocation in healthcare”. Of these people, 4144 

(43%) responded to the invitation. We recruited 1950 of them to fulfill predetermined quotas 

to provide a representative sample of the UK population in terms of gender, socio-economic 

strata (indicated by the occupation of the head of the household), age groups (20-29, 30-39, 

40-49, 50-59, 60+ years), and urban vs. rural background.  

The DCE was conducted in November 2016. An email containing a link to the survey website 

was sent to participants and by clicking on the link respondents consented to participate, 

although they were free to stop or close the survey at any point. All respondents received a 

nominal incentive for study completion (£0.50 per 12-minute questionnaire). Before 

completing the DCE, respondents were asked to administer a survey tool to measure vaccine 

hesitancy (Larson et al., 2015), and were asked social-demographic questions and whether 

they have or had children. After the DCE, we asked about their experience with severe 

diseases, their interpretation of the validity of the answers they provided and the overall 

difficulty of the DCE survey. 

We obtained informed consent from all respondents and ethical approval of the study from the 

Ethics Committee of the London School of Hygiene & Tropical Medicine (Ref 10335). We 

conducted the research in accordance with the Code of Conduct of the Market Research 

Society, which ensured that information is collected for research purposes only, is kept 

confidential, and respondent anonymity is guaranteed.  

 

2.5 Data analysis 

To quantify the weight of the five attributes and their levels in the utility attributed to a 

vaccination strategy, a panel mixed logit model (fitted by the Hierarchical Bayes method (Train, 

2009)) was used (see Table 3). The model involved seven main effects: four related to the 

two three-level categorical attributes describing the utility impact of a change in the targeted 

age group in direct and herd effects, and three related to the continuous attributes describing 

the impact of a change in the absolute number of disease cases via direct effects, side effects 

and herd effects. Besides these seven main effects the model also includes attribute 

interaction effects, indicating the additional change in utility because of a particular 

combination of attribute levels. We computed the overall significance of the attributes using 

likelihood ratio (LR) tests and measured the relative importance of the attributes by the 
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logworth statistic (i.e. –log10 (p-value of the LR-test)). The coefficients of the logit model were 

obtained by estimating the a priori model, i.e. the model with the utility function that seemed 

most appropriate when planning the DCE, and subsequently dropping the non-significant 

model terms until we obtained a final model in which all effects had significant explanatory 

value at the 5% level. Models were fitted using the JMP 13 Pro Choice platform (based on 

10,000 iterations, with the last 5000 used for estimation) assuming normally distributed 

parameters with no correlation between the attributes. Combining the main and interaction 

effects, this model allows calculating the additional utility of a vaccination program generated 

per additional health effect, i.e. per type of effect per age group (see the nine variations in 

Table 3). The 95% confidence intervals for the equity weights were estimated using the Delta 

method (Bliemer & Rose, 2013).  

We investigated heterogeneity in respondents’ preferences in two ways. First, by exploring 

the influence of the observed respondent characteristics on the average preferences and, 

second, by studying the unobserved preference heterogeneity by means of a hierarchical 

cluster analysis on the subject-specific estimates resulting from the Hierarchical Bayes 

approach. We favoured this two-stage modelling method as it performs equally well as one-

stage modelling methods such as latent class modelling (Crabbe, Jones, & Vandebroek, 2013) 

while enabling us to parsimoniously derive the preference weights and their 95% confidence 

intervals.     

 

3. Results 

3.1 Response 

A total of 1546 respondents out of 1950 (79%) who were sent the questionnaire completed it, 

of which 47 (3%) indicated that the questions were too difficult or their answers invalid, leaving 

1499 questionnaires for analysis. Our final sample was sufficiently representative of the UK 

population in terms of gender, family size, socio-economic status and education level 

(Table 2).  

 

3.2 Main effects and calculated weights 

Across all questionnaires, respondents made a total of 22,485 choices between vaccination 

programs. There was no significant effect observed of which of the three survey versions a 
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participant received. Respondents did not systematically choose the program with the highest 

overall public health impact, i.e. the total of all prevented cases including direct, herd and side 

effects. In fact, only 99 respondents (6.6%) consistently opted for the most effective program 

in all of their choice sets. However, about half the respondents (738/1499) chose the most 

effective alternative in at least 70% of their choices, indicating that the total effect on the 

disease burden is important, but not the only factor in prioritizing vaccination programs.  

Table 3 presents an overview of the incremental utility of the main effects and interactions. 

The vaccination program that was least preferred (i.e. yielding minimum utility) was one that 

targeted the elderly (65-75y), generated the lowest number of prevented cases, the highest 

number of side effects, and the lowest number of cases prevented via herd protection in 

unvaccinated adults. The most preferred program (i.e. yielding maximum utility) was one that 

targeted children, generated the highest number of prevented cases, the lowest number of 

side effects, and the highest number of cases prevented via herd protection in newborns.  

Using the same logit model, we then calculated preference weights for each effect type per 

age group. These weights act as a multiplicative factor to transform identical clinical symptoms 

into health effects with equal value in the public’s view. We compared the additional utility of 

a vaccination program that is generated through preventing one specific disease case relative 

to the utility gained through directly preventing a single disease case via vaccinating a child 

(Figure 3). These preference weights reveal important patterns. First, preventing side effects 

of vaccination was highly preferable to preventing natural infections, even though the 

symptoms were equal in length and severity. The mean weight for side effects across all ages 

was -2.93, meaning that avoiding one vaccine-induced infection was weighted equally to 

avoiding around three natural infections among children. This finding was consistent whether 

side effects occurred in children (-2.95 (95% CI: -3.21; -2.69)), adults (-3.16 (95% 

CI: -3.51; -2.81)) or the elderly (-2.68 (95% CI: -2.98; -2.37)). Second, respondents preferred 

vaccination programs that prevented disease among newborns and children compared with 

those for adults and the elderly, even though the prevented disease burden was identical. One 

episode prevented in a newborn via herd protection was considered about twice as valuable 

as directly protecting an adult via vaccination. Third, the extent to which respondents preferred 

protecting adults and the elderly depends on the type of benefit conferred by the program. 

Direct effects were the preferred mode of protection for adults whereas herd effects were 

preferred for the elderly. Reducing disease burden by directly vaccinating adults (aged 30-50 

years) was weighted equally to reducing disease burden in the elderly (aged 80+ years) via 

herd effects [0.75 (0.64; 0.85) compared to 0.67 (0.58; 0.76), respectively]. In contrast, 

reducing disease burden in adults (aged 30-50 years) by herd effects counted equally to 
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reducing disease burden in elderly (aged 65-75 years) directly via vaccination (0.12 (0.03; 

0.20) compared to 0.16 (0.06; 0.25), respectively).  

From these results, we also calculated the number of infections needed to avert in order to 

obtain equal utility as that from protecting 100 children directly via vaccination (Table 4). 

Avoiding 100 infections in children via vaccination was considered equivalent to protecting 

632 elderly (65-75 years) or 134 adults. In turn, these outcomes were equivalent to protecting 

71 newborns, 865 adults or 150 elderly (>80y) via herd protection. Similarly, a vaccination 

strategy reduces its utility by causing side effects. Avoiding 34 side effects in children 

generates the same utility as preventing 100 natural infections among the same age group.  

Figure 4 illustrates the significant interaction in our model between the age of the vaccinated 

group and the age of the herd protection recipients (see Table 3). This interaction must be 

understood as the additional utility that is given to (or taken away from) a vaccination program 

depending on the particular combination of age groups that are involved, regardless of the 

magnitude of direct, herd or side effects that are being generated. It presents the 

attractiveness of particular intergenerational vaccination strategies. Whereas a CEA 

perspective would consider all possible age combinations equally attractive (as long as they 

lead to the same number of infections prevented), our sample had clear intergenerational 

preferences over vaccination strategies. Any age group was deemed acceptable to vaccinate 

when there were herd protection benefits for newborns. To generate herd protection for adults, 

children were the most attractive age group. To generate it to protect the elderly >80, adults 

were deemed most appropriate. The least attractive intergenerational combination was 

vaccinating elderly 65-75 years while generating herd protection in adults 30-50 years. The 

most attractive age combination was vaccinating children while generating herd protection in 

newborns.  

 

3.3 Preferences across disease types and respondents 

As shown in Appendix D, our results remained robust across all four different disease types: 

the equity weights were statistically equivalent, regardless of whether the condition was mild 

vs. severe or acute vs. chronic (indicated by a non-significant interaction effect in our model 

between the attributes and the disease type). Also, the appendix illustrates that our findings 

also remained robust across most respondent characteristics: gender, age, occupation, level 

of education, urban-rural, socio-economic background, experience with severe illness or 

parental status. Although individuals with a low degree of vaccine hesitancy (indicated by high 

values on the ‘vaccine hesitancy scale’ (VHS) (Larson et al., 2015)) attributed less importance 
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to side effects (p<0.0001), this effect was relatively small (a 10 unit increase in the VHS score 

(on a scale from 10 to 50) led to a 10% decrease in absolute magnitude of the utility for side 

effects (~0.03)).  

The hierarchical cluster analysis of the individual preferences (see methods) revealed two 

distinct groups of respondents: one group (N=564, Cluster 1) who attached almost no 

importance to the number of side effects (with a mean weight of -0.91 for side effects) and a 

larger group (N=935, Cluster 2) who valued this attribute fairly highly (with a mean weight 

of -4.40) (Table 3). This clustering explains the relatively high variation across respondents 

for the weight estimate for side effects (the standard deviation to mean absolute value ratio of 

0.043 for side effects is almost twice the ratio for direct and herd effects). We used a logistic 

regression to determine predictors of cluster membership. Cluster 1, who attached almost no 

importance to the number of side effects, was characterized by high values on the VHS, 

indicating little hesitancy (p<0.0001). On the other hand, cluster 2, who valued side effects 

more highly, was characterized by higher degrees of hesitancy on the VHS. However, the 

predictive power of this association for membership of the group was small (McFadden’s 

pseudo R2=0.6%), implying that there is much unexplained heterogeneity in the importance 

placed on side effects. 

 

4. Discussion 

In this study, we used a discrete choice experiment to analyse and quantify how the public 

values the outcomes of vaccination programs. We observed several general preference 

patterns, which were robust across different lengths and severities of disease and respondent 

characteristics (socio-economic background, age, education and parenthood). We observed 

that most respondents did not make choices purely based on how to minimize the number of 

infections. In particular, individuals, on average, weighted one averted instance of a side effect 

equal to about three similarly severe natural infections in children and weighted one averted 

health outcome in children up to six times more than preventing similarly severe health 

outcomes in the elderly. Interestingly, our study has disentangled this latter phenomenon from 

the type of effect as we observed a different weight given to protecting older people depending 

on whether the benefits were directly vs. indirectly received. Our results support a duty of care 

principle to provide herd protection for the elderly and an aversion to protecting adults who 

are better able to protect themselves. The weight given to side effects when evaluating a 

vaccination program was divisive, splitting our sample into two clusters.  
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Our study, as far as we are aware, is the first of its kind to quantify the important social value 

judgements that need to be made in vaccine funding decisions. Although this limits 

comparability, our findings are in line with what can be learned from other study domains. The 

finding that individuals weighted one averted instance of a side effect equal to about three 

similarly severe natural infections in children can be explained with general theory on decision-

making. For instance, well-documented psychological phenomena such as ‘loss aversion’ 

(Kahneman & Tversky, 1979) (overvaluing risks and losses over opportunities and gains), the 

‘act-omission bias’ (Spranca, Minsk, & Baron, 1991) [judging the effects of an act (becoming 

vaccinated) differently from identical effects resulting from an omission (becoming infected)], 

or ‘hyperbolic discounting’ (Frederick, Loewenstein, & O'Donoghue, 2002) [overvaluing the 

present (in which side effects occur) over the future (in which disease prevention will occur)] 

suggest that people put an extraordinary weight on side effects when evaluating a vaccination 

strategy. Moreover, also empirical studies that have investigated people’s (stated) choices 

about whether or not they would personally become vaccinated with a particular vaccine (e.g. 

Sadique et al., 2013; Seanehia et al., 2017) generated findings that highlight the extraordinary 

weight of side effects. The preference given to health benefits in younger people (newborns 

and children), up to six-fold, is also in line with related studies on ‘ageism’ in other contexts of 

healthcare priority-setting (reviewed in Gu, Lancsar, Ghijben, Butler, & Donaldson, 2015, and 

discussed elsewhere, e.g. Bognar, 2015; Tsuchiya, 2000).  

It is important to study which aspects of health policy choices matter most to the public. This 

is especially true in vaccination where public trust, goodwill and participation are sensitive and 

key to success (Cooper, Larson, & Katz, 2008). There is a growing concern that public and 

political trust in scientific evidence is eroding, particularly in the context of vaccination 

(Karafillakis et al., 2016; Larson, Cooper, Eskola, Katz, & Ratzan, 2011; Leask, Willaby, & 

Kaufman, 2014). By being aware of the sensitivities around vaccination, decision makers can 

understand and address some of the root causes of vaccine hesitancy, adapt to concerns of 

the population and improve responses in communication strategies (Diekema & American 

Academy of Pediatrics Committee on Bioethics, 2005). Our findings provide empirical 

evidence on how to set vaccine priorities in line with public preferences. There is an important 

debate over the extent to which the public’s opinion should drive resource allocation in 

healthcare (see e.g. Hausman, 2004, 2015). But, many believe that the values of the public, 

who pays for healthcare, should at least somehow be acknowledged in the decision-making 

process. In the context of vaccination, where public support and participation is key to success, 

this concern becomes particularly crucial. Therefore, our results can be useful additions to 

vaccine appraisals. They can provide guidance in specific epidemiological cases where CEA 

does not provide the answers needed. For instance, our results would suggest that, despite 



14 

 

their attractiveness in terms of cost-effectiveness, the public may not support a childhood 

influenza vaccination program that mainly benefits adults or elderly (Baguelin et al., 2013), 

because preventing side effects in vaccinated children is preferred over preventing disease 

burden among adults and elderly. Furthermore, our study suggests that a childhood varicella-

zoster vaccination program, in the case that it protects children against varicella disease at 

the expense of increased zoster in the elderly (the ‘exogenous boosting hypothesis’), might 

be justifiable. In contrast, previous analyses where QALY losses for children are weighted 

equally to those for the elderly find that the increased burden in the elderly offsets the QALY 

gains in children and determine the program not cost-effective (Brisson, Edmunds, & Gay, 

2003).  

Our results can also be directly incorporated into economic evaluations as sensitivity analyses 

to better align the underlying assumptions of CEA with the values of the population. Our 

estimated preference weights can be used in decision-analytic models as a parameter to 

weight QALYs or infections according to their ‘social value’. This would re-adjust the (equal) 

weight that QALYs receive in CEA according to how important people think that the age of the 

QALY-recipient is and whether the benefit was generated through direct protection, herd 

immunity or (avoiding) side effects. There is an increased interest in such ‘extended’, 

‘distributive’ or ‘equity-weighted’ economic evaluation (see e.g. Asaria, Griffin, & Cookson, 

2016; Bleichrodt, 1997; Cookson et al., 2009; Dolan, 1998; Fleurbaey et al., 2013; Nord, Pinto, 

Richardson, Menzel, & Ubel, 1999; Round & Paulden, 2017; Samson et al., 2017), but, to our 

knowledge, such studies do not exist for the evaluation of vaccines. Our estimates are 

developed particularly for this context, and provide an opportunity to do so.  

There are several limitations. We did not include any mortality effects, nor did we include a 

difference in severity between the three vaccine effects, even though this would be more 

realistic (as side effects of vaccines are usually milder than the disease being prevented). We 

chose not to include these aspects because we wanted to avoid increasing the complexity of 

the survey and reducing the validity of the respondents’ answers by adding a second disease 

profile. Also, keeping the disease outcome constant over age groups and effects enabled 

trade-offs that were wholly reflective of the preference between age groups and effects instead 

of also reflecting additional considerations about disease severity. We also chose to present 

the number of side effects rather than its complement the number of vaccinated people without 

side effects. This framing may have played a role in the observed weight for side effects. The 

alternative framing would probably have drawn less attention to side effects and might have 

generated smaller weights. We however wanted people to make explicit trade-offs between 

side effects with protective benefits and chose for the more direct framing. Using the 

alternative is a suggestion for further research.  Also, we used generic disease profiles based 
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on a description in EQ-5D terms to minimize respondents making personal associations to the 

disease and vaccine when we would have named the diseases (e.g. ‘flu’ or ‘whooping cough’), 

but this may also have increased the level of abstraction and reduced the level of personal 

involvement. A suggestion for further research is to repeat our study with named diseases and 

to test whether our finding that the disease profile did not matter to people’s preferences is 

confirmed. Another limitation is that, while our sample was broadly representative of the UK 

population, it was recruited from an online panel where membership may be associated with 

unobserved characteristics (e.g. interest in technology). 

In conclusion, our study demonstrates clear and robust preference patterns in how people 

value the impact of vaccination programs. A large majority of respondents had a strong 

preference to minimize side effects and to prevent disease among newborns and children. 

Our observations provide quantitative evidence about public preferences around important 

and sensitive but neglected trade-offs in vaccine policy decision-making, and can hopefully 

inspire further research and discussion. 
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Table 1. Attributes and levels used in the DCE. 

Attribute Level 

Age of vaccinated group (N=100,000) Children (3 months - 3 years) 

Adults (30-50 years) 

Elderly (65-75 years) 

Disease episodes prevented in vaccinated 

group  

1000 cases 

3000 cases 

5000 cases 

Number of vaccine-induced side-effects 100 cases 

300 cases 

500 cases 

Disease episodes prevented via herd 

protection 

1000 cases 

3000 cases 

5000 cases 

Age of people receiving herd protection Newborns (<3 months) 

Adults (30-50 years) 

Elderly (>80 years) 
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Table 2. Respondent characteristics. 

 Sample UK population* 

Total recruited 1546   

Excluded for analysis 47  

Included in the analysis 1499 (100%)  

Gender   

Male 703 (47%) 49% 

Female 796 (53%) 51% 

Age (years)   

20-29 296 (20%) 13% 

30-39 285 (19%) 13% 

40-49 288 (19%) 14% 

50-59 308 (21%) 13% 

60 and over 322 (21%) 23% 

Living in a city with more than 10,000 inhabitants  1011 (67%) 83% 

Social grades based on the profession of the 

highest paid household member  

  

A (upper middle class) 85 (6%) 4% 

B (middle class) 297 (20%) 23% 

C1 (lower middle class) 385 (26%) 27% 

C2 (skilled working class) 330 (22%) 21% 

D (working class) 72 (5%) 16% 

E  (non-working) 330 (22%) 9% 

Education level   

No qualifications 48 (3%) 15% 

Secondary education  322 (21%) 14.2% 

Post-secondary education 288 (19%) 14.5% 

Vocational qualification 254 (17%) 20.3% 

Undergraduate degree, post-graduate degree & 

doctorate  

427 (39%) 30% 

Not sure 2 (0.1%) / 

Having children   

No children 585 (39%) 42% 

Children aged 0-4 years 168 (11%) 42%** 

Children aged 5-20 years 358 (24%) / 



22 

 

 

*UK population data 2016: Office for National Statistics https://www.gov.uk/government/publications  

**Percentage of UK families living with dependent children (<18 years old) 

 

Children aged over 20 years 388 (26%) 15% 

Exposure to poor health    

Participant affected by poor health 407 (27%)  

Close friends or family of the participant affected 

by poor health 

470 (31%)  

Neither participant nor close friends nor family 

affected by poor health 

622 (41%)  

https://www.gov.uk/government/publications
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Table 3. Attributes that affected respondent choices, based on panel mixed logit model estimates (means and standard 

deviations) with p-values from likelihood ratio (LR) tests for significant attribute effects.  

Model term Posterior mean Posterior std dev Subject std dev P-value 

Cases prevented in unvaccinated by herd effects  

(per 1000 cases) 0.715 0.018 0.101 <0.0001 

Cases prevented in vaccinated by direct effects (per 1000 cases) 0.619 0.018 0.100 <0.0001 

Cases of side effects in vaccinated (per 100 cases) -0.285 0.012 0.110 <0.0001 

Age of unvaccinated  

 

 

[Newborns <3m] 0.614 0.048 0.090 <0.0001 

[Adults 30-50y] -0.597 0.043 0.105   

[Elderly >80y] -0.017  NA  NA   

Age of unvaccinated*Cases 

prevented in vaccinated by 

direct effects 

[Newborns <3m] -0.043 0.009 0.054 <0.0001 

[Adults 30-50y] 0.071 0.009 0.041   

[Elderly >80y] -0.028  NA  NA   

Age of vaccinated  

 

 

[Children 3m-3y] 0.305 0.040 0.063 <0.0001 

[Adults 30-50y] 0.142 0.048 0.062   

[Elderly 65-75y] -0.446  NA  NA   

Age of unvaccinated*Age of 

vaccinated  

 

 

 

 

 

 

[Newborns <3m]* [Children 3m-3y] -0.131 0.036 0.053 <0.0001 

[Newborns <3m]* [Adults 30-50y] -0.210 0.041 0.065   

[Newborns <3m]* [Elderly 65-75y] 0.341  NA  NA   

[Adults 30-50y]* [Children 3m-3y] 0.250 0.052 0.044   

[Adults 30-50y]* [Adults 30-50y] -0.079 0.049 0.045   

[Adults 30-50y]* [Elderly 65-75y] -0.171  NA  NA   

[Elderly >80y]* [Children 3m-3y] -0.119  NA  NA   

[Elderly >80y]* [Adults 30-50y] 0.289  NA  NA   
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Note: Mean estimates corresponding to the last level of an attribute, either as a main effect or involved in an interaction, are italicized and calculated as minus 

the sum of the estimates for the other levels of that attribute; NA means ‘not assigned’. 

 [Elderly >80y]* [Elderly 65-75y] -0.170  NA  NA   

Age of vaccinated*Cases of 

side effects in vaccinated 

[Children 3m-3y] -0.032 0.008 0.040 <0.0001 

[Adults 30-50y] -0.037 0.009 0.044   

[Elderly 65-75y] 0.069  NA  NA   

Age of unvaccinated*Cases 

prevented in unvaccinated by 

herd effects 

[Newborns <3m] 0.052 0.009 0.048 <0.0001 

[Adults 30-50y] -0.005 0.008 0.043   

[Elderly >80y] -0.047  NA  NA   

Age of vaccinated*Cases 

prevented in vaccinated by 

direct effects 

[Children 3m-3y] 0.051 0.010 0.044 <0.0001 

[Adults 30-50y] -0.032 0.009 0.037   

[Elderly 65-75y] -0.019  NA  NA   
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Table 4. Number of infections to prevent to gain equal utility, with 95% 

confidence intervals.  

Age group of vaccine 

effect 

Direct effects Herd effects Side effects 

Newborns  

(<3 months) 

NA 71  

[66; 76] 

NA 

Children  

(3 months - 3 years) 

100  

[index] 

NA -34  

[-37; -31] 

   Cluster 1: -221 [-340; -102]  

   Cluster 2: -21 [-23; -20] 

Adults 

(30-50 years) 

134  

[115; 153] 

865  

[242; 1487] 

-32 

 [-35; -28] 

   Cluster 1: -72 [-93; -51] 

   Cluster 2: -23 [-25; -20] 

Elderly 

(65-75 years) 

632  

[255; 1010] 

NA -37  

[-42; -33] 

   Cluster 1: -113 [-163; -64] 

   Cluster 2: -25 [-27; -22]  

Elderly  

(>80 years) 

NA 150  

[130; 169] 

NA 

Note: Cluster 1 and 2 have 564 and 935 respondents, respectively; NA refers to combinations of 

attribute levels not included in the choice profiles. 
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Figure 1. Example of a choice set. 
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Figure 2. Schematic representation of the different arms of the questionnaire. 

For each disease stratum, there was also an equal sampling over the socio-

economic groups (25% A+B; 25% C1; 25% C2; 25% E+D). 
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Figure 3. Utility weights representing public preferences for identical health 

outcomes with different attributes, with 95% confidence intervals. 
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Figure 4. Intergenerational preferences: interaction effects between the age 

group vaccinated and the age group receiving herd protection effects. Marginal 

utility values consist of main effects of the attributes involved and their 

interaction effect.  
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Appendix A. Disease descriptions 

Disease 1: severe and short term (based on influenza) 

When you get this infection you will be severely sick for 9 days. Symptoms during time of illness: you 

have some problems walking about, you have some problems with self-care, you have severe problems 

with performing your usual activities, you have moderate pain or discomfort and you are moderately 

anxious and depressed. After these 9 days you will recover fully, you don’t have lasting symptoms, and 

there is no chance to die from this infection.   

 

Disease 4: mild and long-term (based on pertussis) 

When you get this infection you will be mildly sick for 160 days. Symptoms during time of illness: you 

have some problems walking about, you have no problems with  self-care, you have some problems 

with performing your usual activities, you have no pain or discomfort, you are moderately anxious or 

depressed. After these 160 days you will recover fully, you don’t have lasting symptoms, and there is 

no chance to die of this infection.   
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Appendix B. Bayesian D-optimal design including three surveys for the DCE 

The Bayesian design of the DCE embraces three surveys of 15 choice sets with two alternative 

vaccination programs. The surveys appear in Tables B.1–B.3. The choice sets in each survey 

were presented in a randomized order to the respondents. Each survey was filled out by 500 

respondents. The choice sets are described by five attributes and are characterized by 

substantial attribute level overlap or the presence of constant attributes. Only the levels of two 

to four attributes are varying in each choice set and are indicated in green in the tables. The 

constant attributes are shown to the respondents to present actual alternative vaccination 

programs as well as to be able to estimate the following six interactions as precisely as 

possible:  

i.  Age of vaccinated*Cases prevented in vaccinated, 

ii.  Age of vaccinated*Cases of side effects, 

iii.  Age of vaccinated*Cases prevented in unvaccinated, 

iv.  Age of unvaccinated*Cases prevented in vaccinated, 

v.  Age of unvaccinated*Cases of side effects, 

vi.  Age of unvaccinated*Cases prevented in unvaccinated. 

The reason for the presence of constant attributes in the Bayesian design is to avoid 

uninformative choice sets with very high and very low choice probabilities based on the prior 

parameter distribution described in Appendix C. For example, using the prior mean of that 

distribution (see Table C.1 and beyond), the three choice sets with the most extreme 

probabilities in the design are choice set 15 of survey 1, where alternative 1 has 71% 

probability of being chosen a priori, choice set 15 of survey 2, where alternative 1 has 80% 

probability of being chosen, and choice set 2 of survey 3, where alternative 2 has 75% 

probability of being chosen. Due to the constant attributes, these prior probabilities are not too 

extreme, thereby providing some amount of information. As for the other 42 choice sets in the 

design, 13 of them have their highest prior probabilities between 60% and 70% and 29 of them 

between 50% and 60%.            

We generated the Bayesian D-optimal design using the Choice Design platform in JMP 13 

and assigned choice sets to surveys in such a way that the different prior probabilities were 

about equally represented over the surveys. As a result, the task complexity of the surveys 

was expected to be the same. There were also some choice sets with the same levels of the 

varying attributes, which we assigned to different surveys. For example, choice set 9 of survey 

1 and choice set 11 of both surveys 2 and 3 all have the same levels of the varying attributes.       
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Table B.1. Survey 1 of the Bayesian D-optimal design. 

Choice 

set 

Age of 

vaccinated  

Cases 

prevented in 

vaccinated 

Cases of side 

effects in 

vaccinated 

Age of 

unvaccinated 

Cases 

prevented in 

unvaccinated 

1 Adults 5000 500 Newborns 3000 

1 Adults 3000 300 Newborns 5000 

2 Infants 5000 500 Adults 3000 

2 Infants 1000 300 Adults 5000 

3 Elderly 65-75 5000 500 Elderly > 80 1000 

3 Elderly 65-75 3000 300 Elderly > 80 3000 

4 Adults 5000 100 Adults 1000 

4 Adults 3000 300 Adults 3000 

5 Infants 1000 500 Adults 5000 

5 Infants 3000 300 Adults 1000 

6 Elderly 65-75 5000 300 Elderly > 80 3000 

6 Elderly 65-75 1000 100 Elderly > 80 5000 

7 Adults 1000 100 Adults 3000 

7 Adults 3000 500 Adults 5000 

8 Adults 3000 100 Elderly > 80 1000 

8 Adults 1000 300 Elderly > 80 5000 

9 Elderly 65-75 1000 500 Adults 1000 

9 Adults 1000 500 Newborns 1000 

10 Adults 1000 100 Newborns 3000 

10 Infants 1000 100 Adults 3000 

11 Elderly 65-75 3000 500 Elderly > 80 3000 

11 Adults 3000 500 Adults 3000 

12 Elderly 65-75 3000 300 Newborns 5000 

12 Adults 3000 300 Elderly > 80 5000 

13 Infants 1000 500 Elderly > 80 1000 

13 Adults 1000 500 Adults 1000 

14 Elderly 65-75 1000 300 Elderly > 80 1000 

14 Infants 1000 500 Adults 1000 

15 Adults 5000 300 Elderly > 80 1000 

15 Infants 1000 300 Newborns 1000 
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Table B.2. Survey 2 of the Bayesian D-optimal design. 

Choice 

set 

Age of 

vaccinated  

Cases 

prevented in 

vaccinated 

Cases of side 

effects in 

vaccinated 

Age of 

unvaccinated 

Cases 

prevented in 

unvaccinated 

1 Elderly 65-75 3000 300 Elderly > 80 1000 

1 Elderly 65-75 1000 500 Elderly > 80 3000 

2 Infants 3000 100 Adults 5000 

2 Infants 5000 300 Adults 3000 

3 Infants 5000 300 Elderly > 80 1000 

3 Infants 1000 100 Elderly > 80 3000 

4 Elderly 65-75 1000 100 Elderly > 80 3000 

4 Elderly 65-75 3000 500 Elderly > 80 5000 

5 Elderly 65-75 5000 300 Newborns 1000 

5 Elderly 65-75 3000 100 Newborns 3000 

6 Infants 5000 100 Newborns 1000 

6 Infants 3000 500 Newborns 5000 

7 Adults 5000 300 Adults 1000 

7 Adults 1000 100 Adults 5000 

8 Elderly 65-75 1000 500 Newborns 1000 

8 Adults 1000 500 Elderly > 80 1000 

9 Infants 5000 100 Elderly > 80 5000 

9 Adults 5000 100 Adults 5000 

10 Infants 3000 500 Adults 5000 

10 Adults 3000 500 Newborns 5000 

11 Elderly 65-75 5000 100 Adults 5000 

11 Adults 5000 100 Newborns 5000 

12 Adults 5000 100 Elderly > 80 5000 

12 Infants 5000 100 Newborns 5000 

13 Elderly 65-75 1000 300 Newborns 3000 

13 Adults 1000 100 Elderly > 80 3000 

14 Infants 3000 300 Newborns 3000 

14 Elderly 65-75 1000 100 Newborns 5000 

15 Elderly 65-75 5000 100 Elderly > 80 5000 

15 Infants 1000 500 Newborns 5000 
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Table B.3. Survey 3 of the Bayesian D-optimal design. 

Choice 

set 

Age of 

vaccinated  

Cases 

prevented in 

vaccinated 

Cases of side 

effects in 

vaccinated 

Age of 

unvaccinated 

Cases 

prevented in 

unvaccinated 

1 Infants 1000 100 Newborns 3000 

1 Infants 5000 500 Newborns 1000 

2 Adults 1000 300 Elderly > 80 1000 

2 Adults 3000 500 Elderly > 80 3000 

3 Elderly 65-75 3000 100 Adults 1000 

3 Elderly 65-75 1000 300 Adults 5000 

4 Infants 1000 300 Newborns 5000 

4 Infants 3000 100 Newborns 1000 

5 Elderly 65-75 5000 100 Newborns 5000 

5 Infants 5000 100 Adults 5000 

6 Infants 3000 300 Adults 3000 

6 Adults 3000 300 Newborns 3000 

7 Elderly 65-75 5000 500 Newborns 3000 

7 Adults 5000 500 Elderly > 80 3000 

8 Adults 1000 300 Adults 5000 

8 Infants 1000 300 Elderly 5000 

9 Elderly 65-75 3000 300 Adults 3000 

9 Infants 3000 300 Elderly > 80 3000 

10 Infants 5000 500 Newborns 3000 

10 Elderly 65-75 5000 500 Adults 3000 

11 Adults 5000 300 Newborns 1000 

11 Elderly 65-75 5000 300 Adults 1000 

12 Infants 3000 100 Elderly > 80 1000 

12 Adults 3000 100 Newborns 1000 

13 Adults 3000 100 Adults 1000 

13 Elderly 65-75 3000 100 Newborns 1000 

14 Infants 3000 500 Elderly > 80 5000 

14 Elderly 65-75 3000 500 Adults 5000 

15 Adults 5000 300 Adults 3000 

15 Infants 5000 500 Elderly > 80 3000 
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Appendix C. Multivariate normal prior parameter distribution used to construct 

the Bayesian D-optimal design for the DCE 

To construct the Bayesian D-optimal design for the DCE shown in Appendix B, we used a 

multivariate normal prior distribution that reflects the prior beliefs about the unknown 

parameter values associated with the levels of the five attributes. Based on expert interviews 

and literature review, we ranked the five attributes in order of importance and specified mean 

parameter values and variances for the multivariate normal prior distribution accordingly. 

Table C.1 shows the five attributes in expected order of importance. Based on these 

importance ranks, we specified prior mean utility values for the main effects of the attributes. 

The more important an attribute, the larger in magnitude the a priori mean utility values 

specified for the main effects of that attribute. The levels of each attribute are ranked from 

least preferred to most preferred. Their utility values are symmetric around zero, and thus sum 

to zero. The latter is required for the effects-type coding used for the attribute levels, meaning 

that the three levels of each attribute are coded as [1 0], [0 1] and [-1 -1].  

Table C.1. A priori order of importance of the main effects of the five attributes 

and conversion into mean utility values used in the multivariate normal prior 

distribution. 

Rank Attribute Prior mean 

  1000 cases 3000 cases 5000 cases 

1 Cases prev in vaccinated -0.8 0 0.8 

2 Cases prev in unvaccinated -0.7 0 0.7 

  500 cases 300 cases 100 cases 

3 Cases of side effects -0.4 0 0.4 

  Elderly Adults Children 

4 Age of vaccinated  -0.3 0 0.3 

5 Age of unvaccinated -0.2 0 0.2 

 

We also specified prior variances and covariances around the mean utility values for the main 

effects of the attributes. We used variances of 0.09 for all attribute levels, because this 

preserved the preference ordering for the levels of an attribute as much as possible. To obtain 

variances of 0.09 for the derived utility values associated with the last level of each attribute, 

we specified negative covariances of -0.045 for the attributes (computed from a prior 

correlation of -0.5 multiplied by 0.09) following a recommendation of Kessels et al. (2008). 
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Regarding the six interactions listed in Appendix B, accounting for 24 (i.e., 6*4) parameter 

entries, we had no prior expectations about people’s preferences. Therefore, we specified 

zero mean utility values for these effects. For ease of computation, we also assumed zero 

prior variances around the utility values for the interactions, allowing for no uncertainty around 

these values. This implies that the prior parameter specification of the interactions 

corresponds to a local instead of a Bayesian approach.  
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Appendix D. Robustness check of the modelling results 

The bar charts in Figures D.1–D.3 demonstrate that the modelling results of Table 3 are 

robust across the four different disease types as well as the respondent characteristics age 

and level of education. Highly similar results were found for gender, occupation, urban vs. 

rural area, socio-economic background, experience with severe illness and having children. 

Each of these bar charts expresses the importance of the attribute effects relative to the most 

important attribute “Cases prevented in unvaccinated by herd effects”, the importance of which 

is set to 100. As can be observed, the covariate interactions are of little to no importance. 

 

Figure D.1. Importance ranking of attribute effects involving “Disease type”. 

 

 

Figure D.2. Importance ranking of attribute effects involving “Age”. 
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Figure D.3. Importance ranking of attribute effects involving “Educational level”. 

 

 


