
This item is the archived peer-reviewed author-version of:

Exploring debugging processes and regulation strategies during collaborative coding tasks among

elementary and secondary students

Reference:
Parkinson Meghan M., Hermans Seppe, Gijbels David, Dinsmore Daniel L..- Exploring debugging processes and regulation strategies during collaborative

coding tasks among elementary and secondary students

Computer science education - ISSN 1744-5175 - (2024), p. 1-28

Full text (Publisher's DOI): https://doi.org/10.1080/08993408.2024.2305026

To cite this reference: https://hdl.handle.net/10067/2026530151162165141

Institutional repository IRUA

Exploring Debugging Processes and Regulation Strategies during

Collaborative Coding Tasks among Elementary and Secondary

Students

Meghan M. Parkinson, Seppe Hermans, David Gijbels, Daniel L. Dinsmore

Teaching, Learning and Curriculum, University of North Florida, Jacksonville, USA

Training and Education Sciences, Edubron research group, University of Antwerp,

Antwerp, Belgium

Correspondence concerning this article should be addressed to Meghan M. Parkinson,

Department of Teaching, Learning, and Curriculum, University of North Florida, 1

UNF Drive, Jacksonville, FL 32207, United States. Email: m.parkinson@unf.edu

mailto:m.parkinson@unf.edu

Exploring Debugging Processes and Regulation Strategies during Collaborative

Coding Tasks among Elementary and Secondary Students

Background and Context: Debugging in education increasingly takes place in

a collaborative setting. More data are needed about how young learners identify

and fix errors while programming in pairs.

Objective: The current study aims to identify discernible patterns in the

intersection between debugging processes that children engage in during coding

activities and the type of regulation used during those debugging processes (i.e.,

SRL, CRL, or SSRL); to gain more insight into how these processes can

contribute to coding success and thus drive further theory and model

development.

Method: Two experiments were conducted in sequential order. The first focused

on second-grade students (N= 12) who were asked to program a Code-a-pillar

using physical programming blocks. Two coding schemes were used to identify

both debugging processes and types of regulation used. The second study used a

similar approach but focused on eighth-grade students (N= 30) who were asked

to program a Tobbie2 robot using Microsoft MakeCode.

Finding: Results confirm that the integrated and sequential use of all four

debugging processes is related to successful coding. Furthermore, we see similar

patterns in the overlap between debugging processes and regulation types for

both age categories.

Implications: The study highlights specific areas where strategy training could

effectively improve collaborative programming efforts. Moreover, our finding

challenges the notion that programming and debugging can be reduced to a set

of clearly defined consecutive steps. Instead, it highlights the dynamic nature of

coding and debugging processes and the importance of including metacognitive

and regulatory elements in debugging models.

Keywords: computational thinking; debugging; regulated learning; social

learning

Introduction

As our education systems aim to prepare young people to be able to participate in this

fast-evolving world, it is no longer sufficient to just teach the use of existing technology

but is also necessary for students to understand underlying principles such as

programming and computer logic. In 1980 Papert introduced the term computational

thinking in his work, Mindstorms: Children, Computers, and Powerful Ideas. He argued

that computational thinking could be used to create new knowledge and that computing

has the potential to improve children's thought processes. Wing (2006) later re-launched

this concept with her call to establish computational thinking as a fundamental skill that

everyone should possess. This statement made many consider computational thinking

an essential skill in the 21st century (Angeli et al., 2016).

In recent years, researchers have focused on issues related to teaching and

learning skills, concepts, and practices relevant to computational thinking (Angeli et al.,

2016; Bull et al., 2020; Grover & Pea, 2013). This follows from decades of research that

examines how cognitive (i.e., skills and strategies used to make progress on a task) and

metacognitive (i.e., skills and strategies used to monitor and control cognitive

processes) processes influence learning across a wide variety of different contexts (e.g.,

Dinsmore, 2017). These processes have been the focus of major learning theories that

examine individual learning, such as information processing theory and self-regulatory

models (e.g., Winne, 1995) as well as theories that focus on learning in social settings

and the related models of socially-shared regulation (e.g., Panadero & Järvelä (2015).

At issue is that whole curricula have been developed and implemented without

fully understanding how children new to programming approach computational thinking

nor which types of individual and group regulation support their efforts to complete

programming tasks (Kallia & Cutts, 2022). For example, some curricula present

https://scholar.google.com/citations?user=W48jTNAAAAAJ&hl=en&oi=sra

programming as a collaborative endeavour (e.g., CSinSF), while others provide

individually-oriented problem-solving lessons (e.g., code.org). Furthermore, there are

core components of computational thinking that seem to be emphasized, however

debugging remains a less understood component of computational thinking in education

(Liu et al., 2017). Debugging involves finding and fixing errors or “bugs” in computer

programs, making it a type of problem-solving strategy (Liu et al., 2017; Klahr &

Carver; 1988). Strategies have been defined as a special type of procedural knowledge

that individuals need to complete tasks (e.g., Alexander & Judy, 1988). For example,

Lin et al. (2016) established a strong correlation between debugging and cognitive

activities as previous research has shown that this skill has the potential to be used

outside a programming context (Klahr et al., 1988). Although traditional research on

debugging posits it as an individual activity (Grover et al., 2013), debugging often

happens in collaborative settings, particularly in educational contexts utilizing research-

backed curricula (e.g., CSinSF). Therefore, to better understand how students, learn to

identify and fix errors while programming in pairs or groups, more data about how

learners debug in small groups are needed at various developmental levels. The

exploratory data presented in this paper are meant to be a first step to inform explicit

instruction for teaching novice programmers how to debug with one or more partners.

Theoretical Framework

Regulated learning in collaborative learning environments forms an emerging and

growing area of research, but there is very little knowledge on how regulated learning

takes place during collaborative programming and debugging.

Debugging

Debugging is defined here as a systematic process to find out why a computer program

does not work and attempt to resolve the problem (Liu et al., 2017). The error in the

program is also known as a ‘bug’. Debugging forms an established and rich field of

study that received much attention in the 1980s. Reports included studies on the

differences between inexperienced and experienced programmers, types of bugs, causes

of bugs, and mental models of both programming and debugging (McCauley et al.,

2008). Klahr and Carver (1988) formulated four aspects that are necessary for

debugging: 1) a description of the purpose of the program; 2) a list of steps or

commands; 3) the output generated by the program; and 4) individual knowledge of

coding. Without the first three aspects, debugging is not possible. The fourth, 'individual

knowledge of coding', is more variable and affects debugging success. Novice

programmers often lack domain knowledge and general problem-solving skills (Klahr

& Carver, 1988; Liu et al., 2017), making debugging particularly difficult for them

(Fitzgerald et al., 2008).

 More recent studies have explored characteristics of debugging instruction that

most effectively improve children’s programming outcomes. Explicitly teaching a

debugging process was found to improve both actual debugging and self-efficacy for

debugging in high school students (Michaeli & Romeike, 2019). For elementary

children, there is evidence to suggest that connecting instruction to familiar and

practical language and modeling through concrete means like manipulatives helps them

learn debugging (Ahn, et al., 2022; Sung, et al., 2022). The current study seeks to learn

more about prior knowledge children bring to a programming task requiring debugging

and how they regulate their learning while collaborating on a programming task.

The connection between problem solving and metacognition is frequently cited,

partly because debugging can also be considered a problem-solving skill (Klahr &

Carver, 1988). The five stages of debugging (i.e., evaluate, identify, represent, locate,

and correct; See Figure 1), proposed by Klahr and Carver (1988), are very similar to

stages that can also be found in other problem-solving models (Bruning et al., 2010).

Ahn et al. (2017) indicated that these processes were efforts to monitor and control the

coding process, similar to how individuals monitor and control their own processes. A

corollary with regulatory processes can be made, in which self-regulated learning forms

a rich area of study, which we turn to next.

Figure 1. Goal structure of the debugging model. (From Klahr & Carver, 1988.

Reprinted with permission.)

Regulated learning

In most theoretical models related to learning, the learning process contains a regulatory

mechanism to allow for the adjustment of behavior and thought processes. The ability to

control one's own behavior and thought processes is called self-regulation. It is

considered critical for successful learning and has been described by Zimmerman

(2000) as giving guidance to the learning process to achieve objectives.

Self-regulated learning (SRL) forms a well-established and rich field of study

(Panadero, 2017) that focuses on the combination of metacognitive, motivational, and

behavioral processes. The metacognitive component includes planning, goal setting,

organizing, monitoring, and self-evaluation; the cognitive component includes learning

strategies that are used; and the motivational aspect includes motivation, self-efficacy,

and interest in the task (Potters, 2014). Regarding collaborative learning, SRL theories

have been used to explain regulated learning in more social and interactive learning

environments (Järvelä & Hadwin, 2013). These insights drive a relatively new but

growing field of research. In what follows, we build on these studies to conceptualize

regulation types and processes in a collaborative CT context.

Types of regulation

Multiple frameworks conceptualize the way regulation takes place in a collaborative

setting, in which types of regulation vary in function from the "I-perspective ", "you-

perspective", and "we-perspective”. Järvelä and Hadwin (2013) thus defined three

forms of regulation: self-regulation, co-regulation, and shared regulation (see Table 1).

Self-regulated learning (SRL) is essential to be able to work together

productively. An individual must first and foremost regulate their own learning

(Hadwin et al., 2011). Unlike self-regulation, co-regulation of learning (CRL) is not an

individual undertaking. CRL involves guiding and supporting the regulatory processes

of one specific group member by another group member (Järvelä & Hadwin, 2013).

Table 1. Contrasting different regulatory areas in SRL, CRL, and SSRL (adapted from

Järvelä, & Hadwin, 2013).

 Self-Regulated

Learning (SRL)

Co-Regulated

Learning (CRL)

Shared Regulation of

Learning (SSRL)
Whose

goals?

(“I” perspective)
Individuals construct

personal goals/standards

against which they monitor

(“You perspective”)
Individuals hold

goals/standards for

(“We perspective”)
Collective goals/standards

are negotiated and

constructed amongst team

their own progress and

contributions to the

group task.

each other in relation to

progress and contributions

to the group task.

members to optimize

progress and

contributions to the group

task and to

build on goals each

individual brings

to the group task.

Who

regulates?

Individual adapts or

changes his/her own

regulation processes,

beliefs goals, etc.

Individual supports or

influences a

team member’s regulation

processes, beliefs goals,

etc.

Team members collectively

negotiate and realign or

adapt group regulation

processes, strategies,

beliefs, goals, etc.

What is

regulated?

My task perceptions.

My strategy knowledge &

use.

My goals and standards for

this task.

My plans for working

together

My engagement and

positive/negative emotional

feelings.

My goal progress

evaluations.

The other’s task
perceptions.

The other’s strategy
knowledge & use.

The other’s goals and
standards for this task and

for contributing to this

task.

The other’s plans for this
task and for contributing to

this task.

Awareness of others’
engagement and

positive/negative feelings

in

this task.

Goal progress evaluations

of other group members.

Our negotiation of common

task perceptions.

Knowledge about this

group’s strengths &

weaknesses with respect to

this task.

Shared goals and alignment

of individual task

perceptions and goals.

Our use of team processes

and strategies for

succeeding with this task.

Strategy knowledge we

create together.

Perceptions & evaluations

of our collective progress.

Awareness of our

engagement and

positive/negative feelings

in this task.

Negotiated evaluations of

goal progress.

The co-regulatory learner provides support and feedback. In this form, an individual is

not completely free to monitor and control his or her cognition, motivation, and

behavior, but these processes are partially influenced by another person. Finally,

socially shared regulation of learning (SSRL; Järvelä and Hadwin, 2013) is an activity

in which the regulation of group members is coordinated and discussed, thereby

influencing each other. Group negotiation, consultation, discussion, and exchange are

characteristic of shared regulation. Malmberg et al. (2017) also indicated that SRL,

CRL, and SSRL occur simultaneously and reciprocally (see Figure 2).

Figure 2. Three forms of regulated learning in successful collaboration. (From Järvelä,

& Hadwin, 2013. Reprinted with permission.)

Regulation processes

Typically, researchers focusing on regulated learning in a collaborative setting have

described how shared regulation arises. Similarly, the role of the individual within a

group has been described by proposing different forms of regulatory learning processes.

Empirical research on how these processes manifest themselves is less extensive.

Zimmerman (2000) described three phases (i.e., preparation, implementation, and

reflection) that occur cyclically. The execution phase can be further divided into

monitoring and control. Malmberg et al. (2017) in their study among university students

who carried out a group assignment focused on which patterns can be found in SRL,

CRL, and SSRL; in conjunction with task performance. For this, they categorized the

cognitive- and task-related interaction segments during their observation and

subsequentially derived theoretically and empirically different categories into which the

regulated learning process can be divided (i.e., task understanding, planning, goal

setting, monitoring and evaluating, strategy use, and task execution). Although

monitoring and evaluation are conceptually two different processes, they were merged

as they were found to be difficult to distinguish (Malmberg et al., 2017). In their

categories, the researchers included task performance in addition to the five cognitive

segments (see Table 2).

Table 2. Categories representing regulation processes and executive processes and their

empirical indicators (adapted from Malmberg et al., 2017).
Processes Empirical indicators
Task

understanding

Activating previous knowledge of the task and contents; thinking about the

purpose of the task; identifying what should be learned; reading and interpreting

the task instructions; explaining and discussing what the midterm plan should

look like, thinking about why task completion is important.

Planning Thinking about what documents and resources are needed (e.g., during the

lessons or in a lesson plan); thinking about the relevant parts of a lesson plan.

The group plans and coordinates the level of collaboration, such as dividing the

task or lesson among group members.

Creating a work schedule; planning what to do next.

Goal setting The group sets a goal for the work to be done; the group sets a task-specific

goal, for instance, the need to learn important concepts or theories from the

course.

The group sets a date, for example, a date for accomplishing a subtask that takes

the lesson plan into account. The group decides on the main responsibilities of

each member in the lesson plan.

Monitoring and

evaluating

Monitoring and evaluating progress toward the criteria set for the task;

evaluating the schedule set for the collaborative task; summarizing what has

been done and what needs to be done.

Monitoring understanding and the resources available.

Strategy use Prompting the use of strategies such as summarizing information, elaborating on

presented information, and selecting main points for the midterm plan.

Task execution The group works on laptops and writes up the midterm plan (e.g., one group

member writes while others explain and contribute to what to write). The group

progresses with the content in the midterm plan.

Regulation processes during debugging

In our review of the literature, there were numerous articles related to debugging,

collaboration, and regulation, but few investigated the patterns between these

constructs. Therefore, we conclude that research on the regulation of processes during

debugging and research on debugging in social educational settings is limited.

However, we found a few studies on debugging that referred to regulatory

processes. In their research among college students, Lin et al. (2016) used eye-tracking

to investigate the cognitive processes during debugging. They found that differences

between high and low-performing programmers could be explained by their planning

skills. Well-performing programmers work in a more structured way and are better at

breaking up problems. Liu et al. (2017) came to a similar conclusion during their work

with primary school children. They focused on problem-solving strategies that students

undertake during debugging. This showed that novice programmers are lacking in

problem-solving strategies. With regard to collaborative learning, Murphy et al. (2010)

examined the conversations of university students during debugging tasks and found

that dyads that communicated more and could complement each other's reasoning had a

greater success rate. Villamor et al. (2017) used eye-tracking to investigate how

students work together during debugging. Their research also focused on the differences

between experienced and inexperienced programmers. They concluded that dyads

consisting of two programmers with little experience showed more collaboration than

when one or two group members had programming experience. Although interesting,

none of these studies had a specific focus on regulatory processes and took place in a

collaborative setting.

Only recently, Emara et al. (2020) presented a study on debugging and

regulatory processes where they analyzed conversations and screen recordings collected

during a group STEM assignment that also involved programming. The researchers first

identified debugging processes and examined which debugging and regulatory

processes could be observed. They relied on theoretical frameworks regarding

debugging and SRL, but no mention was made of regulation types that have been

identified in a social and interactive environment (Järvelä & Hadwin, 2013; Malmberg

et al., 2017).

Purpose of the present study

As research on regulation (i.e., SRL, CRL, and SSRL) during debugging in a social

educational environment is limited, our study aims to provide a better understanding of

the nature of the debugging processes that students engage in when controlling robots

through block-based coding and the type of regulated learning that they exhibit during

these debugging processes in a social setting. Moreover, to explore the developmental

aspect of debugging in a social setting, the current study presents a cross-sectional

design consisting of two experiments with different age groups. Experiment 1 was

conducted with second grade students in a North American context while Experiment 2

was conducted with eighth-grade students in a Western European context. While the

robots and specific challenges varied to be more appropriate for these different grade

levels, important characteristics of the experiments were held constant. The two

experiments examined students working in pairs and utilized block-based coding to

control robots. Both groups of participants had low socioeconomic status backgrounds

and limited prior exposure to coding. The purpose of these data is not to be

generalizable (i.e., deductive), but to collect evidence in an inductive fashion to engage

in theory and model building (e.g., Chalmers, 1982).

Research questions

1. What debugging processes, if any, did students engage in during the coding

activity?

2. For the debugging processes students engaged in, what was the type of

regulation that students engaged in during those debugging processes (i.e., SRL,

CRL, or SSRL)?

3. Were there any discernable patterns in the intersection between the debugging

processes and the types of regulation?

Methods

 Students in both experiments were divided into pairs and introduced to a robot.

Researchers briefly oriented dyads to the robot and explained the challenge they were to

complete in the given time. Each dyad working on a pre-designed task was video

recorded and transcribed verbatim by the researchers. Qualitative content analysis was

used to analyze the data (Neuendorf, 2017). The analysis was conducted using

deductive coding (Saldana, 2015) based on pre-existing frameworks for debugging

processes (i.e., Ahn et al., 2017) and regulation types (i.e., Malmberg et al., 2017).

Therefore, the coding scheme is grounded in theory that is relevant to the research

question. The coding process entailed assigning codes to the data based on their

alignment with the pre-existing categories in the frameworks. To ensure the rigor and

trustworthiness of the analysis, the researchers who conducted the analysis were trained

in qualitative research methods. Additionally, colleagues and other experts in the field

were consulted to help validate the findings and ensure their validity. Specific sample

characteristics and task differences will be described for each experiment in the

following sections. Please note that the exemplars provided are open to interpretation,

and different individuals may have different opinions on how they fit the definitions.

However, they are meant to be representative and not exhaustive. Moreover, the result

of the analysis is based on a consistent application of the codes by the researcher. To

provide a more comprehensive and nuanced understanding of our findings, detailed and

in-depth accounts are presented in the results section using a narrative format, with

quotes and examples

Experiment 1

Materials and methods

Participants

Participants were 12 second-grade students from a large city in the southeastern United

States. Students were 60% female and primarily of African American and Latinx

heritage, reflective of the student body and surrounding community, and reported little

to no experience with coding. They all attended a private school with a mission to serve

families in the immediate, primarily low-SES community. The project was reviewed by

the first and fourth author’s Institutional Review Board and approved (#1305087-4).

Research task

Participants were asked to use a Code-a-pillar (see Figure 3). The Code-a-pillar is a

packaged coding toy that contains a main control unit (the head) and segments that

attach to the head and each other via USB attachments. Students code the robot by

attaching action pieces that have symbols on them to make the robot either: go straight,

turn left, turn right, or play music. Pieces can be attached in any order and the Code-a-

pillar will execute each command on the given segment in the order they are attached

starting with the head.

Figure 3. Code-a-pillar.

After a brief introduction to how the Code-a-pillar works, students were asked in

dyads to program the Code-a-pillar from a start point, go around a block about 8 feet

away, then return to the starting point (See Figure 4). Dyads were given 10 minutes to

complete this task. Participants were also asked to say anything they were thinking or

doing aloud while they performed this research task. These activities were both audio-

and video-recorded. All activities took place at the students’ elementary school in a

large, carpeted room with very little furniture.

Figure 4. Experiment 1 route.

Coding of the audio and video transcripts

All verbal statements were transcribed verbatim from the audio and video recordings

with actions (from the video) indicated in the transcripts in brackets. The first and fourth

authors coded the transcripts using Malmberg et al.’s previous coding scheme. First, the

fourth author segmented the transcript into codable units. Then, the first and fourth

authors independently coded the transcribed segments for episodes of debugging and

regulation. An episode was one or several utterances and/or actions by and between

students, with the purpose of debugging or regulating. Episodes were considered

distinct based on changing foci of utterances or actions before and after the episode or

with the passage of time using time stamps. To code for instances of debugging, we

developed a scheme that adapted the definition of debugging forwarded by Klahr and

colleagues (Ahn et al., 2017; Klahr & Carver, 1988). Table 3 describes the debugging

stages, and regulation processes, and gives exemplars of each from the coded

transcripts. After this independent coding, these authors compared codes to see if there

was consistency. Any disagreement with the codes was rectified through discussion

prior to any data analysis.

Table 3. Debugging processes (adapted from Ahn et al., 2017)
Debugging Process Related

Regulatory

Process(es)

Conceptual Definition Second Grade

Examples

1. Necessity of

debugging

Monitoring and

evaluation

Monitoring and

evaluating progress

toward a goal

“Look, it’s not
working.”

2. Identifying the bug Task

understanding

Activating task

knowledge in relation

to the discrepancy

between the goal and

outcome

“I think it’s going to
go too far past the

block that we’re
supposed to get to.”

3. Pinpointing the bug Planning; Goal

setting

Using clues and

techniques to figure out

how to confirm the bug

“Hang on, I think we
need a piece that

turns it this way.”

4. Correcting the bug Strategy use; Task

execution

Using strategies or

enacting processes to

confirm that the bug is

fixed

“Let’s add some
more of these pieces

and see what

happens.”

 Transcripts were also coded for the type of regulation they engaged in. We

adopted the scheme of Malmberg et al. (2017) to identify whether the regulation of the

debugging was either self-regulation, co-regulation, or socially shared regulation. Table

4 presents the three types of regulation, their definitions, and an example episode of

each from the coded transcripts. Again, any instances of differences in the coding of the

first and fourth authors were rectified in discussion before analysis.

Table 4. Types of Regulation

Type of Regulation Conceptual Definition Second Grade Examples Eighth Grade Examples

Self-regulation One person is monitoring or

controlling the debugging process

“Now it’s turning towards
me.”

“A, I didn't put a stop there,
that's why! Okay okay okay."

Co-regulation One person is prompting others to

engage in monitoring or controlling

the debugging process, but the other

group member is not contributing

new information or actions

P1: “Ah, we should take a
piece off now.”

P2: “Yeah.”

L1: “What are you going to
change?”

L2: “Can I not change it?”

(L2 adjusts the time)

L1: "And now?"

L2: “Where does he have to go?

A, to the right.” (L2 adjusts the
program, L1 watches.)

Socially shared

regulation

Both group members contribute to the

monitoring or control of the

debugging process by adding unique

inputs to that process

P1: “But we need one more.”

P2: “But I think it’s going to
be working this time. I think

it might work.”

…

P2: “Wait, you put this piece
right here and these three

pieces right there.”

P1: “Put the music to the last
one.”

P2: “Yeah, so we have two
musics.”

L1: “That one was good.”

L2: “Are we going to cut that

walking down a bit? (L2 adjusts

the program)

L1: “No, that should be more.
Look, he literally has to stop

here.” (L1 points to the course)
L2: “A little more.” (L2 points
to the track)

L1: "If he's going to stop here,

he'll go like this." (L1 moves his

hands across the course)

L2: “Wait a minute.” (L2 adjusts
the time)

L1: “yes”

Results

The coding of the transcripts revealed a total of 260 debugging/regulatory strategies

across the 6 dyads of students during coding. These strategies, coded from students’

actions and words, included all four aspects of debugging and all three types of

regulation (i.e., SRL, CRL, and SSRL). A description of strategies by dyad is presented

in Table 5, where episodes refer to strategies coded.

Table 5. Experiment 1: Identified debugging processes and regulation types per dyad.

 Number of coded episodes

 Necessity Identifying Pinpointing Correcting SRL CRL SSRL

Dyad 1 19 11 14 19 7 31 25

Dyad 2 7 7 11 10 7 14 14

Dyad 3 10 9 6 8 6 12 15

Dyad 4 15 11 5 23 1 38 15

Dyad 5 4 7 4 4 7 12 0

Dyad 6 4 1 3 4 1 10 1

Note. SRL= self-regulated learning; CRL= co-regulated learning SSRL= socially shared

regulated learning

Debugging processes

For research question one, the quantity of the four processes of debugging was

tabulated. Figure 5 displays the percentages of these processes employed across the six

dyads. While the differences in quantity were small, the differences in the quality of

implementation of those processes were markedly different. Dyad 1 not only employed

these processes in higher numbers, but also interleaved these processes and were

generally accurate in their attempts to figure out the necessity of debugging, identifying

the bug, pinpointing the bug, and correcting the bug. These processes employed by

Dyad 1 are contrasted with those of Dyad 6. Rather than interleaving the debugging

processes, this group engaged in the same process repeatedly with each other to little

avail.

Figure 5. Experiment 1: Use of debugging processes across the six dyads.

Types of regulation

For research question two, the quantity of the types of regulation was tabulated.

Figure 6 displays the percentages of these types employed across the six dyads. Unlike

for the processes of debugging, there were significant differences between the types of

regulation employed across the groups with co-regulation being employed at much

higher rates than SSRL and SRL, respectively. While four out of the six groups

followed this general pattern, Dyads 2 and 3 utilized CRL and SSRL types more evenly,

with three using SSRL more often than CRL (15 episodes for SSRL versus 12 episodes

for CRL). On the other hand, Dyads 5 and 6 barely relied on SSRL at all, with Dyad 6

only engaging in SSRL one time and Dyad 5 not engaging in SSRL at all. Group 1

switched between engaging in SRL and CRL through the first half of the task then

pivoted towards interleaving CRL and SSRL through the third quarter of the task and

switched entirely to SSRL for the last quarter. They were constantly adding added

information and building successfully upon one another’s observations, statements, and

directions. This contrasts with Dyad 5, where one of the members took control and the

other member of the dyad simply agreed without contributing any added information –

an example of CRL. While Dyads 1 and 5 both engaged in patterns of co-regulation,

Dyad 5’s use of co-regulation was more off-task.

Figure 6. Experiment 1: Use of types of regulation across the six dyads.

Patterns in the debugging and types of regulation

Finally, these data were examined for any evidence certain debugging processes

intersected with types of regulation. Table 6 presents the intersection of these data

through the percentages, means, and standard deviations of these cross-cutting

categories across the six dyads. In addition to CRL being the dominant type of

regulation, these data expound upon that by revealing that the focus of CRL is primarily

on determining the necessity of debugging (18%) and correcting the bug (19%).

Table 6. Experiment 1: The intersection of debugging processes with types of

regulation.

 Percentage Mean
Standard

Deviation

Necessity SRL 6% 2.00 2.00

Necessity CRL 18% 6.33 4.63

Necessity SSRL 4% 1.50 3.21

Identifying SRL 5% 1.67 1.63

Identifying CRL 10% 3.67 2.50

Identifying SSRL 6% 2.33 1.97

Pinpointing SRL 1% 0.50 0.84

Pinpointing CRL 7% 2.50 1.64

Pinpointing SSRL 12% 4.17 3.49

Correcting SRL 2% 0.67 0.52

Correcting CRL 19% 7.00 6.10

Correcting SSRL 10% 3.67 2.80

Dyads 4 and 6’s heavy reliance on necessity debugging and engaging in

strategies or action to correct the bug was associated with each dyad member talking

over the other in terms of what to do next, with no attempt to connect their ideas to one

another or the stated task goal. In contrast, Dyad 2 engaged more often in interleaved

debugging processes and interleaved types of regulation. Each successive attempt at

cycling through these processes got Dyad 2 closer and closer to getting the Code-a-

pillar around the block.

Experiment 2

Results from Experiment 1 imply that models of debugging contain metacognitive and

regulatory processes as important patterns in coding. These findings are in line with

previous research showing that debugging involves complex cognitive processes (Liu et

al., 2017; Fitzgerald et al., 2008). Experiment 1 provides valuable insights, but also has

several limitations. For example, it was a small-scale qualitative study with second-

grade students. Moreover, programming with physical blocks is rather restrictive. It is

therefore opportune to examine how students from an older age group regulate their

learning during a collaborative coding assignment. That is why Experiment 2 focuses on

how eighth-grade students regulate their learning while programming a robot in small

groups. We investigated whether similar connections between debugging and regulation

processes hold for eighth-grade students to gain more insight into how these processes

can contribute to coding success and thus drive further theory and model development.

One additional research question was added to the same three from Experiment 1:

4. Do any of these patterns of regulations and debugging influence joint coding

success?

Materials and methods

Research design

Experiment 2 was designed as an explorative descriptive study in which data were

collected through observations. We used the same approach as in Experiment 1, except

for the programming task. The programming task was adjusted to be more appropriate

for eighth grade students.

Participants

The participants in this study were 30 eighth-grade students (27% female). Students

were randomly divided into fifteen dyads. The observations took place at a secondary

school in Belgium. The school is characterized by a student population with low SES

for which they received funds for this. All students in the study had some experience,

albeit limited, with programming and the programming languages (e.g., Microsoft

Makecode) used during the assignment. The proposed research was presented to the

second and third author’s ethical advisory committees and the project was approved

(file number SHW_20_128).

Research task

An assignment was designed in which students had to use an already known

programming language (i.e., Microsoft Makecode) in pairs to program a robot (see

Figure 7). This robot is powered by a BBC micro:bit (see Figure 8). BBC micro:bit

consists of a micro-computer with buttons, an LED matrix as a display, and various

sensors. The physical connection pins at the bottom of the micro:bit allow it to be

connected to external motors, LEDs, and other electronic components. Using a Blocks

Editor (i.e. Microsoft Makecode), students can program the micro:bit and thus also

control the motors that make the robot move. This graphical programming language is

designed so blocks can be dragged and attached to each other.

Figure 7. Tobbie II.

Figure 8. BBC micro:bit.

At the start of the assignment, the students were shown a route (Figure 9). This

was affixed to the table. The start point was indicated by an arrow and the endpoint by a

cross. Each pair was then given 20 minutes to complete the assignment.

Figure 9. Experiment 2 route.

Procedures

Students were invited in pairs. They sat next to each other at a table on which

the route had been depicted. On this table was also a laptop and the robot that had to be

programmed. To program the robot, the students had to use an online application (i.e.,

Microsoft Makecode editor), which was available on the laptop. Their coding work was

recorded through screen recordings. Audio recording (i.e., Zoom f8n multitrack field

recorder) was used to collect verbal data and physical interactions were recorded using

an external Ultra-Wide Angle HD Webcam. Everything was later compiled using video

editing software (i.e., OpenShot Video Editor and Bandicam) to facilitate the

transcribing process. In congruence with Experiment 1, verbal statements were

transcribed verbatim, and actions were indicated in the transcripts in brackets.

Analyses

The transcripts were used for qualitative data analysis. For example, the audio, video,

and screen recordings collected during the collaborative coding assignments were

converted into text. This textual data allowed for further processing with dedicated

software (i.e., Nvivo, release 1.3), and allowed the researcher to become familiar with

the data. To enable us to distinguish the debugging process from other programming

activities, testing activities were first mapped out. These were actions where students

sent their code to the robot and let it run. Depending on whether this matched their

desired outcome, the process that followed was considered debugging or programming.

Without testing the program, the output cannot be compared with the intended target

and therefore cannot be debugged. The target structure of the model established by

Klahr and Carver (1988) proposes this initial step of testing as an essential first phase

(see Figure 1). After transcribing and identifying testing events, we coded the text files

using two coding schemes. First, we used the scheme developed in Experiment 1 (see

Table 3) to identify different stages of the debugging process (i.e., necessity of

debugging, identifying the bug, pinpointing the bug, and correcting the bug).

In addition to coding for the debugging process, the transcripts were also coded

for the type of regulation the participants employed during those processes. For this, the

adapted scheme of Malmberg et al. (2017) was used (see Table 4).

Subsequently, we examined whether any patterns could be found in the observed

debugging processes and the type of regulation used. Initially, this was done using a

query matrix that brought together and quantified the coded pieces from the two coding

schemes used (i.e., debugging process and regulation type) using software (i.e., Nvivo,

release 1.3). The resulting matrix allowed us to identify patterns (e.g., successful versus

unsuccessful task completion) and co-occurrences (e.g., necessity for debugging and

self-regulated learning) in our qualitative data. As our study is qualitative in nature,

each case was examined against these characteristics, and conversations were reported

in detail.

Results

The transcripts revealed a total of 161 debugging strategies across 11 of the 15 dyads.

Notably, four dyads did not display any testing events and therefore did not undertake

any debugging activities. These dyads used their allocated 20 minutes entirely on

writing the program without checking how the physical robot would respond to their

code until the very end. None of these dyads were able to successfully solve the given

task and because no debugging activity was observed in these dyads, they were not

included in our further analysis. Across the remaining dyads, all four aspects of

debugging (i.e., necessity, identifying, locating, and correcting) and the three types of

regulation (i.e., self-regulation, co-regulation, and socially shared regulation) were

observed (see Table 7). These strategic actions will be broken down by discussing both

the quantity of actions (i.e., the number of strategic actions identified) as well as the

quality of these actions as we can infer from the qualitative data. Finally, we discuss

how the debugging processes and regulation types relate to the successful completion of

the coding task. Regarding the completion of the coding task and the joint coding

success, six dyads completed the task within the given time. The other five dyads

managed to program and debug but did not complete the assignment.

A detailed breakdown of identified debugging processes and regulation types for

each dyad is outlined in Table 7. This table encompasses the number of coded episodes

for each aspect of debugging and the utilization of different types of regulation (SRL,

CRL, and SSRL). Dyads vary in their engagement with these processes and types of

regulation, leading to a diverse range of outcomes in terms of task completion.

Table 7. Experiment 2: Identified debugging processes and regulation types per dyad.

 Number of coded episodes Successful

task

completion Necessity Identifying Pinpointing Correcting SRL CRL SSRL

Dyad 1 8 5 7 5 10 11 1 No

Dyad 2 6 5 4 6 3 12 6 No

Dyad 3 4 3 2 3 1 1 0 No

Dyad 4 3 2 1 2 3 5 0 No

Dyad 5 0 0 0 0 0 0 0 No

Dyad 6 4 6 4 7 4 13 2 Yes

Dyad 7 0 0 0 0 0 0 0 No

Dyad 8 2 2 1 2 0 6 1 Yes

Dyad 9 3 5 2 4 1 4 8 Yes

Dyad 10 0 0 0 0 0 0 0 No

Dyad 11 0 0 0 0 0 0 0 No

Dyad 12 5 5 1 6 6 3 7 Yes

Dyad 13 1 3 0 6 1 6 1 Yes

Dyad 14 2 6 2 6 4 9 1 Yes

Dyad 15 3 3 0 4 6 4 0 Yes

Note. SRL= self-regulated learning; CRL= co-regulated learning SSRL= socially shared

regulated learning

Debugging processes

 To address the first research question regarding the debugging processes

undertaken during collaborative coding, we focused on four primary debugging

phases—necessity, identification, localization, and correction. We systematically

coded and quantified these processes. The distribution of these processes across

the eleven dyads is depicted in Figure 10, shedding light on the extent to which

each process was employed.

Figure 10. Experiment 2: Use of debugging processes across the eleven dyads.

It is paramount to acknowledge that the necessity phase acts as a critical steppingstone

for the entire debugging process. As a result, four dyads among the sample refrained

from any debugging efforts, having omitted the necessity phase. However, a higher

frequency of necessity processes didn't inherently equate to improved coding outcomes.

For instance, Dyad 1 and 2 exhibited an emphasis on necessity and localization yet

struggled to complete the task within the stipulated time. Successful dyads, conversely,

invested more in the identification and correction of the bug. Remarkably, the

localization phase was frequently implicit, with dyads transitioning directly from

identification to correction. This shift highlighted a deeper grasp of the programming

logic.

Further examination through qualitative analysis uncovered that explicit efforts

toward bug localization often stem from an inadequate understanding of the

programming language. While the Microsoft Makecode editor employs block-based

programming, proficiency in program structure and logic is necessary for optimal

execution. A telling interaction exemplifies this:

L1: “We need to do something about that…”

(L1 and L2 search between the program blocks)

L1: “We can do light here”

(L2 laughs)

A knowledge gap led certain dyads to allocate more time to localization, hampering

their bug correction efforts. As demonstrated in subsequent interactions, some dyads

encountered substantial difficulties in pinpointing the bug, resorting to restarting their

work multiple times. For instance:

L2: “You just deleted that.” …

L2: “You just deleted everything?”

L1: “I know…”

L1: "Hmmm"

In contrast, successful dyads showcased a more streamlined approach. For instance,

Dyad 8, the most successful one, effectively combined all four debugging processes

across two cycles. Though quantitatively fewer, their integrated and efficient utilization

of these processes paved the way for task completion. This interaction illustrates their

adeptness:

L2: “Uh, try?”

L1: “Yeah, okay.”

L2: “Hopefully it will work”. (L2 starts the robot)

L1: “It's going well now.”

L2: “No, wrong.”

L1: “He went sideways”

L2: “He went sideways, but the time was right.”

L1: “Maybe you should see what comes first” (L1 goes over the program)

L2: “We pause for seven seconds the first time. Seven seconds is too much, isn't

it?"

L1: “Yes.”

L2: "Couldn't we do 5.5?"

L1: “Or six?”

L2: “Because when we started, he came this far.” (L2 points to the track)

L2: “6.5 seconds maybe?”

L1: "You don't need half a second to get from here to here to here, do you?"

L2: “Okay.” (L2 adjusts the time)

L2: "Shall we try that now?"

L1: "Yeah, that's good."

This dialogue showcases a comprehensive debugging cycle that involved testing,

identifying discrepancies, locating the issue, and ultimately rectifying the program.

Types of regulation

Turning to the second research question about regulation types employed during

debugging, we conducted a thorough coding and quantification of self-regulation

(SRL), co-regulation (CRL), and socially shared regulation (SSRL). An overview of the

utilization of these types of regulation across the eleven dyads is depicted in Figure 11,

illustrating noteworthy disparities in their application.

Overall, co-regulation emerged as the most prevalent form of regulation.

However, Dyad 9 deviated from this trend, relying more heavily on SSRL than CRL.

Strikingly, seven out of the eleven dyads displayed minimal instances of SSRL. For

instance, Dyad 1 only exhibited one instance of SSRL. Dyad 1 also stood out with a

higher occurrence of SRL (11 episodes) compared to CRL (10 episodes). Similar to the

debugging processes, variations in the quality of regulation types were noted,

influencing the attainment of the task's objective.

Figure 11. Experiment 2: Use of types of regulation across the eleven dyads.

Notably, Dyad 9 successfully completed the task while prominently engaging in SSRL

alongside CRL. Their collaboration was characterized by mutual input and action:

L1: “Done?”

L2: “I will download.”

 (L1 connects the robot)

L1: “Is it ready? Try again."

L2: “What again?”

(L2 downloads the program and turns on the robot)

L1: “He has to come here. “(L1 points to the course)

L2: “We need to change this one.” (L2 points to the pause blocks on the screen)

However, a robust presence of SSRL did not necessarily guarantee task success. Dyad

2, despite frequent instances of SSRL, fell short of completing the assignment:

L2: “Maybe that should go forward five times.”

L1: “On four occasions it was already here on that line.”

(L1 points to the course)

L1: “At five times he might be there.”

L2: “Then…” (L2 watches the program)

L1: "Then, a 'Tobbie stop' in between."

L2: “We can do that in here.” (L2 adjusts the program)

Dyads 12 and 15 leaned more towards SRL and CRL, successfully completing the task.

In these dyads, a significant skill gap led to a stronger participant adopting a leading

role, relying more on SRL. Personal and contextual factors also influenced the

distribution of regulation types. Dyad 1 showcased high self-efficacy but lacked the

necessary skills, paralleling patterns observed in Dyads 12 and 15.

Patterns in debugging processes and types of regulation

Addressing the third and fourth research questions delving into the interplay between

debugging processes and types of regulation, and their impact on joint coding success,

we found that CRL was the predominant regulation type across all debugging processes,

accounting for 50% to 60% of interactions. The alignment or disjunction between

regulation types and debugging processes is encapsulated in Table 8. Examining dyads

that successfully completed the task and comparing them to those that did not, revealed

a significant trend. Successful dyads invested a relatively greater effort in identifying

and correcting bugs. This observation becomes evident when examining the frequency

of coded episodes, particularly in the context of episodes focused on identifying and

rectifying issues versus those centered on pinpointing and addressing underlying causes

(see Table 7). Moreover, successful dyads were more inclined to transition to SSRL

during these processes (see Table 7).

Table 8. Experiment 2: The intersection of debugging processes with types of

regulation.

 Percentage Mean Standard Deviation

Necessity SRL 8% 1.18 1.72

Necessity CRL 13% 2.00 1.34

Necessity SSRL 2% 0.36 0.92

Identifying SRL 7% 1.09 1.04

Identifying CRL 17% 2.64 1.43

Identifying SSRL 4% 0.64 1.21

Pinpointing SRL 5% 0.73 0.90

Pinpointing CRL 9% 1.36 1.75

Pinpointing SSRL 2% 0.36 0.92

Correcting SRL 8% 1.27 0.79

Correcting CRL 17% 2.64 1.50

Correcting SSRL 6% 0.91 0.83

Ultimately, these results indicate a strong correlation between successful joint

coding and the collaborative interplay between debugging processes and types of

regulation. Dyads that achieved the task completion milestone showcased a more

integrated approach to debugging, iterating through identification, localization, and

correction of bugs. Furthermore, these successful dyads often shifted to socially shared

regulation (SSRL) during debugging, suggesting that effective collaboration and mutual

effort in navigating programming challenges are closely tied to positive outcomes.

While some dyads struggled due to skill gaps, our analysis revealed a more nuanced

picture. The engagement in debugging processes and the types of regulation utilized

played a pivotal role. Dyads that struggled often spent considerable time on the

necessity phase and bug localization, demonstrating challenges in transitioning from

identifying issues to effective correction. This observation underscores the complexity

of debugging activities in collaborative contexts and hints at potential areas for

improvement in collaborative learning.

Discussion

Our discussion will consider the results across both experiments. Experiment 2 builds

on the findings of Experiment 1 and taken together they provide a cross-section of

novices at different ages. The originality of this work lies in the examination of the

interplay between debugging processes, regulation types, and coding outcomes in a

collaborative setting. Previous work has demonstrated that debugging is important for

individuals, but we investigate here how that is operationalized among a collaborative

group. Further, it is known that CRL and SSRL are required in other group problem-

solving activities and we endeavour to see if it is also the case here for coding. Building

on prior research (Klahr & Carver, 1988; Liu et al., 2017), it explores the relationship

between the four debugging processes and successful coding outcomes, while also

considering the type of regulation used by novice coders of varying ages. The findings

show that the combined and sequential utilization of all debugging processes leads to

successful coding and that the type of regulation used depends on multiple factors, such

as the dyad members' differential skill levels, domain knowledge, and problem-solving

abilities. These must therefore be taken into consideration when designing tasks and

composing groups. Moreover, to mediate SSRL, task difficulty must be situated in the

zone of proximal development (ZPD, Vygotsky, 1978) of both students. According to

Vygotsky (1978), the ZPD is the area where learning takes place most effectively. It is

the range of tasks that a learner can accomplish with guidance and support, but not yet

independently. Overall, the zone of proximal development is a key concept in

educational psychology that highlights the importance of finding the right level of

challenge and support for learners to maximize their learning potential. Understanding

each team member's ZPD can help to ensure that each team member is challenged

appropriately and has the opportunity to learn and grow. The results of this study

provide a fresh perspective on the use of debugging processes and regulation types by

novice coders in collaboration and help guide further research and model development.

Although the different debugging processes are defined as separate steps (Klahr

& Carver, 1988), they were less explicitly separated in dyads that were more successful

in completing the task. Moreover, the testing phase (necessity) was deemed an essential

first step to even start any other debugging processes, conforming some sequential

relation between the processes. Furthermore, we see similar patterns in the overlap

between debugging processes and regulation types. In this respect, the similarities are

striking, but the differences, which could be explained by the changed age category and

the modified coding assignment, provide unique insights that can guide further research

and model development. In what follows we discuss each of these aspects in more detail

and formulate implications for both theory and practice.

Debugging processes

We can conclude from Experiment 1 that students undertake all four of the debugging

processes (i.e., necessity of debugging, identifying the bug, pinpointing the bug, and

correcting the bug). However, if the first step, necessity of debugging is missing, no

further debugging processes can be observed (Klahr & Carver, 1988). For example, 4

out of the 15 dyads in Experiment 2 did not debug their program and could not

complete the assignment. Here our findings differ from Experiment 1, where debugging

processes were found in all dyads. In Experiment 1 we focused on second-grade

students who used a code-a-pillar, a toy robot in the shape of a caterpillar that could be

programmed using physical programming blocks. The increased complexity and the use

of a programming language (i.e., Microsoft Makecode) may offer an explanation.

Computer programming increasingly relies on computational thinking as it increases in

complexity, a thought process that uses elements of abstraction, generalization,

decomposition, algorithmic thinking, and debugging (Angeli et al., 2016; Wing, 2006).

The four dyads that did not undertake any debugging activities did not divide the

assignment into smaller subtasks (i.e., decomposition), which could then be tested and

adjusted (i.e., debugging). However, we can conclude that this strategy is not intuitively

applied when both digital (e.g., the programming environment) and physical (e.g., the

robot) elements are present. When the programming problem only presented itself

physically, as in Experiment 1, students automatically proceeded to test and debug their

program. As such, the computer-based programming language in which the

development environment is separated from the physical output (i.e., the robot) formed

an additional barrier that several dyads were unable to overcome. Although block code

is semantically simpler than textual coding, understanding the syntax or structure of this

language remains crucial. Our observations showed that when students had insufficient

mastery of this, they had to work much harder on the necessity of debugging and

locating the bug. Dyads more proficient with Microsoft Makecode made comparatively

more explicit use of identifying and correcting the bug. The localization of the bug was

often implicit, which can again be explained by a better understanding of the

programming language.

These findings are in line with previous findings by Klahr and Carver (1988)

and Liu et al. (2017), who argue that novice programmers often lack domain knowledge

and general problem-solving skills. Both are important in terms of programming, also in

a collaborative setting. Moreover, not all students had the necessary knowledge and

skills, demonstrating the importance of teaching them. If at least one of the group

members had the necessary knowledge and skills, repeatedly applying the four

debugging processes in an integrated manner led to better coding outcomes. This ties in

with the findings of Experiment 1, but also illustrates the increased complexity

associated with the digital programming of a physical robot.

Types of regulation

Regarding the type of regulation (i.e., SRL, CRL, and SSRL) that dyads used during the

debugging processes, we found that dyads who managed to use all three regulation

types in a balanced way were more successful in completing the assignment. This

supports Hadwin et al. (2011) and Malmberg et al. (2017) findings that argued that the

three types of regulation are necessary for a collaborative setting. CRL was by far the

most observed type of regulation, but students who adopted SSRL in addition to CRL

were more likely to complete the assignment. We did find that the perceived skill level

of the participants influenced the type of regulation used. For example, SSRL mainly

occurred when both participants found the process challenging and could contribute to

the process. When one of the participants was more proficient or self-judged to be more

proficient, more SRL was observed. Two dyads (i.e., 12 and 15) showed that this was

not always disadvantageous. They also completed the assignment within the set time

because one student took the lead.

Where domain knowledge and problem-solving skills of an individual group

member proved to be decisive for the use of certain debugging processes, we note here

that the ratio of skills between the group members influences the type of regulation

used. For example, SSRL mainly occurred when the assignment presented a challenge

to both group members and each group member could meaningfully contribute to its

completion. However, these aspects were not addressed in Experiment 1, which also

underlines the importance of contextual factors. Eighth-grade students may be shaped

more by previous experiences and more subjective to social factors.

Patterns in debugging processes and types of regulation

When analyzing the overlap between debugging processes and the type of regulation

used, we noticed complex patterns. In dyads who successfully completed the

assignment, SSRL was used proportionally more when identifying and correcting the

bug. When pinpointing, hardly any SSRL was detected. In dyads that were less

successful in programming their robot, we observed much fewer episodes of SSRL.

Even if this was the case, it mainly happened during locating actions. This leads us to

suspect that these dyads had trouble finding the bug and lacked knowledge regarding

the programming language. This observation in Experiment 2 raises questions about the

level of programming skill required for successful collaborative coding and the role of

collaborative learning environments in bridging skill gaps. While successful dyads

integrated debugging processes and demonstrated effective collaboration, the less

successful ones could benefit from targeted interventions to enhance their programming

competencies.

The observed patterns in both processes and types of regulation show that

debugging is a complex and dynamic process (Ahn et al., 2017; Klahr & Carver, 1988),

even with a relatively simple coding task performed by eighth-grade students. As the

type of regulation used depends on the perceived difficulty of the task, our observations

indicate that it can differ per debugging process. This finding conforms to Järvelä and

Hadwin’s (2013) framework that describes these process-based differences in regulation

as task dependencies. However, the perception of skills, as well as contextual factors,

are not included in this model.

Limitations

This study is based on two small samples of students from each grade and in each

experiment students all came from the same school. Our findings, therefore, are not

generalizable.

 One of the main limitations of our study is that both experiments relied primarily

on the verbal statements of students while solving problems to measure their debugging

and regulation processes. The extent to which students verbally externalize these

processes might depend on the personal characteristics of the students which have not

been taken into account in this study. Future research could take such personal

characteristics more into account and could also aim to triangulate the verbal statements

with process data coming (e.g., the log files of their coding in Experiment 2). While we

have presented evidence here that more successful groups employ all different types of

regulation (i.e., SRL, CRL, and SSRL), the nature of the individuals within the groups

may also mediate the relation between regulation and coding outcomes and needs to be

further investigated.

 A relevant difference to note in the findings is that debugging was coded

throughout the entirety of children’s interactions with the robot in Experiment 1. In

Experiment 2, debugging was captured when students sent the code to the robot for

testing and when they were evaluating what happened. That is why there are more total

instances of debugging for the smaller sample in Experiment 1 than in the larger sample

of Experiment 2. Despite this difference, the pie charts presented show very similar

rates of each type of debugging between the two age groups. As noted earlier, the

decision for what to include as coded activity stemmed from the nature of working with

tangible block coding versus block coding on screen.

Implications

The results from this cross-sectional study hold valuable information for research on the

advancement of debugging techniques and collaborative programming as a whole. The

findings show that novice programmers possess prior understanding (e.g., problem

solving abilities) that prompts them to utilize debugging methods even before receiving

formal training. Despite the importance placed on teamwork in computer science

education, this study highlights specific areas where strategy training could effectively

improve collaborative programming efforts. The observed variations in success rates

and debugging strategies among dyads highlight the importance of acknowledging and

accommodating diverse skill levels within collaborative learning settings. Collaborative

coding tasks should be designed and scaffolded in a way that fosters effective

collaboration between students with varying programming abilities. This might involve

implementing strategies to encourage peer mentoring, shared problem-solving, and the

development of complementary skills. To mediate SSRL, the task difficulty must be

appropriately aligned with the zone of proximal development (Vygotsky, 1978) for both

students.

Furthermore, the influence of programming skills on collaborative coding

outcomes underscores the need for a balanced approach that integrates technical

proficiency with collaborative problem-solving. Emphasizing the development of

programming skills alongside teamwork and communication abilities could lead to

more successful collaborative coding experiences (Sharma et al., 2019). The findings of

this study challenge the notion that programming and debugging can be reduced to a set

of clearly defined consecutive steps. Instead, it highlights the dynamic nature of coding

and debugging processes and the importance of including metacognitive and regulatory

elements in debugging models.

The examination of debugging strategies and their correlation with collaborative

success offers educators valuable insights into optimizing the teaching of debugging

skills and fostering strategic thinking. A study with older students suggests that

understanding of the types of regulation employed during debugging processes enables

instructors to customize their pedagogical strategies, providing targeted support to

students as they navigate challenges, improve problem-solving methodologies, and

enrich their overall learning journey (Emara et al., 2021). By explicitly instructing

students in the art of effective debugging and self-regulation, educators equip them to

confront coding complexities with heightened efficiency and collaborative prowess.

Additionally, this study emphasizes the importance of accounting for contextual

variables when deciphering the intricacies of programming and debugging practices

within collaborative contexts.

With regard to the socially shared regulation learning model, the data from this

study suggest that co-regulation (CRL) may play a key role in facilitating the

development of shared regulation strategies, particularly for novice programmers.

Our observational study provides a foundation for further research exploring the

intersection of programming skills, collaborative dynamics, and learning outcomes.

Further investigation could delve into the impact of different instructional methods, peer

interactions, and technological tools on collaborative coding success and skill

development. A mixed-method design, including qualitative and quantitative methods,

could improve data triangulation and provide a better understanding of patterns. This

can be achieved by supplementing observations with log data, questionnaires, and

interviews to explore differences in skill level, personality, motivation, perception, and

task difficulty.

In conclusion, the implications of this study extend beyond the presented results,

offering insights into the optimization of collaborative learning environments, the

cultivation of programming skills, and the design of effective pedagogical strategies.

These implications hold the potential to enhance both the learning experiences and

outcomes of students engaged in collaborative coding tasks.

References

Ahn, J. H., Mao, Y., Sung, W., & Black, J. B. (2017, March). Supporting Debugging

Skills: Using Embodied Instructions in Children’s Programming Education.

In Society for Information Technology & Teacher Education International

Conference (pp. 19-26). Association for the Advancement of Computing in

Education (AACE).

Alexander, P. A., & Judy, J. E. (1988). The interaction of domain-specific and strategic

knowledge in academic performance. Review of Educational Research, 58(4),

375-404.

Allal, L. (2010). Assessment and the Regulation of Learning. International

Encyclopedia of Education, 348-352.

Angeli, C., Voogt, J., Fluck, A.E., Webb, M., Cox, M., Malyn-Smith, J., & Zagami, J.

(2016). A K-6 Computational Thinking Curriculum Framework: Implications

for Teacher Knowledge. Journal of. Educational Technology & Society, 19, 47-

57.

Bocconi, S., Chioccariello, A., Dettori, G., Ferrari, A., & Engelhardt, K. (2016).

Developing Computational Thinking in Compulsory Education-Implications for

Policy and Practice. Luxembourg: Publications Office of the European Union.

Bruning, R., Schraw, G., & Norby, M. (2010). Cognitive Psychology and Instruction.

Pearson, New York, NY, USA.

Bull G., Garofalo J. & Hguyen N. R. (2020). Thinking about computational thinking,

Journal of Digital Learning in Teacher Education, 36:1, 6-18.

Chalmers, A. F. (1982). Epidemiology and the scientific method. International Journal

of Health Services, 12, 659-666.

Dabbish, L., Stuart, C., Tsay, J., & Herbsleb, J. (2012, February). Social coding in

GitHub: Transparency and collaboration in an open software repository.

In Proceedings of the ACM 2012 conference on computer supported cooperative

work (pp. 1277-1286). ACM.

DiDonato, N. (2013). Effective self- and co-regulation in collaborative learning groups:

An analysis of how students regulate problem solving of authentic

interdisciplinary tasks. Instructional Science, 41, 25-47.

Dignath, C., & Buettner, G. (2008). Components of fostering self-regulated learning

among students. A meta-analysis on intervention studies at primary and

secondary school level. Metacognition and Learning, 3, 231-264.

Dinsmore, D. L. (2017). Towards a dynamic, multidimensional model of strategic

processing. Educational Psychology Review, 29, 235-268. doi: 10.1007/s10648-

017-9407-5

Duncan, C., Bell, T., & Tanimoto, S. (2014). Should your 8-year-old learn coding?

Proceedings of the 9th Workshop in Primary and Secondary Computing

Education on - WiPSCE '14.

Emara, M., Grover, S., Hutchins, N., Biswas, G., & Snyder, C. (2020). Examining

Students’ Debugging and Regulation Processes During Collaborative

Computational Modeling in Science. In Gresalfi, M. and Horn, I. S. (Eds.), The

Interdisciplinarity of the Learning Sciences, 14th International Conference of

the Learning Sciences (ICLS) 2020, Volume 3 (pp. 1325-1332). Nashville,

Tennessee

Emara, M., Hutchins, N. M., Grover, S., Snyder, C., & Biswas, G. (2021). Examining

student regulation of collaborative, computational, problem-solving processes in

open-ended learning environments. Journal of Learning Analytics, 8(1), 49-74.

Fitzgerald, S., Lewandowski, G., Mccauley, R., Murphy, L., Simon, B., Thomas, L., &

Zander, C. (2008). Debugging: Finding, fixing and flailing, a multi-institutional

study of novice debuggers. Computer Science Education, 18(2), 93-116.

Grover, S., & Pea, R. (2013). Computational Thinking in K–12. Educational

Researcher, 42(1), 38-43.

Hadwin, A. F., Järvelä, S., & Miller, M. (2011). Self-regulated, co-regulated, and

socially shared regulation of learning. In B. Zimmerman & D. Schunk (Eds.),

Handbook of self-regulation of learning and performance (pp. 65-84). New

York: Routledge.

Järvelä, S., & Hadwin, A. F. (2013). New Frontiers: Regulating Learning in CSCL.

Educational Psychologist, 48(1), 25-39.

Kafai, Y., & Vasudevan, V. (2015, June). Hi-Lo tech games: crafting, coding and

collaboration of augmented board games by high school youth. In Proceedings

of the 14th International Conference on Interaction Design and Children (pp.

130-139). ACM.

Kallia, M., & Cutts, Q. (2022). Conceptual development in early-years computing

education: A grounded cognition and action based conceptual framework.

Computer Science Education. Advance online publication.

https://doi.org/10.1080/08993408.2022.2140527

Klahr, D., & Carver, S. M. (1988). Cognitive objectives in a LOGO debugging

curriculum: Instruction, learning, and transfer. Cognitive Psychology, 20, 362-

404.

Lin, Y., Wu, C., Hou, T., Lin, Y., Yang, F., & Chang, C. (2016). Tracking Students’

Cognitive Processes During Program Debugging—An Eye-Movement

Approach. IEEE Transactions on Education, 59(3).

https://doi.org/10.1080/08993408.2022.2140527

Liu, Z., Zhi, R., Hicks, A., & Barnes, T. (2017). Understanding problem solving

behavior of 6–8 graders in a debugging game. Computer Science Education,

27(1), 1-29.

Malmberg, J., Järvelä, S., & Järvenoja, H. (2017). Capturing temporal and sequential

patterns of self-, co-, and socially shared regulation in the context of

collaborative learning. Contemporary Educational Psychology, 49, 160-174.

McCauley, R., Fitzgerald, S., Lewandowski, G., Murphy, L., Simon, B., Thomas, L., &

Zander, C. (2008). Debugging: A review of the literature from an educational

perspective. Computer Science Education, 18(2), 67-92.

Murphy, L., Fitzgerald, S., Hanks, B., & Mccauley, R. (2010). Pair debugging.

Proceedings of the Sixth International Workshop on Computing Education

Research - ICER '10.

Neuendorf, K. A. (2017). The content analysis guidebook. Sage Publications

Panadero, E. (2017). A Review of Self-regulated Learning: Six Models and Four

Directions for Research. Frontiers in Psychology, 8.

Panadero, E, & Järvelä, S. (2015). Socially shared regulation of learning: A review.

European Psychologist, 20(3), 190-203. https://doi.org/10.1027/1016-

9040/a000226

Papert, S. (1980). Mindstorms: Children, computers, and powerful ideas. NY: Basic

Books Inc.

Potters, O. (2014). Regulatieprocessen Tijdens Samenwerkend Leren [Unpublished

Master’s Thesis]. Utrecht University

Saldaña, J. (2015). The coding manual for qualitative researchers. Sage Publications.

Scherer, R. (2016). Learning from the Past–The Need for Empirical Evidence on the

Transfer Effects of Computer Programming Skills. Frontiers in Psychology, 7

Sharma, K., Papavlasopoulou, S., & Giannakos, M. (2019). Coding games and robots to

enhance computational thinking: How collaboration and engagement moderate

children’s attitudes? International Journal of Child-Computer Interaction, 21,

65-76. https://doi.org/10.1016/j.ijcci.2019.04.004

Tang, K., Chou, T., & Tsai, C. (2019). A Content Analysis of Computational Thinking

Research: An International Publication Trends and Research Typology. The

Asia-Pacific Education Researcher, 29(1), 9-19.

Vygotsky, L. S. (1978). Mind in society: The development of higher psychological

processes. Cambridge, MA: Harvard University Press.

Villamor, M., Paredes, Y. V., Samaco, J. D., Cortez, J. F., Martinez, J., & Rodrigo, M.

M. (2017). Assessing the Collaboration Quality in the Pair Program Tracing and

Debugging Eye-Tracking Experiment. Lecture Notes in Computer Science

Artificial Intelligence in Education, 574-577.

Vlaamse regering (2019). Decreet betreffende de onderwijsdoelen voor de eerste graad

van het secundair onderwijs. Belgisch staatsblad, publicatiedatum 26 april 2019.

Wing, J. M. (2006). Computational thinking. Communications of the ACM, 49(3), 33-

35.

Winne, P. H. (1995). Inherent details in self-regulated learning. Educational

Psychologist, 30(4), 173-187.

World Economic Forum (2016). The future of jobs: Employment, skills and workforce

strategy for the fourth industrial revolution. Global Challenge Insight Report.

Zimmerman, B. J. (2000). Attaining Self-Regulation: A Social Cognitive Perspective. In

M. Boekaerts, P. R. Pintrich, & M. Zeidner (Eds.), Handbook of Self-Regulation

(pp. 13-39). San Diego, CA: Academic Press.

https://doi.org/10.1016/j.ijcci.2019.04.004

