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Exploring Debugging Processes and Regulation Strategies during Collaborative 

Coding Tasks among Elementary and Secondary Students 

 

Background and Context: Debugging in education increasingly takes place in 

a collaborative setting. More data are needed about how young learners identify 

and fix errors while programming in pairs. 

Objective: The current study aims to identify discernible patterns in the 

intersection between debugging processes that children engage in during coding 

activities and the type of regulation used during those debugging processes (i.e., 

SRL, CRL, or SSRL); to gain more insight into how these processes can 

contribute to coding success and thus drive further theory and model 

development. 

Method: Two experiments were conducted in sequential order. The first focused 

on second-grade students (N= 12) who were asked to program a Code-a-pillar 

using physical programming blocks. Two coding schemes were used to identify 

both debugging processes and types of regulation used. The second study used a 

similar approach but focused on eighth-grade students (N= 30) who were asked 

to program a Tobbie2 robot using Microsoft MakeCode.  

Finding: Results confirm that the integrated and sequential use of all four 

debugging processes is related to successful coding. Furthermore, we see similar 

patterns in the overlap between debugging processes and regulation types for 

both age categories.  

Implications: The study highlights specific areas where strategy training could 

effectively improve collaborative programming efforts. Moreover, our finding 

challenges the notion that programming and debugging can be reduced to a set 

of clearly defined consecutive steps. Instead, it highlights the dynamic nature of 

coding and debugging processes and the importance of including metacognitive 

and regulatory elements in debugging models. 
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Introduction 

As our education systems aim to prepare young people to be able to participate in this 

fast-evolving world, it is no longer sufficient to just teach the use of existing technology 

but is also necessary for students to understand underlying principles such as 

programming and computer logic. In 1980 Papert introduced the term computational 

thinking in his work, Mindstorms: Children, Computers, and Powerful Ideas. He argued 

that computational thinking could be used to create new knowledge and that computing 

has the potential to improve children's thought processes. Wing (2006) later re-launched 

this concept with her call to establish computational thinking as a fundamental skill that 

everyone should possess. This statement made many consider computational thinking 

an essential skill in the 21st century (Angeli et al., 2016). 

In recent years, researchers have focused on issues related to teaching and 

learning skills, concepts, and practices relevant to computational thinking (Angeli et al., 

2016; Bull et al., 2020; Grover & Pea, 2013). This follows from decades of research that 

examines how cognitive (i.e., skills and strategies used to make progress on a task) and 

metacognitive (i.e., skills and strategies used to monitor and control cognitive 

processes) processes influence learning across a wide variety of different contexts (e.g., 

Dinsmore, 2017). These processes have been the focus of major learning theories that 

examine individual learning, such as information processing theory and self-regulatory 

models (e.g., Winne, 1995) as well as theories that focus on learning in social settings 

and the related models of socially-shared regulation (e.g., Panadero & Järvelä (2015).     

At issue is that whole curricula have been developed and implemented without 

fully understanding how children new to programming approach computational thinking 

nor which types of individual and group regulation support their efforts to complete 

programming tasks (Kallia & Cutts, 2022). For example, some curricula present 

https://scholar.google.com/citations?user=W48jTNAAAAAJ&hl=en&oi=sra


programming as a collaborative endeavour (e.g., CSinSF), while others provide 

individually-oriented problem-solving lessons (e.g., code.org). Furthermore, there are 

core components of computational thinking that seem to be emphasized, however 

debugging remains a less understood component of computational thinking in education 

(Liu et al., 2017). Debugging involves finding and fixing errors or “bugs” in computer 

programs, making it a type of problem-solving strategy (Liu et al., 2017; Klahr & 

Carver; 1988). Strategies have been defined as a special type of procedural knowledge 

that individuals need to complete tasks (e.g., Alexander & Judy, 1988). For example, 

Lin et al. (2016) established a strong correlation between debugging and cognitive 

activities as previous research has shown that this skill has the potential to be used 

outside a programming context (Klahr et al., 1988). Although traditional research on 

debugging posits it as an individual activity (Grover et al., 2013), debugging often 

happens in collaborative settings, particularly in educational contexts utilizing research-

backed curricula (e.g., CSinSF). Therefore, to better understand how students, learn to 

identify and fix errors while programming in pairs or groups, more data about how 

learners debug in small groups are needed at various developmental levels. The 

exploratory data presented in this paper are meant to be a first step to inform explicit 

instruction for teaching novice programmers how to debug with one or more partners.  

Theoretical Framework 

Regulated learning in collaborative learning environments forms an emerging and 

growing area of research, but there is very little knowledge on how regulated learning 

takes place during collaborative programming and debugging. 



Debugging 

Debugging is defined here as a systematic process to find out why a computer program 

does not work and attempt to resolve the problem (Liu et al., 2017). The error in the 

program is also known as a ‘bug’. Debugging forms an established and rich field of 

study that received much attention in the 1980s. Reports included studies on the 

differences between inexperienced and experienced programmers, types of bugs, causes 

of bugs, and mental models of both programming and debugging (McCauley et al., 

2008). Klahr and Carver (1988) formulated four aspects that are necessary for 

debugging: 1) a description of the purpose of the program; 2) a list of steps or 

commands; 3) the output generated by the program; and 4) individual knowledge of 

coding. Without the first three aspects, debugging is not possible. The fourth, 'individual 

knowledge of coding', is more variable and affects debugging success. Novice 

programmers often lack domain knowledge and general problem-solving skills (Klahr 

& Carver, 1988; Liu et al., 2017), making debugging particularly difficult for them 

(Fitzgerald et al., 2008). 

 More recent studies have explored characteristics of debugging instruction that 

most effectively improve children’s programming outcomes. Explicitly teaching a 

debugging process was found to improve both actual debugging and self-efficacy for 

debugging in high school students (Michaeli & Romeike, 2019). For elementary 

children, there is evidence to suggest that connecting instruction to familiar and 

practical language and modeling through concrete means like manipulatives helps them 

learn debugging (Ahn, et al., 2022; Sung, et al., 2022). The current study seeks to learn 

more about prior knowledge children bring to a programming task requiring debugging 

and how they regulate their learning while collaborating on a programming task. 

The connection between problem solving and metacognition is frequently cited, 

partly because debugging can also be considered a problem-solving skill (Klahr & 



Carver, 1988). The five stages of debugging (i.e., evaluate, identify, represent, locate, 

and correct; See Figure 1), proposed by Klahr and Carver (1988), are very similar to 

stages that can also be found in other problem-solving models (Bruning et al., 2010).  

Ahn et al. (2017) indicated that these processes were efforts to monitor and control the 

coding process, similar to how individuals monitor and control their own processes. A 

corollary with regulatory processes can be made, in which self-regulated learning forms 

a rich area of study, which we turn to next. 

Figure 1. Goal structure of the debugging model. (From Klahr & Carver, 1988. 

Reprinted with permission.) 

 

Regulated learning 

In most theoretical models related to learning, the learning process contains a regulatory 

mechanism to allow for the adjustment of behavior and thought processes. The ability to 

control one's own behavior and thought processes is called self-regulation. It is 

considered critical for successful learning and has been described by Zimmerman 

(2000) as giving guidance to the learning process to achieve objectives. 



Self-regulated learning (SRL) forms a well-established and rich field of study 

(Panadero, 2017) that focuses on the combination of metacognitive, motivational, and 

behavioral processes. The metacognitive component includes planning, goal setting, 

organizing, monitoring, and self-evaluation; the cognitive component includes learning 

strategies that are used; and the motivational aspect includes motivation, self-efficacy, 

and interest in the task (Potters, 2014). Regarding collaborative learning, SRL theories 

have been used to explain regulated learning in more social and interactive learning 

environments (Järvelä & Hadwin, 2013). These insights drive a relatively new but 

growing field of research. In what follows, we build on these studies to conceptualize 

regulation types and processes in a collaborative CT context. 

Types of regulation  

Multiple frameworks conceptualize the way regulation takes place in a collaborative 

setting, in which types of regulation vary in function from the "I-perspective ", "you-

perspective", and "we-perspective”. Järvelä and Hadwin (2013) thus defined three 

forms of regulation: self-regulation, co-regulation, and shared regulation (see Table 1).  

Self-regulated learning (SRL) is essential to be able to work together 

productively. An individual must first and foremost regulate their own learning 

(Hadwin et al., 2011). Unlike self-regulation, co-regulation of learning (CRL) is not an 

individual undertaking. CRL involves guiding and supporting the regulatory processes 

of one specific group member by another group member (Järvelä & Hadwin, 2013).  

Table 1. Contrasting different regulatory areas in SRL, CRL, and SSRL (adapted from 

Järvelä, & Hadwin, 2013). 

 Self-Regulated 

Learning (SRL) 

Co-Regulated 

Learning (CRL) 

Shared Regulation of 

Learning (SSRL) 
Whose 

goals? 

(“I” perspective)  
Individuals construct 

personal goals/standards 

against which they monitor 

(“You perspective”) 
Individuals hold 

goals/standards for 

(“We perspective”)  
Collective goals/standards 

are negotiated and 

constructed amongst team 



their own progress and 

contributions to the 

group task.  

 

each other in relation to 

progress and contributions 

to the group task. 

members to optimize 

progress and 

contributions to the group 

task and to 

build on goals each 

individual brings 

to the group task. 

 

Who 

regulates? 

Individual adapts or 

changes his/her own 

regulation processes, 

beliefs goals, etc. 

Individual supports or 

influences a 

team member’s regulation 

processes, beliefs goals, 

etc. 

 

 

Team members collectively 

negotiate and realign or 

adapt group regulation 

processes, strategies, 

beliefs, goals, etc.  

What is 

regulated? 

My task perceptions. 

My strategy knowledge & 

use. 

My goals and standards for 

this task. 

My plans for working 

together 

My engagement and 

positive/negative emotional 

feelings. 

My goal progress 

evaluations. 

 

The other’s task 
perceptions. 

The other’s strategy 
knowledge & use. 

The other’s goals and 
standards for this task and 

for contributing to this 

task. 

The other’s plans for this 
task and for contributing to 

this task. 

Awareness of others’ 
engagement and 

positive/negative feelings 

in 

this task. 

Goal progress evaluations 

of other group members. 

Our negotiation of common 

task perceptions. 

Knowledge about this 

group’s strengths & 

weaknesses with respect to 

this task. 

Shared goals and alignment 

of individual task 

perceptions and goals. 

Our use of team processes 

and strategies for 

succeeding with this task. 

Strategy knowledge we 

create together. 

Perceptions & evaluations 

of our collective progress. 

Awareness of our 

engagement and 

positive/negative feelings 

in this task. 

Negotiated evaluations of 

goal progress. 

 

The co-regulatory learner provides support and feedback. In this form, an individual is 

not completely free to monitor and control his or her cognition, motivation, and 

behavior, but these processes are partially influenced by another person. Finally, 

socially shared regulation of learning (SSRL; Järvelä and Hadwin, 2013) is an activity 

in which the regulation of group members is coordinated and discussed, thereby 

influencing each other. Group negotiation, consultation, discussion, and exchange are 

characteristic of shared regulation. Malmberg et al. (2017) also indicated that SRL, 

CRL, and SSRL occur simultaneously and reciprocally (see Figure 2). 



Figure 2. Three forms of regulated learning in successful collaboration. (From Järvelä, 

& Hadwin, 2013. Reprinted with permission.) 

 

Regulation processes  

Typically, researchers focusing on regulated learning in a collaborative setting have 

described how shared regulation arises. Similarly, the role of the individual within a 

group has been described by proposing different forms of regulatory learning processes. 

Empirical research on how these processes manifest themselves is less extensive. 

Zimmerman (2000) described three phases (i.e., preparation, implementation, and 

reflection) that occur cyclically. The execution phase can be further divided into 

monitoring and control. Malmberg et al. (2017) in their study among university students 

who carried out a group assignment focused on which patterns can be found in SRL, 

CRL, and SSRL; in conjunction with task performance. For this, they categorized the 

cognitive- and task-related interaction segments during their observation and 

subsequentially derived theoretically and empirically different categories into which the 

regulated learning process can be divided (i.e., task understanding, planning, goal 

setting, monitoring and evaluating, strategy use, and task execution). Although 

monitoring and evaluation are conceptually two different processes, they were merged 

as they were found to be difficult to distinguish (Malmberg et al., 2017). In their 



categories, the researchers included task performance in addition to the five cognitive 

segments (see Table 2). 

Table 2. Categories representing regulation processes and executive processes and their 

empirical indicators (adapted from Malmberg et al., 2017). 
Processes Empirical indicators 
Task 

understanding  

Activating previous knowledge of the task and contents; thinking about the 

purpose of the task; identifying what should be learned; reading and interpreting 

the task instructions; explaining and discussing what the midterm plan should 

look like, thinking about why task completion is important. 

 
Planning Thinking about what documents and resources are needed (e.g., during the 

lessons or in a lesson plan); thinking about the relevant parts of a lesson plan.  

The group plans and coordinates the level of collaboration, such as dividing the 

task or lesson among group members. 

Creating a work schedule; planning what to do next. 

 

 

Goal setting The group sets a goal for the work to be done; the group sets a task-specific 

goal, for instance, the need to learn important concepts or theories from the 

course.  

The group sets a date, for example, a date for accomplishing a subtask that takes 

the lesson plan into account. The group decides on the main responsibilities of 

each member in the lesson plan. 

 

Monitoring and 

evaluating 

Monitoring and evaluating progress toward the criteria set for the task; 

evaluating the schedule set for the collaborative task; summarizing what has 

been done and what needs to be done. 

Monitoring understanding and the resources available. 

 

Strategy use Prompting the use of strategies such as summarizing information, elaborating on 

presented information, and selecting main points for the midterm plan. 

 

Task execution The group works on laptops and writes up the midterm plan (e.g., one group 

member writes while others explain and contribute to what to write). The group 

progresses with the content in the midterm plan. 

Regulation processes during debugging 

In our review of the literature, there were numerous articles related to debugging, 

collaboration, and regulation, but few investigated the patterns between these 

constructs. Therefore, we conclude that research on the regulation of processes during 

debugging and research on debugging in social educational settings is limited. 

However, we found a few studies on debugging that referred to regulatory 

processes. In their research among college students, Lin et al. (2016) used eye-tracking 

to investigate the cognitive processes during debugging. They found that differences 



between high and low-performing programmers could be explained by their planning 

skills. Well-performing programmers work in a more structured way and are better at 

breaking up problems.  Liu et al. (2017) came to a similar conclusion during their work 

with primary school children. They focused on problem-solving strategies that students 

undertake during debugging. This showed that novice programmers are lacking in 

problem-solving strategies. With regard to collaborative learning, Murphy et al. (2010) 

examined the conversations of university students during debugging tasks and found 

that dyads that communicated more and could complement each other's reasoning had a 

greater success rate. Villamor et al. (2017) used eye-tracking to investigate how 

students work together during debugging. Their research also focused on the differences 

between experienced and inexperienced programmers. They concluded that dyads 

consisting of two programmers with little experience showed more collaboration than 

when one or two group members had programming experience. Although interesting, 

none of these studies had a specific focus on regulatory processes and took place in a 

collaborative setting. 

Only recently, Emara et al. (2020) presented a study on debugging and 

regulatory processes where they analyzed conversations and screen recordings collected 

during a group STEM assignment that also involved programming. The researchers first 

identified debugging processes and examined which debugging and regulatory 

processes could be observed. They relied on theoretical frameworks regarding 

debugging and SRL, but no mention was made of regulation types that have been 

identified in a social and interactive environment (Järvelä & Hadwin, 2013; Malmberg 

et al., 2017).  

 



Purpose of the present study 

As research on regulation (i.e., SRL, CRL, and SSRL) during debugging in a social 

educational environment is limited, our study aims to provide a better understanding of 

the nature of the debugging processes that students engage in when controlling robots 

through block-based coding and the type of regulated learning that they exhibit during 

these debugging processes in a social setting. Moreover, to explore the developmental 

aspect of debugging in a social setting, the current study presents a cross-sectional 

design consisting of two experiments with different age groups. Experiment 1 was 

conducted with second grade students in a North American context while Experiment 2 

was conducted with eighth-grade students in a Western European context. While the 

robots and specific challenges varied to be more appropriate for these different grade 

levels, important characteristics of the experiments were held constant. The two 

experiments examined students working in pairs and utilized block-based coding to 

control robots. Both groups of participants had low socioeconomic status backgrounds 

and limited prior exposure to coding. The purpose of these data is not to be 

generalizable (i.e., deductive), but to collect evidence in an inductive fashion to engage 

in theory and model building (e.g., Chalmers, 1982). 

Research questions 

1. What debugging processes, if any, did students engage in during the coding 

activity? 

2. For the debugging processes students engaged in, what was the type of 

regulation that students engaged in during those debugging processes (i.e., SRL, 

CRL, or SSRL)? 

3. Were there any discernable patterns in the intersection between the debugging 

processes and the types of regulation? 



 

  



Methods 

 Students in both experiments were divided into pairs and introduced to a robot. 

Researchers briefly oriented dyads to the robot and explained the challenge they were to 

complete in the given time. Each dyad working on a pre-designed task was video 

recorded and transcribed verbatim by the researchers. Qualitative content analysis was 

used to analyze the data (Neuendorf, 2017). The analysis was conducted using 

deductive coding (Saldana, 2015) based on pre-existing frameworks for debugging 

processes (i.e., Ahn et al., 2017) and regulation types (i.e., Malmberg et al., 2017). 

Therefore, the coding scheme is grounded in theory that is relevant to the research 

question. The coding process entailed assigning codes to the data based on their 

alignment with the pre-existing categories in the frameworks. To ensure the rigor and 

trustworthiness of the analysis, the researchers who conducted the analysis were trained 

in qualitative research methods. Additionally, colleagues and other experts in the field 

were consulted to help validate the findings and ensure their validity. Specific sample 

characteristics and task differences will be described for each experiment in the 

following sections. Please note that the exemplars provided are open to interpretation, 

and different individuals may have different opinions on how they fit the definitions. 

However, they are meant to be representative and not exhaustive. Moreover, the result 

of the analysis is based on a consistent application of the codes by the researcher. To 

provide a more comprehensive and nuanced understanding of our findings, detailed and 

in-depth accounts are presented in the results section using a narrative format, with 

quotes and examples 

 

Experiment 1 



Materials and methods 

Participants 

Participants were 12 second-grade students from a large city in the southeastern United 

States. Students were 60% female and primarily of African American and Latinx 

heritage, reflective of the student body and surrounding community, and reported little 

to no experience with coding. They all attended a private school with a mission to serve 

families in the immediate, primarily low-SES community. The project was reviewed by 

the first and fourth author’s Institutional Review Board and approved (#1305087-4). 

Research task 

Participants were asked to use a Code-a-pillar (see Figure 3). The Code-a-pillar is a 

packaged coding toy that contains a main control unit (the head) and segments that 

attach to the head and each other via USB attachments. Students code the robot by 

attaching action pieces that have symbols on them to make the robot either: go straight, 

turn left, turn right, or play music. Pieces can be attached in any order and the Code-a-

pillar will execute each command on the given segment in the order they are attached 

starting with the head. 

 

Figure 3. Code-a-pillar. 

 
 



After a brief introduction to how the Code-a-pillar works, students were asked in 

dyads to program the Code-a-pillar from a start point, go around a block about 8 feet 

away, then return to the starting point (See Figure 4). Dyads were given 10 minutes to 

complete this task. Participants were also asked to say anything they were thinking or 

doing aloud while they performed this research task. These activities were both audio- 

and video-recorded. All activities took place at the students’ elementary school in a 

large, carpeted room with very little furniture. 

 

Figure 4. Experiment 1 route. 

 

Coding of the audio and video transcripts 

 

All verbal statements were transcribed verbatim from the audio and video recordings 

with actions (from the video) indicated in the transcripts in brackets. The first and fourth 

authors coded the transcripts using Malmberg et al.’s previous coding scheme. First, the 



fourth author segmented the transcript into codable units. Then, the first and fourth 

authors independently coded the transcribed segments for episodes of debugging and 

regulation. An episode was one or several utterances and/or actions by and between 

students, with the purpose of debugging or regulating. Episodes were considered 

distinct based on changing foci of utterances or actions before and after the episode or 

with the passage of time using time stamps. To code for instances of debugging, we 

developed a scheme that adapted the definition of debugging forwarded by Klahr and 

colleagues (Ahn et al., 2017; Klahr & Carver, 1988). Table 3 describes the debugging 

stages, and regulation processes, and gives exemplars of each from the coded 

transcripts. After this independent coding, these authors compared codes to see if there 

was consistency. Any disagreement with the codes was rectified through discussion 

prior to any data analysis.  

Table 3. Debugging processes (adapted from Ahn et al., 2017) 
Debugging Process Related 

Regulatory 

Process(es) 

Conceptual Definition Second Grade  

Examples 

1. Necessity of 

debugging 

Monitoring and 

evaluation 

Monitoring and 

evaluating progress 

toward a goal 

 

“Look, it’s not 
working.” 

2. Identifying the bug Task 

understanding 

Activating task 

knowledge in relation 

to the discrepancy 

between the goal and 

outcome 

 

“I think it’s going to 
go too far past the 

block that we’re 
supposed to get to.” 

3. Pinpointing the bug Planning; Goal 

setting 

Using clues and 

techniques to figure out 

how to confirm the bug 

 

“Hang on, I think we 
need a piece that 

turns it this way.” 

4. Correcting the bug Strategy use; Task 

execution 

Using strategies or 

enacting processes to 

confirm that the bug is 

fixed 

“Let’s add some 
more of these pieces 

and see what 

happens.” 

 

 Transcripts were also coded for the type of regulation they engaged in. We 

adopted the scheme of Malmberg et al. (2017) to identify whether the regulation of the 



debugging was either self-regulation, co-regulation, or socially shared regulation. Table 

4 presents the three types of regulation, their definitions, and an example episode of 

each from the coded transcripts. Again, any instances of differences in the coding of the 

first and fourth authors were rectified in discussion before analysis. 



Table 4. Types of Regulation 

Type of Regulation Conceptual Definition Second Grade Examples Eighth Grade Examples 

Self-regulation One person is monitoring or 

controlling the debugging process 

 

“Now it’s turning towards 
me.” 

“A, I didn't put a stop there, 
that's why! Okay okay okay." 

Co-regulation One person is prompting others to 

engage in monitoring or controlling 

the debugging process, but the other 

group member is not contributing 

new information or actions 

 

P1: “Ah, we should take a 
piece off now.” 

P2: “Yeah.” 

L1: “What are you going to 
change?” 

L2: “Can I not change it?” 

(L2 adjusts the time) 

L1: "And now?" 

L2: “Where does he have to go? 

A, to the right.” (L2 adjusts the 
program, L1 watches.) 

 

Socially shared 

regulation 

Both group members contribute to the 

monitoring or control of the 

debugging process by adding unique 

inputs to that process 

P1: “But we need one more.” 

P2: “But I think it’s going to 
be working this time. I think 

it might work.” 

… 

P2: “Wait, you put this piece 
right here and these three 

pieces right there.” 

P1: “Put the music to the last 
one.” 

P2: “Yeah, so we have two 
musics.” 

L1: “That one was good.” 

L2: “Are we going to cut that 

walking down a bit? (L2 adjusts 

the program) 

L1: “No, that should be more. 
Look, he literally has to stop 

here.” (L1 points to the course) 
L2: “A little more.” (L2 points 
to the track) 

L1: "If he's going to stop here, 

he'll go like this." (L1 moves his 

hands across the course) 

L2: “Wait a minute.” (L2 adjusts 
the time) 

L1: “yes” 



Results 

The coding of the transcripts revealed a total of 260 debugging/regulatory strategies 

across the 6 dyads of students during coding. These strategies, coded from students’ 

actions and words, included all four aspects of debugging and all three types of 

regulation (i.e., SRL, CRL, and SSRL). A description of strategies by dyad is presented 

in Table 5, where episodes refer to strategies coded. 

Table 5. Experiment 1: Identified debugging processes and regulation types per dyad. 

 Number of coded episodes 

 Necessity Identifying Pinpointing Correcting SRL CRL SSRL 

Dyad 1 19 11 14 19 7 31 25 

Dyad 2 7 7 11 10 7 14 14 

Dyad 3 10 9 6 8 6 12 15 

Dyad 4 15 11 5 23 1 38 15 

Dyad 5 4 7 4 4 7 12 0 

Dyad 6 4 1 3 4 1 10 1 

Note. SRL= self-regulated learning; CRL= co-regulated learning SSRL= socially shared 

regulated learning 
 

Debugging processes 

For research question one, the quantity of the four processes of debugging was 

tabulated. Figure 5 displays the percentages of these processes employed across the six 

dyads. While the differences in quantity were small, the differences in the quality of 

implementation of those processes were markedly different. Dyad 1 not only employed 

these processes in higher numbers, but also interleaved these processes and were 

generally accurate in their attempts to figure out the necessity of debugging, identifying 

the bug, pinpointing the bug, and correcting the bug. These processes employed by 

Dyad 1 are contrasted with those of Dyad 6. Rather than interleaving the debugging 

processes, this group engaged in the same process repeatedly with each other to little 

avail.  

  



Figure 5. Experiment 1: Use of debugging processes across the six dyads. 

 

 

Types of regulation 

For research question two, the quantity of the types of regulation was tabulated. 

Figure 6 displays the percentages of these types employed across the six dyads. Unlike 

for the processes of debugging, there were significant differences between the types of 

regulation employed across the groups with co-regulation being employed at much 

higher rates than SSRL and SRL, respectively. While four out of the six groups 

followed this general pattern, Dyads 2 and 3 utilized CRL and SSRL types more evenly, 

with three using SSRL more often than CRL (15 episodes for SSRL versus 12 episodes 

for CRL). On the other hand, Dyads 5 and 6 barely relied on SSRL at all, with Dyad 6 

only engaging in SSRL one time and Dyad 5 not engaging in SSRL at all. Group 1 

switched between engaging in SRL and CRL through the first half of the task then 

pivoted towards interleaving CRL and SSRL through the third quarter of the task and 

switched entirely to SSRL for the last quarter. They were constantly adding added 

information and building successfully upon one another’s observations, statements, and 



directions. This contrasts with Dyad 5, where one of the members took control and the 

other member of the dyad simply agreed without contributing any added information – 

an example of CRL. While Dyads 1 and 5 both engaged in patterns of co-regulation, 

Dyad 5’s use of co-regulation was more off-task. 

Figure 6. Experiment 1: Use of types of regulation across the six dyads. 

 

Patterns in the debugging and types of regulation 

Finally, these data were examined for any evidence certain debugging processes 

intersected with types of regulation. Table 6 presents the intersection of these data 

through the percentages, means, and standard deviations of these cross-cutting 

categories across the six dyads. In addition to CRL being the dominant type of 

regulation, these data expound upon that by revealing that the focus of CRL is primarily 

on determining the necessity of debugging (18%) and correcting the bug (19%).  

 

Table 6. Experiment 1: The intersection of debugging processes with types of 

regulation. 

 Percentage Mean 
Standard 

Deviation 

Necessity SRL 6% 2.00 2.00 



Necessity CRL 18% 6.33 4.63 

Necessity SSRL 4% 1.50 3.21 

Identifying SRL 5% 1.67 1.63 

Identifying CRL 10% 3.67 2.50 

Identifying SSRL 6% 2.33 1.97 

Pinpointing SRL 1% 0.50 0.84 

Pinpointing CRL 7% 2.50 1.64 

Pinpointing SSRL 12% 4.17 3.49 

Correcting SRL 2% 0.67 0.52 

Correcting CRL 19% 7.00 6.10 

Correcting SSRL 10% 3.67 2.80 

 

 

Dyads 4 and 6’s heavy reliance on necessity debugging and engaging in 

strategies or action to correct the bug was associated with each dyad member talking 

over the other in terms of what to do next, with no attempt to connect their ideas to one 

another or the stated task goal. In contrast, Dyad 2 engaged more often in interleaved 

debugging processes and interleaved types of regulation. Each successive attempt at 

cycling through these processes got Dyad 2 closer and closer to getting the Code-a-

pillar around the block.  

Experiment 2 

Results from Experiment 1 imply that models of debugging contain metacognitive and 

regulatory processes as important patterns in coding. These findings are in line with 

previous research showing that debugging involves complex cognitive processes (Liu et 

al., 2017; Fitzgerald et al., 2008). Experiment 1 provides valuable insights, but also has 

several limitations. For example, it was a small-scale qualitative study with second-

grade students. Moreover, programming with physical blocks is rather restrictive. It is 

therefore opportune to examine how students from an older age group regulate their 

learning during a collaborative coding assignment. That is why Experiment 2 focuses on 

how eighth-grade students regulate their learning while programming a robot in small 

groups. We investigated whether similar connections between debugging and regulation 



processes hold for eighth-grade students to gain more insight into how these processes 

can contribute to coding success and thus drive further theory and model development. 

One additional research question was added to the same three from Experiment 1: 

4. Do any of these patterns of regulations and debugging influence joint coding 

success? 

Materials and methods 

Research design 

Experiment 2 was designed as an explorative descriptive study in which data were 

collected through observations. We used the same approach as in Experiment 1, except 

for the programming task. The programming task was adjusted to be more appropriate 

for eighth grade students.  

Participants  

The participants in this study were 30 eighth-grade students (27% female). Students 

were randomly divided into fifteen dyads. The observations took place at a secondary 

school in Belgium. The school is characterized by a student population with low SES 

for which they received funds for this. All students in the study had some experience, 

albeit limited, with programming and the programming languages (e.g., Microsoft 

Makecode) used during the assignment. The proposed research was presented to the 

second and third author’s ethical advisory committees and the project was approved 

(file number SHW_20_128). 

Research task 

An assignment was designed in which students had to use an already known 

programming language (i.e., Microsoft Makecode) in pairs to program a robot (see 

Figure 7). This robot is powered by a BBC micro:bit (see Figure 8). BBC micro:bit 

consists of a micro-computer with buttons, an LED matrix as a display, and various 

sensors. The physical connection pins at the bottom of the micro:bit allow it to be 



connected to external motors, LEDs, and other electronic components. Using a Blocks 

Editor (i.e. Microsoft Makecode), students can program the micro:bit and thus also 

control the motors that make the robot move. This graphical programming language is 

designed so blocks can be dragged and attached to each other. 

 

Figure 7. Tobbie II. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. BBC micro:bit. 



 

 

 

 

 

 

 

 

At the start of the assignment, the students were shown a route (Figure 9). This 

was affixed to the table. The start point was indicated by an arrow and the endpoint by a 

cross. Each pair was then given 20 minutes to complete the assignment. 

 

Figure 9. Experiment 2 route. 

 

Procedures 



Students were invited in pairs.  They sat next to each other at a table on which 

the route had been depicted. On this table was also a laptop and the robot that had to be 

programmed. To program the robot, the students had to use an online application (i.e., 

Microsoft Makecode editor), which was available on the laptop. Their coding work was 

recorded through screen recordings. Audio recording (i.e., Zoom f8n multitrack field 

recorder) was used to collect verbal data and physical interactions were recorded using 

an external Ultra-Wide Angle HD Webcam. Everything was later compiled using video 

editing software (i.e., OpenShot Video Editor and Bandicam) to facilitate the 

transcribing process. In congruence with Experiment 1, verbal statements were 

transcribed verbatim, and actions were indicated in the transcripts in brackets. 

Analyses 

The transcripts were used for qualitative data analysis. For example, the audio, video, 

and screen recordings collected during the collaborative coding assignments were 

converted into text. This textual data allowed for further processing with dedicated 

software (i.e., Nvivo, release 1.3), and allowed the researcher to become familiar with 

the data. To enable us to distinguish the debugging process from other programming 

activities, testing activities were first mapped out. These were actions where students 

sent their code to the robot and let it run. Depending on whether this matched their 

desired outcome, the process that followed was considered debugging or programming. 

Without testing the program, the output cannot be compared with the intended target 

and therefore cannot be debugged. The target structure of the model established by 

Klahr and Carver (1988) proposes this initial step of testing as an essential first phase 

(see Figure 1). After transcribing and identifying testing events, we coded the text files 

using two coding schemes. First, we used the scheme developed in Experiment 1 (see 



Table 3) to identify different stages of the debugging process (i.e., necessity of 

debugging, identifying the bug, pinpointing the bug, and correcting the bug).  

In addition to coding for the debugging process, the transcripts were also coded 

for the type of regulation the participants employed during those processes. For this, the 

adapted scheme of Malmberg et al. (2017) was used (see Table 4). 

Subsequently, we examined whether any patterns could be found in the observed 

debugging processes and the type of regulation used. Initially, this was done using a 

query matrix that brought together and quantified the coded pieces from the two coding 

schemes used (i.e., debugging process and regulation type) using software (i.e., Nvivo, 

release 1.3). The resulting matrix allowed us to identify patterns (e.g., successful versus 

unsuccessful task completion) and co-occurrences (e.g., necessity for debugging and 

self-regulated learning) in our qualitative data. As our study is qualitative in nature, 

each case was examined against these characteristics, and conversations were reported 

in detail. 

Results 

The transcripts revealed a total of 161 debugging strategies across 11 of the 15 dyads. 

Notably, four dyads did not display any testing events and therefore did not undertake 

any debugging activities. These dyads used their allocated 20 minutes entirely on 

writing the program without checking how the physical robot would respond to their 

code until the very end. None of these dyads were able to successfully solve the given 

task and because no debugging activity was observed in these dyads, they were not 

included in our further analysis.  Across the remaining dyads, all four aspects of 

debugging (i.e., necessity, identifying, locating, and correcting) and the three types of 

regulation (i.e., self-regulation, co-regulation, and socially shared regulation) were 

observed (see Table 7). These strategic actions will be broken down by discussing both 



the quantity of actions (i.e., the number of strategic actions identified) as well as the 

quality of these actions as we can infer from the qualitative data. Finally, we discuss 

how the debugging processes and regulation types relate to the successful completion of 

the coding task. Regarding the completion of the coding task and the joint coding 

success, six dyads completed the task within the given time. The other five dyads 

managed to program and debug but did not complete the assignment. 

A detailed breakdown of identified debugging processes and regulation types for 

each dyad is outlined in Table 7. This table encompasses the number of coded episodes 

for each aspect of debugging and the utilization of different types of regulation (SRL, 

CRL, and SSRL). Dyads vary in their engagement with these processes and types of 

regulation, leading to a diverse range of outcomes in terms of task completion. 

 

Table 7. Experiment 2: Identified debugging processes and regulation types per dyad. 

 Number of coded episodes Successful 

task 

completion  Necessity Identifying Pinpointing Correcting SRL CRL SSRL 

Dyad 1 8 5 7 5 10 11 1 No 

Dyad 2 6 5 4 6 3 12 6 No 

Dyad 3 4 3 2 3 1 1 0 No 

Dyad 4 3 2 1 2 3 5 0 No 

Dyad 5 0 0 0 0 0 0 0 No 

Dyad 6 4 6 4 7 4 13 2 Yes 

Dyad 7 0 0 0 0 0 0 0 No 

Dyad 8 2 2 1 2 0 6 1 Yes 

Dyad 9 3 5 2 4 1 4 8 Yes 

Dyad 10 0 0 0 0 0 0 0 No 

Dyad 11 0 0 0 0 0 0 0 No 

Dyad 12 5 5 1 6 6 3 7 Yes 

Dyad 13 1 3 0 6 1 6 1 Yes 

Dyad 14 2 6 2 6 4 9 1 Yes 

Dyad 15 3 3 0 4 6 4 0 Yes 



Note. SRL= self-regulated learning; CRL= co-regulated learning SSRL= socially shared 

regulated learning 

 

Debugging processes 

 To address the first research question regarding the debugging processes 

undertaken during collaborative coding, we focused on four primary debugging 

phases—necessity, identification, localization, and correction. We systematically 

coded and quantified these processes. The distribution of these processes across 

the eleven dyads is depicted in Figure 10, shedding light on the extent to which 

each process was employed.   



Figure 10. Experiment 2: Use of debugging processes across the eleven dyads. 

 

 

It is paramount to acknowledge that the necessity phase acts as a critical steppingstone 

for the entire debugging process. As a result, four dyads among the sample refrained 

from any debugging efforts, having omitted the necessity phase. However, a higher 

frequency of necessity processes didn't inherently equate to improved coding outcomes. 

For instance, Dyad 1 and 2 exhibited an emphasis on necessity and localization yet 

struggled to complete the task within the stipulated time. Successful dyads, conversely, 

invested more in the identification and correction of the bug. Remarkably, the 

localization phase was frequently implicit, with dyads transitioning directly from 

identification to correction. This shift highlighted a deeper grasp of the programming 

logic. 

Further examination through qualitative analysis uncovered that explicit efforts 

toward bug localization often stem from an inadequate understanding of the 

programming language. While the Microsoft Makecode editor employs block-based 

programming, proficiency in program structure and logic is necessary for optimal 

execution. A telling interaction exemplifies this: 



 

L1: “We need to do something about that…” 

(L1 and L2 search between the program blocks) 

L1: “We can do light here” 

(L2 laughs) 

A knowledge gap led certain dyads to allocate more time to localization, hampering 

their bug correction efforts. As demonstrated in subsequent interactions, some dyads 

encountered substantial difficulties in pinpointing the bug, resorting to restarting their 

work multiple times. For instance: 

L2: “You just deleted that.” … 

L2: “You just deleted everything?” 

L1: “I know…” 

L1: "Hmmm" 

In contrast, successful dyads showcased a more streamlined approach. For instance, 

Dyad 8, the most successful one, effectively combined all four debugging processes 

across two cycles. Though quantitatively fewer, their integrated and efficient utilization 

of these processes paved the way for task completion. This interaction illustrates their 

adeptness: 

L2: “Uh, try?” 

L1: “Yeah, okay.” 

L2: “Hopefully it will work”. (L2 starts the robot) 

L1: “It's going well now.” 

L2: “No, wrong.” 

L1: “He went sideways” 

L2: “He went sideways, but the time was right.” 



L1: “Maybe you should see what comes first” (L1 goes over the program) 

L2: “We pause for seven seconds the first time. Seven seconds is too much, isn't 

it?" 

L1: “Yes.” 

L2: "Couldn't we do 5.5?" 

L1: “Or six?” 

L2: “Because when we started, he came this far.” (L2 points to the track) 

L2: “6.5 seconds maybe?” 

L1: "You don't need half a second to get from here to here to here, do you?" 

L2: “Okay.” (L2 adjusts the time) 

L2: "Shall we try that now?" 

L1: "Yeah, that's good." 

This dialogue showcases a comprehensive debugging cycle that involved testing, 

identifying discrepancies, locating the issue, and ultimately rectifying the program. 

Types of regulation 

Turning to the second research question about regulation types employed during 

debugging, we conducted a thorough coding and quantification of self-regulation 

(SRL), co-regulation (CRL), and socially shared regulation (SSRL). An overview of the 

utilization of these types of regulation across the eleven dyads is depicted in Figure 11, 

illustrating noteworthy disparities in their application.  

Overall, co-regulation emerged as the most prevalent form of regulation. 

However, Dyad 9 deviated from this trend, relying more heavily on SSRL than CRL. 

Strikingly, seven out of the eleven dyads displayed minimal instances of SSRL. For 

instance, Dyad 1 only exhibited one instance of SSRL. Dyad 1 also stood out with a 

higher occurrence of SRL (11 episodes) compared to CRL (10 episodes). Similar to the 



debugging processes, variations in the quality of regulation types were noted, 

influencing the attainment of the task's objective. 

 

Figure 11. Experiment 2: Use of types of regulation across the eleven dyads. 

 

 

Notably, Dyad 9 successfully completed the task while prominently engaging in SSRL 

alongside CRL. Their collaboration was characterized by mutual input and action: 

L1: “Done?” 

L2: “I will download.” 

 (L1 connects the robot) 

L1: “Is it ready? Try again." 

L2: “What again?” 

(L2 downloads the program and turns on the robot) 

L1: “He has to come here. “(L1 points to the course) 

L2: “We need to change this one.” (L2 points to the pause blocks on the screen) 

However, a robust presence of SSRL did not necessarily guarantee task success. Dyad 

2, despite frequent instances of SSRL, fell short of completing the assignment: 



L2: “Maybe that should go forward five times.” 

L1: “On four occasions it was already here on that line.”  

(L1 points to the course) 

L1: “At five times he might be there.” 

L2: “Then…” (L2 watches the program) 

L1: "Then, a 'Tobbie stop' in between." 

L2: “We can do that in here.” (L2 adjusts the program) 

Dyads 12 and 15 leaned more towards SRL and CRL, successfully completing the task. 

In these dyads, a significant skill gap led to a stronger participant adopting a leading 

role, relying more on SRL. Personal and contextual factors also influenced the 

distribution of regulation types. Dyad 1 showcased high self-efficacy but lacked the 

necessary skills, paralleling patterns observed in Dyads 12 and 15. 

Patterns in debugging processes and types of regulation 

Addressing the third and fourth research questions delving into the interplay between 

debugging processes and types of regulation, and their impact on joint coding success, 

we found that CRL was the predominant regulation type across all debugging processes, 

accounting for 50% to 60% of interactions. The alignment or disjunction between 

regulation types and debugging processes is encapsulated in Table 8. Examining dyads 

that successfully completed the task and comparing them to those that did not, revealed 

a significant trend. Successful dyads invested a relatively greater effort in identifying 

and correcting bugs. This observation becomes evident when examining the frequency 

of coded episodes, particularly in the context of episodes focused on identifying and 

rectifying issues versus those centered on pinpointing and addressing underlying causes 

(see Table 7). Moreover, successful dyads were more inclined to transition to SSRL 

during these processes (see Table 7). 



Table 8. Experiment 2: The intersection of debugging processes with types of 

regulation. 

 Percentage Mean Standard Deviation 

Necessity SRL 8% 1.18 1.72 

Necessity CRL 13% 2.00 1.34 

Necessity SSRL 2% 0.36 0.92 

Identifying SRL 7% 1.09 1.04 

Identifying CRL 17% 2.64 1.43 

Identifying SSRL 4% 0.64 1.21 

Pinpointing SRL 5% 0.73 0.90 

Pinpointing CRL 9% 1.36 1.75 

Pinpointing SSRL 2% 0.36 0.92 

Correcting SRL 8% 1.27 0.79 

Correcting CRL 17% 2.64 1.50 

Correcting SSRL 6% 0.91 0.83 

 

Ultimately, these results indicate a strong correlation between successful joint 

coding and the collaborative interplay between debugging processes and types of 

regulation. Dyads that achieved the task completion milestone showcased a more 

integrated approach to debugging, iterating through identification, localization, and 

correction of bugs. Furthermore, these successful dyads often shifted to socially shared 

regulation (SSRL) during debugging, suggesting that effective collaboration and mutual 

effort in navigating programming challenges are closely tied to positive outcomes. 

While some dyads struggled due to skill gaps, our analysis revealed a more nuanced 

picture. The engagement in debugging processes and the types of regulation utilized 

played a pivotal role. Dyads that struggled often spent considerable time on the 

necessity phase and bug localization, demonstrating challenges in transitioning from 

identifying issues to effective correction. This observation underscores the complexity 

of debugging activities in collaborative contexts and hints at potential areas for 

improvement in collaborative learning. 

 

 



Discussion 

Our discussion will consider the results across both experiments. Experiment 2 builds 

on the findings of Experiment 1 and taken together they provide a cross-section of 

novices at different ages. The originality of this work lies in the examination of the 

interplay between debugging processes, regulation types, and coding outcomes in a 

collaborative setting. Previous work has demonstrated that debugging is important for 

individuals, but we investigate here how that is operationalized among a collaborative 

group. Further, it is known that CRL and SSRL are required in other group problem-

solving activities and we endeavour to see if it is also the case here for coding. Building 

on prior research (Klahr & Carver, 1988; Liu et al., 2017), it explores the relationship 

between the four debugging processes and successful coding outcomes, while also 

considering the type of regulation used by novice coders of varying ages. The findings 

show that the combined and sequential utilization of all debugging processes leads to 

successful coding and that the type of regulation used depends on multiple factors, such 

as the dyad members' differential skill levels, domain knowledge, and problem-solving 

abilities. These must therefore be taken into consideration when designing tasks and 

composing groups. Moreover, to mediate SSRL, task difficulty must be situated in the 

zone of proximal development (ZPD, Vygotsky, 1978) of both students. According to 

Vygotsky (1978), the ZPD is the area where learning takes place most effectively. It is 

the range of tasks that a learner can accomplish with guidance and support, but not yet 

independently. Overall, the zone of proximal development is a key concept in 

educational psychology that highlights the importance of finding the right level of 

challenge and support for learners to maximize their learning potential. Understanding 

each team member's ZPD can help to ensure that each team member is challenged 

appropriately and has the opportunity to learn and grow. The results of this study 



provide a fresh perspective on the use of debugging processes and regulation types by 

novice coders in collaboration and help guide further research and model development. 

Although the different debugging processes are defined as separate steps (Klahr 

& Carver, 1988), they were less explicitly separated in dyads that were more successful 

in completing the task. Moreover, the testing phase (necessity) was deemed an essential 

first step to even start any other debugging processes, conforming some sequential 

relation between the processes. Furthermore, we see similar patterns in the overlap 

between debugging processes and regulation types. In this respect, the similarities are 

striking, but the differences, which could be explained by the changed age category and 

the modified coding assignment, provide unique insights that can guide further research 

and model development. In what follows we discuss each of these aspects in more detail 

and formulate implications for both theory and practice. 

Debugging processes 

We can conclude from Experiment 1 that students undertake all four of the debugging 

processes (i.e., necessity of debugging, identifying the bug, pinpointing the bug, and 

correcting the bug). However, if the first step, necessity of debugging is missing, no 

further debugging processes can be observed (Klahr & Carver, 1988). For example, 4 

out of the 15 dyads in Experiment 2 did not debug their program and could not 

complete the assignment. Here our findings differ from Experiment 1, where debugging 

processes were found in all dyads. In Experiment 1 we focused on second-grade 

students who used a code-a-pillar, a toy robot in the shape of a caterpillar that could be 

programmed using physical programming blocks. The increased complexity and the use 

of a programming language (i.e., Microsoft Makecode) may offer an explanation. 

Computer programming increasingly relies on computational thinking as it increases in 

complexity, a thought process that uses elements of abstraction, generalization, 



decomposition, algorithmic thinking, and debugging (Angeli et al., 2016; Wing, 2006). 

The four dyads that did not undertake any debugging activities did not divide the 

assignment into smaller subtasks (i.e., decomposition), which could then be tested and 

adjusted (i.e., debugging). However, we can conclude that this strategy is not intuitively 

applied when both digital (e.g., the programming environment) and physical (e.g., the 

robot) elements are present. When the programming problem only presented itself 

physically, as in Experiment 1, students automatically proceeded to test and debug their 

program. As such, the computer-based programming language in which the 

development environment is separated from the physical output (i.e., the robot) formed 

an additional barrier that several dyads were unable to overcome. Although block code 

is semantically simpler than textual coding, understanding the syntax or structure of this 

language remains crucial. Our observations showed that when students had insufficient 

mastery of this, they had to work much harder on the necessity of debugging and 

locating the bug. Dyads more proficient with Microsoft Makecode made comparatively 

more explicit use of identifying and correcting the bug. The localization of the bug was 

often implicit, which can again be explained by a better understanding of the 

programming language. 

These findings are in line with previous findings by Klahr and Carver (1988) 

and Liu et al. (2017), who argue that novice programmers often lack domain knowledge 

and general problem-solving skills. Both are important in terms of programming, also in 

a collaborative setting. Moreover, not all students had the necessary knowledge and 

skills, demonstrating the importance of teaching them. If at least one of the group 

members had the necessary knowledge and skills, repeatedly applying the four 

debugging processes in an integrated manner led to better coding outcomes. This ties in 



with the findings of Experiment 1, but also illustrates the increased complexity 

associated with the digital programming of a physical robot. 

 

Types of regulation  

Regarding the type of regulation (i.e., SRL, CRL, and SSRL) that dyads used during the 

debugging processes, we found that dyads who managed to use all three regulation 

types in a balanced way were more successful in completing the assignment. This 

supports Hadwin et al. (2011) and Malmberg et al. (2017) findings that argued that the 

three types of regulation are necessary for a collaborative setting. CRL was by far the 

most observed type of regulation, but students who adopted SSRL in addition to CRL 

were more likely to complete the assignment. We did find that the perceived skill level 

of the participants influenced the type of regulation used. For example, SSRL mainly 

occurred when both participants found the process challenging and could contribute to 

the process. When one of the participants was more proficient or self-judged to be more 

proficient, more SRL was observed. Two dyads (i.e., 12 and 15) showed that this was 

not always disadvantageous. They also completed the assignment within the set time 

because one student took the lead. 

Where domain knowledge and problem-solving skills of an individual group 

member proved to be decisive for the use of certain debugging processes, we note here 

that the ratio of skills between the group members influences the type of regulation 

used. For example, SSRL mainly occurred when the assignment presented a challenge 

to both group members and each group member could meaningfully contribute to its 

completion. However, these aspects were not addressed in Experiment 1, which also 

underlines the importance of contextual factors. Eighth-grade students may be shaped 

more by previous experiences and more subjective to social factors. 



Patterns in debugging processes and types of regulation 

When analyzing the overlap between debugging processes and the type of regulation 

used, we noticed complex patterns. In dyads who successfully completed the 

assignment, SSRL was used proportionally more when identifying and correcting the 

bug. When pinpointing, hardly any SSRL was detected. In dyads that were less 

successful in programming their robot, we observed much fewer episodes of SSRL. 

Even if this was the case, it mainly happened during locating actions. This leads us to 

suspect that these dyads had trouble finding the bug and lacked knowledge regarding 

the programming language. This observation in Experiment 2 raises questions about the 

level of programming skill required for successful collaborative coding and the role of 

collaborative learning environments in bridging skill gaps. While successful dyads 

integrated debugging processes and demonstrated effective collaboration, the less 

successful ones could benefit from targeted interventions to enhance their programming 

competencies. 

The observed patterns in both processes and types of regulation show that 

debugging is a complex and dynamic process (Ahn et al., 2017; Klahr & Carver, 1988), 

even with a relatively simple coding task performed by eighth-grade students. As the 

type of regulation used depends on the perceived difficulty of the task, our observations 

indicate that it can differ per debugging process. This finding conforms to Järvelä and 

Hadwin’s (2013) framework that describes these process-based differences in regulation 

as task dependencies. However, the perception of skills, as well as contextual factors, 

are not included in this model.  

Limitations 



This study is based on two small samples of students from each grade and in each 

experiment students all came from the same school. Our findings, therefore, are not 

generalizable. 

 One of the main limitations of our study is that both experiments relied primarily 

on the verbal statements of students while solving problems to measure their debugging 

and regulation processes. The extent to which students verbally externalize these 

processes might depend on the personal characteristics of the students which have not 

been taken into account in this study. Future research could take such personal 

characteristics more into account and could also aim to triangulate the verbal statements 

with process data coming (e.g., the log files of their coding in Experiment 2). While we 

have presented evidence here that more successful groups employ all different types of 

regulation (i.e., SRL, CRL, and SSRL), the nature of the individuals within the groups 

may also mediate the relation between regulation and coding outcomes and needs to be 

further investigated. 

 A relevant difference to note in the findings is that debugging was coded 

throughout the entirety of children’s interactions with the robot in Experiment 1. In 

Experiment 2, debugging was captured when students sent the code to the robot for 

testing and when they were evaluating what happened. That is why there are more total 

instances of debugging for the smaller sample in Experiment 1 than in the larger sample 

of Experiment 2. Despite this difference, the pie charts presented show very similar 

rates of each type of debugging between the two age groups. As noted earlier, the 

decision for what to include as coded activity stemmed from the nature of working with 

tangible block coding versus block coding on screen. 

Implications 



The results from this cross-sectional study hold valuable information for research on the 

advancement of debugging techniques and collaborative programming as a whole. The 

findings show that novice programmers possess prior understanding (e.g., problem 

solving abilities) that prompts them to utilize debugging methods even before receiving 

formal training. Despite the importance placed on teamwork in computer science 

education, this study highlights specific areas where strategy training could effectively 

improve collaborative programming efforts. The observed variations in success rates 

and debugging strategies among dyads highlight the importance of acknowledging and 

accommodating diverse skill levels within collaborative learning settings. Collaborative 

coding tasks should be designed and scaffolded in a way that fosters effective 

collaboration between students with varying programming abilities. This might involve 

implementing strategies to encourage peer mentoring, shared problem-solving, and the 

development of complementary skills. To mediate SSRL, the task difficulty must be 

appropriately aligned with the zone of proximal development (Vygotsky, 1978) for both 

students. 

Furthermore, the influence of programming skills on collaborative coding 

outcomes underscores the need for a balanced approach that integrates technical 

proficiency with collaborative problem-solving. Emphasizing the development of 

programming skills alongside teamwork and communication abilities could lead to 

more successful collaborative coding experiences (Sharma et al., 2019). The findings of 

this study challenge the notion that programming and debugging can be reduced to a set 

of clearly defined consecutive steps. Instead, it highlights the dynamic nature of coding 

and debugging processes and the importance of including metacognitive and regulatory 

elements in debugging models.  



The examination of debugging strategies and their correlation with collaborative 

success offers educators valuable insights into optimizing the teaching of debugging 

skills and fostering strategic thinking. A study with older students suggests that 

understanding of the types of regulation employed during debugging processes enables 

instructors to customize their pedagogical strategies, providing targeted support to 

students as they navigate challenges, improve problem-solving methodologies, and 

enrich their overall learning journey (Emara et al., 2021). By explicitly instructing 

students in the art of effective debugging and self-regulation, educators equip them to 

confront coding complexities with heightened efficiency and collaborative prowess. 

Additionally, this study emphasizes the importance of accounting for contextual 

variables when deciphering the intricacies of programming and debugging practices 

within collaborative contexts. 

With regard to the socially shared regulation learning model, the data from this 

study suggest that co-regulation (CRL) may play a key role in facilitating the 

development of shared regulation strategies, particularly for novice programmers.  

Our observational study provides a foundation for further research exploring the 

intersection of programming skills, collaborative dynamics, and learning outcomes. 

Further investigation could delve into the impact of different instructional methods, peer 

interactions, and technological tools on collaborative coding success and skill 

development.  A mixed-method design, including qualitative and quantitative methods, 

could improve data triangulation and provide a better understanding of patterns. This 

can be achieved by supplementing observations with log data, questionnaires, and 

interviews to explore differences in skill level, personality, motivation, perception, and 

task difficulty. 



In conclusion, the implications of this study extend beyond the presented results, 

offering insights into the optimization of collaborative learning environments, the 

cultivation of programming skills, and the design of effective pedagogical strategies. 

These implications hold the potential to enhance both the learning experiences and 

outcomes of students engaged in collaborative coding tasks.  
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