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Abstract

The problem of determining the optimal inspection strategy for a given multi-stage

production process, i.e. the inspection strategy that results in the lowest total in-

spection cost, while still assuring a required output quality, is modelled as a joint

optimization of inspection location, type and inspection limits. A fusion between a

discrete event simulation to model the multi-stage process subject to inspection and

to calculate the resulting inspection costs, and an evolutionary algorithm (EA) to

optimize the inspection strategies, is suggested.
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1 Introduction

The strategic importance of total quality management has become generally
accepted. Improving the quality of products, processes and services is nowadays
a key issue in many organizations to improve -or at least maintain- profitability,
market share and competitiveness.

In a production environment, reducing variance is the major key to achieve
quality. It is pursued along different paths in design and operation of a produc-
tion process. The implementation of an efficient inspection strategy is one of
those paths. Efficient economic inspection strategies ensure the required output
quality while minimizing the total inspection cost. Generally speaking, more
and tighter inspection will induce a higher product quality –in terms of meeting
product specifications– but will also result in higher costs of inspection, scrap
and rework. An economic inspection plan will balance these effects.

For a single stage production process, the extent of inspection refers to the
number of inspections executed (sample size and sampling frequency) and to
the rigor of the inspections (acceptance limits). Thus, the problem facing the
inspection planner consists of finding the combination of these inspection pa-
rameters that minimizes the total expected inspection cost TIC.

For multi-stage production processes, an additional decision variable is added
to the problem: the number and location of inspection stations in the production
process. For an n-stage process, it is to be decided for each of the n stages
whether or not inspection will be performed after that process stage, and if so,
to what extent (i.e. which inspection parameters to be used).

Thus, in a multi-stage production system (MSPS) the inspection strategy
addresses

1. the number and location of inspection stations;

2. the number of inspections executed (sample size - sampling frequency) for
each inspection station;

3. the rigor of the inspections (acceptance limits) for each inspection station.

Determining the optimal inspection strategy in a MSPS involves these three
types of inspection decision variables to be considered together, resulting in
a complex joint optimization problem. While separate optimization of each
type of decision variable has been studied extensively and is well established
in literature (see e.g. the seminal papers of Lindsay and Bishop (1964); White
(1969); Britney (1972); Eppen and Hurst (1974); Ballou and Pazer (1982) and
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the overview by Raz (1986)), the joint problem has not been subject to intense
research. The literature review in the next Section illustrates that –to the
best of the authors’ knowledge– no attempt has been made to simultaneously
optimize the location of inspection stations and their inspection limits. By
embedding a discrete event simulation (DES) to model the serial n-stage MSPS
in an evolutionary algorithm (EA) to perform the numerical optimization, this
paper attempts at offering a joint inspection optimization method. For a serial
n-stage MSPS with a single quality characteristic, this methodology will allow
the simultaneous determination of the inspection decision (no inspection (N),
sampling inspection (S), and full inspection (F)), and the inspection limits, for
each of the n process stages, so that the expected total inspection cost (TIC)
is minimal.

The paper is organized as follows. After reviewing the literature in Section
2, the serial n-stage MSPS environment and the cost model are described in
Section 3. In Section 4 the solution approach is proposed. A numerical example
is presented in Section 5, Section 6 concludes and offers suggestions for further
research.

2 Literature review

Villalobos et al. (1993) present a model for (automated) inspection strategies
for production of printed circuit boards. The idea is to impose a dynamic
inspection strategy based on information on the manufacturing and inspection
process, and a global objective (e.g. minimal cost or minimal scrap). After
each manufacturing stage and for each unit produced, a decision is taken on
whether or not to remove the unit from production, and whether or not it should
be inspected. In the Villalobos et al. (1993) model, the extent of inspection
of the overall production process is limited by time: each possible inspection
operation takes a fixed amount of time, and the fixed amount of total available
inspection time is to be allocated among all inspection stations. This way, the
problem becomes one of optimal control of a dynamic Markov process under time
constraints. The Markov chain structure and transition matrix are subsequently
derived.

In Barad and Braha (1996) and Emmons and Rabinowitz (2002) it is as-
sumed that an inspection is made at each production stage, so there is no
problem of allocating (a limited number of) inspection facilities to production
stations. The former address the problem of finding the optimal (limits for
the) input quantity in each stage, while the latter focus on the assignment and
scheduling of inspection tasks. The model of Barad and Braha (1996) (also set
in the microelectronics industry) is essentially an optimal lot sizing problem in
a MSPS with binomial yield and deterministic demand. After each production
stage, a 100% reliable inspection is performed, so that all defective units are
discarded. The solution to the problem consists of deciding on the number of
products to process in the next stage, in order to try and meet the demand for
non-defective finished units, at the lowest cost. There are three alternatives:
processing all available non-defective units, processing less than available non-
defective units by disposal (at a per unit cost) of some, and processing more
than available non-defective units by reworking some of the defective units or
by purchasing the necessary semi-finished units (also at a per unit cost). A
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dynamic programming approach is suggested to define the optimal policy, both
for single and multiple production runs.

Emmons and Rabinowitz (2002) address an inspection system for detecting
malfunctioning processors in a MSPS: a processor (a stage in the MSPS) can
either be up (designating proper function) or down (designating malfunction).
When a stage is down, each unit processed at that stage acquires a defect, when
a stage is up, no unit does. A finished product is conforming if and only if it has
not acquired a single defect. Inspection is there to detect stages as down, leading
to immediate restoration of the detected down stage to up. Perfect inspection
is assumed, the impact of imperfect inspection is accounted for in Rabinowitz
and Yahalom (2001). The inspection system comprises several subsystems of
single inspection facilities (IFs) responsible for inspecting a subset of production
stages. In this setting three decisions are to be made: total inspection capacity
(the number of IFs required), assignment of the stages to the IFs and inspection
schedules in each subsystem. These three decisions are hierarchically structured,
and thus solved through a hierarchical process. First, the inspection capacity
is determined by solving a relaxed version of the base problem. The partition
of the stages among the IFs is then determined by considering the inspection
capacity from step 1 as the capacity of a multi-knapsack (bin packing) problem.
Finally the inspection schedule for each subsystem is derived.

The model by Bai and Yun (1996) allows inspection effort allocation in a se-
rial multi-stage production system (MSPS) for a product consisting of identical
components. In this model, only a limited number of (automatic) inspection
machines are available, and the rate of production is constrained by the rate
of inspection. The inspection level is defined as the proportion of components
inspected. An inspection cost model is proposed and a method is constructed
to determine optimal location of inspection machines and optimal inspection
level. An exact search algorithm considering all possible allocations is proposed
for problems in which the number of stages h and the number of inspection
machines m is relatively small. For larger problems a heuristic algorithm using
backward dynamic programming is suggested.

3 Model formulation

3.1 The serial multi-stage production system

Consider a serial MSPS in which products travel sequentially from stage 1 to
stage n and inspection of products is performed by k (k ≤ n) inspection stations
(see Figure 1). At each stage, a manufacturing operation is performed on the
products, before moving on to an inspection station, or to the processing station
of the next stage in case of no inspection.

After each of the processing stations, one of three inspection options can be
chosen: no inspection (N), full inspection (F), or sampling inspection (S). The
first option, no inspection (N), obviously does not necessitate any further in-
spection decision. If full inspection (F) is chosen, inspection limits subsequently
have to be determined. Finally, the sampling inspection option (S), requires a
decision on the inspection limits, and the (single) sampling scheme parameters:
the sample size and acceptance number.

In any MSPS, three types of parameters can be distinguished: process pa-
rameters, inspection parameters and cost parameters. When using the model
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Fig. 1: a serial n-stage MSPS

to optimize the overall inspection strategy, only the inspection parameters are
considered endogenous (as they can be changed in the inspection strategy opti-
mization process), while the cost and process parameters are exogenous because
they cannot be changed for inspection strategy optimization purposes.

Prior to further model development the following notations are adopted.

K = batchsize
n = number of process stages

Xi = inspection option for stage i, i.e. Xi ∈ {F, N, S}
p′i = fault occurrence in stage i

LILi = lower inspection limit in stage i (variable)
UILi = upper inspection limit in stage i (variable)
LSn = lower specification limit after stage n (fixed)
USn = upper specification limit after stage n (fixed)

si = sample size for stage i

ti = acceptance number for stage i

li = number of bad items in sample of stage i

di = number of bad items after stage i

cT,i = unit test cost in stage i

cR,i = unit rework cost in stage i

cP = unit penalty cost (after stage n)
TCi = test cost in stage i

RCi = rework cost in stage i
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TTC = total test cost
TRC = total rework cost
TPC = total penalty cost
TIC = total inspection cost

Consider a constant production and inspection rate, perfect inspection and
perfect rework. Three types of cost are defined: test costs (cT ), rework costs
(cR) and the penalty cost (cP ). Test cost is the cost of a single test or analysis.
Rework or replacement costs are incurred if a defective product is discovered
through testing, and reworked or replaced by a non-defective product. The
penalty cost is incurred when a defective product is shipped to the customer. In
the MSPS, product is defective whenever the value of its quality characteristic
in stage i lies outside its inspection limits, i.e. outside the interval [LILi, UILi].
MSPS output (after the last stage n) is defective if the value of the quality
characteristic is not contained in the specification interval [LSn, USn].

The fault occurrence p′i is the fraction of defective products in stage i. Be-
cause the inspection limits (LILi, UILi) are independent variables of the in-
spection optimization problem under consideration, the fault occurrence p′i will
be a dependent variable. For a single production stage, its value can be calcu-
lated using standard statistics, if the distribution of the quality characteristic
value is known, and the LIL and UIL for the stage are chosen. Also for the
first stage of a MSPS, p′1 can be calculated this way. For the following stages
i (i = 2, ..., n) however, the fault occurrence p′i not only depends on the choice
of inspection limits (LILi, UILi), but also on the inspection strategy chosen in
the previous stage(s).

Because it would be uneconomical to inspect a product if this were more
expensive than reworking or replacing it, cT,i < cR,i, ∀i. Moreover, we assume
that cR,i < cR,j , ∀i < j. This assumption avoids having to introduce separate
intermediate penalty costs: the penalty cost of detecting a defect only in stage
j, instead of earlier in stage i, is implicitly derived as cR,j − cR,i. Furthermore
it is assumed that if a batch is rejected after acceptance sampling inspection S,
a full inspection F of the rejected batch is performed consecutively in the same
stage.
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3.2 Determination of the TIC

Determining the TIC is now straightforward:

TIC = TTC + TRC + TPC (1)
with

TTC =
n∑

i=1

TCi (2)

TRC =
n∑

i=1

RCi (3)

TPC = cP .dn (4)
and with

TCi =





cT,i.K ∀i : (Xi = F ) ∨ ((Xi = S) ∧ (li > ti))
cT,i.si ∀i : (Xi = S) ∧ (li ≤ ti)
0 ∀i : Xi = N

(5)

RCi =
{

cR,i.p
′
i.K ∀i : (Xi = F ) ∨ ((Xi = S) ∧ (li > ti))

0 ∀i : (Xi = N) ∨ ((Xi = S) ∧ (li ≤ ti))
(6)

Determining the optimal inspection strategy, i.e. the whole of inspection de-
cisions that minimize the TIC, requires the determination of inspection options
Xi and the corresponding inspection limits (LILi, UILi) and sampling parame-
ters (si, ti), for all stages i = 1, ..., n. Solving this optimization problem consists
of finding the set of optimal values

(X∗
1 , ..., X∗

n; LIL∗1, ..., LIL∗n; UIL∗1, ..., UIL∗n; s∗1, ..., s
∗
n; t∗1, ..., t

∗
n) (7)

that minimize

TIC(X1, ..., Xn; LIL1, ..., LILn; UIL1, ..., UILn; s1, ..., sn; t1, ..., tn) (8)

The evolutionary algorithm suggested in Section 4.2 will decide on the in-
spection option Xi and the inspection limits (LILi, UILi), for each process
stage i, but does not yet include the setting of sampling parameters (si, ti),
these are considered fixed (si = 5, ti = 1, ∀i). In concurrent work, the algo-
rithm is extended to include variable sampling parameter setting. The current
algorithm returns the set

(X∗
1 , ..., X∗

n; LIL∗1, ..., LIL∗n;UIL∗1, ..., UIL∗n) (9)

that minimize

TIC(X1, ..., Xn;LIL1, ..., LILn;UIL1, ..., UILn) (10)

4 Solution approach

4.1 Discrete event simulation to calculate TIC

Simulation is used to study processes that are too complex to permit analytical
model formulation and/or evaluation. The complexity can be due to the size of
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the problem, the interactions between its subproblems, the inherent randomness
of the problem, or a combination of these factors.

It is clear that TIC discussed in the previous Section refers to a single
production batch. Of course, the inspection planner should not rely on just a
single problem instance (i.e. one batch) to decide which strategy is the best.
Different inspection strategy solutions should be evaluated over a number of
problem instances to take into account the inherent stochastic properties of the
production process. In this paper, each candidate solution is evaluated based
on the average TIC from 50 simulated production batches.

4.2 An Evolutionary Algorithm to determine the optimal
inspection strategy

Introduction

To explore the use of metaheuristics for determining the optimal inspection
strategy, a simple Evolutionary Algorithm (EA) is presented. Evolutionary (or
Genetic) Algorithms are adaptive heuristic search methods based on popula-
tion genetics. The basic concepts were developed by Holland (1975) and were
forged into a problem solving methodology for complex optimization problems
by De Jong (1975) and Goldberg (1989). The name evolutionary originates from
the analogy of the heuristic with Darwin’s theory on natural selection. In selec-
tive breeding, offspring are sought which have certain desirable characteristics,
determined at the genetic level by combination of the parents’ chromosomes.
In a similar way, in seeking better solutions, EA’s combine pieces of existing
solutions. Thereto, in an EA, a solution to a problem is first encoded as a
chromosome, and new generations of offspring are generated through an iter-
ation process until some convergence criteria are met. The best chromosome
generated is then decoded, providing the corresponding solution.

There are four main parts in the EA paradigm, namely the problem repre-
sentation and initiation, the objective function evaluation (fitness calculation),
the parent selection, and the actual evolutionary reproduction of candidate so-
lutions.

Problem representation and initiation

Every proposed solution is represented by a vector of the independent variables
(inspection decision variables), coded as a chromosome constituted by as many
genes as the number of independent variables.

Every candidate solution to the inspection optimization problem considered
thus is a set (X1, ..., Xn; LIL1, ..., LILn; UIL1, ..., UILn), which can be denoted
as an array of n characters Xi, each character associated with the two inspection
limits LILi and UILi for the corresponding stage. For example the vector

[
F 10.9

9.1 N21.8
18.2 S32.3

27.7 F 42.7
37.3

]

denotes a 4-stage MSPS with full inspection in the first and last stage, no
inspection1 in the second stage, and sampling inspection in the third stage.

1 Note that we keep inspection limits for each stage, even for stages with no inspection, to
ensure maximum flexibility in constructing offspring (see further).
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From the corresponding numbers, we read that inspection is performed between
the limits 9.1 and 10.9 for the first stage, and so on for the other stages.

The basic idea is to start of with a population of M possible solutions to
the problem. In the proposed EA, we use a population size M of 50. From this
pool of initial solutions, some are selected (parents) to construct new solutions
(children). The generation of the initial population is performed as follows: a
first initial solution is read in, consisting of all N’s, and initial inspection limits.
We assume symmetrical inspection limits, i.e. the expected value in each stage
i is the arithmetic average of (LILi, UILi). The construction algorithm for the
initial population consists in randomizing the characters, and randomizing the
limits by allowing (symmetrical) variation from the original limits by a certain
user defined percentage (5% is applied in the calculated case example of Section
5).

Objective function evaluation (fitness calculation)

For every candidate solution its fitness as a possible parent has to be evaluated,
where fitness refers to measure of profit or goodness to be maximized while
exploring the solution space. A naive choice is simply to use the value of the
objective function for each candidate solution, but this is rarely a good idea,
as it often leads to premature convergence to a poor local optimum (Reeves,
1993, pg. 168). This problem can be mitigated using some scaling procedure.
Different procedures are proposed and investigated in literature. We use a
scaling procedure which ensures that the fitness values are all in [0, 1], and their
sum is 1. This property allows us to set the probability of selecting a solution
as a parent directly equal to its fitness value, so no additional conversion from
fitness value to parent selection probability is required.

The fitness value f for each solution j in a population of M solutions is
calculated as follows: in a first step, a provisional fitness value v is calculated.

vj =

∑M
j=1 TICj

TICj
(11)

This way, a smaller (better) TIC will result in a higher provisional fitness value.
After all provisional fitness values for the entire population are calculated, the
actual fitness value for each solution is calculated as:

fj =
vj∑M

j=1 vj

(12)

Parent selection

Parent selection for producing offspring is done as in Holland’s original Genetic
Algorithm, i.e. for each reproduction two parents are chosen: one parent is
selected on a fitness basis, the other is chosen randomly. The idea behind this
scheme is that in doing this, the parent chosen for its fitness ensures genetic
quality, while the random parent ensures genetic diversity.

Obviously, a proper balance between genetic quality and diversity is re-
quired within the population in order to ensure efficient search. This is dealt
with through careful selection of the population related factors at the outset of
the EA: population size, selection of the initial population, fitness calculation,
crossover and mutation operators.
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Reproduction

The reproduction process makes use of the genes of the selected parents to
produce offspring that will make up the next generation. The reproduction
operators exchange segments of the parents to build one or two children. The
most common way to perform this exchange is as follows: a single crossover point
X is chosen randomly; the children are then constructed as the pre-X section
from one parent followed by the post-X section of the other. After construction
of the children, mutation can be used to randomly modify genes of a single
individual to further explore the solution space and to preserve genetic diversity.
The occurrence of mutation is usually associated with a low probability. The
one or two children are added to the new generation. After filling the entire new
population with children (new solutions), this generation of solutions can replace
the previous one entirely or partially, a population size of M being maintained
throughout the course of the algorithm.

In our algorithm, the new generation consists of M − 1 children, the M th

solution in the next generation population is the best solution from the previous
generation. Generating offspring is performed in two consecutive steps: first
crossover (with the crossover operators described below) is applied, then the
inspection limits are adapted. After these two steps, reproduction is completed
and the children thus obtained can populate the new generation. This way, the
simultaneous determination of inspection option and inspection limits can be
achieved. The inspection limits’ adaptation is implemented analogous to the
randomization of the limits used in the construction algorithm: we allow the
children’s inspection limits to deviate from the parents’ limits by a certain user
defined percentage (5% is applied). The maximum number of generations is set
to 500, if no improvement is found after 50 generations, the EA is interrupted.

Our standard crossover operator randomly selects a crossover point, and
constructs two new solutions by exchanging the tails (the whole of characters
and limits) of both parents. An example for a six-stage MSPS and 2 as crossover
point:

Parent 1:
[
F 10.9

9.1 N21.8
18.2 S32.3

27.7 F 42.7
37.3 S53.5

46.5 F 64.0
56.0

]

Parent 2:
[
N10.7

9.3 F 22.0
18.0 F 32.4

27.6 S42.5
37.5 N53.1

46.9 S64.5
56.5

]

Child 1:
[
F 10.9

9.1 N21.8
18.2 F 32.4

27.6 S42.5
37.5 N53.1

46.9 S64.5
56.5

]

Child 2:
[
N10.7

9.3 F 22.0
18.0 S32.3

27.7 F 42.7
37.3 S53.5

46.5 F 64.0
56.0

]

Instead of mutation, inversion is used (see Reeves (1993, pg. 173)). It is ap-
plied through two reverse crossover operators, associated with a low probability
(3% is applied).

- reverse head crossover operator: This operator randomly chooses a crossover
point (we will take 4 as example, and the same parents as above), and
constructs two new solutions by exchanging the reversed heads (in revers-
ing, only the characters, not the limits are reversed) of both parents.

Child 1:
[
S10.7

9.3 F 22.0
18.0 F 32.4

27.6 N42.5
37.5 S53.5

46.5 F 64.0
56.0

]

Child 2:
[
F 10.9

9.1 S21.8
18.2 N32.3

27.7 F 42.7
37.3 N53.1

46.9 S64.5
56.5

]
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- reverse tail crossover operator: This operator randomly chooses a crossover point
(4 as example, same parents as above), and constructs two new solutions
by exchanging the reversed tails (in reversing, only the characters, not the
limits are reversed) of both parents.

Child 1:
[
F 10.9

9.1 N21.8
18.2 S32.3

27.7 F 42.7
37.3 S53.1

46.9 N64.5
56.5

]

Child 2:
[
N10.7

9.3 F 22.0
18.0 F 32.4

27.6 S42.5
37.5 F 53.5

46.5 S64.0
56.0

]

5 Computational testing

Since –to the best of the authors’ knowledge– no standard test cases exist in
literature, a fictitious six stage serial MSPS was constructed, representing a
stack-up assembly operation, with the product dimension the quality character-
istic under attention. Mathematically speaking, this comes down to performing
an addition in each stage (the component added in each stage adds to the over-
all dimension). In Table 1 the process characteristics are shown. We used a
combination of normal and uniform distributions to describe the dimensional
characteristic of the components added in each stage. For normal distributions
the parameters 1 and 2 designate the distribution’s mean and standard devi-
ation, for uniform distributions the parameters designate the lower and upper
boundary of the interval.

Tab. 1: Process characteristics

stage distribution parm. 1 parm. 2 exp. value
1 normal 10 0.3 10
2 normal 10 0.5 20
3 uniform 8.5 11.5 30
4 normal 10 0.1 40
5 normal 10 0.5 50
6 uniform 9 11 60

The parameters used in the cost model are shown in Table 2. The penalty
cost cP is set at 3000; to conform, the final products’ dimension should be
in the interval [LS6, US6] = [58, 62]. A batchsize K = 1000 is assumed. As
discussed in Section 3.1, these sets of parameters (process parameters and cost
parameters) are exogenous to the inspection optimization problem. They do,
however, influence the TIC and thus the outcome of the optimization process
(for more details, see Van Volsem (2002) and Van Volsem and Van Landeghem
(2003)).

To test the EA for convergence, it was executed 25 times. This yielded
minimal TIC’s ranging from 123492 to 128763, or a maximum 4% difference.
The corresponding solution vectors are shown in Table 3, together with the
number of generations and computing time necessary to find that solution (note
that this number includes 50 generations of no improvement). The EA is coded
in the C++ programming language, a PC with a 2.53 GHz processor was used
for program calculation. As the code is not optimized for speed, the indicated
computation times are only of secondary importance.
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Tab. 2: Cost parameters

stage Test Cost Rework Cost
1 1 50
2 1 100
3 2 200
4 1 400
5 1 800
6 2 1600

Figure 2 shows the apparent conversion from the 68th generation on. From
the results Table 3 the EA’s convergence can be confirmed: it can be seen that all
25 solutions are of the same form NNFXXF , with X ∈ {S,N} (the indifference
between S and N in stages 4 and 5 is discussed below). Moreover, the inspection
limits LIL3, UIL3 and LIL6, UIL6, corresponding with the stages where full
inspection F is applied, are in the same range in each case.

Fig. 2: TIC as a function of generation number, for 25 replications of the EA

In the first two stages, no inspection N is opted for. This means the cost
avoidance of detecting defective products already in stages 1 or 2 does not
outweigh the costs of performing full inspection in these stages. This can be
explained considering the relatively low rework costs compared to the test costs
in these stages.

In stages 3 and 6, full inspection F is selected. For stage 6 this entails
avoidance of penalty costs. Indeed, the inspection limits LIL6, UIL6 selected
by the EA, almost coincide with the specification limits LS6, US6 (maximum
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difference = ± 0.051 or less than 0.1%). The choice for full inspection in stage 3
implies that the cost avoidance through detecting defective products outweighs
the incurred test costs. The choice of inspection limits LIL3, UIL3 will balance
both cost aspects.

Tab. 3: Solutions

solution vector TIC gen. time

1
[
N N F 31.093

28.907 S41.255
38.745 N F 61.985

58.015

]
126851 65 1h20’

2
[
N N F 31.229

28.771 S41.843
38.157 S51.419

48.581 F 61.982
58.018

]
126882 91 2h42’

3
[
N N F 31.229

28.771 N N F 61.998
58.002

]
126894 102 2h56’

4
[
N N F 31.131

28.869 N S56.873
43.127 F 62.032

57.968

]
128687 110 3h01’

5
[
N N F 31.125

28.875 N N F 61.984
58.016

]
128763 88 2h20’

6
[
N N F 31.180

28.820 N S55.641
44.359 F 62.007

57.993

]
124325 75 1h59’

7
[
N N F 31.202

28.798 N N F 62.025
57.975

]
127170 63 1h27’

8
[
N N F 31.355

28.645 S41.552
38.448 N F 62.009

57.991

]
128611 82 2h16’

9
[
N N F 31.160

28.840 N N F 62.010
57.990

]
126352 58 1h18’

10
[
N N F 31.157

28.843 N S52.770
47.230 F 61.998

58.002

]
123549 83 2h11’

11
[
N N F 31.080

28.920 N N F 61.988
58.012

]
127310 92 2h40’

12
[
N N F 31.090

28.910 N N F 61.991
58.009

]
126522 83 2h36’

13
[
N N F 31.190

28.810 N N F 61.996
58.004

]
123820 73 1h51’

14
[
N N F 31.235

28.765 S42.723
37.277 S53.940

46.060 F 62.011
57.989

]
125839 68 1h36’

15
[
N N F 31.170

28.830 N S51.713
48.287 F 61.985

58.015

]
126069 60 1h31’

16
[
N N F 31.237

28.763 S41.221
38.779 N F 62.006

57.994

]
123883 64 1h31’

17
[
N N F 31.130

28.870 N N F 62.000
58.000

]
123894 68 1h39’

18
[
N N F 31.207

28.793 S41.968
38.032 N F 62.012

57.988

]
124670 86 2h00’

19
[
N N F 31.096

28.904 N S59.380
40.620 F 61.949

58.051

]
124093 89 2h23’

20
[
N N F 31.262

28.738 N S52.676
47.324 F 62.007

57.993

]
124410 68 1h38’

21
[
N N F 31.208

28.792 N N F 62.001
57.999

]
123492 91 2h06’

22
[
N N F 30.980

29.020 N S53.434
46.566 F 61.988

58.012

]
127899 62 1h27’

23
[
N N F 31.260

28.740 N N F 61.979
58.021

]
126442 117 3h12’

24
[
N N F 31.179

28.821 S43.615
36.385 S53.323

46.677 F 62.023
57.977

]
127066 92 2h33’

25
[
N N F 31.082

28.918 N S53.540
46.460 F 61.991

58.009

]
125902 60 1h33’

The fact that there is no clear discrimination between N and S inspection in
stages 4 and 5, can be attributed to the full inspection F in stage 3. Seeing this
provides stage 4 with an input of 0% defectives, and considering the low added
variance of the production operation in stage 4, it can be argued that the fault
occurrence in stage 5 will still be close to 0%. This means that in stages 4 and
5 there will be very few defectives, reducing the need for (sampling) inspection.
Performing sampling inspection S will thus not be advantageous compared to
performing no inspection N. On the other hand, it will not be disadvantageous
either, because given the relatively small sample size (si = 5, ∀i), the differential
cost of performing sampling inspection in stages 4 or 5 compared to performing
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no inspection will not be substantial. This explains the apparent indifference in
selecting S or N in stages 4 and 5.

6 Conclusions and suggestions for further research

Efficient production quality control is a major issue to manufacturers. Most
production processes consist of a sequence of production stages. Each stage
(but the last) produces input for the next production stage. As the produc-
tion processes at each stage are generally stochastic in nature, deviations from
product specifications occur, which, without intervention, will accumulate in
the course of the production process. Quality inspection only at the last stage
would therefore result in a large number of faulty products and high rework and
scrap costs.

An optimal inspection strategy for a so-called serial multi-stage production
system (MSPS) has to decide on (i) the number and location of inspection
stations, (ii) the size of the production fraction subject to inspection (sample
size) and (iii) the rigor of the inspections (acceptance limits) at each inspection
station that minimize total expected inspection costs.

To our best of knowledge, this paper contains the first attempt at jointly opti-
mizing the number and location of inspection stations, their inspection type and
inspection limits (concurrent work includes the sampling parameters). Discrete
event simulation is used to model the multi-stage production system subject to
inspection and to calculate the resulting inspection costs, an evolutionary algo-
rithm is suggested to optimize the inspection strategies. Computational testing
illustrates potential of metaheuristics for optimizing quality inspection.
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