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Retail credit scoring using �ne-grained payment data

Ellen Tobbacka and David Martensa

aDepartment of Engineering Management, University of Antwerp

February 8, 2017

Abstract

In this big data era, banks (like any other large company) are looking for novel ways

to leverage their existing data assets. A major data source that has not been used to

the full extent yet, is the massive �ne-grained payment data on their customers. In this

paper, a design is proposed that builds predictive credit scoring models using the �ne-

grained payment data. Using a real-life data set of 183 million transactions made by 2.6

million customers, we show that our proposed design adds complementary predictive

power to the current credit scoring models. Such improvement has a big impact on the

overall working of the bank, from applicant scoring to minimum capital requirements.

1 Introduction

In this big data era banks, like any other large company, are looking for ways to lever-

age their existing data assets. Internally, banks have access to a broad base of customer

data. Technological advancements such as mobile banking and contactless payments have

substantially raised the amount of registered transactions. As a result, next to sociode-

mographic data such as age, income and education, banks have data on the purchasing

and payment records which makes much of a person's behaviour visible. The fact that a
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customer regularly transacts with other clients who have defaulted on a loan, combined

with the fact that he makes regular payments at a casino and high-street shops while only

rarely receiving money from an employer can be telling for his default behaviour. Payment

data has been used in the credit scoring literature to help banks better predict default and

bankruptcy. Yet, this data source is not used to its full extent. Because payment data is

too big or disorganized for traditional methods to handle, most studies have derived ag-

gregated attributes from the �ne-grained data and thus discard important information. In

this paper, we investigate how to leverage this data source in its granular form and test

both propositional and relational methods. We propose a scalable and privacy-friendly de-

sign that allows banks to include payment data in a non-aggregated manner. We test the

results empirically using a data set from a European major commercial bank that contains

183 million checking account transactions made by 2.6 million clients holding a commercial

loan.

The recent credit turmoil has shown the dangers of inaccurate credit risk modelling

approaches. Focusing on payment data to enhance credit risk models has the advantage

that it manages to combine interpretability with increased prediction performance. This

comprehensibility aspect is a regulatory requirement, as a bank needs to be able to explain

to a customer why credit has been denied [17].

Our study contributes to the credit scoring literature in several ways. We provide

empirical evidence that using �ne-grained transaction data improves the accuracy of default

predictions, (ii) we describe two methods (propositional and relational) and show that

transaction data is best analysed in a relational manner and (iii) building upon the empirical

results, we o�er advise to the banks on their data collection and usage.

The outline of this paper is as follows. Section 2 reviews prior work on credit scoring and

behavioural data. Section 3 describes the transformation of transaction data into default

predictions. Next, Section 4 provides a detailed description of our experimental set-up and

analyses the empirical results. The �nal section concludes the paper.
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2 Credit scoring and behavioural data

There is a vast amount of research on credit scoring, covering statistical, operational re-

search and arti�cial intelligence methods. The �rst credit scoring models were created using

discriminant (DA) [7] or regression analysis [20], however researchers quickly introduced lo-

gistic regression [28], decision trees [16] and linear programming [10] as alternative credit

scoring methods. Since the 1990's the focus has shifted towards arti�cially intelligent mod-

els such as Support Vector Machines (SVM) and neural networks. In a large benchmarking

study, Baesens et al. [1] show that neural networks and non-linear Least Square SVM report

the highest performances for each data set considered in their study. However, the authors

note that in terms of performance, logistic regression and DA are competitive with the

non-linear classi�ers.

In many countries legislation requires �nancial institutions to explain why a certain

credit was not granted. Applying non-linear, black box models decreases the comprehen-

sibility of the credit scoring models. Even though methods exist that extract rules from

black-box models [17], in a practical setting, credit scoring is still mainly based on simple

classi�ers such as logistic regression, DA and classi�cation trees.

Most credit scoring research focuses on the modelling techniques and only to a lesser

extent on the input data. Traditionally, credit scoring models include socio-demographic

data 1, data on the applicant's �nancial situation, employment and education data, and

behavioural data. Certain studies have included macroeconomic data to consider the mar-

ket conditions at the time of application [2, 5]. Behavioural data describes the client's

behaviour with regard to other banking products. This can be credit card usage, transfer

patterns on the transaction account or repayment behaviour on a di�erent loan. Banks

1In certain countries, legislation prohibits banks to discriminate based on certain socio-demographic

information, such as age, gender, ethnic origin and religion. In the US, this is directly regulated by the

Equal Credit Opportunity Act. In the EU this is indirectly regulated by Article 13 of the EC Treaty and

translated into national legislation.
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have behavioural data at their disposal if the applicant is an existing (credit) client. This

data can be complemented with external data, e.g. from credit bureaus. 2 A number of

studies have included behavioural data in their credit scoring models. Norden and We-

ber [21] investigated the in�uence of credit line usage and the checking account balance on

default risk of bank borrowers. They �nd that measures of account activity signi�cantly en-

hance default predictions. Khandani et al. [14] analyse patterns in consumer expenditures,

savings and debt payments to predict credit card delinquencies. Bellotti and Crook [3] use

monthly account behavioural records to predict credit card defaults using dynamic models.

However, all the above-mentioned studies transform the data to monthly aggregates, such

as the transaction count per month, the monthly average account balance and the total

in�ow and out�ow per month. In this paper we use behavioural data on checking account

transactions in a �ne-grained manner, using the individual payments.

The use of behavioural data has proven to be successful in other domains such as as

targeted advertising [18], fraud detection [13] and customer retention [26]. The nature of

these large behavioural data sets requires a di�erent modelling approach than the tradi-

tional, structured data sets. One option is to consider each action as a separate data entry

and create a large matrix where each column is an interest, activity or entity. A di�erent

option is to create a network between all nodes where two nodes are linked through similar

interests or activities: e.g. watching the same videos [27], visiting the same places [24] or

liking the same pages on Facebook. Behavioural data on checking account transactions has

been used by Martens and Provost [18] to successfully target potential buyers of a �nancial

product using a network structure, where two customers are linked if they have paid to

the same entity. Within data mining we observe an increased use of social network data as

input drivers for applications in marketing [23] and fraud detection [11]. The main reason

is the tremendous predictive power that is present in such relational data, with signi�cant

2In certain countries in continental Europe, there are no credit bureaus. Banks can collect information

on existing credits from a national credit register.
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improvements compared to traditional approaches that only use individual customer data.

Network data can be seen more broadly than the typical friendship relationship among per-

sons as data that de�nes relationships between entities. Two major categories of relational

data can be distinguished: real network data and pseudo-network data. In a real network,

two nodes are connected because a certain form of direct communication has taken place

between them. In a pseudo-network, two nodes are connected because they have a common

interest, activity or asset. The network is implied as there is no evidence that both nodes

have ever communicated with each other. In this study, we build upon the proven success

of network data and exploit the transaction data in a relational manner. Next to a direct

network where consumers are linked if they made payments to each other, we create an

implied or pseudo-social network where two consumers are linked if they made payments

to the same entities.

3 Transforming transactions into predictions

We investigate both propositional and relational models to use money transfer data of a

client's transaction account. The propositional model follows the standard classi�cation

method and adds each unique transaction as a feature in the input space. This results in

a large and sparse adjacency matrix B(m,n) that represents the behavioural data, with m

the number of clients and n the number of counterparties (i.e. the unique set of account

members that can be paid to). Each cell ci,j is a binary variable that denotes whether a

transaction has taken place between client i and counterparty j. The matrix is created from

the transaction log as illustrated by Figure 1. Bob, Jack, Sarah, Sophie and Josh all have

an account and a commercial loan at the same bank. The graph on the left side represents

their transactions over one month. The matrix on the right side is the adjacency matrix

B(m,n).

The relational models use two types of network representations of the data: a direct

network and an implied network. In the direct network, i.e. a unigraph with m nodes, two
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Figure 1: Matrix representation of the payment data: from the transaction log

to an adjacency matrix.

clients are linked if a transaction has taken place between them. In the implied network,

which is a projection from a bipartite graph with m bottom nodes and n top nodes, two

clients are linked if they have transferred money to or received money from the same entity.

By creating both networks, we rely on the sociological concept of assortativity which states

that people are more likely to form bonds with others who have similar characteristics

such as values, beliefs, socio-economic status [19]. By creating a direct network, we build

upon the theory of assortativity and assume that people of similar creditworthiness tend to

cluster. The creation of the implied network is also justi�ed by the assortativity concept,

stating that similarity in one domain, such as transaction patterns, may indicate similarity

in another domain, such as creditworthiness or willingness to redeem a loan.

Both networks are created from the transaction log as visualized in Figures 2 and 3. The

graph on the right side of Figure 2 represents the direct network. It shows the connections
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between the clients that transacted with each other. These clients are both clients and

counterparties in the transaction log. The debit transactions of Sarah, Sophie and Josh to

Bob are listed as credit transactions on Bob's account. In the resulting network, Sarah,

Sophie and Josh are directly connected to Bob.

Figure 2: Direct network representation of the payment data: unigraph ex-

tracted from the transaction log.

The implied network is a projection from the transaction log as illustrated by Figure 3.

The network shows the connections between the clients that transacted with the same entity.

Sarah, Sophie and Josh are connected in the implied network because they transferred

money to the same account (i.e. Bob's account). The more entities they have in common,

the stronger the connection. Sophie and Josh have a stronger connection than Josh and

Sarah, because they have more transactions in common (i.e. Bob's account and their

employer). To create the implied network, we follow the three-step framework proposed by

Stankova et al. [25]. To each counterparty a weight is assigned according to the hyperbolic

tangent of its inversed degree, with the degree equal to the number of clients that have
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Figure 3: Indirect (implied) network representation of the payment data: from

a bipartite graph (transaction log) to a projected unigraph.

made a payment to/received a payment from the respective counterparty. The hyperbolic

tangent function downweighs entities that many clients have in common, as these are likely

to be less distinctive for the target variable. Referring to the example of Figure 3, there will

be more clients receiving a tax refund from the government tax agency (IRS or the country-

equivalent) than clients paying their groceries at a certain local supermarket. Hence, the

supermarket should be assigned a larger weight than the tax agency. Figure 4 shows the

histogram of the number of clients per counterparty in our data set, accompanies by the

corresponding weight. Most counterparties have few transaction partners. However, there

is a small number of counterparties that the majority clients has transacted with. These

are likely large companies or government organizations, such as energy and water suppliers

and the tax agency. The weights assigned to the counterparties (i.e. the top node weights

S) are given by the black line, which is the hyperbolic tangent of the inverse degree d,

the number of clients per counterparty. The weighting scheme downweighs counterparties
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with many transaction partners more severely than entities that transacted with only a few

clients. In the second step of the three-step framework the weights of all shared entities are

aggregated.

Figure 4: Histogram of the number of clients per counterparty (bars). The

corresponding weight, the hyperbolic tangent of the inverse degree, is shown

by the black line.
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4 Experimental setup

4.1 Data

We received data from the transaction account, which includes an anonymised bank client

indicator and a counterparty indicator for each transaction. We obtained 5 months of

transaction data, containing over 180 million (debit and credit) transactions of 2.5 million

bank accounts. Each bank account is linked to a consumer credit with a non-default status
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on 31 December 2014. The goal is to predict which loans will default in 2015. Transactions

are marked as point-of-sales (POS) transactions or transfers. The �rst category consists

of payments made at a physical store with a debit card (credit cards transactions are not

included in the data), the latter category are electronic transfers from or to the client's

account. Table 1 shows some relevant data characteristics. By adding more months, we

increase the total number of transactions and counterparties. The number of bank accounts

is kept stable and equal to those accounts that have made transactions on their account in

December 2014.

Each bank account is accompanied by a rating score, determined by the bank's internal

rating model that uses a 12 notch rating scale. This rating model is built using advanced

modelling and includes sociodemographic and aggregated behaviour input variables. Due

to con�dentiality reasons, we are unable to describe the exact modelling procedure used.

However, as the data is obtained from a large European bank, subject to regulatory oversight

on its modelling, we can con�dently state that the modelling procedure is in line with the

state of the art modelling practices.

4.2 Study design

We estimate the performance of 4 models built using only transaction data: a propositional

model, a direct network model, an implied network model and a linear ensemble model

that combines the output scores of the direct and implied network. These performances

are compared to the benchmark performance of the bank's own ratings. To test whether

the payment data and the traditional data (represented by the ratings) are complementary,

we create three additional linear ensemble models: one model that combines the output

scores of the rating model with the scores of the direct network, one model that combines

the scores of the rating model with the scores of the implied network and one model that

combines the scores of the rating model with the scores of the direct and the scores of the

implied network. The latter model is referred to as the `full ensemble model'.
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Table 1: Data characteristics

Number of

months included

Number of clients Number of coun-

terparties

Number of trans-

actions

Number of unique

client-CP combi-

nations

1 month
2,585,227 4,141,402 42,865,861 28,278,074

(December)

2 months
2,585,227 4,757,378 76,026,632 38,390,747

(+ November)

3 months
2,585,227 5,254,154 114,043,910 48,401,003

(+ October)

4 months
2,585,227 5,649,005 150,387,767 56,431,000

(+ September)

5 months
2,585,227 5,945,217 182,645,116 63,042,608

(+ August)

We use a ten-fold cross validation procedure, where 90% is used as training data and

10% as test data. The training data is further split in 80% to train and validate the

classi�ers using the transaction data and to train and validate the rating model, and 20%

to train and validate the linear ensemble models. Ideally, the study should be performed

completely out-of-time. However, due to data restrictions we are limited to the use of an

out-of-sample testing framework.

To investigate the value of additional data, we start by incorporating only the most

recent month (December 2014) and gradually increase the size of the data set by including

the transactions further in the past. This allows us to see if it pays o� to invest in the
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collection and storage of historic transactions.

Benchmark rating model The bank's 12 notch rating scale is used as a benchmark in

this study. We could use the rating directly to test the performance, however, we decided to

use the rating scales as input data in a simple linear prediction model. In a later step, the

output scores of the direct and implied network models can be added to this linear model,

which allows us to precisely estimate the added predictive value of the payment data. The

rating scales are transformed into separate data entries using unary encoding. Unknown

ratings are replaced by the mode and are assigned a missing value �ag. This results in 12

input variables (11 ratings and 1 missing value dummy).

As linear classi�er, we apply a linear Support Vector Machines which solves the follow-

ing optimization problem [8]:

minw
1

2
wTw + C

∑
i

max(1− yiwTxi, 0)
2

(1)

With vector w the weights of the model and xi and yi representing the input vector

and the label of the ith observation. max(1 − yiwTxi, 0)
2 is the squared (L2) hinge-loss

function. A ten-fold out-of-sample grid search was performed to �nd the optimal value of

C, the regularization hyperparameter. We employed the LibLinear package from Fan et

al. [8] to run the SVM.

Propositional model The propositional model looks at the payment data from a stan-

dard classi�cation perspective. Each counterparty in the adjacency matrix is an input

feature of the propositional model. Depending on the amount of months that are included

in the data set, the amount of variables in the model thus varies between 4 and 6 million.

The model weights are calculated using linear SVM.

Direct and implied network models To create predictions for both the direct and

implied networks, a relational learner is used. This learner is applied to the unigraph of the
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direct model and to the projected unigraph of the implied network. As a relational learner,

we apply the weighted-vote Relational Neighbour (wvRN) classi�er [15]. It is a simple, yet

powerful classi�er that uses the network structure to calculate a bankruptcy probability

score P (yi = c|N(i)) for a company as a weighted average of its j neighbours' (N(i)) prob-

ability scores (see Equation 2). The classi�er is based on the property of assortativity [19],

as it makes the assumption that the connected nodes are similar and therefore more likely

to belong to the same class. We applied a smoothed version of wvRN that adds the default

rate µc as smoothing factor.

P (Li = c|N(i)) =

∑
j∈N(i)wijP (yj = c|N(j)) + 2µc

Z + 2

where the normalization factor Z is equal to
∑

j∈N(i)

wij

(2)

Equation 2 calculates the probability that the label y of client i equals c, with c a

binary indicator of default, given its neighbours N(i) in the unigraph (projection). The

resulting bankruptcy probability score is the weighted sum of the default probabilities of a

client's neighbours. In this study, the neighbour's default probability is set to either 0 or

1, depending on whether they defaulted or not.

When estimating default probabilities, the traditional, unsmoothed, wvRN will assign

boundary values to nodes with only one neighbour, i.e. one or zero depending on whether

the neighbour has defaulted or not. Similarly, the method will assign boundary values

when the node is surrounded by neighbours of only one type and zero when the node has

no neighbours in the network. However, a client connected to no-one or to non-defaulted

clients only still has a certain probability of default. To solve these problems, we calculate

a smoothed version of the probability estimate using the concept of additive smoothing.

Traditional additive smoothing starts from the prior assumption of equal probabilities for

each class. This assumption is not valid for our credit scoring data set, therefore we replace

the uniform probability of 0.5 by the default rate µc of the training set. As a result, when

using a smoothed wvRN, a client with no neighbours will receive the default rate µc.
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The edge weight wij between client i and its neighbour j is di�erent for the implied and

direct network. The edge weights in the implied network are de�ned by Equation 3 and

equal the sum of the top node weights Sk of all shared top nodes NT in the bipartite graph.

wij =
∑

k∈NT (i)∩NT (j)

Sk (3)

The top node weight Sk of node k is equal to the hyperbolic tangent of its degree dk:

Sk = tanh(
1

dk
) (4)

For the direct network two di�erent weighting schemes are considered. In the �rst

scheme the edge weight wij is a variable that denotes the number of months from the data

set in which at least one transaction between both parties has taken place. When only one

month of data (i.e. December) is considered, the edge weight is a binary variable. In the

second scheme the edge weight wij equals the number of transactions between both parties

i and j.

Ensemble models As mentioned before, for each fold the training set is split into 80% to

train the classi�ers (training set 1) and 20% to train the ensemble models (training set 2).

The direct and implied networks are built on the �rst training set and are used to estimate

default probabilities for the clients in training set 2. These probability scores are then used

as input features for the ensemble models, alongside the unary encoded rating dummies for

those ensemble models that include the ratings. The ensemble models linearly combine the

di�erent variables with the weights estimated by a linear SVM.

4.3 Results

We compare the results of the four payment data models with the benchmark rating model

and the rating ensemble models using the Area under the ROC-curve characteristic [9] and

the lift [4] at 1 and 5% of the test set, averaged over the 10 folds.
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Figure 5 plots the AUC performances for all models. For sake of clarity, the results are

spread over two graphs. Figure 5a plots the performances of the propositional model, the di-

rect network model, the implied network model and the benchmark rating model. Figure 5b

also plots the benchmark rating model (to facilitate easy comparison) and the four ensemble

models. The direct network is created using the �rst weighting scheme, i.e. the number of

months from the data set in which at least one transaction has taken place. The network

models report high performances, however, they are still outperformed by the bank's own

rating models. The only exception is the ensemble model that combines the direct and

implied network scores. The results show that a direct network has more predictive power

than an implied network, indicating that your direct transaction circle is likely composed

of people with similar creditworthiness. Figure 6 illustrates a set of default clusters that

are part of the direct network. The entire network is a collection of similar small default

and non-default clusters. It motivates the intuition behind the relational model: if you

are connected to numerous defaulters, you are likely also a defaulter. This intuition is also

con�rmed by Figure 7 which represents a client's default probability for increasing minima

of defaulters (absolute or proportional) in its network. Remarkably, amongst the clients

that are connected to at least 1 defaulter, 51.98% are defaulters themselves, compared to

0.77% in the complete test set.

The best performing models are the ensemble models. Remarkably, the ensemble model

that considers only payment data, i.e. the `direct + implied' model, performs better than

the ensemble model that combines the implied network with the ratings. The highest AUC

values are found for the full ensemble model, closely followed by the model that combines

the ratings with the scores of the direct network. The results show that traditional data and

payment data have complementary predictive power in terms of AUC. The similarity-based

network seems to add information above that already contained by the direct transactions

network. Applying a propositional technique is clearly suboptimal for the �ne-grained

transaction data used in this study. Our results indicate that this data type should be
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Figure 5: Results in terms of out-of-sample AUC.
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Figure 6: Graph representation of a sample of the direct network.
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Figure 7: Probability of default for clients with increasing number and percent-

age of defaulted neighbours in their direct network.

(a) Number of neighbours

>=
0

>=
1

>=
2

>=
3

>=
4

>=
5

>=
10

>=
15

>=
20

>=
25

>=
30

Minimum number of neighbours in a client's direct network that defaulted

0

20

40

60

80

100

P
ro

ba
bi

lit
y 

of
 d

ef
au

lt 
(%

)

(b) Percentage of neighbours

>=
0%

>=
1%

>=
5%

>=
10

%

>=
20

%

>=
30

%

>=
40

%

>=
50

%

>=
60

%

>=
70

%

>=
80

%

>=
90

%

>=
10

0%

Minimum percentage of a client's neighbours in the direct network that defaulted

0

10

20

30

40

50

60

70

80

P
ro

ba
bi

lit
y 

of
 d

ef
au

lt 
(%

)

exploited in a relational manner.

Figures 8 and 9 show the lifts at 1 and 5 percent averaged over the 10 folds. The highest

lifts are reported for the full ensemble model, the `direct + implied'-model and the `direct +

rating'-model, with a comparatively large gap in lift with the remaining �ve models. While

the rating model scores better than the direct network model in terms of AUC, it performs

worse in terms of the lift at the threshold of 1% : the direct network model reports a 115%

higher average lift than the rating model. However, this advantage over the rating model

levels o� at the 5% threshold, where the direct network model has only a 10% higher lift

than the rating model. In terms of lift it appears that adding the implied network score to

the `direct+rating'-model does not lead to higher performance: when using �ve months of

data, the lift of the full ensemble model and the `direct+rating' model overlap. The results

are in line with other studies that use relational learners on �ne-grained data: network data

gives a boost to the model lift [18]. In practical terms, this means that amongst the highest

scores of the models that include payment data in a direct network there are more actual

defaulters than amongst the highest scores of the traditional rating model. This `boost' can
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Figure 8: Results in terms of out-of-sample lift at 1 percent.
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Figure 9: Results in terms of out-of-sample lift at 5 percent.
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Figure 10: Receiver Operating Curve of one fold of out-of-sample predictions.
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also be seen in the ROC-curves in Figure 10. The direct model, the full ensemble model and

the `direct + implied'-model all have a cut-o� at which the model detects more than 40%

of the defaulters with almost zero misclassi�cations. The direct network model is surpassed

by the rating model for lower cut-o� values. Investigating the true positive (TP) and false

positive (FP) rates of the direct network model's ROC-curve for the di�erent cut-o�s, shows

that there is a sudden jump in the FP rate at a cut-o� of 0.009. This score is the default rate

of the training set and is assigned by the relational classi�er to the bank's clients that have

no known transactions with other clients of the bank. These are thus nodes with no links

in the direct network, con�rming the importance of more information. This �nding shows

that credit scoring and marketing can go hand in hand: (i) encouraging clients to increase

their use of the bank's checking account will result in more information on a client's direct

transaction network, and (ii) investing in positive worth-of-mouth marketing can lead to

more links in a client's direct network if the people in its environment open an account at

the bank.

Figures 5, 8 and 9 operate as learning curves [22]. In the �rst step only the most
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Table 2: Results in term of p-value of a one-sided paired t-test for the di�erent

models. The test compares the AUC performance of each model with the best

performing model (the full ensemble model).

Rating Implied Direct Full ensemble

Rating 7.77e-14 5.81e-14 2.96e-08 -

Implied 5.81e-14 3.39e-14 6.95e-10 -

Direct 2.96e-08 6.95e-10 2.27e-15 -

Best model - - - 1.00

recent transactions (December 2014) are considered and at each step older transactions

are included. Overall, we see that the performance increases with each extra month of

transactions that is included in the features space, with the largest increase occurring in

the beginning between 1 and 2 months. The model that seems to bene�t the most from

additional data is the implied network. Contrary to previous studies [12], we do not increase

the number of clients, but the number of counterparties and known transactions per client.

Nonetheless, we �nd the same conclusions: when working with �ne-grained data, bigger is

better. However, the performance improvement caused by adding more transactions levels

o� after a certain point [18].

Regardless of the number of months included in the data set, the full ensemble model

performs better than the other models. This is con�rmed by a set of one-sided paired

t-tests over all ten folds. The results of these comparison tests are reported in Table 2.

The diagonal elements show the results for the model of the respective category. The rest

of the matrix indicates the results of the di�erent combinations of the corresponding data

categories, i.e. the ensemble models. The full ensemble model, that uses all categories, is

shown in the last row. For all cases, we �nd that the full ensemble model has a signi�cantly

higher AUC than the other models, with all p-values lower than 1e-07.
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For the direct network, we consider two weighting schemes. The networks in Figures 5, 8

and 9 applied the �rst type of edge weighting. The second type assigns the total number

of transactions between both parties as weight to the edge. Figure 11 compares the AUC

performances of the resulting networks using the two weighting schemes. The di�erence in

performance between both networks is limited and levels o� almost completely when all 5

months of transaction data are used. After the addition of the fourth month of transactions,

the di�erence becomes insigni�cant (p-values > 0.31) as tested by a one-sided paired t-test.

For banks it is thus su�cient to save only the unique transactions per month. The predictive

value lies in the fact that a payment to a certain counterparty has been made, not in the

amount or frequency.

As mentioned before, there are two types of counterparties in the data set: Point-of-

sales and transfers. Figure 12 compares the AUC-results of the implied network when all

counterparties are included with the network when only transfers or only POS are included.

The results illustrate that most predictive power is included in the transfer transactions.

The implied network created out of POS-transactions has limited predictive power and

performs worse than the bank's own rating model. However, POS-transactions still add

some complementary information to the transfer network, as the highest performance is

found for the network created using all counterparties.

4.4 Deployment

Introducing big data analytics in credit scoring may require a reallocation of banking re-

sources. Traditional banks are often held back by legacy systems that are not adjusted to

the task at hand [6]. Simultaneously, banks can be reluctant to use external data sources

for fear of defying customer's trust. This paper o�ers a big data application for banks that

does not require large IT infrastructures and that uses internal data only. The data, in

the form of transaction logs, are already available at banks. As the results show, with few

months of transaction data, high accuracies can easily be obtained. The smoothed wvRN
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Figure 11: Results AUC
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Figure 12: Results AUC
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classi�er is a straightforward method with low computational time. On the largest data

set, it took 48.96 seconds to run 10 folds for the implied network using Matlab and only

1.65 seconds for the direct network 3. The network scores can be integrated as a variable

into the existing credit scoring models and can thus provide additional information without

disrupting the entire credit scoring system.

An important issue to consider when using sensitive payment data is privacy. The

design we propose is privacy-friendly and is an example of privacy-by-design: privacy is

embedded in the entire process. All data can be encrypted and only the encryption of the

client IDs should be reversible. This decryption can be executed in a separate, protected

environment that cannot be accessed by the modellers. We do not use the counterparties'

semantics such as address, type of person, type of shop. The results show that even the

distinction between POS and transfer isn't necessary, as best performances are found when

both types are included. The counterparties' IDs can thus be irreversibly hashed. At no

point in the modelling process does the design require the modellers to look at the client's

name or unencrypted payment data. The design does not require purchasing third-party

information and is therefore less likely to face privacy and regulatory compliance issues,

given that banks are transparent about the data used to build credit scores.

5 Conclusion

This paper investigates the use of transaction data for credit scoring. We examined propo-

sitional and relational methods to classify customers and �nd that transaction data should

be modelled in a relational manner. We show that payment data adds complementary

predictive power to the traditional credit scores. Best results are found when the default

probability scores of a direct network (linking clients that transacted with each other) are

combined with the scores of an implied network (linking clients if they transacted with the

same entities) and the bank's own ratings. We �nd that electronic transfers are more pre-

3On an Intel Core i5-3470 CPU @ 3.20 GHz machine with 8Gb RAM.
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dictive than point-of-sales transactions, though the model still bene�ts from the inclusion of

both transaction types. Adding more information to the data set by including transactions

further in the past increases the models' accuracies, though this increase appears to level

o� when all �ve months of transaction data are included.

In this study, we provide a big data application for credit risk assessment. The results con-

�rm the large predictive value of behavioural data in credit scoring. The proposed design

is easy to implement by �nancial institutions as it uses internal data and does not require

a disruption of the existing IT infrastructure. Once the networks are created, they can

be applied within the bank for di�erent purposes other than credit scoring, such as churn

prediction, fraud detection and targeted marketing. The design can be extended to other

credit scoring applications, including credit card default using credit card transactions and

corporate default using corporate transactions.
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