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Summary 
DNA methylation is an epigenetic mark which plays an important role in maintaining 

cellular identity by regulating cell and tissue-specific gene expression profiles. 

Epigenetic modifications are known to be influenced by both genetic and 

environmental factors and may therefore be seen as a bridge between the 

environment and the genome. Furthermore, epigenetic changes due to environmental 

stimuli may be mitotically inherited and thus also function as a cellular memory. Given 

these characteristics, DNA methylation is thought to mediate the long-term effects of 

chronic exposure to environmental factors on health and disease, which is also known 

as the Developmental Origins of Health and Disease (DOHaD) hypothesis. This 

paradigm proposes that the prenatal and early developmental stages are important 

contributors of an individual’s health status throughout its life. Indeed, DNA 

methylation changes are now also identified in multiple lifestyle diseases, such as 

cancer, cardiovascular, metabolic and neurological diseases. Due to its dynamic nature, 

DNA methylation can be exploited as prognostic, diagnostic and therapeutic 

biomarkers, but also is an attractive target for therapeutic and nutritional 

interventions. In addition, studying epigenetic patterns could give us useful mechanistic 

insight in disease etiology and development. In this thesis, we studied DNA methylation 

patterns in easy-accessible tissues, including blood and saliva to monitor adverse early 

environmental exposures, cardio-metabolic diseases and nutritional intervention 

responses. 

 

In the first part of the results section (chapters 3 and 4), we examine whether early 

adverse environmental conditions can be monitored through DNA methylation marks 

in blood and saliva. During prenatal and early development, the methylation profile is 

sensitive to adverse environmental factors and the exposure history builds up cellular 

memory which can promote diseases later in life. In this way, monitoring adverse DNA 

methylation changes holds promise to monitor and/or prevent potential disease risk 

later in life.  

In chapter 3, we performed a pilot study in a cohort of Danish children, whose mothers 

were exposed to pesticides during pregnancy. In a previous study of those children, it 

was found that carriers of a polymorphism in the PON1 enzyme, which has an 

important role in organophosphate pesticide hydrolysis and is linked with 

atherosclerosis, have an adverse cardio-metabolic risk profile upon pesticide exposure. 

We could detect a specific DNA methylation profile in blood of prenatally pesticide 

exposed children carrying the PON1 192R-allele. Differentially methylated genes were 

enriched in several neuroendocrine signaling pathways including dopamine-DARPP32 
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feedback (appetite, reward pathways), corticotrophin releasing hormone signalling, 

nNOS, neuregulin signalling, mTOR signalling and type II diabetes mellitus signalling 

suggesting a possible link with the metabolic effects observed in these children. 

Furthermore, we were able to identify possible candidate genes which mediated the 

associations between pesticide exposure and increased leptin level, body fat 

percentage, and difference in BMI Z-score between birth and school age. 

In chapter 4, we compared DNA methylation profiles in saliva samples of neglected 

orphan children of the well characterized Bucharest Early Intervention Project (BEIP), 

raised in institutions, following foster care or never-institutionalized children. We 

identified a set of 30 differentially methylated regions (DMRs) located in genes which 

are involved in nervous system and neuronal development, related to cognition, 

behavior and learning and psychological disorders. Further comparison with gene 

expression profiles before and after the Trier Social Stress Test (TSTT) identified a 

nuclear receptor coordinated stress dependent gene network, involving the 

glucocorticoid receptor. One of the genes with the highest correlation between TSST 

specific changes in cortisol levels, DNA methylation and gene expression was CALD1, a 

gene with established links to glucocorticoid stress responsiveness, neuronal migration 

and also the impact of cortisol stress hormones on neuronal morphology, dendritic 

spines and migration.  

 

In the second part of the results section (chapter 5 and 6), we evaluated whether we 

could identify disease associated DNA methylation profiles in whole blood of 

atherosclerosis patients that could be used as a surrogate biomarker. Epigenetics is 

believed to play a significant role in the initiation and development of complex chronic 

diseases. For some diseases, the tissue of interest is difficult or even impossible to 

obtain, and therefore easily accessible surrogate tissues, like blood and saliva are 

recommended. 

In chapter 5, we measured the genome-wide DNA methylation profile of whole blood 

samples of clinical atherosclerosis patients and compared it with epigenetic profiles of 

atherosclerotic plaque material, and subclinical atherosclerosis samples of the Aragon 

workers cohort, to identify potential surrogate markers for early cardiovascular disease 

(CVD) detection. We identified multiple DMRs in atherosclerosis patients related to 

epigenetic control of cell adhesion, chemotaxis, cytoskeletal reorganizations, cell 

proliferation, cell death, estrogen receptor pathways and phagocytic immune 

responses. Furthermore, a subset of 34 DMRs related to impaired oxidative stress, DNA 

repair, and inflammatory pathways could be replicated in an independent cohort study 

of donor-matched healthy and atherosclerotic human aorta tissue and human carotid 

plaque samples. Upon integrated network analysis, BRCA1 and CRISP2 DMRs were 
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identified as most central disease-associated DNA methylation biomarkers. 

Differentially methylated BRCA1 and CRISP2 regions could be further replicated in 

blood, aorta tissue and carotid plaque material of atherosclerosis patients. Moreover, 

methylation changes at BRCA1 and CRISP2 specific CpG sites were consistently 

associated with subclinical atherosclerosis measures (coronary calcium score and 

carotid intima media thickness) in an independent sample cohort of middle-aged men 

with subclinical CVD in the Aragon Workers' Health Study (AWHS). Therefore, BRCA1 

and CRISP2 DMRs hold promise as novel blood surrogate markers for early risk 

stratification and CVD prevention. 

In chapter 6, we cross-compared the atherosclerosis specific methylation profile 

identified in chapter 5 with whole blood DNA methylation profiles of Alzheimer’s 

disease (AD) patients to identify a common DNA methylation profile which may be 

valuable as a blood-based DNA methylation inflammaging biomarker. Using publicly 

available 450k Illumina methylation datasets, we identified a co-methylation network 

associated with both atherosclerosis and AD in whole blood samples. This methylation 

profile appeared to indicate shifts in blood immune cell type distribution. Remarkably, 

similar methylation changes were also detected in disease tissues, including AD brain 

tissues, atherosclerotic plaques and tumors and were found to correlate with immune 

cell infiltration. In addition, this immune-related methylation profile could also be 

detected in other inflammaging diseases, including Parkinson’s disease and obesity, but 

not in multiple sclerosis, schizophrenia and osteoporosis. In addition to epigenetic clock 

measurements, this immune-methylation signature may become a valuable blood-

based biomarker of resilient immune fitness to prevent chronic inflammatory disease 

development or monitor lifestyle intervention strategies which promote healthy aging. 

 

In the final part of the results section (chapter 7 and 8), we studied the epigenetic 

effects of nutritional and immunomodulatory phytochemical compounds on DNA 

methylation. Moreover, we addressed to which extent disease associated DNA 

methylation patterns can be reversed by nutraceutical and/or phytomedicinal specific 

interventions. 

In chapter 7, we examined DNA methylation changes upon in vitro exposure of 

endothelial cells to cardio-protective flavanols and in blood samples following an eight-

week diet intervention with flavanol-rich grape seed extract. Diets rich in epicatechin 

flavanols are known to exert cardioprotective effects through reduction of monocyte-

endothelial cell adhesion and transendothelial monocyte migration. In line with their 

known biological properties, flavanol metabolites revealed endothelial DNA 

methylation changes in genes involved in cell adhesion, cytoskeletal organization, renin 

angiotensin, nitric oxide and axonal guidance signaling pathways. Upon flavanol 
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enriched diet intervention, we observed a strong interindividual variation in blood DNA 

gene methylation response which affects common cell adhesion pathways. The high 

interindividual gene diversity suggests highly redundant epigenetic wiring of cell 

adhesion networks, beyond direct transcriptional regulation. Furthermore, we 

identified reciprocal atherosclerosis and flavanol diet specific epigenetic changes, 

which involve systemic immunological changes in blood cell types. 

In chapter 8, we studied epigenetic changes upon in vitro exposure of THP-1 monocytes 

to Echinaforce®, a commercial standardized immunomodulatory Echinacea purpurea 

extract, which can protect against colds and respiratory infections. Upon integrating 

transcriptome, kinome and DNA-methylome profiles of THP-1 monocyte cells treated 

with Echinaforce®, we observed activation of antiviral immunological pathways. More 

particularly, our systems biology approach demonstrates that Echinaforce® treatment 

of THP1 cells triggers interferon and NF-κB kinase signaling pathways which promote 

innate immunity gene expression changes, macrophage M1 polarization and DNA 

hypermethylation of repeat elements in CpG poor gene bodies and intergenic regions.  

 

The results of this thesis clearly demonstrate that DNA methylation profiles in blood 

and/or saliva are associated with environmental exposures and chronic lifestyle 

diseases, and that nutritional and immunomodulatory phytochemical compounds are 

able to modulate DNA methylation. However, to fully exploit the potential of 

epigenetics in (personalized) health applications, multiple hurdles still need to be 

overcome. For instance, which cells/tissues are most sensitive or predictive for adverse 

health conditions? For which diseases we can use blood or saliva based surrogate 

biomarkers in epigenetic-based health prediction? How to interpret biological impact 

of DNA methylation changes in relation to gene expression,  genome stability or 

evolutionary drift? Are they a cause or consequence of the disease 

process/environmental exposure? These problems, together with recommendations 

for future epigenetic studies, will be discussed in the final chapter of this thesis. 
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Samenvatting 
DNA-methylatie is een epigenetische markering die een belangrijke rol speelt bij het 

behouden van de cellulaire identiteit door regulatie van cel en weefsel-specifieke 

genexpressie profielen. Epigenetische modificaties worden beïnvloed door zowel 

genetische als omgevingsfactoren en kunnen daardoor gezien worden als de brug 

tussen omgeving en genoom. Bovendien worden omgevings-geïnduceerde 

epigenetische veranderingen elke celdeling overgeërfd, waardoor epigenetische 

modificaties ook kunnen fungeren als cellulair geheugen. Deze eigenschappen maken 

van DNA-methylatie een mogelijke kandidaat om de langetermijn effecten van 

omgevingsfactoren op de gezondheidstatus te verklaren, welke ook gekend is als de 

Developmental Origin of Health and Disease (DOHaD) hypothese. Volgens deze 

hypothese zijn de prenatale en vroege ontwikkelingsstadia sterk bepalend voor de 

gezondheidsstatus van een individu op volwassen leeftijd. DNA-methylatie 

veranderingen zijn inderdaad nu ook geïdentificeerd in verschillende levensstijlziekten, 

zoals, kanker, cardiovasculaire, metabolische en neurologische ziekten. Door zijn 

reversibel karakter zou DNA-methylatie informatie gebruikt kunnen worden als 

prognostische, diagnostische en therapeutische biomerker, maar zou het ook een 

mogelijke doelwit kunnen zijn voor therapeutische en nutritionele interventies. 

Bovendien kunnen epigenetische patronen ons belangrijke informatie verschaffen in 

de etiologie en ontwikkeling van ziekten. In deze thesis hebben we DNA-methylatie 

patronen bestudeerd in makkelijk toegankelijke weefsels, zoals bloed en speeksel om 

vroege nadelige blootstellingen aan omgevingsfactoren, cardio-metabole ziekten en 

nutritionele interventie responsen op te volgen. 

 

In het eerste deel van de resultaten (hoofdstuk 3 en 4) gaan we na of we vroege 

nadelige omgevingsfactoren kunnen detecteren via DNA-methylatiemerkers in bloed 

en speeksel. Het methylatieprofiel is voornamelijk gevoelig aan nadelige 

omgevingsfactoren tijdens de prenatale en vroege ontwikkeling waarbij gradueel een 

cellulair geheugen wordt opgebouwd dat kan bijdragen tot ziekten later in het leven. 

Vroegtijdige detectie van mogelijk nadelige DNA-methylatieveranderingen zou dus 

zowel gebruikt kunnen worden om ontstaan van ziekten op te sporen als te voorkomen. 

In hoofdstuk 3 werd een pilootstudie uitgevoerd in een cohort van Deense kinderen 

waarvan de moeders blootgesteld werden aan pesticides tijdens de zwangerschap. In 

een vorige studie in dezelfde kinderen, vond men dat dragers van een polymorfisme in 

het PON1 enzym, welke een belangrijke rol speelt in de hydrolyse van organofosfaat 

pesticides en gelinkt is met atherosclerose, een nadelig effect heeft op het cardio-

metabolisch risicoprofiel na pesticideblootstelling. We konden een specifiek DNA-



 

12 
 

methylatieprofiel detecteren in bloed van de kinderen die prenataal blootgesteld 

werden aan de pesticides en drager zijn van het PON1 192R-allel. Differentieel 

gemethyleerde genen waren aangerijkt in verschillende neuroendocriene 

signaalwegen zoals dopamine-DARPP32 terugkoppeling (eetlust, beloning 

signaalwegen), corticotropin-releasing hormoon, nNOS, neureguline signalering, mTOR 

signalering en type 2 diabetes mellitus signaalweg wat wijst op een mogelijke verband 

met de metabolische effecten in deze kinderen. Bovendien, konden we een aantal 

mogelijke kandidaatgenen identificeren die de associatie tussen pesticide blootstelling 

en verhoogde leptine levels, lichaamsvet percentage en verschil in BMI Z-score tussen 

geboorte en school leeftijd mediëren.  

In hoofdstuk 4 vergeleken we de DNA-methylatie profielen in speekselstalen van 

verwaarloosde weeskinderen van de goed gekarakteriseerde Bucharest Early 

Intervention Project (BEIP), opgegroeid in instituten voor weeskinderen, pleegzorg of 

nooit-geïnstitutionaliseerde kinderen. We identificeerden een set van 30 differentieel 

gemethyleerde regio’s in genen welke betrokken zijn in de ontwikkeling van het 

zenuwstelsel en neuronen, en gerelateerd aan geheugen, gedrag en leren, en 

psychologische aandoeningen. Verdere vergelijking met genexpressie-profielen voor 

en na de Trier Social Stress Test (TSTT) identificeerde een stress hormoonreceptor 

gecoördineerd netwerk, waarbij de glucocorticoïde receptor betrokken is. Eén van de 

genen met een sterke correlatie tussen TSST-specifieke veranderingen in cortisol 

niveaus, DNA-methylatie en genexpressie was CALD1, een gen betrokken bij 

glucocorticoïde stress respons, neuronale migratie en die ook de morfologie van 

neuronen, dendritische spines en migratie beïnvloedt. 

 

In het tweede deel van de resultaten (hoofdstuk 5 en 6) gingen we na of bloedstalen 

bruikbaar zijn voor epigenetische diagnostiek bij atherosclerose patiënten, daar plaque 

materiaal onmogelijk te verkrijgen is in routine-onderzoek en men dus aangewezen is 

op makkelijk beschikbare surrogaat weefsels, zoals bloed en speeksel.  

In hoofdstuk 5 hebben we het genoomwijde DNA-methylatie profiel van bloedstalen 

van klinische atherosclerose patiënten bepaald en vergeleken met de epigenetische 

profielen van atherosclerotische plaques, en subklinische atherosclerose stalen 

afkomstige van een Aragon werkers cohort, om zo mogelijke surrogaat merkers voor 

vroege cardiovasculaire aandoeningen te detecteren. In atherosclerosis patiënten 

konden verschillende differentieel gemethyleerde regio’s (DMRs) worden 

geïdentificeerd die betrokken zijn in epigenetische controle van celadhesie, 

chemotaxis, cytoskelet reorganisatie, cel proliferatie, celdood, estrogeen receptor 

signaalwegen en fagocytotische immuun-responsen. Bovendien, kon ook een subset 

van 34 DMRs betrokken bij oxidatieve stress, DNA-herstel en inflammatie signaalwegen 
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gerepliceerd worden in een onafhankelijke cohort van donor-gepaarde gezonde en 

atherosclerotische humane aorta-weefsels en humane carotide plaque stalen. Na 

geïntegreerde netwerk analyse werden BRCA1 en CRISP2 DMRs geïdentificeerd en 

gevalideerd als de meest centrale ziekte-geassocieerde DNA-methylatie biomerkers. 

Bovendien waren de methylatie-veranderingen in specifieke BRCA1 en CRISP2 CpG 

sites consistent geassocieerd met subklinische atherosclerose merkers (coronaire 

calcium score en carotide intima-media-dikte) in een onafhankelijke cohort van 

mannen van middelbare leeftijd in de Aragon Worker’s Health studie. BRCA1 en CRISP2 

DMRs zijn dus veelbelovende nieuwe bloed surrogaat merkers voor vroeg-risico 

stratificatie en preventie van cardiovasculaire aandoeningen. 

In hoofdstuk 6 werd het atherosclerose specifiek profiel dat geïdentificeerd werd in 

hoofdstuk 5, vergeleken met bloed DNA-methylatie profielen van Alzheimer patiënten 

om op die manier een gemeenschappelijk DNA methylatie profiel te identificeren dat 

kan dienen als bloed-gebaseerde DNA-methylatie biomerker voor inflammaging. Door 

gebruik te maken van publiek beschikbare 450k Illumina methylatie datasets, konden 

we een co-methylatie netwerk identificeren dat zowel geassocieerd is met 

atherosclerose als met de ziekte van Alzheimer in bloed. Dit methylatieprofiel blijkt het 

resultaat te zijn van veranderingen in de compositie van bloed immuun-celtypes. 

Interessant is dat vergelijkbare methylatieveranderingen ook gedetecteerd konden 

worden in weefsels, zoals hersenweefsels van Alzheimer patiënten, atherosclerotische 

plaques en tumoren, en gecorreleerd was met immuuncel infiltratie. Bovendien kon dit 

immuun-gerelateerde methylatiepatroon ook gedetecteerd worden in ander 

inflammaging ziekten, zoals de ziekte van Parkinson en obesitas, maar niet in multipel 

sclerose, schizofrenie en osteoporose. Complementair aan de epigenetische klok kan 

dit immuun-methylatie profiel een waardevolle bloed-gebaseerde biomerker worden 

voor immunologische fitheid en veerkracht om chronische ziekten te voorkomen of 

levensstijl interventies te begeleiden voor gezonde veroudering. 

 

In het laatste deel van de resultaten (hoofdstuk 7 en 8) werden de epigenetische 

effecten van nutritionele en immuno-modulerende fytochemicaliën op DNA-

methylatie bestudeerd. Bovendien, werd er ook nagegaan in hoeverre ziekte-

geassocieerde DNA-methylatie patronen konden omgekeerd worden door 

nutraceutische en/of fytomedicinale specifieke interventies. 

In hoofdstuk 7 onderzochten we DNA-methylatieveranderingen na in vitro behandeling 

van endotheelcellen met cardio-protectieve flavanolen en in bloedstalen na een acht-

weken durende dieetinterventie met een flavanol-rijk druivenpit-extract. Voeding 

aangerijkt met epicatechine flavanolen werkt cardioprotectief door het verzwakken 

van monocyt-endotheel celadhesie en transendothele monocyt migratie. In lijn met 
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deze gekende biologische eigenschappen, werden DNA-methylatieveranderingen 

waargenomen in genen die betrokken zijn bij celadhesie, cytoskelet organisatie, renin-

angiotensine, stikstof-oxide en axonale geleiding signaalwegen. Na een flavanol-rijke 

dieetinterventie, konden we sterke interindividuele variatie oberveren in DNA-

methylatie veranderingen welke gemeenschappelijk celadhesie signaalwegen 

beïnvloeden. Deze sterke interindividuele gendiversiteit suggereert sterk redundante 

epigenetische modulatie van cel-adhesie signaalnetwerken, zonder sterke effecten op 

genexpressie-regulatie. Bovendien konden we tegengestelde epigenetische 

veranderingen aantonen bij atherosclerose en flavanol-dieet interventie waarbij 

veranderingen in samenstelling van bloed celtypes betrokken zijn. 

In hoofdstuk 8, onderzochten we epigenetische veranderingen na in vitro behandeling 

van THP-1 monocyten met Echinaforce®, een commercieel gestandaardiseerd 

immuno-modulerend Echinacea purpurea extract, dat bescherming biedt tegen 

verkoudheden en respiratoire infecties. Na geïntegreerde transcriptoom, kinoom en 

DNA methyloom profilering van THP-1 monocyten behandeld met Echinaforce®, 

konden we de activatie van antivirale immunologische signaalwegen detecteren. Meer 

specifiek toonde onze systeem biologische analyse aan dat Echinaforce® behandeling 

interferon en NF-κB kinase signaalwegen aanslaat die genexpressie van het aangeboren 

immuunsysteem, macrofaag M1 polarisatie en DNA hypermethylatie van repeat 

elementen in CpG-arme gen en intergenische regio’s stimuleren.  

 

Tot slot tonen de resultaten van deze thesis aan dat DNA-methylatie profielen in bloed 

en/of speeksel geassocieerd zijn met blootstellingen aan omgevingsfactoren en 

chronische levensstijl ziekten, die kunnen beïnvloed worden door nutritionele en 

immuno-modulerende fytochemicaliën. Om epigenetische biomerkers diagnostisch in 

te zetten bij (gepersonaliseerde) gezondheidstoepassingen moeten er echter nog 

verschillende obstakels overwonnen worden. Zoals bijvoorbeeld, welke 

cellen/weefsels zijn meest gevoelig of betrouwbaar voor het meten van schadelijke 

blootstelling? Voor welke ziektes kan bloed en speeksel gebruikt worden als surrogaat 

biomerker voor epigenetisch gebaseerde gezondheidspredictie? Hoe interpreteren we 

biologische impact van DNA-methylatie veranderingen op genexpressie, 

genoomstabliteit of evolutionaire drift? Zijn ze een oorzaak of gevolg van het 

ziekteproces en/of omgevingsblootstelling? Deze problemen, samen met 

aanbevelingen voor toekomstige epigenetische studies zullen besproken worden in het 

laatste hoofdstuk van deze thesis. 

  



 

15 
 

1 
Introduction 
  



 

16 
 

 

  



 

17 
 

Most human traits and common diseases are influenced by a complex interplay of 

genetic, environmental and lifestyle factors. In 2001, the first sequence of the human 

genome was published [1]. Since then, genome sequencing contributed tremendously 

in the understanding of the genetic and molecular basis of different complex human 

diseases, including diabetes type II, obesity, CVDs, Alzheimer’s disease, asthma, and 

many more. Genome-wide association studies (GWAS) identified many genetic variants 

which may predispose an individual to developing a certain disease [2]. Furthermore, 

genetic biomarkers may also help in predicting drug response and toxicity, and are 

therefore promising in personalized medicine [3]. Of interest, a lot of these markers are 

now being used in commercially available tests to inform healthy individuals about their 

genetic risk profile. However, it also became clear that genetics couldn’t explain the 

complete heritability of complex diseases and that most of the identified single-

nucleotide polymorphisms (SNPs) only make small contributions to the disease risk [4]. 

Environmental and lifestyle factors are playing an at least equally important role in 

human disease and health, and are known to interact with genetic factors. For example, 

it is known that environmental conditions during pregnancy may have a strong impact 

on the health of the offspring later in life [5]. Therefore, heritable risk for certain 

complex diseases may not only depend on the parents genetic make-up but also on 

environmental conditions during intra-uterine and even postnatal early development, 

which is known as the Developmental Origins of Health and Disease (DOHaD) 

hypothesis [5-7]. 

How early environmental factors may impact the health of the offspring is not 

completely understood, but one promising mechanism is through influencing a 

person’s epigenetic profile or epigenome [6, 7]. The main function of epigenetic factors 

is maintaining the cell’s transcriptional program and cellular identity after every cell 

division [8]. Importantly, epigenetic factors are being influenced by both genetic and 

environmental factors and may therefore be seen as a bridge between the 

environment and the genome [9]. Furthermore, epigenetic changes due to 

environmental stimuli may be mitotically inherited and thus also function as a cellular 

memory [10, 11].  

This thesis is focused on epigenetic mechanisms, in particularly DNA methylation, and 

the use of this information to explain environment-phenotype interactions and to 

develop biomarkers. Here, I will introduce the concept of epigenetics, why it is 

important, how it may contribute to disease and health, and how it can be used in 

biomedical applications.  
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Epigenetics as a regulator of cellular 

identity 
The human body contains 37 trillion cells classified into around 200 different cell types. 

Although each cell is originally derived from one stem cell and contains the same 

genetic material, different cells can differ tremendously in shape and function. These 

phenotypic differences across cell types are mainly the result of differences in the cell’s 

transcriptional profile. A neuron for example, mainly expresses genes which have a role 

in transmitting electrical and chemical signals to other cells. In contrast, leukocytes 

express mainly genes important in immune function to protect the body from bacteria 

and viruses. Therefore, the cell needs a system that controls the activity of genes 

specific for each cell type and which maintains this transcriptional profile as the cell 

divides. The main players in this system are transcription factors (TF) and epigenetic 

modifications. 

One of the most important classes of proteins in the control of gene expression are TF. 

They bind DNA at enhancer and promoter regions of genes and recruit cofactors and 

RNA polymerase II necessary to initiate and elongate gene transcription [12, 13]. TFs 

bind typically on specific DNA recognition motifs. In addition, the binding of TF is also 

influenced by how dense the DNA is packed [14]. DNA can be packed in an open 

‘euchromatin’ state or in a closed ‘heterochromatin’ state. In the open euchromatin 

conformation the DNA strand is accessible for the transcription apparatus, however in 

the closed conformation the dense DNA packaging prevents TFs from binding to the 

DNA and initiating gene expression. It is at this stage that epigenetic mechanisms play 

an important role. 

Genomic DNA is packed in the nucleus by histone proteins into, so called, nucleosomes. 

A nucleosome consists of 147 bp DNA strand wrapped around an octamer of histones 

consisting of two copies of each of the core histones (H2A, H2B, H3 and H4). The N-

terminal tails of these histones are extensively modified by post-translational 

modifications (acetylation, methylation, phosphorylation, …). These histone 

modifications or marks represent a first form of epigenetic information (Figure 1) [15]. 

They provide docking sites for the so called histone readers which are by itself 

transcriptional regulators or recruit other co-factors leading to changes in nucleosome 

occupancy and gene expression. Interestingly, specific histone marks are associated 

with different transcriptional states. For example, histone acetylation is associated with 

an open euchromatin conformation of the DNA strand and therefore permits gene 

activation, while the tri-methylation of lysine 9 of histone H3 (H3K9me3) is associated 

with the closed transcriptional repressed heterochromatin state. Similar, H3K4 
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methylation is mainly associated with transcriptional activation: H3K4me3 is 

characteristic for active promoters, while H3K4me1 is found in active enhancers. In this 

way the genome can be divided into a relative small subset of chromatin states, 

including active/repressed promoters, strong/weak enhancers, heterochromatin, 

transcriptional elongation regions, etc. Histone modifications can be added and 

removed by the so called histone writers and histone erasers, respectively.  

Another important epigenetic mechanism is DNA methylation [11], which will be the 

focus of this thesis. During DNA methylation, a methyl group is added to a cytosine 

nucleotide leading to the formation of 5-methylcytosine (5mC). In humans and most 

other animals, methylation is almost exclusively found on cytosine nucleotides 

followed by a guanine nucleotide (the so called CpG-sites). However, also non-CpG 

methylation (CpA, CpT and CpC) exists but are far less abundant than CpG methylation. 

Non-CpG methylation is only detected in neuronal cells [16] and embryonic stem cells 

[17] (in contrast, plants have a much higher amount of non-CpG methylation). Although 

the function of human non-CpG methylation is further emerging, in this thesis the focus 

is only on CpG methylation. In general, DNA methylation at gene promoter regions 

leads to the repression of gene expression, probably by preventing TFs from binding 

and/or by the binding of methyl-binding domain (MBD) proteins recruiting other 

transcriptional regulators. More details about the mechanism, function and 

applications of DNA methylation will be given in the next sections.  

Beside histone modifications and DNA methylation, other epigenetic mechanisms have 

been described. For example non-coding RNAs may also be seen as a contributor of 

epigenetics and collaborate together with DNA methylation in the control of gene 

imprinting and X-chromosome inactivation [19]. Another form of epigenetic 

mechanism is the higher-order chromatin structure, including large, organized 

chromatin lysine modifications (LOCKs), lamina-associated domains (LADs) or 

topologically associated domains (TADs) [20-22]. 

Histone modifications and DNA methylation profiles are specific for each cell type, and 

therefore contribute to the cellular identity of the cell. While epigenetic mechanisms 

rather act as stabilizers and maintainers of cellular states, TFs can be seen as specifiers 

of cellular identity. Cell-type specific enhancers are selected and activated by pioneer 

or lineage-determining transcription factors (LDTF) [23, 24]. They are able to bind 

nucleosome-compacted DNA and may open the chromatin conformation thereby 

driving lineage-specific transcription programs. Interestingly, cells can be 

reprogrammed in vitro to a pluripotent state by the ectopic expression of only four TFs: 

OCT4, SOX2, KLF4 and MYC [25]. In addition, cells can also be directly reprogrammed 

towards specific cell lineages [26]. However, the efficiency of these methods are limited 

and are mainly hampered by epigenetic barriers [27-31]. Removing these epigenetic 
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barriers may improve reprogramming efficiency [27]. Therefore it seems that both TFs 

and chromatin structure contribute to cellular states and that the relationship between 

TFs and chromatin structure is bidirectional: TF binding can induce local epigenetic and 

chromatin changes, while epigenetic modifications and chromatin structure may 

prevent TFs from binding.  

 

 

 
Figure 1: Major epigenetic mechanisms. DNA is packed into chromatin consisting of DNA wrapped around 
histone proteins, which is called a nucleosome. Histones can be post-translationally modified by specific 
histone writers (KMTs, HATs, etc) and erasers (KDMs, HDACs, etc). Methyl groups are added to DNA by 
DNMTs and removed by TET enzymes. Both histone modifications and DNA methylation are docking sites 
for specific readers. KMT: Lysine methyltransferase; KDM: Lysin demethylase; HAT: Histone 
acetyltransferase; HDAC: Histone deacetylase; DNMT: DNA methyltransferase; TET: Ten-eleven 
translocation enzymes. Figure was adapted from [18]. 

 

DNA methylation patterns and 

landscapes 
The human genome contains around 30 million CpG sites which is less what would be 

expected and is mainly due to the spontaneously and enzymatically deamination of 
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5mC to thymine [32]. Interestingly, a C to T transition at CpG dinucleotides is the most 

frequent mutation observed in human diseases [33, 34]. CpG sites are not equally 

distributed and tend to cluster in so called CpG islands (CGI), which are regions of 

around 1 kb with a high density of CpG sites compared to the regions outside CGIs (in 

fact the CG content in CGIs are comparable to the expected CG content) [35, 36]. About 

50% of the CGIs are located at promoter sites of known annotated genes. Furthermore, 

about 70% of annotated promoters possess a CGI, especially at promoters of 

housekeeping and developmental regulator genes. The other half of the CGIs (which 

are sometimes called orphan CGIs) are either located in gene bodies or between genes 

in almost an equal proportion [35, 36]. 

CGIs are mainly unmethylated, while CpGs outside these islands are highly methylated. 

Because CGIs are almost never methylated in the germline, they are therefore less 

vulnerable to the spontaneous deamination of methylated cytosines and protected 

from the loss of CpG sites. It has been shown that methylation at CGIs is rather stable 

across different cell types, and that regions just next to these islands, CGI shores, are 

more variably methylated across tissues, and better associated with gene expression 

[37]. 

Thus, genomic DNA methylation profile (methylome) follows a bimodal distribution, 

with unmethylated CpGs (<10%) clustering in CGIs, and highly methylated CpGs (>85%) 

located in CpG-poor regions outside CGIs (Figure 2). 

 

 
Figure 2: Distribution of DNA methylation. A genomic region is shown around the human GAPDH gene. A 
CGI is found at the promoter region of GAPDH (CpG: 123). Also the promoter region of IFFO1 contains a 
CGI (CpG: 75). Below, the methylation levels are shown from five human blood cell types demonstrating 
low methylation (light gray) in CGI, and high methylation (black) outside these islands. Also note, the 
intragenic CGI in the IFFO1 gene (CpG: 21), where methylation is much more variable across the five blood 
cell types. Figure was created using the UCSC genome browser.  

 

Establishing and maintaining methylation patterns 
During embryonic development, the methylome undergoes very dynamic DNA 

demethylation and remethylation phases (Figure 3) [38, 39]. After fertilization, 

totipotency of the cell is re-acquisitioned by the (almost) complete erasure of paternal 

and maternal genome. DNA methylation patterns are subsequently re-established by 
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de novo methylation at about the stage of implantation. Another demethylation phase 

occurs during the formation of gametes. These rapid de- and re-methylation reactions 

are being catalyzed by ten-eleven translocation (TET) family of proteins and DNA 

methyltransferases (DNMTs), respectively. S-adenosyl methionine (SAM) serves as the 

methyl donor during the methylation reaction.  

After fertilization, the global DNA demethylation is different between the paternal and 

maternal genomes. It is believed that the demethylation of the maternal genome is 

mainly accomplished by a passive demethylation process: multiple rounds of DNA 

replication without DNA methylation maintenance leads to the dilution of 5mC [38, 40]. 

In contrast, the demethylation of the paternal genome occurs much faster and starts 

before the first replication round and therefore cannot only be explained by this passive 

process [41]. Here, TET enzymes helps in catalyzing an active form of demethylation 

[42]. TET3 converts methylated cytosine into 5-hydroxymethylcytosine (5hmC) [43, 44], 

which are subsequently further oxidized to 5-formylcytosine (5fC) and 5-

carboxylcytosine (5caC). Demethylation is then established by either the dilution of 

these oxidized 5mC modification after multiple rounds of DNA replication [45, 46] or 

excision of 5fC and 5caC by thymine-DNA glycosylases followed by base excision repair 

[42]. Recent research however, showed that TET3 is also involved in the demethylation 

of maternal genome [47], and that both paternal and maternal genomes undergo 

active and passive demethylation [48, 49]. It was shown that for both genomes a 

passive replication-dependent dilution was the main way for global demethylation [47, 

50]. Furthermore, as will be discussed later, this demethylation phase is not complete 

and some regions, including imprinted centers (IC), may escape from erasure. 

After erasure in the early embryo (blastocyst stage), upregulation of the de novo 

DNMTs, DNMT3A and -3B leads to the re-establishment of the DNA methylation 

pattern after implantation [51]. Another protein DNMT3L, which lacks the 

methyltransferase catalytic domain, is crucial in the de novo methylation by interacting 

with unmethylated H3K4 and recruiting of DNMT3 [52, 53]. Furthermore, it can 

enhance the activity of DNMT3 [54-56]. CGIs are protected from de novo methylation 

during this remethylation phase, probably due to the binding of RNA polymerase and 

other TFs [57, 58], however, the precise mechanism is not completely understood. Also 

histone modifications may play a role in this protection. For example, H3K4me3 histone 

mark, which is often associated with transcription start sites, allosterically inhibits the 

binding of de novo methylases [52, 53]. Furthermore, multiple proteins, harboring a 

CXXC domain (CFP1, MLL1 and -2, KDM2A and -B, TET1 and -3), bind to unmethylated 

CpGs which may subsequently prevent aberrant de novo methylation by recruiting 

histone methyltransferases and demethylases and removing unwanted DNA 
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methylation marks [59, 60]. For example, CFP1 recruits H3K4 methyltransferases 

ensuring the exclusion of DNMTs [61, 62].  

At the end of the re-establishment phase, de novo methylases are downregulated and 

the maintenance methylase, DNMT1, which is constantly associated with the DNA 

replication machinery, ensures the inheritance of this initial pattern after every cell 

division [63]. DNMT1 has a preference of methylating hemi-methylated DNA strands, 

and therefore uses the methylation marks from the parental DNA strand as a template 

to copy these onto the newly synthesized daughter strands. Other factors, including 

UHRF1 help in recruiting DNMT1 to hemi-methylated DNA [64, 65]. Although, in the 

classical view, DNMT1 was seen as the maintenance methylase and DNMT3 as de novo 

methylase, further studies showed that DNMT1 also has de novo methylation activity 

[66, 67] and that DNMT3 is also needed in the maintenance of DNA methylation [68, 

69]. Therefore, a more complex stochastic model of DNA methylation was proposed, 

where DNA methylation at each site is determined by the local rates of DNA 

methylation and demethylation [68]. In addition, other mechanisms are needed to 

maintain cellular DNA methylation patterns, including TF binding and histone 

modifications [70-72], which protect regions from methylation or target regions for 

methylation. 

During cellular differentiation, around 20% of all CpGs undergoes dynamic DNA 

methylation changes in a sequence-specific way resulting in cell-specific DNA 

methylation profiles [73]. For example, many genes needed for pluripotency in the 

embryonic stem cells, including Oct3/4 and Nanog, are silenced by promoter 

hypermethylation during differentiation [74]. Other regions that become de novo 

methylated are mainly repeat elements, including satellite DNA (pericentromeric 

repeats) and transposons [39]. Interestingly, de novo methylation is almost always 

mediated by histone methylases that are recruited by local regulatory factors: H3K9 

methylase G9a for promoter methylation, H3K9 methylase Suv39v for satellite DNA 

(pericentromeric repeats), and H3K9 methylases G9a and SETDB1 for transposable 

elements [75]. This also implies that DNA methylation is not an initiator of promoter 

silencing, but rather acts as a secondary mechanism ensuring long-term maintenance 

of the repressed state [76]. Targeted demethylation occurs in genes which are 

expressed in a tissue-specific way. TET1, 2 and -3 enzymes are responsible for this 

demethylation and are required for proper differentiation as indicated by TET 

knockouts cells [77-81]. Similar as with de novo methylation, trans-acting factors (e.g. 

TFs) binding to cis-acting sequences are often necessary to induce demethylation of 

that region [80, 82, 83]. Furthermore, there exists a correlation between tissue-specific 

demethylation and TF binding at the same sites [84]. 
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Cellular differentiation leads to cell type-specific DNA methylomes. Studies which 

compared methylation patterns across different cell and tissue types demonstrated 

that most of the methylation differences are not located in CGI promoter sites, but 

rather are enriched in CpG-poor regions [73, 85, 86]. In addition, these tissue-

associated differentially methylated regions (DMRs) were predominantly mapped to 

distal DNase hypersensitive sites, TF binding sites and cell-type specific enhancers. 

Among CGI, gene body CGIs are more variable as compared to promoter CGIs which 

points towards a function in alternative transcription [87, 88]. 

A second global demethylation phase occurs during the specification of the germ line 

and the formation of primordial germ cells (PGCs) leading to the expression of germ-

line specific genes [89]. During gamete formation also the imprinted regions are now 

completely demethylated, however, still some regions may escape from this complete 

erasure, opening a window for trans- and intergeneration epigenetic inheritance [90]. 

Global demethylation in PGCs occurs in a sequential manner [91-93] with a first passive 

demethylation phase due to the repression of UHRF1, DNMT3A and -B [94], and a 

subsequently more locus-specific demethylation phase due to the action of TET1 and -

2, and the formation of 5-hydoxymethylcytosine [95, 96]. 

 

 
Figure 3: DNA methylation dynamics during human development. DNA methylation is erased in PGCs and 
re-established during final gamete formation in a sex-specific way. During gamete formation also 
methylation in imprinted centers (IC, dashed lines) are re-established. Fertilization leads again to a global 
demethylation with different kinetics between maternal (red line) and paternal genome (blue line). ICs are 
not erased (black dashed line). DNA methylation is re-established after implantation. Figure is adapted 
from [102].  

 

The remethylation phase of the gametes is sex-specific; whereas in male gametes, the 

genome is remethylated before birth, the female gametic genome retains its complete 



 

25 
 

methylation pattern until sexual maturation. Remethylation is mainly established by 

DNMT3A and DNTM3L [97, 98]. However, also other factors, including histone 

modifications [99, 100] and PIWI-interacting RNAs (piRNA) [101] were shown to be 

essential in de novo DNA methylation in gametes. In this way, genomic imprints are 

again being established. 

 

Shaping the human methylome: genetic and environmental influences 
DNA methylation patterns not only differ across different cell- and tissue types but are 

also variable (although to a lesser extent) across different individuals. Whole-genome 

bisulfite sequencing showed that approximately 15-25% of all the CpGs are variable 

[103]. Similar as with tissue type-associated differentially methylated sites, the most 

variable CpG sites across individuals are enriched in enhancers and depleted in 

promoters [103-106]. Despite some CpG sites showing strong variability, the majority 

of CpG sites remain rather stable with either low methylation values (~0%) or high 

methylation values (~100%) [103]. Both genetic, stochastic, environmental and lifestyle 

factors have been shown to impact DNA methylation variability (Figure 4).  

 

Genetic factors. Studies in twins have been valuable in dissecting genetic and non-

genetic influences on DNA methylation and to estimate the heritability of DNA 

methylation patterns [107]. Multiple studies demonstrated a higher correlation in DNA 

methylation between monozygotic twins as compared to dizygotic twins, indicating a 

genetic contribution to DNA methylation [107-109]. The average heritability of DNA 

methylation was estimated to be rather low, around 20%, but can differ tremendously 

among CpG sites, with some sites having a heritability towards 100% [106, 110-112]. In 

addition, this estimated heritability was mainly determined by array-based approaches, 

which primary covers CGI and promoter regions that are known to be relatively stable, 

and therefore less affected by genetics. Indeed, when variance was taken into account, 

the average heritability increases towards 35% [111]. 

The genetic contribution of DNA methylation variability has been further supported by 

studies which found associations between genetic variants (SNPs) and DNA 

methylation at specific CpG sites in different tissues [113, 114]. These SNPs are called 

methylation quantitative trait loci (meQTLs). In general, the associated CpG sites 

display a characteristic trimodal DNA methylation distribution, with low or high 

methylation in individuals homozygotic for the meQTL and methylation levels in 

between the homozygotic levels in heterozygotic individuals. Although most of these 

meQTLs are located within several kilobases from the associated CpG site (cis-acting), 

also trans-acting meQTLs have been identified [115]. meQTLs were found to be 
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enriched in regulatory intergenic regions (TFBS, enhancers, DNase hypersensitivity 

regions), while depleted in CGI and promoters [114]. Interestingly, a lot of these 

meQTLs have been associated with disease. Most of the SNPs found to be associated 

with human diseases and traits in GWAS are located in intergenic regions, and 

therefore don’t directly affect the protein. It is therefore being hypothesized that 

disease-associated SNPs may impact gene expression through changes in DNA 

methylation. Indeed, multiple studies have demonstrated a strong overlap between 

meQTLs and SNPs which influence expression levels of an associated gene (eQTLs) [116, 

117]. Furthermore, meQTLs were found to be enriched for known disease-associated 

GWAS loci, including schizophrenia [118], bipolar disorder [119], metabolic traits [120] 

and cancer [121]. In this way, integrating GWAS results with meQTL and eQTL data have 

been shown to help in interpreting GWAS results and detecting the causal genes and 

underlying mechanism of complex traits [122-125]. The causal relationship between 

the SNP, DNA methylation and gene expression is not completely understood. Some 

studies support the classical model, in which a SNP affects DNA methylation which in 

turn affects gene expression (DNA methylation as a mediator) [126]. However, other 

studies also showed the existence of a passive role for DNA methylation, where the 

SNP influences gene expression and in turn affects DNA methylation [127]. How a SNP 

may affect DNA methylation is also not completely clear, but is probably due to the 

disruption of TFBS, thereby leading to a change in the DNA-binding affinity of the TF 

and subsequently to a change in DNA methylation [128]. TF binding has been shown to 

have important roles in shaping the DNA methylome [129], and the causal relationship 

can operate in both directions: either TF binding influencing DNA methylation [130] or 

else DNA methylation influencing TF binding [131].  

 

Environmental factors. Although twin studies revealed a strong genetic component in 

explaining DNA methylation variability, the largest fraction of variance (>75%) is 

explained by unique environmental and/or stochastic factors [103, 108, 111]. Older 

monozygotic twin pairs showed higher discordance in DNA methylation as compared 

to younger twins [132-134], and this was shown to be mainly due to unique 

environmental and/or stochastic factors [134-136]. This apparently random increase in 

DNA methylation variation with age is called “epigenetic drift” [133, 137]. Interestingly, 

a recent study seems to confirm this model, showing that the effect of stochastic and 

environmental influences increases with age [111]. CpG sites which are influenced by 

environmental factors were found to be depleted in CGI, DHS and proximal promoters, 

while enriched in CGI shores, shelves, gene bodies and distal promoters [111]. In 

contrast to this stochastic “epigenetic drift” model, a tissue-independent epigenetic 

clock (or age estimator) could be constructed based on the methylation levels of 353 
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CpG sites, indicating the involvement of age-specific regulatory mechanisms (see 

section of biomarkers for more information) [138, 139].  

 

 
Figure 4: Genetic and environmental influences on DNA methylation. Variability in DNA methylation is 
influenced by pre- and postnatal environmental factors and genetic factors leading to increased variability 
with ageing. This figure was inspired from a figure in [154]. 

 

Despite the stochastic nature of DNA methylation changes induced by environmental 

studies, multiple epigenome-wide association studies (EWAS) also found consistent 

DNA methylation changes associated with specific environmental exposures. Most of 

these studies are however observational in nature and therefore causality cannot be 

inferred and confounding not excluded. Multiple environmental and lifestyle factors 

have been linked with DNA methylation changes, including diet [140], traumatic stress 

[141], air pollution [142], and alcohol use [143]. One of the most well studied 

environmental exposures inducing DNA methylation changes is tobacco smoking. In 

blood, the most frequently reported DNA methylation changes have been reported in 

the genes AHRR (aryl-hydrocarbon receptor repressor), F2RL3 (coagulation factor II 

receptor-like 3) and GPR15, which all show a decrease in methylation in active smokers 

compared to never-smokers [144]. How smoking may induce DNA methylation changes 

in these genes is not understood, but it seems that some of these sites are also 

associated with CVD risk, lung cancer and all-cause mortality, indicating their usefulness 

as potential disease risk predictor [145-148]. Remarkable, quitting smoking may 
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partially reverse DNA methylation levels towards these of never-smokers depending on 

the time since quitting [149-152]. Recently, a large fraction of these blood smoking 

associated DNA methylation changes (including AHRR and F2RL3) could also be 

replicated in adipose tissue, which is a more informative tissue for metabolic diseases 

[153]. These studies highlight the impact of environmental exposures on DNA 

methylation patterns, and also indicate that removing a specific environmental 

exposure may (after some time) partially reverse aberrant methylation levels towards 

normal levels. This also points to the potential use of DNA methylation as an 

environmental biomarker recording past and current environmental exposures. 

However, whether these findings for tobacco smoking extend to other environmental 

and lifestyle factors (and could therefore be generalized) should be further confirmed. 
 

Intra-uterine effects and the Developmental origins of Health and Disease 
A highly vulnerable period to epigenetic and DNA methylation changes due to 

environmental conditions is the prenatal life, because of the dramatic dynamic DNA 

methylation phases occurring during development together with the high cell division 

and DNA synthesis rate. Multiple studies indeed showed that intra-uterine 

environmental conditions (often in interaction with genetic factors) shape the neonatal 

DNA methylome [108, 155-157]. More particularly, it was found that maternal 

environmental conditions/lifestyle conditions, including smoking, nutrition, pollution, 

stress and depression have impact on (or at least was associated with) the offspring’s 

DNA methylation profile [158, 159]. Furthermore, because DNA methylation patterns 

are inherited every cell division, aberrant DNA methylation changes due to intra-

uterine environmental conditions may in theory persist until adulthood and impact 

health later in life [160, 161]. Therefore, DNA methylation is believed to be a potential 

mediator of the DOHaD paradigm (Figure 5). This paradigm proposes that the prenatal 

and early developmental stages are important contributors of an individual health 

status throughout its life. This theory was first proposed by Barker in 1990 (also known 

as Barker’s hypothesis) [162], who observed a strong relationship between CVD 

mortality rates and past infant mortality mainly due to a low birth weight in England 

and Wales [163]. Low birth weight was here used as a surrogate for fetal 

undernutrition. This observation (which was later replicated in other geographic 

regions) formed the basis of the developmental origin hypothesis [5]. Based on a large 

set of observations this hypothesis is now widely accepted and also extends towards 

other chronic disease, including diabetes, hypertension, obesity and even mental 

diseases [164, 165]. It has been hypothesized that intrauterine environmental 

conditions program the fetus to prepare and adapt the offspring for a similar exposure 

postnatally. However, if there is a difference in pre- and postnatal life, as is the case 
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during an acute famine, this mismatched adaptation may evolve towards disease 

development later in life [166].  

 

 
Figure 5: DNA methylation as a mediator of DOHaD. In the classical view, pre- and early postnatal life 
environmental factors induce DNA methylation changes leading to increased disease risk and disease 
development in adult life. 

 

Due to their cellular memory function, DNA methylation and other epigenetic 

mechanisms seem to be promising mediators for translating past in-utero aberrant 

environmental conditions in diseases later in life. Although in humans there is a wealth 

of studies associating prenatal environmental conditions with DNA methylation 

changes in postnatal life, it is very difficult to causally link this with disease and health 

in later life. A well-known human study is the Dutch famine cohort study, which studies 

the effect of undernutrition during gestation on adult health [167, 168]. The Dutch 

famine was a consequence of a food transport embargo by the Germans during the end 

of the WO II (winter of 1944-1945). Maternal undernutrition resulted in a reduction of 

glucose tolerance in the offspring independent of the exposure time (early, mid, or late 

gestation). In contrast, only adults exposed to famine during early gestation had a more 

atherogenic lipid profile, and higher risk for obesity and coronary heart disease. 

Therefore, early gestation seems to be the most vulnerable period.  

There is strong evidence now that DNA methylation is important in linking prenatal 

famine and disease status in later life. Early target-genes studies found a reduction in 

blood DNA methylation of the imprinted IGF2 gene [169], and other growth and 

metabolic disease associated genes, including LEP, INSIGF, IL10, ABCA1, GNASAS and 

MEG3 [170]. This was measured in whole blood samples of adults (~60 years of age). 

More recent genome-wide studies replicated these results and found differentially 

methylation especially in genes involved in growth and metabolism-related pathways 

[171]. Although, these results suggest that DNA methylation may be an important 

factor in linking adverse prenatal environmental conditions (in this case malnutrition) 

and disease risk in later life, it is very difficult to elucidate causality from this 

observational study. For example, DNA methylation could be affected by the famine, 

but is maybe not the cause of the phenotype seen in adults, which is affected by 

another mechanism. Another possibility is that the disease phenotype itself results to 



 

30 
 

the observed DNA methylation changes. A recent study however, supports the classical 

view by showing that DNA methylation is a mediator between prenatal famine 

exposure and adult BMI and triglyceride levels [172]. However, to completely rule out 

reverse causation, longitudinal study designs are needed. What also became clear from 

these studies is that the timing of the prenatal exposure is crucially important. For 

example, these DNA methylation changes in adults were only seen when they were 

exposed early in gestation (week 1-10), and not in mid- or late gestation [170, 173]. 

This implicates that early gestation period may be a critical time-window during which 

prenatal environmental conditions may impact the human methylome. 

 

Inter- and transgenerational DNA methylation inheritance 
The methylation changes seen in the offspring due to prenatal environmental 

exposures is an example of intergenerational DNA methylation inheritance. In addition, 

evidence (mainly in animal models) is also available that environmental effects of the 

father may also impact offspring’s health [174]. In humans, an often cited study in this 

context, is the Överkalix study, which uses historical records of harvests and food prices 

in Överkalix, an isolated community in northern Sweden, to link food availability with 

health outcome in child’s and grandchild’s offspring. They found that CVD mortality was 

low when food was not readily available during the father’s slow growth period (period 

before puberty) [175, 176]. Interestingly, they could also find a transgenerational 

effect: if the paternal grandfather was exposed to an abundance of food during his slow 

growth period, diabetes mortality increases [175, 176]. In addition, this effect was sex-

specific as it was only observed in the male grandchildren [177]. A recent large-scale 

study using 9,039 grandparents, 7,280 children and 11,561 grandchildren from the 

Uppsala Multigeneration Study, confirmed this overall result in that paternal 

grandfather’s food access predicts his male, but not female, grandchildren’s all-cause 

mortality [178]. Also other environmental cues than nutrition may impact the son’s 

health outcome exemplified by the Avon Longitudinal Study of Parents and Children 

which found that fathers who smoked during their prepubertal period have sons with 

an higher BMI [174, 179].  

These studies indicate that beside maternal lifestyle factors during pregnancy also 

paternal lifestyle conditions may impact the offspring’s health outcome. Whether DNA 

methylation is a possible mediator for this intergenerational inheritance is not 

completely understood. In contrast, to the DOHaD paradigm where environmental 

exposures can directly influence the fetus, paternal and preconceptional exposures 

should be transmitted through the germ line. This means that environmental factors 

should induce DNA methylation changes in the germ cells, and should escape from 
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erasure during the global reprogramming phase after fertilization. For example, 

imprinted centers, which are crucial in establishing parent-of-origin-specific gene 

expression in certain genes, are not erased during embryogenesis (Figure 3). 

Interestingly, obesity was shown to influence methylation pattern of imprinted genes 

in sperm cells [180]. In addition, in another cohort parental preconceptional obesity 

was found to alter methylation status of the same imprinted genes in the offspring 

[181], indicating a possible intergenerational effect. Beside imprinted genes, also other 

genomic regions, especially repeat sequences including SINEs, VNTRs, ALUs and 

tandem repeats, were found to be protected from this global demethylation phase 

[182]. Another study showed that Holocaust survivors had a different FKBP5 (a 

regulator of glucocorticoid receptor sensitivity) methylation status in blood as 

compared to control subjects, and the same CpG site was also found to be differentially 

methylated in the offspring [183]. In general however, most studies on inter- and 

transgenerational epigenetic inheritance is done in animal models and human evidence 

is rather limited. Furthermore, in humans it is very difficult to distinguish between real 

epigenetic inheritance and other confounding interactors.  

The grandparent’s environmental effect on the grandchildren seen in for example the 

Överkalix study, is an example of transgenerational inheritance, which is different from 

intergenerational inheritance by that the effect of the exposure is transmitted through 

multiple generations and affects individuals who were never exposed to the 

environmental cue (Figure 6). Therefore, the effect of the exposure should be at least 

detectable in the F3 generation, as environmental factors in pregnant mothers (F0) 

already influence the F2 generation through the germ cells of the F1 generation. In non-

pregnant mothers or fathers (F0), the effect of the exposure should be observable in at 

least the F2 generation. On the assumption that DNA methylation is a driver for 

transgenerational inheritance, this also implies that DNA methylation changes induced 

by prior environmental conditions should survive two global demethylation phases: 

both during embryogenesis after fertilization and during the formation of gametes. 

Imprinted genes for example retain their methylation state during embryogenesis but 

are removed during gametogenesis [96]. However, just like during the global 

demethylation phase after fertilization, some repeat elements are resistant to global 

demethylation, especially evolutional young and currently active retrotransposons 

including SVAs and L1 LINE repeats [90]. More interestingly, the same study also found 

repeat-poor regions that escape genome-wide DNA demethylation in primordial germ 

cells. These regions were mainly located in enhancers, CGI, promoters and gene bodies 

and enriched in genes associated with obesity-related traits, schizophrenia and 

multiple sclerosis. This is interesting, because it implies that, at least theoretically, 

transgenerational inheritance through a DNA methylation mechanism is possible.  
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Figure 6: Inter- and transgenerational epigenetic inheritance. In males and non-pregnant females, DNA 
methylation changes should be at least visible in F2 to be transgenerational. In pregnant females, 
transgenerational DNA methylation changes should be at least detectable in the F3 generation. Figure was 
adapted from [184]. 

 

In humans, DNA methylation changes that persist through multiple generations have 

not yet been identified, however, in other mammals, like rats and mice some evidence 

exists. One of the earliest studies demonstrating transgenerational inheritance was 

found in rats exposed to the endocrine disruptor vinclozolin [185]. Exposure during 

gestation resulted in an increased incidence of infertility in the F1 males. Furthermore, 

this phenotype was transmitted through the male germ line up to the F4 generation, 

and correlated with DNA methylation changes [185]. However, the role of these DNA 

methylation changes to the development of infertility in these rats remains uncertain. 

A more recent study, for example, showed that the sperm DNA methylation changes in 

the F1 generation was different from the DNA methylation changes in the sperm of F3 

generation [186]. In support of this finding, a study found no persistent DNA 

methylation changes in the F2 and F3 generation, while the F1 germline did show 

methylation changes due to gestational vinclozolin exposure indicating that the 

methylation changes induced in the F1 generation are corrected in the germline during 

the global epigenome reprogramming [187]. Although here we focused on DNA 

methylation, evidence is emerging that also other epigenetic factors, including histone 

modifications and small RNAs may contribute to inter- and transgenerational 
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inheritance and are probably working together to mediate epigenetic 

transgenerational inheritance [184, 188, 189].  

 

Linking cellular metabolism to epigenetic profiles 
Although a lot of studies could associate environmental exposures (both in utero as 

during the lifespan) with specific DNA methylation changes, how the environment 

influences epigenetic profiles is not completely understood and is less well 

investigated. Cellular metabolism may be an important player in this regard because 

most of the epigenetic machinery depends on the availability of specific metabolites 

[190-192]. Therefore changes in cellular metabolic states due to environmental factors 

may change intracellular metabolite and cofactor levels influencing enzymatic activity 

of chromatin modifiers which subsequently change epigenetic patterns. For example, 

histone acetylases (HATs) depend on acetyl-CoA as a substrate for the acetylation 

reaction. Cellular levels of acetyl-CoA are strictly dependent on energy status: when 

energy production is high, acetyl-CoA is upregulated, in contrast, when cellular 

metabolism is slow, acetyl-CoA levels are reduced. The sirtuin family of histone 

deacetylases (SIRT1-7) is dependent on NAD+, an important electron carrier during 

redox reactions. LSD histone demethylases use FAD as cofactor, which is produced from 

riboflavin (vitamin B2). 

DNA (and histone) methyltransferases rely on the universal methyl donor SAM. The 

reaction between methionine and ATP produces SAM. A methyltransferase reaction 

donates the methyl group of SAM to an acceptor macromolecule (for example cytosine 

or an histone) yielding S-adenosylhomocysteine (SAH), which is hydrolyzed to 

homocysteine and adenosine. Homocysteine can subsequently close the cycle by 

converting back to methionine via the transfer of a methyl group from 5-

methyltetrahydrofolate (5-MTHF). Therefore the formation of SAM is dependent on 

folate and other methyl donors which must be obtained from the diet (Figure 7) [140]. 

Dietary methyl donors include methionine, folate, betaine, choline, vitamin B2, B6 and 

B12. A large number of rodent studies have shown that dietary methyl donor intake 

may influence DNA methylation, providing a link between nutrition and DNA 

methylation [140]. Mice carrying the viable yellow allele of the agouti (Avy) gene have 

been a valuable model in this regard. This allele harbors an insertion of an intracisternal 

A-particle (IAP) upstream of the agouti gene. The level of DNA methylation of this IAP 

determines the expression level of the agouti gene, and is stochastically established 

early in development and is therefore called a metastable epiallele. Hypomethylation 

of the inserted IAP result in an active allele which gives rise to a yellow fur and a 

phenotype of obesity, type II diabetes and predisposition to tumors. In the wild-type 
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condition, the allele is methylated and silenced resulting in lean dark-brown colored 

mice (called pseudoagouti). Interestingly, the methylation state of this IAP can be 

influenced by maternal methyl donor supplementation, shifting towards pseudoagouti 

offspring [193, 194]. A similar result was found in another metastable epiallele, the Axin 

Fused (AxinFu) locus [195], which shows variability in tail morphology. These results 

suggest that methyl donor levels may influence DNA methylation states. Similar results 

are now also found in humans where paternal and maternal methyl-group donor intake 

before and during pregnancy influences DNA methylation in the offspring [196-198]. In 

contrast, a large cross-sectional study (n>5,000) didn’t find any association between 

methyl-donor intake and DNA methylation in blood [199].  

 
Figure 7: Dietary impact on SAM levels and DNA methylation. SAM is generated by the methionine (or 
one-carbon) cycle (thick black arrows). Methyl groups are retrieved from dietary sources, including folate, 
choline and betaine. Vitamin B6 and B12 are two important cofactors involved in SAM biosynthesis. Figure 
adapted from [9]. 

 

The TET enzymes, which are important in active DNA demethylation, and the Jumonji-

domain containing histone demethylases, are 2-oxoglutarate-dependent dioxygenases. 

2-Oxoglutarate is an intermediate of the TCA cycle and is produced from isocitrate by 
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isocitrate dehydrogenase 2 and 3 (IDH2 and -3) in the mitochondria. IDH1 catalyzes the 

formation of 2-oxoglutarate in the cytoplasm. IDH mutations are frequently observed 

in several cancers, including gliomas and hematological malignancies [200]. Mutated 

IDH enzymes lead to the formation of 2-hydroxyglutarate (2-HG), which is a competitive 

inhibitor of 2-oxoglutarate, and therefore alters the activity of TET enzymes [201]. As 

expected, this diminished TET activity results in a DNA hypermethylation phenotype in 

this tumors [202]. In addition, mutations in succinate dehydrogenase (SDH) and 

fumarate dehydrogenase (FH) which results in the accumulation of the TCA cycle 

intermediates succinate and fumarate respectively, can also inhibit TET enzyme activity 

and consequently leads to genome-wide DNA methylation changes [203]. Interestingly, 

ascorbate (Vitamin C), an essential micronutrient, is a cofactor for TET and has been 

shown to impact the DNA methylome [204]. TET enzymes are also dependent on 

oxygen and iron Fe(II). For example, tumor hypoxia has been shown to reduce TET 

activity due to a decreased oxygen availability and causes promotor hypermethylation 

[205]. However, in another study hypoxia induces TET1-mediated global 

hydroxymethylation [206]. DNA methylation is also responsive to oxidative stress as 

ROS levels reduce TET enzyme activity [207] and lead to a global decrease in DNA 

hydroxymethylation [208]. 

Beside changing cellular metabolic and oxidative state, some nutritional compounds 

also has been shown to directly interfere with the enzymatic activity of various 

epigenetic modifiers [209]. As an example, (-)-epigallocatechin-3-gallate (EGCG), the 

major polyphenol from green tea, can inhibit DNMT activity through the formation of 

hydrogen bounds in the catalytic pocket of DNMT resulting in DNA methylation changes 

in cancer cell lines [210]. Other phytochemicals that may impact epigenetic enzymes 

include, among others curcumin, epicatechin, genistein and resveratrol. However, we 

should keep in mind that most of these studies were performed in vitro, and the in vivo 

efficacy has not been proven yet. 

The above mentioned studies clearly show that cellular metabolic and redox state is 

important in maintaining DNA methylome profiles, and that alterations in the levels of 

certain metabolites may impact the enzymatic activity of the DNA methylation 

machinery leading to global methylation changes. However, environmental EWAS also 

identified multiple specific CpG sites or small genomic regions which are consistently 

differentially methylated among the exposed sample group. Why are certain CpG sites 

more vulnerable to DNA methylation changes, and are other rather resistant? An 

answer to this question lies probably in the high correlation seen between TF binding 

and DNA methylation patterns. In the classical view, TFs are mainly bound to 

unmethylated binding sites, while DNA methylation of that site may affect TF binding 

[211]. Although the causal relationship between TF binding and DNA methylation is not 
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completely understood and works probably in both directions [212], environmental 

exposures which influence TF binding are predicted to also result in locus-specific DNA 

methylation changes [213]. Therefore environmental-induced epigenetic changes may 

also be due to the inhibition or activation of certain TFs. 

This complex link between TFs and DNA methylation will be further explained in more 

detail in the next section when we explain its main role as maintainer of gene 

expression profiles. In addition, we will mention the involvement of DNA methylation 

in other alternative functions.  

 

Functions of DNA methylation 
Based on studies in the 70’-80’, a dogma emerges where DNA methylation is associated 

with transcriptional repression. DNA methylation has indeed been shown to directly 

silence gene expression, however, studies from the last two decades demonstrated a 

much more complex role of DNA methylation which seems to be dependent on the 

genomic context. Here, I will describe the mechanisms how DNA methylation maintains 

gene expression profiles, controls genomic imprinting, alternative splicing and genomic 

stability. 

 

The complex relationship between DNA methylation and gene expression 
The high association between CGIs and promoter regions indicates the importance of 

DNA methylation in transcriptional regulation and initiation. Indeed, DNA methylation 

was first described as a transcriptional silencer mark. Now, we know that the relation 

between DNA methylation and gene expression is much more complex and that both 

negative and positive correlations with gene expression exist (Figure 8A) [214]. 

Approximately half of the CGIs are located at gene promoters and are most often 

unmethylated, even when the corresponding gene is not expressed [215]. Most of the 

inactive CGI promoters are therefore not methylated but become trimethylated at 

lysine 27 of histone 3 (H3K27me3) mediated by Polycomb proteins [216]. Active CGI 

promoters on the other hand are associated with the active H3K4me3 histone mark 

[216]. However, examples do exist of methylated CGIs leading to stable transcriptional 

silencing of the corresponding gene, and it was estimated that in human brain 

approximately 3% of promoter CGIs are methylated [87]. This is especially the case in 

germline-specific genes which become de novo methylated and repressed during 

differentiation from germ cells into somatic cells [215, 217]. Also in X-chromosome 

inactivation and imprinting, DNA methylation of CGI leads to the repression of gene 



 

37 
 

expression. Thus, we can say that methylation at CGI promoters indeed leads to 

silencing of the corresponding gene, but in somatic cells this is a rather marginal 

phenomenon occurring mainly in germ-line specific genes and during X-chromosome 

inactivation, and that other mechanisms (i.e. histone modifications) are needed to 

inactivate the gene.  

The other half of the CGIs are located intergenic and intragenic and are much often 

methylated, and much more variable across different tissues [88]. Interestingly, most 

of these orphan CGIs share characteristics of functional promoters, including 

transcriptional initiation during development [218]. Indeed, intragenic DNA 

methylation may play a role in regulating alternative promoter usage in a cell-specific 

way (Figure 8B) [87]. For example, an intronic CGI was important in regulating cell-type 

specific gene expression of the MCJ gene, and not the promoter CGI [219]. Thus, 

variable intragenic DNA methylation across cell types may regulate cell-type specific 

transcription [220], and high intragenic DNA methylation prevents aberrant 

transcription initiation in the gene body [221]. Intragenic DNA methylation is 

established by DNMT3B which is recruited to the gene body by the H3K36me3 histone 

mark [221]. Another mechanism was recently proposed, where intragenic CGI 

methylation is dependent on transcription through this CGI [222].  

Promoters with lower CpG density are much more frequently methylated [215], but not 

always result in the silencing of the corresponding gene [223]. Interestingly, a recent 

study discovered that distal upstream CGIs are better correlated with gene expression 

in non-CGI promoters, and that these CGIs may function as alternative promoters in 

active genes with a methylated promoter [223]. Although the correlation between DNA 

methylation and gene expression non-CGI promoters is much more complex than in 

CGI promoters, there is also evidence that DNA methylation at these promoters may 

also directly silence gene expression, as demonstrated for the RUNX3 promoter [224].  

What is the exact role of DNA methylation in gene expression silencing? As we have 

previously seen, de novo DNA methylation during development is almost always 

preceded by histone methylation, suggesting that DNA methylation is rather a 

secondary mechanism in gene silencing. For example, the histone methyltransferase 

G9a ensures the silencing of the pluripotency gene OCT4 by H3K9 methylation. In 

addition, G9a can recruit DNMTs which leads to de novo methylation and long-term 

silencing preventing embryonic reprograming [76]. In another study, it was found that 

the Polycomb group protein EZH2, which sets the repressive H3K27me3 marks, 

interacts with DNMTs, leading to DNA methylation [225]. In addition, de novo 

methylation of promoters in embryonic stem cells mainly harbor the H3K27me3 

histone mark [226]. Another example where DNA methylation has rather a passive role 

in gene silencing is during X-chromosome inactivation where gene silencing precedes 
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DNA methylation [227]. These examples indicate that DNA methylation is often a 

secondary mechanism in transcriptional silencing and ensures stable gene repression 

thereby maintaining cellular identity and preventing cellular reprogramming. Recent 

studies, however, also demonstrated an active role of DNA methylation in establishing 

chromatin states. For example, reduction of DNA methylation levels leads to a decrease 

of the H3K27ac active histone marks at enhancers [228]. In agreement, global 

demethylation in mouse embryonic stem cells changes H3K27ac, H3K27me3 and 

H3K4me1 occupancy in enhancers and promoters, while there was no impact on 

H3K4me3 [229]. Interestingly, these changes in histone mark deposition were re-

established upon the addition of DNMTs. 

 

Readers of DNA methylation 
One way how DNA methylation is translated in the stable repression of a gene, is by 

the binding of proteins with a MBD [230]. The MBD protein family consists of five 

members (MeCP2, MBD1, MBD2, MBD3 and MBD4) which bind methylated DNA in a 

sequence independent way (except for MBD3 which does not bind methylated DNA). 

Binding of MBD proteins on methylated DNA leads to the recruitment of histone 

deacetylases and methylases which subsequently alter chromatin structure and finally 

repression of gene expression (Figure 8A). MBD-containing proteins can therefore be 

seen as readers of DNA methylation.  

Besides the well-known MBD proteins, evidence is emerging that also certain TFs can 

recognize and bind methylated DNA (Figure 8A). MBD proteins mainly bind high dense 

methylated regions [231], and in the traditional view, methylation disrupts the binding 

of other TFs which need unmethylated DNA to bind [211]. Indeed, there is a strong 

correlation between TF binding and DNA methylation which also indicate the 

importance of DNA methylation in more distal regulatory regions, like enhancers in 

regulating gene expression [129]. Enhancers and TFBS are indeed more variable 

methylated across cell types [86], and often have low/intermediate methylation levels 

(~30%) indicating dynamic regulation [129]. Although this DNA-TF binding disruption 

mechanism plays an important role in DNA methylation-dependent gene expression, 

recent studies demonstrated the involvement of other mechanisms, where certain TF 

can bind methylated DNA in a sequence-specific way [211]. Examples are CTCF, KLF4, 

CEBPb and Kaiso, which can bind both methylated and unmethylated sequences. Of 

note, often the methylated and unmethylated sequence motifs are different. The 

biological consequences of this new paradigm are not yet understood, but could 

provide another explanation for the positive correlation observed between promoter 

methylation and gene expression in certain genes. In support of this hypothesis, a 
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recent study found that positive correlated regions harbor different sequence motifs 

than negative correlated regions [214], indicating the involvement of different TFs. 

 

 
Figure 8: Functions of DNA methylation. A) Transcriptional control: MBD-containing protein binding 
methylated DNA, TF binding either methylated or unmethylated DNA, or methylation prevents TF from 
binding. B) Alternative promoter usage: intragenic DNA methylation: high gene body methylation prevents 
spurious transcription initiation. C) Alternative splicing: MeCP2 binding on methylated alternative exon 
causes Pol II pausing and recruitment of splice factors (SF) leading to splicing. D) Genomic imprinting: 
example of IGF2-H19 imprinted region. Methylation of imprinted center prevents the CTCF insulator from 
binding leading to IGF2 transcription on the paternal allele, while IGF2 is silenced in the maternal allele. E) 
Genomic integrity: DNA methylation prevents transposons from ‘jumping’. 

 

TF binding and DNA methylation are thus strongly correlated, but the causal 

relationship between the two factors are not yet completely clear. Intuitively, DNA 

methylation affects the interaction of TFs with DNA, which implies an active role of DNA 

methylation. However, in contrast, more recent research indicates that TF binding can 

also induce DNA methylation changes. For example, deletion of the TF REST leads to an 

increase in DNA methylation at its binding sites [130]. On the other hand, genetic 

deletion of the three DNMTs in mouse ES cells resulted in the creation of novel NRF1 

binding sites which were highly methylated in the wild-type cell line, indicating that 

removal of DNA methylation creates new binding sites [131], which is in agreement 

with a model where DNA methylation restricts TF binding. In contrast, other TF-DNA 

bindings are mainly insensitive to the removal of DNA methylation, as recently 

exemplified for CTCF [232]. Furthermore, it has been shown that the binding sites of 

methylation-sensitive factors (like NRF1) are kept in a hypomethylated state by the 

adjacent binding of methylation-insensitive factors (like CTCF and REST) which can 
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change the local methylation status [131]. Thus, these results suggest a complex model 

where both methylation-sensitive factors, methylation-insensitive factors and 

(de)methylation enzymes cooperate in regulating DNA methylation levels, TF binding 

and subsequent gene expression profiles.  

 

Gene body DNA methylation regulates alternative splicing 
Alternative splicing is an evolutionary conserved process in which multiple mRNAs and 

proteins are formed from a single gene due to the inclusion or exclusion of different 

exons during and after mRNA formation [233]. In humans, almost all exon-containing 

genes are alternative spliced which result in an increased proteomic diversity important 

in cell and tissue type specificity and responses towards external stimuli. Although 

multiple mechanisms exist, in general, alternative splicing is regulated by RNA-binding 

splice factors which interacts with specific cis-acting consensus sequences (for 

examples splice sites at exon-intron boundaries). The strength of the consensus 

sequences determines the inclusion potential of the exon [234].  

A role of intragenic DNA methylation in alternative splicing is emerging (Figure 8C) 

[234]. For example, it has been demonstrated that exons have higher DNA methylation 

levels than introns [235]. Furthermore, DNMT knock-out embryonic stem cells showed 

altered alternative splicing in both directions: inclusion and exclusion of alternative 

exons [236]. A similar result was found when treating cancer cells with the DNMT 

inhibitor 5-Aza-2'-deoxycytidine (5-Aza-CdR) [237]. A direct causal role of DNA 

methylation in splicing was demonstrated using the targeted addition or removal of 

DNA methylation at alternative spliced exons by a CRISPR-Cas9 enzyme fused with a 

DNMT and/or TET enzyme [238]. DNA methylation plays probably a ‘fine-tuning’ role 

in splicing and multiple mechanisms have been proposed. For example, binding of the 

MBD-containing protein MeCP2 to methylated exons results in the pausing of Pol II and 

subsequent inclusion of the targeted exon [239]. A similar role was demonstrated for 

CTCF. CTCF is a methylation-sensitive TF only binding at unmethylated DNA motifs 

[240]. Just as with MeCP2, CTCF exon binding leads to Pol II pausing and inclusion of 

the alternative exon, while methylation of this exon prevents CTCF from binding 

resulting in the exclusion of the exon. Of interest, DNA methylation may therefore 

enhance exon inclusion (e.g. MeCP2) or prevent exon inclusion (e.g. CTCF), indicating a 

complex role of DNA methylation in splicing. A different mechanism, involving 

heterochromatin protein 1 (HP1), was recently demonstrated [236]. Here, DNA 

methylation induces H3K9me3 histone modifications at nearby histones of alternative 

exons which serve as docking sites for HP1 leading the recruitment of splice factors to 

the methylated exon. So, DNA methylation seems to regulate splicing using two 
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different mechanisms: a ‘kinetic’ mechanism where Pol II elongation is reduced, and a 

‘recruitment’ mechanism where specific splice factors are recruited. A recent 

interesting study however, showed that these two models are linked and that MeCP2 

is also able to recruit splice factors and regulating intron retention [241].   

 

Genomic imprinting 
Genomic imprinting is a remarkable epigenetic phenomenon where only one of the 

alleles of a gene is active and expressed, while the expression of the other gene copy is 

suppressed, and this depends on whether the gene was maternally inherited or 

paternally inherited [102, 242, 243]. In human genomes, approximately 160 genes are 

imprinted [244]. Most of these genes are involved in the growth of the embryo, 

placenta and neonate. In addition, imprinting has also a role in the survival of neonates 

by regulating feeding, maintenance of body temperature, regulation of metabolism and 

behavior. Remarkable, some imprinted genes are monoallelic expressed in specific cell 

types [245] or certain developmental windows. For example KCNQ1 and KCNQ1OT1 

were found to be monoallelic expressed only in fetal tissues and not in adult tissues 

[246]. Although several hypotheses have been postulated [247-249], why imprinting 

exists is not yet completely understood. The most popular theory is the kinship or 

parental conflict theory which is based on differences in interest between paternal and 

maternal genes [250, 251]. The paternal genome would benefit from maximal acquiring 

maternal resources during the growth of a fetus. This will of course benefit the offspring 

but comes with a higher cost to the mother. Therefore, the maternal genome would 

more benefit from a thrifty way of using maternal resources during embryonic growth, 

because in this way the chance of bearing future offspring will be higher. This is also 

reflected in the function of genes which are paternally and maternally expressed. Many 

paternally expressed imprinted genes enhance embryonic growth while many 

maternally expressed imprinted genes repress embryonic growth. In addition, 

imprinting is only seen in placental mammals and marsupials and not in egg-laying 

mammals [252]. 

DNA methylation differences between the two alleles of an imprinted gene are crucial 

in establishing and maintaining this parent-of-origin-dependent gene expression. 

Typically, imprinted genes are clustered in genomic regions which can vary in size from 

< 100 kb to several megabases and contain 2-15 genes. Each cluster contains an 

imprinted control region (ICR) which is differentially methylated between the maternal 

and paternal allele in the germ line and are therefore called germline DMRs (gDMRs). 

During development, this gDMRs can result in the formation of additional DMRs which 

are called secondary or somatic DMRs. At the beginning of gamete formation, the old 
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imprints are first removed during the genome-wide demethylation phase and are 

subsequently replaced by new imprints. How these specific gametic DMRs are 

recognized for methylation is less clear, but may involve transcription and histone 

modifications [253, 254]. After fertilization, imprinted DMRs are protected from 

genome-wide DNA demethylation, by trans-acting factors including ZFP57-KAP1 [255, 

256], PGC7 [257] and G9a/GLP [258] which may recruit histone modifiers and DNMTs 

and/or prevent TET enzymes from binding.  

In almost all clusters, at least one lncRNA gene is involved and is often crucial in 

regulating gene expression of the imprinted genes in the cluster. In some imprinted 

clusters, the lncRNA gene expression is regulated by methylation in the ICR. Expression 

of the lncRNA can subsequently silence the protein-coding genes in the cluster in cis. 

KCNQ1 is an example. ICRs can also function as insulators by binding CTCF and 

subsequently separating the enhancer from the protein-coding genes. Methylation of 

the ICR, however, prevents CTCF from binding leading to the expression of the protein-

coding genes. An example is the IGF2-H19 cluster (Figure 8D).  

The importance of imprinting is further implied by a number of imprinted disorders, 

including Prader-Willi syndrome, Angelman syndrome, Beckwith-Wiedemann 

syndrome, pseudohypoparathyroidism types 1a and 1b, and Silver-Russel syndrome 

[259]. These syndromes are mainly the result of loss of imprinting by genetic and 

epigenetic alterations of specific imprinted genes/regions. For example, the majority of 

Silver-Russel syndrome patients have an hypomethylation of H19 DMR which results in 

the silencing of IGF2 and biallelic expression of H19. Another part of the patients, 

however, show maternal uniparental disomy (UPD) for chromosome 7 in which both 

copies of the complete or part of the chromosome is inherited from the mother. A lot 

of these disorders leads to developmental abnormalities, such as growth retardation 

(Silver-Russel, Prader-Willi) or overgrowth (Beckwith-Wiedemann). Imprinting is also 

involved in common diseases, including obesity, IUGR, and cancer [243]. 

 

Maintaining genomic integrity 

Repression of repeats. Most of the human genome consists of repeat elements of 

which transposons are a major subgroup and represents about 50% of the genome. 

Transposons are genomic repeat elements which can “jump” from one location to 

another and may therefore cause diseases when it “lands” in a gene or regulatory 

region. However, transposition may also aid in genome evolution. Retrotransposons 

(like LINEs, SINEs and LTR) need transcription to RNA to insert into a new chromosomal 

sites. DNA transposons, on the other hand, “jump” by a cut-and-paste mechanism 
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without RNA transcription. In humans, only a small part of the retrotransposons are 

active and able to transpose. 

Transposons are highly methylated. DNA methylation plays an important role in 

silencing of transposons and preventing it from “jumping” (Figure 8E). For example, the 

mouse intracisternal A particle (IAP) LTR retrotransposons are activated in DNMT1 

deficient mouse embryos [260]. Preventing de novo methylation by deleting DNMTs 

results in massive transcription of transposons in male germ cells. Especially deletion 

of DNMT3L was found to have a dramatic effect [97, 261]. Recently, a new de novo DNA 

methyltransferase DNMT3C which arose from a duplication of DNMT3B was discovered 

and seems to be much more important in silencing retrotransposons than the other de 

novo DNMTs [262]. piRNAs are crucial in guiding the DNA methylation machinery to 

transposons for de novo methylation, at least in LINEs [101, 263-265]. piRNAs are small 

silencing RNAs which interact and are preprocessed by PIWI proteins and can bind 

antisense to transposon transcripts leading to the recruitment of DNA methylation 

enzymes and histone modifiers [266]. In addition, piRNAs can also silence transposons 

post-transcriptional by a slicing mechanism [266]. In contrast to LINEs, SINEs are not 

methylated and silenced by a piRNA-dependent pathway. Although also the majority 

of SINEs are highly methylated [267], loss of DNA methylation has little impact on SINEs 

expression, indicating that DNA methylation may not be a primary mechanism in SINE 

silencing [268]. On the other hand, inhibition of histone methyltransferases does 

promote SINE expression [268].  

 

Genome stability. Global hypomethylation is seen in a lot of cancers and has been 

linked with an increase in genomic instability and mutation rate [269-272]. Another 

example where the role of DNA methylation in maintaining genome integrity is clearly 

demonstrated, is in patients with the ICF (Immunodeficiency, Centromere instability 

and Facial anomalies) syndrome. This rare recessive autosomal genetic disease is 

caused by mutations in the DNMT3B gene and shows large hypomethylated regions in 

satellite DNA and pericetromeric repeats which are normally highly methylated. This 

hypomethylation leads to chromosomal breakage and DNA rearrangements of 

chromosomes 1, 9 and 16 [51, 273]. In another study, loss of DNMT resulted in 

decreased DNA methylation levels in subtelomeric regions leading to elongated 

telomeres and increased telomeric recombination [274]. These examples clearly show 

that DNA methylation not only is important in maintaining transcriptional programs, 

but also safeguards genomic integrity.  

The DNA damage repair system is crucial for the cell to prevent the accumulation of 

mutations and development of tumors. Multiple studies have shown that DNMT1 is an 

important part of the DNA damage repair response, in a process which is independent 



 

44 
 

of its DNA methyltransferase enzyme activity [275]. DNMT1 was shown to be recruited 

to double strand DNA breaks [276], interacts with repair proteins and control DNA 

damage responses [277]. In addition, DNMT1 also has a role in mismatch repair, which 

is a system that detects and repairs base-base mismatches and thereby preventing 

microsatellite instability. During replication of microsatellite repeats, DNA polymerases 

may “slip” and subsequently lead to an expansion or contraction of these repeats. 

DNMT1 deficiency in mouse embryonic stem cells was shown to lead to a higher DNA 

slippage rate at mononucleotide repeats resulting in microsatellite instability [278, 

279]. Again, this process was found to be DNA methylation-independent [280]. The 

higher mutation rates seen with DNMT1-deleted embryonic mouse stem cells [271], 

may therefore also be the consequence of the lack of DNMT1 and its role in DNA repair 

instead of the global DNA hypomethylation. 

Recent evidence also demonstrates a link between TET enzymes, hydroxymethylation 

and DNA repair. 5hmC is accumulated at sites of DNA damage [281]. In addition, 

different TET knock outs lead to impaired DNA damage response [282], increased 

chromosome segregation defects during mitosis [281] and more DNA strand breaks 

[283].  

 

DNA methylation in disease 
In analogy to genetic mutations, epi-mutations also exist which are associated with 

specific diseases. For years, cancer epigenetics dominated the field and it is only 

recently that adverse epigenetic alterations also have been described in other complex 

diseases. Detection of disease-associated DNA methylation changes may increase our 

understanding of mechanisms underlying complex diseases. Furthermore, DNA 

methylation patterns may be used as biomarkers and may reveal interesting 

therapeutic targets. 

  

DNA methylation in cancer 

Initially, oncology was mainly focusing on genetic alterations, but now it is clear that 

also epigenetic changes are crucial both in initiation and progression of cancers. There 

exists a remarkable interplay between genetic and epigenetic changes throughout 

tumor development. For instance, tumor cells were found to harbor an 

overrepresentation of mutations in epigenetic writers, readers and erasers as well as 

chromatin remodeling complexes [284]. For example, DNMT3A is frequently mutated 

in hematological malignancies driving enhancer hypomethylation [285]. In contrast, 
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mutations in IDH1, IDH2 and TET enzymes result in an hypermethylation profile [202, 

286]. On the other hand, epigenetic alterations may also influence genetics. For 

example, DNA repair genes, such as MGMT are frequently hypermethylated and 

silenced in cancer leading to increased mutation rates. It is already known for decades 

that all human cancers are associated with wide-spread epigenetic histone and/or DNA 

methylation changes [287, 288]. This is not surprising as a cancer cell has a complete 

different cellular identity compared to their normal counterpart. Although tumor-

associated epigenetic patterns may be highly heterogenous, in general, tumor cells are 

characterized by a global DNA hypomethylation pattern, together with focal 

hypermethylation of mainly CGIs (Figure 9).  

It was first suggested that hypermethylation of promoter CGIs leads to the silencing of 

tumor suppressor genes and consequently contribute to cancer. Indeed, some known 

tumor suppressor genes were found to be silenced by DNA hypermethylation in cancer, 

including RB, VHL, p16, MLH1 and BRCA1. However, later it became clear that most of 

the methylated genes are already repressed in normal cells [289]. In addition, 

hypermethylated genes are strongly enriched for the polycomb repressive H3K27me3 

histone mark [290]. The EZH2 protein, which is the enzymatic component of the 

polycomb complex, is able to recruit DNMTs resulting in de novo methylation in cancer 

cells [225]. These results therefore imply that de novo methylation in cancer cells is the 

result of a highly regulated and instructive process. Polycomb repression is important 

in stem cells to reversible silence genes needed for differentiation. During 

differentiation these genes are active and become again silenced in adult cells. It is 

therefore hypothesized that DNA methylation leads to the permanent silencing of 

these genes, locking the cell in a stem cell-like self-renewal state which may predispose 

them for cancer formation [291].  

Initial studies were mainly focused on CGIs and gene promoters using targeted 

approaches, however, with the emergency of genome-wide DNA methylation 

platforms we now have a much broader and better picture of healthy and cancer 

epigenomes. From these studies it became clear that hypermethylated changes are not 

exclusively found in CGIs, and that often more DNA methylation alterations are present 

in CpG-poor distally regulatory regions [37]. For example, using whole genome bisulfite 

sequencing of samples from different cancers, mainly super-enhancers were found to 

show strong DNA methylation shifts [292, 293]. In multiple myeloma, hypermethylation 

was primary localized in B-cell-specific TFBSs and not in CGI promoter regions [294]. 

DNA methylation alterations in colon cancer were mainly found in regions just next to 

CGIs, which were called CGI shores [37]. These studies also demonstrated that 

epigenetic profiles are highly heterogeneous, and that global loss and focal gains of 

DNA methylation is a hallmark of cancer epigenomes. 
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Figure 9: DNA methylation profile in cancer. Comparison of DNA methylation from colon cancer samples 
with normal colon tissues reveals A) large hypomethylated blocks (green bars) largely overlapping with 
LADs (dark blue bars) and B) focal hypermethylated regions overlapping with CGIs and H3K27me3 histone 
marks. This figure was created using the UCSC genome browser and bisulfite sequencing data from [297]. 
The height of the yellow bars represents the average DNA methylation values in the colon samples. 

 

In many solid cancers, loss of DNA methylation in cancer occurs in large genomic blocks 

(5 kb – 10 Mb), which coincide with heterochromatic LOCKs, TADs and LADs, indicating 

the involvement of histone modifications and higher-order chromosomal organization 

[295-299]. It is also in these hypomethylated blocks where the focal hypermethylated 

regions reside leading to an erosion of the normal DNA methylation profile [297, 298]. 

Interestingly, loss of DNA methylation seems to be an early event in cancer formation 

and progress during the tumorigenesis, with metastasis having lower methylation 

levels than primary tumors [292]. Because of its known repressive effect on 

transcription, a global loss of DNA methylation lead to regional conversion of 

heterochromatin into euchromatin resulting in stochastic gene expression in these 

regions. As described previously, methylation of repeat elements are important in 

transposon repression and maintaining genomic stability. Consequently, it has been 

shown that global DNA hypomethylation promotes chromosomal instability and tumor 

formation in mice models and human cancer cell lines [269-272]. In another study, 

abnormal hypomethylation coincides with somatic copy number alterations in cancers 

[300]. Hypomethylation in tumors also leads to the activation of transposons resulting 

in increased mutational rate [301, 302]. Another consequence of global 
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hypomethylation is the reactivation of genes which were silenced by DNA methylation 

[303]. Many of these genes are germ-line specific genes as they are only expressed 

during germ line formation, and may contribute to tumor development by promoting 

oncogenic pathways. 

Based on the improved genome-wide DNA methylation mapping technologies, we now 

have a clear picture of the extensive DNA methylation changes occurring in cancer cells. 

However, what is less clear is which methylation changes contribute to tumorigenesis 

and which changes are just bystanders and rather a consequence of the malignancy 

process [304, 305]. Just as in cancer genetics, some epimutations are “drivers” which 

will induce oncogenic pathways, while others are “passengers” and are not able to 

initiate or progress tumorigenesis. Identifying this driver and passenger epimutations 

may be important for therapeutic approaches. Potential driver epimutations are the 

ones which are located in known tumor suppressor genes, such as BRCA1, CDKN2A and 

MLH1. These genes have crucial roles in control of DNA repair and cell division and it 

may be expected that epigenetically silencing of these genes may contribute to tumor 

development. We have seen that most of the hypermethylated CGIs in cancer are 

polycomb repressed in embryonic stem cells leading to a restrictive cellular state with 

stem-cell renewal properties. On the other hand, epigenetic plasticity may also 

contribute to tumorigenesis [304, 306-308]. Some stimuli, including genetic and 

environmental factors, may induce permissive chromatin states leading to epigenetic 

instability or plasticity and subsequently large heterogeneity of chromatin and 

transcriptional states. Some of these states may harbor an increased fitness over the 

other chromatin states leading to the selection and clonal expansion of specific cancer 

cells. A clear example is the gain-of-function mutation in the IDH gene seen in glioma 

and leukemia leading to the inhibition of TET enzymes and overall hypermethylation. 

Stochastic hypermethylation events may disrupt the binding of CTCF which act as an 

insulator regulating gene-enhancer interactions. Disruption of CTCF binding may lead 

to the aberrant activation of nearby genes. Only some of these methylation changes 

may confer a growth advantage leading to the selection of this clone, while others are 

just passenger epimutations. In gliomas this is often observed for PDGFRA, a known 

oncogene, which is aberrantly expressed after the disruption of an CTCF boundary.  

In addition to genetic factors (e.g. IDH mutations), also non-genetic factors may 

influence chromatin and epigenetic plasticity leading to oncogenesis. For example 

aging, which is the main risk factor for many cancers, is also accompanied by 

methylation changes in polycomb repressed genes in stem cells [309] and global loss of 

DNA methylation [310]. The global hypomethylated blocks found in cancer were also 

detected with aging, and, more interesting, correlates with mitotic history [296, 311]. 

Tumor cells therefore exhibit extensive DNA hypomethylation because of their highly 
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proliferative nature. Other factors that may initiate tumor-associated DNA methylation 

changes are cellular metabolism, inflammation, oxidative stress, diet and gut 

microbiome. Epigenetic and DNA methylation changes may therefore by a very early 

event in tumor formation [312]. For example, epigenetic variability in normal cells could 

predict the risk of cervical neoplasia [313]. Early dysregulation of the epigenome, by 

genetic factors (mutations in IDH and other chromatin-regulating enzymes) or 

environmental factors (aging, inflammation, etc), may lead to epigenetic instability and 

plasticity resulting in higher epigenetic variability in cancer. Some of these stochastic 

epigenetic changes will be passengers while others will be drivers which will 

subsequently be selected. Consequently, same cancer types may manifest in different 

ways across individuals and exhibit high epigenetic intratumoral heterogeneity which 

may have clinical consequences [314]. In addition, considerable DNA methylation 

changes can occur across primary, recurrent and metastatic tumors [315].  

 

DNA methylation in complex non-malignant diseases 

Risk of complex non-malignant diseases, including CVDs, diabetes, and neurological 

diseases, is modulated by a complex interplay of genetic, environmental and lifestyle 

factors. In the beginning of the 2000s, GWAS identified a lot of genetic risk factors [2], 

but it became increasingly clear that these SNPs could only explain a small part of 

disease heritability leaving a considerable part of the disease risk variability 

unexplained [4]. Epigenetic mechanisms may fill partially this gap of missing heritability. 

As we have seen previously, environmental and lifestyle factors may influence 

epigenetic patterns, and it is especially the prenatal and early developmental life 

periods which are highly sensitive towards environmental exposures leading to 

complex diseases later in adult life (DOHaD hypothesis) [5-7]. It has therefore been 

proposed that epigenetics could act as mediator between environment and disease 

[11]. Epigenetic mechanisms translate environmental exposures into adaptive 

transcriptional profiles which may contribute to health and disease. To better 

understand the epigenetic basis of complex diseases and traits, recently, many EWAS 

have been performed in healthy and diseased human populations [316] and found 

methylation at many CpG sites to be associated with almost all complex diseases, 

including CVDs [317], obesity [318], diabetes [319], Alzheimer’s disease [320], 

Parkinson’s disease [321], multiple sclerosis [322], asthma [323], etc. Therefore, just as 

in cancer epigenetics may play important roles in disease etiology and/or progression 

of common complex diseases. 

In tumor cells, genes are activated or repressed by either complete demethylation or 

methylation of genomic regulatory regions. In contrast, in many complex non-
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malignant disorders and phenotypes the DNA methylation changes are much more 

subtle, in the range of 1-10%, and often comprise single CpG sites [324]. The biological 

function of these small changes is still questionable, and whether it has direct 

transcriptional effects is often not clear. Another issue is the causality of the changes. 

Is the methylation change already present before disease onset, and initiating the 

disease process, or is the methylation change a consequence of the disease 

development? Because of the observational nature of most of the EWAS, it is difficult 

to answer this question, and longitudinal studies will be needed to give a definitive 

answer. Some methods exists which use genetic information to infer causality in EWAS 

[325]. In this way it was, for example, shown that most DNA methylation changes are a 

consequence of obesity and not a cause [326]. Although DNA methylation changes have 

been associated with numbers of environmental exposures on the one hand, and with 

diseases on the other hand, it is not clear yet whether DNA methylation is really a 

mediator between the environment, genetics and disease. Another issue is the tissue 

of interest, which is not always available. A lot of EWAS used whole blood samples, 

which may not always be the most relevant tissue of interest to resolve disease 

associated adverse epigenetic mechanisms. For now, it is not always clear whether DNA 

methylation patterns identified in blood samples can be applied as surrogate disease 

biomarkers for other tissues. Furthermore, blood samples and other tissues are 

complex mixtures of cells compromising different cell types, each with their own DNA 

methylation profile. Therefore DNA methylation changes could also be the result of 

shifts in cell type distribution, and not because of real intrinsic DNA methylation 

changes. Statistical tools exist, making use of reference methylomes of purified cell 

types, to estimate cell type composition which may be used to correct for these cellular 

effects [327]. However, not for all cell types reference methylomes are yet available. 

 

DNA methylation based clinical 

applications  

DNA methylation as a biomarker 
Multiple commercially available genetic tests exist to assist in disease diagnosis, 

prognosis and therapy response, and may even inform healthy individuals about their 

risk profile for different common diseases, including neurological and metabolic 

disorders [3]. A disadvantage of these markers is that it cannot capture the contribution 

of environmental and lifestyle factors which often forms complex interactions with 
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genetic polymorphisms. Therefore, it is believed that epigenetic biomarkers may 

further help in disease risk prediction as they are able to provide information about 

past environmental exposures. In addition, DNA methylation marks are not static and 

aberrant DNA methylation marks can be reversed. Therefore, DNA methylation may 

also be interesting as a dynamic health marker evaluating the response success of 

therapeutic and/or lifestyle interventions. Other advantages of DNA-based biomarkers 

over RNA- or protein-based biomarkers, are their stability and the low amount of 

sample needed. Furthermore, multiple highly quantitatively and cost-efficient methods 

for measuring DNA methylation exists [328]. DNA methylation can be measured in non-

invasive liquid biopsies, such as blood, saliva, urine and semen. Even circulating cell-

free DNA (cfDNA) present in plasma can be used to detect abnormal DNA methylation 

profiles, especially for cancer applications [329, 330]. Interestingly, a recent study 

demonstrated the use of cfDNA methylation in identifying the tissue of origin which 

can be used in the diagnosis of multiple other diseases [331].  

Today, only a few commercially available epi-biomarkers exist and they are all in the 

oncology field [332]. BMP3, NDRG4 and VIM hypermethylation measured in stool can 

be used as an early diagnostic marker for colorectal cancer (CRC) [333, 334]. Also a test 

in plasma where SEPT9 methylation could help in CRC diagnosis exists [335, 336]. 

However, mainly because of their lower specificity and higher cost as compared to 

traditional CRC screening methods, their use in clinical settings is limited. Other tests 

exist which could help (often in combination with other tests) in the diagnosis of lung, 

prostate and bladder cancer [332]. Since MGMT promoter methylation and silencing is 

associated with increased tumor response to alkylating agents in glioblastoma, MGMT 

promoter methylation based pharmaco-epigenomic commercial tests have been 

developed to predict drug response using either primary tumor samples or peripheral 

blood [337, 338]. Preclinical studies also demonstrated proof of concept for the use of 

DNA methylation gene panels in identifying cancer subtypes, however, for now this 

didn’t result in clinical commercial tests [332]. Identifying markers for cancer subtypes 

and therapy response may help in personalized treatments and precision medicine. 

DNA methylation sequence panels based on the Illumina genome-wide DNA 

methylation arrays have also resulted in a test to identify the tumor of origin in patients 

with metastatic carcinoma of unknown primary (CUP) cancer [339]. Here, the 

methylation profiles of the unknown metastatic samples are compared to the 

methylation profiles of known cancer reference methylomes, which may help 

identifying the correct primary origin of these tumors and result in better treatment 

choices.  

As described in the previous section, also complex diseases are associated with DNA 

methylation abnormalities and multiple studies indeed identified several potential 
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biomarkers, although they have not yet been translated into a validated clinical test 

[332]. In several diseases, including neurodegenerative diseases, the target tissue is not 

accessible and therefore one should use easy-accessible surrogate tissues, including 

blood, saliva, serum or cerebrospinal fluid, to evaluate disease states. An example is 

Alzheimer’s disease, where post-mortem brain tissues indeed showed extensive DNA 

methylation remodeling, but the concordance with other more non-invasive tissues is 

not yet clear [340]. Metabolic disorders are also linked with DNA methylation changes 

in adipose tissue, pancreas, skeletal muscle and blood [341]. Lifestyle factors have a 

strong impact on metabolic disease risk and may also influence DNA methylation 

profiles. For example, physical exercise leads to DNA methylation changes in adipose 

tissues [342]. It would therefore be interesting to study to what extent lifestyle factors 

can adjust adverse DNA methylation markers and whether DNA methylation changes 

can be used as a read-out to monitor efficacy of lifestyle interventions.  

 

 
Figure 10: The epigenetic clock as a biological age predictor. Disease risk and lifestyle factors are shown 
known to be associated with either epigenetic age acceleration (orange) or deceleration (green). Figure 
was adapted from [138].  

 

The possible use of DNA methylation as a health biomarker, was recently demonstrated 

by Steve Horvath and his epigenetic clock [139]. Using a large collection of DNA 

methylation datasets, he designed a multi-tissue estimator for chronological age. 

Subsequently, multiple studies demonstrated the use of this age predictor as a measure 

of biological age, whereas age acceleration (epigenetic age is larger than chronological 

age) is correlated with all-cause mortality, various age-related disorders and 
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phenotypes and age deceleration (epigenetic age is lower than chronological age) 

demonstrated lower risk for age-related disorders (Figure 10) [138, 343]. Interestingly, 

various healthy lifestyle factors, including fish intake, moderate alcohol consumption, 

education and fruit/vegetables intake are associated with epigenetic age deceleration 

[344]. Also caloric restriction which is known to extend lifespan in mammals is able to 

delay epigenetic aging [345]. In contrast, other factors, including stress [346] and 

physical inactivity [347] could increase epigenetic age acceleration. Of note, this 

epigenetic clock is now also commercially available provided by Zymo Research. 

To summarize, although DNA methylation is promising as biomarker for various 

complex diseases, still some challenges must be overcome to translate preclinical 

studies into validated commercial clinical tests. The recently developed “epigenetic 

clock” algorithm has proven that DNA methylation can measure health status and can 

be used to monitor lifestyle interventions, extending clinical epigenetics beyond cancer 

applications.  

 

DNA methylation as a target for therapeutic interventions 
Given the extensive epigenetic abnormalities in cancer, epigenetic marks form an 

interesting target for therapeutic interventions. The first epi-drugs on the market were 

DNMT inhibitors (DNMTi), consisting of the nucleoside analogs azacytidine (5-AZA) and 

its deoxy derivative decitabine (5-Aza-CdR) [348]. They are FDA-approved and in clinical 

use for the treatment of myelodysplastic syndrome (MDS), acute myeloid leukemia 

(AML) and chronic myelomonocytic leukemia (CML). Although for certain patients 

these drugs can be highly effective, other patients don’t respond and resistance to 

these therapies is common. In addition, their short half-life times hamper their use in 

solid tumors [349]. For DNMTi to be effective, cells should be in S phase at the time of 

exposure. Other epi-drugs include HDAC inhibitors (HDACi) which are also used for 

hematological cancers, including refractory cutaneous T cell lymphoma (CTCL), 

peripheral T cell lymphoma (PTCL) and multiple myeloma, often in combination with 

other drugs [350]. A different class of epi-drugs are iBETs which bind to the 

bromodomains of the BET proteins. BET proteins are readers of acetylated histones, 

and inhibition of these BET proteins may block expression of certain oncogenes, such 

as MYC [351]. iBETs are currently being tested in clinical trials. 

All of the above mentioned drugs have genome-wide epigenetic effects, due to their 

general aspecific mechanism of inhibition. More specific targeted epi-therapies are 

now also being investigated in (pre)clinical trials. For example, inhibition of the histone 

methyltransferase EZH2 has cell death effects only in cells with EZH2 activating 

mutations [352]. Similarly, IDH inhibitors may selectively affect IDH mutant 
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malignancies [353]. Inhibition of the H3K79 methyltransferase DOT1L is only effective 

in leukemias with activation of MLL [354]. Another example, is the inhibition of the 

lysine histone demethylase LSD1, which is only effective in small-cell lung carcinoma 

(SCLC) with a specific DNA hypomethylation profile [355]. Currently, a lot of these epi-

drugs are now being tested in clinical trials, with the hope that new epi-drugs will be 

approved in the near future [18, 332]. 

DNMTi has hypomethylated action at low doses, but can also be directly cytotoxic at 

high doses by their direct incorporation into DNA and/or RNA [349]. High doses, 

however, lead to extensive side effects, making the low-dose hypomethylated action 

of DNMTi more promising. Hypomethylation of driver epimutations, such as 

hypermethylated silenced tumor suppressor genes could result in the reactivation of 

these genes and reduce tumor growth [18, 332]. On the other hand, inhibition of DNA 

methylation may also lead to the expression of genes which are normally silenced, such 

as cancer testis antigens and repetitive elements [356]. This activation may lead to the 

formation of neoantigens in these cells and thus increasing the immunogenicity by 

making the cancer cell more visible to the host immune defense mechanism [357]. For 

example, activation of endogenous retroviruses (ERVs) can lead to a state of viral 

mimicry, where dsRNAs are recognized by pattern recognition receptors leading to an 

activated interferon signaling response. Interferon may increase antigen presentation 

in the cancer cells resulting in increased visibility of the cancer cell to the adaptive 

immune system [357]. Therefore, combination therapy of DNMTi and immunotherapy 

is a promising new approach which may enhance the utility of DNMTi in solid tissues. 

Epigenetic changes in other complex non-malignant diseases are much more subtle, 

and therefore epi-therapy has mainly focused on oncological applications. The use of 

general DNMT/HDAC inhibitors in the treatment of common non-malignant diseases is 

questionable given the rather modest adverse epigenetic changes. Furthermore, 

causality of most of these disease-associated DNA methylation changes is not 

necessary proven: we don’t know whether a change is a consequence of the disease 

process or whether it may cause the disease. Non-causal DNA methylation changes may 

still be valuable as biomarker, but are probably not very useful as therapeutic target. 

Identifying the driver epi-mutations may therefore by crucial in selectively targeting 

specific genomic regions for epigenetic editing. For this, the CRISPR-Cas9 genome 

editing tool has now also been exploited for epigenetic purposes, by fusing the 

nuclease-deactivated Cas9 protein to an epigenome-modifying enzyme [358]. A guide 

RNA directs the enzyme to a genomic region of interest to change a particular 

epigenetic mark. This tool can therefore be used to selectively modify specific DNA 

methylation sites and may not only give information about the functionality of the site 

but will also be very promising as new form of epi-therapy.  
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As outlined in the introductory section, DNA methylation is thought to mediate the 

long-term effects of chronic exposure to environmental factors on health and disease. 

Due to its dynamic nature, DNA methylation can be exploited as prognostic, diagnostic 

and therapeutic biomarkers. Besides, reversible DNA methylation changes are also an 

attractive target for therapeutic and nutritional interventions. In addition, studying 

epigenetic patterns could give us useful mechanistic insight in disease etiology and 

development. In this thesis, we studied DNA methylation patterns in easy-accessible 

tissues, including blood and saliva to monitor adverse early environmental exposures, 

cardio-metabolic diseases and nutritional intervention responses. The results section 

of the thesis aims to answer 3 research questions-objectives: 

 

PART 1: Can we monitor early adverse environmental conditions using DNA 

methylation marks in blood and/or saliva? 

During prenatal and early development, the methylation profile is sensitive to adverse 

environmental factors and the exposure history builds up cellular memory which can 

promote diseases later in life. In this way, monitoring adverse DNA methylation 

changes holds promise to monitor and/or prevent potential disease risk later in life. In 

the first part of the result section, we examine whether early adverse environmental 

conditions can be monitored through DNA methylation marks in blood and saliva.  

In chapter 3, we performed a pilot study in a cohort of Danish children, whose mothers 

were exposed to pesticides during pregnancy. In a previous study of those children, it 

was found that carriers of a polymorphism in the PON1 enzyme, which has an 

important role in organophosphate pesticide hydrolysis and is linked with 

atherosclerosis, have an adverse cardio-metabolic risk profile upon pesticide exposure. 

We explored whether we could find a specific DNA methylation profile associated with 

prenatal pesticide exposure and PON1 polymorphism. Furthermore we evaluated 

whether we can link this profile with the cardio-metabolic risk factors observed in these 

children.  

In chapter 4, we compared DNA methylation profiles in saliva samples of neglected 

orphan children of the well characterized Bucharest cohort, raised in institutions, 

following foster care or never-institutionalized children. We addressed whether we 

could find a salivary DNA methylation profile associated with institutionalization 

associated stress and evaluated to which extent foster care can remediate the stress 

related epigenetic effects observed in institutionalized children. Finally epigenetic 

changes were cross-compared with variations in gene expression and cortisol levels to 

determine significant associations. 
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PART 2: Can we identify epigenetic blood surrogate markers to predict cardio-

metabolic diseases?  

Epigenetics is believed to play a significant role in the initiation and development of 

complex chronic diseases. For some diseases, the tissue of interest is difficult or even 

impossible to obtain, and therefore easily accessible surrogate tissues, like blood and 

saliva are recommended. In the second part of the result section, we evaluated 

whether we could identify disease associated DNA methylation profiles in whole blood 

of atherosclerosis patients that could be used as a surrogate biomarker.  

In chapter 5, we measured the genome-wide DNA methylation profile of whole blood 

samples of clinical atherosclerosis patients and compared it with epigenetic profiles of 

atherosclerotic plaque material, and subclinical atherosclerosis samples of the Aragon 

workers cohort, to identify potential surrogate markers for early CVD detection.  

In chapter 6, we cross-compared the atherosclerosis specific methylation profile 

identified in chapter 5 with adverse DNA methylation profiles of other lifestyle diseases, 

to identify unique and/or general biomarkers for inflammaging type disorders in blood 

and/or solid tissues. 

  

PART 3: Can we reverse adverse DNA methylation patterns by nutritional 

interventions? 

Various environmental and lifestyle factors trigger cumulative beneficial and/or 

harmful epigenetic changes during life. We characterized whether adverse methylation 

changes could be reversed by changing dietary lifestyle. Diet and nutrition are 

important lifestyle factors which can have a significant impact on health and disease 

risk. In the last part of the result section, we studied the epigenetic effects of nutritional 

and immunomodulatory phytochemical compounds on DNA methylation. Moreover, 

we addressed to which extent disease associated DNA methylation patterns can be 

reversed by nutraceutical and/or phytomedicinal specific interventions. 

In chapter 7, we examined DNA methylation changes upon in vitro exposure of 

endothelial cells to cardio-protective flavanols or in blood samples following an eight-

week diet intervention with flavanol-rich grape seed extract. Furthermore, we searched 

for reversible CVD associated epigenetic changes in response to flavanols. 

In chapter 8, we studied epigenetic changes upon in vitro exposure of THP1 monocytes 

to Echinaforce®, a commercial standardized immunomodulatory extract, which can 

protect against colds and respiratory infections. Finally, epigenetic changes were 

integrated with variations in gene expression and kinase signaling to resolve a 

mechanism of action. 
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Abstract | Prenatal environmental conditions may influence disease risk in later life. 

Previously, a gene-environment interaction was demonstrated between the 

paraoxonase 1 (PON1) Q192R genotype and prenatal pesticide exposure, which 

increases adverse cardio-metabolic risk profile at school age. However, the molecular 

mechanisms involved have not yet been resolved. It was hypothesized that epigenetics 

might be involved. The aim of the present study was therefore to investigate whether 

DNA methylation patterns in blood cells were related to prenatal pesticide exposure 

level, PON1 Q192R genotype, and associated metabolic effects observed in the 

children. 

Whole blood DNA methylation patterns in 48 children (6-11 years of age), whose 

mothers were occupationally unexposed or exposed to pesticides early in pregnancy, 

were determined by Illumina 450K methylation arrays.  

A specific methylation profile was observed in prenatally pesticide exposed children 

carrying the PON1 192R-allele. Differentially methylated genes were enriched in 

several neuroendocrine signaling pathways including dopamine-DARPP32 feedback 

(appetite, reward pathways), corticotrophin releasing hormone signalling, nNOS, 

neuregulin signalling, mTOR signalling and type II diabetes mellitus signalling suggesting 

a possible link with the metabolic effects observed in these children. Furthermore, we 

were able to identify possible candidate genes which mediated the associations 

between pesticide exposure and increased leptin level, body fat percentage, and 

difference in BMI Z-score between birth and school age.  

DNA methylation may be an underlying mechanism explaining an adverse cardio-

metabolic health profile in children carrying the PON1 192R-allele and prenatally 

exposed to pesticides. 

 

Introduction 
A considerable part of modern pesticides has neurotoxic and/or endocrine disrupting 

properties [1-3] and therefore the potential to disturb development of 

neurobehavioral, neuroendocrine, and reproductive functions [4-8] especially if 

exposure occurs during vulnerable time periods in fetal life or early childhood. To 

investigate potential health effects of prenatal pesticide exposure, we have followed a 

cohort of children, whose mothers were employed in greenhouse horticulture in 

pregnancy. Some of the mothers were occupationally exposed to mixtures of pesticides 

in the first trimester before the pregnancy was recognized and preventive measures 

were taken. Findings from this cohort include associations between maternal pesticide 

exposure and lower birth weight followed by increased body fat accumulation during 
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childhood [9], impaired reproductive development in boys [10, 11], and earlier breast 

development [12] and impaired neurobehavioral function in girls [13].  

The HDL-associated enzyme paraoxonase 1 (PON1) catalyzes the hydrolysis of a wide 

range of substrates including some organophosphate insecticides [14, 15]. It also 

protects lipoproteins from oxidative modifications and hence against development of 

atherosclerosis [16, 17]. A common polymorphism in the coding sequence of the PON1 

gene substitutes glutamine (Q) to arginine (R) at position 192. This substitution seems 

to affect both properties of the enzyme and several studies have indicated an increased 

risk of CVD in R-allele carriers [17, 18]. To investigate if this polymorphism affected the 

sensitivity to prenatal pesticide exposure, the PON1 Q192R genotype was determined 

in the children. We found a marked interaction between prenatal pesticide exposure 

and the PON1 Q192R genotype. At school age, exposed children with the R-allele had 

significantly higher BMI, body fat percentage, abdominal circumference, and blood 

pressure compared to unexposed children with the same genotype. In the group of 

children with the QQ genotype, there was no effect of prenatal pesticide exposure on 

these parameters [19]. In addition, serum concentrations of leptin, glucagon, and 

plasminogen activator inhibitor type-1 (PAI-1) were enhanced in prenatally pesticide 

exposed children with the R-allele, also after adjusting for BMI [20] which also indicates 

disturbance of metabolic pathways related to development of metabolic syndrome [21-

23]. In addition, leptin seemed to be a mediator of the increased fat accumulation 

during childhood related to prenatal pesticide exposure in children with the PON1 

192R-allele [20]. Thus, the obtained results indicate a gene-environment interaction 

between pesticide exposure and PON1 gene heterogeneities already in early prenatal 

life that might enhance the risk of cardio-metabolic diseases later in life.  

The mechanism behind this interaction is not yet understood but might be mediated 

by epigenetic alterations depending on both genotype and prenatal exposure. 

Epigenetic marks, including DNA methylation and covalent histone modifications, are 

dynamic and can adapt to a variety of external stimuli [24]. Furthermore, during fetal 

development extensive de- and re-methylation events are taking place making this 

period highly vulnerable for epigenetic changes caused by environmental conditions 

[25]. Indeed, emerging evidence in experimental animals and in humans associate 

altered DNA methylation patterns with a variety of prenatal exposures including dietary 

factors, parental care, infections, smoking and environmental pollutants [26-31]. In 

experimental animals, early life changes in DNA methylation have been associated with 

diet induced obesity and insulin resistance [32]. Recently, also human studies have 

suggested that DNA methylation patterns at birth are related to birth weight and fat 

mass later in childhood [33, 34]. The aim of this exploratory study was to investigate 

whether methylation patterns in blood samples of school children were related to 
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prenatal pesticide exposure, PON1 Q192R genotype, and adverse health outcomes 

already observed in the children. We hypothesized that the health effects associated 

with early prenatal pesticide exposure were related to differential epigenetic 

modifications in children with the QQ-genotype and children carrying the R-allele. 

 

Materials and methods 

Study population 
This study is a part of an ongoing prospective study including 203 children born 

between 1996 and 2001 by female greenhouse workers. The children were examined 

for the first time at three months of age [11] and followed up at school age when 44 

new age-matched controls were included [9] and the PON1 genotype was determined 

for 141 children [19]. For this exploratory study, 48 pre-pubertal (Tanner Stage 1) 

children, whose mothers reported not to have smoked during pregnancy, were 

selected equally distributed between the PON1 192QQ and QR/RR genotype. The 

QR/RR genotype group consisted of 3 children with the RR genotype and 21 with the 

QR genotype. After excluding children of mothers who smoked in pregnancy, the 

number of unexposed controls within each genotype was low, 20 with the QQ genotype 

and 16 with the QR/RR genotype. DNA qualified for methylation analysis was only 

available for 11 and 12 of these children, respectively. For each genotype, we then used 

individual matching to select one exposed child of same sex and age for each of the 

controls. For the QQ-genotype, two exposed children were selected for each of two 

controls to obtain 24 children. Thus, in total we used data from 13 exposed and 11 

unexposed children with the QQ genotype, and 12 exposed and 12 unexposed children 

with the QR/RR genotype (Table 1).  

Recruitment, characteristics, exposure categorization, and clinical examinations of the 

children have previously been described in detail [9, 11, 19]. Briefly, we recruited 

pregnant women working in greenhouses and referred to the local Department of 

Occupational Health for risk assessment of their working conditions and guidance for 

safe work practices during pregnancy. Detailed information about working conditions 

inclusive pesticide use for the previous three months was obtained from maternal 

interview at enrollment (gestational weeks 4-10) and supplemented by telephone 

contact to the employers. For all women, re-entry activities (such as moving or packing 

potted plants or nipping cuttings) constituted their main work functions. Approximately 

20% of the women reported having been directly involved in applying pesticides, mainly 

by irrigating fungicides or growth retardants. Only few (6%) of the women had applied 
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insecticides. The women were categorized as occupationally exposed if pesticides were 

applied in the working area more than once a month and the women handled treated 

plants within one week after treatment and/or the women were directly involved in 

applying pesticides. The women were categorized as occupationally unexposed if none 

of the above criteria was fulfilled. All exposure assessments and categorization of the 

mothers as pesticide exposed or unexposed were performed independently by two 

toxicologists before the first examination of the children. Women categorized as 

pesticide exposed, went on paid leave or were moved to work functions with less or no 

pesticide exposure shortly after enrollment. Hence, the exposure classification relates 

to the early weeks of the first trimester before study enrollment.  

The exposure situation was complex since the use of specific pesticides varied with time 

and location, both within the same company and between companies, depending on 

the plant production and the type of pest to be controlled. Out of 124 different active 

pesticide ingredients used in the greenhouses were 59 insecticides (17 

organophosphates, 12 pyrethroids, 9 carbamates, and 21 others), 40 fungicides, 11 

growth regulators, and 14 herbicides. Some were used only in few greenhouses or in 

short periods, whereas others were used more often. Organophosphate insecticides 

were used to some extent in the working areas for 91% of the exposed mothers in the 

entire cohort, and for 24 out of the 25 exposed mothers whose children were included 

in this study. The most used organophosphates were dichlorvos, dimethoate, and 

chlorpyrifos. Other frequently used pesticides were the pyrethroid insecticides 

deltamethrin and fenpropathrin; the carbamate insecticides methiocarb, pirimicarb, 

and methomyl, and the fungicides fenarimol, prochloraz, tolclofos-methyl, vinclozolin, 

iprodion, and chlorothalonil. In general, the time interval between applying insecticides 

and working in the treated areas was longer (1-3 days) than for fungicides and growth 

regulators (often a few hours). Because of the complexity of the exposure situation and 

because most of the women at enrollment had been off work for some days while the 

risk assessment of their working conditions was performed, biomonitoring of the 

exposure was not feasible. A complete list of the pesticides used in the greenhouses 

can be obtained from the corresponding author.  

 

At follow-up at age 6 to 11 years, 177 children underwent a standardized clinical 

examination in which systolic and diastolic blood pressure, pubertal staging, height, 

weight, thickness of skin folds, and other anthropometric parameters were measured 

[9]. The same pediatrician performed all clinical examinations blinded to information 

about maternal pesticide exposure during pregnancy. 

Venous non-fasting blood samples were collected (between midmorning and late 

afternoon) in EDTA coated and uncoated vials (Venoject). After centrifugation at 2000 
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g for 10 min at 20°C, buffy coat for genotyping and epigenetic analysis was separated 

from the EDTA-treated samples. Buffy coat and serum from the uncoated vials were 

stored at -80°C until analysis. 

As previously described [19], C-108T (rs705379) and Q192R (rs662) polymorphisms of 

the PON1 gene was determined by the Taqman-based allele discrimination using the 

ABI Prism 7700 Sequence Detection System, serum activity of PON1 was determined 

by spectrophotometry with paraoxon as substrate, and insulin (proinsulin and insulin) 

and leptin concentrations in serum were determined by commercial ELISA hormone 

kits from RayBio.  

Genotyping and all serum analyses were performed blinded to both exposure 

information and examination outcomes. 

 

Ethics 
The study was conducted according to the Helsinki II Declaration with written informed 

consent by all parents and oral consent by the children as approved by The Regional 

Scientific Ethical Committees for Southern Denmark (S-20070068) and the Danish Data 

Protection Agency. 

 

Sample preparation  

DNA from buffy coat samples was extracted using QIAamp DNA Blood mini kit (Qiagen, 

Hilden, Germany). The blood spin protocol was applied according to manufacturer’s 

instructions. Samples were eluted in 100 µl elution buffer. DNA samples were bisulfite 

converted using the EZ DNA methylation kit from Zymo according to manufacturer’s 

instructions. Successful bisulfite conversion was checked using a bisulfite-specific PCR 

of an amplicon in the SALL3 gene (see Supplementary Table 1 for primer sequences). 

Only samples showing an intense band on agarose gel were further analysed by the 

450K methylation array. As a negative control non-converted gDNA was used. 

 

DNA methylation and data preprocessing 

The Infinium HumanMethylation450 BeadChip array (Illumina, San Diego, CA, USA) was 

used to measure DNA methylation genome-wide. 4 µL of bisulfite-converted DNA from 

each sample was amplified, fragmented, precipitated, resuspended and subsequently 

hybridized onto the BeadChips. After overnight incubation of the BeadChips, 

unhybridized fragments were washed away, while hybridized fragments were extended 

using fluorescent nucleotide bases. Finally, the BeadChips were scanned using the 

Illumina iScan system to obtain raw methylation intensities for each probe. 
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We used the R package RnBeads to preprocess the Illumina 450K methylation data [35]. 

Cg-probes were filtered before normalization based on following criteria: probes 

containing a SNP within 3 bp of the analysed CpG site, bad quality probes based on an 

iterative greedycut algorithm where a detection p-value of 0.01 was set as a threshold 

for an unreliable measurement, and probes with missing values in at least one sample. 

After filtering these cg-probes, beta-values (ratio of methylated probe intensity versus 

total probe intensity) were within-array normalized using the beta mixture quantile 

dilation (BMIQ) method [36]. Another filtering step was performed after normalization 

based on following criteria: probes measuring methylation not at CpG sites and probes 

on sex chromosomes. The two filtering steps removed a total of 20,338 cg-probes and 

ended up with a data set of normalized methylation values for 465,239 cg-probes. Beta-

values were transformed to M-values (M = log2(β/(1-β))) prior to further analyses. 

Principal component analysis (PCA) was conducted to detect possible batch effects. 

Associations between the first eight principal components and possible batch effect 

covariates were measured. The Kruskall-Wallis test was used to find associations with 

sentrix_ID (BeadChip), while the two-sided Wilcoxon sum rank test was used for 

associations with the processing date, exposure and PON1 Q192R genotype. Significant 

associations between principal component 2 and sentrix_ID (BeadChip) and processing 

date were suggestive for batch effects and were therefore corrected using the ComBat 

function in the SVA R package [37] (Supplementary Figure 1 and 2). Raw and 

normalised array data were uploaded to the Gene Expression Omnibus (GEO) database 

and have accession number: GSE90177. 

For each sample the relative cell type contribution was measured using the approach 

described by Houseman et al. [38]. Reference methylomes of each blood cell type 

(granulocyte, CD4+ T-cell, CD8+ T-cell, B-cell, monocyte, NK-cell) were obtained from 

the study of Reinius et al. using the FlowSorted.Blood.450k R package [39]. The analysis 

was limited to the 100,000 most variable sites. The top 500 cg-probes associated with 

the cell types were used to estimate the relative cell type composition in each sample. 

One-way ANOVA was used to determine differences in relative cell type composition 

between the exposed and unexposed children and between children with the QQ and 

QR/RR genotype. Associations between relative cell type composition and health 

outcomes (percentage body fat, delta BMI z-scores from birth to school age, and BMI 

z-scores), leptin levels and age were analysed using simple linear regression. 

 

Statistical analysis 
Differential methylation was analysed both at the single CpG site level and at the region 

level (Figure 1). At the single CpG site level multiple linear regression (Matlab version 
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2014b, The Mathworks®, Natick, MA, USA) was performed in which methylation was 

the dependent variable and PON1 Q192R genotype and prenatal pesticide exposure 

(yes/no) were the independent variables. Our statistical approach was designed to 

explain - at the level of methylation - the previously reported gene-environment 

interaction between the paraoxonase 1 (PON1) Q192R genotype and prenatal pesticide 

exposure leading to an adverse cardio-metabolic risk profile at school age among 

children carrying the R-allele [19].Thus, our primary interest was to identify 

methylation marks associated with exposure that were more altered in R-allele carriers 

than in QQ-homozygotes. Two statistical models were included in our statistical 

approach. In the first model, effect modification (interaction) of exposure by PON1 

Q192R genotype was allowed by including main effects (exposure and genotype) and 

cross-product terms (exposure*genotype) in the models. Statistical significant effects 

of exposure in the PON1 192QR/RR group were defined as follows: P-value interaction 

term ≤ 0.1 and P-value of exposure in the QR/RR group ≤ 0.001. This model allows 

studying synergistic effects where the combined effect of prenatal exposure and in the 

QR/RR group is greater than the sum of the effects of each factor alone. In the second 

model, effect modification of exposure by PON1 Q192R genotype was not assumed (no 

cross product term included). Statistical significant effects of exposure were defined as 

follows: P-value of exposure ≤ 0.001, P-value of PON1 genotype ≤ 0.1. In this model the 

combined effect of exposure and being R-allele carrier is equal to the sum of the effect 

of each factor separately. For both models, the associations were adjusted for child sex. 

To identify probes that were most aberrant in the exposed QR/RR group, we set an 

additional filter for both models in which we defined that the prenatally exposed QR/RR 

group should either be highest or lowest methylated (based on mean methylation 

level) as compared to the other three groups (exposed QQ, unexposed QR/RR and 

unexposed QQ). These sites are defined as significantly differentially methylated 

positions (sig-DMPs) in the remainder of this text. Sig-DMPs were annotated using the 

HumanMethylation450 v1.2 manifest file. The freely available EpiExplorer tool was 

used to add further annotation including chromatin state segmentation and histone 

modifications based on the UCSC hg19 browser [40]. Genomic locations of transcription 

factor binding sites (TFBS) were directly downloaded from the UCSC h19 genome 

browser. Enrichment or depletion of sig-DMPs in a particular genomic region was 

determined using the Fisher’s exact test.  

DMRs were detected using the limma-based DMRcate R package [41]. We only looked 

for regions differentially methylated between the exposed QR/RR group and one of the 

other groups (exposed QQ, unexposed QR/RR and unexposed QQ). In line with 

identification of sig-DMPs, significant regions (Padj-value < 0.05) were selected in which 

the exposed R-allele carriers showed either the highest or lowest methylation state 
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which are called sig-DMRs in the remainder of this text. P-values were corrected for 

multiple testing using the Benjamini-Hochberg method (Padj). 

 

 
Figure 1: Analysis workflow. Differentially methylated genes were detected using a single CpG and a 
region-based approach. Only sig-DMPs and sig-DMRs were selected in which the pesticide exposed QR 
carrier group was either hyper- or hypomethylated in comparison with the other groups (interesting 
profile). By overlapping the sig-DMPs with the sig-DMRs a high confidence list of differentially methylated 
genes could be generated. 

 

Pyrosequencing 
We used bisulfite pyrosequencing to further verify the methylation differences 

observed in the methylation array. We selected regions in four genes that are known 

to be involved in metabolism: LEP, GPR39, PPARG and OPCML (Supplementary Figure 

3). LEP DNA methylation has been associated with BMI, birth weight and cholesterol 

levels [42-44]. Also, maternal conditions have an effect on the methylation status of 

the LEP promoter [45-48]. GPR39 belongs to the ghrelin receptor family and was shown 

to be associated with obesity [49]. PPARG is a nuclear receptor involved in regulation 

of lipid and glucose metabolism as well as a target for some obesogenic endocrine 

disruptors [20, 50-53]. Furthermore, PPARγ is directly involved in the regulation of 

PON1 gene expression [54-56]. OPCML (Opioid Binding Protein/Cell Adhesion Molecule 

like) is a member of the IgLON family. A SNP in the OPCML gene was associated with 

coronary artery calcified plaque in African Americans with type 2 diabetes [57]. A 

mouse and human GWAS analysis identified an OPCML SNP associated with obesity 

traits and visceral adipose/subcutaneous adipose ratio, respectively [58, 59]. 1 µg DNA 

from each sample was bisulfite converted using the EpiTect Fast bisulfite conversion kit 
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(Qiagen, Hilden, Germany) according to manufacturer’s instructions. 15 ng of bisulfite 

treated DNA was subsequently used in PCR amplification using the PyroMark PCR kit 

(Qiagen, Hilden, Germany). Reverse primers were biotinylated to get biotin-labelled 

PCR products. Finally, DNA sequences were pyrosequenced using the PyroMark Q24 

Advanced instrument (Qiagen, Hilden, Germany). First, streptavidin-coated Sepharose 

beads (High Performance, GE Healthcare, Uppsala, Sweden) were used to immobilize 

the biotin-labelled PCR products. Subsequently, PCR products were captured by the 

PyroMark vacuum Q24 workstation, washed and denaturated. The single stranded PCR 

products were mixed and annealed with their corresponding sequencing primer. After 

the pyrosequencing run was finished, the results were analysed using the PyroMark 

Q24 Advanced software (Qiagen, Hilden, Germany). Biotinylated-reverse, forward and 

sequencing primers were designed using the PyroMark assay design 2.0 software 

(Qiagen, Hilden, Germany) (Supplementary Table 1).  

 

Mediation analysis 

For a subset of sig-DMPs and sig-DMRs we analyzed 1) whether methylation is a 

mediator between exposure in PON1 192R-allele carriers and leptin levels; and 2) 

whether methylation is mediator between exposure in PON1 192R-allele carriers and 

body fat accumulation (using delta BMI-score (from birth to school age), and 

percentage body fat as endpoints). Mediation analysis was restricted to the subset of 

the methylation data that overlap between the list of sig-DMPs (interaction model) and 

sig-DMRs. The analysis was performed by the procedure described by Baron and Kenny 

(1986) [60]. Leptin concentrations were logarithmically (ln) transformed prior to 

analysis. In mediation analysis considering body fat percentage and leptin, the models 

were adjusted for sex. As sex was already considered when calculating BMI Z-score, 

associations considering mediation between pesticide exposure and BMI Z-score were 

not adjusted for sex.  

To demonstrate mediation, four requirements must be met: Model 1) The dependent 

outcome variable (leptin or a body fat measure) should be significantly associated with 

pesticide exposure (independent variable); model 2) The DNA methylation mark 

(mediator) should be significantly associated with pesticide exposure; model 3) The 

dependent variable should be significantly associated with the DNA methylation mark; 

and model 4) the DNA methylation mark should be a significant predictor of the 

outcome variable, while controlling for pesticide exposure. The estimated exposure-

related change in the outcome variables in model 4 should be less than in model 1 to 

demonstrate partial mediation, and drop to zero to demonstrate full mediation. A P-

value below 0.05 was used as a cut-off for statistical significance in each of the models.  
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Functionally relevant mediators, i.e. mediators that have been reported to be involved 

in development of weight gain/obesity, insulin resistance/diabetes, CVD, and/or fetal 

growth retardation were subjected to further statistical analysis. R-package 

“mediation” was used to calculate the significance of the causal mediation effect using 

a bootstrapping approach [61]. It should be noted that the age of the children varied 

between 6 and 11 years at the follow-up examination where blood was collected. As 

child age might affect methylation levels, the exposed and unexposed children selected 

for this study were age matched within each genotype. 

 

Functional analysis 

Ingenuity Pathway Analysis (IPA, Ingenuity Systems®) was used for biological 

interpretation. The overlap between sig-DMPs and sig-DMRs was determined and used 

as input for canonical pathway analysis. A Fisher-exact test was used to determine 

whether the gene lists include more genes associated to a given pathway as compared 

to random chance (P-value ≤ 0.05). 

The DisGeNet platform (http://www.disgenet.org/) was used to screen for gene 

disease associations [62]. The database (currently) contains 429111 gene disease 

associations for which the platform provides a reliability score (DisGeNET Score). This 

score ranges from 0 to 1 and takes into account the number and type of sources (level 

of curation, organisms), and the number of publications supporting the association (for 

further details we refer to the DisGeNet website). For this manuscript we extracted the 

associations with a score above 0.1. By this criterion, 34180 gene disease associations 

remain in the database. Associated diseases were mapped to the overlapping list of 

genes between sig-DMPs and sig-DMRs. 

 

Results 

Descriptive statistics of the study population 
Characteristics, inclusive anthropometric data, for the 48 children (6-11 years of age) 

are presented in Table 1. In accordance with the findings for the whole cohort [19], 

birth weights were significantly lower and measures of body composition (abdominal 

circumference, skin fold thickness), increase in BMI Z-score from birth to school age 

(delta BMI Z-score), diastolic blood pressure, and leptin and insulin concentrations at 

school age were significantly higher in the exposed PON1 192QR/RR group compared 

with the unexposed QR/RR group. For children with the QQ genotype, none of the 

variables was significantly affected by prenatal pesticide exposure (p>0.05). 

http://www.disgenet.org/
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Prenatal pesticide exposure induced methylation changes at CpG sites 

enriched in promoter regions in PON1 192R-allele carriers 
Genome-wide DNA methylation in whole blood samples from the children was 

determined by Illumina 450K methylation arrays and differential methylation patterns 

related to prenatal pesticide exposure and PON1 Q192R genotype were analysed. First 

differential methylation was detected at the single CpG-level using two multiple linear 

regression models (Figure 1). Because relative cell type composition was not associated 

with pesticide exposure and PON1 Q192R genotype (Supplementary Figure 4), 

differences in cellular composition were not further considered in the workflow of 

statistical analysis. Allowing effect modification by PON1 Q192R genotype, 767 sig-

DMPs were identified of which 128 were hypermethylated and 639 hypomethylated in 

prenatally exposed PON1 192R allele carriers (Supplementary Table 2). When effect 

modification was not assumed, and the interaction term between exposure and PON1 

genotype was removed from the models, 70 sig-DMPs of which 44 were 

hypermethylated and 26 hypomethylated in prenatally exposed PON1 192R-allele 

carriers were identified. Hierarchical clustering of the samples using all the sig-DMPs 

demonstrated a clear cluster of exposed PON1 192R-allele carriers (Figure 2A). 

Confidence in detection of differentially methylated genes was increased by further 

analysis showing that the changes in methylation were not restricted to single CpGs, 

but were often located in regions or so called DMRs. 5002 sig-DMRs were identified, of 

which 2264 were hypermethylated and 2738 hypomethylated in the exposed PON1 

192R carrier group compared to the other groups. Allowing interaction between 

exposure and PON1 Q192R genotype to determine sig-DMPs, 547 out of 767 sites (71.3 

%) were overlapping with the list of sig-DMRs. When effect modification was not 

considered, 57 out of 70 sites (81.4 %) were overlapping. 

The pyrosequencing methylation percentages confirmed the robustness of Illumina 

results. They showed significant positive correlations with the Illumina 450K beta-

values for all measured CpG probes (Figure 2B), except for two probes in the LEP gene 

(cg00840332 and cg26814075) which were borderline significant (p-value: 0.07 and 

0.16 respectively). The reason for this less strong correlation between the Illumina and 

pyrosequencing LEP methylation is probably the lower inter-individual methylation 

variability in this region compared to GPR39 and PPARG. 
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Table 1. Population characteristics and anthropometric data for 48 pre-pubertal children examined at 
age 6-11 years stratified by PON1 Q192R genotype and prenatal pesticide exposure. 

 PON1 192QQ PON1 QR/RR 

 unexposed exposed unexposed exposed 

N 11 13 12 12 

Female sex 5 (45.5) 7 (53.8) 6 (50.0) 6 (50.0) 

Maternal smoking in 

pregnancy  

0 (0) 0 (0) 0 (0) 0 (0) 

SESa 7/4(63.6/36.4) 3/10 

(23.1/76.9)* 

5/7 

(41.7/58.3) 

2/10 

(16.7/83.3) 

Birth weight (g) 3640 (2600; 

5412) 

3382 (2750; 

4573) 

3789 (2984; 

4345) 

3500 (2900; 

3914)* 

Gestational age (days) 276 (257; 291) 283 (265; 295) 283 (261; 298) 281 (266; 

291) 

Age (years) 7.6 (6.2; 9.8) 8.4 (6.7; 10,0) 7.8 (6.6; 9.5) 7.7 (7.1; 9.4) 

Height (cm) 133.3 (117.3; 

145.2) 

130.3 (109.7; 

139.2) 

130.9 (113.7; 

149.1) 

128.6 (119.3; 

142,5) 

Weight (kg) 30.9 (18.7; 38.0) 28.3 (18.0; 

30.7) 

26.3 (19.9; 

36.5) 

27.4 (19.5; 

37.8) 

BMI (kg/m2) 16.2 (13.7; 20.5) 15.3 (14.9; 

18.3) 

15.5 (13.8; 

16.9) 

15.7 (13.8; 

19.7) 

BMI Z-scores 0.66 (-1.03; 3.21) -0.18 (-0.80; 

1.49) 

-0.04 (-1.31; 

0.89) 

-0.01 (-0.98; 

3.14) 

Delta BMI Z-score since 

birth 

-0.45 (-2.15; 2.97) -0.71 (-2.57; 

1.87) 

-0.56 (-2.52; 

1.03) 

0.95 (-2.08; 

2.97)* 

Abdominal circumference 

(cm) 

60.4 (52.0; 75.8) 58.7 (52.1; 

66.8) 

58.3 (52.0; 

68.1) 

60.8 (51.8; 

70.6)* 

Sum of four skin folds 

(mm) 

38.4 (27.1; 85.4) 33.6 (25.4; 

54.5) 

34.0 (20.2; 

45.2) 

44.6 (28.8; 

72.0)* 

Systolic blood pressure 

(mmHg) 

98.7 (93.7; 110.4) 97.2 (84.3; 

105.3) 

99.7 (84.7; 

106.8) 

101.7 (91.0; 

108.6) 

Diastolic blood pressure 

(mmHg) 

54.7 (46.0; 69.9) 56.2 (46.0; 

62.0) 

56.3 (49.3; 

69.1) 

63.0 (57.3; 

73.1)** 

Leptin (ng/ml)  1.47 (0.70; 9.18) 4.40 (0.60; 

15.29) 

1.41 (0.67; 

5.90) 

4.69 (1.79; 

12.25)** 

Insulin (ng/ml) 0.36 (0.22; 1.15) 0.52 (0.23; 

2.55) 

0.34 (0.16; 

1.62) 

1.11 (0.24; 

7.10)* 

Paraoxonase activity 

(nmol/min/ml) 

27.5 (9.9; 38.0) 30.9 (21.0; 

38.9) 

58.6 (41.9; 

68.7) 

59.6 (50.3; 

71.5) 

Values are presented as median (5-95 percentiles) for continuous variables and as n (%) for categorical 
variables. 

aSES: Socioeconomic status (social class 1-3/4-5). Differences between unexposed and exposed children 
for each PON1 Q192R genotype were tested using Mann-Whitney U-test for continuous variables and 
Fishers exact test (dichotomous variables) or Likelihood Ratio (categorical variables with > 2 categories). 
* p-value < 0.05, ** p-value < 0.01 
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In accordance with the Illumina results, the pyrosequencing LEP methylation values 

were not associated with pesticide exposure and/or PON1 Q192R genotype. 

Furthermore, the serum leptin concentrations were not correlated with LEP 

methylation status (data not shown). For GPR39, the region analysed with 

pyrosequencing contained three Illumina cg-probes (cg17172683, cg11552903 and 

cg18444763), which showed a high correlation (r>0.78) between the Illumina beta-

values and pyrosequencing methylation percentages. For most CpGs in the 

pyrosequencing region we could verify a significant exposure effect and in each CpG 

site prenatally exposed children with the QR/RR genotype had the lowest mean 

methylation value (Supplementary Table 3 and Supplementary Figure 5). In the PPARG 

promoter a region was selected containing one Illumina cg-probe (cg01412654). Also 

here the correlation between the 450K Illumina beta-values and the pyrosequencing 

methylation percentages was strong. However, DNA methylation in this region was not 

associated with pesticide exposure and/or PON1 Q192R genotype, and did not 

correlate with PON1 activity (data not shown). A region in the OPCML gene was found 

to be higher methylated in prenatal pesticide exposed children carrying the 

PON1 192R-allele. The significant interaction effect between pesticide exposure and 

PON1 Q192R genotype could be successfully verified by pyrosequencing. The 

pyrosequencing methylation values were significant higher methylated in exposed 

children compared to unexposed children carrying the PON1 192R-allele for most of 

the CpG sites in the region.  

Next, we questioned whether the sig-DMPs were enriched or depleted in a specific 

genomic location (Figure 2C). Sig-DMPs for which interaction between exposure and 

PON1 Q192R genotype was seen, were enriched in promoter regions (TSS200 and 

TSS1500, 200 bp and 1500 bp upstream of transcription start sites) and depleted in 

gene bodies, and 3’UTRs. This was also evident when we overlapped the sig-DMPs with 

different chromatin states, where we observed enrichment in active and poised 

promoters, while DMPs were depleted in regions like transcriptional elongation, weak 

transcribed and heterochromatin regions. Furthermore, DMPs were significantly more 

located in CpG-islands and less observed in CpG-poor regions. Sig-DMPs found in the 

models without an interaction term were not found to be enriched or depleted in a 

particular genomic region. 

We also looked for enrichment in TFBS using available chromatin immunoprecipitation 

(ChIP) ENCODE data from the UCSC genome browser. 39 of the 161 TFBS were 

significantly enriched for the model with interaction (Bonferroni adjusted P-value < 

0.05) while no enrichment was found for the sig-DMPs found in the model without 

interaction (Supplementary Table 4).  
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Figure 2: DNA methylation effect of prenatal pesticide exposure. A) Heatmap of the methylation values 
from the sig-DMPs showing a clear cluster of prenatal pesticide exposed PON1-192 R-carrier samples 
(orange group). Hierarchical clustering is based on the euclidean distance and average linkage metric. 
Higher methylation values are colored in yellow, while lower methylation values are colored in blue. B) 
Correlation between the Illumina 450K beta-values and the pyrosequencing methylation percentages. The 
Pearson correlation coefficient for each CpG probe is indicated between brackets. CpG probes 
cg00840332, cg19594666 and cg26814075 are located in the LEP gene, cg17172683, cg11552903 and 
cg18444763 in the GPR39 gene, cg01412654 in the PPARG gene, and cg06908202 and cg16919708 in the 
OPCML gene. C) Genomic location of sig-DMPs. DMPs were mapped to gene elements (top), CGIs (middle) 
and chromatin state segmentations (bottom). Asterisks indicate significant enrichment or depletion in 
comparison with all Illumina probes (gray bars) measured by the Fisher’s Exact test (P-value < 0.05).  

 

DNA Methylation differences were enriched for genes involved in neuro-

endocrine signalling pathways 
Overlapping the list of sig-DMPs with the list of sig-DMRs we obtained a robust and high 

confidence list of differentially methylated genes (N = 446). This list was used as an 

input for IPA. The top enriched canonical pathways (based on P-value) were dopamine-

DARPP32 feedback cAMP signalling, corticotrophin releasing hormone signalling, nNOS 

signalling in neurons, CDK5 signalling, and neuregulin signalling (Table 2). In the context 

of this manuscript, other significantly enriched pathways such as mTOR signalling (rank 

9, -log(P-value) = 1.85) and type II diabetes mellitus signalling (rank 16, -log(P-value) = 

1.51) are also highly relevant.  
 

Table 2. Significant enriched Ingenuity canonical pathways.  

Ran

k 

Ingenuity canonical pathways -log(P-

value) 

Ratio Hyper-genes Hypo-genes 

1 Dopamine-DARPP32 Feedback 

in cAMP Signalling 

3.98 0.07 CREB5, 

PPP2R2B, 

CACNA1A 

KCNJ2, NOS1, GRIN2A, 

GUCY1B3, ADCY2, PRKCH, 

GNAI3, CACNA1D, PRKCG 

2 Corticotropin Releasing 

Hormone Signalling 

2.74 0.07 CREB5 JUND, NOS1, GUCY1B3, 

ADCY2, PRKCH, GNAI3, PRKCG 

3 nNOS Signalling in Neurons 2.61 0.11 CAPN3 NOS1, GRIN2A, PRKCH, PRKCG 

4 CDK5 Signalling 2.41 0.07 PPP2R2B, 

CACNA1A 

CDK5R1, NGFR, ITGA2, LAMB1, 

ADCY2 

5 Neuregulin Signalling 2.06 0.07 EGFR, ERBB3 CDK5R1, ITGA2, PRKCH, PRKCG 

6 PCP pathway 2.06 0.08 
 

JUND, FZD10, RSPO3, WNT7B, 

WNT9B 

7 Maturity Onset Diabetes of 

Young (MODY) Signalling 

2.03 0.14 CACNA1A GAPDH, CACNA1D 

8 Regulation of eIF4 and p70S6K 

Signalling 

2.02 0.05 PPP2R2B, FAU RPS16, RPS13, RPS10, ITGA2, 

IRS1, RPS19 

9 mTOR Signalling 1.85 0.05 PPP2R2B, FAU RPS16, RPS13, RPS10, IRS1, 

PRKCH, RPS19, PRKCG 

10 Amyotrophic Lateral Sclerosis 

Signalling 

1.84 0.06 CAPN3, 

CACNA1A 

NOS1, GRIN2A, NEFM, 

CACNA1D 
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11 NF-κB Activation by Viruses 1.8 0.07 
 

ITGAV, CR2, ITGA2, PRKCH, 

PRKCG 

12 Phosphatidylethanolamine 

Biosynthesis III 

1.7 1 
 

PTDSS2 

13 Role of CHK Proteins in Cell 

Cycle Checkpoint Control 

1.61 0.07 PPP2R2B, RFC4 E2F3, CHEK1 

14 Synaptic Long Term Depression 1.6 0.05 IGF1R, 

PPP2R2B 

NOS1, GUCY1B3, PRKCH, 

GNAI3, PRKCG 

15 ErbB Signalling 1.53 0.06 EGFR, ERBB3 NCK2, PRKCH, PRKCG 

16 Type II Diabetes Mellitus 

Signalling 

1.51 0.05 PKM NGFR, ADIPOR2, IRS1, PRKCH, 

PRKCG 

17 G Beta Gamma Signalling 1.49 0.06 EGFR ADCY2, PRKCH, GNAI3, PRKCG 

18 p70S6K Signalling 1.48 0.05 EGFR, 

PPP2R2B 

IRS1, PRKCH, GNAI3, PRKCG 

19 Role of Osteoblasts, Osteoclasts 

and Chondrocytes in 

Rheumatoid Arthritis 

1.47 0.04 
 

FZD10, NGFR, SMAD5, 

WNT7B, ITGA2, IL1RAP, 

WNT9B, TCF7L2, NFATC1 

20 Molecular Mechanisms of 

Cancer 

1.46 0.04 
 

RASGRF1, ITGA2, WNT7B, 

IRS1, E2F3, GNAI3, FZD10, 

SMAD5, ADCY2, WNT9B, 

PRKCH, CHEK1, PRKCG 

21 nNOS Signalling in Skeletal 

Muscle Cells 

1.45 0.13 CAPN3 NOS1 

22 Factors Promoting 

Cardiogenesis in Vertebrates 

1.42 0.05 
 

FZD10, SMAD5, PRKCH, 

TCF7L2, PRKCG 

23 RAR Activation 1.41 0.04 
 

REL, ERCC2, SMAD5, NR2F1, 

ADCY2, PRKCH, RARB, PRKCG 

24 Choline Degradation I 1.4 0.5 CHDH 
 

25 Sulfate Activation for 

Sulfonation 

1.4 0.5 PAPSS2 
 

26 Mismatch Repair in Eukaryotes 1.4 0.13 RFC4 MLH1 

27 Glioma Signalling 1.37 0.05 IGF1R, EGFR PRKCH, E2F3, PRKCG 

28 Netrin Signalling 1.36 0.08 
 

UNC5C, NCK2, NFATC1 

29 Cellular Effects of Sildenafil 

(Viagra) 

1.33 0.05 CACNG6, 

CACNA1A 

KCNN1, GUCY1B3, ADCY2, 

CACNA1D 

30 GNRH Signalling 1.33 0.05 EGFR, CREB5 ADCY2, PRKCH, GNAI3, PRKCG 

31 Protein Kinase A Signalling 1.31 0.03 HIST1H1A, 

CREB5 

PTPN9, TIMM50, NFATC1, 

GNAI3, AKAP12, NGFR, 

PTP4A1, ADCY2, PRKCH, 

TCF7L2, PRKCG 

32 Ovarian Cancer Signalling 1.31 0.05 EGFR FZD10, WNT7B, MLH1, 

WNT9B, TCF7L2 

33 Colorectal Cancer Metastasis 

Signalling 

1.3 0.04 EGFR ADRBK1, APPL1, FZD10, 

WNT7B, MLH1, ADCY2, 

WNT9B, TCF7L2 

34 Agrin Interactions at 

Neuromuscular Junction 

1.3 0.06 EGFR, ERBB3 ITGA2, LAMB1 

35 Growth Hormone Signalling 1.3 0.06 IGF1R IRS1, PRKCH, PRKCG 
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DNA methylation (partially) mediates associations between pesticide 

exposure and higher leptin concentrations, body fat content, and delta 

BMI z-scores 
The list of genes that overlaps between sig-DMPs (as identified by the interaction 

model) and sig-DMRs was also used as input for mediation analysis. We identified 

respectively 20, 31, and 45 candidate methylation marks that (partially) mediate the 

effect between pesticide exposure and serum leptin concentrations; delta BMI Z-score; 

and body fat content (Supplementary Table 5). Based on applied cut-off criteria, we 

were not able to identify methylation marks that mediate the effect on BMI Z-score. 

Currently known gene disease associations allowed to extract mediators that were 

reported to be involved in development of weight gain/obesity, insulin 

resistance/diabetes, CVD, and/or fetal growth retardation. This subset of mediators is 

given in Table 3. Based on Baron and Kenny’s steps to analyze mediation, the 

association between pesticide exposure and delta BMI Z-score was partially mediated 

by hypomethylation of UQCRC2, MTNR1B and GRIN2A, and by hypermethylation of 

FABP4 and LRP8. Methylation of UQCRC2 and LRP8 was also a partial mediator in the 

association between pesticide exposure and body fat percentage. LRP8 was also found 

to mediate the association between pesticide exposure and serum leptin 

concentration. The p-value for significance of the causal mediation effect is included in 

table 3 and was below 0.1 for all mediators except for UQCRC2 and GRIN2A. 

 
Table 3. Methylation marks that partially mediate the association between pesticide exposure and leptin 
and body fat accumulation in PON1-192 R-allele carriers.  
 

Outcome IlmnID nearest 
Gene 
Symbol 

Gene Name Direction 
of 
methylatio
n in 
Exposed R 
carriers 

Diseases Significan
ce of 
causal 
mediation 
effect (p-
value) 

Leptin cg03366858 LRP8 low density 
lipoprotein 
receptor-
related 
protein 8, 
apolipoprotei
n e receptor 

HYPER Myocardial Infarction 
(0.22) | Nerve 
Degeneration (0.21) | 
MYOCARDIAL 
INFARCTION, 
SUSCEPTIBILITY TO, 1 
(finding) (0.2) 

0.02 

Leptin cg18202502 LRP8 low density 
lipoprotein 
receptor-
related 
protein 8, 
apolipoprotei
n e receptor 

HYPER Myocardial Infarction 
(0.22) | Nerve 
Degeneration (0.21) | 
MYOCARDIAL 
INFARCTION, 
SUSCEPTIBILITY TO, 1 
(finding) (0.2) 

0.024 

Delta 
BMI Z-
score 

cg00810945 UQCRC2 ubiquinol-
cytochrome c 
reductase 

HYPO MITOCHONDRIAL 
COMPLEX III 
DEFICIENCY, NUCLEAR 

0.138 
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core protein 
II 

TYPE 5 (0.41) | 
Obesity (0.21) 

Delta 
BMI Z-
score 

cg06337557 MTNR1B melatonin 
receptor 1B 

HYPO Diabetes Mellitus, 
Type 2 (0.26) | 
Polycystic Ovary 
Syndrome (0.21) | 
Child Development 
Disorders, Pervasive 
(0.21) | Acute 
pancreatitis (0.1) 

0.032 

Delta 
BMI Z-
score 

cg14152613 FABP4 fatty acid 
binding 
protein 4, 
adipocyte 

HYPER Carcinoma (0.21) | 
Mammary Neoplasms, 
Experimental (0.21) | 
Mammary Neoplasms, 
Animal (0.21) | Insulin 
Resistance (0.1) | 
Erectile Dysfunction 
(0.1) | Diabetes 
Mellitus, 
Experimental (0.1) 

0.068 

Delta 
BMI Z-
score 

cg15134033 GRIN2A glutamate 
receptor, 
ionotropic, N-
methyl D-
aspartate 2A 

HYPO Epilepsy (0.21) | 
Colorectal Neoplasms 
(0.21) | Epilepsy, 
Rolandic (0.21) | 
Melanoma (0.21) | 
Landau-Kleffner 
Syndrome (0.21) | 
Autistic Disorder 
(0.21) | Morphine 
Dependence (0.21) | 
Language 
Development 
Disorders (0.21) | 
EPILEPSY, FOCAL, 
WITH SPEECH 
DISORDER AND WITH 
OR WITHOUT MENTAL 
RETARDATION (0.21) | 
Speech Disorders 
(0.21) | Substance 
Withdrawal Syndrome 
(0.21) | Rolandic 
Epilepsy, Mental 
Retardation, And 
Speech Dyspraxia, 
Autosomal Dominant 
(0.2) | Reperfusion 
Injury (0.1) | Hypoxia-
Ischemia, Brain (0.1) | 
Sepsis (0.1) | Fetal 
Growth Retardation 
(0.1) | Central 
Nervous System Viral 
Diseases (0.1) | 
Placental Insufficiency 
(0.1) 

0.144 
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Delta 
BMI Z-
score 

cg18202502 LRP8 low density 
lipoprotein 
receptor-
related 
protein 8, 
apolipoprotei
n e receptor 

HYPER Myocardial Infarction 
(0.22) | Nerve 
Degeneration (0.21) | 
MYOCARDIAL 
INFARCTION, 
SUSCEPTIBILITY TO, 1 
(finding) (0.2) 

0.026 

Bodyfat cg00810945 UQCRC2 ubiquinol-
cytochrome c 
reductase 
core protein 
II 

HYPO MITOCHONDRIAL 
COMPLEX III 
DEFICIENCY, NUCLEAR 
TYPE 5 (0.41) | 
Obesity (0.21) 

0.174 

Bodyfat cg03366858 LRP8 low density 
lipoprotein 
receptor-
related 
protein 8, 
apolipoprotei
n e receptor 

HYPER Myocardial Infarction 
(0.22) | Nerve 
Degeneration (0.21) | 
MYOCARDIAL 
INFARCTION, 
SUSCEPTIBILITY TO, 1 
(finding) (0.2) 

< 0.001 

Bodyfat cg18202502 LRP8 low density 
lipoprotein 
receptor-
related 
protein 8, 
apolipoprotei
n e receptor 

HYPER Myocardial Infarction 
(0.22) | Nerve 
Degeneration (0.21) | 
MYOCARDIAL 
INFARCTION, 
SUSCEPTIBILITY TO, 1 
(finding) (0.2) 

< 0.001 

Only the subset of genes for which associations with metabolic disease have been reported is listed. 
DisGeNET Score – indicating reliability of the gene disease associations - is included between brackets. 

 

DNA methylation at the PON1 promoter is affected by the PON1 -108CT 

SNP (rs705379) and negatively correlated with paraoxonase 1 activity 
Beside the genome-wide DNA methylation effects of the PON1 Q192R genotype, we 

also observed a wide variation in DNA methylation in the PON1 promoter itself for nine 

Illumina cg-probes. Prenatal pesticide exposure and/or PON1 Q192R genotype did not 

affect PON1 promoter methylation status. However, another polymorphism (rs705379, 

PON1 -108CT) in the promoter region of PON1 could explain a large extent of this 

variation (Figure 3). Individuals homozygous for the T-allele showed higher methylation 

values compared with the homozygous C-allele carriers. As expected, heterozygous 

individuals had an intermediate methylation value. Furthermore, the paraoxonase 1 

activity was significantly associated with DNA methylation in the PON1 promoter 

region, with higher methylation values resulting in lower paraoxonase 1 activity (Figure 

4). PON1 Q192R genotype had the strongest effect on PON1 activity, while variation in 

PON1 promoter methylation led to a smaller but significant effect on PON1 activity.  
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Figure 3: Association between PON1 methylation and PON1 C-108T SNP. Individuals homozygous for the 
T allele showed higher methylation values (beta-values) as compared with C allele carriers. P-values shown 
are those from the one-way ANOVA analysis. 

 

Discussion 
We found that prenatal pesticide exposure was associated with a differential DNA 

methylation profile in children carrying the PON1 192R-allele compared to children 

with the PON1 192QQ genotype and unexposed children. 767 sig-DMPs were identified 

of which 128 were hypermethylated and 639 hypomethylated in prenatally exposed 

PON1 192R-allele carriers. The profiles of PON1 192R-allele carriers clustered together. 

As far as we know, our study is the first one to demonstrate a link between epigenetics 

and genetic susceptibility towards pesticide exposure in fetal life. Our study supports a 
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linkage of a differential methylation pattern and higher body fat content and serum 

leptin concentrations in school age children dependent on both PON1 Q192R genotype 

and prenatal pesticide exposure.  

 

 
Figure 4: Association between PON1 activity and PON1 methylation. The P-values of the main effect for 
methylation are displayed using the linear model PON1 activity ~ M-value + PON1-192 genotype + sex. Red 
colored samples are PON1 192 R-allele carriers and samples in blue are children with the PON1 192QQ 
genotype. 

 

The majority of the detected sig-DMPs were hypomethylated in exposed children with 

the PON1 192QR/RR genotype. Interestingly, these DMPs were mainly located in gene 

promoters, CpG-islands and TFBSs, suggesting a possible direct link with gene 

expression. To increase the confidence of our findings we also screened for DMRs. Most 
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of the single CpG-sites were part of a DMR suggesting that these were independent of 

technical variation and could be considered as reliable.  

Technical reliability of the outcomes from the 450K Illumina methylation array was 

successfully confirmed by bisulfite pyrosequencing of corresponding CpG probe regions 

of four selected genes, i.e. LEP, PPARG, GPR39 and OPCML for which corresponding 

probes were available.  

LEP was chosen because we previously found leptin to be a potential mediator of the 

association between prenatal pesticide exposure and body fat accumulation in children 

with the PON1 192R-allele [20]. In addition, multiple studies demonstrated associations 

between LEP DNA methylation and BMI, birth weight and cholesterol concentrations 

[42-44]. LEP was also found to be differentially methylated in the offspring of mothers 

suffering from the Dutch winter famine [45]. However, our pyrosequencing results did 

not demonstrate a correlation between leptin DNA methylation and leptin serum 

concentrations, and prenatal pesticide exposure was not associated with changes in 

leptin DNA methylation. This suggests that the higher leptin concentration observed in 

exposed children with the R-allele is not due to a direct effect on DNA methylation of 

the leptin gene itself. Another gene whose methylation was confirmed by 

pyrosequencing was PPARG, a nuclear receptor controlling the expression of genes 

involved in lipid storage and glucose metabolism and target for obesogenic compounds 

[50-53]. Furthermore, PPARγ is involved in the regulation of PON1 expression [54-56]. 

However, we did not find a correlation between PPARG DNA methylation and PON1 

activity (data not shown). In our dataset, prenatal pesticide exposure did not seem to 

change PPARG methylation levels irrespective of PON1 Q192R genotype.  

Reduced GPR39 DNA methylation observed in prenatally pesticide exposed R-allele 

carriers was confirmed with pyrosequencing. GPR39 is receptor for obestatin 

(belonging to the ghrelin receptor family), involved in regulation of appetite and 

glucose homeostasis [63, 64] and associated with obesity [49]. Furthermore, GPR39 

knock-out mice showed an increased fat accumulation due to changes in lipolysis and 

energy expenditure [49]. So, mis-regulation of this gene due to methylation changes 

might lead to an obese phenotype. To our knowledge, no other study has yet reported 

methylation differences in this region associated with obesity or metabolic disorders, 

or showed links with pesticide exposure.  

The higher methylation values of the OPCML DMR in exposed children carrying the 

PON1 192R-allele could be confirmed by pyrosequencing. OPCML encodes for a protein 

belonging the IgLON family. OPCML was shown to be a tumor suppressor and 

inactivated by DNA methylation in a variety of cancer types [65-68]. There is also a link 

with metabolic diseases, as SNPs in this gene were found to be associated with obesity 
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traits, coronary artery calcified plaque and visceral adipose/subcutaneous adipose ratio 

[57-59]. 

Further analysis revealed that the differences in DNA methylation were most 

pronounced in genes involved in neuro-endocrine signalling pathways, including 

“dopamine-DARPP32 feedback in cAMP signalling”, “corticotropin releasing hormone 

signalling”, “nNOS signalling in neurons”, and “CDK5 signalling”. These pathways are 

important in the control of food intake and energy balance. Dopamine signalling, for 

example, is one of the key players in the reward pathway, also controlling food intake 

and preferences. Reduced dopamine signalling is assumed to induce overeating [69, 

70]. In mice, a high-fat diet during pregnancy resulted in altered gene expression and 

DNA methylation of the dopamine transporter gene in the offspring, leading to an 

increased preference for sucrose and fat [71]. Another study found similar results in 

prenatally stressed rats given a high fat-sucrose diet [72]. These studies suggest that 

prenatal and early life conditions may influence food intake and food preferences later 

in life through modulation of the dopamine pathway [73-77]. Organophosphate 

insecticides have been shown to modulate dopamine signalling [78]. Furthermore, low-

dose exposure of neonatal rats caused metabolic dysfunction resembling prediabetes 

and in adulthood exposed animals gained excess weight when fed a high fat diet 

compared to unexposed rats on the same diet [79].  

Corticotropin-releasing hormone (CRH) is a neuropeptide secreted in response to 

stress. However, a role for CRH in regulating energy balance and food intake has also 

been described [80-82] including a relation to the action of leptin [83]. 

Also NOS1 neurons are involved in energy balance and food intake [84-86]. Knock-out 

of NOS1 in leptin receptor- and NOS1-expressing hypothalamic neurons results in 

hyperphagic obesity, decreased energy expenditure and hyperglycemia in mice [85]. 

Interestingly, organophosphates have been shown to alter NOS1-expressing neurons 

during development in mice [87, 88].  

Neureguline 1 treatment in rodents has been shown to increase serum leptin 

concentrations, prevent weight gain and lower food intake. Hence, affecting this 

pathway may also change food intake and energy metabolism [89, 90].  

A limitation of this study is that the methylation profile is measured at the same time 

as health outcomes and causality as such cannot be proven. Some of the genes that 

relate to the sig-DMPs are involved in neuro-endocrine pathways that regulate appetite 

and energy balance but this study cannot rule out if these sig-DMPs are a consequence 

of alterations of food habits and physical activity among the exposed children with the 

PON1 192R-allele or an underlying mechanism. However, the mediation analysis 

suggested that some of the differentially methylated marks are on the mechanistic 

pathway between prenatal pesticide exposure and the measured outcomes. This result 
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suggests that, at least in some, CpG-sites a change in methylation might contribute to 

metabolic disturbances later in life. Furthermore, the association was not significant 

between pesticide exposure and BMI Z-score as such, but between pesticide exposure 

and delta BMI Z-score which integrates fat accumulation from birth and onwards to 

school age.  

Interestingly, some of the mediator marks could be linked to specific genes that were 

reported earlier to play a role in the development of weight gain/obesity, insulin 

resistance/diabetes, CVD, and/or fetal growth retardation: UQCRC2, MTNR1B, GRIN2A, 

FABP4 and LRP8. FABP4 encodes for a member of the fatty acid binding protein family 

regulating lipid trafficking, signalling and metabolism. Different studies have 

demonstrated the role of this protein in obesity, type 2 diabetes and atherosclerosis 

development [91-93]. In ApoE deficient mice with hyperhomocysteine FABP4 DNA 

methylation is reduced in the aorta compared to wild type mice, leading to a higher 

gene expression [94, 95]. UQCRC2 encodes a protein which is part of the ubiquinol-

cytochrome c reductase complex in the mitochondria. UQCRC2 was shown to be 

downregulated in individuals who were susceptible to weight gain and obesity 

development [96]. The melatonin receptor 1B (MTNR1B) has a main function in 

regulating circadian rhythm. Interestingly, several polymorphisms in the MTNR1B gene 

are associated with type 2 diabetes, fasting glucose concentration and insulin secretion 

[97-99]. GRIN2A encodes for a NMDA glutamate receptor subunit. Polymorphisms in 

the GRIN2A gene are associated with epilepsy and different neurological and mental 

disorders [100-104]. A decreased gene expression of GRIN2A in rats after intrauterine 

growth retardation suggests a possible role for this gene in fetal growth and 

development [105]. LRP8 encodes for a member of the LDL receptor family. Common 

polymorphisms in the LRP8 gene are associated with coronary artery disease, 

myocardial infarction and high birth weight [106-110]. Thus, the mediation analysis 

suggests a mechanistic role of epigenetics in the development of an adverse metabolic 

risk profile among the prenatally exposed children with the PON1 R-allele as previously 

reported for these children [19] and confirmed in the selected subset of children.  

A few studies have investigated associations between PON1 genotype and metabolic 

disturbances in children. A recent study showed a higher risk of insulin resistance 

(HOMA-IR) in Mexican children with the RR-genotype as compared to children with the 

QQ or QR genotypes although BMI did not differ between the groups [111]. Among 

Mexican-American children from an agricultural community in California a trend of 

increased BMI Z-scores with increased number of PON1 192Q alleles was seen [112]. 

However, potential interactions between PON1 genotype and prenatal exposure to 

pesticides, or other environmental contaminants, were not investigated in these 

studies. In our cohort, unexposed QQ-homozygote children also tended to have higher 
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body fat content than unexposed R-carriers but prenatally pesticide exposed children 

with the R-allele accumulated more fat during childhood and had a more unhealthy 

metabolic risk profile at school age than unexposed children and exposed children with 

the QQ genotype [19].  

We also demonstrated that methylation in the PON1 promoter itself is affected by a 

SNP (PON1 -108CT, rs705379). In addition, PON1 methylation values were negatively 

associated with paraoxonase 1 activity. These results are in agreement with the 

outcome of a recent study from Huen and colleagues [113]. They found methylation in 

the same nine CpG sites to be associated with the PON1 -108CT polymorphism and also 

reported an inverse association with arylesterase (AREase) activity as a measure of 

PON1 expression, both in newborns and 9-years old children. Furthermore, they 

demonstrated that PON1 methylation mediates the relationship between PON1 

expression and the promoter -108 genotype. However, the effect of prenatal pesticide 

exposure on the health outcomes shown in table 1 was not modulated by PON1 -108CT 

genotype (data not shown).  

Our findings indicate that the higher vulnerability among children with the R-allele 

towards prenatal pesticide exposure might be mediated by genotype-specific 

epigenetic alterations. However, a limitation of this study is that we cannot identify 

individual pesticides related to these findings, since the study design did not allow bio-

monitoring of pesticide exposure in the mothers, and the exposure classification of the 

mothers encompassed more than 100 pesticides used in different mixtures [11].  

However, the existence of mixed exposure is a real-world situation, and the longitudinal 

design, the blinded exposure classification, and the blinded clinical examinations and 

genotyping minimized the possible impact of exposure misclassification and bias. 

Since PON1 is known to detoxify some organophosphate insecticides (e.g., chlorpyrifos) 

and these substances were frequently applied in the mothers working areas, 

organophosphate insecticides could be assumed to be responsible for the observed 

effects. However, the mechanism is unclear and does not seem to be related to the 

hydrolysis efficiency, since R-carriers have higher paraoxonase activity than QQ 

homozygotes. Besides, at relatively low exposure levels, as in this study, the capacity 

to detoxify organophosphates is considered to be independent of the PON1 Q192R 

genotype [114] and furthermore serum PON1 activity was reported to be low in 

newborns and may be even lower before birth, as indicated by lower activity in 

premature compared to term babies [115, 116]. Thus, differences in fetal detoxification 

of pesticides related to PON1 genotype might not be a likely explanation of the 

exposure-related difference in methylation pattern between children with the QR/RR 

and QQ genotype.  
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Another limitation of the study is that DNA methylation analyses were performed in 

white blood cells as surrogates for the target tissues. We do not know whether the 

differences in DNA methylation patterns found in blood mirror a similar change in 

adipose tissue for example. A recent study from Huang et al. demonstrated several 

potential limitations in using methylation profiles in blood to mirror the corresponding 

profile in target tissues by comparing paired blood and adipose tissue methylation 

profiles [117]. Furthermore, the composition of blood cell types may be variable and 

might affect the DNA methylation analyses. In our dataset prenatal pesticide exposure 

and/or PON1 Q192R genotype did not affect the relative blood cell counts determined 

by the reference-based method of Houseman. Cell counts were not included in the 

models due to the small sample size of the study. Since we found that some of the 

health effects (mainly leptin) were associated with cell type count (Supplementary 

Table 6), we cannot exclude that the results of the mediation analysis were biased by 

differences in cell type composition. Based on the data of Reinius et al. [39], 

methylation of only two CpG probes (cg18202502 and cg15134033) in table 3 were 

slightly associated with cell types (data not shown). Methylation in the other CpG 

probes in table 3 were not significantly different between the blood cell types. 

Finally, the small number of subjects included in this exploratory study is a clear 

limitation because of the limited statistical power. Despite these limitations, our 

findings suggest that DNA methylation might be a link between prenatal pesticide 

exposure and a cardio-metabolic risk profile in children carrying the PON1 192R-allele. 

The findings deserve further investigation in a larger study with quantitative data on 

pesticide exposure. Whether this DNA methylation pattern is unique to pesticide 

exposure or is shared by other adverse prenatal environmental factors also needs 

further investigation.  

In summary, our data indicate that DNA methylation may be an underlying mechanism 

explaining an adverse cardio-metabolic risk profile in prenatally pesticide exposed 

children carrying the PON1 192R-allele.  
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Supplementary Information 

Supplementary tables 1 to 6 can be found in following dropbox folder: 

https://www.dropbox.com/sh/d9lq9mipqkoezx3/AAC9RCXgWS7P6DS71ybJqWNJa?dl

=0  

 

Supplementary Table 1: Primer Sequences. 

 

Supplementary Table 2: Sig-DMPs overlapping with DMRs (interaction model). 

 

Supplementary Table 3: Outcome DMR pyrosequencing. 

 

Supplementary Table 4: Enrichment of TFBS for DMPs significant in the interaction 

model. 

 

Supplementary Table 5: Outcome statistics and gene disease associations of (partial) 

mediators between pesticide exposure and bodyfat measures in PON1-QR allele 

carriers. 

 

Supplementary Table 6: Association between estimated blood cell counts and health 

outcomes. 

 

 

https://www.dropbox.com/sh/d9lq9mipqkoezx3/AAC9RCXgWS7P6DS71ybJqWNJa?dl=0
https://www.dropbox.com/sh/d9lq9mipqkoezx3/AAC9RCXgWS7P6DS71ybJqWNJa?dl=0
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Supplementary Figure 1: PCA before and after batch effect correction for Sentrix_ID and processing date 
using ComBat. 
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Supplementary Figure 2: Associations between the first eight principal components and covariates 
before and after ComBat batch correction. Associations between principal components and Sentrix_ID 
were measured using the Kruskal-Wallis test. Associations between principal components and processing 
date, exposure and PON1 Q192R genotype were measured using the two-sided Wilcoxon sum rank test. 
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Supplementary Figure 3: Genomic location of the pyrosequencing assays represented as a UCSC genome 
browser track. The first track indicates the sequence analysed by pyrosequencing (Seq_to_analyse). Other 
custom tracks include: CGIs, Dnase I hypersensitivity clusters, H3K27ac histone marks, TFBSs and the 
Illumina 450K methylation probes. A) LEP assay B) GPR39 assay C) PPARG assay and D) OPCML assay. 

 

 

 
Supplementary Figure 4: Relative cell type contribution estimated by the Houseman approach. 
Differences in cell type composition between the exposure groups were measured using one-way ANOVA. 
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Supplementary Figure 5: Outcome of GPR39 DMR pyrosequencing. Boxplots showing methylation 
differences between the exposure groups in the GPR39 pyrosequencing region. P-values shown are those 
of the exposure effect.  
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Abstract |Epigenetic DNA methylation changes are hypothesized to be one mechanism 

through which early life stress experiences shape adverse neurodevelopment across 

social, emotional, behavioral, physiological and neurobiological health outcomes 

associated with psychosocial deprivation during institutional care. In this study we 

characterized genes exhibiting differential methylation and gene expression changes in 

saliva, associated with changes in cortisol levels during the Trier Social Stress Test 

(TSTT) in children enrolled in the Bucharest Early Intervention Project (BEIP). The latter 

is a unique randomized controlled trial of foster care compared to care as usual for 

children abandoned and placed in institutions at birth or early in life. We identified a 

set of 30 DMRs associated genes which are involved in nervous system and neuronal 

development, related to cognition, behavior and learning and psychological disorders. 

Further comparison with gene expression profiles before and after the TSTT identified 

a nuclear receptor coordinated stress dependent gene network, involving the 

glucocorticoid receptor. One of the genes with the highest correlation between TSST 

specific changes in cortisol levels, DNA methylation and gene expression was CALD1, a 

gene with established links to glucocorticoid stress responsiveness, neuronal migration 

and also the impact of cortisol stress hormones on neuronal morphology, dendritic 

spines and migration. Furthermore, chronic stress-induced shrinkage of dendritic spine 

subtypes has been shown to impair feedback mechanisms of the HPA-axis, cause 

deterioration of sensory functions and attrition of neuroplasticity. These findings 

revealed an important mechanistic link for CALD1 in the lasting neurodevelopmental 

impacts of early life stress. Our results offer an exciting glimpse into the potential utility 

of salivary diagnostics to define the underlying mechanisms through which early life 

adversity is biologically embedded and creates a unique opportunity to evaluate the 

impact of interventions on biological processes without invasive protocols and with 

methodology that can be utilized in remote locations and processed at later time 

points.  

 

Introduction 
Early severe psychosocial deprivation associated with institutional care has lasting 

negative impacts across social, emotional, behavioral, physiological, neurobiological 

and health outcomes. Substantial evidence indicates that providing children stable and 

sensitive caregiving can result in significant recovery, albeit at times partial and unequal 

across domains. While providing enhanced caregiving results in significant 

improvements not all children improve equally and the timing of when the change in 

caregiving occurs further influences long-term outcomes [1, 2]. Despite a substantial 
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body of research on the consequences of institutional care, and the benefits of foster 

care to mitigate lasting impacts, little is known about the molecular mechanisms that 

contribute to both the initial negative impacts and the positive cross-domain effects of 

improved caregiving [3, 4].   

Epigenetic changes, particularly methylation, are hypothesized to be one mechanism 

through which early life experiences, both negative and positive, influence 

development [5, 6]. Methylation refers to the addition of a methyl group to the DNA 

strand leading to conformational changes to the DNA structure and/or alterations to 

the accessibility of the DNA sequence to transcriptional machinery that converts the 

DNA sequence into RNA. The majority of studies exploring the epigenetic consequences 

of early adversity focus on the presence of methylation in specific regulatory regions of 

a gene, termed CGIs, where increased methylation predominately, but not exclusively, 

leads to decreased transcription. These changes in gene expression and subsequent 

differences in protein production are hypothesized to drive observed physiologic and 

developmental differences that result in the observed phenotypes associated with 

early adversity including changes to the regulation of the hypothalamic pituitary axis 

(HPA), increased risk of psychopathology, and negative health trajectories. However, 

to date, few studies have demonstrated the direct link between exposure to early 

adversity, alterations in methylation, differences in gene expression and their 

downstream contribution to identified phenotypes, representing a significant gap in 

our ability to mechanistically define how early adversity is biologically embedded.  

Preclinical rodent and non-human primate (NHP) studies have reported both gene 

specific and whole genome alteration in the methylome in association with early 

adverse caregiving [7-10]. More recent studies have reported similar alterations in gene 

specific methylation across rodent, NHP and humans suggesting that, in some cases, 

the epigenetic pathways altered by deviations from species expected caregiving are 

evolutionarily conserved [11]. To date five studies have examined DNA methylation 

differences specifically in association with institutional rearing, four exploring changes 

across the genome and one focused on methylation differences in stress related genes 

[12-16]. In the first small study, children with a variable history of institutional care 

were compared to children reared in typical homes. Small, but significant, methylation 

differences, in DNA extracted from whole blood, were found at 914 sites across the 

whole genome. Notably while the majority of these sites were hyper-methylated in 

children with a history of institutional care, a subset of sites were hypo-methylated. 

The very small sample size and heterogeneous nature of the previously institutionalized 

children suggests that replication is needed [12]. A second study comparing children 

internationally adopted from institutions in Eastern Europe or Russia to children 

matched for family income and education reared in their biological families also 
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reported methylation differences after removing invariant sites and correcting for cell 

type differences. Significant differences were limited to 30 sites in 19 genes, none of 

which were in the previously reported study and none that were linked directly to 

clinically significant outcomes [15]. Notably significant differences in the CD4T/CD8T 

cell ratios between institutionalized child and controls were found in both these 

participants and in a re-analysis of the subjects in the Naumova study. The authors 

noted that differences in cell types likely account for a substantial amount of 

differential methylation in studies that fail to account for this variability. This finding, 

notable on its own for the implications for inflammatory function in children with a 

history of institutional care, also highlights one recurrent challenge- potential 

differential methylation across cell types. A third whole methylome study, in buccal 

DNA, explored the link between methylation and the duration of institutional rearing, 

a factor known to substantially influence short and long-term outcomes [14]. Although 

again in a limited sample size (n=32 total), they did identify alterations across 9 CpG 

sites in CYP2E1, an abundantly expressed and multifunctional member of the 

cytochrome p450 super family. These altered methylation sites were not only different 

based on duration of institutional care but were also correlated with cognitive function 

and theory of mind, two common areas of lasting impact following institutional 

exposure. How altered methylation in this gene contributed to lasting negative 

neurodevelopmental outcomes remains uncertain although preclinical animal models 

suggest that stress exposure and decreased CYP2E1 levels may influence outcomes 

through serotonergic pathways [17]. A very recent genome-wide methylation study in 

infants (8-35 months of age) reared in institutions, detected 164 differentially 

methylated sites in blood compared to infants reared in biological families [16]. 

Furthermore, some of the epigenetic markers were also associated with adaptive 

behavior skills indicating a possible link between institutional care and behavioral 

deficits. 

Although whole genome studies have advantages, challenges facing studies in post-

institutionalized populations, specifically limited sample size and variability in both the 

duration of exposure to institutional care and subsequent caregiving after placement 

in foster or adopted families, indicate that alternative, ideally complimentary, 

approaches are warranted. One approach is to explore specific methylation changes in 

genes functionally related to aberrant outcomes in more homogenous post-

institutionalized populations, an approach utilized in a study by Non et al. [13]. The 

Bucharest Early Intervention Project (BEIP) is the only randomized controlled trial of 

foster care compared to care as usual for children abandoned and placed in institutions 

at birth or early in life. This prospective longitudinal study began when children were, 

on average, 22 months of age. Children were recruited from institutions in Bucharest 
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and randomized to a newly created foster care (FCG) or to continued institutional care 

(care as usual, CAUG). A group of children never institutionalized children (NIG) were 

recruited from the same maternity hospitals at baseline [18] and area schools at the 

age 8 [19]. In this study, DNA methylation in functional regions of SERT and FKBP5 were 

significantly correlated with the duration of institutional care where both genes 

demonstrated negative correlations between the percentage of time a child spent in 

institutional care and methylation [13]. Notably while again the number of individuals 

was limited (n=127), the sample size was significantly larger than the previous whole 

genome studies and targeted two genes with established links to cortisol reactivity, a 

phenotype that exhibited persistent group differences at age 12 in this cohort [20]. 

Despite this targeted approach methylation differences did not significantly correlate 

with group differences in cortisol reactivity, most likely because the genetic 

architecture of the acute cortisol response is multi-genetic in etiology with no individual 

gene contributing a large portion of the effect size. Although informative, these studies 

have been unable to directly link altered methylation with specific outcomes and none 

have examined associations with gene expression, the presumed downstream 

functional consequence of altered methylation.  

Methylation differences are hypothesized to influence outcomes through their down-

stream impact on gene expression and function. In preclinical animal models the ability 

to concurrently measure gene expression and methylation in target tissues (e.g. the 

brain) permits the direct examination of the correlation between altered methylation, 

gene expression and specific outcomes, an approach unavailable for the majority of 

human studies. Beyond the challenge of tissue accessibility, the potential differential 

patterns found across tissues creates another analytic issue as often the targeted 

phenotype cannot be concurrently measured within that same sample [21]. An ideal 

biological source would be easily obtainable in large volumes, contain DNA, RNA and 

protein products directly linked to a testable phenotype. Saliva represents a unique and 

under-utilized biospecimen for biological studies that meets these criteria. First, saliva 

is accessible unobtrusively from a wide range of participants, including vulnerable or at 

risk populations, acknowledging that collection methods may differ. Second, saliva can 

be replenished, thereby permitting repeated measurements across short and long 

periods of time. Third, salivary mRNA expression analysis has recently been established 

and evidence exists that, in some instances mRNA expression studies in saliva may be 

more applicable than studies in peripheral blood [21, 22]. Fourth, multiple analytes 

including immune markers (e.g salivary IgA, salivary alpha amylase) as well as endocrine 

markers (cortisol, testosterone, DHEA) are readily measurable in saliva and highly 

correlated with levels in peripheral blood. These findings suggest that one approach to 

establishing molecular mechanistic pathways would be to examine, within saliva, 
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concurrent DNA methylation, gene expression and protein levels. One marker with 

extensive validation in saliva that has been linked to altered methylation in several 

genes and exhibits both an acute response and diurnal variation impacted by early 

institutional rearing is cortisol. 

Several previous studies have reported associations between DNA methylation and 

cortisol levels [23]. For example, methylation levels in DNA from peripheral blood in 

spindle and kinetochore associated protein 2 (SKA2) gene were significantly associated 

with cortisol reactivity during a social stressor and also mediated the relationship 

between cortisol levels and childhood trauma exposure [24]. An additional study found 

that methylation in FKBP5 moderated the association between resistant attachment 

and cortisol reactivity in a group of 298 14-month-old infants [25]. Despite established 

evidence of the utility of the salivary RNA expressome to date no studies have 

examined concurrently salivary methylation, gene expression and cortisol. One 

previous study in adults revealed an association between cortisol response to a social 

stressor, and DNA methylation and gene expression of the glucocorticoid receptor (GR) 

gene in peripheral blood in individuals with post-traumatic stress disorder (PTSD) 

compared to healthy controls [26]. Unfortunately, no explanation for why cortisol was 

not also measured in blood was provided and the samples were not temporally 

collected limiting the ability to draw causal relationships despite efforts to define 

alterations at the level of DNA methylation and expression with cortisol levels.  

The number of studies utilizing salivary RNA are increasing, however, caveats both to 

the within individual variation and the integrity of RNA species remain [27]. One 

approach to minimize the confounding of random variation in expression is to measure 

RNA expression concurrently with a known protein product and ideally utilize repeated 

measures of the protein in association with RNA expression. Samples taken during 

paradigms that are expected to produce differences in physiologic processes would 

provide construct validity if the expression of genes involved in the regulation of that 

targeted physiologic processes were associated. The Trier Social Stressor Test (TSST) is 

a social evaluative threat paradigm that results in individual differences in cortisol 

expression that have been measured in both peripheral blood and saliva and reflect the 

reactivity of the hypothalamic pituitary axis (HPA) in response to stress [28, 29]. In 

children exposed to early institutional care significant differences in cortisol reactivity 

elicited in response to this paradigm exist [20]. Studies have shown high correlation 

between cortisol levels measured in peripheral blood and saliva, suggesting that 

changes in salivary composition are reflective of the physiological changes associated 

with activation of the HPA axis [29]. Studies examining the ability of salivary gene 

expression to predict group differences in cortisol levels and whether gene expression 

also was associated with group differences in methylation levels represents an 
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unprecedented opportunity to test both mechanism and the functional significance of 

methylation changes.  

As an important proof of concept and to take a needed next step toward defining 

mechanistic changes in gene expression that contribute to persistent physiologic 

differences following institutional rearing this study examined the association between 

exposure to institutional caregiving and both salivary DNA methylation and gene 

expression. Further, this study tested whether genes exhibiting differential methylation 

that were also correlated with gene expression levels demonstrated an association with 

cortisol levels collected concurrently during the TSST in children enrolled in the BEIP at 

age 12. The randomized prospective study design provides a unique opportunity for 

the exploration of the association between a well-characterized exposure to severe 

psychosocial deprivation and differential methylation and gene expression during a 

defined social stressor in saliva and critically how these differences related to 

concurrent physiologic changes in cortisol levels.  

 

Materials and methods 

Subjects 
Participants were a subgroup of children enrolled in the BEIP [18], a longitudinal 

randomized controlled trial of foster care compared to care as usual for children in 

Romanian institutions, described in detail elsewhere and conducted entirely in 

Romania [1, 30]. 136 children, between 6 and 31 months of age, residing in six 

institutions in Romania were initially enrolled (ever institutionalized, EIG), and 

following baseline assessments, randomly assigned to CAUG (n=68) or FCG (n=68). The 

foster care system utilized in this study was created specifically for this project as an 

intentional alternative to institutional care. The related ethical considerations have 

been described in detail [31, 32]. A reference group of children without any history of 

institutional rearing were recruited either from the same maternity hospitals in which 

the EIG were born or, for later recruitment, from the same schools. As mandated by 

Romanian law, the Commission on Child Protection provided informed consent for each 

of the child participants. Following randomization and placement of children in foster 

care, all subsequent decisions regarding placement were made by the child protection 

commissions in Romania. The Institutional Review Boards of Children’s Hospital of 

Boston, University of Maryland, and Tulane University approved this study.  

This study was based on data obtained from a subset of individuals selected initially for 

IQ (>60 at age 12) and completeness of data including completion of the entire TSST, 
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all time points of cortisol and saliva samples available and collection of RNA samples. A 

second level of selection occurred based on quality of RNA with participants who had 

a RIN value of less than 4 for either sample excluded due to concerns about quality 

control. RNA was collected and assayed on 29 individuals. Results of 4 individuals were 

excluded because of low RIN values and/or failed quality control on either the 

methylation or the expression data. No differences in percent time institutionalization, 

IQ or cortisol levels at any time point were found between those subjects included in 

this analysis and the larger study group. No significant differences in relevant variables 

were identified for subjects with failed analyses on either array or low-quality RIN and 

those included in the final analyses.  

 

Social Stressor Paradigm 
At age 12 individuals in the BEIP completed the TSST as well as a series of other tasks 

(Supplementary Figure 1) [20]. Participants arrived at the research facility in Bucharest 

in the afternoon around 1pm. Approximately 30 minutes after arrival, saliva samples 

were collected by passive drool for cortisol (cort 1) and DNA into a cryovial and RNA 

(RNA 1) using Oragene salivary RNA kits. Participants then completed three laboratory 

based procedures designed to elicit physiologic reactivity: (1) a passive peer evaluation 

task (2) a social evaluative threat task (TSST) a commonly used social stress paradigm 

known to induce cortisol reactivity and (3) a nonsocial frustration task that required 

active participation. Each set of tasks was followed by a five-minute recovery. Cortisol 

and RNA samples were collected at time points presented in supplementary figure 1. 

All samples were collected by passive drool through a plastic straw. For cortisol 

analyses all samples were frozen immediately at -20 degrees and shipped on dry ice to 

a laboratory in Boston where they were assayed using commercially available 

luminescence immunoassay kits (CLIA; IBL). Cortisol assay sensitivities and procedures 

are described more fully in a previous publication [20]. Salivary RNA sample were 

collected into Oragene RNA kits and frozen. Samples were also shipped on dry ice to 

the laboratory of Dr. Drury for subsequent analyses. DNA was extracted directly from 

the same cryovials as utilized for salivary cortisol levels.  

 

RNA extraction  
Saliva was collected using Oragene RNA self-collection kits (RE-100, DNA Genotek, 

Ontario, Canada) concurrent with expected cortisol baseline (Cort 1/RNA 1) and at 

expected peak cortisol following the TSST (Cort 3, RNA 2). RNA sample collection 

frequency was limited by cost. The two-time points were specifically chosen to capture 

baseline and peak cortisol levels in an effort to permit examination of fold change in 
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salivary RNA expression between baseline and expected peak with concurrent changes 

in cortisol levels. RNA was extracted from saliva according to the manufacturer’s 

protocol (DNA Genotek, Ontario, Canada). RNA was then assessed for integrity and 

purity using QuBit, Nanodrop and Agilent Bioanalyzer to determine RIN. 

 

DNA extraction 
Genomic DNA (gDNA) was extracted from 2 ml saliva using the Oragene OG-500 PrepIT 

kit (DNA Genotek, Ottawa, Canada) according to the manufacturer’s instructions. 

About 500 ng of gDNA was bisulfite converted using the EZ DNA methylation kit (Zymo 

Research, Cambridge Bioscience, Cambridge, UK) according to the manufacturer’s 

instructions. Bisulfite conversion and quality control was performed as previously 

described [33]. 

 

Genome-wide DNA methylation 

DNA methylation profiles were generated with Infinium HumanMethylation450 

BeadChip Array (Illumina, San Diego, CA, USA). 4 µl of bisulfite-converted DNA (~150 

ng) was used for the whole genome amplification reaction, enzymatic fragmentation, 

precipitation and resuspension in hybridization buffer. Subsequent steps of DNA 

methylation analysis were carried out according to the standard Infinium HD Assay 

Methylation Protocol Guide (Part #15019519, Illumina). The BeadChip images were 

captured using the Illumina iScan. The raw methylation intensities for each probe were 

represented as methylation β-values (ranging from 0, unmethylated, to 1, fully 

methylated) and extracted from GenomeStudio Methylation Module software without 

background correction and normalization.  

 

Genome-wide gene expression  
Total RNA was amplified and labelled to generate complementary RNA (cRNA) using 

the Quick Amp Labelling (two color) kit (Agilent Technologies) according to the 

manufacturer’s instructions. The single-stranded, labelled cRNA was purified with 

Qiagen’s RNeasy mini spin columns. Yield (at least 825 ng/sample) and specific activity 

were determined using a NanoDrop Spectrophotometer (NanoDrop Technologies). Cy3 

and Cy5 labelled samples showed a specific activity of >8 pmol/µg cRNA, above which 

the labelling reaction is considered successful by the manufacturer. Equal amounts 

(825 ng) of both samples were combined and competitively hybridized on 4x44K Whole 

Human Genome microarray slides (design 014850, Agilent Technologies) for 17 hours 

using the automated HS4800TM pro hybridization station (Tecan, Männedorf, 
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Switzerland) according to the manufacturer’s instructions. The arrays were scanned on 

an Agilent DNA microarray scanner (G2565BA) and processed using Agilent Feature 

Extraction Software (Version 10.7).  

 

DNA methylation analysis 

Raw data were imported into R environment using the RnBeads R package [34]. The R 

package MethylAid was used to identify bad quality samples, making use of the quality 

control probes present on the methylation array [35]. The default thresholds were used 

to define outlying samples. Outlying samples were removed for further analysis (n=5), 

leaving valid data of 22 subjects for further statistical analysis. RnBeads was further 

used to preprocess the Illumina 450K methylation data [34]. First, Illumina probes were 

filtered based on following criteria: probes containing a SNP within 3 bp of the analyzed 

CpG site, bad quality probes based on an iterative greedy cut algorithm using a 

detection p-value of 0.01 as a threshold for an unreliable measurement, and probes 

with missing values in at least one sample. Beta-values (ratio of methylated probe 

intensity versus total probe intensity) were subsequently within-array normalized using 

the BMIQ method [36]. Next, Illumina probes measuring methylation not at CpG sites 

and/or located at sex chromosomes were removed. Beta-values were transformed to 

M-values (M = log2(β/(1-β))) prior to further analyses. PCA was conducted to detect 

possible batch effects. Associations between the first eight principal components and 

possible batch effect covariates (sentrix ID and sentrix position) were measured using 

the Kruskall-Wallis test or the two-sided Wilcoxon sum rank test. Because we couldn’t 

find any significant association between the principal component scores and the 

covariates, we decided to not take batch into account in further analyses. For each 

sample the relative cell type contribution was measured using the reference-based 

approach described by Houseman and coworkers [37]. Reference methylomes of each 

blood cell type (granulocyte, CD4+ T-cell, CD8+ T-cell, B-cell, monocyte, NK-cell) were 

obtained from the study of Reinius et al. using the FlowSorted.Blood.450k R package 

[38]. Buccal epithelial reference methylomes were retrieved from the GEO dataset 

GSE48472. The analysis was limited to the 100,000 most variable sites. The top 500 cg-

probes associated with the cell types were used to estimate the relative cell type 

composition in each sample. Differences in cell type contributions between the groups 

were calculated using the one-way ANOVA test. Finally, differentially methylated 

probes (DMPs) were detected using the moderated t-test of the limma R package [39]. 

Gender was incorporated as a covariate in the linear model. P-values were corrected 

for multiple testing using the method of Hochberg and Benjamini. DMRs were 
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identified using the DMRcate R package [40]. Given sample size limitations the p-value 

cutoff was set manually to 0.00001 for individual CpG probes to determine DMRs. 

The most significant CpG site in each DMR was selected and annotated with gene 

elements (TSS1500, TSS200, 5’UTR, 1st exon, gene body, 3’UTR and intergenic), CpG-

island elements (N-shelf, N-shore, CpG-island, S-shelf, S-shore and open sea), and 

chromatin states based on UCSC genome browser data. Enrichment of the DMRs in a 

particular genomic region was measured using the Fisher’s exact test. DNA motif 

enrichment in the DMRs was performed using HOMER [41].  

The DMRs were mapped to their nearest gene, and pathway analysis was performed 

using IPA software. 

 

Gene Expression Analyses 
Analyses was done using GeneSpring software (Agilent Technologies) to preprocess the 

gene expression array data according to protocols used before by our group [42-44]. 

For each expression feature on the array, the log ratio of Cy3 and Cy5 was calculated. 

The raw log ratios were normalized using baseline transformation and Lowess 

normalization. The single channel intensities, Cy3 and Cy5, were quantile normalized 

before analyses. To find differentially expressed array features, a linear model with 

gender as covariate was build using the limma R package [39].  

 

DNA methylation and gene expression integration 
The Spearman correlation was calculated between the methylation value of the most 

significant Illumina probe in the DMR and the expression levels of the Agilent probes 

that mapped to their corresponding nearest gene. CpG probe – gene pairs with a 

correlation p-value below 0.05 were called significant. 

 

CALD1 methylation/expression association with cortisol levels 
Linear models controlling for gender were used to calculate the association between 

CALD1 DNA methylation or gene expression values and cortisol levels and cortisol 

changes after TSST.  

Spearman and Pearson correlations between methylation and gene expression. T-tests 

were used to examine group differences in methylation levels. Linear regression 

controlling for gender examined the association between baseline CALD1 expression 

and cortisol levels. Due to the significant limitations of sample size we did not stratify 

analyses by gender. 
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Results 

Sample characteristics 
The samples differed significantly between groups as expected with greater percent of 

the child’s life spent in institutional care through 12 years of age in the CAUG compared 

to the FCG. IQ was significantly different between all groups. There were no significant 

differences in the age at which the assessment occurred between the three groups.   

 
Table 1: Sample characteristics 

 CAUG (n=9) 

Mean (sd) 

FCG (n=7) NIG (N=6) 

Sex 5 males/4 female 3 males/4 females 3 males/3 female 

Age 12.02 (.02) 12.16 (.36) 12.22 (.38) 

IQ 70.8 (6.9) 80 (7.4) 100 (10.9) 

Percent Inst 55.5% (18.5-

99.5%), sd 31.9 

18.6% (8.9%-

52.3%) sd 15.2% 

0 

 

Institutional care is associated with DNA methylation changes which are 

partially remediated by foster care 

To test whether institutional care may have an epigenetic impact, we measured DNA 

methylation at >450,000 CpG sites in 9 institutionalized children (CAUG), 7 children in 

foster care (FCG) and 6 never-institutionalized children (NIG). When compared to NIG, 

DNA methylation in CAUG and FCG was not found to be significantly different in any of 

the CpG sites at a false discovery rate (FDR) of 5%. However, upon comparing the 

distribution of p-values, the effect size was clearly stronger in CAUG compared to FCG 

as can be seen by the higher density of small p-values in CAUG (Figure 1A).  

To support these results and simultaneously increase the power to detect significant 

differences, we focused on DMRs instead of single CpG sites. DMRcate was used to 

detect DMRs where CpG sites with a p-value lower than 0.00001 were defined as 

significant. In this way, 367 regions were found to be differentially methylated between 

CAUG and NIG, while only 6 and 9 DMRs could be found when comparing FCG vs NIG 

and FCG vs CAUG, respectively (Supplementary Table 1-3). Two regions, in the genes 

H2AFJ and HLA-DRB5, were both differentially methylated in CAUG and FCG compared 

to NIG. A heatmap of the most significant CpG sites of the 367 CAUG-DMRs showed a 

strong hypomethylated profile in CAUG compared to FCG and NIG, where 355 regions 

were hypomethylated and only 12 regions were hypermethylated (Figure 1B). 
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Furthermore, the epigenetic profiles of children clustered essentially based on their 

institutional care regimen (FCG, CAUG, NIG). Interestingly, children in FCG had mainly 

an intermediate methylation profile, with methylation levels in between CAUG and NIG 

methylation levels, which suggests partial epigenetic remediation of CAUG by FCG. 

We next determined whether these DMRs are located at specific genomic regions with 

respect to gene, CGIs and chromatin states (Supplementary Table 4). Compared to all 

the Illumina CpG probes on the array, the CAUG-DMRs were more likely to be located 

in gene bodies, with few DMRs near transcription start sites (TSS200, 5’UTR and 1st 

exon). In addition, the DMRs were found to be depleted in CpG-islands, while enriched 

in CpG-poor regions outside these islands. We also looked for enrichment in chromatin 

states which are based on histone modifications resulting in the categorization of 

genomic regions in 15 cell type-dependent chromatin states, including promoters, 

enhancers and heterochromatin. We found a strong depletion in promoter states, 

while CAUG-DMRs were enriched in the transcriptional elongation, weak transcription 

and heterochromatin states.  

We subsequently mapped the DMRs to their nearest gene, and performed IPA pathway 

analysis. Genes were mainly involved in developmental disorders, but also of interest, 

in organismal injury and abnormalities, neurological diseases and psychological 

disorders (Figure 1C). Of particular interest, we could detect a set of 30 genes which 

are involved in nervous system and neurons development and function, and are also 

associated with cognition, behavior and learning (Figure 1D). A gene of interest is 

catechol-O-methyltransferase (COMT) which is known to play crucial roles in brain 

function and stress response, and has been linked with different psychological 

disorders [45, 46]. Furthermore, in a previous study in the same study population, the 

COMT 158met allele showed protection against depressive symptoms only in the CAU 

group, which was not seen in the FC group [47]. 
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Figure 1: DNA methylation changes associated with institutional care. A) Top row shows volcanoplots of 
the statistical results comparing CAUG vs NIG and FCG vs NIG. Bottom row shows the p-value distribution 
in both contrasts. B) Heatmap of the methylation levels obtained from the most significant CpG probes in 
each CAUG-DMR. C) Top significant enriched IPA diseases & bio functions. D) Genes harboring CAUG-DMRs 
which are linked with nervous system and neurons development and function, memory, behavior and 
cognition. 

 

DNA Methylation changes correlated with gene expression are located in 

genes regulated by nuclear receptors 
Because it can be expected that DNA methylation changes modulate gene expression, 

we compared gene expression profiles before and after a TSST in relation to DNA 

methylation DMRs. Gene expression changes following TSST, measured as log ratios, 

were not significantly different across the sample groups (CAUG vs NIG, FCG vs NIG and 

FCG vs CAUG), although statistical power maybe limited for the small sample size 

cohorts. Next, we tested whether DNA methylation levels of the CAUG-DMRs were 

correlated with gene expression by calculation of the spearman correlation between 

DNA methylation of the most significant CpG probe of each DMR with gene expression 

log ratios of their corresponding nearest gene. In this way, we could detect 45 CpG 

probe – gene pairs with a significant correlation (unadjusted p-value < 0.05) between 

DNA methylation and a change in gene expression after the TSST (log ratio), of which 

25 pairs (21 unique genes) were negatively correlated and 20 pairs (18 unique genes) 

positively (Figure 2A and Supplementary Table 5). Using IPA, a highly connected 

network was identified using the correlated genes (Figure 2B). Interestingly, different 

nuclear receptors, including the GR (NR3C1), androgen receptor (AR), and 

progesterone receptor (PGR) were found to be central network-hubs in the regulatory 

network. 

 

CALD1 expression and DNA methylation are correlated with cortisol levels 
One of the genes with the highest correlation between methylation and gene 

expression was CALD1, a gene with established links to glucocorticoid stress 

responsiveness, neuronal migration and also the impact of glucocorticoid on neuronal 

morphology, dendritic spines and migration [48-52]. Given that methylation is expected 

to influence the gene expression, and particularly the change in gene expression during 

the experiment of cortisol responsive genes, we tested the association between the 

fold change in RNA expression with baseline methylation levels of the CpG sites in the 

DMR. Baseline methylation at the CpG probes cg26816748 and cg15709214 was 

associated with a gene expression change in three CALD1 transcripts, whereas 

increased methylation was correlated with decreased CALD1 expression (Figure 3A).  
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Figure 2: DNA methylation changes correlated with gene expression. A) Volcano plot showing the results 
of the Spearman correlation between DNA methylation of the most significant CpG probe in each DMR 
and their corresponding gene expression logratio values. The significant correlated genes (p < 0.05) are 
represented in blue (negative correlation) and red (positive correlation). B) IPA network of the significant 
correlated genes. Negatively and positively correlated genes are colored in green and red, respectively. 
 

We next tested whether CALD1 methylation and/or expression was correlated with 

baseline cortisol levels or changes in cortisol levels after different stress paradigms. We 

found that baseline CALD1 expression (A_24_ P921366) was significantly correlated 

with all cortisol time points (CORT1: p=0.013, beta=15.4; CORT2: p=0.0016, beta=15.3; 

CORT3: p=0.00052, beta=17; CORT4: p=0.0031, beta=13.3; CORT5: p=0.0098, 

beta=10.1) (Figure 3B), while fold change in CALD1 expression was not found to be 

associated with change in cortisol or cortisol levels. Both CALD1 cg15709214 (p=0.03, 

beta=-0.53) and cg26816748 (p=0.012, beta=-0.54) DNA methylation was associated 

with baseline cortisol levels (CORT1) only in boys. In addition, the change in cortisol 

levels between CORT1 and CORT2 was associated with cg2681748 DNA methylation 

(p=0.036, beta=0.247). 

Because CALD1 expression was previously found to be responsive to glucocorticoids 

[49, 53, 54], we looked for NR3C1 DNA motifs (glucocorticoid response elements, GRE) 

in the CALD1-DMR. Interestingly, a GRE-like motif could be detected just next to CpG 

probe cg15709214 (Figure 3C). Only the 3’ cytosine in the GRE was replaced by an 

adenosine in the CALD1 sequence. 
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Figure 3: CALD1 methylation/expression correlated with cortisol levels. A) Spearman correlation matrix 
between CALD1 DMR CpG probes methylation (rows) and CALD1 Agilent probes logratio expression 
(columns) values. Negative and positive correlations are colored in blue and red, respectively. The pairwise 
Spearman correlation p-values is given in the heatmap cells. B) Scatterplots showing the results of the 
linear regression between baseline cortisol levels (x-axis) at each timepoint during the social stressor 
paradigm (CORT1-5) and baseline CALD1 expression (y-axis). C) CALD1 promoter region of which the DMR 
is highlighted in red. The position of the CALD1 Illumina CpG probes are given, and the mean methylation 
values in each sample group are shown as a line plot. The position and sequence of a GRE-like motif in the 
DMR is displayed. 
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Discussion 
Our results represent the first study, to our knowledge, to demonstrate, within saliva 

the association between methylation, gene expression and cortisol. Our stepwise work 

flow leveraged cross platform analysis of whole genome DNA methylation array 

(Illumina) and validation in Agilent gene expression array. Uniquely DNA, RNA and 

cortisol were all obtained from saliva suggesting that the epigenetic regulation of gene 

expression and their links to a downstream physiologic marker, cortisol, are trackable 

within saliva offering substantial potential for future studies seeking to define 

epigenetic mechanistic pathways, particularly those involving vulnerable subjects. We 

purposefully selected saliva collected during a social evaluative threat paradigm to 

provide the ability to test the links between three separate salivary analytes. We found 

a strong hypomethylated profile in children raised in institutions compared to never-

institutionalized children. Interestingly, children placed in foster care showed an 

intermediate DNA methylation pattern, suggesting that foster care may partially 

remediate these effects. Of particular interest, we could detect a set of 30 DMR 

associated genes which are involved in nervous system and neuronal development and 

function, related to cognition, behavior and learning and psychological disorders. 

Furthermore, we could correlate a part of these DMRs with corresponding gene 

expression changes after a TSST paradigm. Of interest, a lot of these genes are under 

regulation of nuclear receptors including the GR (NR3C1) which plays a central role in 

stress response. In addition, multiple animal and human studies found an epigenetic 

association between NR3C1 regulation and early life stress [55-57]. Further leveraging 

the randomized control design of the BEIP study and known group differences in 

salivary reactivity we were able to identify cortisol specific epigenetic control of 

caldesmon (CALD1) gene expression, with a large body of literature suggesting its 

mechanistic role in neurodevelopmental alterations as a function of glucocorticoid 

levels [49, 52].  

Upon cross-comparing our data with previous published genome-wide studies on DNA 

methylation associations with institutional care [12, 14, 15], we found 10 CpG sites 

which were also differentially methylated in the study of Naumova and coworkers, 

including CALD1 (cg02382666) [12] (Supplementary Table 6). Also the more recent 

study of Naumova et al [16] (GSE118940) demonstrates that the most significant sites 

changed in the same direction as the CAUG-DMRs (Supplementary Figure 2C and 

Supplementary Table 9). Next, we also compared our data with larger sample sized 

genome-wide studies examining the association between childhood trauma and DNA 

methylation. A first study studied genome-wide blood Illumina 450k DNA methylation 

of 85 healthy individuals containing childhood trauma questionnaire (CTQ) scores 
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(GSE77445) [58]. We performed correlation tests between CTQ scores and DNA 

methylation of the CAUG-DMRs, and found that the most significant sites changed 

methylation in the same direction as the CAUG-DMRs (i.e. hypomethylated CAUG-

DMRs were predominantly negatively correlated with CTQ) (Supplementary Figure 2A 

and Supplementary Table 7). Similar results could be found in another blood-based 

genome-wide DNA methylation study of 422 African Americans (GSE72680) 

(Supplementary Figure 2B and Supplementary Table 8). These results further support 

the validity of our data, despite the low sample size.  

CALD1 represents a uniquely important target gene for early life stress response for 

several reasons. First, in neuronal cultures treatment with high doses GC stress 

hormone dexamethasone (DEX) results in dose dependent upregulation of CALD1 

expression and subsequently CaD protein. With specific upregulation in the cytosol and 

the tips of the neurite growth ending of the multipolar processes specifically in the 

ventricular zone, intermediate zone and cortical plate of the cortex resulting in CaD 

dependent changes to cell shape and migration [50, 52]. The carboxy terminal domain 

of CaD negatively regulates interactions between actin and myosin and the change in 

neuronal precursor cells (NPCs) is mediated by the down regulation of myosin IIa. CaD 

overexpression results in similar retardation of radial migration as DEX treatment 

suggesting that GC dependent changes in CaD expression directly impacts radial 

migration of NPC.  

In another study, chronic glucocorticoid stress was found to decrease CaD expression 

levels in hippocampal neurons, which was found to decrease dendritic spine formation. 

Combining behavioral analyses with in vivo synaptic imaging, it was found that stressful 

experiences lead to progressive, clustered loss of dendritic neuronal spines and 

decreased activity of parvalbumin-expressing inhibitory interneurons, which leads do 

deterioration of sensory functions and text discrimination tasks [48]. Furthermore, 

glucocorticoids -the end products of HPA-axis- mediate the effects of stress to cause 

attrition of plasticity in brain regions such as the hippocampus, including simplification 

of dendrites and shrinkage of dendritic spines. Since CaD expression enlarges the spine-

head size by stabilizing F-actin dynamics, CaD expression is a critical target in the GC-

induced detrimental effects on dendritic spine development upon chronic stress. 

Activation of the hypothalamus–pituitary–adrenal (HPA) axis plays a vital role in 

promoting adaptation during acute stress, but adverse effects of chronic stress may 

result from overactivity of this system. Remarkably, chronic stress-induced alterations 

of dendritic spine subtypes triggered functional decrements in an hypothalamus–

pituitary–adrenal-inhibitory prefrontal circuit which may dampen its ability to impart 

inhibitory control over the HPA axis after chronic stress exposure [59]. 
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At the molecular level, conflicting data have been reported with respect to GC 

dependent CALD1 regulation. In one study in lung cancer cells, in vitro and in vivo DNA 

binding assays indicate that GR transactivates the CALD1 gene by binding directly to 

the GRE sequence in the promoter [54]. However, in another study in hippocampal 

neurons, CALD1 promoter reportergene studies show GC dependent repression of the 

CALD1 promoter which depends on the SRF binding motif, independently of the GRE 

promoter motifs [49]. Furthermore, in our study, we identified a new GRE-like binding 

motif near the CALD1 DMR cg15709214 which is associated with transcriptional 

modulation of 3 CaD transcript variants and cortisol levels. 

Together, these findings indicate an important mechanistic role for CALD1 in the lasting 

neurodevelopmental impacts of early life stress and suggest that changes in CALD1 

methylation and resulting alterations in gene expression and CaD isoform protein 

production may contribute to the adverse lasting consequences associated with 

institutional care stress across social, emotional, behavioral, physiological, 

neurobiological and health outcomes. 

Despite the unique nature of these findings there are significant limitations. The first 

notable limitation is the small sample size, given the use of two different arrays and the 

significant potential for false positive findings our results should be interpreted as pilot 

data and proof of concept. Recognizing the unique nature of salivary gene expression, 

the cost of expression and methylation arrays, and the need to demonstrate proof of 

concept analyses was done only on a subset of samples. That being noted, it remains 

significant that the gene identified through this workflow has established links to 

cortisol responsivity, early and prenatal stress and neurodevelopment indicating that 

spurious associations are unlikely. Second, methylation significantly predicted fold 

change in gene expression and not baseline levels. Although methylation is typically 

thought to be associated with gene expression our findings may be explained by the 

use of the TSST, a paradigm in which we expected to see changes in cortisol levels 

during the TSST and importantly also detect group differences in the reactivity patterns 

of cortisol. As such our workflow design was more likely to identify genes that changed 

over the course of the TSST rather than those predicting baseline results. An alternative 

more mechanistic explanation is that if methylation influenced the accessibility of the 

GRE in CALD1 our finding would be in line with GC induced expression of CALD1 and 

suggest that at baseline CALD1 expression does not have a significant link to cortisol 

levels. To support this statement, we found a GRE-like motif inside the CALD1 DMR, 

which was different from the two GRE sequences closer towards the transcription start 

site of CALD1. Further molecular experiments should reveal whether GR is able to bind 

at this GRE and subsequently leads to changes in CALD1 gene expression which controls 

neuronal migration and dendritic spine formation. 
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The exact mechanism by which signals from the early caregiving environment impinge 

on the developing brain to shape underlying neural pathways and circuits and what role 

epigenetic processes have in directing these trajectories, both positive and negative, is 

not yet fully elucidated [14]. An increasing body of research supports the utility of DNA 

methylation in peripheral tissues as biomarkers of exposure and potential predictive 

factors linked to later neuropsychological outcomes [60]. In rare case central tissue is 

available to draw causative relations but, for the most part, epigenetic studies in 

humans will continue to be limited to peripheral samples particularly in longitudinal 

prospective study designs. Given that limitation, maximizing the information related to 

causal pathways that can be determined from easily obtainable, and easily replenished, 

biospecimens like saliva represents an important next step for human studies seeking 

to define the mechanisms linking experience and phenotypes at any age. Our results 

offer an exciting glimpse into the potential utility of salivary diagnostics to define the 

underlying mechanisms through which early life adversity is biologically embedded and 

perhaps even more importantly a unique opportunity in which to examine the impact 

of interventions on biological processes without invasive protocols and with 

methodology that can be utilized in remote locations and processed at later time 

points.  
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Supplementary information 
 

Supplementary tables 1 to 9 can be found in following dropbox folder: 

https://www.dropbox.com/sh/d9lq9mipqkoezx3/AAC9RCXgWS7P6DS71ybJqWNJa?dl

=0  

 

Supplementary Table 1: Differentially methylated regions comparing CAUG with NIG. 

 

Supplementary Table 2: Differentially methylated regions comparing FCG with NIG. 

 

Supplementary Table 3: Differentially methylated regions comparing FCG with CAUG. 

 

Supplementary Table 4: Enrichment of CAUG-DMRs in different genomic locations. 

 

Supplementary Table 5: Correlation between DNA methylation and gene expression of 

the CAUG-DMRs. 

 

Supplementary Table 6: Overlapping differentially methylated CpG sites between 

CAUG-DMRs and study of Naumova et al. [12]. 

 

Supplementary Table 7: Overlapping differentially methylated CpG sites between 

CAUG-DMRs and GSE77445 dataset. 

 

Supplementary Table 8: Overlapping differentially methylated CpG sites between 

CAUG-DMRs and GSE72680 dataset. 

 

Supplementary Table 9: Overlapping differentially methylated CpG sites between 

CAUG-DMRs and GSE118940 dataset. 

 

 

 

Supplementary Figure 1: Timing of cortisol and RNA collections. 

https://www.dropbox.com/sh/d9lq9mipqkoezx3/AAC9RCXgWS7P6DS71ybJqWNJa?dl=0
https://www.dropbox.com/sh/d9lq9mipqkoezx3/AAC9RCXgWS7P6DS71ybJqWNJa?dl=0
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Supplementary Figure 2: Replication of CAUG-DMRs in other genome-wide DNA methylation cohorts. 
Volcanoplots showing the results of the linear regression tests associating DNA methylation with CTQ 
scores. CpG probes colored in blue and red are significant associated with CTQ, and hypo- and 
hypermethylated in CAUG, respectively. Results of GEO datasets A) GSE77445, B) GSE72680 and C) 
GSE118940.  
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Abstract | Genome-wide Illumina InfiniumMethylation 450K DNA methylation analysis 

was performed on blood samples from clinical atherosclerosis patients (n=8) and 

healthy donors (n=8) in the LVAD study (NCT02174133, NCT01799005). Multiple DMRs 

could be identified in atherosclerosis patients, related to epigenetic control of cell 

adhesion, chemotaxis, cytoskeletal reorganizations, cell proliferation, cell death, 

estrogen receptor pathways and phagocytic immune responses. Furthermore, a subset 

of 34 DMRs related to impaired oxidative stress, DNA repair, and inflammatory 

pathways could be replicated in an independent cohort study of donor-matched 

healthy and atherosclerotic human aorta tissue (n=15) and human carotid plaque 

samples (n=19). Upon integrated network analysis, BRCA1 and CRISP2 DMRs were 

identified as most central disease-associated DNA methylation biomarkers. 

Differentially methylated BRCA1 and CRISP2 regions were verified by MassARRAY 

Epityper and pyrosequencing assays and could be further replicated in blood, aorta 

tissue and carotid plaque material of atherosclerosis patients. Moreover, methylation 

changes at BRCA1 and CRISP2 specific CpG sites were consistently associated with 

subclinical atherosclerosis measures (coronary calcium score and carotid intima media 

thickness) in an independent sample cohort of middle-aged men with subclinical CVD 

in the Aragon Workers' Health Study (n=24). Altogether, BRCA1 and CRISP2 DMRs hold 

promise as novel blood surrogate markers for early risk stratification and CVD 

prevention. 

  

Introduction  
According to the World Health Organization (WHO), CVDs account for the highest 

mortality numbers with approximately 30% of all deaths worldwide 

(http://www.who.int/gho/ncd/en/). Atherosclerosis is the major principle underlying 

CVD. At predisposed areas of the vascular tree, including the branching points of 

coronary and carotid arteries, localized accumulation of fatty deposits and 

inflammation reactions contribute to plaque development and progression eventually 

leading to impaired blood flow resulting in CVD i.e. coronary artery disease and 

cerebrovascular disease [1]. 

The development of an atherosclerotic lesion is a slow and silent process making early 

stage diagnosis difficult [2]. Early detection of individuals in the process of developing 

atherosclerosis might be essential for cardiovascular prevention. Approximately 60% of 

individuals categorized as at low risk for CVD based on traditional risk factors prediction 

equations had subclinical atherosclerosis [3, 4]. Thus, other factors not traditionally 

included in risk scales are likely to be involved in atherogenesis.  



 

150 
 

Preclinical evidence supports that aberrant monocyte-macrophage differentiation 

contributes to vascular wall inflammation in patients at high risk for atherosclerosis [5, 

6]. CpG DNA methylation is involved in the epigenetic differentiation and regulation of 

leukocyte specific gene expression profiles, including the expression of soluble 

mediators and surface molecules that direct margination, adhesion, and migration of 

blood leukocytes in vascular tissues [7]. While very little is known about the human 

leukocyte DNA methylome and its potential causal role in CVD, blood DNA methylation 

markers may contribute to the diagnosis of atherosclerosis patients. Recent studies 

have illustrated the feasibility of DNA methylation profiling using peripheral blood to 

identify CVD specific surrogate biomarkers [8-15]. Candidate-gene approaches 

identified significant associations between leukocyte DNA methylation and 

atherosclerosis, whereas the results for the association between global DNA 

methylation and atherosclerosis were not always consistent [10, 11, 14, 15]. Previous 

studies however, evaluated differentially methylated sites using samples from 

individuals with clinical CVD, but did not examine the potential role of DNA methylation 

regions as a marker of subclinical disease.  

Therefore, we characterized genome-wide DNA methylation profiles of blood samples 

of atherosclerosis patients versus healthy individuals from the LVAD study (Impact of 

Left Ventricular Assist Devices Implantation on Micro- and Macrovascular Function, 

NCT02174133) and identified promising atherosclerosis-related epigenetic biomarkers. 

For the selected regions, we validated these whole blood DNA methylation profiles 

using publicly available Illumina InfiniumMethylation 450K data from carotid normal 

and atherosclerotic plaque samples. Additionally, we compared CVD associated DNA 

methylation changes with aging and/or immune cell epigenotypes. Finally, we explored 

the role of promising regions as potential predictors of subclinical atherosclerosis in a 

subsample of 24 individuals that participated in the Aragon Workers Health Study 

(AWHS). The AWHS is a prospective cohort that aims to characterize the factors 

associated with metabolic abnormalities and imaging-based subclinical atherosclerosis 

measures in a middle-aged population free of clinical CVD [3, 16]. 

 

Materials and methods 
We fist conducted a discovery phase analysis of DNA methylation data from 8 healthy 

voluntaries and 8 patients with atherosclerosis from the Study “Impact of Left 

Ventricular Assist Devices Implantation on Micro- and Macrovascular Function” (LVAD 

study, clinicaltrials.gov: NCT02174133). Subsequently we validated findings from the 

discovery phase by analyzing DNA methylation data from plaque material related to 

GEO dataset GSE46401 published by Zaina et al. Finally, as a post-hoc analysis, we 



 

151 
 

explored the potential role of the identified markers as early detection biomarkers by 

evaluating the association of DNA methylation and subclinical atherosclerosis 

endpoints in whole blood DNA from 24 Aragon Workers Study participants free of 

clinical CVD. 

 

Experimental set-up and sample collection in the discovery stage 
In the LVAD study, eight healthy volunteers were recruited based on following inclusion 

criteria: age (35 – 60 years), BMI (23-27 kg/m²), average physical activity and normal 

western diet (clinicaltrials.gov: NCT01799005). The exclusion criteria for the healthy 

volunteers were CVD, diabetes mellitus, acute inflammation and arrhythmia. We 

additionally selected eight patients with confirmed clinical diagnosis of atherosclerosis 

(clinicaltrials.gov: NCT02174133). The characteristics of the study population are 

described in table 1. Whole blood (0.5 ml) was collected from all individuals, following 

informed consent. The study was conducted according to the guidelines laid down in 

the Declaration of Helsinki and all procedures involving human subjects were approved 

by the University of Düsseldorf Research Ethics Committee (ref: 3870 and ref: 4565R).  

 
Table 1: Volunteer characteristics 

 
Healthy 

Mean ± SD 

Atherosclerosis 

Mean ± SD 

P value 

Coronary artery disease No Yes  

Arterial hypertension No Yes  

Arrhythmia No Yes  

Age 49.7 ± 6.6 78.0 ± 8.4 <0.0001 

BMI (kg/m2) 26.2 ± 2.3 27.0 ± 3.2 0.61 

LDL cholesterol (mg/dl) 147.4 ± 37.2 121.3 ± 14.5 0.13 

HDL cholesterol (mg/dl) 52.3 ± 11.2 46.8 ± 10.1 0.41 

Total cholesterol (mg/dl) 212.7 ± 38.0 179.0 ± 32.5 0.09 

Fasting plasma glucose (mg/dl) 90.0 ± 8.0 86.1 ± 14.3 0.54 

HbA1c (%) 5.7 ± 0.3 5.8 ± 0.9 0.78 

CRP (mg/dl) 0.6 ± 0.5 0.7 ± 0.5 0.04 

Leukocytes (1000/ul) 6.6 ± 2.3 6.4 ± 1.4 0.84 

Hb (mg/dl) 12.7 ± 1.7 14.9 ± 0.6 0.007 

Creatinine (mg/dl) 1.0 ± 0.2 1.3 ± 0.5 0.31 

Triglycerides (mg/dl) 95.9 ± 44.2 159.5 ± 48.0 0.03 

Statistical analysis performed by means of the student T test.  
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Infinium HumanMethylation450 BeadChip Array processing and data 

analysis for whole blood DNA from atherosclerosis patients and healthy 

donors 
gDNA isolated from 0.5 ml whole blood (EDTA), was isolated with DNeasy Blood & 

Tissue kit (Qiagen Hilden, Germany) and quantified by Nanodrop™ spectrophotometry. 

1000 ng of gDNA was bisulfite converted using the EZ DNA methylation kit (Zymo 

Research, Orange, CA, USA) according to manufacturer’s instructions. Genome-wide 

DNA methylation was analyzed on Infinium HumanMethylation450 BeadChip platform 

(Illumina, San Diego, CA, USA) at the DKFZ Genomics and Proteomics Core Facility. 4 µl 

of bisulfite-converted whole blood DNA (~150 ng) was used for the whole genome 

amplification (WGA) reaction, enzymatic fragmentation, precipitation and re-

suspended in hybridization buffer. Subsequent steps of DNA methylation analysis were 

carried out according to the standard Infinium HD Assay Methylation Protocol Guide 

(Part #15019519, Illumina). The BeadChip images were captured using the Illumina 

iScan. Pre-processing and analysis of the Infinium 450k data was performed using the 

R package RnBeads [17]. CpG probes containing a SNP at least 3 bp from the 3’ query 

site, having a detection p-value higher than 0.01, having empty values in at least one 

sample or measuring methylation in a non-CpG context were removed. In total 8,533 

CpG probes (1.75%) were filtered. Intra-array normalization was done using the Beta 

Mixture Quantile Normalization [18]. Methylation values were represented as β-values 

ranging from 0 to 1. β-values were converted into M-values (M = log2(β/((1-β) ))) before 

doing the statistical analysis. Limma R package was used to identify DMPs. Raw p-values 

were corrected for multiple testing using the Benjamini-Hochberg method. CpG probes 

with an adjusted p-value below 0.15 and having a difference in β-values of at least 0.05 

(i.e. 5% difference in DNA methylation) between atherosclerosis patients and healthy 

controls were denoted as significant, and named sig-DMPs. DMRs were identified using 

the DMRcate R package [19]. A region was called significant when Pmean-value was 

below 0.001 with a maximum methylation difference of at least 5% and containing at 

least five CpGs. Sig-DMPs were annotated using the HumanMethylation450 v1.2 

manifest file. The freely available EpiExplorer tool was used to add further annotation 

including chromatin state segmentation and histone modifications [20]. Enrichment or 

depletion of sig-DMPs in a particular genomic region was determined using the Fisher’s 

exact test. Commercial Metacore (https://portal.genego.com/) and Ingenuity 

(www.ingenuity.com/) software packages were used to identify significant pathway 

enrichment of gene associated DMRs.  

The method of Houseman et al. [21] incorporated in the RnBeads package was used to 

estimate the cell type composition in blood. Reference cell types for granulocytes, CD4+ 

T-cells, CD8+ T-cells, B-cells, monocytes and NK-cells were obtained from the study of 
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Reinius et al. [22] using the FlowSorted.Blood.450k R package. The methylation profiles 

were processed (filtering and normalization) together with the atherosclerosis 

methylation dataset in the same way as described above. In total 50,000 CpG probes 

with the highest variance were used to identify the top 500 CpG probes associated with 

the cell types. The relative cell type contributions were compared between healthy 

individuals and atherosclerosis using a normal student t-test. One-way ANOVA and 

Bonferroni Post-hoc test was used to detect methylation differences between the 

blood cell types using the data from Reinius et al.  

 

Replication in atherosclerotic plaque material methylation dataset 

GSE46401 
Normalized Infinium 450k DNA methylation data of atherosclerotic plaque material 

were obtained from GEO dataset GSE46401. The dataset contains data from 15 donor-

matched aorta healthy and plaque tissue and from 19 carotid plaque material. A paired 

two-tailed student t-test was performed to find DNA methylation differences in the 15 

donor-matched samples and an unpaired two-tailed student t-test was performed to 

find DNA methylation differences between the carotid plaque tissue samples and the 

healthy aorta samples.  

 

Epityper Sequenom MassARRAY  
In silico cleavage was done by means of the RSeqMeth script in R to aid selection of an 

optimal primer set for the genomic region of interest [23]. MassARRAY primers for 

regions in the BRCA1 (chr17:41,277,701-41,278,776) and CRISP2 (chr6:49,680,757-

49,682,289) genes (Supplementary Table 1 and Supplementary Figure 1 and 2) were 

designed using the Sequenom EpiDesigner online tool (www.epidesigner.com). 

Bisulfite converted DNA was used for the methylation analysis. PCR reactions were 

performed using the following reagents: 10x buffer (Qiagen®), 10 mM dNTP, 10 µM 

primer mix, 5 U/µl HotStarTaqTM polymerase (Qiagen®) and deionized water. 

Methylation percentages were calculated based on the ratio of the unmethylated 

versus methylated peaks. In addition, DNA methylation standards (0, 20, 40, 60, 80 and 

100%) were used to control for amplification bias. The R computing environment was 

used for the correction of the obtained methylation data according to standard 

procedures [24]. Linear regression was performed to fit the obtained data points 

according to the predicted standard methylation values. The student T-test was used 

to calculate the significance of the methylation difference between healthy and 

atherosclerotic blood samples. 
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Pyrosequencing 

1 µg gDNA from each sample was bisulfite converted using the EpiTect Fast bisulfite 

conversion kit (Qiagen, Hilden, Germany) according to manufacturer’s instructions. 15 

ng of bisulfite treated DNA was subsequently used in PCR amplification using the 

PyroMark PCR kit (Qiagen, Hilden, Germany). Reverse primers were biotinylated to get 

biotin-labelled PCR products. Finally, DNA sequences were pyrosequenced using the 

PyroMark Q24 Advanced instrument (Qiagen, Hilden, Germany). First, streptavidin-

coated Sepharose beads (High Performance, GE Healthcare, Uppsala, Sweden) were 

used to immobilize the biotin-labelled PCR products. Subsequently, PCR products were 

captured by the PyroMark vacuum Q24 workstation, washed and denaturated. The 

single stranded PCR products were mixed and annealed with their corresponding 

sequencing primer. After the pyrosequencing run was finished, the results were 

analyzed using the PyroMark Q24 Advanced software (Qiagen, Hilden, Germany). 

Biotinylated-reverse, forward and sequencing primers were designed using the 

PyroMark assay design 2.0 software (Qiagen, Hilden, Germany) (Supplementary Table 

1).  

 

BRCA1, NBR2 and CRISP2 methylation-expression correlation using TCGA, 

BLUEPRINT and ENCODE data 

450k Illumina methylation data and RNAseq gene expression data from The Cancer 

Genome Atlas (TCGA) were obtained using the TCGABiolinks R package. For every TCGA 

cancer type, samples with both DNA methylation and gene expression data were 

matched and Spearman’s correlation coefficients were calculated for every CpG probe 

in BRCA1-NBR2 and CRISP2 DMR.  

BLUEPRINT bisulfite-sequencing data and RNAseq data were obtained using the 

DeepBlueR R package. Only cell types with both gene expression and DNA methylation 

data were selected and for every cell type median values were calculated. Spearman’s 

correlation coefficients were than calculated between DNA methylation and gene 

expression for every CpG site located in BRCA1-NBR2 and CRISP2 DMR. 

ENCODE 450k Illumina methylation data and RNAseq gene expression data were 

obtained using the ENCODE data portal. Only data from cell lines with both gene 

expression and DNA methylation data were downloaded. Values of cell lines with 

multiple entries were aggregated into a single value using the median. Spearman’s 

correlation coefficients were than calculated between DNA methylation and gene 

expression for every CpG probe located in BRCA1-NBR2 and CRISP2 DMR. 
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Post-hoc analysis of human blood DNA methylation in BRCA1 and CRISP2 

and subclinical atherosclerosis in middle-age healthy men 
The AWHS is a study designed to assess cardiovascular risk and subclinical 

atherosclerosis in a cohort of middle-aged healthy men from Spain. The AWHS design 

and baseline characteristics have been reported elsewhere [2, 16]. In brief, in the 

baseline examination (2009-2010), the average (SD) age, body mass index, and waist 

circumference were 49.3 (8.7) years, 27.7 (3.6) kg/m2 and 97.2 (9.9) cm, respectively. 

The prevalence of overweight, obesity, current smoking, hypertension, 

hypercholesterolemia, and diabetes were 55.0, 23.1, 37.1, 40.3, 75.0, and 7.4%, 

respectively [25]. The adherence of the AWHS participants to the Mediterranean diet 

has been extensively studied [26]. 21.7% of participants in the AWHS reported being 

physical active (e,g, > 150 min/week or 30 min/d of jogging, walking quickly, dance, 

aerobics, gardening) [26]. The levels of physical activity were positively associated with 

the adherence to the Mediterranean lifestyle [26]. In 2011-2013, calcium coronary 

scoring was performed using non-contrast ECG gated prospective acquisition by a 16 

multidetector computed tomography scanner (Mx 8000 IDT 16, Philips Medical 

Systems, Best, the Netherlands). During a single breath hold, images were acquired 

from the tracheal bifurcation to below the base of the heart. Scan parameters were 8 

x 3 mm collimation, 220-mm field of view, 120 kVp, 55 mA, and 3-mm section thickness. 

Coronary calcium was quantified with calcium scoring software (Workspace CT viewer, 

Philips Medical Systems) that follows the Agatston method [27]. Carotid intima-media 

thickness was determined using the Philips IU22 ultrasound system (Philips Healthcare, 

Bothell, Washington). Ultrasound images were acquired with linear high-frequency 2-

dimensional probes (Philips Transducer L9-3, Philips Healthcare), following the 

Bioimage Study protocol74. Examination of the carotid territory included the terminal 

portion (10 mm) of the common carotid, the bulb, and the initial portion (10 mm) of 

the internal and external carotid arteries. The given value for carotid artery intima-

media thickness is the mean value from all sites at both sides. The AWHS study was 

approved by the Ethics Committee for Clinical Research at the Institutional Review 

Board of Aragón (CEICA) [3, 16]. All study participants provided written informed 

consent. The methods for DNA isolation and bisulfite conversion were similar to the 

methods implemented in the LVAD samples, which are standard manufacturer 

procedures. DNA methylation was measured using the platform Illumina Infinium 

Methylation 450K in a subsample of 23 individuals with available measures of 

subclinical atherosclerosis. Preprocessing and analysis of the Infinium 450k data was 

performed using the R package minfi [28]. CpG probes with a detection p-value higher 

than 0.01 were removed. Intra-array normalization was done using the Quantile 

Normalization. In exploratory analysis, we detected a potential batch effect by slide. 
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Methylation proportion values were represented as β-values ranging from 0 to 1. β-

values were converted into M-values before doing the statistical analysis. For analysis 

of site-specific DNA methylation (independent variable) and subclinical atherosclerosis 

measures (dependent variable) in the AWHS, we estimated the differences in coronary 

artery score and carotid intima media thickness comparing 75th versus 25th percentiles 

of DNA methylation distribution at a given CpG site by linear regression with the 

following adjustment variables: age, smoking status (never, former and current 

smoking), body mass index, and houseman cell estimates (B cell, CD4+ and CD8+ T cells, 

granulocytes, monocytes and natural killer cells). Due to the small sample size we tried 

to avoid non-parsimonious regression parameters by performing two-stage regression 

for adjustment. First we adjusted DNA methylation M-values for potential confounders 

using combat [29] to correct for batch effect by slide. Subsequently, we adjusted intima 

media thickness and coronary artery calcium score levels for the same set of potential 

confounders. Second, we ran the final regression models using the residuals resulting 

from the first step recalibrated to the corresponding marginal mean. Since this was 

post-hoc analysis we evaluated the association of DNA methylation and subclinical 

atherosclerosis in CpG sites from regions validated in previous analysis (i.e. BRCA1 and 

CRISP2). Thus, we considered the non-Bonferroni corrected p-values <0.05 as 

statistically significant. 

 

 

Results 

Peripheral blood of atherosclerosis patients reveals no statistically 

significant changes in global DNA methylation in comparison to healthy 

individuals 
Significant differences in clinical parameters were observed between the two study 

groups. C-reactive protein (CRP), hemoglobin concentration and triglycerides were 

significantly lower in the healthy individuals as compared to atherosclerosis patients 

(Table 1). The atherosclerosis patients were generally older than the healthy 

individuals. 

DNA methylation profiles covering >450,000 CpG dinucleotides of peripheral blood of 

eight atherosclerosis and eight healthy individuals were generated by Illumina 450k 

BeadChip arrays. CpG probes were sub-grouped in relation to gene regions (TSS, gene 

body, 3’UTR, etc) and to CGIs to obtain the most comprehensive view of the DNA 

methylation distribution in both groups. Global DNA methylation was assessed in each 

individual by calculating the median beta-value of all CpG probes. The mean median 
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values were calculated per sample group (healthy and atherosclerosis). Overall, no 

statistical significant difference (P-value=0.9159) was observed in mean global DNA 

methylation between atherosclerosis patients (0.6613, SEM: 0.0067) versus healthy 

controls (0.6624, SEM: 0.0071). In addition, no global DNA methylation shifts were 

found between the groups when mapping CpG probes to different genomic locations 

(e.g. CGIs, shores, shelves).  

 

 
Figure 1: Flowchart of DMP and DMR selection. 

 

Peripheral blood of atherosclerosis patients reveals specific DNA 

methylation signature 

Criteria for the identification of atherosclerosis-DMPs (athDMPs) are summarized in 

Figure 1. Normalization, quality control and probe filtering for SNPs resulted in an 

output of 477,044 CpG probes. Differentially methylated CpG probes were filtered for 

a Benjamini-Hochberg adjusted p-value smaller than 0.15 and a difference in β-values 

between atherosclerosis patients and healthy controls of at least 0.05 (i.e. 5% 

difference in DNA methylation). 712 CpG probes met the selection criteria comprising 

465 hypomethylated CpG sites (hypo-athDMPs) and 247 hypermethylated CpG sites 

(hyper-athDMPs) (Figure 2A and Supplementary Table 2). We observed a maximum of 

20% difference in DNA methylation between atherosclerosis patients and healthy 

controls. Based on the methylation values of these CpG sites, principle component  
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Figure 2: Differentially methylated CpG probes between healthy and atherosclerotic individuals. Sig-
DMPs were selected based on FDR < 0.15 and delta beta > 5%. A) Volcano plot showing 465 hypo- and 247 
hypermethylated probes meeting the selection criteria. B) PCA plot demonstrating the separation of 
atherosclerosis patients for CVD (green) and healthy individuals (orange) based on the DNA methylation 
values of the 712 DMPs. C) Genomic distribution of sig-DMPs based on gene regions, CpG-island regions 
and chromatin segmentation states (based on GM12878 cell type data). Significant enrichment or 
depletion of sig-DMPs (P-value < 0.05), determined by the Fisher’s exact test, are marked by an asterisk. 

 

analysis reveals a clear separation of DNA methylation profiles of atherosclerosis and 

healthy individuals (Figure 2B). Analysis of functional genomic locations revealed that 

both hyper- and hypo-athDMPs were depleted in promoter regions and CGIs and 

enriched in intergenic, CpG-poor and enhancer regions (Figure 2C).  

Since median age of atherosclerosis patients (78±8 years old) and healthy controls 

(47±8 years old) was significantly different, we next overlapped our sig-DMP list with 

the list of age-responsive CpG probes, identified by Steengenga et al. [30], to 

discriminate between aging- and atherosclerosis-specific DNA methylation changes. Of 

the 7,477 CpG probes with age-dependent methylation changes, 196 probes 

overlapped with our athDMP list, resulting in 516 age-independent DMPs, including 

287 hypo- and 229 hyper-DMPs (Supplementary Table 2). 

 

Blood samples of atherosclerosis patients reveal a different immune cell 

type composition in comparison to healthy individuals 
Since blood is a heterogeneous collection of different cell types, each characterized by 

unique DNA methylation profile, as recently demonstrated by Jaffe and colleagues [31], 

we next wanted to evaluate whether identified DNA methylation changes did not 

simply reflect variation in blood cell composition between both studied populations. 

Using the algorithm developed by Houseman and colleagues [21] for mathematical 

deconvolution of relative immune cell type composition of blood samples based on 

Illumina 450k data [22], we observed that the fraction of granulocytes was slightly but 

statistical significantly (P<0.05) increased in atherosclerosis patients in comparison to 

control individuals (Figure 3A and Supplementary Table 4). In contrast, the CD8+ T-cell 

population was significantly reduced in atherosclerosis patients. Although statistically 

not significant, a fraction of CD4+ T- and NK-cells tended to decrease in atherosclerosis 

patient. Because of the relative low sample size analyzed, we were not able to correct 

for this in the linear model analysis.  
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Figure 3: Deconvolution of immune cell type blood composition. The approach described by Houseman 
et al. was applied to determine the relative immune cell type fraction (Y-axis) in healthy and atherosclerosis 
blood samples. A) Statistical significant differences in cell type contribution between healthy and 
atherosclerosis blood samples were calculated by a student t-test. B) DNA methylation values of the 712 
DMPs in immune cell types. The hyper-DMPs are colored in red and the hypo-DMPs in green. 

 

We also determined the methylation status of the athDMPs among the different blood 

cell types, and noticed that a large fraction of these CpG probes differed (Figure 3B). 

Hyper-athDMPs were mainly higher in methylation in granulocytes and monocytes, 

while hypo-athDMPs were predominantly lower in methylation in granulocytes and 

monocytes compared to T-, B- and NK-cells. However, about 20% of the athDMPs 

cannot be attributed by cell type heterogeneity. 

Pathway enrichment analysis of common gene associated DMRs in blood, 

aorta and carotid plaque material reveals impaired NRF2 oxidative stress, 

DNA repair, thioredoxin and inflammatory pathways  
To further reduce biological complexity of DNA methylation changes, we next 

determined consecutive athDMPs using the R-package DMRcate. In total 236 sig-DMRs 

were identified (Pmean-value < 0.001) containing at least 5 consecutive CpG probes 

with a minimal DNA methylation difference of 5% (Δβ-value > 0.05) (Figure 1 and 

Supplementary Table 3). After overlap with known age-dependent CpG probes, 75 

DMRs were removed leaving a total of 161 DMRs (athDMRs), containing 1,424 CpG 

probes, for further analysis.  

In total, 51 cell type-associated DMRs were excluded using the houseman method 

leaving 110 athDMRs for further analysis. To replicate the potential role for the 110 

athDMRs as blood-based surrogate biomarkers for plaque biopsy material in 

atherosclerosis, we compared our findings with publicly available data from Zaina et al 

(GSE46401) [32] which contains DNA methylation profiles from donor-matched healthy 

and atherosclerotic human aorta tissue and from human carotid plaque samples in a 

larger independent cohort [32]. We performed a two-tailed student t-test for the 497 

CpG probes located in the 110 sig-DMRs comparing methylation values between donor-

matched healthy and aorta plaque tissue and between healthy aorta and carotid plaque 

tissue. We found that 69 CpG probes located in 34 unique DMRs were both consistently 

differentially methylated in our blood-based dataset, in aorta plaque tissue and carotid 

plaque tissue (Supplementary Table 5). To find out the relationship between the 

different sig-DMRs, we mapped each sig-DMR to the nearest gene and constructed a 

network using the GeneMANIA Cytoscape plugin (Figure 4A). Interestingly the breast 

cancer 1 gene (BRCA1) stands out as one of the most highly connected node in our 

network, physically interacting with nine other proteins. In addition, cysteine rich 

secretory protein 2 (CRISP2), was the gene with the highest node degree. Due to their  
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Figure 4: Differentially methylated regions (sig-DMRs) not affected by age or cell type composition and consistently 
differentially methylated in both blood and plaque. A) GeneMANIA network of the 34 sig-DMRs. B) IPA based pathway 
enrichment analysis of gene associated DMRs in atherosclerosis. C) DMRs associated with BRCA1and CRISP2 in an 
independent publicly available cohort [32]. The Zaina et al. cohort [32] comprises of 30 donor-matched atherosclerotic 
plaque tissue samples and 19 carotid plaque samples. 
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high network interconnectivity (high node degree), BRCA1 and CRISP2 genes were 

selected for further DNA methylation biomarker validation studies. Both genes were 

found to be hypermethylated in atherosclerotic whole blood and plaque samples 

(Figure 4B). Interestingly, pathway enrichment analysis of the 34-common gene 

associated DMRs revealed Nuclear factor (erythroid-derived 2)-like 2 (NRF2), oxidative 

stress (SOD2), DNA repair (BRCA1), thioredoxin (TXNRD1) and inflammatory pathways 

(MIF, PLA2G4D) (Figure 4C and Supplementary Table 6). 

Verification of Illumina 450K DNA methylation intensities of BRCA1-NBR2 

and CRISP2 DMRs by Epityper MassARRAY  
DMRs of BRCA1 and CRISP2 genes determined by Illumina 450 array were selected for 

further technical validation by Epityper MassARRAY. For BRCA1, we decided to focus 

on 14 consecutive hypermethylated CpG probes located in a CGI located at the 

promoter site of BRCA1 and NBR2 (chr17:41,277,974-41,278,445, Supplementary 

Figure 1). Nine CpG probes in this region showed more than 10% DNA 

hypermethylation in the atherosclerosis patients (cg26370022, cg15065591, 

cg02286533, cg18372208, cg14947218, cg16006004, cg06001716, cg25288140 and 

cg24900425). Finally, the promoter region of the CRISP2 was selected as a second 

amplicon for validation (Supplementary Figure 2). Seven neighboring CpG sites 

(cg26715042, cg14997592, cg04595372, cg01706515, cg25390787, cg08942800 and 

cg01076129) were found to be more than 10% hypermethylated in this region for the 

atherosclerosis patients. Altogether, the Epityper MassARRAY and Illumina DNA 

methylation levels revealed strongly significant correlations for BRCA1 (ρ = 0.711 – 

0.932) and CRISP2 (ρ = 0.680) (Supplementary Figure 3A). Moreover, BRCA1-NBR2 and 

CRISP2 target genes demonstrate significant hypermethylation in atherosclerosis blood 

samples, as compared to blood samples derived from healthy individuals 

(Supplementary Figure 3B). Similar, DNA atherosclerosis associated BRCA1 DNA 

hypermethylation results were also obtained by pyrosequencing of the BRCA1 DMR 

chr17:41278125-41278228 (including cg26279233, cg cg06001716 and cg 

cg14947218), whereas no valid pyrosequencing assay could be designed for the CRISP2 

DMR (Supplementary Figure 3C). 

We further compared the methylation status of the blood cells types in the two 

validated regions using the reference methylation data set of Reinius et al [22]. Four 

CpG probes in the BRCA1 DMR (cg26370022, cg11529738, 14947218 and cg06001716) 

showed significant DNA methylation differences between immune cell types (p<0.05, 

not corrected for multiple testing) (Supplementary Figure 4). However, after 

Bonferroni correction hypermethylation of only one CpG probe remained significantly 

correlated with immune cell type (cg26370022). In the CRISP2 DMR significant immune 
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cell type specific DNA methylation changes were observed for two CpG probes 

(cg01706515 and cg21710255). However, observed atherosclerosis related DNA 

hypermethylation trend for most BRCA1 and CRISP2 CpG probes does not follow the 

expected methylation change in blood samples enriched for granulocyte and reduced 

CD8+T immune cell subpopulations. As such, our results show that DNA 

hypermethylation of most BRCA1-NBR2 and CRISP2 CpG probes occurs independently 

of sample variation in blood cell type composition and is associated with 

atherosclerosis pathology.  

To determine whether methylation at the BRCA1-NBR2 and CRISP2 promoter site 

regulates gene expression, we used publicly available data from TCGA, and correlated 

the Illumina methylation with RNAseq gene expression data. We found both positive 

as negative correlations between DNA methylation at BRCA1-NBR2 promoter and 

BRCA1 gene expression values (Figure 5). BRCA1 shares his promoter with the NBR2 

non-coding RNA which is transcribed in the reverse direction. In almost all cancer types, 

BRCA1-NBR2 promoter methylation was negatively correlated with NBR2 gene 

expression. Also methylation at CRISP2 promoter region was negatively correlated with 

CRISP2 gene expression in most of the TCGA cancers. A similar analysis was performed 

using RNAseq and BSseq data from different blood cells obtained from the BLUEPRINT 

database, and using RNAseq and 450k Illumina data from ENCODE cell lines 

(Supplementary Figure 5). In the BLUEPRINT and ENCODE datasets, the correlations 

were much weaker. Using the BLUEPRINT samples, we observed slight negative 

correlation with BRCA1 gene expression and slight positive correlations with NBR2 gene 

expression. However, this was not observed using the ENCODE cell lines. Finally, CRISP2 

gene expression was low or absent in almost all BLUEPRINT and ENCODE samples 

(Supplementary Figure 5A) .  

Altogether, our data suggest that BRCA1-NBR2 and CRISP2 DNA methylation patterns 

are potential epigenetic biomarkers related to atherosclerosis in blood and 

atherosclerotic plaque tissue matrix.  

 

Association of blood DNA methylation changes in BRCA1-NBR2 and CRISP2 

with subclinical atherosclerosis in healthy middle age men of the AWHS 

cohort 
To explore the role of validated regions as predictors of subclinical atherosclerosis in a 

population with a low burden of disease, we evaluated the association of DNA 

methylation levels from fresh frozen whole blood samples collected at the baseline visit 

(2009-2010) and subclinical atherosclerosis measured in 2011-2013 from a subsample 

of 24 AWHS participants with available baseline InfiniumMethylation450K data. We  
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Figure 5: Correlation between gene expression and DNA methylation in TCGA cancers. Boxplots 
represent Spearman’s correlation coefficients of the correlation between DNA methylation and gene 
expression in BRCA1, NBR2 and CRISP2 for each TCGA cancer. 
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looked for associations between blood DNA methylation and the subclinical 

atherosclerosis measures, coronary calcium score and carotid intima media thickness. 

Associations were found for three CpG probes located in CRISP2 (cg12440062, 

cg25390787, cg01076129) and one CpG probe in BRCA1-NBR2 (cg16630982). The 

strongest statistically significant CpG probe was cg12440062 (located 70 bases 

upstream of the promotor) for CRISP2, consistently, for both coronary calcium score 

and carotid intima media thickness measures (Table 2). The multi-adjusted difference 

in coronary calcium score comparing the 75th to the 25th percentiles of DNA 

methylation was -46.62 score points (-86.87, -6.36; p-value = 0.03) for cg12440062 in 

CRISP2. The corresponding difference in carotid intima media thickness was -0.20 

millimeters (-0.33, -0.06; p-value = 0.009) for cg12440062 in CRIPS2. For CRISP2, DNA 

methylation in cg01076129 (located in promoter region) was associated with carotid 

intima-media thickness, but not coronary calcium score. The association with 

cg25390787 (located in promotor region) was only borderline significant (p=0.06) 

consistently for both atherosclerosis measures. With respect to the BRCA1-NBR2 DMR, 

the strongest association with both coronary calcium score (p-value = 0.018) and 

carotid intima media thickness (p-value = 0.0019) was found for cg16630982 (located 

in the promotor region), whereas other cg probes did not reach significance within the 

limited sample series tested. 

 

Table 2: Significant associations of BRCA1-NBR2 and CRISP2 CpG probes with coronary calcium score and 
carotid intima thickness. 

Coronary calcium score 

 Gene Difference P75vsP25 (95% CI) P-value 

cg16630982 BRCA1-NBR2 -36.59 (-64.53 - -8.64) 0.018 

cg12440062 CRISP2 -46.65 (-86.87 - -6.36) 0.03 

cg25390787 CRISP2 34.98 (-69.35 - -0.61) 0.06 

Carotid intima thickness 

 Gene Difference P75vsP25 (95% CI) P-value 

cg16630982 BRCA1-NBR2 -0.16 (-0.25 - -0.07) 0.0019 

cg12440062 CRISP2 -0.20 (-0.33 - -0.06) 0.009 

cg01076129 CRISP2 -0.14 (-0.26 - -0.02) 0.036 

cg25390787 CRISP2 -0.12 (-0.24 - 0.00) 0.06 

 

Discussion 
In this study, we identified genomic regions in BRCA1-NBR2 and CRISP2 which were 

consistently differentially methylated in blood DNA of atherosclerosis patients 
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compared to healthy individuals, and in aortic and carotid plaque samples compared 

to aorta samples without plaque. Furthermore, methylation in BRCA1-NBR2 and CRISP2 

DMR was also associated with subclinical atherosclerosis measures in an independent 

sample of middle age men. Our results thus support a potential role of blood DNA 

surrogate markers for early CVD detection. 

Epigenetics may provide the missing mechanism linking environment, genome and 

atherosclerotic phenotype. Identifying epigenomic biomarkers that parallel the 

development of subclinical atherosclerosis might open new paths for risk stratification 

and prevention, and may help to further understand the pathophysiology of 

atherosclerosis. In particular, changes in DNA methylation patterns have been linked to 

several cardiovascular-related biomarkers, including homocysteine and CRP [15]. 

Furthermore, an increasing number of studies report DNA methylation alterations in 

atherosclerosis [33-35]. For example, a recent genome-wide study showed DNA 

methylation differences between healthy donor-matched aortic healthy and plaque 

tissue, indicated by epigenetic drift of DNA methylation in aortic plaques with 

atherosclerotic progression [32, 36]. Furthermore, known cardiovascular risk factors, 

including homocysteine levels, smoking and age have been described to induce DNA 

methylation changes [37-39]. Currently, only few DNA methylation studies have been 

performed with blood samples of CAD patients. Sharma et al. identified 72 

hypermethylated DMRs associated with CAD and hyperhomocysteinemia using a 12k 

human CGI microarray [40]. Guay et al. performed a study on subjects with familial 

hypercholesterolemia with or without CAD using the Infinium 27k methylation array 

[41]. Since blood leukocytes have major contributions to the initiation, progression and 

maintenance of atherosclerosis, we determined genome-wide DNA methylation 

profiles in blood samples of atherosclerosis patients, in comparison to healthy 

individuals to identify CVD related epigenetic biomarkers. Although Illumina 450K 

profiling did not reveal significant global DNA methylation differences between 

atherosclerosis patients and healthy individuals, HPLC based methods demonstrated 

global DNA hypermethylation in blood leukocytes [13, 15] whereas both global DNA 

hypermethylation and hypomethylation have been reported in atherosclerotic vascular 

tissue [32, 42, 43].  

Upon further mapping of DNA methylation changes at specific CpG motifs or regions, 

161 DMRs were identified to be differentially methylated based on specific selection 

criteria. Of particular interest, pathway enrichment analysis of gene associated DMRs 

revealed DNA impaired epigenetic regulation of integrin and cadherin dependent cell 

adhesion, cell cycle, cell death, chemotaxis, immune phagocytosis and estrogen 

hormone pathways which are all critically involved in atherosclerosis. In accordance 

with other studies examining DNA methylation in metabolic diseases, the observed 
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methylation changes were relatively small (max 20%), as compared to cancer specific 

DNA methylation changes. More specifically, whereas promoter regions and CGIs were 

found to be depleted of atherosclerosis associated DMPs, gene bodies, intergenic and 

open sea regions show enrichment of various DMPs. Interestingly, a strong enrichment 

was also observed in enhancer regions suggesting that impaired control of distal 

regulatory regions may contribute to atherosclerosis.  

Remarkably, mathematical deconvolution (Houseman correction) of the blood DNA 

methylation profiles revealed significant changes in the granulocyte and CD8+ T 

immune cell populations in atherosclerosis patients as compared to healthy individuals, 

which could be highly relevant for atherosclerotic plaque formation. More particularly, 

important regulatory roles for granulocyte and CD4+/CD8+ T cell populations have 

recently been identified in atherosclerotic lesions and coronary thrombus evolution 

[44, 45]. As expected, a large fraction of the sig-DMRs were also differentially 

methylated between blood cell types, suggesting that their change in DNA methylation 

in atherosclerosis patients could be due to a difference in blood cell type composition 

between atherosclerosis and healthy controls. Heterogeneity of blood samples could 

be prevented using cell count and sorting methods (fluorescence-activated cell sorting, 

FACS) to analyze specific immune cell subpopulations. However, these methods are 

difficult and costly to apply in large epidemiological cohort studies. CpG sites associated 

with blood cell type were excluded for further analysis, leaving 110 sig-DMRs not 

affected by blood cell types. 

Interestingly, of the 110 remaining DMRs (comprising 497 CpG sites), 34 DMRs (69 CpG 

sites) were also found to be differentially methylated in plaque tissues, which suggests 

that blood-associated epigenetic biomarkers can be valid surrogate markers for 

methylation changes in plaque material. Of particular interest, pathway enrichment 

analysis of the 34 common gene associated DMRs revealed epigenetic impairment of 

NRF2 oxidative stress (SOD2), DNA repair (BRCA1), thioredoxin (TXNRD1) and 

inflammatory pathways (MIF, PLA2G4D) in atherosclerosis conditions. Upon further 

network analysis of each sig-DMR, mapped to the nearest gene, we identified a highly 

interconnective network with central roles of BRCA1 and CRISP2 DMRs, which 

prompted us to focus on these genes for further validation. Of special note, the DMRs 

in BRCA1 and CRISP2 appeared to be largely independent of age and/or immune cell 

type composition, and both hold promise as valuable atherosclerosis related 

biomarkers in routine blood analysis. Interestingly, DNA methylation at the BRCA1 

locus was already present in healthy controls, which is contrary to other studies where 

a lack of DNA methylation was observed [46, 47]. Nevertheless, it must be emphasized 

that the methylated CpGs in our data set are located in a CGI approximately 600 bp 

upstream of the BRCA1 gene, whereas previous studies [47] detected hypomethylation 
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around the transcription start site of the gene, which can also be appreciated in our 

data (Supplementary Figure 1).  

DNA methylation changes of the BRCA1 and CRISP2 DMRs could also be replicated in 

an Illumina 450K dataset of paired atherosclerotic plaque and normal aorta samples 

from 24 middle aged men with subclinical atherosclerosis of the AWHS. Moreover, we 

also observed statistically significant association between DNA methylation in several 

CpG sites in these regions and coronary calcium score and carotid intima-media 

thickness when using data from this well-established population-based cohort [3, 16], 

thus adding robustness to our findings. Surprisingly, the associations with subclinical 

atherosclerosis measures were not always directionally consistent compared to the 

associations comparing blood DNA methylation of CVD versus healthy individuals or 

the atherosclerosis versus normal aorta samples. The explanation for this inconsistency 

still remains unclear, although we cannot exclude cell type specific variations in blood 

sample composition or complex genotype SNP, microRNA or lncRNA dependent 

heterogenic epigenetic regulation of different BRCA1 or CRISP2 variants [48-54]. In 

addition, changes in lifestyle (diet, smoking, pollution, exercise) and pharmacological 

treatments (statins, aspirin, PARP inhibitors) could further obscure DNA methylation 

changes associated with atherosclerosis [48, 55].  

However, the known biological role of BRCA1 and CRISP2 in cardiometabolic risk and 

inflammation pathways adds further significance to our findings. Besides the well 

described tumor suppressor function of BRCA1 in breast and ovarian cancers, more 

recent research also demonstrates an important role for BRCA1 in suppression of 

endothelial dysfunction and atherosclerosis [56]. In the latter study, BRCA1-

overexpressing ApoE knock-out mice developed significantly less atherosclerotic 

plaque lesions together with reduced macrophage infiltration and diminished ROS 

production [56]. In another study, women lacking functional BRCA1/BRCA2 at 

increased breast cancer risk also show greater risk for heart disease and metabolic 

diseases [57-60]. BRCA1 is involved in multiple cellular processes and genome stability 

maintenance like DNA repair, transcriptional regulation, ubiquitination and cell-cycle 

control [61]. Excessive production of reactive oxygen species, in part via upregulation 

of DNA damage pathways, is a central mechanism governing pathologic activation of 

vascular smooth muscle cells. Remarkably, BRCA1 was found to shield vascular smooth 

muscle cells (VSMCs) from oxidative stress by inhibiting NADPH Nox1-dependent 

reactive oxygen species production [62]. More recently, BRCA1 was found to regulate 

lipogenesis through its interaction with acetyl coenzyme A carboxylase [58]. Along the 

same line, BRCA1 plays a critical role in the regulation of metabolic function in the 

skeletal muscle where it is involved in lipid storage and insulin resistance [63]. In 

analogy to BRCA1 dependent suppression of cell motility and epithelial-mesenchymal 
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transition in cancer [64], BRCA1 may also prevent endothelial-mesenchymal transition 

involved in atherosclerosis progression and other CVDs (myocardial infarction, vascular 

calcification) [65-67]. As our data suggests, silencing of the BRCA1 gene in 

atherosclerosis patients may mean that this gene not only acts a tumor suppressor but 

also as a vascular protector against oxidative cell damage. Of note, using TCGA cancer 

data BRCA1 methylation-expression correlation seems to be complex, with both 

negative and positive correlations. In addition, in TCGA cancers, methylation seems to 

be stronger correlated with NBR2 gene expression. NBR2 is a lncRNA sharing a bi-

directional promoter with BRCA1. A role for the lncRNA NBR2 in CVD has not yet been 

described, but it seems to function as a tumor suppressor by activating AMPK and 

regulating autophagy and metabolic energy stress pathways [68, 69]. Interestingly, 

AMPK plays an important role in atherosclerosis via autophagy regulation. Moreover, 

AMPK activation reduces the formation of atheromata-inducing macrophages [70, 71]. 

In contrast, non-cancer samples obtained from BLUEPRINT and ENCODE datasets reveal 

only weak or no correlations. These results suggest that BRCA1-NBR2 DMR has a 

complex disease related relationship with BRCA1 and NBR2 gene expression.  

While no CRISP2 functions have so far been reported in relation to CVDs, CRISP2 gene 

activities were recently associated with oxidative stress responses and decline of lung 

function upon smoke or particular matter exposure [72]. In another study, CRISP 

expression was found to abolish the neovascularization process induced by exogenous 

growth factors (bFGF, vpVEGF) [55]. Decreased CRISP2 expression correlated with Th2-

like eosinophilic inflammation in chronic nasal asthmatic chronic rhinosinusitis [73]. As 

such, the potential involvement of CRISP2 in CVD pathologies and angiogenesis via 

oxidative stress and inflammatory responses warrants further investigation. However, 

CRISP2 gene expression in blood cells and cell lines was low or even absent, questioning 

the functional relevance of this methylation change.  

An important limitation in our study is reflected by the small sample size of the studied 

samples, which renders our analysis clearly underpowered. Future prospective studies 

in larger and distinct cohorts could further enable the validation of BRCA1 and CRISP2 

to predict early CVD. Additionally, the atherosclerosis patients were older than the 

healthy controls. Even though, a correction for age-specific methylation was 

performed, we cannot exclude that age may affect the results and is therefore a 

confounding factor. In addition, as atherosclerosis is an age-dependent disease, 

probably some of the excluded age-dependent CpG sites overlap with CDV related 

CpGs. Nonetheless, in the post-hoc analysis with the AWHS, a study population 

composed of CVD free middle age men, the main findings were consistent even after 

adjustment of age, BMI, smoking and houseman cell composition. While we cannot 

discard a potential lack of generalizability, which is typical of observational studies, an 
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important strength of our study includes the availability of DNA-methylation data from 

three independent set of samples covering the whole spectrum from blood samples 

from individuals with subclinical atherosclerosis measures and individuals at high and 

low cardiovascular risk to carotid and aorta samples. 

In conclusion, we identified promising novel epigenetic biomarkers of clinical and 

subclinical atherosclerotic disease, in genes involved in impaired leukocyte-

endothelium functions during atherosclerosis progression. These regions deserve 

further consideration in experimental studies and prospective population-based cohort 

to confirm their potential role in cardiovascular risk. If confirmed, the reported markers 

could become potential tools to support early identification of individuals at high CVD 

risk who could benefit from preventive interventions for CVD prevention and control. 
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Supplementary information 
 

Supplementary tables 1 to 6 can be found in following dropbox folder: 

https://www.dropbox.com/sh/d9lq9mipqkoezx3/AAC9RCXgWS7P6DS71ybJqWNJa?dl

=0  

 

Supplementary Table 1: Primer sequences. 

 

Supplementary Table 2: Significant differentially methylated positions (sig-DMPs). FDR 

< 0.15 and Delta_beta > 5%. 

 

Supplementary Table 3: Significant methylated regions (sig-DMRs). Minpval < 0.001, 

max delta beta > 5% and ≥ 5 CpGs in region. 

 

Supplementary Table 4: Relative cell type contributions in healthy and atherosclerosis 

group. 

 

Supplementary Table 5: CpG probes located in sig-DMRs, associated with 

atherosclerosis in both blood and plaque tissues. 

 

Supplementary Table 6: Ingenuity pathway enrichment analysis of gene associated 

DMRs of Supplementary Table 6. 

 

 

https://www.dropbox.com/sh/d9lq9mipqkoezx3/AAC9RCXgWS7P6DS71ybJqWNJa?dl=0
https://www.dropbox.com/sh/d9lq9mipqkoezx3/AAC9RCXgWS7P6DS71ybJqWNJa?dl=0
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Supplementary Figure 1: UCSC genome browser view of the DMR in the promoter region of BRCA1 and 
NBR2. 
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Supplementary Figure 2: UCSC genome browser view of the DMR in the promoter region of CRISP2. 
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Supplementary Figure 3: Verification of Illumina 450k methylation data using MassArray EpiTYPER and 
pyrosequencing. A) Correlation between Illumina beta-values and MassArray methylation values. Only 
Illumina probes are represented of which methylation was measured by a single region in the MassArray. 
For each gene, Spearman’s correlation coefficient was calculated. B) MassARRAY EpiTYPER verification of 
BRCA1-NBR2 and CRISP2 and C) pyrosequencing verification of BRCA1-NBR2. The mean methylation values 
of each measured region are represented in boxplots. The student t-test was used to calculate the 
significance of the methylation difference between healthy and atherosclerotic blood samples. 
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Supplementary Figure 4: DNA methylation of A) BRCA1-NBR2 and B) CRISP2 DMR in different blood cell 
types. Color range represents DNA methylation values (beta-values). CpG probes in bold are significantly 
differentially methylated (p-value < 0.05) across major blood cell types determined by one-way ANOVA.  
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Supplementary Figure 5: Correlation between DNA methylation and gene expression using BLUEPRINT 
and ENCODE data. A) BRCA1, NBR2 and CRISP2 RNAseq gene expression values of BLUEPRINT (left) and 
ENCODE (right) samples. B) Correlations between DNA methylation and gene expression in BLUEPRINT 
samples. C) Correlations between DNA methylation and gene expression in ENCODE samples. 
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Abstract | Alzheimer’s disease (AD) and atherosclerosis are both chronic age- and 

inflammation-dependent diseases. In addition, atherosclerosis is frequently observed 

in AD patients indicating common involvement of vascular components in disease 

etiologies. Recently, epigenome-wide association studies have identified epigenetic 

alterations, and in particularly DNA methylation changes for both diseases. We 

hypothesized the existence of a common DNA methylation profile in atherosclerosis 

and AD which may be valuable as a blood-based DNA methylation inflammaging 

biomarker. 

Using publicly available 450k Illumina methylation datasets, we identified a co-

methylation network associated with both atherosclerosis and AD in whole blood 

samples. This methylation profile appeared to indicate shifts in blood immune cell type 

distribution. Remarkably, similar methylation changes were also detected in disease 

tissues, including AD brain tissues, atherosclerotic plaques and tumors and were found 

to correlate with immune cell infiltration. In addition, this immune-related methylation 

profile could also be detected in other inflammaging diseases, including Parkinson’s 

disease and obesity, but not in multiple sclerosis, schizophrenia and osteoporosis. 

In conclusion, we identified a blood-based immune-related DNA methylation signature 

in multiple inflammaging diseases associated with changes in blood immune cell counts 

and predictive for immune cell infiltration in diseased tissues. In addition to epigenetic 

clock measurements, this immune-methylation signature may become a valuable 

blood-based biomarker to prevent chronic inflammatory disease development or 

monitor lifestyle intervention strategies which promote healthy aging. 

 

Introduction 
Aging and inflammation are important contributors of various chronic lifestyle diseases, 

including Alzheimer’s disease (AD) and atherosclerosis. Furthermore, AD and 

atherosclerosis share a lot of disease characteristics and it has been hypothesized that 

they have a common cause [1].  

AD is the most common form of dementia, and is characterized by the accumulation 

and aggregation of extracellular amyloid-β (Aβ) plaques, the intraneuronal deposition 

of hyper-phosphorylated tau protein which forms neurofibrillary tangles, neuronal loss 

and gliosis in the cerebral cortex and hippocampus [2, 3]. In addition, also vascular 

components seem to play a crucial role in the initiation and development of AD [4-6]. 

The brain consumes a high amount of oxygen and glucose, and therefore the cerebral 

blood flow is of particular importance for brain health. It is therefore not surprising that 

cerebrovascular dysfunction has been associated with dementia, AD and other 
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neurodegenerative disorders. More recently, it has been hypothesized that 

cerebrovascular damage could be the first hit in AD initiation leading to neuronal injury 

and loss, and the accumulation of Aβ in the brain, and eventually the development of 

AD [6].  

Atherosclerosis has been associated with dementia and AD [1, 7]. During 

atherosclerosis development, lipids, macrophages, fibrous connective tissue and 

necrotic debris accumulate in the arteries wall leading to the formation of plaques, 

which can over time rupture and block the blood flow leading eventually to CVDs like 

myocardial infarction or stroke [8]. Both atherosclerosis as AD risk increases with age 

and have an inflammatory component. Of interest, cerebrovascular atherosclerosis has 

been found to occur more often in AD patients and correlate with the severity of 

cognitive impairment [9-17]. Also carotid atherosclerosis, carotid intima media 

thickness and coronary artery disease has been associated with AD and AD pathology 

[18-22]. In addition, adults with CVD show an increased risk for the development of 

dementia and AD [23]. Furthermore, atherosclerosis and AD share common risk factors 

including age, hypertension, type 2 diabetes, obesity, smoking, hypercholesterolemia 

and hyperhomocysteinemia [2, 24, 25]. Of interest, in both diseases the APOE4 allele is 

a genetic risk factor [26, 27].  

Because both diseases are associated with multiple lifestyle and environmental factors, 

it is not surprising that epigenetic mechanisms are involved in both disease etiologies. 

Epigenetics is linking environmental factors and genetics through modulation of gene 

expression patterns. Blood and saliva DNA methylation profiles are increasingly applied 

as valuable diagnostic and prognostic biomarkers in diseased patients. DNA 

methylation alterations have been identified in whole blood and plaque tissues of 

atherosclerosis [28-34]. Also AD has been associated with methylation changes in blood 

and different brain regions [35, 36]. We recently demonstrated that BRCA1 and CRISPR 

specific DNA changes in blood can be used as surrogate marker for atherosclerosis [28]. 

More particularly, hypermethylation of a CGI in the promoter region of BRCA1 could be 

replicated in plaque tissue of two independent cohorts indicating that blood can be 

used to predict methylation changes in atherosclerotic plaques. Of interest, BRCA1 

promoter was also found to be differentially methylated in AD within neurons, and 

found to be correlated with gene expression [37]. In AD, however, there is limited 

evidence that methylation changes in brain tissues are also present in more accessible 

tissues like blood [38, 39]. In a study of Lunnon and colleagues, methylation changes 

found in blood of AD patients were not overlapping with the changes seen in AD brain 

[36]. However, the AD blood DMPs were located in the vicinity of genes of relevance to 

AD and correlated with transcriptional changes making them still potential diagnostic 

biomarkers.  
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Given the high commonalities between atherosclerosis and AD disease , here we 

further examined whether we could find similar DNA methylation signatures in blood 

of AD and atherosclerosis patients.  

 

Materials and methods 

Datasets 
Genome-wide DNA methylation datasets were extracted from the GEO database. The 

datasets contain genome-wide DNA methylation profiles of AD brain and whole blood 

samples, and plaques and whole blood samples of atherosclerotic patients. Also, one 

dataset containing samples of intracranial aneurysm arteries was included. Genome-

wide methylation levels were measured using the 450k Illumina arrays in every dataset. 

Table 1 summarizes all AD related datasets used in our study. The dataset_ID is used to 

refer to each dataset in the main text. Table 2 summarizes chronic disease related 

datasets (Table 2). 

 
Table 1: GEO methylation datasets of AD.  

Dataset_ID GEO 

accession 

Disease Tissue 

AD_cerebellum_GSE59685 GSE59685 AD Cerebellum 

AD_EntorhinalCortex_GSE59685 GSE59685 AD Entorhinal cortex 

AD_FrontalCortex_GSE59685 GSE59685 AD Frontal cortex 

AD_SupTempGyrus_GSE59685 GSE59685 AD Superior 

temporal gyrus 

AD_wholeblood_GSE59685 GSE59685 AD Whole blood 

AD_cerebellum_GSE72778 GSE72778 AD Cerebellum 

AD_Frontal_GSE72778 GSE72778 AD Frontal cortex 

AD_Hippocampus_GSE72778 GSE72778 AD Hippocampus 

AD_Occipital_GSE72778 GSE72778 AD Occipital cortex 

AD_TemporalCortex_GSE72778 GSE72778 AD Temporal cortex 

AD_PrefrontalCortex_GSE80970 GSE80970 AD Prefrontal cortex 

AD_SupTempGyrus_GSE80970 GSE80970 AD Superior 

temporal gyrus 

AD_SupTempGyrus_GSE76105 GSE76105 AD Superior 

temporal gyrus 

Athero_wholeblood_GSE107143 GSE107143 Atherosclerosis Whole blood 

IntracranAneurysm_artery_GSE75434 GSE75434 Intracranial aneurysm Superficial 

temporal artery 

AtheroCerebrovas_plaque_GSE66500 GSE66500 Atherosclerosis with 

cerebrovascular event 

Carotid plaque 
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Athero_plaquePaired_GSE46394 GSE46394 Atherosclerosis Aortic plaque 

Athero_plaque_GSE46394 GSE46394 Atherosclerosis Carotid plaque 

 

Table 2: GEO whole blood methylation datasets of different inflammaging diseases. 

Accession_ID Platform Tissue Disease Abbreviation 

GSE107143 450k Whole Blood Atherosclerosis athero 

GSE59685 450k Whole Blood Alzheimer's Disease AD 

GSE72774 450k Whole Blood Parkinson's Disease PD 

GSE88824 450k Whole Blood Multiple Sclerosis MS 

GSE73103 450k Whole Blood Obesity obese 

GSE41169 450k Whole Blood Schizophrenia schizo 

GSE99624 450k Whole Blood Osteoporosis osteo 

 

Weighted correlation network analysis (WGCNA) 
To detect consensus modules between atherosclerosis and AD in whole blood, the 

WGCNA R package was used. First, the most variable probes were selected based on 

an median absolute deviation (MAD) threshold of 0.03 in at least one dataset. In this 

way 97,375 probes remained for further analysis. The blockwiseConsensusModules 

function in the WGCNA package was subsequently used to detect consensus modules 

across the two datasets. We used the soft-threshold power of 7, a minimum module 

size of 30 probes, a maximum block size of 20,000 and a dendrogram cut height of 0.25 

for module merging as input parameters. The consensus module eigengenes was 

associated with disease (either atherosclerosis or AD), and the modules with a 

significant association (p-value < 0.05) in both datasets were used for further analysis. 

The module membership of each probe in the modules was calculated by correlating 

the module eigengenes with the beta values. The gene significance values of each 

probe in the modules were calculated using the -log10(p-value) of the association 

between the beta-values and the disease groups. Probes in the significant modules 

were mapped to different genomic regions, including gene elements, CGI elements and 

chromatin segmentation states. The enrichment of module probes in one of the 

genomic regions was calculated using the fisher’s Exact test. Probes in the significant 

modules were mapped to genes using the Illumina manifest annotation file. Pathway 

enrichment was performed using the IPA software. Module preservation across 

different AD and cardiovascular datasets were performed using the 

modulePreservation function in the WGCNA R package. 100 permutations were 

performed to calculate the preservation z-scores for each dataset. Z-scores higher than 

10 indicate strong preservation, between 2 and 10 weak to moderate preservation and 

below 2 no preservation.  
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Estimation of cell counts and immune cell infiltration 
Cell type fractions were calculated using the method described by Houseman et al. The 

EpiDISH R package was used to perform the calculations. For the whole blood datasets, 

we used the centDHSbloodDMC.m whole blood reference dataset containing 333 CpG 

probes. To estimate the cell counts in the atherosclerosis vascular tissues, we created 

a new reference methylome. For the smooth muscle cells, fibroblasts and endothelial 

cells, we retrieved 450k methylation data of aortic smooth muscle cells (AoSMC), 

ProgFib and human umbilical vein endothelial cells (HUVEC) from the ENCODE project 

(GSE40699), respectively. Immune cell reference methylomes were obtained from the 

study of Reinius et al. Next, differences in methylation across the different cell types 

were calculated using limma linear models comparing each cell type with the rest of 

the samples: immune cell vs rest of samples, AoSMC vs rest of samples, ProfFib vs rest 

of samples and HUVEC vs rest of samples. For each cell type the top 100 significant CpG 

probes with the largest methylation difference were selected and combined to obtain 

357 unique CpG probes. The beta values of the ICs were averaged to obtain the final 

reference methylome. This reference methylome was subsequently used to estimate 

cell counts and IC infiltration in the vascular tissues. Information about IC infiltration of 

the TCGA cancers were obtained from a recent study examining immunogenomic 

profiles of different cancers [40]. TCGA 450k Illumina methylation data were retrieved 

using the TCGAbiolinks R package.  

 

Results 

Atherosclerosis and AD whole blood samples contain a common DNA 

methylation signature 
To compare methylation profiles between atherosclerosis and AD in whole blood, we 

first compared the genome-wide significance of each CpG probe in both datasets. Using 

the limma moderated t-test, we performed differentially methylation analysis on both 

whole blood datasets. Next, the -log10(p-value) for each Illumina CpG-probe was 

calculated, and was made negative for hypomethylated CpG probes. We found a weak 

positive correlation between the -log10(p-values) in both datasets, indicating that at 

the genome-wide level the similarity between the methylation profiles in 

atherosclerosis and AD is limited (Figure 1A). Next, we checked more specifically, 

whether the top significant CpG-probes found in our atherosclerosis dataset were also 

differentially methylated in the AD dataset. We first selected the most significant CpG-
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probes by setting the threshold for differentially methylation at FDR < 0.15 and delta 

beta > 0.05. In this way 712 CpG-probes were selected which we called athero-DMPs. 

T-tests were performed to determine the significance level in the AD dataset for each 

of the 712 athero-DMPs. We found several probes which were also found to be 

differentially methylated in AD (Figure 1B). Of particular interest, the directionality of 

the methylation change was very similar in both datasets. 

Using different publicly available DNA methylation datasets, we performed the same 

analyses in multiple AD brain tissues. Again, for some of the brain tissue we could find 

a similar methylation profile compared to atherosclerosis blood samples (Figure 1C-D 

and Supplementary Figure 1). Especially in frontal lobe, frontal cortex and superior 

temporal gyrus, the hypo- and hypermethylated atherosclerosis DMPs corresponded 

with hypo- and hypermethylation in AD, respectively (Supplementary Figure 1). Except 

for cerebellum tissues, there was a positive correlation between the -log10(p-values) 

of the athero-DMPs in the atherosclerosis whole blood dataset and the other AD brain 

and whole blood datasets (Figure 1C). In contrast, in cerebellum samples no strong 

correlation could be found. Furthermore, cerebellum samples did not correlate with 

the other brain AD tissues (Figure 1D). 
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Figure 1: DNA methylation similarity in atherosclerosis and AD whole blood and brain samples. A) The 
genome-wide significance levels (-log10(P.value)) of each CpG-probe in the atherosclerosis and AD whole 
blood dataset was plotted in the X-axis and Y-axis, respectively. The significance levels were made negative 
for hypomethylated probes. The Pearson correlation was used to calculate the correlation between the 
two datasets. B) Volcanoplot showing the methylation differences of the 712 top significant 
atherosclerosis DMPs in the AD whole blood dataset (athero-DMPs). Significant probes (p-value < 0.05) 
were colored blue when hypomethylated and red when hypermethylated in atherosclerosis. C) Correlation 
coefficients between -log10(p-values) of athero-DMPs in the atherosclerosis whole blood dataset and 
multiple AD brain and whole blood datasets. D) Correlation heatmap of the -log10(p-values) for the athero-
DMPs across different AD datasets. Red means a positive correlation and blue a negative correlation. 

 

 

Next, we calculated the gene significance and module membership of the probes in the 

consensus modules. We defined the gene significance as the -log10(p-value) of the 

association between the CpG-probe methylation value and disease state, and the 

module membership as the correlation coefficient between the module eigengene and 

the CpG-probe methylation value. The closer the module membership is to 1 or -1 the 

more important the probe is in the module. In general, a module membership close to 

1 or -1 is highly connective and therefore represents a hub in the network. There was 

a strong correlation between the gene significance in the two datasets for module 

ME21 (Pearson’s correlation: 0.845) (Figure 2A). The same was true for the module 

membership (Pearson’s correlation: 0.989) (Figure 2B). As expected the gene 

significance and module membership was also highly correlated (Supplementary 

Figure 2). Because a less strong correlation could be found with module ME54 (data 

not shown), we decided to focus only on module ME21.  

 

The atherosclerosis-AD blood consensus network is also associated in brain 

tissues and atherosclerotic plaques 

We further analyzed whether module 21 was preserved in other AD methylation 

datasets of different brain tissues. The preservation z-scores for all AD brain tissues, 

except for cerebellum, were between 2 and 10, suggesting weak to moderate 

preservation (Figure 3A). In cerebellum, there was no indication of module 

preservation (z-score < 2). We next calculated for each AD dataset the gene significance 

values of the CpG probes in module 21, and performed pairwise correlation across the 

different AD datasets. Except for cerebellum, all the other AD datasets showed a 

positive correlation with the gene significance values of the whole blood datasets, and 

relative to each other (Figure 3B).  
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Figure 2: WGCNA co-methylation consensus modules in atherosclerosis and AD whole blood datasets. 
A) Correlation of gene significance values (t-statistics) of CpG probes in the consensus module between 
atherosclerosis and AD whole blood datasets. Heatmap showing the consensus modules of which the 
module eigengenes were significantly associated with either atherosclerosis or AD. Significant modules 
were marked with an asterisk. Red means a positive association and blue a negative. B) Correlation of gene 
significance (left) and module membership (right) of CpG probes in the consensus module 21 between 
atherosclerosis and AD whole blood datasets. C) Genomic enrichment of the consensus module CpG 
probes in multiple genomic regions: gene elements (top), CGI elements (center) and chromatin 
segmentation states (bottom). * Fisher’s Exact P ≤ 0.05, ** P ≤ 0.01, *** P ≤ 0.001, **** P ≤ 0.0001. module 
21 CpG probes. Barplots representing the log2 enrichment ratios of the module 21 CpG probes in multiple 
genomic regions: gene elements (top left), CGIs (top right), chromatin segmentation states (bottom left) 
and TFBS (bottom right). D) Significantly enriched IPA canonical pathways, and (E) IPA diseases and 
biofunctions of genes containing a consensus module CpG probe. 

 

We next wondered whether the same pattern could also be found in other methylation 

datasets related to CVD and atherosclerosis. We extracted 450k Illumina data from 

carotid plaques, plaques after cerebrovascular event and arteries with intracranial 

aneurysm. Here the preservation was much stronger, with z-scores higher than 10 in 

the atherosclerotic plaques after a cerebrovascular event and in intracranial aneurysm, 

while for the carotid plaque datasets we found moderated module preservation (Figure 

3C). Again, we could find strong positive correlations between the gene significance 

values of the different datasets (Figure 3D). Of note, the highest correlation with the 

whole blood dataset could be found with the atherosclerotic plaque dataset with a 

cerebrovascular event. In contrast, there was no evidence of correlation between the 

carotid plaque dataset and the dataset with a cerebrovascular event. 

We next mapped the CpG probes in module 21 to different genomic regions relative to 

gene elements (TSS, gene bodies, …), CGIs, and chromatin segmentation states. 

Interestingly, we found an enrichment in 5’UTR regions, CpG-poor regions outside CGIs, 

active promoters, strong and weak enhancers, transcriptional transition and elongation 

states (Figure 2C). In addition, module 21 probes were strongly depleted in CGIs, 

repressed chromatin states and heterochromatin.  

The CpG probes in module 21 were subsequently mapped to genes. IPA pathway 

analysis showed a strong enrichment in T cell regulatory and immune pathways, 

including T- and B cell receptor signaling, Th1 and Th2 pathway, IL-10 and IL-8 signaling, 

and NF-κB signaling (Figure 2D). In addition, top enriched diseases and biofunction 

were immunological and inflammatory diseases, and functions related to cellular 

development, growth, proliferation and movement (Figure 2E). 
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Figure 3: WGCNA consensus module in AD brain tissues and atherosclerotic plaques. A) Module 
preservation in AD tissue datasets. For each dataset the preservation z-score is shown. Z-scores below 
indicates no preservation, between two and ten weak to moderate preservation and above ten strong 
preservation. B) Correlation heatmap of -log10(p-values) significance levels between different AD datasets. 
C) Module preservation in atherosclerosis and CVD datasets. D) Correlation heatmap of -log10(p-values) 
significance levels between different CVD datasets.  

 

The atherosclerosis-AD blood consensus network represents a common 

immuno-methylation signature 
The enriched pathways in T cell activation and function indicate that part of the 

methylation changes may be due to differences in cell type heterogeneity in the 

samples analyzed. We therefore estimated cell type composition in the atherosclerosis 

and AD whole blood datasets. B-cells and CD4 T-cell levels were both reduced while 

granulocyte levels were increased in atherosclerosis and AD samples as compared to 

healthy blood samples (Figure 4A). In addition, many CpG probes in the consensus 

module seem variable across the different blood immune cell types (Supplementary 

Figure 3). In this respect, the positive correlations seen with the AD brain and 

atherosclerotic plaque tissues could reflect the infiltration of immune cells in the brain 

and arterial wall respectively. To verify this hypothesis, we estimated immune cell 

fraction in the vascular tissues using a new reference methylome created from 

methylation profiles of AoSMC, fibroblasts (ProgFib), endothelials cells (HUVEC) and 

immune cells (IC) (see method section for detials). As expected, an increase in IC was 

observed in plaque tissue compared to healthy aorta tissue (Figure 4B), and monocytes 

were the main infiltrated blood cell type observed in the plaques (Supplementary 

Figure 4). More surprisingly, the AoSMC fraction was relatively lowered in plaque 

material. HUVEC and ProgFib fractions didn’t show substantial differences. Methylation 

values of the 500 most significantly differentially methylated probes in aorta plaques 

from the reference methylomes revealed that the hypermethylated profile was mainly 

due to an overall hypermethylation in immune cells compared to the other cell types. 

Similarly, the small fraction of hypo-DMPs could als be attributed to hypomethylated 

CpG sites in immune cells (Supplementary Figure 5). Furthermore, a strong correlation 

was found between the consensus module eigengene and the estimated immune cell 

fraction, supporting our hypothesis (Figure 4C). 

To further prove that our methylation profile measures an immune component, we 

made use of immune cell infiltration information of TCGA cancers obtained from a 

recent study [40]. As expected, in almost all cancers there was a negative correlation 

between the module eigengenes and leukocyte fraction, stromal fraction and 

lymphocyte infiltration signature score (Supplementary Figure 6). Thus, tumors with 

methylation profiles resembling the methylation consensus module demonstrated 
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more immune cell infiltration. This is completely in line with our observations and 

supports our conclusions.  
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Figure 4: Immuno-methylation signature. A) Estimated blood immune cell type distribution shift in 
atherosclerosis and AD. B) Estimated cell type distribution in healthy aorta, aorta atherosclerotic plaque 
(ao_plaque) and carotid plaque (car_plaque). C) Correlation between immune cell infiltration and the 
eigengenes of the consensus module (ME21) in aorta and carotid plaques. 
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The consensus methylation module is also present in other chronic 

inflammaging diseases 
Since inflammation is a common hallmark of many chronic aging diseases, we further 

checked whether the consensus immunomethylation module identified was also 

prevalent in other chronic inflammation and age-dependent diseases. We therefore 

reanalyzed Illumina 450K DNA methylation profiles of whole blood samples of 

Parkinson’s disease (PD), schizophrenia, obesity, osteoporosis and multiple sclerosis 

(MS), and correlated the gene significance values of the CpG probes in module M21 

across all the diseases (Figure 5A). A strong positive correlation could be observed with 

PD. Also obesity and osteoporosis showed a moderate positive correlation. On the 

other hand, schizophrenia and MS demonstrated a negative correlation.  

The high correlation found in PD could again be attributed to a shift in CD4T and 

granulocyte blood levels. However, no such changes were detected in obesity and 

osteoporosis (Figure 5B). In osteoporosis, NK cell levels were slightly higher as 

compared to healthy samples. In obesity and schizophrenia, immune cell types didn’t 

change dramatically. MS patients had opposite cell type distribution in comparison to 

atherosclerosis, AD and PD patients with higher CD4T- and B-cell levels and lower 

granulocyte levels. 
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Figure 5: The athero-AD consensus methylation module in whole blood of other inflamm-aging diseases. 
A) Correlation of module CpG probe gene significance values across six chronic diseases: atherosclerosis 
(athero), AD, PD, obesity (obese), osteoporosis (osteo), schizophrenia (schizo) and multiple sclerosis (MS). 
B) Estimated blood immune cell type distribution shifts in different chronic diseases.  

 

Discussion 
In this study, we identified a common DNA methylation signature in whole blood of 

atherosclerosis and AD patients. We showed that this consensus methylation module 

represents an immune component which correlates with shifts in blood immune cell 

distribution and immune cell infiltration in plaques and brains. Finally, we demonstrate 

the applicability of the immune-methylation signature, as an inflamm-aging disease 

biomarker.  

Blood-based DNA methylation biomarkers can be valuable for diagnostic, predictive, 

prognostic and therapeutic purposes [41, 42]. Here, we showed that blood DNA 

methylation in atherosclerosis and AD are associated with similar shifts in immune cell 

type distribution and/or tissue infiltration. In both atherosclerosis and AD, granulocyte 

levels were increased while B and CD4T-cells were decreased. This is in accordance with 

other studies showing a higher neutrophil/lymphocyte ratio (NLR) in these diseases [43, 

44]. NLR is a marker of systemic inflammation and has been found to be prognostic 

marker in CVDs associated with poor outcome and mortality [45, 46]. Interestingly, NLR 

can also be used to predict the presence of carotid atherosclerotic plaques [47]. Also in 

AD, NLR was higher as compared to healthy controls [43]. However, strong evidence 

for NLR as a prognostic or predictive biomarker in AD is lacking [48]. Whether our 

methylation profile is also a predictor of poor outcome or disease severity should be 

further investigated.  

In cancer, systemic inflammation is associated with poor outcome [49, 50]. A recent 

study used DNA methylation to estimate NLR [51], and found that this methylation-

derived NLR (mdNLR) was associated with poor survival in various cancer types [51, 52]. 

Furthermore, they also showed that mdNLR was increased with age [51]. Indeed, age 

is also accompanied by chronic low-level systemic inflammation, which is often called 

inflamm-aging [53]. In addition, many chronic diseases are more common with higher 

age, and it has therefore been suggested that aging and age-associated chronic 

diseases share the same underlying biological mechanisms [54, 55]. Many age-

associated chronic diseases can therefore be seen as an acceleration of the aging 

process. Epigenetic clock age can be deduced from Illumina 450K DNA methylation 

profiles and accelerated epigenetic clock age has been associated with mortality and 

age-related diseases and phenotypes, suggesting that the epigenetic clock is a measure 
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for biological age, rather than chronological age [42, 56]. Interestingly, no single CpG 

site was in common between the immune-methylation signature identified in this study 

and the epigenetic clock signature, indicating a difference between the two DNA 

methylation-based biomarkers. Therefore, we also tested whether our methylation 

profile was present in other inflammation- and aging-associated diseases, besides AD 

and atherosclerosis. Remarkably, we observed a similar immunomethylation related 

change in PD. In contrast, the other diseases tested showed either low association with 

our methylation profile or no association, indicating that this profile is not a general 

marker for all inflamm-aging diseases. For example, MS showed a rather negative 

correlation with our methylation profile, which was also reflected in an opposite shift 

of cell type distribution, with higher lymphocytes and lower granulocytes levels. In 

contrast to MS, obesity showed a mild positive correlation, although this does not 

change the cell type contribution of the major blood cell types, which may indicate the 

involvement of other minority blood cell types or different activation cell activation 

states [57, 58].  

In most blood-based EWAS, the Houseman algorithm is frequently applied to correct 

for variations in blood sample cell composition which may contribute to methylation 

variability [59]. However, we believe that this immune component may be an important 

determinant of aging disease etiologies and holds valuable information for prognostic 

or therapeutic biomarker applications. DNA methylation may be a very sensitive 

method to estimate small shifts in immune cell distribution or activation status. For 

example, a recent study found DNA methylation differences were associated with NK 

cell activation [60]. DNA methyltransferase DNMT3B seems to be important in 

regulating macrophage polarization [61]. In another study, FOXP3 methylation can be 

used to count regulatory T cells in blood and solid tissues [62]. A methylation CpG site 

in GPR15 gene which was associated with smoking, was found to be due to a higher 

proportion of CD3+GPR15+ expressing T cells in blood, and not by the direct effect of 

smoking on DNA methylation [63]. Correcting for cell type effects in EWAS is not always 

useful and may remove important information about the disease pathology [64]. In 

addition, even highly purified cell types were found to be rather a collection of 

epigenomes (which the authors called meta-epigenomes) [65], and may therefore not 

exclude all cellular effects. The usefulness of measuring cell type effects using DNA 

methylation was also exemplified by the extrinsic epigenetic clock which is influenced 

by blood cell counts. Faster extrinsic epigenetic age acceleration was associated with 

all-cause mortality [66], while different healthy lifestyle factors resulted in a decrease 

in extrinsic epigenetic age acceleration [67]. These results indicate that it may be useful 

to also include cellular effects which may be used to asses therapeutic, nutritional and 

lifestyle interventions.  
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Although this immune-associated DNA methylation profile is associated with 

atherosclerosis and AD, further longitudinal studies are required to estimate whether 

it is also related to disease outcome or progression. We established a correlation of 

DNA methylation changes with immune cell infiltration in atherosclerotic plaques and 

tumors. Immune cells play important roles in atherosclerosis and can either promoter 

or reduce atherosclerosis progression [68]. It would be interesting to study whether we 

can use blood-based methylation profiles to predict the inflammation status of 

atherosclerotic plaques. We showed that the hypermethylated profile in 

atherosclerotic plaques described previously [34], could be mainly attributed to 

increases in immune cells in the artery. This is of course not surprising as arteries and 

atherosclerotic plaques are a complex mixture of cell types and that atherosclerosis 

results in a dramatic remodeling of artery cell types, such as infiltration of immune cells 

and proliferation of smooth muscle cells. It is therefore questionable whether all the 

methylation changes detected in atherosclerotic plaques are due to intrinsic 

methylation changes in specific cell types and whether these aberrant DNA methylation 

marks could be targets for cell type specific therapeutic interventions. We also need to 

point out that our reference methylome-based estimation of the cell type counts in 

plaques could not be validated with histologically determined cell type counts and that 

the tissue consist of much more complex cell types which were not included in the 

reference methylome. Furthermore, we used ENCODE cell lines as reference 

methylomes which may not be completely representative for the cells in vivo. However, 

previous studies already used cell lines to estimate cell type fractions, and a recent 

study used the same ENCODE cell lines to estimate cell type counts in aortic samples in 

relation to ascending aortic dissection and bicuspid aortic valve [69, 70]. 

Due to the lack of brain cell type reference methylomes, we were unable to estimate 

immune cell infiltration in AD brain tissues or the contribution of microglia. However, 

neuro-inflammation plays an important role in AD and there is evidence that systemic 

immune cells may infiltrate into the brain [71]. Whether our methylation profile 

correlates with neuro-inflammation or number of infiltrated immune cells should be 

further investigated. Interestingly, we found no correlation of methylation in AD 

cerebellum samples with our immune-DNA methylation signature, which is in 

accordance with studies showing that the cerebellum is less susceptible to AD 

neuropathological features like amyloid plaques and neuronal loss than cortex and 

hippocampus [72]. 

In conclusion, inflammaging diseases, including atherosclerosis, AD, PD and obesity, 

share a common DNA methylation profiles in whole blood samples representing a 

disease-associated immune component reflected by changes in blood immune cell 

counts and predictive for immune cell infiltration in disease tissues. In addition to 
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epigenetic clock measurements, this immune-methylation signature may become a 

valuable blood-based biomarker to prevent chronic inflammatory disease development 

or monitor lifestyle intervention strategies which promote healthy aging. 
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Supplementary information 

Supplementary tables 1 and 2 can be found in following dropbox folder: 

https://www.dropbox.com/sh/d9lq9mipqkoezx3/AAC9RCXgWS7P6DS71ybJqWNJa?dl

=0  

 

Supplementary Table 1: Illumina CpG probes used as reference methylome to estimate 

cell type counts in aorta healthy tissue and atherosclerotic plaques. 

 

Supplementary Table 2: Illumina CpG probes of consensus module 21. For each probe 

the Gene Significance value (GS) and Module Membership (kME21) is given.  

 

Supplementary Figure 1: DNA methylation similarity between atherosclerosis whole blood samples and 
AD brain tissues. Volcano plots showing the methylation differences of the 712 top significant 
atherosclerosis DMPs (athero-DMPs) in different publicly available AD brain datasets (see Table 1). 
Significant probes (p-value < 0.05) were colored blue when hypomethylated and red when 
hypermethylated in atherosclerosis.  

https://www.dropbox.com/sh/d9lq9mipqkoezx3/AAC9RCXgWS7P6DS71ybJqWNJa?dl=0
https://www.dropbox.com/sh/d9lq9mipqkoezx3/AAC9RCXgWS7P6DS71ybJqWNJa?dl=0
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Supplementary Figure 2: Correlation between gene significance and module membership of probes in 
module 21 in atherosclerosis (left) and AD (right). 
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Supplementary Figure 3: DNA methylation values of the consensus module CpG probes across the major 
blood immune cell types. 
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Supplementary Figure 4: Estimated immune cell fraction in healthy aorta, aorta atherosclerotic plaques 
(ao_plaque) and carotid plaques (car_plaque). 
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Supplementary Figure 5: DNA methylation levels of the top 500 most significant differentially methylated 
probes in aorta atherosclerotic plaques compared to healthy aorta tissues across different vascular cell 
types (AoSMC: aorta smooth muscle cells, ProgFib: fibroblasts, HUVEC: endothelial cells). 
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Supplementary Figure 6: TCGA immune cell infiltration. Correlation between the consensus module 
eigengenes of TCGA cancers and measures of immune cell infiltration (Leukocyte fraction, stromal fraction 
and lymphocyte infiltration signature score). 
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Abstract | Diets rich in epicatechin flavanols are known to exert cardioprotective 

effects through reduction of monocyte-endothelial cell adhesion and transendothelial 

monocyte migration. In the present study we apply genome-wide DNA methylation 

profiling to examine potential involvement of epigenetic remodeling in response to 

epicatechin metabolites in in vitro and in vivo studies. In line with their known biological 

properties, flavanol metabolites revealed endothelial DNA methylation changes in 

genes involved in cell adhesion, cytoskeletal organization, renin angiotensin, nitric 

oxide and axonal guidance signaling pathways. Upon flavanol enriched diet 

intervention, we observed a strong interindividual variation in blood DNA gene 

methylation response which affects common cell adhesion pathways. The high 

interindividual gene diversity suggests highly redundant epigenetic wiring of cell 

adhesion networks, beyond direct transcriptional regulation. Furthermore, we 

identified reciprocal atherosclerosis and flavanol diet specific epigenetic changes, 

which involve systemic changes in blood cell types.  

 

Introduction 
A diet rich in fruits and vegetables is known to have beneficial health effects partly due 

the high levels of polyphenolic flavonoids [1]. Consumption of flavanols, a subclass of 

flavonoids, has been associated with improved cardiovascular health [2-5]. The main 

flavanol compounds are the monomeric catechin and epicatechin and the oligomeric 

procyanidins with cocoa, apples and tea as the major food sources. Only monomers 

and dimers are absorbed in the small intestine, and undergo metabolization in the liver 

leading to glucorinidated, sulphated and methylated metabolites [6].  

Experimental studies and randomized controlled trials (RCTs) further confirm the 

cardioprotective effects of flavanols [7] including effects on blood pressure [8, 9], 

vasodilation [10, 11], and LDL cholesterol [12]. The most consistent effect is on 

endothelial function measured by flow-mediated vasodilation (FMD) [13], which is an 

independent risk factor for CVDs. Multiple RCTs showed an increase in FMD and 

reduction in blood pressure, both in CVD high risk and low risk individuals [14, 15]. This 

effect is mainly due to the enhancement of NO synthesis and levels in the vascularity 

[10, 16]. Furthermore, (-)-epicatechin was found to partially cause this increase in FMD 

after the consumption of cocoa flavanol-rich diet [7].  

In a previous study, a four and eight week diet intervention with monomeric and 

oligomeric flavanols (MOF) from grape seeds in 28 male smokers revealed pleiotropic 

vascular health benefits [17]. Although only a few macro- and microvascular 

biomarkers were significantly improved after the diet intervention, integrating all 



 

216 
 

measures into a vascular health index resulted in an overall improvement in vascular 

health by MOF diet supplementation, which was not seen in the placebo group [17]. In 

an attempt to better understand molecular mechanisms of flavanols, genome-wide 

gene expression levels were measured before and after the diet intervention in blood 

samples which reveals expression changes in genes involved in chemotaxis, cell 

adhesion, cell infiltration and cytoskeleton organization [18]. In addition, in vitro assays 

demonstrated that MOF exposure of monocytes reduces cell-cell adhesion to 

endothelial cells and decreases LPS-stimulated TNF-α expression in macrophages [18]. 

Also in endothelial cells, a mixture of flavanol metabolites induced transcriptomic 

changes in cell adhesion genes [19]. Therefore, a possible alternative way how flavanols 

may have beneficial effects on endothelial function and prevent CVD is by reducing the 

recruitment and migration of monocytes into the arterial wall. 

In the previous part of this thesis, we identified an atherosclerosis-associated DNA 

methylation profile in blood. It would be interesting to know whether therapeutic or 

nutritional interventions, including flavanols could reverse this aberrant atherosclerosis 

methylation profile back to normal levels, and whether blood DNA methylation profiles 

could be used as a dynamic health biomarker. Polyphenolic compounds were found to 

induce DNA methylation changes, mainly in in vitro settings [20]. How these 

compounds and other environmental factors may affect epigenetic and DNA 

methylation profiles is not completely understood, but may involve changes in cellular 

metabolism and/or direct interfering with epigenetic enzymes including DNMTs. For 

example, EGCG, the major polyphenol from green tea, can inhibit DNMT activity 

through the formation of hydrogen bounds in the catalytic pocket of DNMT resulting in 

DNA methylation changes in cancer cell lines [21] and the re-activation of silenced 

tumor suppressor genes [22, 23]. In addition, DNMT activity is dependent on 

intracellular SAM levels, which is the main substrate for DNMTs. Accordingly, changes 

in cellular metabolism which affect methyl-donor availability will also be reflected at 

the level of DNA methylation [24].  

The prognostic value of blood DNA methylation markers was recently being 

demonstrated by the development of a multi-tissue epigenetic clock which estimates 

chronological age [25, 26]. This clock was also found to be a marker for biological age 

as it could predict all-cause and cardiovascular mortality [27]. In addition, accelerated 

epigenetic ageing was found to correlate with multiple age-related disorders and 

phenotypes [28]. Interesting, healthy lifestyle factors, including fish intake, moderate 

alcohol consumption, education and fruit/vegetables intake, were found to be 

associated with a younger epigenetic age than chronological age [29].  

In this study, we have investigated the impact of flavanols on DNA methylation. First, 

provide proof of concept for DNA methylation effects in vitro, upon treatment of 
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endothelial HUVECs with different flavanol metabolites. Next, we characterized DNA 

methylation changes in an eight-week grape seed flavanol-rich diet intervention in 

blood samples of male smokers. Finally, we explored whether the DNA methylation 

effects by the grape seed diet intervention are correlated with vascular health markers 

and whether it can reverse or modulate atherosclerosis- and smoking-associated DNA 

methylation profiles. 

 

Materials and methods 

HUVEC in vitro treatments 

Purified epicatechin metabolites: 3′-O-methyl(-)-epicatechin (3’MEC), 4′-O-methyl(-)-

epicatechin-7-β-D-glucuronide (4’MEC7G) and (-)-epicatechin-4′-sulfate (EC4’S) were 

gifted by Mars Inc (McLean, VA, USA). Conjugated metabolites were dissolved in 50% 

ethanol in double distilled water. TNF-α was obtained from R&D Systems (Lille, France) 

and was dissolved in 0.1% BSA/P. 

HUVECs (Lonza, Walkersville, MD, USA), a pool from four donors, at passage 3 were 

cultured in a phenol-free endothelial growth medium (EGM) supplemented with 2% 

fetal bovine serum (FBS), 0.4% fibroblast growth factor, 0.1% vascular endothelial 

growth factor, 0.1% heparin, 0.1% insulin-like growth factor, 0.1% ascorbic acid, 0.1% 

epidermal growth factor and 0.04% hydrocortisone (all from Lonza).  

HUVECs, at passage 4, were seeded into the 24-well plates (BD-Falcon, Le Pont-De-

Claix, France) and grown to reach 60-70% confluence. The medium was then replaced 

to expose the cells for 3 h to the culture medium containing either solvent alone 

(ethanol 0.5‰, control wells, vehicle), different metabolites: 3’MEC, 4’MEC7G or EC4’S 

or mixture of the metabolites at 1 µM. At the end of the incubation period, the medium 

was replaced with flavanol free medium and left for further 18 hours until confluence. 

The confluent monolayer was stimulated for 4 hours with TNF-α (R&D Systems Lille, 

France) at 0.1 ng/mL or only incubated with PBS/BSA (0,01‰, negative control). 

 

Grape seed diet intervention 
Details on the design, protocol and conduction of the clinical study are provided 

elsewhere [17]. In brief, non-obese, healthy male smokers with age between 30 and 60 

years and smoking 10 and more cigarettes per day for at least five years were included 

in the trial. The study was approved by the Medical Ethical Committee of the Maastricht 

University and Academic Hospital Maastricht, The Netherlands (ClinicalTrials.gov, 

NCT00742287) and conducted according to the World Medical Association Declaration 
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of Helsinki of 1975, revision 2008. All subjects provided their written informed consent 

to participate in this study. For the present investigations blood samples of 13 men 

were available before and after an intervention of eight weeks with a daily intake of 

two capsules containing 100 mg MOF from Vitis vinifera L. seeds (MASQUELIER's 

Original OPCs, INC BV, Loosdrecht, The Netherlands). The composition of the MOF 

capsules is specified in [17]. Basically, the intake of 2 capsules per day provided each 

subject with 51.3 mg total catechins ((+)−catechin, (−)-epicatechin and (−)−epicatechin-

3-O-gallate), 55 mg total flavanol dimers (proanthocyanidin B1, B2, B3 and B4) and 93.8 

mg total tri-, tetra- and pentameric proanthocyanidins. During the intervention period 

subjects maintained their usual smoking, dietary and lifestyle habits, complied with the 

regular intake of the capsules and did not experience any severe side effects.  

 

Genomic DNA extraction and bisulfite conversion 
gDNA from HUVEC and EDTA-treated blood was extracted using DNeasy Blood & Tissue 

kit (Qiagen, Courtaboeuf, France). DNA purity and concentrations were determined by 

UV-VIS spectrophotometry (NanoDrop, Thermo Fisher Scientific Inc, Wilmington, DE, 

USA) and stored at -80°C until further use. 

For each sample 1 µg of gDNA was bisulfite converted using the EZ DNA Methylation 

kit (Zymo research, Irvine, CA, USA) according to manufacturer’s instruction. Successful 

bisulfite conversion was confirmed by performing a methylation-sensitive PCR in a 

region of the SALL3 gene. (see [30] for primer sequences). 

 

Illumina DNA methylation arrays 
DNA methylation levels were measured using the Illumina Infinium HD Methylation 

arrays (Illumina, San Diego, CA, USA) according to the manufacturer's instructions. 

Briefly, 4 μL (150 ng) of bisulfite-converted DNA was isothermally amplified overnight 

(20–24h) and fragmented enzymatically. Precipitated DNA was resuspended in 

hybridization buffer and dispensed onto the Infinium HumanMethylation450 

BeadChips (12 samples/chip) using a Freedom EVO robot (Tecan, Männedorf, 

Switzerland). The hybridization procedure was performed at 48°C overnight (16–20 h) 

using an Illumina Hybridization oven. After hybridization, free DNA was washed away 

and the BeadChips were processed through a single nucleotide extension followed by 

fluorescent readout of the incorporated base using a Freedom EVO robot. Finally, the 

BeadChips were imaged using an Illumina iScan (Illumina, San Diego, CA, USA). Illumina 

data have been deposited in accordance to the MIAME guidelines in the public GEO 

database (http://www.ncbi.nlm.nih.gov/geo/), accession number GSE54690 (diet 

intervention study) and GSEXXX (in vitro data). 

http://www.ncbi.nlm.nih.gov/geo/
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DNA methylation analysis 
Filtering of bad quality probes and normalization of raw methylation beta values was 

conducted using the R package RnBeads [31]. Probes with detection p-values higher 

than 0.01, overlapping with SNPs at the last 3 bases in its sequence or containing 

missing values were excluded. BMIQ was used to normalize between the two different 

probe designs (Infinium I and Infinium II) [32]. Normalized methylation beta-values 

were logit-transformed into M-values. DMPs were identified using moderated t-test in 

the limma R package [33]. The Benjamini-Hochberg FDR was used to control for 

multiple testing. Variable methylated positions (VMPs) were identified using the 

Barlett’s test in the iEVORA R script [34]. Probes were assigned to genes, CGI 

annotations (CGI, CGI shores, CGI shelves, and open sea) and gene regions (TSS1500, 

TSS200, 5’UTR, 1st exon, gene body and 3’UTR) based on the HumanMethylation450 

v1.2 Manifest file from Illumina. Probes were also mapped to chromatin segmentation 

states obtained from the UCSC genome browser. Blood cell type composition was 

estimated using the reference-based method of Houseman with the EpiDISH R package 

[35, 36]. All analyses were performed in R and R Studio. Epigenetic age was estimated 

using the epigenetic clock of Horvath [25]. 

 

Pathway analysis 
DMPs which mapped to genes according the HumanMethylation450 v1.2 Manifest file 

from Illumina were used to perform pathway enrichment analysis using the IPA 

software. Canonical pathways were said to be significant overrepresented when they 

had a Fisher’s Exact p-value < 0.05.  

 

Results 

Flavanol metabolites modify DNA methylation profiles in endothelial cells 

Genome-wide DNA methylation profiling of TNF-stimulated HUVECs treated with 

flavanol metabolites were performed. Using the DNA methylation values of all CpG 

probes on the array, we performed PCA (Figure 1A). DNA methylation profiles of the 

HUVECs treated with a mixture of flavanol metabolites (MIX) clearly formed a separate 

cluster, indicating that the methylation profile of these cells are different from the 

other samples. In addition, HUVECs treated with single flavanol metabolites also 

demonstrated a different profile compared to TNF-α and untreated conditions, 
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however, less pronounced as in the MIX condition. We also noticed that one control 

sample clustered together with the flavanol metabolites rather than with the other 

control samples. 

We next selected CpG probes which were significantly differentially methylated 

between flavanol treatment and TNF-α treatment based on a p-value < 0.01 and a 

|delta beta| > 0.05 (Figure 1B). As expected, MIX treatment induced the strongest 

methylation changes leading to 22,491 hyper-DMPs and 5,666 hypo-DMPs. The 

number of DMPs induced by single flavanol metabolites were much lower: 313 hyper-

DMPs and 393 hypo-DMPs in 3’MEC condition, 902 hyper-DMPs and 740 hypo-DMPs 

in 4’MEC7G condition and, 878 hyper-DMPs and 548 hypo-DMPs in EC4’S condition. 

TNF-α also demonstrated a change in methylation compared to untreated control 

samples resulting in 559 hyper-DMPs and 198 hypo-DMPs (Supplementary Table 1-5). 

 

 
Figure 1: Genome-wide DNA methylation of TNFα-stimulated HUVECs treated with flavanol metabolites. 
A) Principal component analysis. B) Number of differentially methylated probes (P < 0.01 & |delta beta| > 
0.1). C) Enrichment of DMPs in genomic regions. The log2 odds ratios are represented. 

 

The DMPs were mainly located outside promoter sites and CGIs irrespective of the 

flavanol treatment (Figure 1C). DMPs were significantly enriched in CpG poor regions, 
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intergenic regions, and heterochromatin. In some treatment contrasts, there was a 

slight enrichment in strong and weak enhancers and in transcriptional chromatin states 

(9_TxN_Transition, 10_TxN_Elongation and 11_Weak_TxN). No large differences were 

observed between hyper- and hypo-DMPs. 

 

 
Figure 2: Comparison of DNA methylation effects across different flavanol metabolites. A) Correlation 
heatmap showing the correlations between the -log10(p-values) across the different treatment contrasts. 
B) Correlation between the -log10(p-values) of the TNF vs control contrast and flavanol metabolite vs TNF 
contrast. C) Venn diagram of the overlapping DMPs across the four flavanol metabolite contrasts.  

 

Flavanol metabolites reverse TNF inflammatory response in endothelial 

cells 

To compare the effect of flavanol metabolites on DNA methylation in HUVECs, we 

calculated -log10 p-value for every probe, and made this value negative when 

hypomethylated while hypermethylated probes were kept positive. In this way the 

most significant hypermethylated CpG probes received the highest positive values, 

while the most significant hypomethylated CpG probes received the lowest negative 

values, Next, we performed pairwise correlations of the -log10 p-values between every 

treatment contrast (Figure 2A). We found strong positive correlations among the single 

and mixture flavanol metabolite contrasts, suggesting that every flavanol metabolite 

exerts a similar effect on HUVECs DNA methylation profile. In addition, many DMPs 
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overlapped across the different flavanol treatments (Figure 2B). In contrast, there was 

a negative correlation between flavanol treatment contrast and TNF contrast, 

suggesting that the effect of the TNF inflammatory response is at least partially 

reversed by the flavanol metabolites (Figure 2C). We also noticed that the correlation 

between the MIX contrast and the other single flavanol metabolite contrasts was less 

strong. Similar, the reverse effect of the MIX contrast in respect with the TNF-α 

response was also limited compared to the single flavanol metabolites.  

 

Flavanol metabolites change endothelial DNA methylation in genes 

involved in cell adhesion, cytoskeletal organization, renin angiotensin, 

nitric oxide and axonal guidance signaling pathways 
The DMPs were mapped to genes and for every flavanol treatment contrast pathway 

analysis was performed using IPA. We noticed a strong overlap in significant enriched 

pathways among the contrasts. To compare the enriched pathways among the 

different contrasts, we ranked the pathways based on the sum of the -log10 

enrichment p-values in each treatment contrast. In this way, the pathways which were 

enriched in more than one contrast, and are therefore in common across the 

treatments, were ranked first (Figure 3). Among the top ranked pathways, we find 

interesting pathways including axonal guidance, netrin, ephrin and integrin signaling, 

actin cytoskeleton signaling, etc., involved in various aspects of atherogenesis via 

eliciting endothelial dysfunction, monocyte attraction, leukocyte infiltration, 

monocyte-macrophage retention, platelet hyperreactivity, and neovascularization [37-

41]. Previously, we have demonstrated in vivo and in vitro that epicatechin metabolites 

mediate their vasculo-protective effects through dynamic regulation of endothelial cell 

monocyte adhesion and permeability [42].  Furthermore, renin-angiotensin and nitric 

oxide signaling play critical roles in hypertension and may contribute in 

cardioprotective blood pressure-lowering effects of dietary flavanols [13, 43-45]. 

 

Grape seed flavanol diet intervention triggers strong interindividual 

variation in blood DNA methylation response. 
A double-blind, randomized, placebo-controlled intervention study recently revealed, 

that the daily consumption of monomeric and oligomeric flavanols (MOF) derived from 

seeds of grapes (Vitis vinifera L.) for 8 weeks accomplish a vascular health benefit in 

male smokers [17]. Corresponding DNA methylation levels of blood samples were 



 

223 
 

 
Figure 3: Pathway analysis. Top 40 most significantly enriched IPA canonical pathways across the four 
flavanol metabolites. The heatmap represents the -log10(p-value) of the enriched pathways. Pathways 
were ranked by the sum of -log10(p-values). 

 

measured before and after the diet intervention using the 450k Illumina array platform 

[18]. Clinical characteristics of the volunteers can be found in supplementary table 6.  

Upon PCA of the DNA methylation profiles obtained in the diet intervention study (data 

available at GSE54690), the strongest clustering was observed per participant rather 

than response to diet intervention (Figure 4A). In line with previous findings, when we 

performed linear regression using the limma paired moderated t-test, no common diet 

responsive CpG probe was found to be differentially methylated (FDRs for all CpG sites 

were around 1). Similarly, no clear correlation was found of delta beta before and after 
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diet intervention across the individuals (Figure 4B), again showing strong 

interindividual variation in the epigenetic response to a flavanol enriched diet. Next, 

we selected probes that changed in methylation by at least 0.1 in beta-value after diet 

intervention (>10% methylation change) for every individual participant of the study. 

We noticed that some individuals (SN_110, SN_109 and SN_114) showed a strong 

epigenetic response with a total number of DMPs between 5,469 and 15,189, while 

other individuals showed much less difference in methylation changes after the diet 

intervention (Figure 4C). Altogether, we could not identify a common CpG probe which 

was differentially methylated in every individual, and only a small fraction of the probes 

was affected in more than one individual (Supplementary Figure 1). 

 

 
Figure 4: Genome-wide DNA methylation after an 8-week grape seed diet intervention. A) Principal 
component analysis. Blue labels are the samples before the diet intervention and orange labels are the 
samples after diet intervention. B) Correlation heatmap showing the correlations between the delta betas 
(methylation differences) across the ten individuals. C) Number of DMPs (|delta beta| > 0.1).  
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Grape seed flavanol diet doesn’t increase DNA methylation variability 

In another EWAS, differential variable CpG positions were identified which discriminate 

disease and health conditions [46]. Similarly, we checked whether the grape seed diet 

had an influence on the methylation variability of specific CpG probes. We therefore 

looked for CpG probes that had either a lower or higher variability in DNA methylation 

after the diet intervention as compared to before using the iEVORA algorithm. The 

iEVORA algorithm makes use of the Bartlett’s test to identify differentially variable CpG 

sites (VMPs). In this way, we identified 336 VMPs (Figure 5A). However, upon dividing 

the VMPs in probes with a higher variability after diet intervention (hyper-VMPs) and 

probes with a decreased variability after diet intervention (hypo-VMPs), slightly more 

hypo-VMPs than hyper-VMPs were detected, indicating that the grape seed diet 

intervention didn’t increase the methylation variability (Figure 5B). In addition, the 

Bartlett’s test is sensitive to single outliers (which may be due to false positives) and 

therefore the iEVORA algorithm implements a feature selection step using the 

differentially methylated t-test p-value. No single CpG probe survived the Bartlett’s FDR 

< 0.05 and t-test p-value < 0.05 selection criteria (Figure 5A), indicating that grape seed 

diet intervention didn’t result in a strong change in DNA methylation variability. 

 

 
Figure 5: Variable methylated CpG probes. A) Comparison of variable methylated positions (VMPs) and 
differentially methylated positions (DMPs). Significant VMPs are colored in orange. B) Number of VMPs 
divided in hyper (more variable after diet) and hypo-variable (less variable after diet). Red bars represent 
the probes which are hypermethylated after the diet intervention and green bars those which were 
hypomethylated. 

 

Strong interindividual epigenetic variation in response to flavanol diet 

intervention targets common cell adhesion signaling pathways 
For every individual participant we selected the CpG probes that showed a change in 

methylation of at least 10%, and mapped these probes to genes based on the Illumina 
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manifest file. Next, we performed IPA pathway analysis for every individual. To 

compare the enriched pathways among the individuals, we ranked the pathways based 

on the sum of the -log10 enrichment p-values in each individual. In this way, the 

pathways which were enriched in more than one individual were ranked first (Figure 

6A). Among the top ranked pathways, we could find several pathways of interest 

including leukocyte extravasation signaling, axonal guidance signaling, netrin signaling, 

thrombin signaling, etc.  

Interestingly, leukocyte extravasation signaling, which is known to be influenced by 

flavanols was also found as one of the top ranked pathways. Leukocyte extravasation 

is the process of capture, rolling, adhesion and transmigration of leukocytes through 

the capillary endothelial layer to the place of inflammation. Although this pathways was 

significantly enriched (p < 0.05) in five individuals, little overlap could be observed in 

the differentially methylated genes involved in this pathway (Figure 6B). 

Interestingly, 14 of the 40 top enriched canonical pathways were also found to be 

enriched in the in vitro study, including axonal guidance and netrin signaling. 

 

Reciprocal atherosclerosis and flavanol diet specific epigenetic changes 

driven by shifts in blood cell type composition 
Since the cardioprotective role of flavanols is well established, we evaluated whether 

atherosclerosis and flavanol diet intervention associated DNA methylation profiles 

show opposite methylation direction. We therefore compared the mean DNA 

methylation differences after the diet intervention with the DNA methylation 

differences in atherosclerotic patients of athDMPs.  

Interestingly, based on the mean delta betas of all individuals, a negative correlation 

(r=-0.41) was found with the delta betas of the athDMPs (Figure 7A). Hypo-athDMPs 

were on average increased in methylation after the diet intervention, while hyper-

athDMPs were mainly decreased in methylation. Furthermore, when calculating the 

correlation between delta betas in every individual separately, we found more 

individuals with negative correlation compared as with positive correlations (Figure 7B 

and Supplementary Figure 2). Especially individual SN_114 demonstrated a strong 

negative correlation. Interestingly, the three samples with the strongest DNA 

methylation response (SN_114, SN_109 and SN_110) were also the most negatively 

correlated with the athDMPs.  
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Figure 6: Pathway analysis of grape-seed diet DNA methylation effects. A) Top 40 most significant 
enriched IPA canonical pathways. The heatmap represents the -log10(p-value) of the enriched pathways. 
Pathways were ranked by the sum of -log10(p-values). B) Heatmap of the genes in the “Leukocyte 
Extravasation Signaling” pathway. Genes which were differentially methylated after the diet intervention 
were colored in red when hypermethylated and green when hypomethylated. 

 

We next used the houseman method to estimate blood cell type composition before 

and after diet intervention in every individual. As expected, the change in cell type 

composition after diet intervention was strongly associated with the correlation 

coefficients between flavanol effect and atherosclerosis in the athDMPs (Figure 7C). 

For example, the change in granulocyte fraction was positively correlated with the 

correlation coefficients, so that, individual SN_114 with the strongest negative 

correlation showed the biggest shift in granulocyte fraction, while the samples with 

positive correlations (SN_107, SN_108 and SN_126) showed as small increase in 

granulocyte fraction after diet intervention. Similar, the change in CD4+T cell fraction 

was negatively correlated with the correlation coefficients. As previously shown [47], 

the relative amount of granulocytes was higher in atherosclerosis, while the relative 

amount of CD4+T cells was lower in atherosclerosis compared to healthy individuals.  

 

Grape seed DNA methylation effects show weak correlation with vascular 

health biomarkers 

We next checked whether the response of the grape seed flavanol diet on DNA 

methylation was correlated with vascular function. For this, correlations were 

performed between the number of DMPs and all the vascular biomarkers which have 

been monitored in these individuals [17]. No major correlations could be found 

(Supplementary Figure 3A). The strongest positive correlations were found for GPX1 

expression values and ED50 of Acetylcholine (Ach.respED50). The most negative 

correlation was found for endothelin-1 (ET1) levels. A similar analysis was performed 

using the correlation coefficient with the athDMP instead of the number of DMPs as a 

measure of grape seed-DNA methylation response (Supplementary Figure 3B). As 

expected, the strongest positive correlation was found for the neutrophil counts and 

the most negative correlation was found for the lymphocyte counts. Here, GPX1 gene 

expression levels were found negatively correlated. No association could be found 

between the grape-seed DNA methylation response and the vascular health index, 

which is an integrative measure of vascular health combining the results from all the 

vascular biomarkers measured (Figure 8A-B) [17]. 
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Figure 7: Comparison flavanol diet effect with atherosclerosis DNA methylation effect. A) Comparison of 
delta betas atherosclerosis of the athero-DMPs (X-axis) and delta betas after grape seed diet intervention 
(Y-axis). Red CpG probes are those athero-DMPs which were reversed by the diet intervention. B) 
Correlation of the delta betas between atherosclerosis and diet for every individual. C) Comparison of the 
correlation coefficient between atherosclerosis and diet effect (X-axis) and estimated granulocyte (left) 
and CD4+ T-cell fraction (Y-axis). 

 

Because all study participants were heavy smokers, we also tested whether the flavanol 

diet could reverse known smoking-induced DNA methylation in blood samples [48]. No 

clear reversal of the smoking methylation pattern could be observed when comparing 

average methylation changes of the diet intervention and smoking methylation 

changes (Figure 8C). More specifically, in some individuals a high fraction of smoking-
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associated DNA methylation changes was reversed while in other individuals only a 

small fraction was reversed (Figure 8D). 

We next checked whether the flavanol diet could impact epigenetic age measured by 

the epigenetic clock of Horvath [25]. We observed a strong correlation of epigenetic 

age with chronological age (r = 0.849, P = 2.23e-6). However, no significant change in 

epigenetic age could be observed after diet intervention (Figure 8E).  

 

Discussion 
Flavanols are protective against CVDs and improve vascular health, however, the 

underlying mechanism is not fully elucidated, and it is not yet clear whether the 

beneficial effects of flavanols are related to epigenetic DNA methylation changes. Our 

results provide evidence that flavanols can induce DNA methylation changes in 

endothelial cells in vitro and in a diet intervention study in vivo, targeting common cell 

adhesion signaling pathways. Although the flavanol enriched grape seed intervention 

study reveals no common epigenetic diet responsive signature because of strong inter-

individual variation in DNA methylation changes, similar pathways are affected by all 

individuals. This suggest highly redundant epigenetic modulation of cell adhesion 

functions. 

In HUVECs, flavanol metabolites induced consistent DNA methylation changes. We 

found a strong overlap of DNA methylation changes across the different flavanol 

metabolites. Of special note, the mixture of all flavanol metabolites had the strongest 

effect. The CpG sites that changed after flavanol treatment were rather enriched in 

intergenic regions and gene bodies, as compared to promoter regions. As a 

consequence, only a limited number of genes were found to be both differentially 

expressed and methylated upon comparing genes with DNA methylation changes and 

gene expression changes, since few promoters showed changes in methylation status. 

Although additional chromatin dependent promoter regulation cannot be excluded 

[49], flavanol specific DNA methylation changes may alternatively prime long-term 

transcriptional responses upon repetitive exposure until reaching a particular DNA 

methylation threshold. DNA methylation is inherited every cell division and may be 

seen as an important mediator in memorizing past environmental exposures. 

Alternatively, it needs to be further investigated whether flavanol specific changes in 

DNA methylation may have additional roles in alternative splicing or epitranscriptomic 

events of regulatory lncRNAs [50-53]. Besides, we also found a weak enrichment of 

DMPs in enhancer regions, especially by the MIX treatment, which could change 

insulator functions and higher order architecture of TADs to rewire coregulated gene 
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expression networks [54]. Along the same line, DNA methylation signatures was found 

to follow preformed chromatin compartmentalization [55]. 

 

 
Figure 8: Correlation grape seed diet DNA methylation effect and vascular health markers. A) 
Comparison vascular health index (X-axis) and the correlation coefficient between atherosclerosis and diet 
DNA methylation effect (cor.athDMP, Y-axis) in each individual. B) Comparison vascular health index (X-
axis) and number of DMPs (no.DMPs, Y-axis) in each individual. C) Comparison of DNA methylation changes 
in smokers (X-axis) and after grape seed diet (Y-axis) in known smoking-induced CpG probes. CpG probes 
reversed by the diet intervention are colored in red. D) Fraction of smoking-DMPs reversed by the diet 
intervention in each individual. E) Difference in DNA methylation age after the diet intervention. Negative 
values indicate lower epigenetic age after the diet intervention as compared to before the diet 
intervention. 

 

Of special interest, the intergenic and gene body localized DMPs are enriched for genes 

involved in cell adhesion related pathways, including axonal guidance signaling, paxillin 

signaling, netrin signaling, integrin signaling, and actin cytoskeleton signaling. These 

results are in accordance with previous functional studies showing reduced monocyte-

endothelial cell-cell adhesion after flavanol treatment in vitro and in vivo [42]. The 

recruitment and migration of monocytes into the arterial wall is one of the key initial 

processes during the development of an atherosclerotic plaque. Previous studies 

showed that environmental factors, including LDL cholesterol, homocysteine and 



 

232 
 

disturbed blood flow may adversely modulate endothelial DNA methylation [56-62]. 

Interestingly, we further show that the epigenetic impact of an inflammatory stimulus 

like TNF-α on DNA methylation could partially be suppressed by pretreatment with 

flavanol metabolites [42].  

Furthermore, in vivo DNA methylation profiles of an eight-week grape seed diet 

intervention in ten male smokers were reanalyzed in more depth [18]. The small sample 

size is a limitation of the study and the data should therefore be seen as pilot study. 

PCA showed strong interindividual variation in DNA methylation profiles before and 

after flavanol diet intervention. As such, we failed to detect a consistent epigenetic 

profile in response to a flavanol rich diet. Moreover, all individuals were heavy smokers 

with a different smoking history, which may also contribute in high interindividual DNA 

methylation variability. 

 

However, although we did not identify common flavanol diet specific DNA methylation 

changes across all individuals, we observed significant gene enrichment in common cell 

signaling pathways related to cell adhesion and leukocyte extravasation in all 

participants. This reveals highly redundant epigenetic flexibility of cell adhesion 

regulation through different gene networks. Epigenetic impact (magnitude, number of 

DMPs) of flavanol diet also shows strong variation in different individuals. However, the 

epigenetic impact of flavanols may therefore also depend on history of additional 

lifestyle factors (nutrition, stress, exercise, smoking behavior, age) which shape the 

epigenome in a stochastic cumulative fashion [63]. Similarly, monozygotic twin studies 

reveal age dependent epigenetic drift and epigenome divergence in response to 

different lifestyles which translates in different disease susceptibilities [64, 65]. 

Epigenetic drift may also change gene expression levels of many drug metabolizing 

(ADME genes) and transporter genes, which will affect pharmacokinetics of flavanol 

consumption [66, 67]. Response to weight-loss interventions have also been associated 

with DNA methylation and transcriptomic differences [68, 69]. Another study showed 

that vitamin D response was dependent on the methylation levels of the Cytochrome 

P450 enzymes CYP2R1 and CYP24A1 [70]. In relation to cancer drug response, MGMT 

DNA methylation predicts temozolomide response in glioblastoma [71, 72]. Although 

more research is needed, these examples illustrate the need of DNA methylation 

markers in personalized nutrition. Considering the stochastic nature of DNA 

methylation changes, we cannot exclude that a relative short diet intervention (8 

weeks) is not sufficient to trigger major changes (>5%) in DNA methylation (our cut-off 

criterion for differential methylation) as compared to DNA methylation changes 

following many years (>15 y) of heavy smoking, hypertension and/or aging. Another 

important parameter is the timing of the intervention. It is known for example that 
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prenatal and early development are more vulnerable and/or plastic to epigenetic 

changes than adult stage, to reverse adverse epigenetic marks and gene expression 

[73].  

As such, we found that a flavanol rich diet intervention in adult participants only 

partially suppresses adverse epigenetic marks associated with atherosclerosis. 

Furthermore, this could mainly be attributed to decreased granulocyte and increased 

CD4+T-cell counts. The NLR is a measure of systemic inflammation and is a known 

prognostic and predictive marker for CVDs. Higher NLR has been associated with 

increased cardiovascular risk. DNA methylation may be a sensitive method to estimate 

small shifts in immune cell counts and activation status, and therefore could be a 

measure for chronic systemic inflammation. Indeed, a methylation-based NLR value 

was found to predict various cancers. In addition, CRP, another systemic inflammation 

marker, was shown to be associated with DNA methylation in blood. Interestingly, diet 

has been shown to have an impact on NLR and chronic inflammation [74]. For example, 

studies found negative correlations between polyphenol, flavonoid and dark chocolate 

consumption and low-grade inflammation biomarkers including neutrophil and 

lymphocyte counts and CRP [75-77]. In rats fed a high-fat diet, grape seed procyanidins 

could decrease CRP levels [78, 79]. It can therefore be hypothesized that changes in 

systemic inflammation may also be visible in blood DNA methylation profiles. Whether 

reduction in inflammation could be measured using DNA methylation should therefore 

be further investigated in larger study populations. 

At the pathophysiological level, we did not detect statistical significant correlations 

between the reversal of atherosclerosis-associated DNA methylation marks with 

vascular health improvement or changes in inflammatory markers. Also the number of 

DMPs in each individual was not correlated with improved vascular health outcome. 

However, our limited sample size may lack statistical power and limit strong 

conclusions.  

In conclusion, we have demonstrated that flavanols are able to change DNA 

methylation profiles in endothelial cells in vitro and in blood samples in vivo, following 

diet intervention in human smokers. Strong interindividual epigenetic variation in 

response to flavanol diet intervention further revealed highly redundant effects on cell 

adhesion networks, beyond direct regulatory effects on gene expression. Finally, an 

eight week flavanol diet intervention in adult participants, showed limited epigenetic 

efficacy to suppress adverse epigenetic profiles associated with atherosclerosis or 

smoking. Longitudinal studies in larger study cohorts are needed to evaluate 

persistence of observed epigenetic changes and possible causal relations with vascular 

health parameters. 
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Supplementary information 

Supplementary tables 1 to 5 can be found in following dropbox folder: 

https://www.dropbox.com/sh/d9lq9mipqkoezx3/AAC9RCXgWS7P6DS71ybJqWNJa?dl

=0  

 

Supplementary Table 1-5: DMPs of contrasts 3’MEC vs TNF, 4’MEC7G vs TNF, EC4’S vs 

TNF, Mix vs TNF and TNF vs control. 

 

Supplementary Table 6: Anthropometric and clinical characteristics of the male volunteers. 

 Men (n = 13) Clinical reference 

values 

Age , y 48 (30-58) NA 

BMI, kg/m 25 (18-28) <30 

Years of smoking 28 (14-42) NA 

Cigarettes/day 16 (10-25) NA 

Pack years 19 (7-52) NA 

SBP, mmHg 115 (103-124) <140 

DBP, mmHg 74 (60-85) <90 

Heart rate, beats/min 55 (50-66) 60-100 

tChol, mmol/L 5.7 (4.0-7.1) ≤5.0 

LDL, mmol/L 3.9 (2.5-5.5) ≤2.5 

HDL, mmol/L 1.2 (0.9-4.0) 0.9-1.7 

TG, mmol/L 1.2 (0.9-4.0) <20 

CRP, mg/L 1.7 (0.6-5.6) <10 

Fibrinogen, g/L 3.4 (2.4-4.8) 2.0-4.0 

Values are median (range). 

Clinical reference values are Dutch reference values “clinical chemistry” (www.flk.cvz.nl) and from the 

Dutch General Practitioner Guidelines (https://www.nhg.org/standaarden/volledig/cardiovasculair-

risicomanagement). 

 

 

https://www.dropbox.com/sh/d9lq9mipqkoezx3/AAC9RCXgWS7P6DS71ybJqWNJa?dl=0
https://www.dropbox.com/sh/d9lq9mipqkoezx3/AAC9RCXgWS7P6DS71ybJqWNJa?dl=0
http://www.flk.cvz.nl/
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Supplementary Figure 1: Number of probes differentially methylated in one or multiple individuals. 
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Supplementary Figure 2: Correlation between diet effect and atherosclerosis effect on DNA methylation 
for each individual.  
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Supplementary Figure 3: Correlation between diet effect on DNA methylation and vascular health 
markers. A) diet effect was measured as the athDMP correlation coefficient. B) diet effect was measured 
as the number of DMPs. Vascular health markers were grouped in different categories (blood.cell.counts, 
GE.inflammatory, etc).  
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Abstract | Herbal medicinal Echinacea purpurea tinctures are widely used today to 

prevent and treat respiratory tract infections. Although their immunomodulatory 

effects have already been demonstrated by several studies, the molecular mechanisms 

involved remain poorly characterized. Integration of transcriptome, kinome and DNA-

methylome profiles of THP1 monocyte cells treated with a quality-controlled 

preparation of Echinacea purpurea extract (Echinaforce®), revealed activation of an 

innate antiviral immune gene response. More particularly, Echinaforce® treatment of 

THP1 cells triggers interferon signaling pathways and gene expression changes related 

to innate immunity. Phosphopeptide based kinome activity profiling and 

pharmacological inhibitor experiments with filgotinib further demonstrate crucial 

involvement of JAK1 kinase activation in IFN signaling and immunity related gene 

activation by Echinacea treatment. Finally, Echinaforce® treatment promotes 

predominantly DNA hypermethylation at intergenic CpG and DNA repeat elements 

(LINE, SINE, LTR) and silences transcription of flanking endogenous retroviral sequences 

(ERVs), as part of an evolutionary conserved (epi)genomic protective response against 

viral infections. Altogether, Echinaforce® treatment of THP1 cells activates an innate 

immune response by priming JAK1 dependent interferon signaling and gene 

expression, DNA repeat hypermethylation and ERV silencing, which might contribute in 

protection against respiratory infections. 

Introduction 
Distinct species of the plant genus Echinacea have traditionally been used in North 

America against infectious diseases and wounds [1, 2]. Currently, a wide variety of 

Echinacea preparations are used world-wide to improve the immune system, and for 

preventing and treating common colds and influenza infections. Of all Echinacea 

species, Echinacea purpurea (purple coneflower) is the most popular used variety in 

Western countries.  

Different Echinacea purpurea extracts (different species, plant parts, manufacturing) or 

derived compounds showed antioxidant, antibacterial, antifungal, antiviral and 

mosquitocidal activities in cell culture experiments [3], although absolute comparisons 

between studies with different preparations remain difficult [4, 5]. A meta-analysis of 

multiple intervention studies revealed a significant reduction of common cold in the 

Echinacea treated as compared to the placebo control groups [4]. Meta-analysis of six 

clinical trials showed a reduced risk for recurrence of respiratory tract infections and 

complications by Echinacea [6].  

Complex immunomodulatory actions of Echinacea have been described including both 

pro- and anti-inflammatory effects [2, 3, 7]. The compounds that contribute to these 
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activities are alkylamides, glycoproteins, polysaccharides and caffeic acid derivates that 

may act independently or in synergy [1, 3, 8, 9]. Therefore, different Echinacea 

preparations with variable constituents may lead to different immune outcomes [5]. 

For example, a polysaccharide-rich root extract increased the expression of MHC II, 

CD86 and CD54 markers on mice dendritic cells, while an alkylamide-rich leaf extract 

suppressed the expression of these surface markers [10].  

In this study, we evaluated Echinaforce®, a commercially registered herbal medicinal 

tincture of Echinacea purpurea plant (A.Vogel Bioforce, Switzerland) in several 

European countries like Switzerland, Austria, UK, Spain, the Netherlands, Denmark, 

Finland, Sweden, Slovenia as well as Canada, containing 5% root extract and 95% herb 

extract following extraction with 65% ethanol V/V. Echinaforce® has been shown to 

possess immune modulatory, anti-inflammatory, anti-bacterial, anti-viral and anti-

parasitic activity [11-22]. Clinical efficacy could be shown with different batches in 

acute treatment [23] or for prevention [24] of respiratory tract infections. A 4-month 

clinical study on the safety and efficacy of Echinaforce® to prevent common cold 

showed significant more cold episodes and higher duration in the placebo group as 

compared to the Echinaforce® treatment group [24]. Recurring infections were lower 

in the Echinaforce® treatment group. Moreover, no differences between placebo and 

Echinaforce® group were reported in relation to health risk and safety [24]. 

Despite the promising immune potentiating properties of Echinaforce®, the responsible 

molecular targets have only partially been identified. For example, multiple studies 

demonstrate that Echinacea alkylamides exerts their action partially through the 

cannabinoid receptor 2 (CB2) [8, 20, 25]. Alkylamides are structurally similar to 

endocannabinoids, and bind CB2 with a higher affinity compared to endogenous 

cannabinoids [25]. This action of alkylamides on CB2 was the mechanism behind the 

upregulation of TNF-α in primary monocytes after Echinaforce® treatment [20]. In 

addition, the cAMP, p38/MAPK and JNK signaling pathways, as well as NF-κB and 

ATF2/CREB1 TFs were found to be involved in the Echinacea-induced TNF-α expression 

[20]. Furthermore, a recent study showed that ex vivo blood stimulation with LPS after 

an 8-day oral Echinacea administration resulted in the induction of anti-inflammatory 

cytokines (IFN-γ, IL-8, IL-10 and MCP-1) only in subjects with low basal levels of these 

cytokines [11]. Interestingly, individuals with high basal levels of these cytokines didn’t 

show any further induction. The same was seen in subjects with high stress levels or 

high susceptibility to cold infections, suggesting that Echinaforce® mainly (or only) 

enhances immune responses in immunocompromised subjects [11]. 

To further clarify mode of action of standardized Echinacea purpura extract, we applied 

a systems biology approach by combining genome-wide gene expression, DNA 
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methylation and kinome activity profiles of THP1 monocyte cells following Echinaforce® 

treatment.  

 

Materials and methods 

Test item 
Echinaforce® (batch nr. 040070, A. Vogel Bioforce AG, Roggwil, Switzerland) is a 

standardized preparation obtained by ethanol extraction of freshly harvested 

Echinacea purpurea herb and roots (95:5). Echinaforce® is marketed as a registered 

medicinal product and produced under conditions of Good Manufacturing Practice 

GMP. Thus, a consistent quality for each produced batch is mandatory and equal to the 

requirements for an allopathic remedy. The composition of marker compounds like 

alkylamides (i.e. those compounds known to characterize this species of Echinacea) was 

described previously [3, 7, 26]. In contrast to pressed juice extracts, Echinaforce® 

extract does not contain polysaccharides which are known to stimulate the immune 

system unspecifically [27-30]. The alcohol concentration of Echinaforce® tincture 

extract was 65% v/v and solvent controls have been included in all experimental in vitro 

experiments to rule out aspecific effects. In addition, the preparation was free of 

detectable endotoxin as determined by means of a commercial assay kit, Lonza 

Walkersville Inc., MD, lower limit of detection 0.1 unit/ml.  

 

Cell lines and treatments 
THP1 cells were grown in RPMI-1640 medium supplemented with glutamine, 10 % heat 

inactivated Fetal Bovine Serum, 50 IU/mL Penicillin, 50 µg/mL Streptomycin, 10 mM 

HEPES and 0.05 mM β-mercaptoethanol. Cells were treated with 1% Echinaforce® 

tincture versus ethanol solvent control. Each treatment condition consisted of six 

biological replicates. 

 

Genome-wide gene expression analysis 

Sample preparation and microarray processing 

THP1 cells were treated for 48h with 1% Echinaforce® or ethanol solvent control. RNA 

was isolated using the RNeasy mini kit (Qiagen) according to manufacturer’s 

instructions. RNA concentration and purity was measured using the nanodrop 1000. 

The quality of each RNA sample was checked using the Experion of Bio-Rad. 500 ng of 

total RNA was amplified using the Illumina TotalPrep RNA Amplification kit (Life 



 

248 
 

Technologies, Carlsbad, CA, USA). Briefly, RNA was reverse transcribed using T7 

oligo(dT) primers, after which biotinylated cRNA was synthesized through an in vitro 

transcription reaction. 750 ng of amplified cRNA was hybridized to a HumanHT12 

beadchip array (Illumina, San Diego, CA, USA). The beadchip was incubated for 18 hours 

at 58 °C in a hybridization oven under continuous rocking. After several consecutive 

washing steps, bead intensities were read on an Illumina iScan. 

Microarray data preprocessing and analysis 

Raw gene expression intensities were preprocessed using the beadarray R package 

[31]. Intensities were quantile normalized and log2 transformed. Probes with a P-

detection value higher than 0.05 in at least six samples were removed. Also, probes 

annotated as “bad” and “no match” (as described in [32]) were not kept for further 

analysis. Differentially gene expression was performed using the limma R package [33]. 

P-values were corrected for multiple testing using the method of Benjamini and 

Hochberg. Probes with a log2 fold change higher than 0.4 and an adjusted p-value of 

0.05 were defined as significant and kept for further analysis. The probes were 

annotated with gene information using the illuminaHumanv4.db annotation dataset 

[34]. The gene IDs of the significant Illumina expression probes were uploaded into the 

IPA software to find enriched biological pathways, diseases and networks. Raw and 

normalized array data were uploaded to the Gene Expression Omnibus (GEO) database 

and have accession number: GSE117904. 

 

Quantitative PCR validation 

THP1 cells were treated with 1% Echinaforce® or Solvent for 3-6-12-24-48h in three 

independent biological experiments. The effect of JAK1 inhibition was determined by 

treating the cells with 1 µM JAK1 inhibitor Filgotinib (GLPG0634, Selleckchem) for 30 

min before adding Echinaforce®. RNA was isolated using the RNeasy mini kit (Qiagen) 

according to manufacturer’s instructions. 750 ng RNA was reverse transcribed into 

cDNA using oligo dT (Invitrogen), M-MLV reverse transcriptase (Promega), 2.5 mM 

dNTPs and RNaseOUT (Invitrogen). Samples were incubated on 42°C for 60 min and 

75°C for 15 min. For the hERV genes, cDNA synthesis was performed using random 

primers (Invitrogen) and incubation of the samples at 37°C for 60 min and 75°C for 15 

min. qPCR was performed using the GoTaq qPCR Master Mix (Promega) on a 

StepOnePlus Real-Time PCR machine (Applied Biosystems). Following primers were 

used: MX1 forward primer (FP) 5’-GTTTCCGAAGTGGACATCGCA-3’, MX1 reverse primer 

(RP) 5’-CTGCACAGGTTGTTCTCAGC-3’, IFITM1 FP 5’-CCAAGGTCCACCGTGATTAAC-3’, 

IFITM1 RP 5’-ACCAGTTCAAGAAGAGGGTGTT-3’, STAT1 FP 5’- 

CCATCCTTTGGTACAACATGC-3’, STAT1 RP 5’-TGCACATGGTGGAGTCAGG-3’, IL8 FP 5’-

GCTCTCTTGGCAGCCTTCCTGA-3’, IL8 RP 5’-ACAATAATTTCTGTGTTGGCGC-3’, CXCL10 FP 
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5’-GAAAGCAGTTAGCAAGGAAAGGT-3’, CXLC10 RP 5’-

GACATATACTCCATGTAGGGAAGTGA-3’, ACTB FP 5’-CTGGAACGGTGAAGGTGACA-3’, 

and ACTB RP 5’- AAGGGACTTCCTGTAACAATGCA-3’. Primer sequences for hERVs were 

derived from [35]. Each sample was ran in triplicate and median Ct-values in each 

replicate group was selected. Ct-values were normalized using ACTB housekeeping 

gene. ddCt-values or log fold changes (logFC) were calculated using the solvent control 

as reference sample. Paired t-test was used to determine the significance of the 

differences between Echinaforce® and solvent expression levels. 

 

Kinase activity profiling 

Sample preparation 

THP1 cells were treated with 1% Echinaforce® or ethanol solvent control for 15 min. 

Cell lysates were prepared according to manufacturer’s instructions. In short, cells were 

washed twice with cold 1X PBS and lysed with lysis buffer (1:100 dilution of Halt 

Phosphatase Inhibitor Cocktail and Halt Protease Inhibitor Cocktail EDTA free in M-PER 

Mammalian Extraction Buffer (ThermoFisher Scientific™, Rockford, USA) at a ratio of 

100 l buffer per 1x106 cells. Lysates were then incubated on ice for 15 min and 

centrifuged for 15 minutes at 16000 x g at 4°C. Protein concentration was quantified 

using the Pierce BCA Protein Assay Kit (ThermoFisher Scientific™, Rockford, USA).  

 

Serine/threonine kinases (STK) and tyrosine kinase (PTK) pamgene assay and 

data analysis 

Kinase activity profiling was performed PamChip® preprocessing and kinase activity 

profiling was performed according to manufacturer’s instructions (PamGene 

International BV, ’s-Hertogenbosch, The Netherlands). The first part of the protocol 

consisted in the blocking of the arrays with 2% BSA followed by several washing steps. 

Then 0.5 µg for STK and 5 µg for PTK assays together with the correspondent reaction 

mixes (purchased from the Pamgene) were loaded onto the arrays and incubated in the 

microarray system PamStation ® 12 instrument (PamGene International, Den Bosch, 

The Netherlands). In this step, the ATP contained in the mix leads to the activation of 

the kinases in the lysate which will result in the phosphorylation of the peptides on the 

array. Peptide phosphorylation intensities are than detected with the primary STK 

antibody mix and FITC-labeled antibody for STK assay and with the FITC-labelled PTK 

antibody (PTK assay). Images are then taken by the CCD camera in the PamStation®12 

and processed by the Bionavigator software. Peptide intensities data were log2 

transformed and differences in phosphorylation between Echinaforce® treated and 
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control cultures were determined by using an univariate student t-test analysis 

corrected for multiple testing using the Benjamini and Hochberg method [36].  

To identify potentially activated or inhibited kinases we used the STK or PTK Upstream 

Kinase analysis PamApp from the Bionavigator Software. The analysis is based on “in 

silico predictions” for the upstream kinases of phosphorylation sites in the human 

proteome that are retrieved from the phosphoNET database [37]. In short, a prediction 

algorithm is derived from known interactions between kinases and phosphorylation 

sites. The prediction algorithm is then used to predict the strength of undocumented 

interactions. The Bionavigator application uses PhosphoNet database to map putative 

kinases upstream of the phospho-peptides (a kinase can have multiple possible 

phosphosites, and a single site can be phosphorylated by different kinases). For each 

set of peptides mapped to a specific kinase, a “difference statistics” is calculated 

(=normalized kinase statistics) using following formula: 𝜏 =  
1

𝑛
∑

�̅�𝑖1− �̅�𝑖2

√𝑠𝑖1
2  + 𝑠𝑖2

2

𝑛
𝑖=1  with �̅�𝑖𝑗 

and �̅�𝑖𝑗  as the sample mean and variance of the intensity of peptide i in group j, 

respectively. n are the number of peptides linked with a specific kinase. A positive 

kinase statistic means that the kinase is activated, while a negative statistic means the 

kinase is inactivated compared to the control group. The kinases are subsequently 

ranked based on a specificity and significance score which are calculated using 

permutation of the peptides and samples, respectively. Following formula is used: 𝑄 =

 −log10(max (
𝑚

𝑀
,

1

𝑀
)), where m is the number of times out of M permutations that |τp| 

> |τ|, where τp is the value of the difference statistic obtained after permutation of the 

samples or peptides. The significance score represents the magnitude of the change 

represented by the normalized kinase statistic. The specificity score represents the 

specificity of the of normalized kinase statistic in terms of the set of peptides used for 

the corresponding kinase. The higher the score the less likely it is that the observed 

normalized kinase statistics could have been obtained using a random set of peptides 

from the data set. The sum of the significance and specificity score is used to rank the 

kinases [38]. 

 

Genome-wide DNA methylation analysis 

Sample preparation 

THP1 cells were treated for 48h with 1% Echinaforce® or ethanol solvent control. DNA 

treated with Echinaforce® was isolated using the DNeasy Blood & Tissue kit (Qiagen) 

according to manufacturer’s instructions. DNA concentration and purity was measured 

using the nanodrop 1000. 1 µg of DNA was used for bisulfite conversion using the EZ 

DNA methylation Kit of Zymo Research according to manufacturer’s instructions. 
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Successful bisulfite conversion was checked using a methylation-specific PCR in a region 

of the SALL3 gene (see [39] for primer sequences). 

 

EPIC DNA methylation array 

The Infinium HumanMethylationEPIC BeadChip array (Illumina, San Diego, CA, USA) 

was used to measure genome-wide DNA methylation. 4 µL of bisulfite-converted DNA 

from each sample was amplified, fragmented, precipitated, resuspended and 

subsequently hybridized onto the BeadChips. After overnight incubation of the 

BeadChips, unhybridized fragments were washed away, while hybridized fragments 

were extended using fluorescent nucleotide bases. Finally, the BeadChips were 

scanned using the Illumina iScan system to obtain raw methylation intensities of each 

probe. 

 

EPIC DNA methylation data preprocessing and analysis 

The R package RnBeads was used to preprocess the Illumina 450K methylation data 

[40]. CpG-probes were filtered before normalization based on following criteria: probes 

containing a SNP within 3 bp of the analyzed CpG site, bad quality probes based on an 

iterative greedycut algorithm with a detection p-value threshold of 0.01, and probes 

with missing values in at least one sample. After filtering these CpG-probes, 

methylation values were within-array normalized using the beta mixture quantile 

dilation (BMIQ) method [41]. Another filtering step was performed after normalization 

based on following criteria: probes measuring methylation not at CpG sites (CC, CAG, 

CAH, …) and probes on sex chromosomes.  

The methylation beta-values were transformed to M-values (M = log2(β/(1-β))) prior to 

further analyses. The moderated t-test incorporated in the limma R package [33] was 

used to calculate the statistics and p-values of the methylation differences between 

Echinaforce®- and solvent-treated samples. Significant differentially methylated probes 

(DMPs) were selected based on a FDR < 0.1 and a difference in beta-value of at least 

0.05. The DMPs were annotated with gene information using the 

IlluminaHumanMethylationEPICmanifest R package [42]. Further gene information was 

retrieved from the UCSC genome browser (human hg19). Enrichment of genomic 

regions was calculated using the Fisher’s exact test. Pathway analysis of the genes 

harboring a DMP was performed using the Ingenuity Pathway Analysis (IPA) software. 

Raw and normalized array data were uploaded to the Gene Expression Omnibus (GEO) 

database and have accession number: GSE117904. 
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Results and discussion 

Echinaforce® treatment activates an interferon and chemokine innate 

immune signaling gene response 
Widespread gene expression changes in monocyte THP1 cells were detected upon 48h 

1% Echinaforce® treatment. Based on significance criteria of FDR < 0.05 and absolute 

log2 fold change > 0.4, Echinaforce® induced modest upregulation of 205 expression 

probes (173 genes) while 124 probes (99 genes) were downregulated compared with 

the ethanol treated solvent controls (Figure 1A and Supplementary table 1).  In 

contrast to pharmacological drugs (for example glucocorticoids) with can trigger drastic 

expression changes of specific genes, many phytochemicals typically achieve significant 

biological responses through mild transcriptional changes of redundant genes 

converging on the same pathway [43-45]. Genes differentially expressed by 

Echinaforce® treatment were enriched for IPA canonical pathways related to innate 

immune responses, including ‘interferon signaling’, ‘activation of IRF by cytosolic 

pattern recognition receptors’, ‘dendritic cell maturation’, 'granulocyte and 

agranulocyte adhesion and diapedesis’, ‘Role of Pattern Recognition Receptors in 

Recognition of Bacteria and Viruses’, etc. (Figure 1B and Supplementary table 2). 

Interestingly, most of these pathways were predicted to be activated, as can be seen 

from the highly positive activation z-scores. 

Especially, the interferon (IFN) signaling pathway was strongly enriched (high 

significance) and being activated (Figure 1C). As a consequence, viral infection and 

replication was predicted to be inhibited (activation z-score < -2), while cellular 

movement, migration, recruitment and chemotaxis was predicted to be activated 

(activation z-scores > 2) (Figure 1D).  Both STAT1 and STAT2 gene expression show 

moderate induction, triggering downstream expression of both type I (IFN-α/β) and 

type II IFN-regulated genes involved in antiviral immune responses.  

Also antiviral gatekeeper and interferon inducible proteins MX1 and IFITM1 (CD225) 

show transcriptional activation [46-48]. Similarly, IL8 and CXCL10 chemokines involved 

in innate immunity are transcriptionally activated [49]. 

In line with our results, anti-viral effects against influenza infection and activation of 

IFN pathways have also been reported in vivo following Echinaforce® tincture 

treatment [11, 15, 21]. In accordance with the canonical pathways, the differentially 

expressed genes were also enriched in inflammation related diseases and biological 

functions, including ‘infectious diseases’, ‘immunological diseases’, ‘cellular 

movement’, ‘inflammatory response’, ‘immune cell trafficking’, ‘antimicrobial 

response’, etc. (Supplementary table 3). In this respect, besides interferon-stimulated  
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Figure 1: Echinaforce® alters expression of genes involved in the interferon and NF-κB signaling pathway. 
A) Volcano plot showing the upregulated genes (orange color, number of probes: 205), and downregulated 
genes (blue color, number of probes: 124) upon treatment of THP1 cells for 48h with Echinaforce® tincture 
(1%) . B) Top enriched IPA canonical pathways. Bars are colored by activation z-score. C) IPA interferon 
signaling pathway with Echinaforce®-induced up- and downregulated genes colored in red and green, 
respectively. D) Top enriched IPA infectious diseases and IPA immune trafficking disease and bio function. 
Bars are colored by activation z-score. E) Barplots showing number of Echinaforce®-regulated-genes up- 
or downregulated in BLUEPRINT M1 and M2 macrophages compared to monocytes. 

 

genes, also a lot of chemokines were upregulated, which promote the recruitment and 

adhesion of immune cells.  

Since IFN signaling plays a key role in monocyte/macrophage polarization [50], we next 

compared our results with public available gene expression data of CD14+ CD16- 

monocytes, inflammatory macrophages (M1) and alternative macrophages (M2) 
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obtained from the BLUEPRINT consortium [51]. Echinaforce®-responsive genes were 

correlated with gene expression profiles of monocyte/macrophage subtypes by 

pairwise t-tests. In general, Echinaforce®-upregulated genes were found to be highly 

expressed in M1 as compared to M2 macrophages. Along the same line, Echinaforce®-

downregulated genes were also weakly expressed in M1 macrophages. Of the 205 

Echinaforce®-upregulated genes, 172 were also part of the BLUEPRINT dataset, of 

which 42 genes were also upregulated (Bonferroni p-value < 0.05) in M1 macrophages 

as compared to monocytes (Figure 1E). A smaller number of genes (n=26) were found 

to be downregulated in M1 macrophages. In contrast, in M2 macrophages the 

Echinaforce®-upregulated genes were most often downregulated (53 downregulated 

genes compared to 28 upregulated genes). For the Echinaforce®-downregulated genes, 

there was no strong difference between up- and downregulated genes in M1 and M2 

macrophages. Altogether, this suggests that Echinaforce®-induced gene expression is 

more closely related to an inflammatory activated macrophage state (M1) then an 

alternative activated macrophage state (M2) (Figure 1E).  

To validate microarray results and to evaluate the time dependent transcriptional 

dynamics of different genes involved in IFN and chemotaxis innate immune signaling, 

we performed qPCR validation of STAT1, MX1, IFITM1, CXCL8 and CXCL10 transcription 

levels in THP1 monocytes following different exposure times of Echinacea tincture (3-

6-12-24-48h). Gene induction of STAT1 and the interferon-stimulated genes MX1 and 

IFITM1 could clearly be confirmed, with maximal gene expression observed after 48h 

treatment (Figure 2). Furthermore, persistent increased expression levels of the 

chemokines IL8 (CXCL8) and CXCL10 were observed, which peaked after 3h with a 

gradual decrease in gene expression at later time points (Figure 2). Along the same line, 

in murine dendritic cells, Echinacea extract stimulated cell mobility and chemotaxis, 

and altered expression of cell adhesion and motility genes [52]. Reciprocally, different 

studies showed the ability of Echinaforce® to reverse the chemokine induction of virus-

infected cells [12, 53-55]. While Echinacea induces cytokine and chemokine expression 

in uninfected cells, their induction is suppressed upon virus infection or LPS stimulation 

[30, 53-55]. Similarly, Echinaforce® increased the transcription of TNF-α in human 

monocytes, but reduced the LPS-stimulated TNF-α protein production [20]. Although 

multiple studies suggest that this stimulatory effect may be the result of bacterial-

derived LPS and lipoproteins [27-30], our Echinaforce® tincture contains no 

polysaccharides and was shown previously to be free of endotoxins, and still exerts an 

immune activating effect [13, 20]. Overall, our results suggest that Echinaforce® 

treatment activates an interferon and chemokine innate immune signaling gene 

response. 
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Figure 2: qPCR validation Echinacea-induced upregulated genes at different time points. The mean logFC 
values +- SD compared to the solvent control are represented in bars. * P ≤ 0.05, ** P ≤ 0.01, *** P ≤ 0.001 
and **** P ≤ 0.0001. 

 

Echinaforce® activates IFN, NFKB and MAPK kinases 

IFN signaling is usually stimulated by activated pattern recognition receptors. At the 

transcriptional level, upregulation of protein kinase receptor (PKR), a cytoplasmatic 

pattern-recognition receptor could be observed, which triggers various antiviral effects 

especially the production of type I IFNs. Interferon regulatory factor 7 (IRF7), a key 

protein responsible for induction of IFN expression was also found strongly 

upregulated, which together with IRF3 regulates expression of early type I IFN and 

other proteins involved in the innate antiviral immune response (activation of IRF by 

cytosolic pattern recognition receptors) (Supplementary tables 1-2-3). Signal 

transduction via PKR occurs mainly via NF-κB and MAPK pathways (‘Role of PKR in 

Interferon induction and antiviral response’). Another important intracellular pattern-

recognition receptor for viral RNA which was found to be upregulated was MDA5. 

Furthermore, upregulation of the NF-κB subunits RelB and NFKB2/p52 can promote 

downstream production of in innate immunity chemokines (NF-κB activation by viruses, 

NF-κB signaling).  

To validate upstream pathways which trigger downstream gene expression changes in 

THP1 monocytes following Echinaforce® treatment, we performed a Pamchip kinome 

activity profiling assay [38]. This peptide array approach allows characterization of 

cellular serine/threonine or tyrosine kinome activity profiles following on chip in vitro 

kinase reaction of 144 conserved kinase consensus peptide motifs in presence of THP1 

monocyte lysates left untreated or following Echinaforce® treatment [56-59]. Using the 

upstream kinase prediction tool of the Bionavigator PamGene software, the qualitative 

and quantitative changes in phosphopeptide chip intensities upon Echinaforce® 

treatment were translated into a pattern of activated or inhibited upstream kinases 

(Figure 3A and Supplementary table 4). In agreement with the transcriptional 

activation of the IFN signaling pathway (Figure 1C), Pamchip kinome profiling reveals 

activation of the JAK1 kinase which is important in the phosphorylation of STAT kinases 
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and subsequently upregulation of IFN-stimulated genes. Furthermore, in line with 

pathway analysis of transcriptome data, we also identified activation of the tyrosine 

kinase TEC, known to phosphorylate and/or interact with JAK1 and JAK2 [60, 61] (Figure 

3B) (Supplementary table 2). TEC was demonstrated to have important roles during 

innate immunity, i.e. TLR signaling [62], assembly and activation of the caspase-8 

inflammasome [63], macrophage survival [64], IL-8 production [65], phagocytosis [66], 

and NF-kB signaling [67]. Besides, we also identified various Echinaforce® activated 

kinases belonging to the MAPK superfamily of kinases: p38 MAPK (MAPK11, -12, -13, 

and -14), JNK (MAPK8, -9 and -10) and ERK1, similar to be IPA-predicted upstream 

regulators based on the gene expression profiles (Figure 3C) related to various enriched 

canonical pathways: ‘Role of Pattern Recognition Receptors in Recognition of Bacteria 

and Viruses’, ‘Activation of IRF by cytosolic Pattern Recognition Receptors’, ‘Dendritic 

cell Maturation’, ‘Role of MAPK Signaling in the Pathogenesis of Influenza’, and ‘IL-6 

signaling’, amongst others. In contrast, the activity of the MAP kinase kinases MAP2K7 

and MAP2K2 were predicted to be suppressed. Various studies confirm involvement of 

these kinases in Echinacea biological action [20, 52, 68-71]. Alkylamides in the 

Echinaforce® tincture were found to be responsible for MAPK effects upon binding to 

CB2 receptors leading to increased cAMP, P38/MAPK and JNK signaling, NF-κB and ATF-

2/CREB-1 activation [20].  

Similarly, lipophilic extracts of Echinacea promoted murine dendritic cell maturation 

and mobility via the modulation of JNK, P38 MAPK and NF-κB pathways [52, 68, 69].  

To further validate our kinase profiling, transcriptome and pathway analysis results 

showing crucial involvement of JAK kinase activation in IFN signaling upon Echinaforce® 

treatment, we compared THP1 gene expression changes following Echinaforce® 

treatment in presence or absence of the pharmacological JAK1 inhibitor Filgotinib. We 

found that Filgotinib significantly suppresses the Echinaforce® responsive genes MX1 

and IFITM1, whereas STAT1, CXCL10 and IL8 gene expression were less significantly 

suppressed (Figure 3D). Altogether, our experiments with the JAK1 inhibitor Filgotinib 

strengthen our transcriptome and kinome data analysis, pointing to the critical 

involvement of JAK1-dependent IFN signaling in response to Echinaforce® treatment.  
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Figure 3: Echinaforce® activates JAK1 and MAPK kinases. A) PamGene kinome profiling of THP1 cell 
lysates, following 15 min treatment with Echinaforce® tincture (1%). Predicted upstream kinases. Bars are 
colored by specificity score. The direction of the bars represents the normalized kinase statistics. A positive 
kinase statistic means a higher activity in Echinaforce® treated samples. B) IPA TEC signaling pathway with 
Echinaforce®-induced up- and downregulated genes colored in red and green, respectively. TEC and JAK1 
kinases were found to be activated by Echinaforce® treatment. C) IPA P38 MAPK and JNK upstream 
regulators. Genes colored in orange are predicted to be activated, while genes colored in blue are 
predicted to be inhibited. D) Effect of JAK1 inhibition on interferon qPCR gene expression response. THP1 
cells were either treated with the JAK1 inhibitor Filgotinib alone or in combination with Echinaforce® (n=7). 
Mean expression LogFC change relative to solvent control is represented together with 95% confidence 
interval. 

 

Echinaforce® treatment triggers DNA hypermethylation in CpG-poor gene 

bodies, in LINE, SINE and LTR transposon DNA repeat elements and 

silences endogenous retroviral sequences (ERVs) 

Next, we characterized epigenetic changes following Echinacea treatment of THP1 

cells. Different phytochemicals and nutrients are known to change DNA methylation 

and histone modifications by directly influencing epigenetic enzymes or by interfering 

with the availability of the substrates/cofactors of these enzymes [72-74]. In addition, 

epigenetics seems to be important during monocyte differentiation and in the 

immunological memory of macrophages [75, 76]. Today, various bioactive 

phytochemicals have been identified which modulate inflammation through epigenetic 

reprogramming [77, 78]. To assess whether the Echinaforce®-induced changes in 

transcriptome profiles in THP1 cells are associated with DNA methylation changes, we 

measured complementary changes in DNA methylation profiles using the Illumina EPIC 

methylation array. Significant DNA methylation changes were observed following 48h 

exposure to Echinaforce® (Figure 4A and Supplementary table 5). 1,875 CpG sites were 

found differentially methylated (FDR < 0.1) with a methylation difference of at least 5%. 

Typically, DNA methylation changes following short exposures (24-72h) to 

phytochemicals and nutrients report are much smaller [45] than cancer associated DNA 

methylation changes in oncogenes or tumor suppressor genes which accumulate for 

many years in response to the microenvironment [79]. However, similar DMR effects 

sizes and cutoff (<5%) have been shown to be biologically meaningful in various disease 

etiologies in different DNA methylation studies [80, 81] [39]. 

From the 1,875 CpG sites identified, only 40 differentially methylated positions (DMPs) 

were hypomethylated whereas 1,835 DMPs were hypermethylated. DMPs were mainly 

enriched in gene bodies, intergenic, and CpG-poor regions, while depleted in CpG 

islands, promoter, and enhancer regions (Figure 4D). Only 1,259 of the 1,875 CpG-

probes (67%) were located in a gene or 1,500 bp upstream of a gene. Similarly, DNA 

methylation variation in the immune system was predominantly found at CG islands 



 

261 
 

within gene bodies, which have the properties of cell type-restricted promoters, but 

infrequently at annotated gene promoters or CGI flanking sequences (CGI "shores") 

[82].  

Since both gene expression and kinase profiling both revealed the involvement of 

interferon signaling pathways, we also checked whether methylation of IFN pathway 

genes was affected by Echinaforce® treatment. Eight probes located in BCL2, JAK1, 

STAT1, PIAS1 and TAP1 did show an FDR < 0.1, with weak methylation differences 

(between 1 and 3%). Whether this small methylation changes are sufficient to finetune 

the immune gene response needs further investigation by epigenetic editing 

approaches (Figure 4E). For example, the Echinacea induced IFN response may trigger 

a memory response by priming chromatin to mount faster and higher innate immune 

transcription upon re-stimulation of immune cells [83]. Along the same line, epigenetic 

bioactivities of Echinacea constituents may promote cryptic transcription of treatment-

induced non-annotated TSSs (TINATs) encoding immunogenic peptides which might 

prime an antiviral innate immune response [84]. Furthermore, IPA pathway enrichment 

analysis of the genes containing DMPs revealed neuroinflammatory pathways as well 

as inflammation or immunological diseases (Supplementary Table 6). Of particular 

interest, one of the top enriched pathways (‘Superpathway of Inositol Phosphate 

Compounds’) controls various epigenetic processes and is critically involved in the 

interferon response [85-87].  

Since most of the DMPs were located in intergenic regions and gene bodies, only a small 

subset of genes containing a DMP also resulted in a significant change in gene 

expression (Figure 4B). Only seven genes were both differentially methylated and 

expressed, based on the significance criteria described above: i.e. CLSTN2, EZH2, GAS7, 

NAV3, TXNRD1, WARS and ZNF644. When using less stringent significance criteria, 

leaving out the effect size cutoff (logFC), 574 CpG site – gene pairs were found to be 

differentially expressed and methylated. Upon further comparing canonical pathways 

which are significantly enriched for both lists of differentially expressed genes as well 

as the list of differentially methylated genes, we identified 10 common biological 

processes (Figure 4C). Remarkably, common pathways include NF-κB signaling (NF-κB 

activation by viruses, NF-κB signaling), MAPK signaling (LPS-stimulated MAPK signaling, 

UVA-induced MAPK signaling), and immune responses (Role of pattern recognition 

receptors in recognition of bacteria and viruses, Role of NFAT in regulation of the 

immune response, phagosome formation, CD40 signaling, leukocyte extravasation 

signaling). Finally, few Echinaforce®-induced DMPs overlap with immune cell 

(monocyte, macrophage) differentiation DNA methylation markers obtained from the 

BLUEPRINT consortium [51] (data not shown). Altogether, Echinaforce® treatment may 
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promote weak epigenetic changes on innate immune response but not adaptive 

immune response genes.  

Beside the regulation of gene expression, DNA methylation is also important in 

alternative splicing, intron retention and maintaining genomic stability to prevent 

mobility of transposon repeats [88-92]. The higher global methylation seen in these 

repeat elements after Echinaforce® treatment may therefore contribute to genomic 

stability and preventing transposon activity. Interestingly, LINE-1 transposons can 

induce an interferon response which prevents further retrotransposition [93, 94]. Along 

the same line, it has been reported that the IFN response maintains DNA methylation 

silencing of repeats and noncoding RNAs [95]. Similarly, epigenetic DNA methylation 

drugs can trigger an IFN response through viral mimicry via transcription of dsRNAs 

derived at least in part by RNA polymerase III-driven bi-directional transcription of 

repetitive elements from endogenous retroviral elements [35, 93, 96]. In this respect, 

we also checked the methylation changes at repeat and transposon elements. These 

DNA repeats require hypermethylation to maintain genomic instability and prevent 

transposition. DMPs were found to be enriched in LINE, SINE and LTR transposon 

repeats, flanking endogenous retroviral sequences (ERVs) (Figure 4F). ERV sequences 

are major contributors in shaping and expanding the interferon network [97]. RNA 

transcripts of ERVs can be reverse transcribed to generate ssDNA or expressed to 

generate proteins with viral signatures, much like the pathogen-associated molecular 

patterns of exogenous viruses, which allows them to be detected by the innate immune 

system [98]. ERV expressed products have been shown to modulate innate immunity 

effectors, being therefore often related on the one side to inflammatory and 

autoimmune disorders, while on the other side to the control of excessive immune 

activation through their immunosuppressive properties. Finally, specific ERVs have 

been proposed to establish a protective effect against exogenous viral infections [97]. 

Interestingly, various DMR repeat sequences, flanking ERVs showed a global 

hypermethylation upon Echinaforce® treatment (Figure 4G). Along the same line, we 

observed decreased transcription of MER4D, MER57B1, MLT1C627, MLT2B4 ERVs after 

12 and 48h Echinacea treatment, whereas MLT1B and MLT1C49 ERVs were transiently 

repressed at 12h but not at 48h. These results suggest that Echinaforce® triggers an 

evolutionary conserved (epi)genomic protective response against viral infection, upon 

hypermethylation of DNA repeats and silencing of flanking ERVs (Figure 4H).  
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Figure 4: Echinaforce® treatment leads to global hypermethylation in CpG-poor gene bodies and 
intergenic repeat elements. A) Heatmap showing the methylation values of differentially methylated 
probes upon treatment of THP1 cells for 48h with Echinaforce® tincture (1%). Solvent (EtOH) controls are 
colored in blue and Echinaforce®-treated cells in orange. B) Starburst plot showing the genes both 
differentially expressed and differentially methylated. Each CpG-probe was mapped to its corresponding 
gene and the -log10(FDR) from the gene expression and DNA methylation analysis is displayed. The –
log10(FDR) values of genes or CpG-probes with a negative LogFC or delta beta was multiplied by -1 leading 
to positive values when logFC or delta beta was positive and negative values when logFC or delta beta was 
negative. CpG-probe – gene pairs which were differentially expressed (FDR < 0.05) and differentially 
methylated (FDR < 0.1) were colored in blue. The CpG-probe – gene pairs of which the absolute delta beta 
was higher than 0.05 and the absolute logFC higher than 0.4 were colored in red. C) The IPA canonical 
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pathways which were both significantly enriched in the gene expression and DNA methylation analysis. D) 
Genomic enrichment of DMPs in different genomic regions. E) CpG probes located in genes of the 
interferon signaling pathway which were differentially methylated (FDR < 0.1). * P ≤ 0.05, ** P ≤ 0.01, *** 
P ≤ 0.001, **** P ≤ 0.0001. F) Genomic enrichment of DMPs in different repeat elements. GE) Global DNA 
methylation in different repeat elements. H) hERV qPCR gene expression. THP1 cells were with 
Echinaforce® at 12 and 48h (n=3). Mean LogFC change relative to solvent control is represented together 
with 95% confidence interval. 
 

Conclusion 
In this study, we applied a systems biology approach to characterize immunological 

pathways targeted by a widely used standardized ethanolic Echinacea purpurea 

tincture (Echinaforce®, A.Vogel Bioforce, Switzerland). Microarray and QPCR based 

assays revealed that Echinaforce® treatment induces time dependent changes in innate 

immunity related gene expression, involving IFN and chemokine innate immune 

signaling in THP1 monocytic cells. Based on phosphopeptide based kinome data 

analysis and pharmacological inhibitor experiments with the specific JAK1 inhibitor 

Filgotinib, we further demonstrate crucial involvement of JAK1 activation in IFN and 

immunity related gene activation by Echinaforce treatment. Finally, DNA 

hypermethylation changes following Echinaforce® treatment were predominantly 

observed in intergenic CGIs, genomic DNA repeat elements (LINE, SINE, LTR) flanking 

ERVs and to a less extent in regulatory promoter regions, favoring activation of an 

evolutionary conserved (epi)genomic protective response against viral infection. The 

functional role of these methylation changes in immunogenic priming of innate 

immunity, ERV silencing and genome integrity needs to be further investigated.  

Altogether, we show that Echinaforce® treatment of THP1 cells activates an innate 

immune response by priming JAK1 dependent interferon signaling and chemokine gene 

expression, DNA repeat hypermethylation and silencing of flanking endogenous 

retroviral sequences, which might contribute in protection against respiratory 

infections. Finally, immunoprotective effects of Echinaforce® need to be further 

validated in primary immune cell types, in preclinical respiratory infection models or 

placebo controlled intervention studies. 
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Supplementary Information 

Supplementary tables 1 to 6 can be found in following dropbox folder: 

https://www.dropbox.com/sh/d9lq9mipqkoezx3/AAC9RCXgWS7P6DS71ybJqWNJa?dl

=0  

 

Supplementary Table 1: Differentially expressed probes (FDR < 0.05 and logFC > 0.4) 

after Echinaforce® tincture treatment. 

 

Supplementary Table 2: Enriched Ingenuity canonical pathways of differentially 

expressed genes after Echinaforce® tincture treatment. 

 

Supplementary Table 3: Enriched Ingenuity diseases and bio functions of 

differentially expressed genes after Echinaforce® tincture treatment. 

 

Supplementary Table 4: PamGene upstream kinase analysis. 

 

Supplementary Table 5: DMPs (FDR < 0.05 and |DeltaBetas| > 0.05). 

 

Supplementary Table 6: Enriched Ingenuity canonical pathways of differentially 

methylated genes after Echinaforce® tincture treatment. 
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9 
General conclusion & 

future perspectives 
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The main aim of this thesis was to evaluate the applicability of DNA methylation 

signatures from easy accessible tissues like blood and saliva to monitor past adverse 

environmental exposures, cardio-metabolic and inflammaging diseases and effects of 

dietary or phytomedicinal compounds. To what extent  DNA methylation profiles allow 

us to monitor our health status and advise us for personalized lifestyle interventions? 

Which hurdles should still be overcome to fully exploit the potential of epigenetics in 

personalized health applications? 

 

Can blood and saliva being used in 

epigenetic-based health prediction? 

Tissue-specificity of DNA methylation changes 
Blood and saliva are typically not the primary cell or tissue of interest when studying 

chronic lifestyle diseases (cancer, metabolic disorder, neurodegenerative disease, 

CVD). For example, in atherosclerosis, or Alzheimer’s and Parkinson’s disease, the 

diseased tissue of interest (e.g. plaques in the blood vessels, or brain) are usually not 

accessible and therefore blood and saliva may represent interesting surrogate tissues 

to monitor pathological systemic changes  or to identify disease associated  biomarkers. 

Also in metabolic disorders such as obesity and diabetes, tissues such as adipose, liver, 

pancreas and muscle may be more informative than blood and saliva. However, their 

ease of collection makes blood and saliva more useful for clinical and health diagnostic 

applications, and is therefore often the primary choice in epigenetic studies. This of 

course raises questions whether the DNA methylation changes observed in blood or 

saliva are relevant for the primary disease tissue of interest. 

Although a lot of EWAS use peripheral blood to study disease mechanisms or detect 

biomarkers, information about sensitivity and specificity of these surrogate tissue 

biomarkers is scarce. Studies examining the comparability between matched blood and 

other tissue samples in general show a shift towards more positive correlations 

between the methylation values across the tissues. However, in general only a fraction 

of these sites is highly correlated (r>0.5) and considered as concordant CpG sites. In a 

study of 143 individuals with paired blood and adipose tissue methylation data, FAS 

gene methylation associations with BMI were only detected in adipose tissue [1]. In 

contrast, HIF3A gene methylation could be correlated with BMI in both blood and 

adipose tissue. Although this epigenetic association of HIF3A gene methylation across 

tissues was also confirmed in other studies [2], it could not be confirmed in skin tissue 
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[2] illustrating that this association is not completely tissue-independent. This suggests 

that blood-based markers may have diagnostic value. Also other sites were found to be 

differentially methylated in both blood and adipose tissue associated with lipid and 

cholesterol levels [3, 4], and obesity [5]. Similar results were reported when comparing 

blood with different brain tissues, where only a small fraction of the CpG sites were 

highly concordant, whereas other sites were not or rather weakly correlated. This 

limited concordance may therefore hamper the use of surrogate tissues to identify 

important molecular mechanistic insights. Some resources exist which can be used to 

check the concordance of individual sites across blood and brain tissue, and may be 

used to prioritize significant hits in blood studies for further functional validation [6, 7]. 

However, the low sample size of some studies may underestimate the real 

concordance. Another strategy is to only use concordant CpG sites in blood-based 

EWAS, which was recently successfully being performed in a study of schizophrenia [8]. 

Furthermore, studies in AD [9], PD [10] and schizophrenia [11] identified blood specific 

DMPs associated with DMP changes in brain tissues, opening new perspectives for 

blood methylome biomarkers in brain disorders.  

Although saliva sampling is easier to implement than blood sampling in vulnerable 

populations in non-clinical settings [12, 13], only a limited set of studies performed 

methylation studies in saliva samples. Saliva and blood methylomes were found to 

show significant overlap [14-17]. Interestingly, Smith and colleagues observed that 

saliva methylation profiles were more similar to brain tissues than blood methylomes 

[17]. They speculated that this result could be the similar ectodermal origin of buccal 

cells and cells of the central nervous system. A similar conclusion could be drawn from 

a study which compared cord tissue with cord blood in a neonatal EWAS. Here, cord 

tissue was found to be a better surrogate for target tissues of mesodermal origin [18]. 

In the same view, inflammation/immune related diseases may be best captured using 

blood. Therefore, the choice of surrogate tissue type may also be dependent on the 

disease tissue of interest [19]. An interesting recent study obtained matched blood, 

saliva, buccal and live brain tissues, and concluded that the correlation between brain-

peripheral tissue is also CpG and gene-dependent [20].  

In chapter 5, we identified a hypermethylation in the BRCA1-NBR2 and CRISP2 

promoter region, which was evident in both blood and atherosclerotic plaques, and 

which was not detected in other diseases, indicating the specificity of this marker. 

Despite replication, further replication is needed in bigger cohort studies before these 

markers can be applied as surrogate biomarkers. Although a common change in the 

surrogate tissue and tissue of interest may indicate the potential importance of this 

marker in the disease, it is not an absolute requirement for biomarker research. DNA 

methylation changes in blood or saliva which are not causal or which are not observed 
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in the target tissue, may still hold promise as prognostic or therapeutic biomarker, but 

are less applicable as a therapeutic target. 

 

The problem of cellular heterogeneity 
Another issue when studying genome-wide DNA methylation in blood and saliva, is the 

cellular heterogeneity of these tissues. Blood and saliva consist of different cell types 

with their own cell type-specific methylome. Therefore, a shift in relative cell type 

distribution due to disease or exposures may lead to an observable change in DNA 

methylation. When studying mechanistic epigenetic processes or identifying 

therapeutic targets in blood samples or other heterogenous tissues, it is crucial to take 

these cellular dynamics into account. A large proportion of DNA methylation variability 

in blood samples can be attributed to this cellular effect. For example, one of the first 

studies demonstrating the strong impact of cellular heterogeneity on EWAS outcome, 

was a genome-wide DNA methylation study in rheumatoid arthritis measured in whole 

blood. No correction for differential blood cell counts resulted in a high number of 

significant associations, while most of these associations disappeared upon cell type 

correction [21]. Another study demonstrated that most of the previously reported 

changes in DNA methylation during aging were due to shifts in cell type composition 

[22], illustrating the need of adjusting for cellular heterogeneity. Based on these early 

studies, multiple statistical methods have been designed to adjust for cell type effects 

in EWAS. With respect to EWAS in blood samples, the most popular method is the one 

proposed by Houseman and colleagues who made use of reference methylomes from 

six major blood cell types to estimate relative cell type contributions in blood samples. 

In this method, one assumes that the sample’s DNA methylation profile is the result of 

a linear combination of the underlying cell type methylomes [23]. These estimated cell 

counts can then be used to correct the associations between methylation and the 

phenotype of interest.  

This method is not restricted to blood, but can also be used for other tissues with 

known underlying cell type composition and available reference methylomes. In this 

way, several reference methylomes have been constructed for whole blood, cord 

blood, prefrontal cortex and breast tissue [24]. In chapter 6, we used reference 

methylomes from ENCODE to estimate the main cell type composition in plaques and 

aorta, and found that a large part of the methylation differences observed in 

atherosclerotic plaques can be attributed to immune cell infiltration. This indicates that 

one must be careful in interpreting EWAS studies of complex solid tissues, like aorta 

and plaques, where considerable shifts in cell type distribution can be expected.  
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Although I used the major cell types involved in atherosclerotic plaques to construct 

this reference methylome, plaques are much more complex and it is difficult to have a 

complete picture of all cell types and cellular activation states involved. For most 

tissues, the exact underlying cell type composition is not known and/or reference 

methylomes are not available. Therefore, also multiple reference-free algorithms have 

been constructed, such as EWASher, RefFreeEWAS and ReFACTOR, that may help in 

adjusting cellular effects without the need for reference methylomes [24]. Also in 

blood, different subtypes of CD4+ and CD8+ T-cells and activation states exist, for which 

reference methylomes are difficult to construct. For example, it was recently 

demonstrated that a highly replicated smoking-associated DNA hypomethylation in a 

CpG site in the GPR15 gene was not due to the direct effect of tobacco smoking 

compounds on DNA methylation, but was rather the consequence of an expansion of 

CD3+GPR15+ expression T cells [25]. This indicates that subtle cellular effects exist, and 

that there is a need to quantify blood cell type composition in more detail to elucidate 

the real extent of cellular heterogeneity. Consortia, like BLUEPRINT and the 

International Human Epigenome Consortium (IHEC) are now generating methylomes 

and epigenomes of multiple major and minor cell types, and may therefore help 

detecting and accounting for these rare cell subtypes in future blood EWAS. In addition, 

it may also contribute to the generation of new reference methylomes for complex 

solid tissues, such as brain, skin, lung etc., of which the underlying cellular components 

are less well known. Moreover, single-cell based epigenomic methods are on the rise 

to detect subtle cell type specific epigenetic effects, as recently demonstrated for CD4+ 

T-cell subtypes [26]. 

In theory, a detectable DNA methylation change measured in a complex tissue like 

blood and which is not the result of shifts in cell type distribution, can be due to a 

methylation change in a specific cell type, a subset of cell types or even all the 

underlying cell types. Knowledge about the cell type responsible for the methylation 

change may be useful in elucidating mechanistic pathways and interpretation of the 

results. Cell type separation techniques like FACS may, however, not distinguish rare 

cell subtypes [27], and furthermore, even purified cell types exhibit extensive variation 

in DNA methylation. Purified cell types were found to be rather a collection of different 

epigenomes or meta-epigenomes [28] and cell type effects may not completely be 

removed after cell type separation. Of interest, recently also a statistical tool was 

developed to identify the underlying cell types accounted for the observed methylation 

alterations without the need for cell sorting [29].  

At one hand, when one wants to elucidate underlying epigenetic mechanisms of 

diseases or when the hypothesis is that DNA methylation is a mediator between 

environmental exposures and human health, it is clear that differences in cell type 
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composition must be adjusted for. On the other hand, changes in cell type composition 

may be an important contributor to disease development. For example, a lot of 

diseases, including metabolic disorders, are accompanied by chronic systemic 

inflammation and immune cell activation and infiltration. Measuring these cellular 

heterogeneity may therefore also be useful as prognostic or diagnostic biomarker or as 

read-out for intervention efficacy. An example is the extrinsic epigenetic clock designed 

by Horvath, which is influenced by shifts in cell type composition during aging and is 

able to predict all-cause mortality better than the intrinsic epigenetic clock which is 

independent of cellular effects [30]. In addition, the extrinsic clock was also found to 

be much more influenced by different lifestyle factors [31]. Another example, is the 

prognostic value of neutrophil/lymphocyte ratio (NLR) in several cancers. Recent 

studies demonstrated the use of blood DNA methylation to measure NLR which has 

shown its prognostic value in multiple cancers [32]. These data showed that DNA 

methylation may be a very sensitive way of measuring subtle changes in cell type 

composition and cellular activation states. For instance, DNA methylation signatures 

have been described for activated NK and T-cells [33, 34]. In another study, neutrophil 

activation could be detected in obesity using gene expression and DNA methylation 

[35]. Similarly, we identified a blood-based DNA methylation profile which was 

common in different inflammaging diseases, including atherosclerosis, AD, PD and 

obesity, which to a large extent reflects changes in immune cell type composition 

(Chapter 6). However, whether this profile can be used as a prognostic marker or used 

to monitor lifestyle interventions should be further investigated.  

In conclusion, accounting for cellular heterogeneity is needed when one wants to 

investigate causal epigenetic mechanistic pathways or identify new therapeutic targets. 

Even, when the phenotype of interest doesn’t have any effect on cell type 

heterogeneity, one must take into account the existence of subtle changes in cell type 

composition and meta-epigenomes when interpreting these data. For biomarker 

research, correcting for cellular heterogeneity is not an absolute requirement, and can 

even be exploited as potential prognostic biomarker or to monitor therapeutic or 

lifestyle interventions.  

 

How to interpret biological impact of 

DNA methylation changes? 
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Cause or consequence? 

A limitation of the studies performed in this thesis is the observational nature of the 

study design. For example, in chapter 3 we measured DNA methylation in the children 

when they were eight years of age, and found an association with prenatal pesticide 

exposure in interaction with a PON1 genotype. However, we don’t know whether these 

methylation changes were already present at birth and whether DNA methylation is 

indeed a mediator between prenatal pesticide exposure and the increased 

cardiometabolic risk profile observed in these children. The cross-sectional 

case/control design can only demonstrate associations and correlations but doesn’t tell 

us something about the causal relationship. For example, the DNA methylation changes 

seen in these children can also be the result of the altered lipid levels (which is known 

as reverse causation). Similarly, in chapter 4 institutionalized children were associated 

with an hypomethylated profile, but whether this is due to the institutional care or due 

to some other confounder is not clear and cannot be inferred from this study. In 

chapter 5, BRCA1 and CRISP2 were found to be differentially methylated in blood 

samples of atherosclerotic patients, but again we don’t know whether these changes 

were already present before disease onset, and thus represent an epigenetic risk 

marker, or whether these changes were rather a consequence of the disease process.  

This limitation applies to most human epigenetic association studies and is inherent to 

cross-sectional study designs. Knowledge about the causative relationship between 

exposure, DNA methylation and phenotype is important when the hypothesis of the 

study is to understand the mechanism of disease or phenotype. Although longitudinal 

studies are still scare, they would be helpful in identifying DNA methylation changes 

preceding the development of the (disease) phenotype and give information about the 

persistence of DNA methylation changes. DNA methylation changes associated with 

birth weight and gestational age in cord blood didn’t persist at 7 and 17 years [36]. In 

contrast, another study found that some of the changes at birth could be replicated in 

mid-childhood, however, this was not true for all the CpG sites [37]. Persistent DNA 

methylation changes have subsequently also be found to be associated with maternal 

CRH [38], maternal smoking [39] and prenatal mercury exposure [40]. In general, based 

on these limited data we can say that some DNA methylation changes identified at birth 

may persist towards childhood and adolescence, while other CpG sites are reversible 

and disappear. More longitudinal studies are needed to demonstrate persistent 

epigenetic effects until  adulthood, and whether changes precede disease onset. 

Some statistical approaches exist which may help in dissecting causal relationships and 

have been applied in multiple EWAS. One method is a mediation analysis which uses 

linear regression to asses causal relationships [41]. The most popular method is the one 

described by Baron and Kenny [42]. In chapter 3 we used this test to demonstrate the 
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mediation between prenatal exposure on leptin and body fat accumulation through 

DNA methylation. Also in other studies, this or alternative mediation methods have 

been used to prove the mediator role of DNA methylation in linking an exposure with 

a phenotype or disease [43-46]. This method, however, relies on a few strong 

assumptions [41]. For example, no unmeasured confounders responsible for the 

association and no measurement errors may exist. These assumptions are often hard 

to meet and therefore can result in trivial conclusions. Cross-sectional results should 

therefore always be interpreted with caution and should be rather seen as indicative 

for a role of DNA methylation as mediator. Despite some limitations of mediation 

analysis which is sensitive to unobserved confounders, it remains a valuable method to 

rank and select interesting associations for further investigation and with the addition 

of other functional data may help in interpreting EWAS.   

Another method is Mendelian randomization which makes use of genetic information 

to infer causality [47]. Genetic associations are by definition causal (or in linkage 

disequilibrium with the causal variant) because the DNA sequence remains the same 

during the lifespan (except for somatic mutations in cancer for example). Therefore 

reverse causality (=disease causes molecular change) can be excluded in this case. DNA 

methylation on the other hand is dynamic and can therefore also being influenced by 

the disease. Mendelian randomization methods use this known causal effect of genetic 

variants to infer causality. Because alleles are randomly segregated during gamete 

formation, the association between the genetic variant and the outcome of interest is 

usually not confounded. This method therefore helps in ruling out confounding effects 

and reverse causality. This approach was successfully applied in a recent EWAS in 

relation with blood lipid levels [48]. The authors of the study could show that blood 

lipids influence DNA methylation in blood cells and not the other way around. Another 

study showed that DNA methylation alterations were a consequence of obesity rather 

than a cause [49]. DNA methylation may also cause disease which was recently 

demonstrated for NAFLD [50]. In another study, using a two-step Mendelian 

randomization approach it was shown that the effect of smoking on inflammation was 

mediated by DNA methylation [51]. Because SNPs tend to explain only a small part of 

the phenotype, in general large sample sizes are needed to obtain enough power to 

reach significance. Furthermore, not for all phenotypes reliable genetic variants exist 

and although less strict as compared to mediation analysis, Mendelian randomization 

does rely on some assumptions of which the validity is not always easy to prove [52]. 

Despite several limitations, these statistical methods are useful ways to increase the 

interpretability of cross-sectional EWAS, especially in studies seeking underlying 

molecular mechanisms of disease or linking environmental exposures with phenotypes. 

These methods should be preferable supported by other independent approaches, 
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such as functional assays (CRISPR-Cas based epigenetic editing), animal studies, and 

longitudinal studies to undisputable prove causality and functionality of a specific 

epigenetic marker. This does not mean that non-causal DNA methylation signatures are 

not useful. For example, DNA methylation was shown to be rather a consequence of 

obesity, but still could predict future diabetes type 2 development [49], and thus 

holding promise as a marker for risk stratification and personalized medicine. If the 

study objective is simply to use DNA methylation as prognostic biomarkers or to 

monitor intervention efficacy, direct evidence of a causal role in disease etiology may 

not be necessary. 

 

Functional relevance 
DNA methylation changes identified in this thesis and in similar studies were relatively 

small (usually around 5 to 10%), as compared to cancer specific epigenetic changes 

(frequently > 20%) , and therefore difficult to interpret its biological impact. For 

instance, a difference of 5% in DNA methylation means than only a small fraction of the 

cell population in the samples undergoes a methylation change. How to interpret these 

small changes? Are they functionally relevant? Is there a minimum threshold to elicit a 

biological relevant response? 

A first obvious way to estimate biological significance of weak DNA methylation 

changes is by mapping the DMPs or DMRs to gene or chromosome regions and to 

perform pathway analysis. Enriched pathways may reveal information of potential 

reprogrammed signaling pathways and generate new hypotheses. A first problem with 

this approach is the mapping of the CpG probes to genes. Especially intergenic CpG sites 

which are located in regulatory enhancer regions or repeat sequences may suffer from 

accuracy, since enhancers can form loops interacting and regulating distally located 

genes. In our analyses, we just removed them from our pathway analysis or mapped 

the CpG probe to their nearest gene, acknowledging that we may lose some 

information using this approach. Tools mapping regions to genes, such as GREAT which 

was originally designed for Chip-Seq data [53], may be used to better annotate DMPs, 

however improvements are necessary. Another problem with pathway analysis for 

DNA methylation data is that genes containing more CpG probes are more likely to be 

selected and may lead to biased enriched pathways. Recent statistical methods were 

developed [54, 55] to correct for this bias and implementation of these methods may 

improve interpretability in future EWAS and ranking probes. 

Potential functional CpG marks are believed to have an effect on gene expression, and 

supplementing methylation data with other -omics data would substantially improve 

the interpretation of EWAS results. However, from this thesis and other studies it 
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became clear that the relationship between DNA methylation and gene expression is 

complex, and various DNA methylation changes do not seem to directly influence gene 

expression. It could be for example that the functional consequences of DNA 

methylation changes only appear upon secondary stimulation in certain environmental 

contexts, or that other roles of DNA methylation (alternative splicing, repeat 

repression, genomic stability, regulation of topologically associated chromatin 

domains, etc.) may be affected. In future experiments, epigenetic editing tools will be 

useful to demonstrate causal links between DNA specific methylation changes and 

corresponding gene expression [56]. 

Another important aspect of DNA methylation is the sequence context of the change. 

We know that TFs have an important role in establishing DNA methylation patterns, 

and that DNA methylation, on the other hand, may influence TF binding [57]. A DNA 

methylation change in a TF binding site may therefore point to an alteration of TF 

binding. For example, ATAC-seq could be used in parallel with DNA methylation to 

identify open accessible chromatin regions and possible regulatory regions in the cell 

type of interest [58]. It can be expected that reference chromatin maps of different cell 

types, both in healthy and disease states, may help future EWAS interpretation. 

Because of the relatively low cost and high reproducibility, we and also other EWAS 

used the Illumina 450K methylation arrays to measure genome-wide DNA methylation. 

However, an issue with these arrays is that they cover mainly CGIs and promoter 

regions, while distally regulatory regions, including enhancers and insulators, are much 

less well covered, and therefore it can be expected that a lot of information may be 

lost. Indeed, EWAS in chronic diseases and environmental exposures (see various 

chapters in this thesis) indicate that especially these regulatory regions are the most 

variable and probably more important in regulating transcription dynamics. The 

recently launched EPIC 850k Illumina array (850,000 CpG probes) represents an 

improved coverage of regulatory regions, but still only covers 3% of all CpGs in the 

human genome, potentially missing various regions of interest [59]. Whole-genome 

bisulfite sequencing is the gold standard for DNA methylation studies, but the high cost 

hampers its use as a high-throughput method in EWAS. 

A small DNA methylation change indicates that only a subfraction of the cells display a 

change in methylation, while the methylation status in other cells remains constant. Is 

it really a change that we detect, or does the treatment/exposure/disease promotes 

proliferation or survival of a particular cell subpopulation resulting in an observable 

methylation change? Even in a homogenous cell culture, some CpG sites have 

methylation values between 20 and 80% indicating that a fraction of the cells are 

methylated at that site and another fraction are unmethylated at that site. This 

indicates that even the homogenous cell line samples reveal a spectrum of epigenomes. 
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So, a small methylation change may either be  the result of a real de novo  DNA 

methylation change in a cell, or else by selecting a cell type specific DNA methylome, 

which shifts the cell population composition. In this respect, a recent study examining 

the effect of prenatal famine during the Dutch hunger winter on the offspring’s DNA 

methylome, showed that differential survival of embryos with particular methylome 

profiles were selected and that this mainly explains the observed DNA methylation 

changes seen in these children [60]. The recent availability of new single cell epigenome 

sequencing approaches may soon reveal dynamics of epigenetic switches at the single 

cell level [61]. 

In conclusion, current EWAS, and small-scaled cohort studies in this thesis, 

demonstrate that DNA methylation changes are associated with several prenatal and 

postnatal environmental exposures, and common diseases and complex phenotypes. 

Now, it is time to move from an association-driven EWAS to a more functional 

interpretable EWAS by combining DNA methylation data with other genomic data and 

validation of causal relationships using molecular tests. This will allow more solid 

interpretation of epigenetic studies and ultimately results in more robust biomarkers 

and therapy targets.   

 

DNA methylation to monitor health 

status? 
Today many commercial genetic tests exist which use a saliva sample to profile your 

DNA and give information about your health and disease risks and ancestry. However, 

as we have seen genetics is only a small part of the story, as lifestyle and environmental 

factors are playing important roles too, often interacting with genetic factors. 

Therefore profiling your epigenome may provide an additional necessary layer of 

information which could be implemented in personalized health tests. Indeed, EWAS 

showed the plasticity of epigenetic markers and their association with chronic diseases 

and lifestyle factors. The challenges described in the previous sections, such as tissue-

of-interest, causality, and interpretability, should be first addressed to fully exploit the 

potential of epigenetics in healthcare applications. For example, if we know that an 

epimutation is present early in disease development and may drive disease 

progression, this would be an interesting marker for disease risk prediction and may 

even be a target for therapeutic interventions. Despite these challenges, epigenetic 

profiling may become a promising biomarker field in health monitoring and disease risk 

prediction. Whereas genetic factors are static, epigenetic factors are dynamic and are 
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supposed to be reversible in response to lifestyle interventions. Epigenetic profiling is 

therefore highly attractive to examine reversible effects of lifestyle interventions and 

to monitor health status. But are we ready to implement epigenetic markers for 

medical and health recommendations? 

A promising epigenetic marker is the recently developed multi-tissue DNA methylation-

based age predictor [62]. Interestingly, an accelerated epigenetic age is associated 

among others with all-cause mortality, BMI, neurodegenerative disorders, traumatic 

stress, and therefore represents a measure for biological age [63]. This first generation 

epigenetic clock has been recently improved by the implementation of clinical 

measures of phenotypic age predicting life- and health span [64, 65]. Although this may 

suggest that DNA methylation can be used to inform health status, phenotypic age 

based on clinical measures still outperforms DNA methylation age in predicting 

mortality and morbidity [66]. On the other hand, DNA methylation age might be used 

to predict age acceleration in specific tissues as opposed to clinical measures. It can be 

expected that tissues may age differently and that this might have health implications. 

More and more healthtech companies are now providing commercial epigenetic test 

to predict your biological age. An example is Chronomics which uses a saliva sample to 

measure your biological age and to give recommendations how to slow down your 

epigenetic clock. Another company EpigenCare uses DNA methylation to analyze the 

“age” and quality of your skin and give personalized advise which skincare products and 

brands you should use. Although studies could associate healthy lifestyle with a slower 

epigenetic age acceleration, it is not yet known whether relative short term lifestyle 

interventions are sufficient to slow down epigenetic aging and whether this correlates 

with a better health. Moreover, it is not clear which algorithms and training datasets 

have been applied for the health recommendations. Therefore more studies should be 

performed on the dynamics of epigenetic age before it can be reliable being used as a 

health marker.  

Is there scientific evidence that we can monitor lifestyle interventions in healthy 

individuals and patients with cardiometabolic disorders? Nutrition has been shown to 

have a strong impact on DNA methylation in vitro studies in animal studies, and human 

epidemiological studies [67]. However, prolonged human nutritional intervention 

studies are too limited and for today, no robust diet specific  effects on human 

epigenome have been demonstrated in longitudinal in vivo studies. A systematic review 

on DNA methylation effects of human diet intervention studies showed a global 

increase in DNA methylation of colorectal mucosa after folic acid supplementation, but 

not in blood when combining all datasets [68]. Interestingly, genetic factors may 

influence the DNA methylation response of dietary compounds. For instance, only 

individuals with a certain polymorphism in the methylenetetrahydrofolate reductase 
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(MTHFR) gene demonstrated a change in methylation in multiple studies [68]. MTHFR 

plays an important role in the formation of SAM, the substrate for DNMT, and changes 

in activity of this enzyme are expected to influence DNA methylation. Another 

systematic review, where the effect of nutritional interventions during pregnancy on 

offspring’s DNA methylation was examined, showed little evidence for significant DNA 

methylation changes in humans [69]. However, the offspring’s DNA methylation 

responsiveness towards maternal nutritional interventions is stronger when 

subgrouping the mothers by BMI, smoking and nutritional status. This indicates that 

beside genetic factors, also lifestyle factors may interact with maternal nutritional 

supplementation [69]. Beside diet intervention studies, also other lifestyle 

interventions such as exercise seems to interfere with DNA methylation [70, 71], but 

also here studies are rather small and should be seen as explorative pilot results.  

It is well known that every individual responds different to lifestyle factors. Can we use 

DNA methylation to predict dietary health effects? Can we use DNA methylation for 

personalized nutrition? So far, the evidence is limited. Response to weight-loss 

interventions have been associated with DNA methylation and transcriptomic 

differences [72, 73]. Another study showed that vitamin D response was dependent on 

the methylation levels of the Cytochrome P450 enzymes CYP2R1 and CYP24A1 [74]. 

These preliminary results may hint the importance of DNA methylation in predicting 

dietary responses, but we are still far from using epigenetic markers in personalized 

nutrition. The future of personalized nutrition and personalized lifestyle advise will also 

lie in the integration of different -omics datasets together with other health and clinical 

measures. For example, a recent study indicates the importance of the gut microbiome 

in personalized nutrition [75]. Furthermore, the microbiome itself may also influence 

epigenetic patterns [76]. As we gather more data and combine this with machine 

learning and artificial intelligence techniques, personalized health advise may be 

possible in the future. For example, mobile apps and wearables may track real-time 

health measures and activity. In addition, apps exist which collects all your health data 

and matches your health measures with other individuals to give more personalized 

advise in managing particular chronic disorders (see https://doc.ai/ as example). In this 

respect, it is not unthinkable that also epigenetic information may be implemented in 

future disease risk predictions and tools to monitor health status.  

 

Conclusion and future directions 
The studies in this thesis and in literature identified many associations between DNA 

methylation and environmental factors or chronic diseases. However, the biological 

https://doc.ai/
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relevance of these associations are not yet known. Improving the functional 

interpretation of epigenetic changes is an absolute requirement to implement 

epigenetic markers in clinical practice, give insight in disease mechanisms and define 

new epigenetic targets for therapy. Future EWAS should therefore move from 

association-based studies to interpretation-based studies by combining multiple 

molecular datasets (RNAseq, ATACseq, etc), and performing functional assays 

(epigenetic editing)  or  longitudinal studies.   

Future EWAS studies will also benefit from new reference methylomes constructed by 

international consortia, like BLUEPRINT and IHEC to identify subtle shifts in underlying 

cell type contribution. This may be further enhanced by improvements in single-cell 

technologies. Comparing methylation profiles from different tissues of the same 

individual will allow us to detect tissue-specific methylation changes and changes which 

are in common across different tissues. This information may be valuable in identifying 

robust methylation markers in easy-accessible tissue such as blood and saliva. 

The most recent methylation array only covers 3% of all CpG sites in the human 

genome, therefore new methods which are cost-efficient and enhance CpG coverage 

may improve future EWAS as most variable sites are located between genes or in gene 

bodies. Furthermore, most of the existing DNA methylation profiling methods depend 

on bisulfite conversion which is a harsh treatment and is not able to discriminate 

between 5mC and 5hmC. Therefore, the development of bisulfite-free sequencing 

methods (SMRT, nanopore sequencing) may open new perspectives. More studies are 

now also elucidating the importance of non-CpG methylation, other DNA modifications, 

such as N6-methadenine (6mA), and even RNA modifications. More insight in the 

function of these epigenetic modifications may open new opportunities for epigenetic 

biomarker research.  

Despite these challenges, it is clear that future applications in personalized medicine 

and health will benefit from the implementation of epigenetic markers.  
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