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Ground-state energy of an excitor-(LO )-phonon system in two dimensions
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This paper presents a variational study of the ground-state energy of an excirghonon system in two
spatial dimensions. It complements a preceding publication, providing a gefedih{ensional outline and
an explicit treatment of the ca&=3. The exciton-phonon interaction is of the Rlich type. Making use of
functional-integral and variational techniques, we obtain upper bounds on the ground-state energy. The present
study—like the previous one—has two major intentions: First, we demonstrate for the problem under consid-
eration that one can profitably use a nonharmonic trial action within the functional-integral framework. Second,
we show that our lowest bound is an analytical function of the electron-phonon coupling parameter, being
completely smooth throughout the whole parameter region. This is in contrast to earlier conjectures, and
excludes phenomena such as self-trapping or self-shrinking, but is consistent with rigorous qualitative results
for the true ground-state energy. We include a critical comparison of our results with previous ones.
[S0163-182698)06203-1

I. INTRODUCTION AND STATEMENT Combining functional-integral and variational methods,
OF THE PROBLEM we demonstrated in a previous paptrat the following in-
equality is true:
All considerations to follow are based on “Riigh's

Hamiltonian, generalized for the interaction of an electron = T ~ hio (= h(x)
and a hole with gLO) phonon branclisee, e.g., Hakén Eo<Ep+(¢o|lUc—Ul¢o) + — . dx) Inj 1+ 2
2 2 2
Pr e + h(x) |9l *
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n=1 and 2 refers to electron and hofq,, (in, andm, are
the corresponding momentum and position operators and
band masses, ane, and €., the low- and high-frequency

g?;;i?:;gesd;eggzmgg ?:ﬁtéig'nwaeblggsic;g;he ?gg‘?:{g"ty HereE, is the ground-state energy of the system of interest,
P y &3 andU_ the Coulomb potential between electron and hale.

o2
our definition of the chargee e“/4meo, e being the hole  5nq M are the familiar abbreviations for the reduced and
charge. Furthermorey; andak are the annihilation and cre- ;qial mass of the excitorH: = (p%/2x) + U(F) denotes a
ation operators for phonons with wave vectoand disper-  two-dimensional trial Hamiltonian with eigenfunction,

—1)"( ol €’ ‘

2
] : 4

sion “"ZE‘f" and V is the' (two'-dlmenS|onaI qgaptlzatlon and eigenvalueEM. This Hamiltonian mimics the relative
volume. Finally, the couplingy is connected wittk as fol- motion of the electron and hole. We assume #Hahas an
lows: . ~ . .

isolated ground staté,. The functionh(x), in turn, models
9 1 1 the center-of-mass motiom(x)—just like the operator
9= —=, g:=—i \/Wezﬁw ) (20 H—is at our disposal, and may be chosen such as to lower
€, €p . . .

the quoted bound ok, as far as possible. Finally(y) is

We recall that the particle-phonon coupling strength can b&onnected witth(x) as follows:
characterized by the dimensionless parameter

o L wd 1-—cogxy)
e Pmol1 1 P(y):= fo X rhoo ®)
“m =2k N # \e e ® o
50 We stress that the above bound Bg is flexible enough to
m being the particle mass. account for the interesting limits of the polaronic and bare
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exciton, as we demonstrated earlisee Ref. 3 The reader _ R 1 = _

will notice that the treatment of the center-of-mass motion is (rl(H=2)"YH|r"y=5— > st g r,r’,z), (9
polaronlike. It is guaranteed that the strong-coupling limit of 2T 5=

the exciton is described with the same accuracy as in Feyn-

man’s treatment of the polaron; the relative deviation fromwhere

the exact result is less than 2%. It would be tempting to find

the absolute minimum of the bound as a functionallodnd

1 —
h. Unfortunately, the corresponding conditions turn out to be _ Mka Lz +ls[—x)

. . . ; - . . r,r',z)y=

nonlinear integrodifferential equations of high complexity. 9 2) 2 T(1+2|s])

Therefore, we made special variational choices, which are

motivated by former results from polaron and exciton theory W 2f_> M 2f_<

(again, we refer to our previous papesall above remarks wlsl\ g |V elsl| ka

concerning the limiting behavior remain valid X = : (10

(v2—w?)x? . \e? _ .
h(x):= . U(r):=- . (6) In these equations, and ¢ denote the length and the azi-
w2+ x2 €l

muthal angle of the two-dimensional vecﬁ)nandr> andr o

the maximum and minimum of andr’. W, g andM, g

are Whittaker functions as defined, e.g., in the book by Er-
delyi et al® Finally, we introduced the abbreviations

Herev, w (v=w), andA=0 are variational parameters. In-
serting Eq.(6) into Eq. (4), one arrives at

Eo<4R.(A\?—2\)+ —

v he. ag /Rw)\2<1 a1
a=——=—, ki=\—"777<z3,
°° 2_ 42\ M uhe® A 2| "2

1 2 vl—w 2
_ 2 R szk EkZm
m=o M\ 2MAw 3 (2m)2

ho (v—w)?
2

ag being the familiar Bohr radius. It proves important to

72k2 p2—w? reformulate Eq(10) by means of an integral representation
X exp| — > (=1 due to BuchholZ,which reads as follows:
2|\/|ﬁw U3 nn’
ol —2)te Fme[F W, (M, jg(2) = —— oo T (1+2]s))
X (po|l€" MI(H—2z) e , 7 wls (DM 1g(2 )= ———— s
(ole™MI(H—2) | bo) (@) E E T +]s-n)
where we introduced the Rydberg unit of energy: % fwda o L(z+2')/2]coshe
0
o= AR Rt W Ao a
oo'_2,526002’ z.= * w@(1+my v2 2M ><cothz"(§)I2|S(\/zz’sinha),
)
In the remainder of this paper we shall be concerned with a 0<z'<7z. (12

numerical evaluation of the above inequality. It is interesting

to notice that a whole class of bounds can be derived from ) . _ ) )

the present one by truncation of thesum in expressiofi). Here_l .2‘§|(z) is a modified Bessel function as defllned in Ref.
To prove this, one may insert the Laplace transform of the>: Utilizing Buchholz's formula in Eq(10), we arrive at

resolvent @ —z) %, and will find that everym contribution

is positive on its own. Of course, all of these bounds are 2u (= , a
weaker than the present one. We anticipate the numerical 9gs(r,r’,z)= —zf da e [T )”‘a]°°smcotr?"(5)
result that anm-truncation may generate a nonanalytical = Jo

bound. In any case we need an explicit representation of the 2’
resolvent —z) ! to proceed. We briefly comment on this Xla9| —3 Siﬂha). (13
point in Sec. Il.

Turning back to Eq.(9), we may insert this result for
g«(r,r’,z) to find an expression for the resolvent which is
appropriate for a numerical evaluation of bou@l on E,.

II. AN EXPLICIT EXPRESSION FOR THE RESOLVENT
OF THE HYDROGEN HAMILTONIAN
IN TWO DIMENSIONS

It is well known that(r|(H—2)|r’) can explicitly be
calculated in the case of a hydrogen Hamiltonian, the spatial
dimensionD being arbitrary(see the work of Hostléy. For The central quantity to be inserted into expresgignfor
D=2, one finds, in Hostler's paper, the bound of interest is

IIl. UPPER BOUNDS ON THE GROUND-STATE ENERGY
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32ua? , L
2 Ea0:i= D (—1ynn Fu(k)=2 J dy y <2
%2 nn' nn’ J0
P “zynd H_ -1 7il€7n’a = 2 1 2
R ) R K K K
:2 (_1)n+n'f der d2rleik(ynr—'ynrr') X 5nn’ |—§
n,n’
.~ P 2 —(1—6,)
X(rl(H=2)"Yr") g5 (Ndo(r’). (14 "
1\ 3 1 _\2,
2+; +2 2—4 y+ ;—2 y
Recalling Egqs(9) and (13) for the resolvent, and using the X 332
familiar exponential for the ground-state wave function
$o(r), we can perform the andr’ integrations as well as 1 1 2
the s summation. As in the three-dimensional case, the cal- 12k2a%y ;+2+(;—2M
culation is lengthy but elementary. Therefore, we restrict — ) (19

ourselves to a precise description of the steps to be done: k23502
First, angular integrations yield Bessel functions with index _
s. One is left with two radial integrations, which are LaplaceIn Eq. (19), we defined

transforms of products of Bessel functions. Having per-

formed one of thesésee Ref. ¥, one should evaluate the 1\2 ) 1 2 )
s-summation (see Ref. 8 before the last integratioita Ini= 2+; +k2327n—[(;—2 +k2a27n}y,
Laplace transform of a Bessel function with index 2ei® (20)
done. Finally, one arrives at
— 1\2 1 2
T ) k242 N I
=112+ -] K@y [(K 2
Fk—Erd w5 XL s 2 1 (1 2
(k)= 2 | da cotff| 3} G =7 = (1= dnm) —k2a2|y1y2|}y a2+ +(;_2M |
X+ 3§2X2k2a2)} s (2D
J32 J52 Returning to inequality(7) for the ground-state energy, we
insert expression€l9) for F (k) and(2) for g, leading us to
. . the final result
where we introduced the abbreviations
Eo 1 ) (v—w)?2
R—s(l 02 4(N"—2N)+ 2
0 - v
o coshy o sinha g
X_2+ K ! g_ K ! (16) 16(0""0'71)6 ” 1 l)z_W2 m
A2 m—omi| 3
® 2M w
mao— (uszz)/v?’]x2
| =(kayn)2+ x2— 22, Xfo dx x*Me F ( = x)]
=:B(v,w,\). (22
Ji=(x*— k%% y1ys| — £)%+ x*k*a’. (17
The reader will notice that we used the static Rydberg unit
It is useful to perform a final substitution in expressidm): —3
we denote Ro:= e (23
24263
—tanf? @ as the energy scale. In doing so, we followed the convention
y-=tan 2/ (18) of many papers, which are concerned with the three-

dimensional case; it is convenient to allow for a direct com-
parison of two- and three-dimensional results. Furthermore,
and arrive at we introduced the three dimensionless material parameters
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TABLE Il. Results for the ground-state energy bounds

Bo(v,v,1), andﬁfor specified parameter valueg®=7 and ¢ Bo(v,v,1), aand B, for specified parameter valueg=1 and
=0.5. £=0.5.
a? Bo(v,v,1) By o? Bo(v,v,1) By Bo
0.010 —71.788 —74.108 0.010 —39.157 —40.359 —48.387
0.020 —53.967 —55.996 0.020 —30.838 —31.679 V=W —
0.050 —38.742 —40.295 0.050 —24.095 —24.533
0.100 —31.625 —32.804 0.100 —21.164 —21.407
0.200 —27.156 —28.022 0.200 —19.444 —19.579
0.500 —24.242 —24.758 0.500 —18.361 —18.436
1.000 —23.512 —24.073 1.000 —18.144 —18.209 —v=W —
, R , My €., are more pronounced f@=2. In particular, the onset of the
ni=g o o= g=le— (24 strong-coupling regime is shifted to smaller values of the
2 0 relevant parameter,
One can easily derive from Eq&4) and(11) that o
, e? /2Mw( 1 1) g( 1) 28
AW aAM=577 — |\ —|=7n o+ —|.
= =4+ ——| 1+mo+ —x (25) 2ho ¥ h e € T
K 7N v

is true. Consequently, the bouri®{v,w,\) is entirely de-
fined by 7, o, & alone. The remaining task is to minimize
B(v,w,\) as a function of the variational parametersw,
and\.

IV. NUMERICAL RESULTS AND COMPARISON
WITH PREVIOUS WORK

The minimization ofB(v,w,\) with respect taw, w, and

This is in complete analogy to the results of free-polaron
theory. Xiaoguang, Peeters, and Devréedemonstrated
within the Feynman approach that the two-dimensional
ground-state energy for a given valuemfcan be related to
the corresponding three-dimensional energyy i§ replaced
by 3m7al4.

We now turn to the more general bounds

Bk::infvyw’)\Bk(U,W,)\). (29)

\ requires a numerical treatment. We proceed in exactly thd hese admit an infimum fay #w, which is equivalent to a

same way as in our former paper @=3. To achieve a

nonfree center-of-mass motion. In any caBgs=B,, and in

compact presentation of our results, it will prove useful toparticularB,<B,, is guaranteed. Comparimy, with B, we

introduce again the notatioB,(v,w,\) for a truncated
bound:B,(v,w,\) is derived fromB(v,w,\) by omission of
all terms in them sum, having am value larger thak. We

remind the reader thaB,(v,w,\) is in fact a true upper

bound onE, /Ry, and decreases monotoneously with increas-

ing k.
We begin the discussion by analyzing a restricted class

discover the same phenomenon as in the three-dimensional
case. Ifp and ¢ are fixed, there may exist a critical value of
ay (or, equivalently,o) in the following sense: Ifay,

<ay, Bo=By is true,v andw being equal. Ifay>ay,,
Bo<By will be found, the minimizing values of andw

dpeing not equal. Fosy, = ay , Bo is a nonanalytical function

bounds. It is related to the analyticity problem concerningOf ay - Interestingly enough, this nonanalytical behavior of a

the ground-state energy as function af; : let us consider
the case =w. Recalling the derivatiofsee the general part

variational bound has been discovered in many different
approaches—primarily in the three-dimensional case, but

in Ref. 2, one realizes that the variational action assumes gasily transferable to two dimensions. Moreover, there exist

free center-of-mass motion if=w. In this case, we find
B(v,v,\)=By(v,v,N\), (26)

the right-hand side being independentwoflf we addition-
ally put A=1, the trial action is precisely that of an un-

phenomenological arguments, which alseem t¢ indicate

TABLE |Ill. Results for the ground-state energy bounds
Bo(v,v,1), By, and B, for specified parameter valueg=4 and
£=0.5.

coupled exciton-phonon system. ConsequenBy(v,v,1) a? Bo(v,v,1) By By
will produce the result of second-order perturbation theory
for E¢/R,. One can easily improve the bound by calculating ~ 0-010 —24.555 —24.942 —45.440
0.020 —21.087 —21.281 —27.017
Bo:=inf,Bo(v,v,\). 27) 0.050 ~18.513 —18.579 —v=w —
0.100 —17.499 —17.527
Tables I-1ll contain a collection of results f&,(v,v,1) as 0.200 ~16.948 ~16.961
well asB,. By will be explained below. 0.500 —16.622 —16.628
In comparison with the three-dimensional case, we find 1.000 —~16.560 —16.564 =W —

no qualitative difference. However, phonon-induced effects
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TABLE IV. Absolute ground-state energy bourﬁ_§in meV as
obtained in the present ansatz with material parameters listed in
Table V. Corresponding binding energi#&, resulting fromBg by
subtraction of the continuum edgg in comparison with the results
AEg, reported by Geddo and ladonigef. 13.
(22}
< —
g By 3 AE AEg,
Q
% GaAs? 20.71 8.29 12.44 12.45
5 GaAsP 34.04 14.25 19.79 19.89
5 74 cucl 1471.6 490.7 980.9 1148.7
—45 |¢ b/ ——— inf B (v,v,A) ) CdTe 102.18 44.10 58.08 59.68
/ ---- inf B (v,w,A
. oVsWoh) 3 jght hole.
-50 —-— inf B(v,w,A) b
. Heavy hole.
— inf B (v,w,})
=3 01 02 03 05 1 — tal evidence that two-dimensional features are observable
& (see, e.g., Oelgaret all® Our intention was to treat the

exciton-phonon interaction as accurately as possible to have

FIG. 1. Comparison of upper bounds on the ground-state energy well-defined basis for further improvements. For any
as gained by minimization of the correspondiBgv,w,\). 7 and  ground-state energy bound we listed the corresponding con-
¢ are fixed asp=1 and¢=0.5. Theo dependence can directly be tinyum edge>, which is the reference for a calculation of the
converted into anvy dependence by means of E@8). binding energyA E, which can be found in a third columa.

is the sum of the polaronic self-energies of the electron and
phase-transition-like phenomena. As representative refekole. It is important to use a precise value ¥rin general,
ences, we quote Rashiand Sumi.* it is not sufficient to refer to the second-order perturbation

Having in mind tha€, /R, was proven to be an analytical result—# w(ay+ a,)(7/2) for 3. One would systematically
function ofay (or, equivalently o) for all possible values of  gverestimate the binding energy that way, the mistake grow-
ay (or, equivalently,o), we evaluated, for larger values ing with «. We give an example: forr=5, the relative de-
of k. In Fig. 1, we show typical graphs &, By, Bs, and  viation of the self-energy from the second-order perturbation
B, as functions ofo? (72 and ¢ being fixed as indicated  result is larger than 40%. The lower the ground-state energy
The conclusion is again the same as in the dase3: For  bound andX are, the higher is tha priori reliability of the
k— o0, no critical value ofo? exists. In so far, our numerical predicted value of the binding energy. The last colukify,
findings are consistent with the exact ofes. will be explained below.

In Table 1V, we list bounds ok for various materials of As for the material parameters, we refer to Table V. These
interest. In doing so, we are aware that a realistic theory forparameters are exactly those which were used by Geddo and
e.g., GaAs should include at least the effects of the valencdadonisil® In fact, this paper is—to the best of our
band degeneracy as an obvious correction of the simple piknowledge—the only one which can serve as a direct com-
ture of a parabolic valence-band structure. Other correctiongarison. It presents a variational calculation of Lee-Low-
are due to spin-orbit coupling, exchange interaction, etcPines type, which is adequate for weak- or intermediate-
Clearly, our theory does not include any of these. The mostoupling strength. Therefore, it is consistent that within this
important application might be concerned with quantum-wellapproach the continuum edge turns out to bé w(a;
structures. Unfortunately, the quantum-well problem exhibits+ «,)(7/2). For large-coupling parametefsee, e.g., Cugl
additional problems, which are characterized by the keyhis result is grossly wrong, as indicated above. The authors
words “image charge” and “boundary conditionsve re-  do not present their primary results for the total energy, but
fer to the paper by Altareflf). Again, these are not included only a series of binding energiesEg,, which we list in
here. On the other hand, there seems to be a clear experimeRable V. Our predictions and theirs differ particularly in the

TABLE V. Material parameters as employed to obtain the ground-state energy bBgm3able 1V. In
the case of GaAs, Geddo and ladoniRef. 13 used different values for,,, namely, 0.096 and 0.173
instead of 0.075 and 0.177. These are inconsistent with the well-established valuearaf the masses as
indicated. As the coupling is apparently small, the relative difference of the energies is small too.

€ € m; (mg) m, (mg) ae ap fhw (MeV)
GaAs? 13.1 111 0.0667 0.08 0.068 0.075 36.8
GaAs® 131 111 0.0667 0.45 0.068 0.177 36.8
CuCl 7.4 3.7 0.40 3.60 1.911 5.735 27.2
CdTe 10.3 6.9 0.088 0.60 0.364 0.950 20.7

3 ight hole.
Heavy hole.
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case of CuCl. The discrepancy can be understood on the Concerning the methodological part of this work, we use

basis of our reasoning from above. a variational procedure, based on a nonharmonic trial ansatz
within the functional-integral approach. All interaction terms
V. CONCLUSIONS between electron and hole are modeled by a screened Cou-

. . . o ... lomb potential, and the center-of-mass motion is described in
This paper is concerned with a qualitative and quantitative b

. ! ) : ﬁmalogy to Feynman'’s discussion of the free polaron. It turns
discussion of the ground-state energy of a two-d|men5|onaout that all expressions can be reduced to integrals, involvin
exciton—(LO)-phonon system. We obtain an efficient upper P gras, 9

bound, which gives correct results in the limits ofapolaronici‘he Coulomb Green function fdb=2. To simplify these

and a bare exciton, and treats the large-coupling case on tijaiedrals further, it proves crucial to represent the Green
level of Feynman’s polaron theory. The bound is a smoot{unction as a Fourier series.

function of the electron-phonon coupling parameter in the

whole parameter domain. This is in agreement with rigorous

qualitative results, and disproves previous assertions of a ACKNOWLEDGMENTS
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