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Ground-state energy of an exciton–„LO …-phonon system in two dimensions
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This paper presents a variational study of the ground-state energy of an exciton–~LO!-phonon system in two
spatial dimensions. It complements a preceding publication, providing a general (D-dimensional! outline and
an explicit treatment of the caseD53. The exciton-phonon interaction is of the Fro¨hlich type. Making use of
functional-integral and variational techniques, we obtain upper bounds on the ground-state energy. The present
study—like the previous one—has two major intentions: First, we demonstrate for the problem under consid-
eration that one can profitably use a nonharmonic trial action within the functional-integral framework. Second,
we show that our lowest bound is an analytical function of the electron-phonon coupling parameter, being
completely smooth throughout the whole parameter region. This is in contrast to earlier conjectures, and
excludes phenomena such as self-trapping or self-shrinking, but is consistent with rigorous qualitative results
for the true ground-state energy. We include a critical comparison of our results with previous ones.
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I. INTRODUCTION AND STATEMENT
OF THE PROBLEM

All considerations to follow are based on Fro¨hlich’s
Hamiltonian, generalized for the interaction of an electr
and a hole with a~LO! phonon branch~see, e.g., Haken1!:

H:5 (
n51

2 pn
2

2mn
2

ē2

e`uqW 12qW 2u
1(

kW
\vakW

1
akW

1 (
n51

2

~21!n(
kW

H gkW

AV
e i kWqW nakW1H.c.J . ~1!

n51 and 2 refers to electron and hole,pW n , qW n , andmn are
the corresponding momentum and position operators
band masses, ande0 and e` the low- and high-frequency
limits of the dielectric function. We included the permittivit
of the free space~which is usually abbreviated ase0 too! into
our definition of the charge,ē2:5e2/4pe0, e being the hole
charge. Furthermore,akW andakW

1 are the annihilation and cre

ation operators for phonons with wave vectorkW and disper-
sion vkW[v, and V is the ~two-dimensional! quantization
volume. Finally, the couplinggkW is connected withkW as fol-
lows:

gkW :5
g

Ak
, g:52 iAp ē2\vS 1

e`
2

1

e0
D . ~2!

We recall that the particle-phonon coupling strength can
characterized by the dimensionless parameter

am :5
ē2

2\v
A2mv

\ S 1

e`
2

1

e0
D , ~3!

m being the particle mass.
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Combining functional-integral and variational method
we demonstrated in a previous paper2 that the following in-
equality is true:

E0<Ẽ01^f̃0uUc2Uuf̃0&1
\v

p E
0

`

dxH lnS 11
h~x!

x2 D
2

h~x!

x21h~x!
J 2E d2kH ugkWu 2

~2p!2E0

`

du expH 2\vu

2
\2k2

M\vp
P~\vu!J (

m

E eu ~ Ẽ02Ẽm!

3U(
n

~21!n^f̃0ueikWgnqW uf̃m&U2J . ~4!

HereE0 is the ground-state energy of the system of intere
andUc the Coulomb potential between electron and holem
and M are the familiar abbreviations for the reduced a
total mass of the exciton.H̃:5(p2/2m)1U(rW) denotes a
two-dimensional trial Hamiltonian with eigenfunctionsf̃m

and eigenvaluesẼm . This Hamiltonian mimics the relative
motion of the electron and hole. We assume thatH̃ has an
isolated ground statef̃0. The functionh(x), in turn, models
the center-of-mass motion.h(x)—just like the operator
H̃—is at our disposal, and may be chosen such as to lo
the quoted bound onE0 as far as possible. Finally,P(y) is
connected withh(x) as follows:

P~y!:5E
0

`

dx
12cos~xy!

x21h~x!
. ~5!

We stress that the above bound onE0 is flexible enough to
account for the interesting limits of the polaronic and ba
1814 © 1998 The American Physical Society
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57 1815GROUND-STATE ENERGY OF AN EXCITON-~LO!- . . .
exciton, as we demonstrated earlier~see Ref. 3!. The reader
will notice that the treatment of the center-of-mass motion
polaronlike. It is guaranteed that the strong-coupling limit
the exciton is described with the same accuracy as in Fe
man’s treatment of the polaron; the relative deviation fro
the exact result is less than 2%. It would be tempting to fi
the absolute minimum of the bound as a functional ofU and
h. Unfortunately, the corresponding conditions turn out to
nonlinear integrodifferential equations of high complexi
Therefore, we made special variational choices, which
motivated by former results from polaron and exciton the
~again, we refer to our previous paper;2 all above remarks
concerning the limiting behavior remain valid!:

h~x!:5
~v22w2!x2

w21x2
, U~rW !:52

l ē2

e`r
. ~6!

Herev, w (v>w), andl>0 are variational parameters. In
serting Eq.~6! into Eq. ~4!, one arrives at

E0<4R`~l222l!1
\v

2

~v2w!2

v

2 (
m50

`
1

m! S \2

2M\v

v22w2

v3 D mE d2kH ugku2

~2p!2
k2m

3expH 2
\2k2

2M\v

v22w2

v3 J (
n,n8

~21!n1n8

3^f̃0ueikWgnqW~H̃2z!21e2 ikWgn8qW uf̃0&J , ~7!

where we introduced the Rydberg unit of energy:

R` :5
m ē4

2\2e`
2

, z:524R`l22\v~11mv !2
w2

v2

\2k2

2M
.

~8!

In the remainder of this paper we shall be concerned wit
numerical evaluation of the above inequality. It is interest
to notice that a whole class of bounds can be derived fr
the present one by truncation of them sum in expression~7!.
To prove this, one may insert the Laplace transform of
resolvent (H̃2z)21, and will find that everym contribution
is positive on its own. Of course, all of these bounds
weaker than the present one. We anticipate the nume
result that anm-truncation may generate a nonanalytic
bound. In any case we need an explicit representation of
resolvent (H̃2z)21 to proceed. We briefly comment on th
point in Sec. II.

II. AN EXPLICIT EXPRESSION FOR THE RESOLVENT
OF THE HYDROGEN HAMILTONIAN

IN TWO DIMENSIONS

It is well known that^rWu(H̃2z)21urW8& can explicitly be
calculated in the case of a hydrogen Hamiltonian, the spa
dimensionD being arbitrary~see the work of Hostler4!. For
D52, one finds, in Hostler’s paper,
s
f
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^rWu~H̃2z!21!urW8&5
1

2p (
s52`

`

eis~w2w8!gs~r ,r 8,z!, ~9!

where

gs~r ,r 8,z!5
mka

\2

G~ 1
2 1usu2k!

G~112usu!

3

Wk,usuS 2r .

ka D Mk,usuS 2r ,

ka D
Arr 8

. ~10!

In these equations,r and w denote the length and the az
muthal angle of the two-dimensional vectorrW, andr . andr ,

the maximum and minimum ofr and r 8. Wk,usu and Mk,usu
are Whittaker functions as defined, e.g., in the book by
delyi et al.5 Finally, we introduced the abbreviations

a:5
\2e`

ml ē2
5

aB

l
, k:5AR`l2

uzu
,

1

2
, ~11!

aB being the familiar Bohr radius. It proves important
reformulate Eq.~10! by means of an integral representatio
due to Buchholz,6 which reads as follows:

Wk,usu~z!Mk,usu~z8!5
Azz8

G~ 1
2 1usu2k!

G~112usu!

3E
0

`

da e2@~z1z8!/2#cosha

3coth2kS a

2 D I 2usu~Azz8sinha!,

0<z8,z. ~12!

HereI 2usu(z) is a modified Bessel function as defined in Re
5. Utilizing Buchholz’s formula in Eq.~10!, we arrive at

gs~r ,r 8,z!5
2m

\2 E0

`

da e2@~r 1r 8!/ka#coshacoth2kS a

2 D
3I 2usuS 2Arr 8

ka
sinha D . ~13!

Turning back to Eq.~9!, we may insert this result for
gs(r ,r 8,z) to find an expression for the resolvent which
appropriate for a numerical evaluation of bound~7! on E0.

III. UPPER BOUNDS ON THE GROUND-STATE ENERGY

The central quantity to be inserted into expression~7! for
the bound of interest is
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32ma2

\2
Fm~k!:5 (

n,n8
~21!n1n8

3^f̃0ueikWgnqW~H̃2z!21e2 ikWgn8qW uf̃0&

5 (
n,n8

~21!n1n8E E d2r d2r 8eikW~gnrW2gn8rW8!

3^rWu~H̃2z!21urW8&f̃0* ~rW !f̃0~rW8!. ~14!

Recalling Eqs.~9! and ~13! for the resolvent, and using th
familiar exponential for the ground-state wave functi

f̃0(rW), we can perform therW and rW8 integrations as well as
the s summation. As in the three-dimensional case, the
culation is lengthy but elementary. Therefore, we rest
ourselves to a precise description of the steps to be d
First, angular integrations yield Bessel functions with ind
s. One is left with two radial integrations, which are Lapla
transforms of products of Bessel functions. Having p
formed one of these~see Ref. 7!, one should evaluate th
s-summation ~see Ref. 8!, before the last integration~a
Laplace transform of a Bessel function with index zero! is
done. Finally, one arrives at

Fm~k!5 (
n,n8

E
0

`

da coth2kS a

2 D H dn,n8

x21z2

I n
3

2~12dn,n8!

3S x21z2

J3/2
2

3z2x2k2a2

J5/2 D J , ~15!

where we introduced the abbreviations

x:521
cosha

k
, z:5

sinha

k
, ~16!

I n :5~kagn!21x22z2,

J:5~x22k2a2ug1g2u2z2!21x2k2a2. ~17!

It is useful to perform a final substitution in expression~15!:
we denote

y:5tanh2S a

2 D , ~18!

and arrive at
l-
t
e:

x

-

Fm~k!5 (
n,n8

E
0

1

dy y2k2~1/2!

3S dnn8

S 21
1

k D 2

12S 3

k2 24D y1S 1

k
22D 2

y2

Ī n
3

2~12dnn8!

3H S 21
1

k D 2

12S 3

k2
24D y1S 1

k
22D 2

y2

J̄ 3/2

2

12k2a2yF1

k
121S 1

k
22D yG2

k2 J̄ 5/2
J D . ~19!

In Eq. ~19!, we defined

Ī n :5S 21
1

k D 2

1k2a2gn
22F S 1

k
22D 2

1k2a2gn
2Gy,

~20!

J̄ :5H S 21
1

k D 2

2k2a2ug1g2u2F S 1

k
22D 2

2k2a2ug1g2uGyJ 2

1k2a2F S 21
1

k D1S 1

k
22D yG2

.

~21!

Returning to inequality~7! for the ground-state energy, w
insert expressions~19! for Fm(k) and~2! for g, leading us to
the final result

E0

R0
<

1

~12j!2H 4~l222l!1
~v2w!2

2vh2

2
16~s1s21!j

h3l2 (
m50

`
1

m! S v22w2

v3 D m

3E
0

`

dx x2me2@~v22w2!/v3#x2
FmSA2Mv

\
xD J

5:B~v,w,l!. ~22!

The reader will notice that we used the static Rydberg u

R0 :5
m ē4

2\2e0
2

~23!

as the energy scale. In doing so, we followed the conven
of many papers, which are concerned with the thr
dimensional case; it is convenient to allow for a direct co
parison of two- and three-dimensional results. Furthermo
we introduced the three dimensionless material paramet
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h2:5
R`

\v
, s2:5

m1

m2
, j:512

e`

e0
. ~24!

One can easily derive from Eqs.~24! and ~11! that

1

k2
541

1

h2l2S 11mv1
w2

v2
x2D ~25!

is true. Consequently, the boundB(v,w,l) is entirely de-
fined by h, s, j alone. The remaining task is to minimiz
B(v,w,l) as a function of the variational parametersv, w,
andl.

IV. NUMERICAL RESULTS AND COMPARISON
WITH PREVIOUS WORK

The minimization ofB(v,w,l) with respect tov, w, and
l requires a numerical treatment. We proceed in exactly
same way as in our former paper onD53. To achieve a
compact presentation of our results, it will prove useful
introduce again the notationBk(v,w,l) for a truncated
bound:Bk(v,w,l) is derived fromB(v,w,l) by omission of
all terms in them sum, having anm value larger thank. We
remind the reader thatBk(v,w,l) is in fact a true upper
bound onE0 /R0, and decreases monotoneously with incre
ing k.

We begin the discussion by analyzing a restricted clas
bounds. It is related to the analyticity problem concern
the ground-state energy as function ofaM : let us consider
the casev5w. Recalling the derivation~see the general par
in Ref. 2!, one realizes that the variational action assume
free center-of-mass motion ifv5w. In this case, we find

B~v,v,l!5B0~v,v,l!, ~26!

the right-hand side being independent ofv. If we addition-
ally put l51, the trial action is precisely that of an un
coupled exciton-phonon system. Consequently,B0(v,v,1)
will produce the result of second-order perturbation the
for E0 /R0. One can easily improve the bound by calculati

B0̄:5 inflB0~v,v,l!. ~27!

Tables I–III contain a collection of results forB0(v,v,1) as
well asB0̄. B0 will be explained below.

In comparison with the three-dimensional case, we fi
no qualitative difference. However, phonon-induced effe

TABLE I. Results for the ground-state energy boun

B0(v,v,1), and B0̄ for specified parameter valuesh25
1
4 and j

50.5.

s2 B0(v,v,1) B0̄

0.010 271.788 274.108
0.020 253.967 255.996
0.050 238.742 240.295
0.100 231.625 232.804
0.200 227.156 228.022
0.500 224.242 224.758
1.000 223.512 224.073
e

-

of
g

a

y

d
s

are more pronounced forD52. In particular, the onset of the
strong-coupling regime is shifted to smaller values of t
relevant parameter,

aM5
ē2

2\v
A2Mv

\ S 1

e`
2

1

e0
D5hjS s1

1

s D . ~28!

This is in complete analogy to the results of free-polar
theory. Xiaoguang, Peeters, and Devreese9 demonstrated
within the Feynman approach that the two-dimensio
ground-state energy for a given value ofa can be related to
the corresponding three-dimensional energy, ifa is replaced
by 3pa/4.

We now turn to the more general bounds

Bk :5 infv,w,lBk~v,w,l!. ~29!

These admit an infimum forvÞw, which is equivalent to a
nonfree center-of-mass motion. In any case,Bk<B0̄, and in
particularB0<B0̄, is guaranteed. ComparingB0 with B0̄, we
discover the same phenomenon as in the three-dimens
case. Ifh andj are fixed, there may exist a critical value o
aM ~or, equivalently,s) in the following sense: IfaM

,aM
c , B05B0̄ is true, v and w being equal. IfaM.aM

c ,

B0,B0̄ will be found, the minimizing values ofv and w
being not equal. ForaM5aM

c , B0 is a nonanalytical function
of aM . Interestingly enough, this nonanalytical behavior o
variational bound has been discovered in many differ
approaches—primarily in the three-dimensional case,
easily transferable to two dimensions. Moreover, there e
phenomenological arguments, which also~seem to! indicate

TABLE II. Results for the ground-state energy boun

B0(v,v,1), B0̄, and B0 for specified parameter valuesh251 and
j50.5.

s2 B0(v,v,1) B0̄
B0

0.010 239.157 240.359 248.387
0.020 230.838 231.679 –v5w –
0.050 224.095 224.533
0.100 221.164 221.407
0.200 219.444 219.579
0.500 218.361 218.436
1.000 218.144 218.209 –v5w –

TABLE III. Results for the ground-state energy boun

B0(v,v,1), B0̄, and B0 for specified parameter valuesh254 and
j50.5.

s2 B0(v,v,1) B0̄
B0

0.010 224.555 224.942 245.440
0.020 221.087 221.281 227.017
0.050 218.513 218.579 –v5w –
0.100 217.499 217.527
0.200 216.948 216.961
0.500 216.622 216.628
1.000 216.560 216.564 –v5w –
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phase-transition-like phenomena. As representative re
ences, we quote Rashba10 and Sumi.11

Having in mind thatE0 /R0 was proven to be an analytica
function ofaM ~or, equivalently,s) for all possible values of
aM ~or, equivalently,s), we evaluatedBk for larger values
of k. In Fig. 1, we show typical graphs ofB0̄, B0, B5, and
B40 as functions ofs2 (h2 and j being fixed as indicated!.
The conclusion is again the same as in the caseD53: For
k→`, no critical value ofs2 exists. In so far, our numerica
findings are consistent with the exact ones.12

In Table IV, we list bounds onE0 for various materials of
interest. In doing so, we are aware that a realistic theory
e.g., GaAs should include at least the effects of the valen
band degeneracy as an obvious correction of the simple
ture of a parabolic valence-band structure. Other correct
are due to spin-orbit coupling, exchange interaction, e
Clearly, our theory does not include any of these. The m
important application might be concerned with quantum-w
structures. Unfortunately, the quantum-well problem exhib
additional problems, which are characterized by the k
words ‘‘image charge’’ and ‘‘boundary conditions’’~we re-
fer to the paper by Altarelli14!. Again, these are not include
here. On the other hand, there seems to be a clear experi

FIG. 1. Comparison of upper bounds on the ground-state en
as gained by minimization of the correspondingBk(v,w,l). h and
j are fixed ash51 andj50.5. Thes dependence can directly b
converted into anaM dependence by means of Eq.~28!.
r-

r,
e-
ic-
ns
c.
st
ll
s
y

en-

tal evidence that two-dimensional features are observa
~see, e.g., Oelgartet al.15! Our intention was to treat the
exciton-phonon interaction as accurately as possible to h
a well-defined basis for further improvements. For a
ground-state energy bound we listed the corresponding c
tinuum edgeS, which is the reference for a calculation of th
binding energyDE, which can be found in a third column.S
is the sum of the polaronic self-energies of the electron
hole. It is important to use a precise value forS. In general,
it is not sufficient to refer to the second-order perturbat
result2\v(a11a2)(p/2) for S. One would systematically
overestimate the binding energy that way, the mistake gr
ing with a. We give an example: fora55, the relative de-
viation of the self-energy from the second-order perturbat
result is larger than 40%. The lower the ground-state ene
bound andS are, the higher is thea priori reliability of the
predicted value of the binding energy. The last columnDEGI
will be explained below.

As for the material parameters, we refer to Table V. The
parameters are exactly those which were used by Geddo
Iadonisi.13 In fact, this paper is—to the best of ou
knowledge—the only one which can serve as a direct co
parison. It presents a variational calculation of Lee-Lo
Pines type, which is adequate for weak- or intermedia
coupling strength. Therefore, it is consistent that within t
approach the continuum edge turns out to be2\v(a1
1a2)(p/2). For large-coupling parameters~see, e.g., CuCl!
this result is grossly wrong, as indicated above. The auth
do not present their primary results for the total energy,
only a series of binding energiesDEGI , which we list in
Table IV. Our predictions and theirs differ particularly in th

gy

TABLE IV. Absolute ground-state energy boundsB0̄ in meV as
obtained in the present ansatz with material parameters liste

Table V. Corresponding binding energiesDE, resulting fromB0̄ by
subtraction of the continuum edgeS, in comparison with the results
DEGI reported by Geddo and Iadonisi~Ref. 13!.

B0̄
S DE DEGI

GaAsa 20.71 8.29 12.44 12.45
GaAsb 34.04 14.25 19.79 19.89
CuCl 1471.6 490.7 980.9 1148.7
CdTe 102.18 44.10 58.08 59.68

aLight hole.
bHeavy hole.
s

TABLE V. Material parameters as employed to obtain the ground-state energy boundsB0̄ in Table IV. In
the case of GaAs, Geddo and Iadonisi~Ref. 13! used different values forah , namely, 0.096 and 0.173
instead of 0.075 and 0.177. These are inconsistent with the well-established values ofae and the masses a
indicated. As the coupling is apparently small, the relative difference of the energies is small too.

e0 e` m1 (me) m2 (me) ae ah \v ~meV!

GaAsa 13.1 11.1 0.0667 0.08 0.068 0.075* 36.8
GaAsb 13.1 11.1 0.0667 0.45 0.068 0.177* 36.8
CuCl 7.4 3.7 0.40 3.60 1.911 5.735 27.2
CdTe 10.3 6.9 0.088 0.60 0.364 0.950 20.7

aLight hole.
bHeavy hole.
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case of CuCl. The discrepancy can be understood on
basis of our reasoning from above.

V. CONCLUSIONS

This paper is concerned with a qualitative and quantita
discussion of the ground-state energy of a two-dimensio
exciton– ~LO!-phonon system. We obtain an efficient upp
bound, which gives correct results in the limits of a polaro
and a bare exciton, and treats the large-coupling case on
level of Feynman’s polaron theory. The bound is a smo
function of the electron-phonon coupling parameter in
whole parameter domain. This is in agreement with rigoro
qualitative results, and disproves previous assertions o
phase-transition-like behavior. We find as a by-product t
the transition region between small and large coupling
pends sensitively on the dimension. An accurate discus
of a two-dimensional system witha55 needs a theory
which can provide an adequate treatment of the stro
coupling regime; a corresponding three-dimensional tre
ment is less critical.
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tiv
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g-
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Concerning the methodological part of this work, we u
a variational procedure, based on a nonharmonic trial an
within the functional-integral approach. All interaction term
between electron and hole are modeled by a screened
lomb potential, and the center-of-mass motion is describe
analogy to Feynman’s discussion of the free polaron. It tu
out that all expressions can be reduced to integrals, involv
the Coulomb Green function forD52. To simplify these
integrals further, it proves crucial to represent the Gre
function as a Fourier series.
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