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Ahbhstract

In this paper, the concept of scheduling flexibility, flexibility with re-
spech to Lhe moment, of service within a day, is introduced [or a less-than-
truckload carrier. The carrier charges a tariff based on the weight of the
shipment and the width of the time window in which it is to be serviced.
For a given shipment, customers with a higher scheduling flexibility pay
lower freight rates. Carriers can use scheduling flexibility of customers
to reduce operating costs by designing more efficient routes. The carrier
is thus confronted with a trade-off between possible cost reductions of
scheduling (lexibility and lower [reightl rales. The Coulribulion Maximiz-
ing Vehicle Routing Problem with Time Windows (CMVRPTW) can be
used to study a number of combined pricing and scheduling issues. A
sequential and 2 two-phase insertion heuristics for the CMVRPTW are
presented and evaluated. Applications of the model and directions for
future research are given.
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1 Introduction

Despite the demand for on-the-hour deliveries due to JIT and other zero-inventory
philosophies, differences between customers’ flexibility with respect to the time
of delivery remain. In general, three categories of customers, each having a
different degree of scheduling flexibility, can be distinguished. The customers
in the first category specify short time periods (e.g. a few hours) for loading
or unloading. As they offer very little scheduling flexibility to the carrier, we
call them rigid customers. Customers in Lhe second calegory are characterized
by daily flexibility of scheduling. They specify time periods of several hours
for receiving service. A carrier can use this type of scheduling flexibility to de-
sign more cost efficient routes, which would be infeasible if time windows were



narrower. Both Lypes of scheduling flexibility can be modelled by using time
windows. Finally, if customers allow a carrier to choose the day of delivery, Lhey
are said to have periodic flexibility of scheduling. This type of scheduling flexi-
bility is related to the Period Vehicle Routing Problem and can be modelled by
allowing service on a number of day combinations®. If a customer requires two
visits cach five-day working week, then for example Monday /Wednesday, Tues-
day/Thursday and Wednesday/Friday can be the only allowable combinations
(Tan and Beasley, 1984, p. 497). Since the last kind of scheduling flexibility is
defined over a longer time period, a carrier can design more efficient routes by,
for example, assigning customers in the same geographic area to the same day
of the week (Rall, 1988, p. 200).

As scheduling flexibility allows a carrier to design more cost efficient routes,
he can be interested in persuading rigid customers to become more flexible.
Because flexible customers pay lower freight rates than rigid ones, a carrier
is confronted with a trade-off between possible cost reductions of scheduling
flexibility and lower freight rates. For small Vehicle Routing Problems with
Time Windows (VRPTWs), this trade-off can be made manually by experienced
dispatchers. If a large number of customers has to be serviced, a more systematic
approach is needed to support their decisions. To this purpose the Contribution
Maximmization Vehicle Roubing Prablem with Time Windows (CMVRPTW), a
generalization of the VRPTW, is introduced in section 2. Tu section 3 we briefly
discuss Solomon’s (1987) sequential insertion heuristic 11 for the VRPTW. In
section 4 it is adapted to the CMVRPTW for a less-than-truckload carrier
with a homogeneous fleet. In the fifth section a set of test problems based on
Solomon’s (1987) VRPTW problem instances is constructed. Section 6 contains
computational results on the effectiveness of a sequential insertion heuristic and
2 two-phase heuristics for a problem set derived from Solomon’s (1987) 100-
customer VRPTW instances. Conclusions and avenues for future research are
ferrmalated in the last section.

2 The Contribution Maximizing Vehicle Rout-
ing Problem

The CMVRIPTW is a generalization of the VRPTW. Like the VRPTW, it refers
to a situation in which capacitated vehicles located at a depot are required to
service geopraphically scatlered customers over a limited scheduling period (e.g.
a day). Each customer ¢ has a known demand g; to he serviced (either for pick-
up or delivery but not both) at time b; chosen by the carrier. If time windows
are hard, b; is chosen within a time window, starting at the earliest time e; and
ending at the latest time [; that customer i permits the start of service. In the
soft time window case, a vehicle is allowed to arrive too late at a customer but
a penalty is incurred. In both cases, a vehicle arriving too early at customer j,
has to wait until ¢;. If £;; represents the direct travel time from customer ¢ to
customer j, and s; the service time at customer i, then the moment at which

1Note that there are other ways to model periodic flexibility of scheduling. Russell and Igo
(1979) specify a required service level (number of deliveries within the period) and prevent the
deliveries being too close together in the period by constraining the spacing in days between
successive deliveries,



service hegins ab customer j, by, equals max {e;,b; + s; + ti;} and the waiting
time w; is equal to max{0,e; — (b; + s¢ +ti5)}. A time window can also be
defined for the depot in order to define a ‘scheduling horizon' in which each
route must start and end (Potvin and Rousseau, 1993).

Although customers in the VRPTW usually have only one time window for
receiving service, customers in the CMVRPTW can have several alternative
time windows. Assume, without loss of generality, that the freight rate depends
only on the size of demand ¢; and the width of the delivery time window. For a
given ¢;, the wider the time window, the lower the price. Hach customer is or is
assumed to be indifferent between each of his price-time window combinations.
The objective is to maximize conbribulion by servicing each customer within his
optimal time window, i.e. the time window that gives Lhe carrier the highest
contribution, taking the capacity limits of the vehicles and the time horizon into
account.

In order to get a clearer insight to the problem, we adapt the mathematical
programming formulation of the VRPTW of Desrosiers et al. (1995, pp. 85-86)
to account for contribution maximization and multiple time windows with an
associated price for service.

Given a set of customers N — {1,...,n} and a set of available vehicles
K, indexed hy &, each having an origin location (e.g. depot) o (k) and a des-
tination location d(k), the set of all nodes Lhal vehicle & can service, vk =
N U {o(k),d(k)} can be defined. All arcs are contained in V¥ x V¥, and the
subset A¥ € V¥ x VF represents the set of all feasible arcs. All time windows
among which customer j is, or is assumed to be indifferent.

For cach arc (i,7) € A* and each time window w from the set W7, there is a
variable cost ¢ of moving vehicle k from customer i to customer j to perform
service in his time window w. In the short run this variable cost consists of the
cost of the distance travelled é4d;;, and the value of time involved in driving from
i to j and servicing customer j, & (ti; + s;) . The kilometer cost 4y includes fuel
consumption, kilometer-relaled maintenance, mileage allowances of staff, fines
and damages and the kilometer-related component of the depreciabion cost. Tn
order to value (t;; + s;) , we use the shadow price of time &z, i.e. the contribution
that can be earned per unit of time. In the short run, capacity is fixed and its
costs therefore do not have to be taken into account to maximize profits. In the
long run, capacity becomes variable, meaning that a fixed charge ¢; of using a
vehicle to build a route has to be added to cach c;“(k)'j‘k,w € N,Yw e Wi,

Each customer j € N has a known demand for service g;. If all g; > 0, loads
have to be delivered to the customers, otherwise loads have to be picked up in
one of the alternative time windows |eju, ljw), w € W7, If ¢; can take positive
or negative values, the problem becomes a pick-up and delivery problem with
time windows.

The price the carrier charges to service ¢; in [ejw, ljuw], p(q;, w) depends on
the size of the load and the width of the time window. Given a set of standard
delivery sizes D, indexed from 1 to d, and a set of standard time window sizes
W indexed from | to w, a tariff P = D x W can be constructed. Service in
wider time windows is performed at a lower price. Contribution is defined as
p(aj,w) el we Wi,



cfar<g<aq =1,k
P(Qj,w):Plk if { Ik,]_—e:li#l CIjW—BJ;miflk*ek_ k“l,kEW (1)

The problem of servicing a customer in his contribution maximizing time
window is not related to the type of those time windows. The time windows in
the CMVRPTW can therefore be either hard or soft. In hath cases a vehicle can
arrive too soon at a customer and wait for service until one of its time windows
[Biapa i) s 82 € Wi begins. Only in the soft time window case, a vehicle can
arrive too late at a customer but a penalty is incurred.

The mathematical programming formulation introduced next involves three
types of variables: flow, time and load variables. A binary How variable X7, .
(i,7) € A% k€ K, w e W? | equals 1 if arc (1, 7) is used by vehicle k to travel
from i to j to perform service in its time window w, and 0 otherwise. The
start of service at node j in time window w is denoted by the time variable b3,
je VE ke K, we WS Load variables Qjx, 7 € V¥, k € K are irrespective of
w and specify the load of vehicle k just after servicing node j.

max Z Z Z p(gj,w) — cij) Z Lc,r gk (2)

weEWI REK (1,5)EAR kEK jevk

subject to

Z X;ic =1 VYicN (3)
weWI ke K je NU{d(k)}

2 B 2 Xihnas S (4)

weWi keK jEN
X::Ek).j.k =1 VkeK (5)

weWi jeNU{d(k)}

We— LY X# -0 VEEKVYieEN (g
wcWi ie NU{o(k)} weW ie NU{d(k)}

5 Xﬁz(k) =1 YkeK (7)
weWtk) ieNUfo(k)}

X (bet+si+t;—bY) =0 VEeK,Ywe Wi V(ij)e AF (8)
ejw <O < ljw Vke K,Vwe Wi VjeVFk (9)

X (Qic+95 — Qie) S0 Yk € K,Yw e Wi,V (i,j) € A (10)

0 € Qi <CF Vke KVje Nu{d(k)} (11)

Q";(k) = Qa(k) Ve K (12)



Xp.e{0,1} VkeK,vwe Wi, V(i j) € A (13)

Clonstraint 3 ensures Lhal each customer j is serviced exactly once in one of
its allowable time windows by one single vehicle. Side-constraint 4 can he used
to set the number of vehicles smaller or equal to v. All vehicles must leave their
origin location o (k) , and travel to one of the j € N customers or its destination
location d (k) (5). After performing service, each vehicle must leave the customer
(6) and finally has to arrive at its destination location d (k) (7). Feasibility of
the time schedule is guaranteed by constraints 8 and 9. Constraints 10 to 12
ensure feasible loads and the binary conditions on the flow variables are defined
in 13. A linearizalion of constraints 8 and 10 can be found in Desrosiers et al.
(1995, p. 86).

Because the Vehicle Routing Problem (VRP) is NP-hard, the VRPTW and
the CMVRPTW are NP-hard by restriction. Although Kohl et al. (1999) are
able to solve a number of Solomon’s (1987) problem instances to optimality,
(meta)heuristics often remain preferable for real-life applications. Initial heuris-
tics generate a feasible solution for the VRP1TW which can then be improved
by means of an improvement heuristic ((Or, 1976), (Solomon et al., 1988)) or
a melahenristic ? in short time spans. Moreover, metaheuristics are more ca-
pable in coping with difficult objective functions and /or constraints than exact
algorithms (Reeves and Beasley, 1993, p. 11). Several authors have pointed out
the importance of the quality of initial heuristics on the performance of meta-
heuristics. Liu and Shen (1999) conclude from the results reported by (Garcia
et al., 1994), (Thompson and Psaraftis, 1993), and (Potvin and Rousseau, 1995)
that algorithms which concentrate only on improving a poor initial solution do
not perform very well within a limited computation time. (Louis ct al., 1999) ro-
port on the impact of good initialization on solution quality and computational
speed for genetic algorithms, Van Breedam (2001) demonstrates the dependence
of descent heuristics and tabu search on the quality of the initial solution.

Two-phase heuristics are able to penerale good initial solutions for the
VRPTW. By using a sequential route-building heuristic in the first phase to
determine the number of seed routes, they share the sequential heuristics’ focus
on utilization of scarce resources. By applying a parallel heuristic in the second
phase, well-separated routes are designed.

Given Solomon’s (1987) sequential insertion heuristic’s track record as an
initial heuristic for the VRPTW, we use it to construct a sequential insertion
heuristic and 2 two-phase heuristics in section 4.

3 Solomon’s (1987) sequential insertion heuris-
tic I1
After starting the current route with an initialization criterion, a sequential

insertion heuristic uses the insertion criterion ¢ (¢,u,J) to caleulate for each
unrouted stop w the best place and associated cost for insertion between two

%Best heuristic solutions on several of the original Solomon’s (1987) instances are currently
ohtained by (Tan et al., 2000), (Homberger and Gehring, 1999), (Chiang and Russell, 1997),
(Thangiah et al., 1996), (Potvin and Bengio, 1996), (Rochat and Taillard, 1995), (Thangiah
et al., 1994), (Desrochers et al., 1992).



adjacent customers i and j in the current partial route (ip,i1,..,9m) in which
ig and i, represent o (k) and d (k)(e.g. the depot). The cheapest insertion cost
and the associated insertion place is determined for each unrouted customer u
as

a(iu,j)= rriin le1 (G uyip)], P =1,.ym (14)

in which

e1 (1,4, 4) — encn (3,4, §) + azc (4,4, §) with (15)
oy, > 0and a; +ay =1

ey (8,0, J) = dig + dyy — pdi, p = 0

ez (tu,g) =byj—b;

In a second step, the customer that is best according to the selection eriterion
o (4,u,4) is selected. The selected customer u* is then inserted in the route
between i and j.

2 (i,u*,j) = max[co (7,4, 7)] u unrouted and feasible (16)

CZ(i!u:j):AdUu_cl (z,u,j),)\EO (17)

If no remaining unrouted customer has a feasible insertion place, a new route
is initialized and identified as the current route.

The insertion criterion ¢ (i,u, j) of insertion heuristic Il is time-space based
in the sense that the best insertion place is the one that minimizes a weighted
average of the additional distance and time needed to include a customer in
the current partial route. Solomon (1987) equals the additional time needed,
ey2 (1,1, 7) to the difference between the new time at which service begins at
customer j aller inserting w, by j, and the original start of service at j, b;. The
weighting factors ey, p and A are used Lo guide the heuristic to different (local)
optima. The selection criterion cs (#,u, ) is a generalization of the Clarke and
Wright (1964) savings algorithm as it tries to maximize the benefit derived from
inserting a customer in the current partial route rather than on a new, direct
route.

4 TInsertion heuristics for the CMVRPTW

As the CMVRPTW is an extended version of the VRPTW, clements of suc-
cessful VRPTW heuristics can be used to construct heuristics able to maximize
a carrier’s contribution over its customers’ set of alternative price-time win-
dow combinations, Routes are initialized with the unrouted customer that is
farthest from Che depot or with the one with the earliest deadline. The initial-
ization customer is scheduled within its most narrow (and thus most expensive)
time window [ey1, L] at price p(g;, w;1).

After starting the current route with the initialization criterion, the inser-
tion criterion coq (i,u,j) determines the highest contribution margin for each
unrouted customer « under each of his price-time window combinations and their



associated insertion places between two adjacent customers ¢ and j in the cur-
rent partial route (i, 11, ..., 4 ). The insertion distance e;1 (4,4, 7) , independent
of w, is multiplied by the kilometer cost ;. The insertion time ci2 (Z,u (w),7)
depends on the choice of w and is valued at the opportunity cost of time d;. The
new service time at j, given that customer  in his time window w i inserted
in the route, is denoted by by(y) ;. If we would steer the heuristic only by the
kilometer cost §, and the opportunity cost of time §;, we would obtain only one
solution based on Lthe actual cost data. Since it may well be possible to obtain
a betbter solution based on factors different from the original d, and §;, they are
multiplied by two weighting factors aq, ae > 0. Contrary o Solomen (1987) mq
and ag do not have to sum up to 1. If ovy = aa = 1, the original cost levels are
used to guide the insertion heuristic.

co} (i,u(w),7) = max[co (ip—1,u(w),ip)],p=1,...,m and Vo € W** (18)
P

€0y (’i> u:J) = p(qu, wu) = {051(5&!(:11 (i,1,7) + aadic1n (7:1 u {w) ’J)l 1

C11 (?‘!U’)J)_d\"u-l-duj_udn]!”zo (19}
C12 (i’ u (w) 73’) = b'u[w)._f e b.f

Selection criterion cos (i, u, j) then chooses the customer with the largest dif-
ference in contribution helween insertion in a new, direct route in its most nar-
row time window (w,,) at the highest price p gy, wy1), and insertion in the cur-
rent route in the chosen time window. Since the contribution of inserting a cus-
tomer in a new or an existing route can be either positive or negative, the maxi-

mum difference between coy (i,, j) and [p (qy, Wy )= (1 84doy + alphasdits,)—
Otsy — cy] is taken.

coy (i,u*, j) = max[cos (i,u,7)] u unrouted and feasible (20)

coy (i,u,]) = coy (i,u,§) — [P (Guy Wu1) — A (@18adou + aaditen) — 0tsy, _C.f]' Az0
(21)

If no remaining unrouted customer has a feasible insertion place, a new route
is initialized and made the current route.

Tor a two-phase heuristic the initialization customers of the sequential phase
are used to build seed routes for the parallel insertion phase. In the insertion
eriterion coy (4,1 (), 7) is then used to compute, for each unrouted customer
u, a feasible insertion place with the highest associaled contribution over all n,
seed routes and all time windows w & W*.

66 i (), 3r) = mmax [00n, (iny 0 (a0) in,)]

r=1,...,n and w € W™ (22)

co1, (ip u(w), ) = p(gu,ws) — [a164c011, (i,u,j) + aadicora, (1,u(w),7)],
co11 (4,u,J) = di, u + du g, — pdi, 5,40 >0 (23)
e12 (i u(w) , J) = buqw),j, — by,



Customers are then selected by means of the traditional savings criterion

cop (t,u(w),j) = Jax {eor (i, u,3r) = [P (gu, wa1) — X (@18gdoy + a2diton) — 6ts, — cf]}
(24)

or the generalized regret criterion. Following Potvin and Rousseau (1993), a

generalized regret sclection criterion can be constructed for the CMVRPTW

as follows. First, a sequential insertion heuristic analogous to (23) is used to

calculate for each unrouted customer u, the best insertion place in each of the

ny seed routes. If a customer can be inserled in a ronte, his regret measure for

that route is equal to the insertion contribution for that route 7,

coy, (bpyu (), Jr) = P (Gus wa) — [@1dgcon1, (i,u, 5) + aedicors, (4 u (w), )]
(25)
If a customer cannot be inserted in a route, his regret measure for that route
is set equal to an arbitrarily large negative amount L. Since Potvin and Rousseau
(1993) consider a (cost) minimization problem in which L is a large positive
amount, their generalized regret measure for each customer u is defined as the
summation over the differences of the regret measures of all seed routes but
the best, (r # '), and the best v (i.e. having the lowest generalized insertion
costs). In order to remain valid for a (contribution) maximization problem,
the peneralized regret measure cos (2,u,7) must be defined as the summation
over the differences between Lhe best regrel measure (i.e. having the highest
contribution) over all seed routes and the regret measure of all other seed routes
but the best, (r # 1').

Co;(i'l‘u (w),q) = Bz [coz (i, u (w) v])] (26)

cog (1, u(w),j) = Z [eotp (i, u(w),d,0) — oty (in u (w), §r)] where (27)
r#r!

cotrs (insyu (W), jrr) = max  [eof, (iryu (w), 5r)] (28)

Since the selection criterion, cos (i,u (w),j). sclects the customer with the
largest generalized regret, it will automatically select a customer with the small-
est number of feasible insertion routes. Since the contribution from inserting
u in feasible routes is also used to calculate the regret measure for each of the
roules, il can be used to diseriminate between two customers with the same
number of feasible routes. Notice that the seed route reduclion procedure sug-
gested by Potvin and Rousseau (1993) was not implemented for the generalized
regret based two-phase heuristic to allow comparison of both selection criteria.

5 Development of problem sets
The Solomon problem instances for the VRPTW consisting of randomly gen-

erated customer coordinates (set R), clustered customers (set C) or both (the
so-called semi-clustered sets RC), were adapted for the CMVRPTW with one



Table 1: Tarifl

k/d 0 1 4 3 1
0 70 80 90 100 110
1 i 85 95 105 115
2 80 90 100 110 120
3 85 95 105 115 125
1 90 100 110 120 130
5 95 105 115 125 135
6 100 110 120 130 140
) 105 115 125 135 145
8 110 120 130 140 150

t 9 115 125 135 145 155

depot and one to possibly ten alternative price - time window combinations per
customer. The data on customer coordinates, their demand and service fime
was not modified and the earliest and latest time at which service must start,
was used to model the customer’s original time window.

The carrier’s price structure is modelled as a 2-dimensional tariff. Appendix
1 describes its construction and the generation of the CMVRPTW problem sets.
The tariff in Table | consists of 10 rows, and 5 columns. The 10 rows correspond
to 10 standard time window sizes, ranging from 100% to 10% of the scheduling
horizon. The columns represent 5 standard demand sizes, ranging from 10 to 50
units. The multidimensional tariff is linear in the time window size k and the
weight class d. Servicing a load in the smallest standard demand class, d = 0, in
the most fexible time window, & = 0, costs 20 + 50 Euros. For a given weight
class d, the freight rate increases with 5k Euros. If a customer’s demand for
service falls within the kth standard time window, and the dih standard demand
class, the freight rate equals 20+ 5k + 504-10d. Relative time window sizes were
preferred to absolute ones, to take the differences in scheduling horizon into
account (e.g. 230 units of time in R101 and 1236 units in C101).

Given that the profit or surplus lost by using an n segment multipart tariff in-
stead of an optimal nonlinear tariff is approximately proportional to 1/n?(Wilson,
1993, pp. 190-193), our tariff may seem to be too complicated. T'he large number
of standard time windows and demand sizes is, however, necessary to safegnard
information vilal to the analysis. Although it is indeed possible to construct
an efficient, less complicated tariff for a single problem inslance, applying the
same tariff to all problem instances under study could be inappropriate in some
cases. If, for example, we would only consider four standard time windows cov-
ering the entire scheduling horizon, all customers from C105 and the majority
of customers from C106, C108 and RC105 would be priced according to the first
standard time window.

After determining each customer’s current standard time window, the num-
ber of time window relaxations is calculated by modelling the customer’s incli-
nation to accept a relaxation. Time window relaxations are modelled around
the original time window’s center and are rounded to the nearest integer. Only
time windows that fall within the scheduling horizon can be accepted. Each
customer is assumed to be indifferent between its original price-time window
combination and the next relaxation with probability 0.5. An even wider time



Table 2: Hour and time coefficients in Euros for 1999 (Blauwens et al., 2001)

Carrying capacity hour coefficient kilomeler coellicient.
delivery van 0.5 t 16.03 0.10
lorry 5 t 17.14 0.15
lorry 8 t 18.06 0.17
lorry 20 t 20.88 0.21
truck and trailer 28 t 21.76 0.24

window is accepted with probability (0.5)2, and an n larger one with probabil-
ity (0.5)" . If a customer prefers its original time window, he is serviced within
the hounds of his original time window. Should he accept one or more relax-
alions, his original time window is replaced by the corresponding standard time
window.

Being the starting and ending point of each route, the depot is “serviced”
free of charge in its unique time window [eg, lg]. Travel times are taken equal to
the corresponding Euclidean distances.

To determine the fixed cost of having a vehicle to construct a route cf‘,,
the time and kilometer coefficients &; and é, for the adapted Solomon problem
instances, we use real-life cost data to obtain an acceptable cost structure for
testing our henristies.

Since a pick-up or delivery prohlem is modelled, average sample data on the
cost structure of a lorry with a loading capacity of 20 tons is used. Because the
lorry’s fixed costs are expressed per hour (20.88 EUR), they are multiplied with
the maximum statutory driving time (9 hours) to obtain the daily cost of owning
the lorry (187.92 EUR). The hour coefficient from Blauwens et al. (2001) is
divided hy 60 to approximate the time coefficient §;, expressing the opportunity
cost of time. Indeed, in the long run the average opportunity cost of time equals
the average cost of owning a vehicle. In the short run, the opportunity cost will
depend on the carrier’s potential customers of that moment, making it higher
during peak periods than during off-peak periods. The distance coefficient is
set equal to the kilometer coeflicient, dq.

6 Computational results

The three insertion heuristics performance are evaluated for short-run contri-
bution and long-run profit maximization. In the literature, VRPTW heuris-
tics are traditionally cvaluated on the best solution they obtain over the set
of parameters considered. Solomon (1987) uses two initialization criteria: the
farthest unrouted customer and the customer with the earliest deadline, and
forar (e, A, exp, xe) settings: (1,1,1,0),(1,2,1,0),(1,1,0,1),and (1,2,0,1) . The
best of these eight runs of each problem instance is used fo calculate the av-
erage solution quality for each problem set. Solution quality is measured hy a
lexicographic preference ordering on the number of vehicles, minimum schedule
time, minimum distance and sometimes also minimum waiting time.

Since ap is either 1 or 0 in Solomon’s original parameter set, 50 percent of
all runs per instance ignores the time related component of inserting a customer
in a route. Therefore o = (0.5,0.5) is added to the list of possible weighting

10



Table 3: Long run CMVRPTW

SI GS %A GR T

R SET contribution | 7006.15  6881.67 -1.78  6831.13 -2.50
costs 3900.10  4040.00 3.50 4085.54 4.75

routes 13.92 14.75 5.99 14.75  5.99

time 2630.40 2676.46 11%5 2731.17 3.83

distance 1539.57  1403.20 -8.86  1513.63 -1.6Y

C seT contribution 5666.78 H646.54 -0.3G n490.60 -3.11
costs 5750.45 5771.23 0.36  Hh950.51 3.48

routes 10.44 10.67 2.13 1100 532

time 10146.08 10163.35 0.17 10444.73 2.94

distance 1070.38 957.95 -10.50 1035.93 -3.22

RC SET contribution 7138.19 6966.10 -2.41 6832.30  -4.28
costs 3938.68  4130.15 4.86  4265.11 8.29

roules 13.63 14.75 8.26 15.13 11.01

time 2767.35 © 2769.26 0.07 2897.40 4.70

distance 1730.14 1644.29 -4.96 1727.20 -0.17

factors, giving equal weighting to the distance and time related component of an
insertion. Because the objective is Lo maximize contribution in the short-run or
profit in the long-run, the traditional lexicographic preference ordering on cost
components cannot not be used. Therefore of each set of 12 runs, the one with
the highest contribution is chosen. All calculations are coded in C4+ using
double floating-point precision.

In Table 3 the sequential insertion heuristic (SI) dominates both two-phase
henristics. The differences in contribution are the highest when the sequen-
tial insertion heuristic is compared to the generalized regret-based two-phase
heuristic (GR). The differences in percentages reported in Table 3 are the com-
bined result of each heuristic’s ability to design efficient routes and Lo relax the
“right” customers’ service time window. To isolate both effects, Table 4 re-
ports on each heuristics’ average solution quality for problem instances in which
customers are all serviced at 100 Euros in their original time windows. The
relative difference in performance of both two-phase heuristics with respect to
the sequential one, is smaller in Table 3 than in Table 4. This indicates that
both two-phase heuristics decide wiser on time window relaxations but that
the higher revenue is partially offset by higher routing costs. Despite the fact
that they are able to weigh up the advantage of relaxing a customer’s service
time window in several seed routes, it just fails to compensate the sequential
insertion’s focus on high capacity utilization. If all freight rates p (¢;,w) in the
tariff would be cheaper with respect to the cost of operating a vehicle, the rel-
ative importance of minimizing the number of vehicles would increase. Under
these circumstances the sequential insertion heuristic would even more clearly
outperform both two-phase heuristics.

In the short run, capacity costs are fixed and become irrelevant in the
CMVRPTW, Both two-phase heuristics’ tendency to have more routes than the
sequential insertion heuristic is then no longer penalized. In all cases consid-
ered, the generalized savings criterion (GS) dominates the sequential insertion
heuristic (SI), which in turn is superior to the generalized regret criterion (GR).
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Table 4: Long run VRPTW

SI @8 WA GR %A
R sET contribution 6211.22  6113.61 -1.57 594447 -4.29
costs J788.78 3886.40 2.58 40565.53 7.04
ronfes 13.58 14.08  3.68 14.67 7.98
time 2048.46 2634.20  3.36 2707.95  6.26
distance 1455.58 1346.47 -7.50 1487.50  2.19
C SET contribution | 4383.00 4381.97 -0.02  4186.42 -4.48
costs 5617.00  5618.03  0.02 5813.58 3.50
routes 10.00 10.00  0.00 10.78 T7.78
time 10063.32 10110.25  0.47 10212.63 1.48
distance 982.36 918.61 -6.49 975.92  -0.66
RC sET conlribution (G201.75 603096 -2.75  5876.62 -5.24
costs 3798.25 3969.04  4.50 4123.38 8.56
routes 13.25 14.00  5.66 14.50 9.43
time 2652.94 273548 3.11  2850.256 T7.44
distance 1604.53  1609.22 0.29 1694.38 ~ 5.60
Table 5: Short run CMVRPTW
S1 cs Y%A GR %A
R SET contribution | 9634.95  9665.93 0.32  9629.73 -0.05
costs 1274.22 1257.40  -1.32 1291.10 1.33
roules 14.33 15.00 4.65 15.33 6.98
time 2614.04 2654.08 1.53 2714.70  3.85
distance 1518.89 1390.77 -8.43 1443.28 -4.98
C SET contribution | T7629.50  7667.13 0.49 757749 -0.68
costs 3787.73  3757.87 -0.79  3863.62 2.00
routes 10.44 11.00 b32 11.33 851
time 10146.08 10136.79 -0.09  10364.78  2.16
distance 1070.38 959.46 -10.36 1069.49 -0.08
RC SET contribution 9726.19 9743.99 .18 9685.54  -0.42
costs 1354.43 1352.89 -0.11 1414.46  4.43
routes 14.25 15.13 6.14 15.38 7.89
time 273115 2765.30 1.25 2898.67 6.13
distance 1683.31 1627.34  -3.32 1690.50  0.43
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Table 6: Short run VRPTW

SI GS A GR %A

R sET contribution | 8773.35  8767.54 -0.07  8719.76 -0.61
costs 1226.65  1232.46 047  1280.24  4.37

routes 13.75 14.58  6.06 15.08  9.70

time 2633.73 261098  3.05 2673.91 H.b3

distance 1437.13  1349.34 -6.11  1457.15 1.39

C SET contribution | 6273.47  6293.24 0.32  6244.82 -0.46
costs 3726.53 3706.76  -0.53 37ob.18 0.7°F

routes 10.11 10.56  4.40 11,11 9.89

time 10047.50 10045.14 -0.02 10132.656 0.85

distance 958.42 879.48 -8.24 954.22 -0.43

RC segr contribution | 8695.53  8689.80 -0.06  8§626.39 -0.80
costs 1304.47 1310.11  0.43 1373.61 5.30

routes 13.50 14.38 648 14.75 9.26

time 2644.28  2693.60 L.87  2813.62 6.40

distance 1601.10 1553.06  -3.00 1643.62  2.66

Table 7: Non-parametric Friedman test (n = 1044)

test statistic p-value
short uin CMVRPTW 3.5253 0.1716
long run CMVRPTW 24.4831 0.0001

Following Golden and Stewart (1985) we use the nonparametric Friedman
test to check whether all three heuristics have the same expected value over the
entire test set (n = 1044). For the short run CMVRITW, the performance
of the sequential insertion heuristic and the 2 two-phase heuristics does not
statistically differ (test Friedman’s test statistic = 3.5253, p-value = (1.1716).

For the long run CMVRPTW, Friedman’s test statistic (5.9051, p-value =
0.0001} strongly rejects the null hypothesis that all heuristics perform equally
well. The Wilcoxon signed rank statistic for comparing heuristics SI and GS
equals 116750 and the one-sided p-value equals 0.0439. At o = 0.05 we accept
the null hypothesis of equal heuristic performance. Because the p-value for the
Wilcoxon test on GR and SI is extremely small (p-value = 0.0001), we can reject
the null hypothesis with much conviction. Decause of the equal performance of
SI and GS for the short. tun CMVRPTW, it should come as no surprise that
the null hypothesis of equal performance of GR and SI is also rejected (p-value
= 0.0006).

In conclusion, SI and GS perform equally well and outperform GR at a
confidence level & = 0.05 for the long run CMVRPTW. This means that the
additional computational effort of using a two-phase heuristic does not pay off
on average over the entire test set (n = 1044). Also if the best run for each
problem instance is used, no higher contribution can be attained by using a
two-phase heuristic,

For the long run, the use of the generalized savings selection criterion in
the sequential insertion heuristic (SI) and the peneralized savings two-phase
heuristic (GS) dominates the generalized regret criterion. Regardless of whether
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Table 8; Wilcoxon signed ranks test (using the normal approximation)

test statistic p-value
GS vs. SI 116750 0.0439
GR vs. SI 108480 0.0001
GR vs. GS 112678 0.0006

customers can be serviced in a single time window (see Tables 4 and 6) or in
multiple time windows (see Tables 3 and 5), the generalized regret criterion al-
ways underperforms. This contrasts with the interesting results that Potvin and
Rousseau (1993) oblained for the generalized regret criterion combined with a
seed route reduction procedure. Without seed route reduction®, the generalized
regret selection criterion seems to be inferior to the generalized saviugs crilerion,

both for the CMVRPTW as for the VRPTW.

7 Conclusions and suggestions for future research

Both less-than-truckload and full truckload customers, that are flexible with
respect to the moment of receiving service, often pay lower prices. Some cus-
tomer can be indifferent between receiving service in several price time window
combinations al dilferent. prices. The carrier’s associated routing and scheduling
problem can be formulated as a Contribution Maximizing Vehicle Routing Prob-
lem with Time Windows (CMVRPTW). Because the CMVRPTW is NP-lard,
we developed three insertion-based heuristics.

Solomon’s (1987) problem instances for the VRPTW were used to construct
a test set for the CMVRPTW. The CMVRPTW data set can be obtained from
the author on request.

Solution quality was formally evaluated by the non-parametric Friedman and
Wilcoxon tests. For the short run CMVRI'TW, all three heuristics performed
equally well. For the long run CMVRPTW, statistical testing showed the se-
quential insertion heuristic and the peneralized savings two-phase heuristic to
be superior to the generalized regret two-phase heuristic. The first two-phase
heuristic used the traditional generalized savings selection criterion, the second
was based on Potvin and Rousseau’s (1993) generalized regret selection crite-
rion. Apart from the selection criterion used, the two-phase heuristics were
identical, meaning that the sced route reduction procedure suggested Potvin
and Rousseau (1993) was not implemented for the gencralized regret based two-
phase heuristic. Despite the fact that Potvin and Rousseau (1993) obtained
interesting results for the VRPTW, the generalized regret selection criterion
was always dominated by the generalized savings criterion in our calculations.
This indicates that the generalized regret criterion should not be used without
invoking a seed route reduction procedure. For the short run CMVRPTW, best
results were obtained for the generalized savings-based two-phase heuristic.

3Route reduction procedures have also been proposed in local search based on Ejection
Chains (EC) (Glover, 1991; Glover, 1992). For the VRPTW, EC remove (eject) and insert
customers from/in roules until a customer can be inserted in a neighboring route without the
need to remove any customer. KC have been applied to the VRPTW in Caseau et al. (1999),
Rousseau et al. (2000), and Braysy (2001).
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The CMVRPTW and the heuristics suggested in this paper can be used to
study a number of combined pricing and scheduling issues. At the operational
level of trucking operations it can help dispatchers to design more profitable
routes. The model identifies which customers should be contacted for time
window relaxations. At the same time, the model is able to determine the
maximum discount for a time window relaxation. This maximum discount is
equal to the contribulion that is gained by relaxing a customer’s time window.
At the strategic level of trucking operations the CMVRPTW can be used to
investigate the list of customers. A set of problem instances can be used to
simulate trucking activity over a period of time. The model can then be used
to identify those customers who regularly generate low contributions because
of high routing costs. At the same time, the contribution that is lost when a
customer only accepts service in its original time window can be determined.
By recording the contribution that could be realized by servicing a customer
in wider time windows, a carrier can estimate the cost of a customer’s lack of
scheduling flexibility.

In this paper, the carrier’s price structure is considered to be exogenous. In
future research, the price structure will be endogenized. Research on designing
a multidimensional freight tariff on both the weight of the shipment and the
scheduling flexibility is currently underway.
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Algorithm 1 Generation of CMVRPTW data
Caleulate standard price - time window combinations
schedulingHorizon =l  ep
maxDemand = max,, {all customers i € sets R, C and RC)
for standardTW k£ — 1 to K do
for standardDemands d =1 to D do
standard TW[k] = standard TW[k — 1] + schedulingHorizon/ (I + 1)
standardD[d| = standardD[d — 1] + maxDemand/(D + 1)
price[£][d] = pTWMax - k - (pPTWMax — pTWMin) /(K + 1) + pDMax
- d. (pDMax — pDMin) /(D + 1)
end for
end for

for all customers i do
Determine current standard time window
TWSize = [; —e;
TWCentre = ¢e; + ([; —e;) /2
current T'W = currentD = 0
for standardTW k£ =0 to K do
for standardDemands d =0 to D do
if TWSize < standardTW[k| and ¢; < standardD|d] then
currenl TW = &
currentD = d
break
end if
end for
end for

Determine the number of lime window relozations
for k = currentTW + 1 to K do
criticalValue = 0.5(k—currentTW)
if TWCentre - 0.5 - standard TW[k] == eg
and TWCentre + 0.5 - standardTW[k] < Iy
and randomNumber < criticalValue then
numberOfI'W Relaxations = k—currentTW
else
break
end if
end for

Generate price - time window combinations
for k — 0 to numberOfT WRelaxations do
if numberQfTWRelaxations != () then
price = price[current TW-+k][current Demand)
e; = TWCentre - 0.5 - standard TW[current TW+k]
l; = TWCentre + 0.5 - standard TW [current TW+£]
else
price = price[currentTW][currentDemand]
€ =€
=1l
end if
end for
end for
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