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We derive a path-integral description of the vortex state of a fermionic superfluid in the crossover region
between the molecular condensatesBECd regime and the Cooper pairingsBCSd regime. This path-integral
formalism, supplemented by a suitable choice for the saddle point value of the pairing field in the presence of
a vortex, offers a unified description that encompasses both the BEC and BCS limits. The vortex core size is
studied as a function of the tunable interaction strength between the fermionic atoms. We find that in the BEC
regime, the core size is determined by the molecular healing length, whereas in the BCS regime, the core size
is proportional only to the Fermi wavelength. The observation of such quantized vortices in dilute Fermi gases
would provide an unambiguous proof of the realization of superfluidity in these gases.
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I. INTRODUCTION

The realization of superfluidity in dilute fermionic gases
f1g has opened up a new avenue for the investigation of
fermionic quantum systems. In such gases, the presence of
Feshbach resonances in the interatomic scattering allows to
tune the interaction strength from strongly repulsive to
strongly attractivef2g. In the limit of weak repulsive interac-
tions, deeply bound molecular bosons are formed that Bose
condensef1g sBECd. In the limit of weak attractive interac-
tions, a Bardeen-Cooper-SchrieffersBCSd fermionic super-
fluid arisesf3g. The crossover between both regimes has re-
cently attracted a great deal of theoretical and experimental
interest.

One of the hallmarks of superfluidity, be it bosonic or
fermionic, is the presence of quantized vortices. Whereas
vortices are well understood both in the BEC and the BCS
limits, it is not clear how the characteristics of the vortex
ssuch as the core sized behave in the crossover regime. Bul-
gac and Yu have extended density functional theory to super-
fluid fermion systemsf4g, and studied vortex states in the
BCS regime within their superfluid local density approxima-
tion sSLDAd f5g. They found that in the BCS regime vortices
give rise to a depletion in the fermion density. These results
confirm earlier calculations based on the Bogoliubov–de
Gennes theoryf6g.

The goal of this paper is to develop a path-integral treat-
ment suited to describe vortices in the BCS, BEC, and cross-
over regimes. With this treatment, we investigate how the
vortex core size and the fermionic density depletion at the
core change when the fermionic superfluid is brought from
the BEC to the BCS regime. On the BCS side of the Fesh-
bach resonance, we compare our results to those obtained
with the SLDA treatmentf5g.

A path-integral treatment for the ground state of the fer-
mionic superfluid was developed by Sá de Melo, Randeria,
and Engelbrechtf7,8g. Their formalism provides a unified
description of the BEC, BCS, and crossover regimes and
predicts a smooth crossover for the critical temperature, pair-
ing gap, and chemical potential. They consider a homoge-
neous Fermi gas of atoms determined by the action func-
tional

S1 =E
0

b

dtE dxo
s
Fc̄x,t,sS ]

]t
−

1

2m
¹x

2 − mDcx,t,sG
+E

0

b

dtE dxgc̄x,t,↑c̄x,t,↓cx,t,↓cx,t,↑. s1d

In this expressionc̄x,t,s and cx,t,s are the Grassmann vari-
ables describing the fermionic degrees of freedom, wherex
is the position vector,t the imaginary time, ands= ↑ ,↓ de-
notes the two hyperfine spin states present in the Fermi gas.
The chemical potential is denoted bym, and b=1/skBTd is
the inverse temperature. The interaction between the fermi-
onic atoms only takes place between atoms in different hy-
perfine spin states, and is described by a contact interaction
characterized by the renormalized strengthg. The partition
sum is given by the functional integral over the Grassmann
variables

Z =E Dfc̄x,t,s,cx,t,sgexph− S1j. s2d

To unravel the product of four Grassmann variables, the
Hubbard-Stratonovic transformation is performed. This
transformation introduces the bosonic Hubbard-Stratonovic

fields Dx,t and D̄x,t such that

Z =E DfD̄x,t,Dx,tg E Dfc̄x,t,s,cx,t,sgexph− S2j s3d

with

S2 =E
0

b

dtE dxHo
s
Fc̄x,t,sS ]

]t
−
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2m
¹x

2 − mDcx,t,sG
− D̄x,tcx,t,↓cx,t,↑ − Dx,tc̄x,t,↑c̄x,t,↓ −

D̄x,tDx,t

g J . s4d

The action functionalS2 is quadratic in the Grassmann vari-
ables so that the functional integration over these variables
can in principle be evaluated.
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II. SADDLE POINT FOR THE VORTEX STATE

In practice, to perform the functional integration over
Grassmann variables, one has to choose a saddle point value

for the fieldsD̄x,t ,Dx,t. To describe the ground state, Sá de
Melo et al. f7g suitably chose a uniform constant saddle point

sD̄x,td* =Dx,t= uDu. After doing this, the Grassmann variables
can be integrated out straightforwardly, resulting in an effec-
tive saddle-point action

Seff =E
0

b

dtE dxH− trflns− G−1dg −
uDu2

g
J , s5d

whereG−1 is the inverse Nambu propagator, for the ground
state

− Gground state
−1 = s0

]

]t
− s1uDu − s3F 1

2m
¹x

2 + mG , s6d

and thes j are Pauli matrices. The saddle point equation
dSeff /duDu=0 then leads to the familiar gap equation for the
fermionic superfluidf9g. The chemical potentialm is fixed by
the fermion density. At finite temperatures, fluctuations
around the saddle point value can be taken into account per-
turbatively to improve the theory and find the critical tem-
peraturef7,8g. Alternatively, the finite temperature regime
can be studied by introducing a temperature-dependent effec-
tive action formalism for the phase fieldf10g, or by varia-
tional perturbation theoryf11g.

To investigate thevortex state, we propose to use a dif-
ferent saddle point, and set

sD̄x,td* = Dx,t = uDruexpsiud, s7d

where u is the angle around the vortex line andr is the
distance to the vortex line. That is,r andu are the radial and
angular coordinates if one chooses cylindrical coordinates
x=sr ,u ,zd such that thez axis lies along thesstraightd vortex
line. This particular choice of the saddle point value lies at
the core of the present treatment. With this choice for the
saddle point value, the integration over Grassmann variables
leads again to an effective action of the forms5d, but with a
different result forG−1. We find

− Gvortex
−1 = s0F ]

]t
−

i

2mr
ef ·¹xG − s1uDru

+ s3F−
1

8mr2
−

1

2m
¹x

2 − mG . s8d

The density of paired atoms near the vortex coresuDru as a
function of rd can in principle be derived from the saddle-
point equationdSeff /duDru=0 salthough in practice the pres-
ence of the spatial derivatives inhibits straightforward calcu-
lationd. However, the result no longer contains explicit
information on the density of fermionic atoms. The results of
Bulgac et al. interestingly show that whereasuDru tends to
zero at the vortex core, the fermionic density needs not go to
zero. To study the density of fermionic atoms, expressions8d
is not suited.

III. EXPLICITLY DETAILING THE FERMIONIC DENSITY

In order to introduce the fermionic atom density in the
path-integral expressions, a transformation was proposed by
De Paloet al. f12g based on the identity

C =E Dfrx,t
HS,rx,tgexpF−E

0

b

dtE dxirx,t
HSG s9d

3F E srx,t − c̄x,t,↑cx,t,↑ − c̄x,t,↓cx,t,↓dG , s10d

where C is a constantc number andrx,t
HS,rx,t are bosonic

fields. This generalized delta-function expression identifies

rx,t with osc̄x,t,scx,t,s, the fermionic density.
Multiplying the partition sums4d with the constants10d,

and approximating the Hubbard-Stratonovich fieldsD̄x,t ,Dx,t
by the vortex saddle points7d leads to the following saddle-
point approximation for the partition sum:

Zsp=E Dfc̄x,t,s,cx,t,sg E Dfrx,t
HS,rx,tgexph− Sspj, s11d

with

Ssp=E
0

b

dtE dxHo
s
Fc̄x,t,sS ]

]t
+

1

8mr2
−

1

2m
¹x

2 − m

− irx,t
HSDcx,t,sG + irx,t

HSrx,t − uDruscx,t,↓cx,t,↑

+ c̄x,t,↑c̄x,t,↓d −
uDru2

g J . s12d

Note that a term proportional toc̄x,t,sef ·=xcx,t,s has been
neglected in accordance with Ref.f12g, who claim that this
term is irrelevant for the low-energy properties. To get rid of
the path integration overrx,t

HS,rx,t in Eq. s11d, we again use a
saddle-point approach and set these fields equal torx,t

HS=rr
HS,

rx,t=rr. This implies that the fermion density only depends
on the distancer from the vortex coresand not on theu or z
coordinated. From Eq.s12d it is clear that the auxiliary field
irr

HS is related to the chemical potential. It is useful to intro-
ducef12g

zr = irr
HS+ m −

1

8mr2
. s13d

On the level of the fermionic degrees of freedom,zr acts as a
one-body potential combining the auxiliary field, the chemi-
cal potential and the angular momentum barrier. Alterna-
tively, it can be interpreted as a local chemical potential.

To perform the integration over the Grassmann variables
we assume thatzr and the pairing fieldDr vary slowly in
comparison with the relevant fermion frequencies. After in-

tegration overc̄x,t,s ,cx,t,s, we then obtain the resultZsp
~exphSeff8 j with
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Seff8 = −H uDru2

g
− Szr − m +

"2

8mr2
Drr

+ 2E dk

s2pd3 lnF2 coshXb

2
ÎS k2

2m
− zrD2

+ uDru2CGJ .

s14d

IV. PROPERTIES OF THE VORTEX CORE

The first saddle point equation is

]Seff8

]rr
= 0 ⇔ zr = m −

1

8mr2
. s15d

This locks the local chemical potentialzr as a function of the
overall chemical potential and the energy barrier of the vor-
tex flow, as one would expect in the Thomas-Fermi approxi-
mation in the molecular limit. The parameterm is determined
by fixing the total number of particlessor the density far
away from the vortex cored. DifferentiatingSeff8 with respect
to uDru we find the familiar gap equation, but with a local
chemical potential determined byzr:

1

kFas
= −

2

p
E dkk2S tanhsbEk/2d

Ek
−

1

k2D , s16d

with Ek=Îsk2−zrd2+Dr
2. To obtain this expression, we have

used an effective contact interaction potential between the
atoms, i.e., the two-body potential isVsr d=4p"2as/mdsr d,
where as is the s-wave scattering length. The relation be-
tween the scattering length and the renormalized interaction
strengthg is given byf7g

pm

2"2as
=

1

g
+E dk

s2pd3

1

s"kd2/m
. s17d

Finally, the third saddle point equation]Seff8 /]zr =0 allows to
calculate the fermionic density near the vortex core

rr =
3

2
E dkk2F1 −

k2 − zr

Ek
tanhsbEk/2dG . s18d

In Eqs.s16d and s18d, units are such that wave numbers are
expressed in Fermi wave numbers and energies in Fermi en-
ergies.

We investigate the solutions of these equations in the zero
temperature limitsb→`d, so that we may assume that fluc-
tuation corrections around the saddle point values are not
important. The result for the pair density and the fermion
density are shown in Fig. 1. Both the pair density and the
fermion density go to zero in a region with spacial dimen-
sions of the order of 1/kF around the vortex linesr =0d. In
the BEC limit, the pair density and the fermionic atom den-
sity become zero at the same distance from the vortex line,
so that no atoms are seen inside the core. This corresponds to
the expectation for a molecular BEC. In the BCS limit, fer-
mionic atoms can penetrate into the region where the pair
density is zero. These results qualitatively agree with those
of Bulgacet al. f5g in the BCS region, but quantitatively they

are quite different: in Refs.f5,6g only a small depression in
the fermionic density is found on the BCS side of the Fesh-
bach resonance. What can be the reason for the discrepancy?
Most likely the assumption that the pairing fieldDr is smooth
on the length scale of the relevant fermion frequencies is too
crude. As in the case of the Thomas-Fermi approximation,
which breaks down in the region where the order parameter
becomes zero, we expect that the assumption thatDr varies
smoothly breaks down in a region near the point whereDr
becomes zero. In Fig. 1, the results deemed unreliable are
shown in thin curves, whereas the results in the region where
the aforementioned assumption is estimated to hold are
shown in thick curves. The criterion that we used in Fig. 1 is
that if = ·Dr .Dbulk sor = ·rr .rbulkd then the pairing fieldsor
fermion densityd is no longer smoothly varying and the
Thomas-Fermi approximation becomes unreliable. Here di-
mensionless units based on the Fermi energy and Fermi
wave vector are used.

We note moreover that in superfluid neutron matter the
semiclassical approximation leads to a spatial profile of the
vortex that is similar to the spatial profile obtained in the
present treatmentf13g. This peculiar spatial profile is an ar-
tifact of the semiclassical approximation, and in the weak-
coupling limit where the Ginzburg-Landau approach is valid,
the solution of the Ginzburg-Landau equations for vortices in
a neutron superfluid shows a smooth spatial profilef13,14g.

Thus, we must conclude that this assumption may bring
us qualitative insight into the core region, but that the quan-
titative analysis of how exactlyDr andrr depend onr near
the vortex core is misleading. It is not yet clear whether the
current result obtained by the saddle-point approximation
can be retrieved in the framework of a Bogoliubov–de
Gennes theory where similar assumptionssi.e., thatDr varies
smoothly on the length scale corresponding to the relevant
fermion frequenciesd are made.

Still, the present results allow us to extract a value for the
core size, since for this purpose one does not need to know

FIG. 1. The pair density relative to the bulk pair densitysleft
axis, dashed curvesd and the fermionic atom density relative to its
bulk valuesright axis, full curvesd are shown as a function of the
distance to the vortex line, for two different values of the interaction
strength. The depletion of the fermion density at the core is over-
estimated by the current approach, as discussed in the text. The thin
part of the curves indicate the region where the current approach is
unreliable.
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the exact functional dependence ofDr on r. We estimate the
size of the vortex core as the distance from the core at which
our solution forDr becomes zero. The result is shown in Fig.
2. In the molecular BEC limit, one expects that the core size
is related to the healing length for the molecular Bose-
Einstein condensate,jm=1/Î8pnmam. In the path-integral
treatment to lowest order in the fluctuations around the
saddle pointf8g, the molecular scattering length is twice the
atomic scattering lengtham=2as. The density of molecules is
half the density of atoms if all atoms form moleculesnm

=kF
3 / s6p2d. Thusjm=Î3p / s8kFasd if we expressjm in units

of kF
−1. Surprisingly, in the BEC limit we find that the vortex

core size derived with the path-integral method follows the
molecular lengthjm exactly. Approaching the crossover re-
gion, the vortex core size deviates from its molecular value.
In the BCS limit, the vortex core size tends to a constant,
given by 1/s2kFd, as indicated in Fig. 2. This suggests that

for vortices in ultracold dilute Fermi gases the vortex cores
in the BCS limit can be much smaller than the BCS correla-
tion length jBCS ssince kFjBCS,EF /D@1d, as is the case
superfluid vortices in neutron starsf15g.

V. CONCLUSIONS

The path-integral formalism allows to investigate the
ground state of the fermionic superfluid both in the BCS,
BEC and crossover regimes in a unified manner, retrieving
the correct limiting behaviorf7,8g. In this paper we have
extended the path-integral treatment to investigate the vortex
state of a fermionic superfluid, by introducing an appropriate
saddle point for the pairing field. To set up and solve the
resulting saddle point equations, the assumption was made
that the pairing field varies slowly on the scale of the rel-
evant fermion frequencies. Limitations of this assumption
become apparent as one tries to calculate the exact density
profile across the vortex core. Nevertheless, with this as-
sumption the vortex core size can be calculated as a function
of 1/skFasd. The vortex core size varies in the BEC limit
according to the molecular BEC healing length, supporting
the formalism. The path-integral formalism furthermore pre-
dicts that the vortex core sizesin units of 1/kFd tends to a
constant value as 1/skFasd is tuned into the BCS regime.
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