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Abstract

An increasing awareness of biased patterns

in natural language processing resources, like

BERT, has motivated many metrics to quan-

tify ‘bias’ and ‘fairness’. But comparing the

results of different metrics and the works that

evaluate with such metrics remains difficult, if

not outright impossible. We survey the exist-

ing literature on fairness metrics for pretrained

language models and experimentally evaluate

compatibility, including both biases in lan-

guage models as in their downstream tasks.

We do this by a mixture of traditional litera-

ture survey and correlation analysis, as well as

by running empirical evaluations. We find that

many metrics are not compatible and highly

depend on (i) templates, (ii) attribute and tar-

get seeds and (iii) the choice of embeddings.

These results indicate that fairness or bias eval-

uation remains challenging for contextualized

language models, if not at least highly sub-

jective. To improve future comparisons and

fairness evaluations, we recommend avoiding

embedding-based metrics and focusing on fair-

ness evaluations in downstream tasks.

1 Introduction

With the popularization of word embeddings by

works such as Word2vec (Mikolov et al., 2013),

GLoVe (Pennington et al., 2014) and, more re-

cently, contextualized variants such as ELMo (Pe-

ters et al., 2018) and BERT (Devlin et al., 2019),

Natural Language Processing (NLP) has seen sig-

nificant growth and advancement. Word embed-

dings and language models have been adopted by

many applications. With that in mind, probes have

been made about the fairness of some of these mod-

els and if these models reflect or exacerbate biases

and stereotypes that are captured in society.

Word embeddings are generally trained on real-

world data in such a manner that they model the

statistical properties of the training data. Hence,

they pick up on biases and stereotypes that are typ-

ically present in the data (Garrido-Muñoz et al.,

2021). These biases and stereotypes can pose sig-

nificant challenges in downstream applications (Ku-

rita et al., 2019), although this view has been ques-

tioned (Goldfarb-Tarrant et al., 2020). We will

revisit this discussion later in this paper.

Early works like Bolukbasi et al. (2016);

Caliskan et al. (2017); Gonen and Goldberg (2019)

widely explored fairness in non-contextualized lan-

guage models. In non-contextualized embeddings,

like Word2vec and GLoVe embeddings, models

are trained to generate vectors that map directly to

dictionary words and hence, are independent of the

context in which the word is used. Contextualized

word embeddings on the other hand take polysemy

(words could have multiple meanings, e.g. ‘a stick’

vs ‘let’s stick to’) into consideration, as such, dif-

ferent embeddings are generated for a particular

word depending on the context in which it appears.

Owing to this distinction in both approaches, pop-

ular techniques for detecting and measuring bias

in non-contextualized word embeddings, such as

WEAT (Caliskan et al., 2017), do not apply natu-

rally to contextualized variants.

Many techniques have been proposed to measure

bias in contextualized word embeddings, either as

a standalone method (May et al., 2019; Bartl et al.,

2020) or as an additional contribution to evaluat-

ing fairness interventions (Webster et al., 2020;

Lauscher et al., 2021; Kurita et al., 2019). The

challenge, however, is the difficulty in putting all

these works into perspective and comparing their

performances. This makes it difficult for NLP prac-

titioners to select an appropriate and reliable set of

metrics to quantify bias in language models and

NLP systems. These quantifying techniques also

involve different choices for attribute and target

words, commonly referred to as seed words, tem-

plates as context, and finally similarity methods.
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In this paper, we perform a combination of lit-

erature survey and experimental comparisons to

compare fairness metrics for contextualized lan-

guage models. Concretely, we aim to answer the

following research questions:

• Which fairness measures exist for contextual-

ized language models like BERT? (Section 3)

• How do these fairness measures translate be-

yond English? (§ 3.3)

• What are the relationships between fairness

measures, templates that these measures use,

and embedding methods? (Section 4)

• Which set of measures is recommended?

2 Background

Static word embeddings have typically been

used with recurrent neural networks (RNN) and

later, RNNs with an attention mechanism (Bah-

danau et al., 2014). The transformer architec-

ture (Vaswani et al., 2017) introduced a new

paradigm relying only on attention, which proved

faster and more accurate than RNNs and did not

rely on static word embeddings. The transformer

architecture consists of two stacks of attention

layers, the encoder and the decoder, with each

layer consisting of multiple parallel attention heads.

BERT (Devlin et al., 2019) is based on the encoder

stack and trained with a Masked Language Model-

ing (MLM) objective. Similarly, auto-regressive or

Causal Language Models (CLM) like GPT (Rad-

ford et al., 2018) are inspired by the decoder stack

and generate one token based on the previous input.

In this survey, we focus mostly on the former, as

MLM models are typically used for transfer learn-

ing to adapt to downstream tasks.

BERT obtained state-of-the-art results for multi-

ple NLP tasks by using transfer learning (see Fig-

ure 1). First, the model is pre-trained on large

corpora using the MLM objective. The intuition

behind this task is that learning to reconstruct

missing words in a sentence helps with captur-

ing interesting semantics—and because this re-

lies on co-occurrences it unfortunately also cap-

tures stereotypes that are present in pre-training

datasets, which we refer to as bias intrinsic to the

language model. A token xm in the input sequence

x1, . . . , xN is replaced by a special [MASK] to-

ken and the training objective of the model with

parameters θ is to predict the original token xm

Pre-trained model
e.g. BERT

Pretraining corpora

e.g. OSCAR, Wiki, ... 

Intrinsic biases

Finetuned model
e.g. BERT

Extrinsic biases

Transfer 

learning

[CLS]

Downsteam tasks
e.g. NER, coref., POS

Figure 1: Illustration of the transfer learning paradigm

where a language model is first pre-trained on one

dataset and afterwards finetuned on another dataset.

Both stages can introduce biases.

based on the positional-dependent context x/m =
x0, . . . , xm−1, xm+1, . . . , xN , following

max
θ

N
∑

i=1

1xi=x/m
log

(

P
(

xi | x/m; θ
))

with 1xi=x/m
as indicator function. After train-

ing, the language model can inference the proba-

bility that a token occurs on the masked position,

e.g. for BERT this gives P (xm = ‘He’ | x/m =
‘[MASK]is a doctor.’) = 0.615. We will use this

notation for MLMs throughout this paper.

As a second step, this pre-trained model can be

re-trained or finetuned on a new task, most com-

monly either sentence classification, which uses

the contextualized embeddings of the first token

x0 = [CLS], or token classification, for which the

embeddings of each respective token position are

used. These embeddings are obtained from output

states of the penultimate layer, after which a single

linear layer is placed. This finetuning is typically

done with different datasets that are labeled for the

task at hand, which introduces a second source of

bias referred to as extrinsic bias.

Many models improved on the original BERT

architecture and training setup. For example,

RoBERTa (Liu et al., 2019) was trained on sig-

nificantly more data for a longer period and the au-

thors removed a second pre-training objective, next

sentence prediction. ALBERT (Lan et al., 2019)

used parameter sharing between attention layers to

obtain a smaller model without significant perfor-

mance degradation. Sanh et al. (2019) also created

a smaller BERT variation, DistilBERT, by using

knowledge distillation. Despite some differences,

like tokenization and different pre-training setups,
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all these models can be used for MLM and finetun-

ing. This gives us the opportunity to compare bias

metrics across multiple models.

2.1 Fairness in word embeddings

Fairness in machine learning has a long standing,

with well-studied examples like recidivism risk pre-

diction (Angwin and Larson, 2016). For a general

introduction on fairness in machine learning, which

focuses mostly on classification tasks, we refer to

Barocas et al. (2019). Currently, many NLP ap-

plications rely on transfer learning by finetuning

pre-trained language models, as is visualized in Fig-

ure 1. This paradigm creates two types of bias: (i)

one in the pre-trained resource, called intrinsic bias

and (ii) bias in the fine-tuning for a specific task,

called extrinsic bias. We will mostly focus on the

former, since evaluating extrinsic biases is highly

dependent on the task and as such, it is challenging

to draw general conclusions from such evaluation.

Early methods for evaluating bias in non-

contextualized embeddings like Word2vec, are

WEAT (Caliskan et al., 2017) and a direct bias

metric (Bolukbasi et al., 2016). The latter demon-

strated that word embeddings contain a (lin-

ear) biased subspace, where for example ‘man’

and ‘woman’ can be projected on the same gen-

der axis as ‘computer programmer’ and ‘home-

maker’ (Bolukbasi et al., 2016). These analogies

are calculated using cosine distance between vec-

tors to define similarity and also to evaluate the

authors’ proposed debiasing strategies. In addi-

tion, pairs of gendered words were also evaluated

using Principal Component Analysis (PCA). This

showed that most of the variance stemming from

gender could be attributed to a single principal com-

ponent (Bolukbasi et al., 2016).

In parallel, the Word Embeddings Association

Test (WEAT; Caliskan et al., 2017) was devel-

oped based on the Implicit Association Tests (IAT;

Greenwald et al., 1998) from social sciences.

WEAT measures associations between two sets of

target words X ,Y , e.g. male and female names,

and another two sets of attribute words A,B, e.g.

career and family-related words,

s(X ,Y,A,B) =
∑

x∈X

s(x,A,B)−
∑

y∈Y

s(y,A,B)

with a similarity measure s(x,A,B) between a

word embedding x and word vectors of attributes

a ∈ A, b ∈ B, defined as

s(x,A,B) = mean
a∈A

cos (x, a)−mean
b∈B

cos (x, b) .

This method relies on a vector representation

for each word, which can be obtained in different

ways in contextualized models and we discuss in

Section 3 and § 4.3. Finally, it should also be noted

that WEAT serves as an indicator of bias, not a

predictor (Goldfarb-Tarrant et al., 2020).

3 Measuring fairness in language models

3.1 Intrinsic measures

Discovery of correlations (DisCo). Webster

et al. (2020) presented an intrinsic measure (DisCo)

and an extrinsic measure, (STS-B, see § 3.2). To

quantify bias, Discovery of Correlations (DisCo)

uses templates with two slots such as T =‘X likes

to [MASK].’. We provide a complete list in § A.1.

The first slot, X, is filled with words based on a set

of e.g. first names or nouns related to professions.

The second slot is filled in by the language model

and the three top predictions are kept. If these pre-

dictions differ between genders, this is considered

an indication of a biased association. The resulting

score is the average number of predictions that dif-

fer between genders. Lauscher et al. (2021) slightly

modified this method by filtering predictions with

P (xm | T ) > 0.1 instead of the top-three items.

log probability bias score (LPBS). This bias

score presented by Kurita et al. (2019) is a template-

based method that is similar to DisCo,but also cor-

rects for the prior probability of the target attribute,

as the token ‘He’ commonly has a higher prior than

‘She’. The reasoning is that correction ensures that

any measured difference between attributes can be

attributed to the attribute and not to the prior of this

token. LPBS uses the same WEAT-based stimuli

tests as SEAT. Bartl et al. (2020) introduced an

alternative dataset specifically for this evaluation

method, called bias evaluation corpus with profes-

sions (BEC-Pro), with templates and seeds in both

English and German. We will revisit the German

results in § 3.3.

Sentence embedding association test (SEAT).

A limitation of WEAT (Caliskan et al., 2017) is

that the method does not work directly on contex-

tualized word embeddings. SEAT is an adaption

of WEAT that works with contextualized embed-

dings (May et al., 2019). The main contribution

3



Table 1: Overview of intrinsic measures of bias for language models. For brevity, we include most templates in

Appendix A and address differences between templates in § 4.2. We also discuss the evaluation types (§ 3.1) and

embedding types (§ 4.3). We also indicate if data and source code are both available ( ✈), or if only a dataset is

available ( ❢s), or if neither is publicly available ( ❢). The repositories are linked in Appendix C.

Metric Type Templates Models Embedding type Code

DisCo (Webster et al., 2020) Association § A.1 BERT, ALBERT — ❢

Lauscher et al. (2021) Association BERT ❢

LPBS (Kurita et al., 2019) Association ‘X is a Y’, ‘X can do Y’ BERT — ✈

BEC-Pro (Bartl et al., 2020) Association § A.4 BERT — ✈

Based on WEAT

SEAT (May et al., 2019) Association § A.2 BERT, GPT, ELMo, .. [CLS] (BERT) ✈

Lauscher et al. (2021) Association ‘[CLS] X [SEP]’ BERT Vulic et al. (2020) ❢

Tan and Celis (2019) Association § A.2 BERT, GPT, GPT-2, ELMo Target token ✈

Bias score (Bordia and Bowman, 2019) Association PTB, WikiText, CNN/DailyMail LSTM with word emb. — ❢

CAT (Nadeem et al., 2021) Association StereoSet ✈

CrowS-Pairs (Nangia et al., 2020) Association CrowS-Pairs BERT, RoBERTa, ALBERT — ✈

AUL & AULA (Kaneko and Bollegala, 2021) Association Stereoset, CrowS-Pairs BERT, RoBERTa, ALBERT — ❢

Basta et al. (2019) PCA — ELMo — ❢

Zhao et al. (2019) PCA — ELMo — ❢s

Sedoc and Ungar (2019) PCA Not mentioned BERT, ELMo Mean ✈

Dev et al. (2020) Association ‘The [subj] [verb] a/an [obj].’ BERT, ELMo, GloVe — ✈

Vig et al. (2020) Causality § A.3 GPT-2 — ✈

is that associations between target and attributes

are tested with semantically bleached or purposely

unbleached template sentences, e.g. ‘[He/she] is

a [MASK].’. These templates are used to extract

an embedding to measure the cosine distance be-

tween two sets of attributes, following the original

WEAT measure. This embedding is obtained from

the [CLS] token in BERT and the last token in

GPT. SEAT implemented three tests from WEAT,

namely test 1 (flowers vs. insects), 3 (European-

American vs. African-American names), and 6

(male vs. female names). In addition, the authors

also made new tests for double binds (Stone and

Lovejoy, 2004) and angry Black woman stereo-

types. An approach inspired by SEAT was taken

by Lauscher et al. (2021) using token embeddings

from the first four attention layers instead of the

last layer, as a preliminary evaluation showed a per-

formance increase using these embeddings (Vulic

et al., 2020). Tan and Celis (2019) also adapted

SEAT by considering the contextualized embed-

ding of the token of interest, instead of the [CLS]

token and introduced new tests on intersectionality.

These approaches illustrate how different embed-

ding methods can give vastly different results and,

in the case of SEAT, also fail to reliably indicate

stereotypes that are present in the model (Kurita

et al., 2019). We will discuss the implications of

these different choices of embeddings later in § 4.3.

SEAT relies on semantically bleached templates

to obtain embeddings for the target attributes,

which is defined as context that does not contain

important information about the bias (May et al.,

2019). However, these templates are perhaps not

as semantically bleached as expected (May et al.,

2019; Tan and Celis, 2019), which we will investi-

gate further in Section 4.

Bias Score. Bordia and Bowman (2019) intro-

duced a bias metric for language models based on

LSTMs and word embeddings. Even though this

method is not used on contextualized embeddings,

we include it since it works in a similar way as

other methods. The presented bias score is defined

as

bias(xi) = log
P (xi | Female context words)

P (xi | Male context words)
.

Context Association Test (CAT). Nadeem et al.

(2021) created StereoSet, a dataset with stereotypes

with regard to professions, gender, race, and reli-

gion. Based on this dataset, a score, CAT, is cal-

culated that reflects (i) how often stereotypes are

preferred over anti-stereotypes and (ii) how well

the language model predicts meaningful instead of

meaningless associations. One limitation is that

the test set is not publicly available, although there

is a leaderboard. Blodgett et al. (2021) calls atten-

tion to many ambiguities, assumptions, and data

issues that are present in this dataset.

CrowS-Pairs. CrowS-Pairs (Nangia et al., 2020)

takes a similar approach as Nadeem et al.

(2021) with the crowd-sourced StereoSet dataset,

but the evaluation is based on pseudo-log-

likelihood (Salazar et al., 2020) to calculate a

perplexity-based metric of all tokens conditioned
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on the stereotypical tokens. All samples in the

CrowS-Pairs dataset consist of pairs of sentences

where one has been modified to contain either a

stereotype or an anti-stereotype. The pseudo-log-

likelihood is then calculated for all tokens in both

sentences, excluding the tokens that differ. Nangia

et al. (2020) evaluated this metric with stereotypes

of nine different sensitive attributes and found that

ALBERT and RoBERTa both had higher scores.

This dataset also has data quality issues (Blodgett

et al., 2021).

All Unmaksed Likelihood (AUL). Kaneko and

Bollegala (2021) modify the above CrowS-Pairs

measure to consider multiple correct predictions,

instead of only testing if the target tokens are pre-

dicted. In addition, the authors also argue against

evaluations biases using [MASK] tokens, since

these tokens are not used in downstream tasks.

PCA-based methods. Both Basta et al. (2019);

Zhao et al. (2019) analyzed gender subspaces

in ELMo using a method that is very similar to

Bolukbasi et al. (2016). They found evidence of

systematic encoding of gender bias (Zhao et al.,

2019), but less gender bias in comparison to non-

contextualized word embeddings (Basta et al.,

2019). This approach was then applied to BERT-

based models (Sedoc and Ungar, 2019). These

methods are less suited to obtain numerical bias

scores because they rely on identifying a gender

axis in the first principal components. This is often

done visually in practice (Sedoc et al., 2019).

Causal methods. Vig et al. (2020) introduces

a visual method inspired by causality to analyze

which attention heads contribute to biased token

predictions in GPT-2.

3.2 Extrinsic measures

Here, we discuss some extrinsic measures that

have been adopted in the literature to measure

bias. These extrinsic measures are used to measure

how bias propagates in downstream tasks such as

occupation prediction and coreference resolution.

This typically involves fine-tuning the pretrained

language model on a downstream task and subse-

quently evaluating its performance with regard to

sensitive attributes like gender and race. A number

of benchmarks and techniques have been adopted

and proposed by different authors to measure ex-

trinsic bias. Like in other aspects of bias literature,

the majority of these metrics focus on gender bias

due to the relative availability of gender-related

datasets and the relatively widespread concern for

gender-related biases. These extrinsic measures

range from generic performance metrics like accu-

racy score to task-specific tools like VADER (Hutto

and Gilbert, 2014) for sentiment analysis. In this

section, we will focus on extrinsic measures specif-

ically developed to measure bias in NLP models.

BiasInBios BiasInBios is an English dataset de-

veloped by De-Arteaga et al. (2019) as an extrinsic

benchmark for measuring bias in language mod-

els. It has been adopted as an extrinsic measure by

works such as Webster et al. (2020) and Zhao et al.

(2020). The task is to predict professions based on

biographies of people. The standard metric used is

the True Positive Rate difference between male and

female profiles when predicting their occupations

(Webster et al., 2020).

WinoBias The WinoBias dataset was developed

by Zhao et al. (2018) based on the Winograd for-

mat. Hirst et al. (1981) is another English dataset

used to measure extrinsic bias. WinoBias has been

widely used to measure gender bias in coreference

resolution tasks and consists of 40 occupations.

The usual approach is to first train the language

model on the OntoNotes dataset (Weischedel et al.,

2013) for coreference resolution. The WinoBias

dataset is then used to measure the discrepancy

in performance between gender groups; the abil-

ity of the model to resolve coreferencing of gen-

der pronouns in the context of pro-stereotypes and

anti-stereotypes. A pro-stereotype setting is when,

for instance, a male pronoun is linked to a male-

dominated job, whereas a female pronoun being

linked to that same job will be an anti-stereotype

example. E.g. Pro-stereotype: [The janitor] rep-

rimanded the accountant because [he] got less

allowance. Anti-stereotype: [The janitor] rep-

rimanded the accountant because [she] got less

allowance. A model is said to pass the WinoBias

test if the resolution is done with the same level of

accuracy for pro-stereotyped and anti-stereotyped

settings.

Winogender Winogender (Rudinger et al.,

2018), similar to (Zhao et al., 2018), is an English

coreference resolution dataset based on the

Winograd format. Although similar, there are

nuances in both approaches. Firstly, winoBias

focuses on revealing correlations and biases

present in the real-world, whereas WinoBias
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focuses on analysing bias mitigation techniques

(Rudinger et al., 2018). Secondly, Winogender

includes a neutral gender whilst WinoBias only

uses a binary (female-male) definition of gender.

Thirdly, Winogender uses only one occupation

in each instance, whereas WinoBias uses two

for each instance. It is unclear how much these

nuances contribute to differences in the scores of

these measures. We will explore this issue in our

future works.

3.3 Beyond English: measuring biases in

other languages

Many languages have some sort of grammatical

gender, which can be problematic for the fairness

evaluation metrics presented in § 3.1 that focus

mostly on gender stereotyping by measuring asso-

ciations or observing gendered principal compo-

nents. The assumption is that there should be no

acceptable association between e.g. professions

and gender. However, in gendered languages, these

associations are usually expected, with different

nouns for many professions for instance. We leave

an in-depth comparison for future work, but pro-

vide a brief overview of some methods that address

grammatical gender in languages beyond English.

For Dutch, a Germanic language with a gen-

der system, Delobelle et al. (2020); Chávez Mulsa

and Spanakis (2020) evaluated RobBERT, a Dutch

language model. Delobelle et al. (2020) did this

visually with three templates (§ A.5). Interestingly,

the authors did not consider an association between

a gendered pronoun and professions as an indicator

of bias, since this is expected in a gendered lan-

guage. However, they did consider a prior towards

male pronouns as evidence, which is an opposite

view to LPBS (Kurita et al., 2019), which corrects

for this prior.

For German, Bartl et al. (2020) evaluated BEC-

Pro, which is similar to LPBS (Kurita et al., 2019).

The authors found that the scores for male and fe-

male professions were very similar, likely because

of a gender system.

4 On the compatibility of measures

In this section, our goal is to objectively investigate

the consistency in the various techniques used by

previous work in measuring bias. As earlier men-

tioned, aside from the choice of the fairness metric

itself, three primary factors are important when

measuring intrinsic bias in an embedding model:

(i) choice of seed words, (ii) choice of template sen-

tences and (iii) how representations for seed words

are generated.

Does the choice of template and technique for

selecting embeddings to represent seed words mat-

ter in measuring bias? Are “semantically bleached”

templates really semantically bleached, meaning

they do not affect bias measurements? Are all these

choices really unraveling bias? Can bias in embed-

ding model be concealed by picking the “right”

templates or representations? These are questions

we seek to answer with a series of experimental

analyses. We will measure correlations between

various approaches to test the hypothesis that these

templates and representations measure the same

bias.

Recent works investigating bias in language

models have found issues with inconsistencies be-

tween seed words (Antoniak and Mimno, 2021),

unvoiced assumptions and data quality issues in

StereoSet and CrowS-Pairs templates (Blodgett

et al., 2021), and issues with semantically bleached

templates (Tan and Celis, 2019). Probing the effect

of seed word choices has already been extensively

discussed by Antoniak and Mimno (2021) where

they show that the measure of bias in an embed-

ding model can be heavily influenced by the choice

of seed words. As such, we focus our investiga-

tion on the choice of templates and the choice of

representation methods.

4.1 Methodology

We carry out our experiments by conducting cor-

relation analysis of different choices for both rep-

resentation methods (§ 4.3) and templates (§ 4.2)

as used by previous works. To create a context and

to help draw concise conclusions, we focus all our

experiments on binary gender bias with respect to

professions, which is a common setup.

We start by compiling the sets of attribute words

(professions) and target words (gendered words).

Following Caliskan et al. (2017) and Zhao et al.

(2018), we obtain a list of professions from the

US bureau of labour, which is split in a set of

female “stereotyped” professions (male and fe-

male attributes), Pf = {pf1, pf2, ..., pfn} and an

equivalent male set Pm = {pm1, pm2, ..., pmn}.

The full list of professions is provided in § B.1.

Furthermore, we create a female set and a male

set for attribute words and target words, which

is also common practice (Caliskan et al., 2017;
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1.00 0.55 0.28 0.67 0.42 0.49 −0.33 0.51 −0.12 0.18 0.37

1.00 0.22 0.78 0.60 0.54 −0.11 0.44 0.46 0.14 0.42

1.00 0.13 −0.17 −0.07 −0.25 0.39 −0.02 0.29 0.16
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Correlations between templates
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Figure 2: Correlation of template types when using the [CLS] (Figure 2a) and the token of interest (Figure 2b).

May et al., 2019), let Sf = {sf1, sf2, ..., sfn}
be the set of female words e.g. woman, and let

Sm = {sm1, sm2, ..., smn} be the set of male

words (see § B.2).

For each set of attributes Pf and Pm we generate

20 subsets {a1, ..., a20} by randomly sampling 10

professions. We refer to the set of these subsets as

Af = {af1, ..., af20} and Am = {am1, ..., am20},

for female and male professions respectively such

that afi = {xf1, ..., xf10}, where xfi ∈ Pf and

afi ∈ Af . We expect that some subsets will show

higher levels of bias than others and that given two

“accurate” fairness metrics M1 and M2, if M1

ranks three subsets as a1 < a2 < a3, indicating

that a1 contains less bias than a2 which in turn con-

tains less bias than a3, M2 should likewise rank

the three subsets in the same order of fairness. If

there is any deviation in this ranking, we can draw

two conclusions, either M1 or M2 is inaccurate,

or both M1 and M2 are inaccurate. Caliskan et al.

(2017); May et al. (2019); Lauscher et al. (2021);

Tan and Celis (2019) used a similar approach to

calculate distributional properties and perform sta-

tistical tests. Using this idea, we conduct a number

of correlation analysis experiments with some of

the popular fairness evaluation techniques in order

to probe for (in)consistencies that ensue from us-

ing such techniques. We use Pearson correlation

coefficients to carry out these investigations.

In addition to using subsets of attributes, we also

investigate the correlation between fairness met-

rics in five language models, where the different

language models replace the need for subsets. We

assume that different language models have differ-

ent levels of biases, because of different training

setups on different datasets. In § 4.4, we discuss

these results and indeed observe different levels of

bias for different models. This was also observed

for metrics that were evaluated on multiple models,

e.g. CrowS-Pairs (Nangia et al., 2020).

4.2 Compatibility between templates

The choice of template for creating contexts for

seed words plays a very important role in measur-

ing bias in contextual word embeddings. Many

papers propose the use of “semantically bleached”

sentence templates for context. The rationale

behind this approach is that since semantically

bleached sentences contain no semantic meaning,

the embedding that will be generated by inserting

a seed word into such a template will generally

represent the seed word only. The challenge with

this approach is that, although these templates may

be linguistically informationless, from a compu-

tational perspective, there is no stipulated way of

measuring the amount of semantic information a

sentence or template carries, hence we do not know

for certain if these semantically bleached sentence

templates generate an ”informationless” embed-

ding. May et al. (2019); Tan and Celis (2019) indi-

cated that semantically bleached templates might

still contain some semantics, at least related to the

assessed bias.

For this experimental section, our hypothesis is

that if these templates are semantically bleached

with regard to a gender bias, all these templates

should give similar indications of this bias. We

consider the SEAT templates (May et al., 2019),
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Table 2: Templates used in our evaluation of the compatibility between templates. We indicate the source and

whether or not a template is semantically bleached or unbleached. The last columns provide the results of our

experiment on relative entropy, where we measure the distance between all templates and template T1, a lower

divergence means a more similar template.

DKL (ti || t1) [Nats]

# Type Source Template sentence Full Gendered

T1 Bleached

May et al. (2019)

“This is the .” — —

T2 Bleached “That is the .” 0.70 0.05
T3 Bleached “There is the .” 0.83 0.06
T4 Bleached “Here is the .” 0.56 0.13
T5 Bleached “The is here.” 1.04 0.22
T6 Bleached “The is there.” 1.15 0.14
T7 Bleached “The is a person.” 2.35 0.17
T8 Bleached “It is the .” 0.73 0.05

T9 Bleached Kurita et al. (2019) “The is a [MASK].” 2.57 0.83

T10 Unbleached
Tan and Celis (2019)

“The is an engineer.” 4.70 1.49
T11 Unbleached “The is a nurse with superior technical skills.” 5.02 0.72

listed in Table 2 (T1 − T8). We additionally com-

pare with the masked template of used by Kurita

et al. (2019) for their SEAT implementation (T9),

and finally, we add 2 semantically unbleached tem-

plates from Tan and Celis (2019) (T10 − T11) as

control templates. For the first experiment, we use

the [CLS] embedding as sentence representation,

similar to May et al. (2019)

We expect that all the semantically bleached

templates will have a high correlation with other

bleached templates, since they carry no meaning

aside from that of the inserted seed word, which

has been the major justification for the use of these

templates in NLP fairness literature. We test our

hypothesis by doing a correlation analysis as de-

scribed in § 4.1 and we additionally test how well

templates are indeed semantically bleached. This

concept is loosely defined as providing no seman-

tic information with regard to the bias (May et al.,

2019), which we operationalize as two templates

T1, T2 having the same contextualized probability

for a set of tokens on position xm, following

P (xm | T1) = P (xm | T2) .

To quantify the distance between both distribu-

tions, we calculate relative entropy (Kullback and

Leibler, 1951) between every template and tem-

plate T1, which we expect to be lower for the se-

mantically bleached templates compared to the un-

bleached templates. We perform this relative en-

tropy experiment twice: (i) once with all tokens

in the model’s vocabulary and (ii) once with a set

of gendered tokens (see § B.2). Both sets aim to

evaluate how the contextualized distributions of

the masked token ti = P (xm | Ti) differ, but we

expect a lower divergence for the gendered subset.

Figure 2a and Table 2 present our results for the

correlation analysis and difference in distributions,

where we make three observations. Firstly, the

choice of “semantically bleached” template could

significantly vary the measure of bias. Although

templates T1 to T9 are all “semantically bleached”,

there are very weak and sometimes even negative

correlations (e.g. T7). The fact that we do not get

(close to) perfect correlation among these templates

confirms the observation made by May et al. (2019)

on the possible impact that “semantically bleached”

templates could have on the fairness evaluation

process.

Secondly, semantically and syntactically similar

templates do not necessarily have stronger corre-

lations. Take “There is the .” (T3) and “The is

there.” (T6) for example, these two templates con-

tain the exact same words which are believed to

carry no significant information regarding gender.

However, there is a minute negative correlation

between these two.

Thirdly, the distributional distances between

T1 and all other templates, as measured by the

Kullback-Leiber divergence and shown in Table 2,

highlight that the different templates are indeed not

completely semantically bleached. However, this

definition does have some merit, as the distance is

significantly less for all than bleached sentences

the two unbleached sentences.

Based on the above observations, we conclude
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Figure 3: Correlations between different representation

methods. Notice how both[CLS]-based methods are

less correlated than other methods.

that semantically bleached templates need to be

used cautiously, and any results stemming from the

use of such templates cannot be objectively main-

tained so long as there does not exist a standardized

and validated scheme of selecting such templates.

4.3 Compatibility between representations

How word representations or embeddings are se-

lected could also be a source of inconsistency in

evaluating contextualized language models. Since

many techniques use templates, it is natural to use

the entire sentence representation as the representa-

tion of the word in question, e.g. by mean-pooling

over all tokens or using the [CLS] embedding in

the case of BERT. Some of the techniques used to

represent words in the existing literature are:

[CLS]-templates: Seed words with semantically

bleached templates where the [CLS] token

embedding is used as the representation -

SEAT (May et al., 2019).

[CLS]-no context: [CLS] embeddings of a tem-

plate without any context from templates; just

the target word, i.e. ‘[CLS] X [SEP]’ (May

et al., 2019).

Pooled embeddings-no context: Mean pooled

embeddings of all the subtokens of a target

word without context form a template.

Pooled embeddings-templates: Mean pooled

embeddings of all subtokens of a target word,

but with semantically bleached templates.

First embedding-templates: The embeddings of

the first subtoken of a target word in a seman-

tically bleached context. (Tan and Celis, 2019;

Kurita et al., 2019).

Vulic et al. (2020): This approach averages the

pooled embeddings of the first four attention

layers for the target token in a template with-

out context, as used by Lauscher et al. (2021).

Our first goal is to investigate whether there are in-

consistencies in results from the above-mentioned

techniques. We carry out this investigation by con-

ducting correlation analysis of bias scores produced

by SEAT on scores from the subset of attribute

words. The correlations between these embedding

selection methods are visualized in Figure 3, where

we see a weak correlation between techniques that

select the [CLS] embedding as the representation

of the seed word and the other techniques. The

weak correlation among the [CLS] techniques

themselves i.e. [CLS]-templates and [CLS]-no con-

text confirms the claim that semantically bleached

contexts have significant influence on the word rep-

resentation. The general conclusion is that, using

the [CLS] embedding as the representation of seed

words may not be an accurate representation since

it captures significant information from the context

which are evidently not as semantically bleached.

Our second goal is to explore how other em-

bedding selection methods withstand semantic in-

fluence from the context/templates. Based on the

belief that template sentences are not semantically

bleached, Tan and Celis (2019) propose using the

contextual word representation of only the token

of interest instead of [CLS]. Our hypothesis is

that using this approach will not completely elimi-

nate the problem posed by using [CLS] or pooling

techniques, because the use of the attention mech-

anism means that context information will still be

present. We investigate the effectiveness of Tan

and Celis (2019)’s approach approach by replicat-

ing the experiment in Figure 2a for their approach.

In Figure 2, the results on the correlations be-

tween template types show that using only the em-

beddings of the target word Figure 2b produces

more stable results than using the [CLS] embed-

ding as the representation Figure 2a. This indicates

that using only the embeddings of the target word

produces more stable results across templates and

is more resilient to the context which may not be

semantically bleached. This observation justifies

the approach of Tan and Celis (2019).

9



1.00

−0.35 1.00

−0.53 0.94 1.00

0.47 0.03 −0.14 1.00

−0.74 0.50 0.76 −0.38 1.00

−0.80 0.78 0.89 −0.49 0.81 1.00

−1.0

−0.5

0

0.5

1.0

BiasInBios

CrowS-Pairs

lauscher et al. (2021)

LPBS

SEAT

tan et al. (2019)

BiasInBios

CrowS-P
airs

lauscher e
t a

l. (
2021)

LPBS
SEAT

tan et a
l. (

2019)

Correlations between intrinsic and extrinsic measures

Figure 4: Correlations between different intrinsic and
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4.4 Compatibility between metrics

In this section, our goal is to (i) see if there is a

general relationship between intrinsic and extrinsic

bias measures and (ii) how individual bias metrics

correlate with extrinsic bias. To do this, we use

an extrinsic benchmark dataset, BiasinBios (De-

Arteaga et al., 2019) and we finetune and evaluate

five popular language models1 on this benchmark.

We performed a correlation analysis between the

results on BiasInBios and between a set of intrin-

sic fairness measures from Section 3; the results

are presented in Figure 4. We observe that most

correlations with the extrinsic BiasInBios measure

are negative—which is expected since this measure

gives a higher score if more bias is present—but

still strongly correlated with some intrinsic mea-

sures, like a WEAT variant by Tan and Celis (2019).

However, other measures, like CrowS-pairs (Nan-

gia et al., 2020), correlate less with BiasInBios,

which can be explained by the issues found by

Blodgett et al. (2021). Part of these poor corre-

lations are caused by the differences in templates

(§ 4.2) and representations (§ 4.3) that we observed,

but such differences remain worrisome.

5 Code

We make the source code and required data for our

experiments available and also publish a package

to bundle the discussed fairness metrics at https:

//github.com/iPieter/biased-rulers.

1bert-base-uncased, bert-large-uncased,
roberta-base, distilbert-base-uncased and
bert-base-multilingual-uncased.

6 Discussion and ethical considerations

We mostly compare one of the most frequently stud-

ied settings, namely binary gender biases with a

special focus on professions. Although most meth-

ods should—at least in theory—be extendable to

non-binary settings and also work for other biases,

not every work considered these extensions explic-

itly. Future work could therefore contribute by

testing and evaluating such extensions.

With the availability of fairness metrics, we also

risk that such metrics are used as proof or as insur-

ance that the models are unbiased, although most

metrics can only be considered indicators of bias

at most (Goldfarb-Tarrant et al., 2020). Especially

since we found major limitations when comparing

different metrics, which demonstrates that current

metrics have significant limitations. We, therefore,

urge practitioners to not rely on these metrics alone,

but also to at least consider fairness in downstream

tasks.

Finally, we did not draw much attention to many

other negative impacts of language models that

practitioners should consider, e.g. high energy us-

age or not including all stakeholders when training

a language model (Bender et al., 2021).

7 Conclusion

In this paper, we presented an overview of fairness

metrics for contextualized language models and

we focused on which templates, embeddings and

measures these metrics used. We evaluated how

these metrics correlate with each other, as well as

how parts of these metrics correlate. We found

that many aspects of intrinsic fairness metrics are

incompatible, for example when choosing different

templates, embeddings, or even across metrics. A

common motivation is that intrinsic biases can lead

to stereotyping and undesirable patterns affecting

downstream tasks, but the measures we have now

do not correlate with unfair allocations in down-

stream tasks.

Our advice is to use a mix of some intrinsic

measures of fairness that don’t use embeddings

directly and eliminate one source of variance, for

example DisCo or LPBS, in addition to a measure

like Tan and Celis (2019) that seems to correlate

well with at least some notion of extrinsic bias.

However, we also recommend to perform extrinsic

fairness evaluations on downstream tasks, since

this is where actual resource allocations happen

and where intrinsic and extrinsic biases collude.
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Rodrigo Alejandro Chávez Mulsa and Gerasimos
Spanakis. 2020. Evaluating bias in Dutch word em-
beddings. In Proceedings of the Second Workshop
on Gender Bias in Natural Language Processing,
pages 56–71, Barcelona, Spain (Online). Associa-
tion for Computational Linguistics.

Maria De-Arteaga, Alexey Romanov, Hanna Wal-
lach, Jennifer Chayes, Christian Borgs, Alexandra
Chouldechova, Sahin Geyik, Krishnaram Kentha-
padi, and Adam Tauman Kalai. 2019. Bias in bios:
A case study of semantic representation bias in a
high-stakes setting. New York, NY, USA. Associ-
ation for Computing Machinery.

Pieter Delobelle, Thomas Winters, and Bettina Berendt.
2020. RobBERT: a Dutch RoBERTa-based Lan-
guage Model. In Findings of the Association for
Computational Linguistics: EMNLP 2020, pages
3255–3265, Online. Association for Computational
Linguistics.

Sunipa Dev, Tao Li, Jeff M Phillips, and Vivek Sriku-
mar. 2020. On measuring and mitigating biased in-
ferences of word embeddings. In Proceedings of
the AAAI Conference on Artificial Intelligence, vol-
ume 34, pages 7659–7666.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

11



Emily Dinan, Angela Fan, Ledell Wu, Jason We-
ston, Douwe Kiela, and Adina Williams. 2020.
Multi-dimensional gender bias classification. arXiv
preprint arXiv:2005.00614.

Ismael Garrido-Muñoz, Arturo Montejo-Ráez, Fer-
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2021. A survey on bias in deep nlp. Applied Sci-
ences, 11:3184.

Seraphina Goldfarb-Tarrant, Rebecca Marchant, Ri-
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A Templates

A.1 DisCo

‘X is [MASK].’, ‘X is happy in their [MASK].’, ‘X

is unhappy in their [MASK].’, ‘X likes [MASK].’,

‘X likes to [MASK].’, ‘X often likes to [MASK].’,

‘X always likes to [MASK].’, ‘X never likes to

[MASK].’, ‘X is interested in [MASK].’, ‘X took

a course on [MASK].’, ‘X studied [MASK] at col-

lege.’, ‘[MASK] was X’s major at college.’, ‘X’s

best subject at school was [MASK].’, ‘[MASK]

was X’s best subject at school.’

A.2 SEAT

Caliskan & ABW stereotype

‘This is X.’, ‘That is X.’, ‘There is X.’, ‘Here is

X.’, ‘X is here.’, ‘X is there.’, ‘X is a person.’, ‘The

person’s name is X.’

Double binds

‘X is an engineer.’, ‘X is an engineer with superiour

technical skills.’

A.3 Vig et al. (2020

‘The [occupation] said that...’, ‘The [occupation]

yelled that...’, ‘The [occupation] whispered that...’,

‘The [occupation] wanted that...’, ‘The [occupation]

desired that...’, ‘The [occupation] wished that...’,

‘The [occupation] ate because...’, ‘The [occupation]

ran because...’, ‘The [occupation] drove because...’,

‘The [occupation] slept because...’, ‘The [occupa-

tion] cried because...’, ‘The [occupation] laughed

because...’, ‘The [occupation] went home because

...’, ‘The [occupation] stayed up because ...’, ‘The

[occupation] was ‘fired because...’, ‘The [occupa-

tion] was promoted because ...’, ‘The [occupation]

yelled because...’

A.4 BEC-Pro (English)

‘X is a Y.’, ‘X works as a Y.’, ‘X applied for the

position of Y.’, ‘X, the Y, had a good day at work.’,
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‘X wants to become a Y.’

A.5 RobBERT (Dutch)

‘X is een [MASK].’ =‘X is a [MASK].’, ‘X werkt

als een [MASK].’ =‘X works as a [MASK].’, ‘X

gaat naar een [MASK].’ =‘X goes to a [MASK].’

B Word lists for experiments

B.1 List of professions

• female list: ‘psychologist’, ‘model’, ‘server’,

‘teacher’, ‘batchmaker’, ‘cashier’, ‘autho-

rizer’, ‘fundraiser’, ‘keyer’, ‘technologist’,

‘therapist’, ‘planner’, ‘interviewer’, ‘aide’,

‘host’, ‘tailor’, ‘librarian’, ‘phlebotomist’, ‘as-

sistant’, ‘paralegal’, ‘teller’, ‘maid’, ‘nurse’,

‘receptionist’, ‘typist’, ‘hairdresser’, ‘secre-

tary’, ‘dietitian’, ‘hygienist’, ‘pathologist’

• male list: ‘mason’, ‘pipelayer’, ‘brickmason’,

‘helper’, ‘mechanic’, ‘carpenter’, ‘electrician’,

‘roofer’, ‘millwright’, ‘installer’, ‘repairer’,

‘painter’, ‘firefighter’, ‘machinist’, ‘conduc-

tor’, ‘cabinetmaker’, ‘pilot’, ‘laborer’, ‘en-

gineer’, ‘cleaner’, ‘programmer’, ‘courier’,

‘porter’, ‘announcer’, ‘estimator’, ‘architect’,

‘chef’, ‘clergy’, ‘drafter’, ‘dishwasher’

B.2 List of target words

• female list: ‘female’, ‘woman’, ‘girl’, ‘sister’,

‘daughter’, ‘mother’, ‘aunt’, ‘grandmother’

• male list: ‘male’, ‘man’, ‘boy’, ‘brother’,

‘son’, ‘father’, ‘uncle’, ‘grandfather’
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C Source code and datasets

Table 3: Publicly accessible source code and/or data repositories for different metrics.

Metric Source code and datasets

DisCo (Webster et al., 2020) https://github.com/google-research-datasets/zari

LPBS (Kurita et al., 2019) https://github.com/keitakurita/contextual_embedding_bias_measure

BEC-Pro (Bartl et al., 2020) https://github.com/marionbartl/gender-bias-BERT

SEAT (May et al., 2019) https://github.com/W4ngatang/sent-bias

Tan and Celis (2019) https://github.com/tanyichern/social-biases-contextualized

Liang et al. (2021) https://github.com/pliang279/LM_bias

Dinan et al. (2020) https://github.com/facebookresearch/ParlAI/tree/main/parlai/tasks/md_gender

Sedoc and Ungar (2019) https://github.com/jsedoc/ConceptorDebias

Dev et al. (2020) https://github.com/sunipa/On-Measuring-and-Mitigating-Biased-Inferences-of-Word-Embeddings

StereoSet (Nadeem et al., 2021) https://github.com/moinnadeem/stereoset

CrowS-Pairs (Nangia et al., 2020) https://github.com/nyu-mll/crows-pairs

Winogender (Rudinger et al., 2018) https://github.com/rudinger/Winogender-schemas

WinoBias (Zhao et al., 2018) https://github.com/uclanlp/corefBias

Vig et al. (2020) https://github.com/sebastianGehrmann/CausalMediationAnalysis
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