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Algebraic model for quantum scattering: Reformulation, analysis, and numerical strategies
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The convergence problem for scattering states is studied in detail within the framework of the algebraic
model, a representation of the Sctlimger equation in ah? basis. The dynamical equations of this model are
reformulated featuring new “dynamical coefficients,” which explicitly reveal the potential effects. A general
analysis of the dynamical coefficients leads to an optimal basis yielding well converging, precise, and stable
results. A set of strategies for solving the equations for nonoptimal bases is formulated based on the asymptotic
behavior of the dynamical coefficients. These strategies are shown to provide a dramatically improved con-
vergence of the solutionfS1050-294{®6)02912-5

PACS numbe(s): 03.80:+r, 03.65.Nk, 03.65.Fd

I. INTRODUCTION nuclear spectroscopic calculations, it is also an interesting
functional form to approximate a large variety of potentials
In the quest for solving the Schiimger equation for both by discrete and continuous superpositions.
bound and continuum states, square-integrable bases haveWe will concentrate our attention to the solutions of the
been repeatedly used. For bound states this turns out to bedgnamical equations for scattering situations only, as these
traditional way to obtain the spectral properties of quantummare much more involved than the bound state problems. In-
systems. It has been shown however that a single represedeed, the latter can be well approximated by a simple diago-
tation of the Schrdinger equation in terms of ah? basis  nalization of the energy matrix, as is well known.
can be formulated that allows for a description of both bound We will specifically discuss how strongly the conver-
and continuum statgd-5]. gence of the solutions of an AM system depend on the pa-
A version of such a formulation is called the algebraicrameters of the problem. In particular, the dependence on the
model of the resonating group meth@tereafter, referred to precision and the convergence properties of the solutions of
as the algebraic model or AMIt was originally tailored to  both the oscillator radius of the bagihe parameter unam-
treat clusterized problems, but can be used for all kinds obiguously fixing the square-integrable basied the form of
guantum-mechanical many-particle configurations withouthe potential energy contribution, will be treated in detail.
major modifications. The AM has been formulated in terms The convergence is crucial for obtaining stable approxi-
of different types of bases, depending on the more specifimations to the solutions of problems expressed in terms of an
features of the quantum system considered. One very impofinfinite) set of basis functions, in our case lafibasis. This
tant feature of the AM is the fact that the boundary condi-problem was repeatedly investigated, mainly for bound-state
tions of the system are translated from a coordinate spacsolutions. As applications to scattering problems, expressed
context to the context of expansion coefficients, and are exin an L? basis, appeared, several algorithms were suggested
plicitly incorporated in the dynamical equatiofts-4). to accelerate the convergence of the results within a re-
We will consider a specific AM formulatiofi.e., a spe- stricted subset of the basis. For instance, Heller and Yamani
cific L? basig to elucidate the analysis of the method. The[8] used “Kato correction,” and Sotona, Revai, and Zofka
methodology used for this analysis is of a general natur¢9] introduced the “Lanczos factor.” A more intuitive ap-
however, and can be repeated for other bases. The specificoximation was proposed by Vasilevsky, Filippov, and
AM version chosen in this paper features an oscillator basisChopovsky[6].
and is, in particular, very suitable for obtaining both the The analysis of the AM equations presented in this work
bound and continuum spectra of nuclear systems with verwill be shown to lead td1) an optimal choice for the basis,
different configurational properties; where appropriate,given the potential, yielding well converging and stable so-
nuclear spectroscopic units will therefore be used. Thdutions of the AM system, or, if the optimal basis cannot be
choice of this AM version is mainly due to the backgroundused, to(2) algorithmic procedures for solving the AM sys-
of the authors. Results of the AM approach considered hereem in an acceptable and controlled approximation. These
have already been reported [8)7], and show, in particular, algorithmic procedures will depend on the specific choice
how the coupling of cluster and collective configurations carmade for the basi§.e., the oscillator radius chosgiut also
be treated seamlessly in such a description. on information on the asymptotic behavior of the expansion
Where necessary, a specific form for the potential operaeoefficients, as well as on the dynamical equations them-
tor will be used. We will consider a Gaussian form in this selves. In this way the algorithm used will depend on the
work. Although this again is a popular potential form in physical properties of the system considered. In a forthcom-
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ing paper the different strategies for solving AM equations ll. A SIMPLE SCHEME FOR SOLVING
will be applied explicitly to a number of problems from THE AM SYSTEM OF EQUATIONS

nuclear, atomic, and molecular physics. In the preceding section we introduced the infinite dimen-

sional system of linear equations obtained from the AM for-
Il. THE AM IN AN OSCILLATOR BASIS mulation, to be solved subject to a proper boundary condi-
tion. As indicated earlier we will concentrate on the
scattering situation, and therefore only consider the asymp-
totic behavior of thec, corresponding to the continuum
boundary condition.
A scheme for solving the linear system of equations quite
. naturally presents itself. Under the assumption that the ma-
~ B trix elements potential enerdy|V/|j) vanish for sufficiently
mE:O (n[H—E[m)cy=0, @) large values of one of the basis state indicesr j, one
chooses a limiting valué\ to set this vanishing point in
terms of the basis states. In the region where the potential
énatrix elements are neglected, the expansion coefficients
C, are then given by4), and can be written as

Choosing an oscillator basis to describe some specific Hil
bert subspace in which to solve the Salirmer equation
leads to the following form of the latter in terms of a system
of linear equations:

where the coefficients,, are the expansion coefficients in
the oscillator basis of the wave function corresponding to th

energyE
. co=c!+tan(d)c)  (n=N) (5)
V)= 2
Ve) n§=:o Coln). @ assumingN to be sufficiently large, with
and subject to a typical boundary condition. For simplicity et = VRajL(kR,)  (n=N)
we have omitted the angular momentum quantum number as
well as the energy dependence of the coefficiepts ¢t '=\JRyn (KR, (n=N). (6)

The boundary conditions of quantum systems are tradi-

tionally expressed in coordinate space, but can also be forFhe choice foN divides the linear system in three different
mulated in terms of the expansion coefficiests Indeed, regions:

for very largen, the dynamical equations are reduced to a (i) a finite number o equations with 8n<N, in which
simple (in an oscillator basis a three-term recurreénfl®m  the potential energy matrix elements are fully taken into ac-
containing the kinetic-energy operator solely. The equationgount. These equations correspond to the “internal region”
can therefore be solved analytically for very lamgé2,4,5]. in terms of the basis states.

The above mentioned reduction of the equations only in- (ii) an infinite number of equations corresponding to
volves the supposition that the potential energy matrix elen>N, in which the potential energy matrix elements are ne-
ments vanish for very large, which has been shown to be glected. These equations correspond to the “asymptotic re-
an acceptable approximation for relatively short-range intergion,” and are trivially fulfilled due to the boundary condi-

actions. tion.
One obtains the following asymptotic behavior for bound (i) the equation witm=N, in which the potential matrix
states: elements are neglected. This equation corresponds to the
“matching condition,” as it couples the internal region
cl@9= R exp — kR,)/R,, (3)  through coefficienty_; with the asymptotic region through
the phase shifb.
(k= = 2mER?) This scheme amounts to solving the followihg+ 1 di-

mensional system of linear equations for tiecoefficients
c, with n=0,1, ... N—1, and the phase shitt:
and for continuum states:

Hoo—E - Hon-1 0 Co
ci?= VRo[jL(kRy) +tan( 8)n (kRy)], (@) : : :
Hn-10 -+ Hnoine1i—E Taoanel ! || ones
k=+2mE/#h? ’ ’ '
( ) 0 co ThN-1 78 tan 8)
where j, and n_ are the traditional Bessel and Neumann
special functions. 0
A striking resemblance with the asymptotic forms of a :
wave function in coordinate representation is observed, by =l -1 o) | (7
replacing the radial coordinate in the latter by the discrete N-L1N™N
value R,= 4n+2L+3. A heuristic argument for this ob- -7

servation is thaR,, corresponds to the turning point of the
oscillator in statgn) with angular momentun. where
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T =(Tun—E)eN "+ Tuns1Cha whereT is the kinetic-energy operatow (*) is commonly
called the “regular” solution, and behaves properly for all
r. ¥(7) is the “irregular” solution, and has an irregular
(infinite) behavior near the origin=0. To provide a regular
character at the origin for botlif(*) and ¥'(7), we redefine
their equations in the following way, as was suggested ear-
lier by Heller and Yamanj1]:

7?\17):(TN,N_E)Cg\r)_'—TN,NJrlCE\Ijr)l (8)

andT stands for the kinetic-energy operator.

As the potential matrix elements do not actually drop to
zero exactly fon=N, one should vary the value &f to test
the stability of the solution. It turns out that this stability

| . (T-E)¥ (=0,
strongly depends on the specific problem considered. As an
example, the solution of the linear system of equations for a A (=)_
nuclear two-cluster problem, in which the distance of the (T=B)¥ "= BoDo. (12)

clusters is considered as the degree of freedom, shows 'ﬁwe nonzero right-hand side in(12, in which

rapid convergence in terms df. A solution for a monopole ®,(1)=(r|0) represents the zero-quanta oscillator state, and
description of the nucleus, in which the radius of the nucleus ? b q '

is considered to be the prominent degree of freedom, Shov\)ghereﬁo equals

a very slow convergence in terms Nf These results indi- exp(k?/2) 2 12
cate that one should be very careful when omitting potential Bo=ho—151 (13
energy matrix elements, and that a proper study of the form k F(L+12)] I(-L+1/2)

of the equations is necessary. . - .
q y accounts for a regular behavior near the origin for the modi-

fied ()
IV. AN ANALYSIS OF THE AM EQUATIONS
ju(kr) for r<i

n (kr) for r>1" (14

A. A reformulation of the AM equations ‘If(_)(kr)~{
To study the properties of tH@én principle infinite dimen-

siona) linear systen{l) to be solved, we will rewrite this set

of equations using the following substitution for the expan-

sion coefficient,,:

In terms of a Fourier representation, using oscillator states as
a basis, one then has the following well-defined expansion:

_ (a9 | ~(0) ”
ch=c¥+c. ©) wO(r)= 3 (rlmyc,”,
m=0

By this substitution, the coefficients,, are considered to
represent a deviation from the asymptotic behavior, i.e., the ) =)
coefficientsc(®9 . The coefficientc?) then quantifies this v (r)=m§=:0 (rimyey, . (19
deviation, which, in particular, will be zero in the true as-

ymptotic region(i.e., for very largen). The first term in(9)  Thjs provides a proper definition for the coefficienfs’ and

is responsible for the long-range behavior of the system. Thg(—) in (10), the “regular,” respectively, “irregular” as-
second term corresponds to the short-range correction caus gmtotic coiefficients the' explicit form ’of which can be
by the potential; in other words, in coordinate representatio ound in[2,5]. The eq,uations for the asymptotic coefficients
the coefficienticﬁo)} would represent that part of the wave ., Equrier ’sp.ace are then

function that is dominated by, and within the range of, the

potential. The knowledge otbgo) as a function ofn thus o ~

provides a key element for determining a proper indéx E <n|T—E|m>cEn+>=0,

distinguishing the internal from the asymptotic region in m=0

terms of the basis functions.

o

Rewriting the original AM linear system of equatiofly A _
in the unkngwns{(cng}]), yields an equiz//alent Iinegr system in mE:O (n[T—E|m)ct, = Bodno- (16)
the unknowns {c{?’}, 5), where § is defined by the follow-
ing form of the asymptotic expansion coefficienf.SS) : One notices an identical form for all equations, except for the
single one withn=0.
cl@=c") +tan s)c! ). (10) Substituting the solutions dfL6) for the asymptotic coef-

ficients in the set of equationd), taking into account the
Because the asymptotic coefficients now appear fon all substitutiong(9) and (10), then leads to the following linear
in this representation, they should be properly defined. IFYStem:

order to do so, we consider the coordinate representation of -
the outgoing asymptotic wave functiong(*) and w(7), A—Elmye® +tan 8)| .. -+ e
which are originally defined as the two linearly independent 2, (nlH—Elmciy’+ta(5)) Bodnot 2 (nIVIm)cy
solutions of .
~ =— n|V[myctH) 1
(T-E)¥=0, (12) mE:O< [VIm)Cr (17
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Equation (17) now shows the influence of the potential- mk
energy matrix elements on the behavior of the system in a tans, = — FE Vﬁf')cn (23
clear way. n=0

Let us introduce the “dynamical regular and irregular co-

. ~ from which we immediately recognize the importance of
efficients” V(") andV{) as follows: y g P

V(™) in the convergence of the solutions of the continuous

o spectrum.
ViD= (n[V|myct’) The analysis oi{"), V{~) must be done in terms of the
m=0 basis indexn, of the oscillator parametdyr fixing the basis,

and of the potential-energy parameters. Results emerging
from such an analysis can then be checked by studying the

o0

Vi ):mE:O (n[VIm)ciy” (18 solutionsc(® and tang) as a function of the same param-
eters.
or, in an alternative integral representation in three-
dimensional coordinate space B. A model analysis using the Gaussian potential

o . To analyze the behavior of the AM set of linear equations
Vﬁf):f drr2®,(r)V(r)¥ ) (kr), and its defining quantities in a more or less general way, we
0 consider a simple Gaussian potential of the form

o 2
_ ~ _ B r
VS >=fo drr2®,(n)V(r)¥w ) (kr), (19 V(r)=VoeXi{—<5) } (24)
where we use the coordinate representatioribg(r), the  There are a number of reasons to justify such a ch¢lgean
n-quanta oscillator functiofr|n) operator with Gaussian functional form is easily handled in a
harmonic-oscillator basis, as matrix elements can be calcu-

N L Loy L4102, 2 r lated using closed expressions, or simple recurrence formu-
®n(r)=(—1)"Np p-exp— 3p°)L, (P9 |p=5g/ las; (2) (semi) realistic potentials are often expressed explic-
ity as a finite sum of Gaussians, each with specific
[ NpL=

2(n!) 1 1/2] amplitude and width parameters, and are of common use,
Substitution of the dynamical coefficient$8) in (17) leads

5o 3D (200  e.g., in nuclear physics calculatiorn(8) a very large class of
I'(n+L+3/2 b . . .

potentials can be expressed in terms of a Gaussian transform,
such as, e.g., a Yukawa or a Coulomb potential.

In general the matrix elements of the potential-energy op-

to
erator, due to the/a dependence of the latter, will depend
i R on the ratiob/a. In the specific case of a Gaussian potential
> (nH—E|m)cQ+tan §)[ Bobn o+ VS 1= — V(. one has an explicit dependence on
m=0
(21) b\?
=3 (25)

No approximations have been made so far to obtain this
representation of the AM dynamical equations. We hav
taken into account the maifasymptoti¢ behavior of the

solutions in the equations, and used a regularization SChen%%ale transformations @ andb which preservey, and dif-

to achieve this in awell-deflned way. . _ferent physical situations will lead to the same matrix
To reveal how the AM linear system can be solved in a, |~ . .
n|V|m). In particular, small values ofy are realized by

numerically optimal, or at least acceptable, way, an analysig il val b relative t | | of relative t
of the dynamical coefficient¥") and V(") seems impera- >na VaUEs ob relative toa, or ‘arge values oa refative 1o

. o . _ b; this situation corresponds to a “long-range” potential.
tive. It is indeed clear that, if, e.gy{") andV{~, from a P grange p

. . . Large values ofy correspond likewise to a “short-range”
given indexn on, are sufficiently zero when compared to the g Y P g

h 121 th . duced i I dpotential.
other terms in21), the equations are reduced in a controlled™ o otential is certainly not the only parametrized quan-
and secure way.

. . . . tity characterizing the set of AM equations. The oscillator
There |s(<+31)noth§r !mportant reason to lnvestlga_te the ber'adius of the oscillator basis is another and equally important
havior of V"7 It is indeed well known from the integral arameter, because of the repercussion on the values of both
equation formulation of quantum mechan[ds)] that the kinetic and potential matrix elements appearing in the

. equations. In this section we will therefore study the behav-
tans, = — m_zkf dr\If”er)V(r)‘I’(k,r), (22) ior _of the AM eqqations as a f_unction of both the oscillatqr
h=Jo radius of the basis, and the width of the Gaussian potential.
Actually, as indicated by25) only the ratio of these quanti-
whereW (k,r) is the exact solution of the Schiimger equa- ties is required, without any loss of generality for the current
tion obtained with potentiaV. In an oscillator representa- analysis. We therefore make a specific choice of potential
tion, (22) reads as parameters, namel,=—8 MeV anda=1 fm, so that the

®rhis means that matrix elements of the Gaussian-potential-
energy operator in an oscillator basis are invariant under all
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Vin,m} (MeV)

FIG. 1. Matrix elements of a Gaussian potential in an oscillator basis with width parame@&75. The horizontal axes are labeled by
the basis index, the vertical axis is in MeV.

potential has both a discrete and continuous spectrum. Thaf the oscillator basis(l) it is proportional to the inverse
v ratio will then be varied by adapting the oscillator radius square of the oscillator radius, and(2) the kinetic-energy
b. matrix has a tridiagonal form, i.e., has nonzero matrix ele-
A central theme in the analysis is the characterization foments only along the major diagonal and the first subdiago-
a rapidly converging, and stabilized, solution of the AM nals.
equations. This is most naturally done by searching for a _ o )
maximal, limiting, value for the number of basis states in- 1. Analysis of the Hamiltonian matrix elements
volved in a specific solution, depending on the problem pa- Figure 1 displays the overalfualitatived behavior of a
rameters used. As the asymptotic behavior of the solution ig/pical Gaussian potential matrix in some specific oscillator
governed essentially by the kinetic-energy term, one shoul@asis. The main properties to be noted are the comportment
therefore take into account how both potential and kineticof (1) the main diagonal which falls off monotonically for
matrix elements behave with respect to one another. In othe&rge n, and of (2) the nondiagonal matrix elements with
words, it is not sufficient to know about the insignificance of nonzero values concentrated symmetrically around the main
potential matrix elements in absolute terms to decidediagonal. This structure of the potential contribution is cer-
whether one has reached the asymptotic region, but rathesinly of a promising nature, regarding the earlier remarks
consider some relative insignificance with respect to theoncerning the kinetic-energy contribution.
value of the kinetic matrix elements. A more quantitative view of the diagonal behavior of the
When working in a coordinate representation, one carpotential matrix is displayed in Fig. 2, and this for a number
obtain a lot of information concerning the wave function by of choices of oscillator bases. Three different views are pre-
analyzing the Hamiltonian only, and this both in terms ofsented in this figurea) the pure diagonal matrix elements;
coordinate and energy ranges. The main reason for this i) the diagonal matrix elements multiplied by the square of
that the Hamiltonian is globally defined in the whole coordi- the oscillator radiugeliminating the kinetic-energy depen-
nate space. In &2 representation, in our case using an os-dence on the choice of basind (c) the diagonal matrix
cillator basis, this is not such a straightforward matter. Theslements normalized with respect to the first one; both Figs.
main parameters determining the rate of convergence, a%a) and 2b) lead to Fig. 2c) through this normalization.
well as the behavior of the solutidthe wave function in an  From these figures it should be clear that one has to be care-
oscillator representationare of a “global” nature, such as ful when drawing conclusions for a proper choice of basis.
= n(nV|mye,=(n|V|¥), (n|V|¥{H)) and so on. The ma- Figure Za) might suggest that very large values of the oscil-
trix elements of the kinetic, respectively, potential-energylator radiusb are optimal. Figure ®) on the contrary might
operators are “local” quantitie§i.e., the value of these op- suggest that very small values lofare optimal. The normal-
erators in a single point in coordinate spacEhe study of ized Fig. Zc) finally suggests that, for the current potential
these elements, however, reveals the peculiarities of thparameters, the interval fdr between 0.25 fm and 2.0 fm
“global” quantities, and will help to understand their behav- would be optimal. Figure 2 at least reveals that there are
ior. important differences in behavior of the potential energy
Concerning the kinetic-energy term, two remarks are verycontribution for different choices of the oscillator radius.
important in the context of an oscillator basis. The kinetic-Later on it will be shown in a more quantitative way that the
energy contribution has a very simple representation in termqualitative conclusion for an optimal interval as suggested
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FIG. 2. Diagonal matrix elements of a Gaussian potential in oscillator bases with different width pafantetezxact values in MeV,
(b) values weighted witb? in Mev fm?, and(c) values relative tq0|V|0). The horizontal axis labels the basis index.

by Fig. 2c) is correct. An interesting conclusion that is ap- found in Fig. 3, and this by showing a typical row for a fixed
parent from the figure is that @oordinate space defined column index =50 in this casg The same three views
short-range potential turns out to have a long-range charactepure, multiplied byb?, and normalized with respect to the
in an oscillator representation. As the oscillator basis is usediagonal matrix element witm=50) are shown, respec-
as a Fourier basis to portray the solution, this is a welltively, in Figs. 3a), 3(b), and 3c). Again a strong depen-
known effect in terms of Fourier representation theory. dence on the choice of the oscillator radius is remarked, but
A quantitative view of the nondiagonal behaviour of theit is much more difficult to draw conclusions for an opti-
potential matrix for the same bases displayed in Fig. 2 can bmally converging basis from these figures. As this figure
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FIG. 3. Matrix elements of a Gaussian potential in oscillator bases with djfferent width pardmieteow indexn=50: (a) exact values
in MeV, (b) values weighted withy? in MeV fm?2, and(c) values relative t¢50V|50). The horizontal axis labels theolumn basis index.

indicates that the potential-energy contribution is concendetermination of an optimal basis and the number of states
trated around the main diagonal of the matrix, but with ainvolved in a stable solution.
relatively important distribution, it should already warn
against carelessly applying the simple but straightforward
solution scheme presented in Sec. Il of this paper!

The previous figures thus only allow us to initiate some Up to now only local views of the potential contribution,
general discussion, but not to draw final and well-formedi.e., matrix elements and their behavior, have been consid-
conclusions on the convergence problem, let alone on thered to provide possible hints for a properly converging so-

2. Analysis of the dynamical coefficients
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FIG. 4. The dynamical coefficient¥("/V{")| (a, top and|V{)/V{)| (b, bottom as a function ob andn, for an energy of 1 MeV.
The vertical axis is logarithmic.

lution. The new representation of the AM equations pre-radius zeroes the quantities for already very small values of
sented earlier in this section introduced some globah. Figure 4b) depicts the same view foff;), carrying an
quantities which might be of interest in the convergenceanalogous conclusion. Although both optimal values do not
analysis. These are the dynamical coefficieMS’ and  coincide completely, they are sufficiently close to define a
V(™) and they combine all matrix elements of rawas  narrow interval of optimal values for a swiftly converging
indicated above. If, and when, these quantities would beolution. Indeed, if we consider a valu® for which
(sufficiently) zero from a given valudl on, this would cer-  |V{)/V{"|<e and |[V{)/V{)|<e (with, e.g., e<1079),
tainly determine the maximal number of oscillator states towe can assume to have reached the asymptotic region. The
be considered for a converging solution. ¥§" andV{™)  value N then determines the number of basis functions
depend on both the potential and the basis parameters, thegeded to obtain a well-converged solution. Indeed, the so-
will be analyzed as a function of the ratio of potential width lutions of (17) are deviations with respect to tH&nown)
to oscillator radius. A%/ ") andV{~) also depend explicitly asymptotic solutions, and become zero when B} and
on energy, this will be an additional parameter to consider.V{~) are(sufficiently) zero. In other words, the valué¢ from

A qualitative view of V(") is shown in Fig. 48) as a  which on V(") and V(") and thus the solutions(®, are
function of both the index1 and the raticb/a; the quantity zero determines what would be called in the resonating
was normalized with respect xd;), and the scale is aloga- group method(RGM) terminology the matching point be-
rithmic one. From this figure one immediately notices that atween the internal and the asymptotic region. It is important
well-defined value of the ratio of the potential to oscillator to remark thaiN is determined prior to solving the AM equa-
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FIG. 5. V{") (a, top andV{ ™ (b, bottom as a function ob for various values oh and an energy of 1 MeV.

tions, and is obtained from the simple knowledge of thefunction ofn. From these figures one easily obtains an opti-
potential-energy matrix elements. mal number of basis functions, given the specific parameters

To corroborate the fact for an optimal choice of basis forof the problem and the precision considered. As a hands on
a given Gaussian potential, a quantitative view§t) and  example, Fig. 7 indicates that, for a precision of about
ng) as a function of the radius parameteris shown in 108, less than 12 basis functions are needed fob athlues
Figs. §a) and §b) for a selected number of values. From between 0.5 fm and 1 fm.
this figure one can determine for which values of the radius The conclusions above indicate the importance of the
parameter one obtains a properly converged solution, by coné"”? andV{~) quantities, and a closer investigation imposes
sidering the intersection of both optimal intervals fé§™ itself. A closed expression fov(") can be obtained in a
and V(™). One notices that for a potential consisting of astraightforward way as
single Gaussian term, a very limited number of basis states is
necessary for a proper convergence. For more intricate po- (1-29)"
tential forms this will not necessarily be the case, although VE1+):VOW
an optimal value for the radius parameter, be it associated v
with a relatively larger value oN, will still be available.

To check the dependence of the so-called “optimal” ><exp(
values(or regionsg as a function of energy, Fig. 6 displays
the values of bottv{") andV{), relative to, respectively,
V§,+) and Vg_) for varying b and energy for a fixed. It is
important to notice that, at least for the Gaussian potential,
the optimal value for the oscillator radius is independent of”

L

k2
[ NnLLh+l/2<1_—4’yz) (26)

for which the full calculation is reproduced in the Appendix.
This expression features a single minimum in terms of
namely, fory=1/2 orb=a/ /2, with a value

energy.
Finally Fig. 7 shows the quantitative behaviondf~ and VI ZV N 1 i(E 2““”/28)( B lkz 27
V{7, again relative to, respectivell/{") and V() as a n 0nlgnrl2 4" )
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is logarithmic.

which drops off to zero very fast in terms onfbecause of its  This expression consists of two factors in coordinate repre-

following behavior: sentation, the Gaussian potentigr) and the(asymptoti¢
wave functionW(")(k,r), both evaluated in one and the
VO~ 1 same discrete poimt=bR, [R, is the classical turning point,
n T IR I2 Rhﬂ 2 (28) cf. (3) and(4)]. For y approaching zero the expression shows
a slowly decreasing behavior Mff) as a function oh.
Both position and behavior &f$") around this minimum For large values ofy one obtains the following asymp-
were already apparent from the foregoing figures. totic form valid for largen:

The asymptotic behaviour o‘f/g” for both small and
large values ofy is also readily obtained. For small values of 12 R2+ K2 K
y (i.e., small values of the oscillator radiiscompared to Vg*)w(—l)“VOZ—(E> exp{ - ”4—}|L+1/2(2_R">’
the potential widtha) Eq. (26) yields the following asymp- Y Y Y 30
totic form, valid for largen:

VP ~Vgexp{— yR3c( " which for the limiting case ofy now approaching infinity
again displays a slowly decreasing behavior as a function of

~Voexp— YRZV2R,j(KbRy). 29
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Both very large and very small values gfwill thus lead  N=14/(4vy) (for small yv) andN~14y) (for large y); for a
to rather badly converging solutions, which essentiallyvalue of b/a=0.2 one obtaindN~90, and forb/a=3.0
means that a large number of basis functions will have to bé&~125.
considered whety reaches towards limiting values. This dis-  The asymptotic behavior of{”) can be used to an even
cussion on asymptotic behavior confirms conclusions alreadpetter extent, by taking it into account when solving the AM
apparent from the numerically calculated figuresvt) . system of equations. This will be pursued in full detall in a
Figure 8 indicates that the asymptotic formulas are quitdorthcoming section. Although more intricate to develop, an
valid for a broad range df values, and as such, can often be analogous analysis can be made ¥f, leading to corre-
used to obtain reasonable values férfor properly con-  sponding conclusions.
verged solutions. Indeed, as the main factor which defines
the decreasing behavior vt ") for small, respectively, large
values of vy, is the potential term, which has the value ) ) ]
exp{—yRﬁ}, respectively, ex{tr(RﬁMy)}, as can be seen in In Fig. 9 we sh_ow the phase shifts obtalngd at an energy
Egs. (29) and (30). So, if one considers, e.g., 10to be a of E=1 MeV for different values ofy (actually in all further

reasonable measure for precision, one can write approxf€sultsa=1.0 fm, so thab andy coincidg, as a function of
mately the number of basis states involved in the calculation. One

notices an important gain in convergence spéaud thus
precisior) when using the reformulated version of the AM
exp{— yR3}=10"% (smally) equationg21), although small and large (or y) values still
LN P Rﬁ 31) require an important number of basis states.
p{—4—]=106 (largey), On the same figure the normalizerl”) solutions are
Y shown for different values df (), for a calculation involv-
ing 100 basis states. These results are normalized with re-
which immediately leads to the respective valuesspect to the nornw

3. Analysis of the phase shifts
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Vi(+)

FIG. 8. |V{"IV{")| compared to the asymptotic formulas discussed in the text, as a functiomaf logarithmic plot. The vertical axis
shows orders of magnitude.

59 |cl0))2 AM equations in terms of the parameters defining the basis
W= —g5—, (32 and the potential energy. It was shown for a Gaussian poten-
2nZolCnl?

tial that the rate of convergence was reliably predictable.
The parametey or, for fixed potential widtha, the oscil-
lator radiusb determines the rate of convergence of the ex-
pansion =X c,[n). It was indeed seen that an optimal
value (or a restricted range of optimal valyder b leads to

r\/ery fast convergence. However, values deviating more or
i ior wf+) () | - ’ \
;nade py a}nal)llzmg t?oe behavior uf and_V B_Le.,;ha@ h less strongly from the optimd lead to slowly converging

or optimal values ofb () convergence is achieved with numerically unprecise results.

less than 12 basis functions. They also confirm that for As it is not always possible in a realistic calculation to

b:O_'Z onle igg l;Jse' approm:{nately 75, Slnd b+ 3.0 ap- _.choose the optimab, for physical as well as for numerical
proximately asis states for reasonable convergence; g s,n it is important to develop strategies for stable results

latter were indeed overestimated by the numbers obtained ., in nonoptimab regions. This problem was already rec-

from Eq. (31). . .

ognized in[7], were a coupled channels calculated féte
. To corrobor.ate the fact that the reformulated AM equay, a5 performed with the AM, in which both cluster and col-
tions (21) provide faster converging solutions, we show in

) e . . lective configurations were taken into account: thealue
Fig. 10 both thec, andcﬁo) coefficients obtained in a calcu- g

J X was fixed by physical argumentsssentially optimizing the
lation atE=1 MeV andb= 3.0, with a total number of 100

) eV c ] cluster channel resultsand very nonoptimal for the collec-
basis states. This picture confirms the fact that the true soly;e channelgin particular, the monopole moyle

tion indeed deviates only by a small amount from the asymp- e following subsections indicate how such problems

totic one. can be solved by considering strategies to solve the AM

To show the dependence of the results on energy, Wgquations, without modifying the original physical problem
show in Fig. 11 the phase shift obtained with 5, 10, and 1§e.g. by tampering withb).

basis states compared to the exact results, and this with the
original (“simple” ) version(7) and the reformulated version
(21) of the AM equations. Fob values deviating reasonably ) .
from the optimal value, the latter form of the equations is We attempt to evaluate the asymptotic behavia., for
seen to be highly superior to the original one. For very smal>1) for the expansion coefficients,=(n[¥) and the ma-
and very largé values, the convergence is still problematic. trix elements(n|V|¥), using only very general information
on the(unknown wave functionW. Based on this formula-
V. STABLE SOLUTIONS FOR THE AM EQUATIONS tion we will then introduce strategies to overcome the slow-
convergence situations. All assumptions made, and results
In the preceding section we obtained interesting resultebtained, will be checked against those produced with a
concerning the convergence behavior of the solutions of th&aussian potential.

which is also included in the figures. One notices from this
value that in the “optimalb (vy)” region very few, very
smallc!?) contribute to the solution.

The results displayed on Fig. 9 confirm our suggestio

A. A general analysis of the asymptotics
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To derive a general view on the asymptotic behavior ofusing a scaled Gaussién| 8)=r‘exp{—s%?} as a kernel of
the Fourier coefficientg,, we use a generator coordinate the integral transformation. It is well known that this kernel
(GC) representation for the wave functioh provides an alternative, continuous, basis to the traditional,
discrete, oscillator basis. A tacit assumption(88) is that
. the continuous spectrum wave functions are representable by
\If(r)=f dBg(B)r-exp— B2} (33 such a representatioffiin particular, that a “reasonable”
0 form for g(B) exists, leading to an integrable regult
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1. Asymptotics of g

The Gaussian kernel ¢83) is easily expanded in terms of
the oscillator basis used throughout this paper. The bas
functions|n) are explicited in a coordinate representation by
(20).

By substituting pb for r in the integral kernel
rtexp{— B%?}, one can recognize the generating function for
the oscillator functions

pz}

1—-28%b?
1+2p°b%"

11-¢

21+¢

-

n=0

n
(1+8)_L_3/2p|‘exp{ ;—|n>, (34)
n

where

11-¢
21+e

B?b?= or e= (35)

The expansion coefficient&|B) of exp{—B%2 in the
oscillator basis are then

n
L+328 bt

N
(1-28%)"
= (1+ 2ﬂ2b2)n+L+3/2 Nn

(n|p)=(1+e)

2L+3/2
bL

(36)

from which one obtains the expansion coefficients
c,=(n|¥|) of ¥ in the oscillator basis as

nlw)= | “asaesiinls)

(1_2,82b2)n 2L+3/2

(1+ 2,82b2)n+|'+3/2 Nn

= fowdﬁ 9(B) . @7

If, and when,g(B) is concentrated in a small vicinity of
B~ By, one can expect a highly convergent expansion for a
oscillator lengthb~1/1/23,.

To study the asymptotic behavior of the expansion coef-

ficients (37), we consider two limiting regions fob, i.e.,
“small b” and “large b.” To this end, we rewrite(37) as
follows:

Bo i
)= | “apaceimler | asainle), o9

where 8,=1/(\/2b).
Small b valuesfor 0<g<1/(,/2b) and large values of
i3, one can use the following approximate formula:

(1-2p%%)"
1T zlgzbz)mus/z*e)(p{_ R3B%b%}. (39
For large values of (n>1) one also has
1 [T(n+L+32)Y2 o

where agairR, is the classical turning poiftf. Egs.(3) and
@].

For very small values db, one can consider only the first
term in (38); using the approximation§39) and (40) one
then obtains the following asymptotic form (37):

(n|¥)~2yR, f:dﬁ 9(B)(Rab)exp{ —R3B%0%, (41

which, considering33), leads to the final approximation

ch=(n|¥)~ V2R, ¥ (bR,). (42)
For small values of the oscillator length the expansion
coefficients of the wave functioW (r) on an oscillator basis

are thus proportional to the wave function itself taken at the
discrete argument valudxR, .

Such a relationship between the wave function in coordi-
nate space and its oscillator representation was already ob-
tained long agd4], [1] for the regular and irregular asymp-
totic solutions. Later, this correspondence has been used as a
heuristic principle for solving e.g., the Coulomb problem in
an oscillator representatida 1].

Large b valuesfor 1/(y/2b)<p< and large values of

'h, one can use the following approximate formula:

(1-2p%b%)"
(1+ 232b2)n+L+3/2
(1 1 (1—1/2p8%b%)"

(ZBZbZ)L+3/2 (1+ 1/2ﬁ2b2)n+ L+32

Rﬁ]

~ " ap?

1
Wexp‘ (43)
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FIG. 10. ¢, (dotted ling andc!? (solid line)
coefficients obtained in a calculation involving
100 basis states, with=3.0 and an energy of 1
MeV.

50

The expansion coefficients can then be approximated bgpace taken at discrete arguments which are the momentum

the second term ii38), which for very large values o
leads to the following asymptotic form ¢87)

oc exp{ — R%/48%b?
(n[w)~(—1)"V2R;" " fo dﬁg(ﬂ)%fz—}.

(44)

Using an integral transformation, formula 11.4.29[&#],
the asymptotic form of the,, for largeb becomes

2 ® R,
cn=<n|W>~<—1)“ﬁﬁfodrrsz(Fr)\If(r), (45)

2

N

Ri
=(=1)" JR?D(F), (46)

valuesR,/b. As oscillator functions in coordinate and mo-
mentum space only differ by a phase {)" and the argu-
mentp (which in coordinate space equald and in momen-
tum space equalkb), both wave functionsW(r) in
coordinate representation add p) in momentum represen-
tation have essentially the same expansion coefficients.

By integrating (45 by parts, assuming tha(r) is
smooth and without singular points, and taking the leading
asymptotic term for, (i.e., for R,>1), one obtains

1
(n[¥)=~(~1)" =¥ (0). 47

The same result can be obtained by considering that the
wave functions® (p) of discrete and continuous spectrum
states in momemtum space decrease at leastpds uibsti-

where® is the wave function in momentum representation.tution of this limiting factor in(46) again leads td47)

For large values of the oscillator length the expansion Summing up one notes that the asymptoticscpfare
coefficients of the wave functiow (r) on an oscillator basis related to the wave function behavior in coordinate space: for
are thus proportional to the wave function in momentumsmall values ofb the asymptotics are proportional to the
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wave function for larger, and for large values ob the c,=(n|¥) by using the GC representation of the solution
asymptotics are proportional to the wave function in the vi-(33). We omit the details of the calculation, and only present
cinity of the origin. the final results.
Small b valuesfor small b values (or better, smally
i ~ values, the matrix elements factorize as follows:
2. Asymptotics ofn|V|¥) 3

n|V|¥)~V(b nj'w
Asymptotic expressions for the matrix elements (NVI¥) =~ V(bR )(n¥)

(n|V|¥) can be obtained in an analogous way as for ~V(bR,) V2R, ¥ (bR,). (48)
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One notices that the behavior of the matrix elements coinwhere the Fourier transform(R,/b) of the potential deter-
cides with the one of th#(r), up to a trivial factor which is mines how fast the matrix elements decrease in ternts of
potential dependent. These results obtained for a general

form of a short-range potential, are confirmed by the asymp- B. New strategies for solving the AM equations
totic fgrm for VE‘H’ evaluated earlie(29) for a Gaussian Based on the results obtained above, we can now suggest
potential. ,

strategies for solving the dynamical equations of the AM, in
those cases where the oscillator lengtlor more exactly the
ratio y=(b/a)?, is relatively large or small compared to the

Large b valuesfor large values ob (or y), the asymp-
totic form of the matrix element$n|V|¥) reduces to the

integral optimal value.
Small b valueswe start from the Schinger equation in
A 2 o R, |\~ 1
<nIV|\If>%<—1>”—JR_nf drrZJL(—”r)vuwu) .
N b ) )
(49) > (n|T—E|m)cy+(n|V|¥)=0, (53
m

or, in other words, to the convolution of the wave function

with the potential in momentum representation 2 <v|:|'—E|,U,)C +<v|\A/|‘P>:O (54)
y2a 1
M

<n|\A/|\If)%(—1)“1\/R—nfxd'r<'|zzﬁ(kn—hl€)d>(”k’), (50)  Where the index is connected with the internal region and
N 0 v with the asymptotic region, anll delimits the internal
region. In the asymptotic region, we can use the asymptotic
where (k) and @ (k) are the Fourier transforms of the form (48) for the matrix elements
potentialV(r) and the wave functiofd’(r), respectively. - N
These results for a general potential can again be checked (v|V[¥)=V(bR,)C,, (595
by considering the corresponding form fMﬁ” obtained

earlier with a Gaussian potential. Indeed, by calculating théNhICh yields
integral - R
> (n|T—E/mjcy+(n|V|¥)=0, (56)
© ) Rn ) m
Vof drr?j, . exp{— yr2yj (kr), (51)
0 A A
% (»|T+V(bR,)—E|u)c,=0. (57)
where the unknown solution#(r) is substituted by
W) (k,r)=2/mj_(kr) (the “free particle” solution, one In the original version of the AM the asymptotic coeffi-
obtains(30), which is valid for both largd andn. cientsc, were given by(6), and obtained from a simple three

The matrix elementgn|V|¥) can be evaluated in the term recurrence relation, due to the very selective coupling
asymptotic region by making the same assumptions concerfaduced by the kinetic-energy operator between oscillator
ing the behavior of’(r) as in the preceding section to ob- States. Instead of the original form, and based(s7), we
tain the asymptotic form of,=(n|¥). Expanding¥(r) in  Propose a mod|f|eq three term recurrence 'form, mcludmg the
a power series of, keeping the first term (0)r* and inte- a_symptotlc behavior of the potential matrix elements in the
grating term by term ir(49) leads to the following asymp- diagonal term
totic form:

> (v[T+V(bR,)—E|u)c,=0 (59)
2 12

N

. (R,
(Y ~(~ 1)1 JR—nv(g)wox 52

or
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[(v[T|»)+V(bR,)~E]c,+ (v T|v—1)c,_,
+([T|v+1)c,,,=0. (59)

In the asymptotic regior,=c{")+tansc{ ™), hence the

system (59) should be solved independently for regular

(c{P) and irregular ¢ ) coefficients, with “boundary”
conditions at starting remote poinis=N,,N,+1

ciy'= V2R, (KR,), (60)
c;;>= V2R,n (kR,). (62)

These modified asymptotic coefficierts™) andc! ) should

be considered when calculating the correspondingly modi

fied V(") and V(") in the dynamical equation€1). The

modified equations should then be solved for the phase shi

8 and the coefficients of the internal regioff’ .

Large b valuesfor large values ot, we consider the
dynamical equations in the forifi7), containing thev{"
and V(") terms

P ([H-Emc@+V{tan(s)=-V," (62
for the internal regionrf<N), and

> (MT-Elp)e,+(v|V[¥)=0 (63)
"
for v>N.

Substitutingc{? +c(H +tan(8)cl,”) for ¢, in (63), and

assuming that!,"”) andc{;”) satisfy the three-term recurrence

relation (16), one obtains

% (V| T—E|u)c'@+(v|V|¥)=0. (64)

Taking the asymptotic fornt52) into account, one obtains
the following equation foc{® :

;<v|f—E|u>c5?)+<—1)wR_nv(%>=o. (65)

wherec!®) was substituted by
cl@=c+wc@ (66)

introducing the “asymptotic” coefficients® and the “re-
sidual” coefficientsc{”. All constants in the asymptotic

V. S. VASILEVSKY AND F. ARICKX
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>, (n[H—E[m)c)+[ V@ —Ec@ W+ V{ tan 5)
m=
e (69)
whereV® now stands for the sum
VY= 2 (nlHIm)cy. (69)

_ The meaning of the asymptotic coefficiert$’ can be
most easily understood by considering the major part of the
symptotic behavior already in an intermediatesgion. In-
eed, for largdé values, there is a very slow convergence of
the results. This implies that the internal region extends to-
wards very largen, with corresponding:?) solutions prob-
ably very close(i.e., to first order to thec'® .

Numerical application To demonstrate how th@'small
b” and “large b ) strategies accelerate the convergence, we
again consider a Gaussian potential in the two limiting cases
where (i) the oscillator radius is a factor of 5 less than the
potential range, andi) the oscillator radius is a factor of 5
larger than the radius of the potential. Figure 12 compares
the phase shifts, obtained at an energy of 1 MeV, obtained in
the original, reformulated and asymptotic approaches.

In Fig. 13 we display the exact phase shifts and those
obtained with our strategies using 5, respectively, 10, basis
states. One notices that for the “smhll case, 5 basis func-
tions yield almost exact resul{svithin a precision less than
0.01%); by even considering only one basis function, the
phase shift is obtained within a precision of 1%! In the origi-
nal form the latter precision could only be reached by using
more than 50 basis functions. For the “larpestrategy”
(b/a=5), the convergence speed is remarkably increased,
although less spectacular than in the “smiall case. The
number of states needed for an identical result in the original
formulation (21) is about five times higher. The two strate-
gies suggested are thus seen to significantly improve the con-
vergence of the results and to reduce the computational ef-
forts to obtain a desired precision.

By modifying the form of the asymptotic AM equations
through inclusion of dynamical features as proposed and re-
alized above for both small and large valueshofone is
naturally led to the introduction of an “intermediate region.”
This region distinguishes itselfi) from the “internal re-
gion” where the solutions are governed by the potential, and
(i) from the “asymptotic region” where the kinetic energy

form (52) were omitted and replaced by the global factor yominates the equations. In the intermediate region, the so-

W to be determined. Equatio{®5) should now be solved
subject to the boundary condition

c,’=0 (67)

for v=N,,N,+1. Having obtainec®, the equations for

lutions are easily(i.e., in a numerically simple wayob-
tained. There are then actually two variational parameters to
consider,N marking the border between the internal and in-
termediate region, antl, marking the transition from the
intermediate to the true asymptotic region. The larger or
smaller is vy, the larger is the sizdi.e., the difference
N,—N) of the intermediate region. The strategies proposed

the internal region should be modified to take the substitutiorabove for small and large values gfhave shown that, by

(66) into account

considering a sufficiently large intermediate regitng.,
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FIG. 12. Phase shifts at an energy of 1 MeV as a function of the number of basis states involved in the calculation. Dotted lines represent
solutions of the original‘simple”) formulation, solid lines represent solutions of the reformulated version, and dashed lines represent
solutions of the “new strategies.”

N,=500), significantly reduces the range of the internal rec{™) by incorporation a potential term in the three term re-
gion, and dramatically decreases the computational effort teurrence relation governing the true asymptotic behavior.
obtain converged results. For largey (short-range correlation®ne approximates part
The intermediate region is characterized by a noticeablgf the cﬁo) solution by its asymptotic behavicﬁa). The lat-

but nondominant presence of dynami¢aé., potential ef-  ter are solutions of an inhomogeneous set of linear equations
fects. These effects can be well approximated by asymptotigontaining the Fourier transform of the potential, and as such
forms of both the expansion coefficients and potential  accumulate the potential effects in the intermediate region. In
matrix elementgn|V|¥). For smally (long-range correla- the region ofy near to the optimal value, where fast con-
tions), this leads to a redefinition of the equations:b*ﬂ and verging solutions are obtained, there is no need for an inter-
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FIG. 13. Phase shifts in the energy range from 0 to 10 MeV for a tatéoo=0.2, obtained in the “smalb strategy” (top), and
b/a=5, obtained in the “largé strategy” (bottom). Full lines show the exact solution, dotteé@spectively, dashedolutions are obtained
with 5 (respectively, 1Dbasis states.

mediate region, and thus for an approximation of the dy-oscillator basis parametefescillator length and number of

namical equations; the values Nf and N, coincide in this  basis functionsfor obtaining otimally converging and stable
case. solutions of these equations. It was shown that for an optimal
parameter set 5 to 10 functions were sufficient to obtain re-

VI. CONCLUSIONS sults with a precision of more than 99.9%.

Our form of equations have also been shown to be a

By introducing the “dynamical coefficients'V{") and  proper starting point for obtaining different solution strate-
Vﬁf) we were able to suggest a form of the dynamical equagies in parameter regions where slow convergence would
tions of the algebraic version of the resonating group methodccur. Indeed, in parameter regions were the oscillator length
(AM). The dynamical coefficients allow one to determineis much larger, respectively much smaller, than the optimal
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one asymptotic approximations could be formulated by ana- Integral(Al) is easily obtained by using formula 7.421.4
lyzing the AM equations. The latter can be easily imple-from [13] yielding
mented numerically, and have shown to dramatically im-
prove the convergence of the solutions. V= (— 1)y (1-2y)"
It was shown also that, if the oscillator radius is much noo 0(1+2y)““+§77q

smaller than the width of the potential, the expansion coef-
ficientsc, of the wave function on the oscillator basis coin- p( 1,

) : C ) Xexp — =k
cide with the wave function in coordinate space up to a
simple factor. In the other limiting case, when the oscillator

2
N LL+1/2 k
¥ nL%n 1_4,)/2

L/2
radius is much larger than the width of the potential, the _ (1-2y" exp{ikz Y
expansion coefficients, were found to be proportional to O(1+2y)nFLrdr 2" 1+2y
the wave function in momentum space.
P X C(KIT= 42, (A5)
n
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The second integrd/A2), reduced to the form

ex P
APPENDIX vy Zq 2y+1
In this appendix the explicit form, and governing recur- " " °(1+2y)"FEF372(1 4 4)nFL2
rence relations, of the dynamical coefficiend™ and .
Vﬁf) are calculated for a Gaussian potential. The following % I'(n+L+3/2) Nnv
integrals should be evaluated: m=o MI'(N—=m+L+3/2) Ny
. - X[y(1+29)]7ei (@), X))
S >:v0f drr2d,(r)exp —r2/a®) ¥ (kr), (A1)
0 where
viTl=v fwdrrzé (r)exp(—r?/a®)¥ () (kr), (A2) 1ty |
n 0 0 n ' q:k Wy (Ag)
where New variablesk’ andk’

2. 1+y ~ 1+y~
\P(*)z\ﬁ kr) and ¥~ P B SV Y Bl
—Ju(kn) k 1+27k,k 1+27k, (A10)

is a solution of the inhomogeneous differential equation  and the following relation for Laguerre polynomialsee
N [14], Vol. 2, formula 10.1240)]
(T—E)¥( )= Bady(r), (A3)

n

ATTM(L— ALY (X)
(A11)

o F'n+ta+l)
i[r,ﬁg;a?%ipne]d in eq(13)], which can be represented in the Ln(kx)=mE:0 T (—mtatl)

‘I’(_):BoJ diT2G(rT)®4(F) were introduced ifA4) to obtain this result.

To obtain the recurrence relations #gf") andVv{~, we
2 i (k0)j L (R) start from the equations for the functiofis™) and¥(~)
:ﬁo;f dkf dF?zw‘%G)
2)1’2 J i Jutkoey” )

(T-E)¥(+)=0, (A12)

k2-k2 (A4) (T—E)T ()= ByDy(r). (A13)
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Multiplying both sides of these equations &y, (r)V(r) and z=(y+1)~ L (A17)
integrating, one obtains - -
Using the commutation relations of the operafbrandV, or

(|VT[¥ Y —EV(H =0, (Al14)  the explicit form ofV{"), one finally obtains
(VT Y BV = g(n|V[0).  (A15) (1+29)°T sV i+ (1= 49 Tp o~ EIVLY
+(1-29)%Ty 0 1V =0, (A18)

One notices the similarity of the left-hand side of both equa-
tions, leading to identical recurrence relations for both type

< 1429) 2Ty ne VS +H (1= 49D T, — EIVS )
of coefficients. The matrix elemeti|V|0) for the Gaussian (1429 ToneaVana t =490 T —E VG

potential is +(1-29)%Th - Vi)
1/2 —
- a3 i) o
, .

(L +3/2) (A16) If in (A19) the potential is switched off Vo=1 and
z=1 (or y=0)], the recurrence relations fof") and V()

where revert to these o€!") andc{ ) as is to be expected.
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