
PHYSICAL REVIEW A JANUARY 1997VOLUME 55, NUMBER 1
Algebraic model for quantum scattering: Reformulation, analysis, and numerical strategies
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The convergence problem for scattering states is studied in detail within the framework of the algebraic
model, a representation of the Schro¨dinger equation in anL2 basis. The dynamical equations of this model are
reformulated featuring new ‘‘dynamical coefficients,’’ which explicitly reveal the potential effects. A general
analysis of the dynamical coefficients leads to an optimal basis yielding well converging, precise, and stable
results. A set of strategies for solving the equations for nonoptimal bases is formulated based on the asymptotic
behavior of the dynamical coefficients. These strategies are shown to provide a dramatically improved con-
vergence of the solutions.@S1050-2947~96!02912-5#

PACS number~s!: 03.80.1r, 03.65.Nk, 03.65.Fd
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I. INTRODUCTION

In the quest for solving the Schro¨dinger equation for both
bound and continuum states, square-integrable bases
been repeatedly used. For bound states this turns out to
traditional way to obtain the spectral properties of quant
systems. It has been shown however that a single repre
tation of the Schro¨dinger equation in terms of anL2 basis
can be formulated that allows for a description of both bou
and continuum states@1–5#.

A version of such a formulation is called the algebra
model of the resonating group method~hereafter, referred to
as the algebraic model or AM!. It was originally tailored to
treat clusterized problems, but can be used for all kinds
quantum-mechanical many-particle configurations with
major modifications. The AM has been formulated in ter
of different types of bases, depending on the more spe
features of the quantum system considered. One very im
tant feature of the AM is the fact that the boundary con
tions of the system are translated from a coordinate sp
context to the context of expansion coefficients, and are
plicitly incorporated in the dynamical equations@1–4#.

We will consider a specific AM formulation~i.e., a spe-
cific L2 basis! to elucidate the analysis of the method. T
methodology used for this analysis is of a general nat
however, and can be repeated for other bases. The spe
AM version chosen in this paper features an oscillator ba
and is, in particular, very suitable for obtaining both t
bound and continuum spectra of nuclear systems with v
different configurational properties; where appropria
nuclear spectroscopic units will therefore be used. T
choice of this AM version is mainly due to the backgrou
of the authors. Results of the AM approach considered h
have already been reported on@6,7#, and show, in particular
how the coupling of cluster and collective configurations c
be treated seamlessly in such a description.

Where necessary, a specific form for the potential ope
tor will be used. We will consider a Gaussian form in th
work. Although this again is a popular potential form
551050-2947/97/55~1!/265~22!/$10.00
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nuclear spectroscopic calculations, it is also an interes
functional form to approximate a large variety of potentia
by discrete and continuous superpositions.

We will concentrate our attention to the solutions of t
dynamical equations for scattering situations only, as th
are much more involved than the bound state problems.
deed, the latter can be well approximated by a simple dia
nalization of the energy matrix, as is well known.

We will specifically discuss how strongly the conve
gence of the solutions of an AM system depend on the
rameters of the problem. In particular, the dependence on
precision and the convergence properties of the solution
both the oscillator radius of the basis~the parameter unam
biguously fixing the square-integrable basis! and the form of
the potential energy contribution, will be treated in detail.

The convergence is crucial for obtaining stable appro
mations to the solutions of problems expressed in terms o
~infinite! set of basis functions, in our case anL2 basis. This
problem was repeatedly investigated, mainly for bound-s
solutions. As applications to scattering problems, expres
in an L2 basis, appeared, several algorithms were sugge
to accelerate the convergence of the results within a
stricted subset of the basis. For instance, Heller and Yam
@8# used ‘‘Kato correction,’’ and Sotona, Revai, and Zofk
@9# introduced the ‘‘Lanczos factor.’’ A more intuitive ap
proximation was proposed by Vasilevsky, Filippov, a
Chopovsky@6#.

The analysis of the AM equations presented in this wo
will be shown to lead to~1! an optimal choice for the basis
given the potential, yielding well converging and stable s
lutions of the AM system, or, if the optimal basis cannot
used, to~2! algorithmic procedures for solving the AM sys
tem in an acceptable and controlled approximation. Th
algorithmic procedures will depend on the specific cho
made for the basis~i.e., the oscillator radius chosen!, but also
on information on the asymptotic behavior of the expans
coefficients, as well as on the dynamical equations the
selves. In this way the algorithm used will depend on t
physical properties of the system considered. In a forthco
265 © 1997 The American Physical Society
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266 55V. S. VASILEVSKY AND F. ARICKX
ing paper the different strategies for solving AM equatio
will be applied explicitly to a number of problems from
nuclear, atomic, and molecular physics.

II. THE AM IN AN OSCILLATOR BASIS

Choosing an oscillator basis to describe some specific
bert subspace in which to solve the Schro¨dinger equation
leads to the following form of the latter in terms of a syste
of linear equations:

(
m50

`

^nuĤ2Eum&cm50, ~1!

where the coefficientscm are the expansion coefficients
the oscillator basis of the wave function corresponding to
energyE

uCE&5 (
n50

`

cnun&, ~2!

and subject to a typical boundary condition. For simplic
we have omitted the angular momentum quantum numbe
well as the energy dependence of the coefficientscn .

The boundary conditions of quantum systems are tra
tionally expressed in coordinate space, but can also be
mulated in terms of the expansion coefficientscn . Indeed,
for very largen, the dynamical equations are reduced to
simple ~in an oscillator basis a three-term recurrence! form
containing the kinetic-energy operator solely. The equati
can therefore be solved analytically for very largen @2,4,5#.
The above mentioned reduction of the equations only
volves the supposition that the potential energy matrix e
ments vanish for very largen, which has been shown to b
an acceptable approximation for relatively short-range in
actions.

One obtains the following asymptotic behavior for bou
states:

cn
~as!.ARnexp~2kRn!/Rn , ~3!

~k5A22mE/\2!

and for continuum states:

cn
~as!.ARn@ j L~kRn!1tan~d!nL~kRn!#, ~4!

~k5A2mE/\2!

where j L and nL are the traditional Bessel and Neuma
special functions.

A striking resemblance with the asymptotic forms of
wave function in coordinate representation is observed,
replacing the radial coordinate in the latter by the discr
valueRn5A4n12L13. A heuristic argument for this ob
servation is thatRn corresponds to the turning point of th
oscillator in stateun& with angular momentumL.
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III. A SIMPLE SCHEME FOR SOLVING
THE AM SYSTEM OF EQUATIONS

In the preceding section we introduced the infinite dime
sional system of linear equations obtained from the AM f
mulation, to be solved subject to a proper boundary con
tion. As indicated earlier we will concentrate on th
scattering situation, and therefore only consider the asy
totic behavior of thecn corresponding to the continuum
boundary condition.

A scheme for solving the linear system of equations qu
naturally presents itself. Under the assumption that the
trix elements potential energŷi uVu j & vanish for sufficiently
large values of one of the basis state indicesi or j , one
chooses a limiting valueN to set this vanishing point in
terms of the basis states. In the region where the poten
matrix elements are neglected, the expansion coefficie
cn are then given by~4!, and can be written as

cn5cn
~1 !1tan~d!cn

~2 ! ~n>N! ~5!

assumingN to be sufficiently large, with

cn
~1 !5ARnj L~kRn! ~n>N!

cn
~2 !5ARnnL~kRn! ~n>N!. ~6!

The choice forN divides the linear system in three differe
regions:

~i! a finite number ofN equations with 0,n,N, in which
the potential energy matrix elements are fully taken into
count. These equations correspond to the ‘‘internal regio
in terms of the basis states.

~ii ! an infinite number of equations corresponding
n.N, in which the potential energy matrix elements are n
glected. These equations correspond to the ‘‘asymptotic
gion,’’ and are trivially fulfilled due to the boundary cond
tion.

~iii ! the equation withn5N, in which the potential matrix
elements are neglected. This equation corresponds to
‘‘matching condition,’’ as it couples the internal regio
through coefficientcN21 with the asymptotic region through
the phase shiftd.

This scheme amounts to solving the followingN11 di-
mensional system of linear equations for theN coefficients
cn with n50,1, . . . ,N21, and the phase shiftd:

S H002E ••• H0,N21 0

A A A A

HN21,0 ••• HN21,N212E TN21,NcN
~2 !

0 ••• TN,N21 TN~2 !

D S c0

A

cN21

tan~d!

D
5S 0

A

2TN21,NcN
~1 !

2TN~1 !

D , ~7!

where
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55 267ALGEBRAIC MODEL FOR QUANTUM SCATTERING: . . .
TN~1 !5~TN,N2E!cN
~1 !1TN,N11cN11

~1 !

TN~2 !5~TN,N2E!cN
~2 !1TN,N11cN11

~2 ! ~8!

andT stands for the kinetic-energy operator.
As the potential matrix elements do not actually drop

zero exactly forn>N, one should vary the value ofN to test
the stability of the solution. It turns out that this stabili
strongly depends on the specific problem considered. As
example, the solution of the linear system of equations fo
nuclear two-cluster problem, in which the distance of t
clusters is considered as the degree of freedom, show
rapid convergence in terms ofN. A solution for a monopole
description of the nucleus, in which the radius of the nucle
is considered to be the prominent degree of freedom, sh
a very slow convergence in terms ofN. These results indi-
cate that one should be very careful when omitting poten
energy matrix elements, and that a proper study of the fo
of the equations is necessary.

IV. AN ANALYSIS OF THE AM EQUATIONS

A. A reformulation of the AM equations

To study the properties of the~in principle infinite dimen-
sional! linear system~1! to be solved, we will rewrite this se
of equations using the following substitution for the expa
sion coefficientscn :

cn5cn
~as!1cn

~0! . ~9!

By this substitution, the coefficientscn are considered to
represent a deviation from the asymptotic behavior, i.e.,
coefficientscn

(as) . The coefficientcn
(0) then quantifies this

deviation, which, in particular, will be zero in the true a
ymptotic region~i.e., for very largen). The first term in~9!
is responsible for the long-range behavior of the system.
second term corresponds to the short-range correction ca
by the potential; in other words, in coordinate representa
the coefficients$cn

(0)% would represent that part of the wav
function that is dominated by, and within the range of, t
potential. The knowledge ofcn

(0) as a function ofn thus
provides a key element for determining a proper indexN
distinguishing the internal from the asymptotic region
terms of the basis functions.

Rewriting the original AM linear system of equations~1!
in the unknowns ($cn%), yields an equivalent linear system
the unknowns ($cn

(0)%,d), whered is defined by the follow-
ing form of the asymptotic expansion coefficientscn

(as) :

cn
~as!5cn

~1 !1tan~d!cn
~2 ! . ~10!

Because the asymptotic coefficients now appear for an
in this representation, they should be properly defined.
order to do so, we consider the coordinate representatio
the outgoing asymptotic wave functionsC (1) and C (2),
which are originally defined as the two linearly independ
solutions of

~ T̂2E!C50, ~11!
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where T̂ is the kinetic-energy operator.C (1) is commonly
called the ‘‘regular’’ solution, and behaves properly for a
r . C (2) is the ‘‘irregular’’ solution, and has an irregula
~infinite! behavior near the originr50. To provide a regular
character at the origin for bothC (1) andC (2), we redefine
their equations in the following way, as was suggested e
lier by Heller and Yamani@1#:

~ T̂2E!C~1 !50,

~ T̂2E!C~2 !5b0F0 . ~12!

The nonzero right-hand side in~12!, in which
F0(r )5^r u0& represents the zero-quanta oscillator state,
whereb0 equals

b05\v
exp~k2/2!

kL11 F 2

G~L11/2!G
1/2 1

G~2L11/2!
~13!

accounts for a regular behavior near the origin for the mo
fied C (2)

C~2 !~kr !'H j L~kr ! for r!1

nL~kr ! for r@1
. ~14!

In terms of a Fourier representation, using oscillator state
a basis, one then has the following well-defined expansio

C~1 !~r !5 (
m50

`

^r um&cm
~1 ! ,

C~2 !~r !5 (
m50

`

^r um&cm
~2 ! . ~15!

This provides a proper definition for the coefficientscn
(1) and

cn
(2) in ~10!, the ‘‘regular,’’ respectively, ‘‘irregular’’ as-
ymptotic coefficients, the explicit form of which can b
found in @2,5#. The equations for the asymptotic coefficien
in Fourier space are then

(
m50

`

^nuT̂2Eum&cm
~1 !50,

(
m50

`

^nuT̂2Eum&cm
~2 !5b0dn,0 . ~16!

One notices an identical form for all equations, except for
single one withn50.

Substituting the solutions of~16! for the asymptotic coef-
ficients in the set of equations~1!, taking into account the
substitutions~9! and ~10!, then leads to the following linea
system:

(
m50

`

^nuĤ2Eum&cm
~0!1tan~d!Fb0dn,01 (

m50

`

^nuV̂um&cm
~2 !G

52 (
m50

`

^nuV̂um&cm
~1 ! . ~17!
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268 55V. S. VASILEVSKY AND F. ARICKX
Equation ~17! now shows the influence of the potentia
energy matrix elements on the behavior of the system
clear way.

Let us introduce the ‘‘dynamical regular and irregular c
efficients’’ Vn

(1) andVn
(2) as follows:

Vn
~1 !5 (

m50

`

^nuV̂um&cm
~1 !

Vn
~2 !5 (

m50

`

^nuV̂um&cm
~2 ! ~18!

or, in an alternative integral representation in thre
dimensional coordinate space

Vn
~1 !5E

0

`

dr r 2Fn~r !V̂~r !C~1 !~kr !,

Vn
~2 !5E

0

`

dr r 2Fn~r !V̂~r !C~2 !~kr !, ~19!

where we use the coordinate representation ofFn(r ), the
n-quanta oscillator function̂r un&

Fn~r !5~21!nNnLr
Lexp~2 1

2r2!Ln
L1~1/2!~r2! S r5

r

bD ,
HNnL5F 2~n! !

G~n1L13/2!

1

b3/2G
1/2J . ~20!

Substitution of the dynamical coefficients~18! in ~17! leads
to

(
m50

`

^nuĤ2Eum&cm
~0!1tan~d!@b0dn,01Vn

~2 !#52Vn
~1 ! .

~21!

No approximations have been made so far to obtain
representation of the AM dynamical equations. We ha
taken into account the main~asymptotic! behavior of the
solutions in the equations, and used a regularization sch
to achieve this in a well-defined way.

To reveal how the AM linear system can be solved in
numerically optimal, or at least acceptable, way, an anal
of the dynamical coefficientsVn

(1) andVn
(2) seems impera-

tive. It is indeed clear that, if, e.g.,Vn
(1) andVn

(2) , from a
given indexn on, are sufficiently zero when compared to t
other terms in~21!, the equations are reduced in a controll
and secure way.

There is another important reason to investigate the
havior of Vn

(1) . It is indeed well known from the integra
equation formulation of quantum mechanics@10# that

tandL52
mk

\2 E
0

`

dr C~1 !~kr !V̂~r !C~k,r !, ~22!

whereC(k,r ) is the exact solution of the Schro¨dinger equa-
tion obtained with potentialV̂. In an oscillator representa
tion, ~22! reads as
a

-

-

is
e

e

is

e-

tandL52
mk

\2 (
n50

`

Vn
~1 !cn ~23!

from which we immediately recognize the importance
Vn
(1) in the convergence of the solutions of the continuo

spectrum.
The analysis ofVn

(1) , Vn
(2) must be done in terms of th

basis indexn, of the oscillator parameterb fixing the basis,
and of the potential-energy parameters. Results emer
from such an analysis can then be checked by studying
solutionscn

(0) and tan(d) as a function of the same param
eters.

B. A model analysis using the Gaussian potential

To analyze the behavior of the AM set of linear equatio
and its defining quantities in a more or less general way,
consider a simple Gaussian potential of the form

V̂~r !5V0expF2S raD
2G . ~24!

There are a number of reasons to justify such a choice:~1! an
operator with Gaussian functional form is easily handled i
harmonic-oscillator basis, as matrix elements can be ca
lated using closed expressions, or simple recurrence for
las;~2! ~semi-! realistic potentials are often expressed expl
itly as a finite sum of Gaussians, each with spec
amplitude and width parameters, and are of common u
e.g., in nuclear physics calculations;~3! a very large class of
potentials can be expressed in terms of a Gaussian transf
such as, e.g., a Yukawa or a Coulomb potential.

In general the matrix elements of the potential-energy
erator, due to ther /a dependence of the latter, will depen
on the ratiob/a. In the specific case of a Gaussian potent
one has an explicit dependence on

g5S baD
2

. ~25!

This means that matrix elements of the Gaussian-poten
energy operator in an oscillator basis are invariant under
scale transformations ofa andb which preserveg, and dif-
ferent physical situations will lead to the same mat
^nuV̂um&. In particular, small values ofg are realized by
small values ofb relative toa, or large values ofa relative to
b; this situation corresponds to a ‘‘long-range’’ potentia
Large values ofg correspond likewise to a ‘‘short-range
potential.

The potential is certainly not the only parametrized qua
tity characterizing the set of AM equations. The oscillat
radius of the oscillator basis is another and equally import
parameter, because of the repercussion on the values of
the kinetic and potential matrix elements appearing in
equations. In this section we will therefore study the beh
ior of the AM equations as a function of both the oscillat
radius of the basis, and the width of the Gaussian poten
Actually, as indicated by~25! only the ratio of these quanti
ties is required, without any loss of generality for the curre
analysis. We therefore make a specific choice of poten
parameters, namelyV0528 MeV anda51 fm, so that the
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FIG. 1. Matrix elements of a Gaussian potential in an oscillator basis with width parameterb50.75. The horizontal axes are labeled b
the basis index, the vertical axis is in MeV.
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potential has both a discrete and continuous spectrum.
g ratio will then be varied by adapting the oscillator radi
b.

A central theme in the analysis is the characterization
a rapidly converging, and stabilized, solution of the A
equations. This is most naturally done by searching fo
maximal, limiting, value for the number of basis states
volved in a specific solution, depending on the problem
rameters used. As the asymptotic behavior of the solutio
governed essentially by the kinetic-energy term, one sho
therefore take into account how both potential and kine
matrix elements behave with respect to one another. In o
words, it is not sufficient to know about the insignificance
potential matrix elements in absolute terms to dec
whether one has reached the asymptotic region, but ra
consider some relative insignificance with respect to
value of the kinetic matrix elements.

When working in a coordinate representation, one c
obtain a lot of information concerning the wave function
analyzing the Hamiltonian only, and this both in terms
coordinate and energy ranges. The main reason for th
that the Hamiltonian is globally defined in the whole coor
nate space. In aL2 representation, in our case using an o
cillator basis, this is not such a straightforward matter. T
main parameters determining the rate of convergence
well as the behavior of the solution~the wave function in an
oscillator representation!, are of a ‘‘global’’ nature, such as
(m^nuV̂um&cm5^nuV̂uC&, ^nuV̂uC (1)& and so on. The ma
trix elements of the kinetic, respectively, potential-ener
operators are ‘‘local’’ quantities~i.e., the value of these op
erators in a single point in coordinate space!. The study of
these elements, however, reveals the peculiarities of
‘‘global’’ quantities, and will help to understand their beha
ior.

Concerning the kinetic-energy term, two remarks are v
important in the context of an oscillator basis. The kinet
energy contribution has a very simple representation in te
he

r
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-
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of the oscillator basis:~1! it is proportional to the inverse
square of the oscillator radiusb, and ~2! the kinetic-energy
matrix has a tridiagonal form, i.e., has nonzero matrix e
ments only along the major diagonal and the first subdia
nals.

1. Analysis of the Hamiltonian matrix elements

Figure 1 displays the overall~qualitative! behavior of a
typical Gaussian potential matrix in some specific oscilla
basis. The main properties to be noted are the comportm
of ~1! the main diagonal which falls off monotonically fo
large n, and of ~2! the nondiagonal matrix elements wit
nonzero values concentrated symmetrically around the m
diagonal. This structure of the potential contribution is c
tainly of a promising nature, regarding the earlier rema
concerning the kinetic-energy contribution.

A more quantitative view of the diagonal behavior of th
potential matrix is displayed in Fig. 2, and this for a numb
of choices of oscillator bases. Three different views are p
sented in this figure:~a! the pure diagonal matrix element
~b! the diagonal matrix elements multiplied by the square
the oscillator radius~eliminating the kinetic-energy depen
dence on the choice of basis!, and ~c! the diagonal matrix
elements normalized with respect to the first one; both F
2~a! and 2~b! lead to Fig. 2~c! through this normalization.
From these figures it should be clear that one has to be c
ful when drawing conclusions for a proper choice of bas
Figure 2~a! might suggest that very large values of the osc
lator radiusb are optimal. Figure 2~b! on the contrary might
suggest that very small values ofb are optimal. The normal-
ized Fig. 2~c! finally suggests that, for the current potenti
parameters, the interval forb between 0.25 fm and 2.0 fm
would be optimal. Figure 2 at least reveals that there
important differences in behavior of the potential ener
contribution for different choices of the oscillator radiu
Later on it will be shown in a more quantitative way that t
qualitative conclusion for an optimalb interval as suggested
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FIG. 2. Diagonal matrix elements of a Gaussian potential in oscillator bases with different width parameterb: ~a! exact values in MeV,
~b! values weighted withb2 in Mev fm2, and~c! values relative tô0uV̂u0&. The horizontal axis labels the basis index.
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by Fig. 2~c! is correct. An interesting conclusion that is a
parent from the figure is that a~coordinate space defined!
short-range potential turns out to have a long-range chara
in an oscillator representation. As the oscillator basis is u
as a Fourier basis to portray the solution, this is a w
known effect in terms of Fourier representation theory.

A quantitative view of the nondiagonal behaviour of t
potential matrix for the same bases displayed in Fig. 2 can
ter
d
l-

e

found in Fig. 3, and this by showing a typical row for a fixe
column index (n550 in this case!. The same three views
~pure, multiplied byb2, and normalized with respect to th
diagonal matrix element withn550) are shown, respec
tively, in Figs. 3~a!, 3~b!, and 3~c!. Again a strong depen
dence on the choice of the oscillator radius is remarked,
it is much more difficult to draw conclusions for an opt
mally converging basis from these figures. As this figu
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FIG. 3. Matrix elements of a Gaussian potential in oscillator bases with different width parameterb for row indexn550: ~a! exact values
in MeV, ~b! values weighted withb2 in MeV fm2, and~c! values relative tô50uV̂u50&. The horizontal axis labels the~column! basis index.
en
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indicates that the potential-energy contribution is conc
trated around the main diagonal of the matrix, but with
relatively important distribution, it should already wa
against carelessly applying the simple but straightforw
solution scheme presented in Sec. II of this paper!

The previous figures thus only allow us to initiate som
general discussion, but not to draw final and well-form
conclusions on the convergence problem, let alone on
-

d

d
e

determination of an optimal basis and the number of sta
involved in a stable solution.

2. Analysis of the dynamical coefficients

Up to now only local views of the potential contribution
i.e., matrix elements and their behavior, have been con
ered to provide possible hints for a properly converging
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FIG. 4. The dynamical coefficientsuVn
(1)/V0

(1)u ~a, top! and uVn
(2)/V0

(2)u ~b, bottom! as a function ofb andn, for an energy of 1 MeV.
The vertical axis is logarithmic.
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lution. The new representation of the AM equations p
sented earlier in this section introduced some glo
quantities which might be of interest in the convergen
analysis. These are the dynamical coefficientsVn

(1) and
Vn
(2) , and they combine all matrix elements of rown as

indicated above. If, and when, these quantities would
~sufficiently! zero from a given valueN on, this would cer-
tainly determine the maximal number of oscillator states
be considered for a converging solution. AsVn

(1) andVn
(2)

depend on both the potential and the basis parameters,
will be analyzed as a function of the ratio of potential wid
to oscillator radius. AsVn

(1) andVn
(2) also depend explicitly

on energy, this will be an additional parameter to consid
A qualitative view ofVn

(1) is shown in Fig. 4~a! as a
function of both the indexn and the ratiob/a; the quantity
was normalized with respect toV0

(1) , and the scale is a loga
rithmic one. From this figure one immediately notices tha
well-defined value of the ratio of the potential to oscillat
-
l
e

e

o

ey

.

a

radius zeroes the quantities for already very small value
n. Figure 4~b! depicts the same view forVn

(2) , carrying an
analogous conclusion. Although both optimal values do
coincide completely, they are sufficiently close to define
narrow interval of optimal values for a swiftly convergin
solution. Indeed, if we consider a valueN for which
uVN

(1)/V0
(1)u,e and uVN

(2)/V0
(2)u,e ~with, e.g., e,1026),

we can assume to have reached the asymptotic region.
value N then determines the number of basis functio
needed to obtain a well-converged solution. Indeed, the
lutions of ~17! are deviations with respect to the~known!
asymptotic solutions, and become zero when bothVn

(1) and
Vn
(2) are~sufficiently! zero. In other words, the valueN from

which on Vn
(1) and Vn

(2) , and thus the solutionscn
(0) , are

zero determines what would be called in the resonat
group method~RGM! terminology the matching point be
tween the internal and the asymptotic region. It is import
to remark thatN is determined prior to solving the AM equa
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FIG. 5. Vn
(1) ~a, top! andVn

(2) ~b, bottom! as a function ofb for various values ofn and an energy of 1 MeV.
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tions, and is obtained from the simple knowledge of t
potential-energy matrix elements.

To corroborate the fact for an optimal choice of basis
a given Gaussian potential, a quantitative view ofVn

(1) and
Vn
(2) as a function of the radius parameterb is shown in

Figs. 5~a! and 5~b! for a selected number ofn values. From
this figure one can determine for which values of the rad
parameter one obtains a properly converged solution, by c
sidering the intersection of both optimal intervals forVn

(1)

and Vn
(2) . One notices that for a potential consisting of

single Gaussian term, a very limited number of basis state
necessary for a proper convergence. For more intricate
tential forms this will not necessarily be the case, althou
an optimal value for the radius parameter, be it associa
with a relatively larger value ofN, will still be available.

To check the dependence of the so-called ‘‘optimal’’b
values~or regions! as a function of energy, Fig. 6 display
the values of bothVn

(1) andVn
(2) , relative to, respectively

V0
(1) andV0

(2) for varying b and energy for a fixedn. It is
important to notice that, at least for the Gaussian poten
the optimal value for the oscillator radius is independent
energy.

Finally Fig. 7 shows the quantitative behavior ofVn
(1) and

Vn
(2) , again relative to, respectively,V0

(1) and V0
(2) , as a
e

r

s
n-

is
o-
h
d

l,
f

function ofn. From these figures one easily obtains an op
mal number of basis functions, given the specific parame
of the problem and the precision considered. As a hands
example, Fig. 7 indicates that, for a precision of abo
1028, less than 12 basis functions are needed for allb values
between 0.5 fm and 1 fm.

The conclusions above indicate the importance of
Vn
(1) andVn

(2) quantities, and a closer investigation impos
itself. A closed expression forVn

(1) can be obtained in a
straightforward way as

Vn
~1 !5V0

~122g!n

~112g!n1L13/2k
L

3expS 2
1

2
k2

1

112g DNnLLn
L11/2S k2

124g2D ~26!

for which the full calculation is reproduced in the Appendi
This expression features a single minimum in terms

g, namely, forg51/2 orb5a/A2, with a value

Vn
~1 !5V0NnL

1

4

1

n! S k2D
2n1L11/2

expS 2
1

4
k2D , ~27!



s

274 55V. S. VASILEVSKY AND F. ARICKX
FIG. 6. uVn
(1)/V0

(1)u ~a, top! anduVn
(2)/V0

(2)u ~b, bottom! as a function ofb andE, for n520.E values are in MeV and the vertical axi
is logarithmic.
of
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of
which drops off to zero very fast in terms ofn because of its
following behavior:

Vn
~1 !'

1

n!Rn
L11/2. ~28!

Both position and behavior ofVn
(1) around this minimum

were already apparent from the foregoing figures.
The asymptotic behaviour ofVn

(1) for both small and
large values ofg is also readily obtained. For small values
g ~i.e., small values of the oscillator radiusb compared to
the potential widtha) Eq. ~26! yields the following asymp-
totic form, valid for largen:

Vn
~1 !'V0exp$2gRn

2%cn
~1 !

'V0exp$2gRn
2%A2Rnj L~kbRn!. ~29!
This expression consists of two factors in coordinate rep
sentation, the Gaussian potentialV̂(r ) and the~asymptotic!
wave functionC (1)(k,r ), both evaluated in one and th
same discrete pointr5bRn @Rn is the classical turning point
cf. ~3! and~4!#. Forg approaching zero the expression sho
a slowly decreasing behavior ofVn

(1) as a function ofn.
For large values ofg one obtains the following asymp

totic form valid for largen:

Vn
~1 !'~21!nV0

1

2g S 2kD
1/2

expH 2
Rn
21k2

4g J I L11/2S k

2g
RnD ,

~30!

which for the limiting case ofg now approaching infinity
again displays a slowly decreasing behavior as a function
n.
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FIG. 7. Logarithmic plot ofuVn
(1)/V0

(1)u ~a, top! anduVn
(2)/V0

(2)u ~b, bottom! as a function ofn for several values of the oscillator radiu
b and an energy of 1 MeV. The vertical axis shows orders of magnitude.
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Both very large and very small values ofg will thus lead
to rather badly converging solutions, which essentia
means that a large number of basis functions will have to
considered wheng reaches towards limiting values. This di
cussion on asymptotic behavior confirms conclusions alre
apparent from the numerically calculated figures ofVn

(1) .
Figure 8 indicates that the asymptotic formulas are qu

valid for a broad range ofb values, and as such, can often
used to obtain reasonable values forN for properly con-
verged solutions. Indeed, as the main factor which defi
the decreasing behavior ofVn

(1) for small, respectively, large
values of g, is the potential term, which has the valu
exp$2gRn

2%, respectively, exp$2(Rn
2/4g)%, as can be seen in

Eqs. ~29! and ~30!. So, if one considers, e.g., 1026 to be a
reasonable measure for precision, one can write appr
mately

U Vn
~1 !

V0
~1 ! U'H exp$2gRn

2%51026 ~smallg!

expH 2
Rn
2

4g J 51026 ~ largeg!,
~31!

which immediately leads to the respective valu
y
e

y

e

s

i-

s

N'14/(4g) ~for smallg) andN'14g) ~for largeg); for a
value of b/a50.2 one obtainsN'90, and for b/a53.0
N'125.

The asymptotic behavior ofVN
(1) can be used to an eve

better extent, by taking it into account when solving the A
system of equations. This will be pursued in full detail in
forthcoming section. Although more intricate to develop,
analogous analysis can be made forVn

(2) , leading to corre-
sponding conclusions.

3. Analysis of the phase shifts

In Fig. 9 we show the phase shifts obtained at an ene
of E51 MeV for different values ofg ~actually in all further
resultsa51.0 fm, so thatb andg coincide!, as a function of
the number of basis states involved in the calculation. O
notices an important gain in convergence speed~and thus
precision! when using the reformulated version of the A
equations~21!, although small and largeb ~or g) values still
require an important number of basis states.

On the same figure the normalizedcn
(0) solutions are

shown for different values ofb (g), for a calculation involv-
ing 100 basis states. These results are normalized with
spect to the normW
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FIG. 8. uVn
(1)/V0

(1)u compared to the asymptotic formulas discussed in the text, as a function ofn in a logarithmic plot. The vertical axis
shows orders of magnitude.
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W5
(n50
99 ucn

~0!u2

(n50
99 ucnu2

, ~32!

which is also included in the figures. One notices from t
value that in the ‘‘optimalb (g)’’ region very few, very
small cn

(0) contribute to the solution.
The results displayed on Fig. 9 confirm our suggest

made by analyzing the behavior ofV(1) andV(2), i.e., that
for optimal values ofb (g) convergence is achieved wit
less than 12 basis functions. They also confirm that
b50.2 one can use approximately 75, and forb53.0 ap-
proximately 100 basis states for reasonable convergence
latter were indeed overestimated by the numbers obta
from Eq. ~31!.

To corroborate the fact that the reformulated AM equ
tions ~21! provide faster converging solutions, we show
Fig. 10 both thecn andcn

(0) coefficients obtained in a calcu
lation atE51 MeV andb53.0, with a total number of 100
basis states. This picture confirms the fact that the true s
tion indeed deviates only by a small amount from the asym
totic one.

To show the dependence of the results on energy,
show in Fig. 11 the phase shift obtained with 5, 10, and
basis states compared to the exact results, and this with
original ~‘‘simple’’ ! version~7! and the reformulated versio
~21! of the AM equations. Forb values deviating reasonabl
from the optimal value, the latter form of the equations
seen to be highly superior to the original one. For very sm
and very largeb values, the convergence is still problemat

V. STABLE SOLUTIONS FOR THE AM EQUATIONS

In the preceding section we obtained interesting res
concerning the convergence behavior of the solutions of
s

n

r

the
ed

-

u-
-

e
5
he

ll
.

ts
e

AM equations in terms of the parameters defining the ba
and the potential energy. It was shown for a Gaussian po
tial that the rate of convergence was reliably predictable.

The parameterg or, for fixed potential widtha, the oscil-
lator radiusb determines the rate of convergence of the e
pansionC5(ncnun&. It was indeed seen that an optim
value~or a restricted range of optimal values! for b leads to
very fast convergence. However, values deviating more
less strongly from the optimalb lead to slowly converging
and numerically unprecise results.

As it is not always possible in a realistic calculation
choose the optimalb, for physical as well as for numerica
reasons, it is important to develop strategies for stable res
even in nonoptimalb regions. This problem was already re
ognized in@7#, were a coupled channels calculated for4He
was performed with the AM, in which both cluster and co
lective configurations were taken into account: theb value
was fixed by physical arguments~essentially optimizing the
cluster channel results!, and very nonoptimal for the collec
tive channels~in particular, the monopole mode!.

The following subsections indicate how such proble
can be solved by considering strategies to solve the
equations, without modifying the original physical proble
~e.g., by tampering withb).

A. A general analysis of the asymptotics

We attempt to evaluate the asymptotic behavior~i.e., for
n@1) for the expansion coefficientscn5^nuC& and the ma-
trix elementŝ nuV̂uC&, using only very general information
on the~unknown! wave functionC. Based on this formula-
tion we will then introduce strategies to overcome the slo
convergence situations. All assumptions made, and res
obtained, will be checked against those produced with
Gaussian potential.
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FIG. 9. Left side figures: phase shiftd ~degrees! as a function of the number of basis states involved in the calculations; the energ
fixed at 1 MeV. Dotted lines refer to the solutions obtained in the original~‘‘simple’’ ! formulation, full lines refer to solutions obtained i
the reformulated version. Right side figures: normalizedcn

(0) values~see text! for a calculation with 100 basis states. The normW is given
as a percentage.
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To derive a general view on the asymptotic behavior
the Fourier coefficientscn , we use a generator coordina
~GC! representation for the wave functionC

C~r !5E
0

`

dbg~b!r Lexp$2b2r 2% ~33!
fusing a scaled Gaussian^r ub&5r Lexp$2b2r2% as a kernel of
the integral transformation. It is well known that this kern
provides an alternative, continuous, basis to the traditio
discrete, oscillator basis. A tacit assumption in~33! is that
the continuous spectrum wave functions are representabl
such a representation,@in particular, that a ‘‘reasonable’
form for g(b) exists, leading to an integrable result#.
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FIG. 9 ~Continued!.
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1. Asymptotics of cn

The Gaussian kernel of~33! is easily expanded in terms o
the oscillator basis used throughout this paper. The b
functionsun& are explicited in a coordinate representation
~20!.

By substituting rb for r in the integral kernel
r Lexp$2b2r2%, one can recognize the generating function
the oscillator functions

~11«!2L23/2rLexpH 2
1

2

12«

11«
r2J 5 (

n50

`
«n

Nn
un&, ~34!

where

b2b25
1

2

12«

11«
or «5

122b2b2

112b2b2
. ~35!

The expansion coefficientŝnub& of exp$2b2r2% in the
oscillator basis are then

^nub&5~11«!L13/2
«n

Nn
bL

5
~122b2b2!n

~112b2b2!n1L13/2

2L13/2

Nn
bL ~36!

from which one obtains the expansion coefficien
cn5^nuCu& of C in the oscillator basis as

^nuC&5E
0

`

db g~b!^nub&

5E
0

`

db g~b!
~122b2b2!n

~112b2b2!n1L13/2

2L13/2

Nn
. ~37!

If, and when,g(b) is concentrated in a small vicinity o
b'b0, one can expect a highly convergent expansion for
oscillator lengthb'1/A2b0.

To study the asymptotic behavior of the expansion co
ficients ~37!, we consider two limiting regions forb, i.e.,
‘‘small b’’ and ‘‘large b.’’ To this end, we rewrite~37! as
follows:

^nuC&5E
0

b0
db g~b!^nub&1E

b0

`

db g~b!^nub&, ~38!
is

r

n

f-

whereb051/(A2b).
Small b values: for 0<b,1/(A2b) and large values of

n, one can use the following approximate formula:

~122b2b2!n

~112b2b2!n1L13/2'exp$2Rn
2b2b2%. ~39!

For large values ofn (n@1) one also has

1

Nn
5FG~n1L13/2!

2G~n11! G1/2'Rn
L11/2/2L11, ~40!

where againRn is the classical turning point@cf. Eqs.~3! and
~4!#.

For very small values ofb, one can consider only the firs
term in ~38!; using the approximations~39! and ~40! one
then obtains the following asymptotic form of~37!:

^nuC&'A2ARnE
0

`

db g~b!~Rnb!Lexp$2Rn
2b2b2%, ~41!

which, considering~33!, leads to the final approximation

cn5^nuC&'A2ARnC~bRn!. ~42!

For small values of the oscillator lengthb, the expansion
coefficients of the wave functionC(r ) on an oscillator basis
are thus proportional to the wave function itself taken at
discrete argument valuesbRn .

Such a relationship between the wave function in coor
nate space and its oscillator representation was already
tained long ago@4#, @1# for the regular and irregular asymp
totic solutions. Later, this correspondence has been used
heuristic principle for solving e.g., the Coulomb problem
an oscillator representation@11#.

Large b values: for 1/(A2b)<b,` and large values of
n, one can use the following approximate formula:

~122b2b2!n

~112b2b2!n1L13/2

5~21!n
1

~2b2b2!L13/2

~121/2b2b2!n

~111/2b2b2!n1L13/2

'~21!n
1

~2b2b2!L13/2expH 2
Rn
2

4b2b2 J . ~43!
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FIG. 10. cn ~dotted line! andcn
(0) ~solid line!

coefficients obtained in a calculation involvin
100 basis states, withb53.0 and an energy of 1
MeV.
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The expansion coefficients can then be approximated
the second term in~38!, which for very large values ofb
leads to the following asymptotic form of~37!

^nuC&'~21!nA2Rn
L11/2bLE

0

`

db g~b!
exp$2Rn

2/4b2b2%

~2b2b2!3/2
.

~44!

Using an integral transformation, formula 11.4.29 of@12#,
the asymptotic form of thecn for largeb becomes

cn5^nuC&'~21!n
2

Ap
ARnE

0

`

dr r 2 j LSRn

b
r DC~r !, ~45!

5~21!n
2

Ap
ARnFSRn

b D , ~46!

whereF is the wave function in momentum representatio
For large values of the oscillator lengthb, the expansion

coefficients of the wave functionC(r ) on an oscillator basis
are thus proportional to the wave function in momentu
y

.

space taken at discrete arguments which are the momen
valuesRn /b. As oscillator functions in coordinate and mo
mentum space only differ by a phase (21)n and the argu-
mentr ~which in coordinate space equalsr /b and in momen-
tum space equalskb), both wave functionsC(r ) in
coordinate representation andF(p) in momentum represen
tation have essentially the same expansion coefficients.

By integrating ~45! by parts, assuming thatC(r ) is
smooth and without singular points, and taking the lead
asymptotic term forcn ~i.e., forRn@1), one obtains

^nuC&'~21!n
1

Rn
3/2C~0!. ~47!

The same result can be obtained by considering that
wave functionsF(p) of discrete and continuous spectru
states in momemtum space decrease at least as 1/p2. Substi-
tution of this limiting factor in~46! again leads to~47!

Summing up one notes that the asymptotics ofcn are
related to the wave function behavior in coordinate space:
small values ofb the asymptotics are proportional to th
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FIG. 11. Phase shiftd ~degrees! as a function of energy, obtained with 5~dotted line!, 10 ~dashed line!, and 15~dashed-dotted line! basis
states. The solid line corresponds to the exact phase shift. Left side figures: phase shifts calculated with the original version of the
equations. Right side figures: phase shifts calculated with the reformulated version of the dynamical equations.
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wave function for larger , and for large values ofb the
asymptotics are proportional to the wave function in the
cinity of the origin.

2. Asymptotics ofŠnzV̂zC‹

Asymptotic expressions for the matrix elemen

^nuV̂uC& can be obtained in an analogous way as
-

r

cn5^nuC& by using the GC representation of the soluti
~33!. We omit the details of the calculation, and only prese
the final results.

Small b values: for small b values ~or better, smallg
values!, the matrix elements factorize as follows:

^nuV̂uC&'V̂~bRn!^nuC&

'V̂~bRn!A2ARnC~bRn!. ~48!
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FIG. 11 ~Continued!.
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One notices that the behavior of the matrix elements co
cides with the one of theC(r ), up to a trivial factor which is
potential dependent. These results obtained for a gen
form of a short-range potential, are confirmed by the asym
totic form for Vn

(1) , evaluated earlier~29! for a Gaussian
potential.

Large b values: for large values ofb ~or g), the asymp-
totic form of the matrix elementŝnuV̂uC& reduces to the
integral

^nuV̂uC&'~21!n
2

Ap
ARnE

0

`

dr r 2 j LSRn

b
r D V̂~r !C~r !

~49!

or, in other words, to the convolution of the wave functi
with the potential in momentum representation

^nuV̂uC&'~21!n
2

Ap
ARnE

0

`

dk̃ k̃ 2v̂~kn2 k̃!F~ k̃!, ~50!

where v̂(k) and FL(k) are the Fourier transforms of th
potentialV̂(r ) and the wave functionC(r ), respectively.

These results for a general potential can again be che
by considering the corresponding form forVn

(1) obtained
earlier with a Gaussian potential. Indeed, by calculating
integral

V0E
0

`

dr r 2 j LSRn

b
r Dexp$2gr 2% j L~kr !, ~51!

where the unknown solutionC(r ) is substituted by
C (1)(k,r )5A2/p j L(kr) ~the ‘‘free particle’’ solution!, one
obtains~30!, which is valid for both largeb andn.

The matrix elementŝnuV̂uC& can be evaluated in th
asymptotic region by making the same assumptions conc
ing the behavior ofC(r ) as in the preceding section to ob
tain the asymptotic form ofcn5^nuC&. ExpandingC(r ) in
a power series ofr , keeping the first termC(0)r L and inte-
grating term by term in~49! leads to the following asymp
totic form:

^nuV̂uC&'~21!n
2

Ap
ARnv̂SRn

b DC~0!, ~52!
-

ral
-

ed

e

n-

where the Fourier transformv̂(Rn /b) of the potential deter-
mines how fast the matrix elements decrease in terms on.

B. New strategies for solving the AM equations

Based on the results obtained above, we can now sug
strategies for solving the dynamical equations of the AM,
those cases where the oscillator lengthb, or more exactly the
ratio g5(b/a)2, is relatively large or small compared to th
optimal value.

Small b values: we start from the Schro¨dinger equation in
~1!

(
m

^nuT̂2Eum&cm1^nuV̂uC&50, ~53!

(
m

^nuT̂2Eum&cm1^nuV̂uC&50, ~54!

where the indexn is connected with the internal region an
n with the asymptotic region, andN delimits the internal
region. In the asymptotic region, we can use the asympt
form ~48! for the matrix elements

^nuV̂uC&5V̂~bRn!cn , ~55!

which yields

(
m

^nuT̂2Eum&cm1^nuV̂uC&50, ~56!

(
m

^nuT̂1V̂~bRn!2Eum&cm50. ~57!

In the original version of the AM the asymptotic coeffi
cientscn were given by~6!, and obtained from a simple thre
term recurrence relation, due to the very selective coup
induced by the kinetic-energy operator between oscilla
states. Instead of the original form, and based on~57!, we
propose a modified three term recurrence form, including
asymptotic behavior of the potential matrix elements in
diagonal term

(
m

^nuT̂1V̂~bRn!2Eum&cm50 ~58!

or
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@^nuT̂un&1V̂~bRn!2E#cn1^nuT̂un21&cn21

1^nuT̂un11&cn1150. ~59!

In the asymptotic regioncn5cn
(1)1tandcn

(2) , hence the
system ~59! should be solved independently for regul
(cn

(1)) and irregular (cn
(2)) coefficients, with ‘‘boundary’’

conditions at starting remote pointsn5Na ,Na11

cn0
~1 !5A2Rn j L~kRn!, ~60!

cn0
~2 !5A2RnnL~kRn!. ~61!

These modified asymptotic coefficientscn
(1) andcn

(2) should
be considered when calculating the correspondingly mo
fied Vn

(1) and Vn
(2) in the dynamical equations~21!. The

modified equations should then be solved for the phase
d and the coefficients of the internal regioncn

(0) .
Large b values: for large values ofb, we consider the

dynamical equations in the form~17!, containing theVn
(1)

andVn
(2) terms

(
m50

^nuĤ2Eum&cm
~0!1Vn

~2 !tan~d!52Vn
~1 ! ~62!

for the internal region (n<N), and

(
m

^nuT̂2Eum&cm1^nuV̂uC&50 ~63!

for n.N.
Substitutingcm

(0)1cm
(1)1tan(d)cm

(2) for cm in ~63!, and
assuming thatcm

(1) andcm
(2) satisfy the three-term recurrenc

relation ~16!, one obtains

(
m

^nuT̂2Eum&cm
~0!1^nuV̂uC&50. ~64!

Taking the asymptotic form~52! into account, one obtain
the following equation forcm

(a) :

(
m

^nuT̂2Eum&cm
~a!1~21!nARnvSRn

b D50, ~65!

wherecn
(0) was substituted by

cn
~0!5cn

~r !1Wcn
~a! ~66!

introducing the ‘‘asymptotic’’ coefficientscn
(a) and the ‘‘re-

sidual’’ coefficientscn
(r ) . All constants in the asymptotic

form ~52! were omitted and replaced by the global fac
W to be determined. Equation~65! should now be solved
subject to the boundary condition

cn
~a!50 ~67!

for n5Na ,Na11. Having obtainedcn
(a) , the equations for

the internal region should be modified to take the substitu
~66! into account
i-

ift

r

n

(
m50

^nuĤ2Eum&cm
~r !1@Vn

~a!2Ecn
~a!#W1Vn

~2 !tan~d!

52Vn
~1 ! ~68!

whereVn
(a) now stands for the sum

Vn
~a!5 (

m50
^nuĤum&cm

~a! . ~69!

The meaning of the asymptotic coefficientscn
(a) can be

most easily understood by considering the major part of
asymptotic behavior already in an intermediaten region. In-
deed, for largeb values, there is a very slow convergence
the results. This implies that the internal region extends
wards very largen, with correspondingcn

(0) solutions prob-
ably very close~i.e., to first order! to thecn

(a) .
Numerical application: To demonstrate how the~‘‘small

b’’ and ‘‘large b’’ ! strategies accelerate the convergence,
again consider a Gaussian potential in the two limiting ca
where ~i! the oscillator radius is a factor of 5 less than t
potential range, and~ii ! the oscillator radius is a factor of 5
larger than the radius of the potential. Figure 12 compa
the phase shifts, obtained at an energy of 1 MeV, obtaine
the original, reformulated and asymptotic approaches.

In Fig. 13 we display the exact phase shifts and tho
obtained with our strategies using 5, respectively, 10, ba
states. One notices that for the ‘‘smallb’’ case, 5 basis func-
tions yield almost exact results~within a precision less than
0.01%); by even considering only one basis function,
phase shift is obtained within a precision of 1%! In the orig
nal form the latter precision could only be reached by us
more than 50 basis functions. For the ‘‘largeb strategy’’
(b/a55), the convergence speed is remarkably increas
although less spectacular than in the ‘‘smallb’’ case. The
number of states needed for an identical result in the orig
formulation ~21! is about five times higher. The two strate
gies suggested are thus seen to significantly improve the
vergence of the results and to reduce the computationa
forts to obtain a desired precision.

By modifying the form of the asymptotic AM equation
through inclusion of dynamical features as proposed and
alized above for both small and large values ofb, one is
naturally led to the introduction of an ‘‘intermediate region
This region distinguishes itself~i! from the ‘‘internal re-
gion’’ where the solutions are governed by the potential, a
~ii ! from the ‘‘asymptotic region’’ where the kinetic energ
dominates the equations. In the intermediate region, the
lutions are easily~i.e., in a numerically simple way! ob-
tained. There are then actually two variational parameter
consider,N marking the border between the internal and
termediate region, andNa marking the transition from the
intermediate to the true asymptotic region. The larger
smaller is g, the larger is the size~i.e., the difference
Na2N) of the intermediate region. The strategies propos
above for small and large values ofg have shown that, by
considering a sufficiently large intermediate region~e.g.,
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FIG. 12. Phase shifts at an energy of 1 MeV as a function of the number of basis states involved in the calculation. Dotted lines
solutions of the original~‘‘simple’’ ! formulation, solid lines represent solutions of the reformulated version, and dashed lines rep
solutions of the ‘‘new strategies.’’
re
t

b

o

e-
ior.
t

ions
uch
. In
n-
ter-
Na5500), significantly reduces the range of the internal
gion, and dramatically decreases the computational effor
obtain converged results.

The intermediate region is characterized by a noticea
but nondominant presence of dynamical~i.e., potential! ef-
fects. These effects can be well approximated by asympt
forms of both the expansion coefficientscn and potential
matrix elementŝ nuV̂uC&. For smallg ~long-range correla-
tions!, this leads to a redefinition of the equations ofcn

(1) and
-
to

le

tic

cn
(2) by incorporation a potential term in the three term r
currence relation governing the true asymptotic behav
For largeg ~short-range correlations! one approximates par
of thecn

(0) solution by its asymptotic behaviorcn
(a) . The lat-

ter are solutions of an inhomogeneous set of linear equat
containing the Fourier transform of the potential, and as s
accumulate the potential effects in the intermediate region
the region ofg near to the optimal value, where fast co
verging solutions are obtained, there is no need for an in
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FIG. 13. Phase shifts in the energy range from 0 to 10 MeV for a ratiob/a50.2, obtained in the ‘‘smallb strategy’’ ~top!, and
b/a55, obtained in the ‘‘largeb strategy’’ ~bottom!. Full lines show the exact solution, dotted~respectively, dashed! solutions are obtained
with 5 ~respectively, 10! basis states.
dy

ua
ho
ne

f
e
mal
re-

a
e-
uld
gth
al
mediate region, and thus for an approximation of the
namical equations; the values ofN andNa coincide in this
case.

VI. CONCLUSIONS

By introducing the ‘‘dynamical coefficients’’Vn
(1) and

Vn
(2) we were able to suggest a form of the dynamical eq

tions of the algebraic version of the resonating group met
~AM !. The dynamical coefficients allow one to determi
-

-
d

oscillator basis parameters~oscillator length and number o
basis functions! for obtaining otimally converging and stabl
solutions of these equations. It was shown that for an opti
parameter set 5 to 10 functions were sufficient to obtain
sults with a precision of more than 99.9%.

Our form of equations have also been shown to be
proper starting point for obtaining different solution strat
gies in parameter regions where slow convergence wo
occur. Indeed, in parameter regions were the oscillator len
is much larger, respectively much smaller, than the optim



na
le
m

ch
e
n-

to
h

n
ls
s

e
tu
te
he
u

na

r-

ng

e

.4

55 285ALGEBRAIC MODEL FOR QUANTUM SCATTERING: . . .
one asymptotic approximations could be formulated by a
lyzing the AM equations. The latter can be easily imp
mented numerically, and have shown to dramatically i
prove the convergence of the solutions.

It was shown also that, if the oscillator radius is mu
smaller than the width of the potential, the expansion co
ficientscn of the wave function on the oscillator basis coi
cide with the wave function in coordinate space up to
simple factor. In the other limiting case, when the oscilla
radius is much larger than the width of the potential, t
expansion coefficientscn were found to be proportional to
the wave function in momentum space.
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APPENDIX

In this appendix the explicit form, and governing recu
rence relations, of the dynamical coefficientsVn

(1) and
Vn
(2) are calculated for a Gaussian potential. The followi

integrals should be evaluated:

Vn
~1 !5V0E

0

`

dr r 2Fn~r !exp~2r 2/a2!C~1 !~kr !, ~A1!

Vn
~2 !5V0E

0

`

dr r 2Fn~r !exp~2r 2/a2!C~2 !~kr !, ~A2!

where

C~1 !5A2

p
j L~kr ! and C~2 !

is a solution of the inhomogeneous differential equation

~ T̂2E!C~2 !5b0F0~r !, ~A3!

@b0 is defined in eq.~13!#, which can be represented in th
integral form

C~2 !5b0E dr̃ r̃ 2G~r , r̃ !F0~ r̃ !

5b0

2

pE dk̃E dr̃ r̃ 2
j L~ k̃r ! j L~ k̃r̃ !

k22 k̃2
F0~ r̃ !

5b0S 2p D 1/2E dk̃
j L~ k̃r !c0

~1 !~ k̃!

k22 k̃ 2
. ~A4!
-
-
-

f-

a
r
e

d
o

m
r

l-
n-

Integral ~A1! is easily obtained by using formula 7.421
from @13# yielding

Vn
~1 !5~21!nV0

~122g!n

~112g!n1L13/2q
L

3expS 2
1

2
k2

1

112g DNnLLn
L11/2S k2

124g2D
5V0

~122g!n1L/2

~112g!n1~L13!/2expS 12 k2 g

112g D
3cn

~1 !~k/A124g2!. ~A5!

If g51/2, then

Vn
~1 !5V0NnL

1

4

1

n! S k2D
2n1L11/2

expS 2
1

4
k2D . ~A6!

The second integral~A2!, reduced to the form

Vn
~2 !5b0E dk̃

Vn
~1 !~ k̃!c0

~1 !~ k̃!

k22 k̃ 2 ~A7!

can be expressed through thecn
(2) coefficients

Vn
~2 !5V0

expS 12 q2 g

2g11D
~112g!n1~L13!/2~11g!n1L/2

3 (
m50

n
G~n1L13/2!

m!G~n2m1L13/2!

NnL

Nn2m,L

3@g~112g!#mcn2m
~2 ! ~q!, ~A8!

where

q5kS 11g

112g D 1/2. ~A9!

New variablesk8 and k̃8

k85A 11g

112g
k,k̃85A 11g

112g
k̃, ~A10!

and the following relation for Laguerre polynomials@see
@14#, Vol. 2, formula 10.12~40!#

Ln
a~lx!5 (

m50

n
G~n1a11!

m!G~n2m1a11!
ln2m~12l!mLn2m

a ~x!

~A11!

were introduced in~A4! to obtain this result.
To obtain the recurrence relations forVn

(1) andVn
(2) , we

start from the equations for the functionsC (1) andC (2)

~ T̂2E!C~1 !50, ~A12!

~ T̂2E!C~2 !5b0F0~r !. ~A13!
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Multiplying both sides of these equations byFn(r )V(r ) and
integrating, one obtains

^nuV̂T̂uC~1 !&2EVn
~1 !50, ~A14!

^nuV̂T̂uC~2 !&2EVn
~2 !5b0^nuV̂u0&. ~A15!

One notices the similarity of the left-hand side of both eq
tions, leading to identical recurrence relations for both ty
of coefficients. The matrix element^nuV̂u0& for the Gaussian
potential is

^nuV̂u0&5~21!nV0~12z!nzL13/2FG~n1L13/2!

n!G~L13/2! G1/2,
~A16!

where
z.
-
e

z5~g11!21. ~A17!

Using the commutation relations of the operatorsT̂ andV̂, or
the explicit form ofVn

(1) , one finally obtains

~112g!2Tn,n11Vn11
~1 ! 1@~124g2!Tn,n2E#Vn

~1 !

1~122g!2Tn,n21Vn21
~1 ! 50, ~A18!

~112g!2Tn,n11Vn11
~2 ! 1@~124g2!Tn,n2E#Vn

~2 !

1~122g!2Tn,n21Vn21
~2 !

5b0^nuVu0&. ~A19!

If in ~A19! the potential is switched off@V051 and
z51 ~or g50)#, the recurrence relations forVn

(1) andVn
(2)

revert to these ofcn
(1) andcn

(2) as is to be expected.
s
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