Home-produced eggs: An important human exposure pathway of perfluoroalkylated substances (PFAS)

Robin Lastersa,b,*, Thimo Groffena,b, Marcel Eensb, Dries Coertjensc, Wouter A. Gebbinkd, Jelle Hofmane, Lieven Bervoetsa

a ECOSPHERE, Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
b Behavioural Ecology and Ecophysiology Group, Department of Biology, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
c Centre for Research on Environmental and Social Change, Department of Sociology, University of Antwerp, Sint-Jacobstraat 2, 2000, Antwerp, Belgium
d PFA-Brussels Sprt, Abbi Cuypers 3, 1040, Brussels, Belgium
e Flemish Institute for Technological Research (VITO), Boeretang 200, 2400, Mol, Belgium

HIGHLIGHTS

• Eight PFAS were detected in home-grown eggs of free-ranging laying hens.
• PFOS was the dominant compound and concentrations decreased from the fluorochemical plant.
• Diet and age of laying hens were related to PFOS and PFOA egg concentrations.
• Homegrown eggs can be an important exposure pathway of PFAS to humans.
• Based on exposure estimation via egg intake, health guidelines were often exceeded.

ARTICLE INFO

Handling Editor: Jian-Ying Hu

Keywords: PFAS, Food, Egg, Diet, Health

ABSTRACT

Humans are generally exposed to per- and polyfluoroalkyl substances (PFAS) through their diet.Whilst plenty of data are available on commercial food products, little information exists on the contribution of self-cultivated food, such as home-produced eggs (HPE), to the dietary PFAS intake in humans. The prevalence of 17 legacy and emerging PFAS in HPE (\(N = 70\)) from free-ranging laying hens was examined at 35 private gardens, situated within a 10 km radius from a fluorochemical plant in Antwerp (Belgium). Potential influences from housing conditions (feed type and number of individuals) and age of the chickens on the egg concentrations was examined, and possible human health risks were evaluated. Perfluorooctane sulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) were detected in all samples. PFOS was the dominant compound and concentrations (range: 0.13–241 ng/g wet weight) steeply decreased with distance from the fluorochemical plant, while there was no clear distance trend for other PFAS. Laying hens receiving an obligate diet of kitchen leftovers, exhibited higher PFOS and PFOA concentrations in their eggs than hens feeding only on commercial food, suggesting that garden produce may be a relevant exposure pathway to both chickens and humans. The age of laying hens affected egg PFAS concentrations, with younger hens exhibiting significantly higher egg PFOA concentrations. Based on a modest human consumption scenario of two eggs per week, the European health guideline was
1. Introduction

The human population will reach over 9 billion people by 2050 and projections estimate that 70% of humans will then live in urban areas (Galhena et al., 2013; Zipperer and Pickett, 2012). In parallel, food production will have to increase by 70% to meet the daily calorie intake demands of this growing population (Galhena et al., 2013). Consequently, novel food cultivation strategies will be required as available resources for food production, most importantly land surface, are limited. Hereby, self-cultivation of food, by means of crop production and farm animals, has been promoted and has become an increasing trend in private gardens from rural, urban and even industrial areas (Church et al., 2015; Van der Jagt et al., 2017).

Particularly, the housing of free-ranging chickens (Gallus gallus domesticus L.) has gained worldwide popularity over recent years (Capoccia et al., 2018; Padhi, 2016; Sioen et al., 2008). Chickens provide environmental and economic assets by means of kitchen waste disposal, egg production and low-cost maintenance (Waegeneers et al., 2009). Furthermore, home-produced eggs (HEPE) are often perceived by the general public to have high nutritional value (Van Overmeire et al., 2006; Waegeneers et al., 2009). For instance, HEPE accounted in 2017 for 17% of the egg consumption in Belgium and this number has been steadily increasing (VLAM, 2017). In this regard, free-ranging chickens offer unique opportunities for monitoring human exposure, as they are the most prevalent birds on earth in terms of biomass and usually live in close contact with humans (Bar-On et al., 2018; Scaramozzino et al., 2019). HEPE have also been associated with higher concentrations of organic pollutants (Sioen et al., 2008; Waegeneers et al., 2009), including per- and polyfluoroalkyl substances (PFAS) (D’Hollander et al., 2011; Gazzotti et al., 2021; Zafeiraki et al., 2016).

PFAS are synthetic and organic compounds that have been produced for more than 70 years (Post, 2021). The combination of their amphiphilic properties and strong C-F bond makes them useful for a diverse range of commercial applications, such as soil- and water repellent clothing, cleaning products, food-packaging, paper coating and fire-fighting foams (Buck et al., 2011). On the other hand, these distinctive chemical properties make PFAS highly persistent in the environment and bioaccumulative in biota (Death et al., 2021; Giery and Kannan, 2002). For instance, the serum half-lives in humans of per- and polyfluoroalkyl substances (PFAS) (D’Hollander et al., 2011; Gazzotti et al., 2021; Zafeiraki et al., 2016). PFAS intake exposures were considered to a limited extent in human health risk assessments (Gazzotti et al., 2021).

PFAS are synthetic and organic compounds that have been produced for more than 70 years (Post, 2021). The combination of their amphiphilic properties and strong C-F bond makes them useful for a diverse range of commercial applications, such as soil- and water repellent clothing, cleaning products, food-packaging, paper coating and fire-fighting foams (Buck et al., 2011). On the other hand, these distinctive chemical properties make PFAS highly persistent in the environment and bioaccumulative in biota (Death et al., 2021; Giery and Kannan, 2002). For instance, the serum half-lives in humans of per- and polyfluoroalkyl substances (PFAS) (D’Hollander et al., 2011; Gazzotti et al., 2021; Zafeiraki et al., 2016). PFAS intake exposures were considered to a limited extent in human health risk assessments (Gazzotti et al., 2021).

The main objective of this study was therefore to examine the PFAS profile and concentrations in HEPE in relation to the distance towards a known PFAS point source in Antwerp, Belgium. Second, we aimed to investigate the potential influence of housing conditions (feed type and number of individuals) and age of the laying hens on egg PFAS concentrations, based on survey data. Lastly, possible human health risks of PFAS intake through consumption of HEPE were assessed with respect to currently available health guidelines, by means of both critical (liver toxicity) and sensitive (immune toxicity) endpoints.

Given that eggs of several free-living bird species breeding near the fluorochemical plant site in Antwerp contained among the highest PFAS concentrations ever reported in bird eggs (Groffen et al., 2017, 2019a, 2019b; Lasters et al., 2021) and that egg PFAS concentrations in wild birds decreased from 3 km onwards of the plant site (Groffen et al., 2017), we hypothesize that the most diverse PFAS profile and highest concentrations in HEPE are present within a 3 km radius from the plant
site. As a consequence, the potential risk for public health through HPE consumption is expected to be highest within this 3 km radius. Regarding the potential influences of housing and feeding conditions, the following hypotheses were tested: (i) higher egg PFAS concentrations may be related with a higher number of laying hens as increased scratching behaviour would result in less vegetation coverage and increased exposure with contaminated soil particles and invertebrates; (ii) eggs of younger hens contain higher egg PFAS concentrations due to less elimination time and fewer sequestration possibilities compared to older laying hens; and (iii) higher PFAS concentrations are detected in eggs from hens that are primarily fed with kitchen waste products, which may contain potentially contaminated garden produce that is cultivated in a less-controlled way compared to commercial feed.

2. Materials and method

2.1. Study area and sample collection

During the period July–September 2018, HPE (N = 70) were collected from 35 volunteers that kept free-ranging laying hens. Two eggs from each location were sampled at the same day to ensure that the eggs originated from different individual hens. These samples were collected within a 10 km radius from a known PFAS point source in Antwerp, Belgium (Groffen et al., 2019a; Lopez-Antia et al., 2019), as displayed in Fig. 1. The study area was divided into three concentric buffer zones (A: 0–2 km, N = 18; B: 2–4 km, N = 30; C: 4–10 km, N = 22) with increasing distances from this point source. The buffer zone categories were based on the typical spatial decrease of PFAS observed in earlier studies on terrestrial bird eggs in the studied area (Groffen et al., 2017, 2019a).

2.2. Volunteer selection and survey data

Volunteers that housed at least two free-ranging laying hens in their gardens were recruited via existing social networks and regular call-ups on social media. Moreover, only volunteers were selected that kept free-ranging laying hens of at least six months of age and which had continuous access to an uncovered outdoor enclosure.

After the eggs were collected, each volunteer completed a self-reporting survey in which information on the age and flock size of the laying hens was given (Table S1). Additionally, categorical data were obtained on the feed origin of the laying hens, consisting of the following subcategories: kitchen leftovers (LF; mainly vegetable scraps and/or garden produce), commercial feed (CF; commercial layer feed) or a mix of both (M). The age dataset of the laying hens was merged into three age classes, based on the age classification system of Joyner et al. (1987): young layers (<1 year old), older layers (1–2 years old) and old layers (>2 years old). Moreover, the distance (Euclidean) of each sampling location to the PFAS point source was assessed and each location was assigned to its associated buffer zone (0–2, 2–4, 4–10 km).

The personal data of all volunteers were treated confidentially, according to the current privacy regulations (GDPR). Data management was approved by the privacy policy of the University of Antwerp. Every volunteer gave explicit approval for the processing of their data within the context of the specific research goals of this study via an informed consent. The personal results were communicated to each volunteer via a short report containing background information on PFAS, a consumption advice based on their individual results and general strategies that may lower overall PFAS exposure. The researchers were available for tackling questions of the participating volunteers.

Fig. 1. Overview of the study area in which the home-produced eggs were sampled in 2018 in three concentric distance buffers located within a radius of 2 km (buffer A, N = 18), 4 km (buffer B, N = 30) and 10 km (buffer C, N = 22) from the fluorochemical plant site (red asterisk) in Antwerp, Belgium, respectively.
2.3. Chemical analysis

All abbreviations of PFAS are based on Buck et al. (2011). Four target perfluorooalkyl sulfonic acids (PFSSAs) (PFBS, PFHxS, PFOS and PFDS), 11 target perfluoroalkyl carboxylic acids (PFCCAs) (PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFNA, PFDA, PFUnDA, PFDoDA, PFTeDA and PTFrDA) and two emerging fluorooerrous PFAS (sodium dodecafluoro-3H,4,8-dioxanonoate (NaDONA) and 2,3,3,3-tetrafluoro-2-(1,1,2,2,3,3,3-heptafluoropropoxy)-propanoic acid (HFPO-DA) or GenX) were analysed in the samples. The following isotopically target perfluoroalkyl sulfonic acids (PFSAs) (PFBS, PFHxS, PFOS and PFDS) were low when using the other two procedures (weak anion exchange solid-phase extraction (XAW method), detailed in Groffen et al., 2019c, and a combination of clean-up extraction with Envicarb powder extraction) with ISTD with exception of PFPeA, PFHpA, PFTrDA, PFTeDA, PFBS, PFDS, HFPO-DA and NaDONA for which no ISTD were present. Individual PFAS were quantified using their corresponding ISTD with exception of an ACQUITY UPLC BEH C18 pre-column (2.1 × 30 mm; 1.7 μm, Waters, USA) between the solvent mixer and the injector. The target PFAS analytes were identified and quantified based on multiple reaction monitoring (MRM) of the diagnostic transitions that are displayed in Table S3.

2.4. Chemical extraction

Prior to the extraction of the egg samples, three analytical methods were tested on a spiked blank matrix sample (= commercial eggs low in PFAS contamination, Table S2) in order to select a relatively robust, accurate and sensitive extraction procedure (see supplementary information: optimization extraction method). The clean-up extraction using graphitized Envicarb carbon powder (adopted from Powley et al., 2005) was selected for extraction of the samples, as the extraction recoveries of PFSSAs were low when using the other two procedures (weak anion exchange solid-phase extraction (XAW method), detailed in Groffen et al., 2019c, and a combination of clean-up extraction with Envicarb powder extraction followed by the XAW method) and would imply that PFHxS cannot be quantified (Fig. S1).

The egg content was transferred into a polypropylene (PP) tube and homogenized by repeatedly sonicating and vortex-mixing. The homogenized samples were weighed and around 0.3 g of homogenized sample was used (±0.01 mg, Mettler Toledo, Zaventem, Belgium) for the extraction. Homogenates were spiked with 80 μl of 125 pg μl−1 ISTD solution. After adding 10 μl of acetonitrile (ACN), the samples were sonicated three times (with vortex-mixing in between periods) and left overnight on a shaking plate (135 rpm, room temperature, 20 °C, GFL 3020, VWR International, Leuven, Belgium). Afterwards, the samples were centrifuged (4 °C, 10 min, 24000 rpm, 1037 g, Eppendorf centrifuge 5804R, rotor A-4-44) and the supernatant was stored in a 15 ml PP tube. Then, the supernatant was vacuum-dried to approximately 0.5 ml using a rotational vacuum concentrator (30 °C, type 53001, Hamburg, Germany). The extract was transferred to a PP Eppendorf tube which was filled with 50 mg of graphitized carbon powder (Supelclean ENVIO-Carb, Sigma-Aldrich, Overijse, Belgium) and 35 μl of glacial acetic acid to remove chemical impurities. The 15 ml tube was rinsed twice with 250 μl of ACN, which was transferred to the Eppendorf tube. After thoroughly vortex-mixing the tube, the extracts were centrifuged (4 °C, 10 min, 10000 rpm, 1037 g, Eppendorf centrifuge 5415R, rotor F 45-24-11). Then, the supernatant was transferred to a new Eppendorf tube and vacuum-dried until it was nearly completely dry. The dried extract was reconstituted in 100 μl of a 2% ammonium hydroxide solution diluted in ACN and filtered through a 13 mm Acidic Ion Chromatography Syringe Filter with 0.2 μm Supor (PES) membrane (VWR International, Leuven, Belgium) into a PP injector vial prior to instrumental analysis.

\[EWI (ng / kg bw / week) = \frac{\text{egg consumption (g / week) x egg PFAS concentration (ng / g ww of whole egg content)}}{\text{body weight (kg)}} \]

2.5. UPLC-TQD analysis

The target analytes were analysed using an ACQUITY Ultra-high Performance Liquid Chromatography (ACQUITY, TQD, Waters, Milford, MA, USA) coupled to a tandem quadrupole (TQD) mass spectrometer (UPLC-MS/MS) with negative electrospray ionisation. To separate the different target analytes, an ACQUITY UPLC BEH C18 VanGuard Pre-column (2.1 × 50 mm; 1.7 μm, Waters, USA) was used. The mobile phase solvents consisted of ACN and HPLC grade water, which were both dissolved in 0.1% HPLC grade formic acid. The solvent gradient started at 65% of water to 0% of water in 3.4 min and back to 65% water at 4.7 min. The flow rate was set to 450 μL/min and the injection volume was 6 μL. PFAS contamination that might originate from the LC-system was retained by insertion of an ACQUITY BEH C18 pre-column (2.1 × 30 mm; 1.7 μm, Waters, USA) between the solvent mixer and the injector. The target PFAS analytes were identified and quantified based on multiple reaction monitoring (MRM) of the diagnostic transitions that are displayed in Table S3.

2.6. Quality control and assurance

Per batch of ten samples, one procedural blank (= 10 μL ACN spiked with ISTD) was included to detect any contamination during the extraction. To prevent cross-over contamination among samples during detection in the UPLC-MS/MS, ACN was regularly injected to rinse the columns. Limits of quantification (LOQs) were calculated for each analyte, in matrix, as the concentration corresponding to a signal-to-noise ratio of 10. Calibration curves were prepared by adding a constant amount of the ISTD to varying concentrations of an unlabelled PFAS mixture. The serial dilution of this mixture was performed in ACN. A linear regression function with highly significant linear fit (all R² > 0.98; all P < 0.001) described the ratio between concentrations of unlabelled and labelled PFAS. Individual PFAS were quantified using their corresponding ISTD with exception of PFPeA, PFHpA, PFTeDA, PTFrDA, PFBS, PFDS, HFPO-DA and NaDONA for which no ISTD were present. These analytes were all quantified using the ISTD of the compound closest in terms of functional group and size (Table S3), which was validated by Groffen et al. (2019c, 2021).

2.7. Health risk indications

The potential risk of PFAS intake via HPE consumption was estimated for each of the three buffer zones. The consumption scenario was based on the intake of two HPE per week which is the general Flemish government health guideline for HPE and approximately corresponds to the average weekly egg consumption for a modal Belgian citizen (Lebacq, 2015; Sioen et al., 2008). The calculation of the PFAS intake values via eggs was conducted per age category, as younger people will have a higher relative PFAS intake per kg bodyweight (bw) compared to adults. To this end, mean body weight values were adopted from the latest food consumption datasets of the Belgian population (De Hoge Gezondheidsraad, 2003; Van der Heyden et al., 2018) for the following age intervals: 3–5, 6–9, 10–13, 14–17, 18–64 years old (Table S4). For the two latter age intervals, data were provided for both males and females as considerable weight differences exist between sexes within these age intervals. Finally, the estimated weekly intake (EWI) of PFAS was calculated by the following formula, according to Su et al. (2017):

\[\text{EWI (ng / kg bw / week)} = \frac{\text{egg consumption (g / week) x egg PFAS concentration (ng / g ww of whole egg content)}}{\text{body weight (kg)}} \]
The EWI was compared with two frequently used health guideline criteria with respect to the maximum tolerable intake of PFAS via food: the tolerable weekly intake value (TWI: 4.4 ng/kg bw per week) which considers the sum of PFHxS, PFOS, PFOA and PFNA (EFSA CONTAM Panel, 2020) and the maximum tolerable risk values (MTR: 43.8 ng/kg bw per week for PFOS and 87.5 ng/kg bw per week for PFOA) which are derived for PFOS and PFOA (Zeilmaier et al., 2016). These two criteria are based on a relatively sensitive toxic endpoint (= reduced antibody response to vaccination in infants) and a more critical endpoint (= liver hypertrophy in rats), respectively, in order to obtain a comprehensive risk estimate.

2.8. Statistical analysis

Statistical analyses were performed in the statistical software R (version 3.5.2) and in GraphPad Prism (version 9). The significance level for model testing was set at \(P \leq 0.05 \). The model assumptions were evaluated with the Shapiro-Wilk test for normality and data were log (\(x + 1 \)) transformed to comply with normality assumptions. For PFAS concentrations that were <LOQ, replacement concentration values were assigned following a maximum likelihood estimation method (Villanueva, 2005; De Solla et al., 2012).

For each distance buffer zone (A = 0–2 km; B = 2–4 km and C = 4–10 km), the PFAS profile and concentrations in the HPE (\(N = 70 \)) were calculated using descriptive statistical parameters. The composition profile of the PFAS was given as the contribution of the concentrations from single compounds to the sum of PFAS concentrations in the eggs.

Potential relationships among the PFAS concentrations and the variables from the survey data were tested on location level (\(N = 35 \)) for the following reasons: (i) due to practical constraints, some of the survey data (e.g. age) could not be derived for each individual egg and (ii) each egg cannot be considered as an independent replicate due to the hierarchical structure of the dataset (i.e. two eggs originated from different chickens which share one common environment and thus are nested within the same location). Therefore, the individual PFAS concentrations for the two eggs at each location were aggregated, resulting in independent mean values for each location (\(N = 35 \)). Moreover, PFAS with an overall detection frequency <50% were omitted from the analyses to minimize left-skewness of the respective data distribution. A one-way ANOVA was used to test for potential differences in egg PFAS concentrations among the considered buffer zones at varying distance from the fluorochemical plant site in Antwerp. A general linear model, containing the number and average age of the laying hens as explanatory variables, was used to test their potential association with PFAS concentrations. Finally, the potential effect of feed origin on the egg concentrations was examined with a one-way ANOVA. For these two latter analyses, the data were tested independently from the buffer zones to increase the statistical power of the models that were fit.

3. Results

3.1. PFAS profile and concentrations in the buffer zones

The detection frequencies of all the detected PFAS in the eggs are given in Table 1 and displayed in Fig. 2. In total, eight out of 17 target PFAS were detected in the eggs of each buffer zone, except for PFHxS. This latter compound was not detected in buffer B, although the detection of PFHxS in buffer C originated from one location that was situated on the edge of buffer B and C. Only PFOA, PFDA and PFOS were detected in >50% of the eggs in each buffer zone. PFOS and PFOA were the most frequently detected compounds and were found in all the eggs.

Table 1

<table>
<thead>
<tr>
<th>LOQ</th>
<th>PFASs (ng/g ww)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PFBA</td>
</tr>
<tr>
<td>Buffer A: 0–2 km ((N = 18))</td>
<td>0.10</td>
</tr>
<tr>
<td>Median</td>
<td>1.8</td>
</tr>
<tr>
<td>Mean</td>
<td>2.8</td>
</tr>
<tr>
<td>Range (min. - max.)</td>
<td>0.44–9.1</td>
</tr>
<tr>
<td>Freq. (%)</td>
<td>61</td>
</tr>
<tr>
<td>Contribution to (\sum)PFAS (%)</td>
<td>4.1</td>
</tr>
</tbody>
</table>

Buffer B: 2–4 km (\(N = 30 \))	Median	0.75	0.54	0.21	0.51	0.66	0.49	ND	3.5
Mean	0.75	0.57	0.27	0.66	0.78	0.57	ND	6.5	
Range (min. - max.)	0.54–0.96	0.21–1.0	<LOQ – 0.68	0.22–1.6	0.33–1.4	0.21–1.6	ND	0.54–44	
Freq. (%)	23	100	37	73	20	33	0	100	
Contribution to \(\sum \)PFAS (%)	2.2	7.1	1.2	6.0	1.9	2.3	0	79.3	

Buffer C: 4–10 km (\(N = 22 \))	Median	0.50	0.53	0.28	0.48	0.87	0.47	3.6	3.3
Mean	0.81	0.57	0.27	0.52	0.77	0.57	3.6	4.4	
Range (min. - max.)	0.40–1.5	0.13–1.0	<LOQ – 0.44	<LOQ – 0.99	0.54–0.90	0.23–1.3	3.6	0.78–13	
Freq. (%)	14	100	22	68	14	27	4.5	100	
Contribution to \(\sum \)PFAS (%)	1.8	9.6	1.4	5.9	1.8	2.6	2.7	74.1	

\(^a\) PFHxS values for buffer A and buffer C are based on one datapoint.

\(^b\) ND = compound not detected.
from every buffer zone (Fig. 2). The highest detection frequency for PFBA and PFHxS was observed in buffer A, respectively in 61% and 11% of the eggs, compared to the other buffer zones. On the other hand, three long-chain PFCAs (PFDA, PFUnDA and PFDoDA) were all most frequently detected in buffer B (Fig. 2). None of the target emerging compounds (GenX and NaDONA) were detected in any of the eggs.

The descriptive statistics (min. – max., median and mean concentrations) of all the detected PFAS in the eggs are provided in Table 1. The mean PFOS concentrations in the eggs were significantly higher in buffer A (39 ng/g ww) compared to those from buffer B and C (both $P < 0.05$, $F_{2,32} = 4.0$), for which mean concentrations of, respectively, 6.5 ng/g ww and 4.4 ng/g ww were measured (Table 1, Fig. 3). The mean PFBA concentrations tended to decrease from buffer A to B ($P = 0.06$, Fig. 3), while there were no significant differences among the buffer zones for all the other PFCAs (all $P > 0.05$, Fig. 3).

PFOS and PFOA concentrations in the eggs were positively correlated within buffer zone A (Fig. S4; $P = 0.81$), while this was not the case within other buffer zones. Overall, PFOS was the dominant compound in all buffer zones, contributing for 91%, 79% and 74% to the \sumPFCAs in respectively buffer A, buffer B and C (Fig. 4). For the \sumPFCAs, PFBA was the major compound in buffer A (55% contribution), whereas PFOA contributed most to the \sumPFCAs in buffer B and C (34% and 41% contribution, respectively). The contribution of the short-chain PFBA to the \sumPFCAs decreased from buffer A to buffer B, while the reverse was true for all the detected long-chain PFCAs (Fig. 4).

3.2. PFAS relationships with survey data

Eggs that originated from young laying hens were associated with higher PFOA concentrations compared to old laying hens ($P < 0.01$; Fig. 5), while there was no clear relationship with age and PFOS concentrations in the eggs ($P = 0.10$, $F_{2,28} = 5.9$; Fig. 5). Laying hens that were fed an obligate diet of kitchen leftovers tended to contain higher egg PFOS concentrations ($P = 0.08$, $F_{2,31} = 2.8$) and PFOA concentrations ($P = 0.07$, $F_{2,31} = 2.9$) compared to laying hens that were provided with commercial feed only. The number of chickens in the enclosure was not associated with PFAS concentrations in the eggs (all $P > 0.05$).

3.3. Human health risk

The intake estimations for the sum of four PFAS (PFHxS, PFOS, PFOA and PFNA) in different age intervals are provided in Table 2, based on a weekly egg consumption scenario of two HPE. In addition, the percentage exceedance of both the EFSA threshold (TWI; intake sum of four PFAS) and the RIVM threshold (MTR; intake of PFOS and PFOA separately) is given (Table 2). Overall, the EFSA health guideline was exceeded in the majority of the locations for all the age intervals (>67%) within 10 km from the fluorochemical plant site. The median intake values for the sum of four PFAS were highest in buffer A, ranging from 75 ng/kg bw per week to 18 ng/kg bw per week in the average infant (3–5 years old) and average male adult (18–64 years old), respectively (Table 2). The intake values for the sum of four PFAS were on average 2.5 times higher in buffer A compared to both buffer B and C, while intake was only slightly higher in buffer B compared to buffer C.

The RIVM health guideline for PFOS was exceeded in 22–56% of the locations from buffer A (Table 2), while only infants (3–5 years old) and children (6–9 years old) exceeded this health guideline in <22% of the locations in the other buffer zones (Table 2). With respect to PFOA, the RIVM health guideline was never exceeded in any of the buffer zones.

4. Discussion

4.1. PFAS profile and concentrations in the distance buffer zones

Table 3 shows an overview of available literature data reporting PFAS concentrations (min. – max. range) in HPE from Europe and China. In Belgium, D’Hollander et al. (2011) measured among the highest PFOS concentrations ever reported in HPE within a similar distance from the fluorochemical plant in Antwerp. However, PFAS compounds other than PFOS and PFOA were not examined and it was not clear how spatial variation in PFAS concentrations related to the fluorochemical plant site as 29 samples were collected across Flanders, with only three samples being obtained close to the fluorochemical plant site in Antwerp. Nevertheless, maximum PFOS concentrations (up to 3473 ng/g ww) were more than 14 times higher compared to those reported in the present study (Table 3). This apparent decrease may be explained by the phase-out of PFOS, PFOA and related compounds since 2002 at this production facility (3 M, 2000). However, subsequent and more extensive monitoring campaigns are necessary to evaluate whether there is indeed a decrease over time.

Furthermore, the PFAS detection profile in HPE largely overlaps with those in eggs of wild great tits that were sampled within similar distance from the plant site in Antwerp (Groffen et al., 2017, 2019a). Nevertheless, much higher concentrations of PFAS were measured in great tit eggs, along with the detection of additional long-chain PFCAs (>C13), which were not present in HPE. This suggests that wild birds are being exposed to PFAS to a larger degree than domestic chickens through frequent consumption of highly exposed prey items. Compared to laying hens, wild birds may consume more highly contaminated animal prey items, as they are not confined to an enclosure and hence have access to a broader foraging area. In addition, domestic chickens are given more items, as they are not confined to an enclosure and hence have access to them.

For PFOS, a significantly exponential decrease was observed in egg concentrations with increasing distance from the fluorochemical plant...
PFOS was the main product of 3 M at their production sites (3 M, 2000). The spatial variability of PFOS suggests that most of its accumulation in HPE within vicinity of the plant site is originating from historical industrial emissions. Previous studies on wildlife around this area also described this rapidly declining trend for PFOS (Dauwe et al., 2007; D’Hollander et al., 2014; Groffen et al., 2019a). Interestingly, the concentrations in HPE from buffer B and C were similar to those in other European studies, in which HPE were randomly collected without considering a distance gradient from a PFAS point source (Gazzotti et al., 2021; Zafeiraki et al., 2016). Although PFOA and PFOS concentrations in HPE from buffer A were correlated, this was not the case for eggs in buffer B and C (Fig. S4). Together, these findings indicate that PFOS and PFOA contamination in HPE within ±2 km from a fluorochemical point source is largely influenced by this primary source, whereas exposure in laying hens at more remote locations is more diffuse and complex.

In agreement with other European studies on HPE, PFOS was the dominant compound and contributed for at least 75% to the total PFAS profile in the eggs, followed by long-chain PFCAs (C ≥ 8). Furthermore, this finding was in accordance with previous monitoring studies of HPE in Europe (the Netherlands and Greece: Zafeiraki et al. (2016) and Italy: Gazzotti et al. (2021)). Moreover, PFOS is an extremely persistent compound and can be firmly retained in the subsurface soil layer for years, due to its very strong adsorption capacity with soil particles (Groffen et al., 2019a; Lu et al., 2020). The total organic carbon (TOC) content in the soil plays a central role in the adsorption capacity of PFAS to soil particles (Lu et al., 2018). Soil in chicken enclosures usually contains enriched amounts of TOC, due to the build-up of feed waste and manure (Ravindran et al., 2017). Consequently, it is hypothesized that subsurface soil in chicken enclosures from private gardens may be an important sink of PFAS, especially for those PFAS that have large soil adsorption capacity, such as PFOS and long-chain PFCAs (Lu et al., 2018). Hence, free-ranging laying hens may be directly exposed to these PFAS via digestion of contaminated soil particles and indirectly through intake of invertebrates, such as earthworms, which live in close contact with the soil. Furthermore, these long-chain PFAS show strong binding affinity towards egg (lipo)proteins, which may also explain the relatively large accumulation in eggs (Fedorenko et al., 2021).

Table 3 shows that, in contrast to studies in Europe, monitoring studies on HPE in north (Su et al., 2017) and central (Wang et al., 2019) China reported that PFBA and PFOA were the largest contributors to the total PFAS profile, instead of PFOS. Furthermore, the egg concentrations of these two formerly mentioned compounds were several orders of magnitude higher in China compared to those in Europe, both nearby and remotely from a PFAS point source. This discrepancy between both regions is most likely due to different historical and ongoing PFAS emission quantities and product output. In Europe, PFOS and PFOA have been gradually phased out from 2002 by its main manufacturers (Lau et al., 2007). Since then, China has become one of the largest global producers of PFOA (Land et al., 2018; Liu et al., 2021). In parallel with the phase out of long-chain PFAS, such as PFOA and PFOS, the short-chain PFBA has become one of the major substitute compounds in fluorochemical industry, resulting in frequent detection and increased concentrations in the environment and biota over recent years (Liu et al., 2021). This is also reflected in the present study, as the detection frequency and concentrations of PFBA in HPE tend to increase at locations closer to the plant site.
laying order effects of PFAS have been demonstrated in laying hens, with concentrations compared to relatively old laying hens. This age difference has also been observed in other studies on both terrestrial birds and waterfowl (Uria aalge; Holmström and Berger, 2008), and can be explained by both maternal transfer and fewer bodyweight (bw) per week) for the sum of four PFAS (PFHxS, PFOS, PFOA and PFNA) in different age intervals per distance buffer zone.

Table 2
Overview of the total PFAS intake values (min., median, mean and max. ng/kg bw per week) for the sum of four PFAS (PFHxS, PFOS, PFOA and PFNA) in different age intervals per distance buffer zone.

<table>
<thead>
<tr>
<th>BUFFER A (0–2 km, N = 18)</th>
<th>Intake parameters (ng/kg bw per week)</th>
<th>Percentage locations above health guideline (%) *</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age interval (years)</td>
<td>Min.</td>
<td>Median</td>
</tr>
<tr>
<td>3–5</td>
<td>2.3</td>
<td>75</td>
</tr>
<tr>
<td>6–9</td>
<td>1.7</td>
<td>56</td>
</tr>
<tr>
<td>10–13</td>
<td>1.1</td>
<td>36</td>
</tr>
<tr>
<td>14–17 Male</td>
<td>0.68</td>
<td>27</td>
</tr>
<tr>
<td>Female</td>
<td>0.77</td>
<td>26</td>
</tr>
<tr>
<td>18–64 Male</td>
<td>0.53</td>
<td>18</td>
</tr>
<tr>
<td>Female</td>
<td>0.64</td>
<td>22</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>BUFFER B (2–4 km, N = 30)</th>
<th>Intake parameters (ng/kg bw per week)</th>
<th>Percentage locations above health guideline (%) *</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age interval (years)</td>
<td>Min.</td>
<td>Median</td>
</tr>
<tr>
<td>3–5</td>
<td>6.8</td>
<td>29</td>
</tr>
<tr>
<td>6–9</td>
<td>5.0</td>
<td>21</td>
</tr>
<tr>
<td>10–13</td>
<td>3.3</td>
<td>14</td>
</tr>
<tr>
<td>14–17 Male</td>
<td>2.1</td>
<td>8.7</td>
</tr>
<tr>
<td>Female</td>
<td>2.3</td>
<td>9.7</td>
</tr>
<tr>
<td>18–64 Male</td>
<td>1.6</td>
<td>6.8</td>
</tr>
<tr>
<td>Female</td>
<td>1.9</td>
<td>8.2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>BUFFER C (4–10 km, N = 22)</th>
<th>Intake parameters (ng/kg bw per week)</th>
<th>Percentage locations above health guideline (%) *</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age interval (years)</td>
<td>Min.</td>
<td>Median</td>
</tr>
<tr>
<td>3–5</td>
<td>7.0</td>
<td>24</td>
</tr>
<tr>
<td>6–9</td>
<td>5.2</td>
<td>18</td>
</tr>
<tr>
<td>10–13</td>
<td>3.4</td>
<td>12</td>
</tr>
<tr>
<td>14–17 Male</td>
<td>2.1</td>
<td>7.4</td>
</tr>
<tr>
<td>Female</td>
<td>2.4</td>
<td>8.3</td>
</tr>
<tr>
<td>18–64 Male</td>
<td>1.7</td>
<td>5.8</td>
</tr>
<tr>
<td>Female</td>
<td>2.0</td>
<td>7.0</td>
</tr>
</tbody>
</table>

* The percentage of sampling locations exceeding the EFSA health guideline (4.4 ng/kg bw per week) and the RIVM health guideline (PFOS: 43.8 ng/kg bw per week) are provided for each age interval. The consumption scenario was based on the intake of two home-produced eggs per week of free-ranging laying hens.

4.2. PFAS relationships with survey data

To the best of our knowledge, our study is the first to investigate whether housing conditions (feed type and flock size) and age of the laying hens affect PFAS concentrations in HPE. The survey results indicated that young laying hens contained on average higher egg PFOA concentrations compared to relatively old laying hens. This age difference has also been observed in other studies on both terrestrial birds (Park et al., 2021) and waterfowl (Uria aalge; Holmström and Berger, 2008), and can be explained by both maternal transfer and fewer elimination possibilities of young birds compared to older individuals (Holmström and Berger, 2008).

Eggs are an important elimination route for pollutants in birds and laying order effects of PFAS have been demonstrated in laying hens, with the first laid eggs containing higher PFAS concentrations (Kowalczyk et al., 2020; Wilson et al., 2020). On average, laying hens start their first egg laying cycle around the age of 18–24 weeks (Collin et al., 2020). Therefore, young laying hens (<1 year old) might deplete larger amounts of PFAS in their eggs than older individuals (>2 years old), as they have only had their first egg laying cycle and relatively high PFAS body burdens due to the maternal transfer. Furthermore, older
individuals have experienced multiple moulting periods by which they can sequester more PFAS into feathers, which is an important sequestration tissue of pollutants, including PFAS, in birds (Jaspers et al., 2009; Groffen et al., 2020). The relationship between age and egg PFOS concentrations was less clear, which may indicate that the intake of PFOS throughout the lifespan of the laying hen remains higher than the elimination rate.

Notably, backyard chickens in private gardens can become old and often keep laying eggs until the age of 8 years, whereas commercial laying hens are usually restrained for egg laying until 1.5 years of age (All et al., 2020). Moreover, the egg production of the average laying hen starts decreasing around the age of 16 months (Joyer et al., 1987), while the absolute yolk weight continuously increases with age (Suk and Park, 2001). The yolk is the main target tissue within the egg compartments, as approximately 90% and 99% of the deposited PFOA and PFOS egg concentrations, respectively, are transferred to the yolk (Su et al., 2017). Consequently, one would expect that laying hens build up again higher egg PFAS body burdens and lower elimination capacities from around 16 months of age onwards, with larger quantities of PFAS that can be transferred to a fewer number of eggs. Unfortunately, the age of the laying hens in the category “old” was still relatively young (33 ± 12 (SD) months of age) and the sample size was too low (N = 10) to properly test this hypothesis in the present study.

Laying hens that were fed an obligate diet of kitchen leftovers tended to contain higher egg PFAS and PFOA concentrations. Crop uptake of PFAS from contaminated soil has been shown to be an important entrance pathway to the terrestrial food chain (Lechner and Knapp, 2011; Liu et al., 2019). Contrary to other organic pollutants, PFAS accumulate both in vegetative and root parts of plants, which are dominated by short-chain PFAS and long-chain PFAS, respectively (Ghisi et al., 2019). Both plant tissues are frequently provided as leftovers to laying hens of private owners. This was also supported by the fact that these compounds were frequently detected in the chicken eggs. Moreover, many volunteers simultaneously cultivated their own plant crops besides the housing of chickens, which can contain relatively high PFAS concentrations compared to commercial feed as they are grown in less controlled conditions (Liu et al., 2019; Onel et al., 2018). Additionally, numerous carboxylates that were detected in the eggs are also typically found in rain water, which may be a contributing PFAS source as drinking water to the laying hens (Lu et al., 2018). Nevertheless, soil has also been identified as a major exposure source of organic pollutants to laying hens (Sien et al., 2008; Waegeneers et al., 2009), including PFAS (Death et al., 2021). Besides self-cultivated crops, other potential food sources can be a significant source of contamination to domestic chickens (e.g. fat leftovers of meat and cheese crusts), which should be considered in future studies.

4.3. Human health risk indications

Overall, consumption of HPE may contribute to a large extent to the intake of PFAS in humans. For all age groups, the TWI of 4.4 ng/kg bw per week (for the sum of PFHxS, PFOS, PFOA and PFNA) was exceeded for the intake of PFAS in humans. For all age groups, the TWI of 4.4 ng/kg bw per week (for the sum of PFHxS, PFOS, PFOA and PFNA) was exceeded. For instance, soil characteristics, scratching area and density (number of hens/m²), vegetation coverage and shape of the chicken enclosure can (in)directly influence the bioavailability and exposure of organic pollutants to laying hens (Sien et al., 2008; Waegeneers et al., 2009). Ultimately, this may result in remedial measures for inhabitants to reduce exposure to PFAS via self-cultivated food consumption. Finally, extensive research considering multiple self-cultivated food items other than HPE (vegetables and fruit), as well as relevant exposure sources to laying hens (soil, rain water and key prey items, such as earthworms) should be considered in future PFAS monitoring campaigns.

5. Conclusion

The present study detected numerous PFAS in HPE, both nearby (<2 km) and up to 10 km from a major known point source. PFOS was the dominant compound and present in relatively high concentrations, compared to other European studies on PFAS in food. PFOS concentrations steeply declined with increasing distance from the fluorochemical plant in Antwerp. By comparing our results to previous studies in the same study area, maximum PFOS concentrations seem to have declined over the years, probably resulting from the phase-out. Nevertheless, the present findings indicate that human exposure to PFAS via consumption of HPE can be relatively high, even for compounds that have been phased-out decades ago in Europe. Potential health risks with respect to currently established health guidelines cannot be excluded, as the tolerable weekly intake threshold was often exceeded in every examined buffer zone.

Author contributions statement

Robin Lasters: Conceptualization, Investigation, Methodology & Data Curation, Formal analysis, Visualization, Writing – Original Draft Thimo Groffen: Conceptualization, Investigation, Validation, Writing – Review & Editing Marcel Eens: Supervision, Funding Acquisition,
Declarations of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Data availability

The data that has been used is confidential.

Acknowledgements

The authors would like to thank the University of Antwerp and FWO-Flanders for the financial support of this research (FWO nr: G03861SN). We are very grateful to the volunteers for their willing participation in this study and the provisioning of real-life data. We especially thank Wendy D’Hollander for the recruitment of volunteers in several areas. Furthermore, we acknowledge Tim Willems for his assistance during the PFAS analyses. RL is an FWO-aspirant researcher and TG a FWO-postdoc researcher.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.chemosphere.2022.136283.

References
