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Abstract Brain function relies on an intricate network of highly dynamic neuronal 7

connections that rewires dramatically under the impulse of various external cues and 8

pathological conditions. Amongst the neuronal structures that show morphological 9

plasticity are neurites, synapses, dendritic spines and even nuclei. This structural 10

remodelling is directly connected with functional changes such as intercellular 11
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communication and the associated calcium bursting behaviour. In vitro cultured neu- 12

ronal networks are valuable models for studying these morpho-functional changes. 13

Owing to the automation and standardization of both image acquisition and image 14

analysis, it has become possible to extract statistically relevant readout from such 15

networks. Here, we focus on the current state-of-the-art in image informatics that 16

enables quantitative microscopic interrogation of neuronal networks. We describe 17

the major correlates of neuronal connectivity and present workflows for analysing 18

them. Finally, we provide an outlook on the challenges that remain to be addressed, 19

and discuss how imaging algorithms can be extended beyond in vitro imaging 20

studies. 21

5.1 Introduction 22

Development of the central nervous system entails formation and maintenance of 23

intricate neuronal networks. Synaptic activity and the associated opening of gated 24

ion channels initiate precisely calibrated calcium transients in neuronal cells, which 25

drive short-term and long-term morphological changes, such as dendritic growth 26

and arborization (Bading 2013). This dynamic, cytoskeleton-based remodelling of 27

neuronal appendages, also known as neuronal plasticity, is a key process for virtually 28

all long-lasting adaptations of the brain, such as learning, addiction or chronic 29

pain sensation (Alvarez and Sabatini 2007). While resulting from very different 30

molecular triggers (e.g. the production of toxic protein oligomers, cytoskeletal 31

dysregulation, etc.), disrupted neuronal plasticity represents a pathological hallmark 32

that is shared by numerous psychiatric and neurodegenerative diseases, including 33

schizophrenia, autism spectrum disorder and Alzheimer’s disease (Lin and Koleske 34

2010; Penzes et al. 2011). Thus, understanding the intricacies of neuronal con- 35

nectivity may not only be instrumental in gaining insights into its physiological 36

importance, but also in resolving stages of disease development. 37

5.1.1 Models for Studying Neuronal Connectivity 38

Because of the complexity and long-distance wiring of neurons in the brain, 39

neuronal connectivity is ideally studied within the entire organ. Boosted by the 40

differential power of stochastic multispectral labelling technologies like Brainbow 41

and derivatives (Cai et al. 2013), multiple imaging approaches have been developed 42

that enable connectivity studies in whole fixed and even living brain. Microscopic 43

imaging in awake animals has been achieved with implanted cranial windows that 44

can be accessed after restraining the animal, or using miniature head-mounted 45

microscopes in freely moving animals (Chen et al. 2013; Dombeck et al. 2007). 46

However, the imaging depth of such studies is limited to the optical penetration 47

power of multi-photon microscopes (� 1 mm) (Nemoto 2014). Recent advances 48
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in tissue clearing and re-invention of light-sheet illumination microscopy have 49

enabled 3D microscopic imaging of intact fixed brains at unprecedented speed (Kim 50

et al. 2013). One of the aims of these efforts is to build a digital atlas from the 51

vast datasets to enable mapping the connectivity between and within brain regions 52

(The Allen Institute 2015; Harvard 2015). However, the methods for acquiring and 53

analysing such datasets are far from standard, the size of the datasets is massive and 54

interpretation, let alone quantification, is non-trivial (Peng et al. 2013). 55

For live cell imaging studies, acute or organotypic brain slices circumvent 56

the need for extended animal suffering and monitoring of multiple physiological 57

parameters typically accompanying in vivo manipulation (Cho et al. 2007). While 58

maintaining a reasonable level of tissue architecture, this approach improves the 59

experimental access and allows precise control of the extracellular environment. 60

Nevertheless, afferent signals from distant brain regions are inevitably lost and 61

physiological processes cannot be associated with behavioural information. A major 62

disadvantage that is shared by both intact brain and slice model approaches is that it 63

is difficult to standardize the quantitative readout when it comes down to studying 64

connectivity. The inter-individual variability between model organisms creates a 65

tremendous bias and impedes easy extraction of morphological and functional cues. 66

This, together with the need for large amounts of biological material, precludes 67

their use from routine screening in preclinical drug screening campaigns, which 68

is why in vitro models have been established. The advantage of using neuronal 69

cells is that multiple cell cultures can be grown in parallel, allowing multiplex 70

experiments with internal controls. Although existing 3D anatomical connections 71

are lost during the preparation of primary neurons (e.g. extracted from mouse 72

embryos), the cells preserve numerous morphological and functional properties of 73

in vivo neuronal networks (Cohen et al. 2008; Dotti et al. 1988; Fletcher et al. 1994; 74

Papa et al. 1995). For example, it has been shown that primary cultures recapitulate 75

synchronous calcium bursting behaviour, when cultured in a 96-well plate format, 76

making this platform highly attractive for high-throughput pharmacological and 77

genetic manipulation (Verstraelen et al. 2014; Cornelissen et al. 2013). To overcome 78

species differences, recent efforts have also led to the use of human iPSC-derived 79

neuronal cultures (Takahashi and Yamanaka 2006; Imamura and Inoue 2012). iPSC 80

technology circumvents ethical obstructions regarding human embryonic stem cells 81

and allows cultivating patient-derived neurons, thereby eliminating the need for 82

artificial disease models. 83

5.1.2 Correlates of Neuronal Connectivity 84

Cultivated neuronal networks display both morphological and functional features 85

that can be used to quantitatively describe the degree of connectivity (Fig. 5.1). The 86

outgrowth of axons and dendrites, collectively called neurites, is a morphological 87

feature that provides information about the general health of the neurons and the 88

connectivity within the neuronal network. Consequently, this feature has been used 89
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Fig. 5.1 Correlates of neuronal network connectivity. The main morphological (neuronal mor-
phology, synapses and dendritic spines) and functional (calcium activity) correlates of in vitro
neuronal network connectivity are depicted. Immunocytochemical labelling of cytoskeletal pro-
teins, such as ˇ-III-tubulin, allows quantifying the neuronal morphology, while labelling of
synaptic proteins provides information about the synapse density or the type of neurotransmitter
they process. Dendritic spines are specialized compartments that contain excitatory synapses and
can be highlighted with lipophilic dyes (e.g. CM-DiI). Both density and morphology of spines
correlate with synaptic strength and hence network connectivity. Calcium imaging (e.g. using the
calcium-sensitive dye Fluo-4 AM) allows studying the spontaneous electrical activity of neurons

in high-throughput compound toxicity screening and safety evaluation of drugs and 90

environmental chemicals (Harrill et al. 2013; Popova and Jacobsson 2014; Sirenko 91

et al. 2014). Different approaches to quantify neuronal morphology (e.g. neurite 92

outgrowth, neurite bifurcations and Sholl analysis) are discussed in Sect. 5.2.2. 93

Neuronal communication is established through the formation of synapses. A 94

synapse consists of three major compartments: a presynaptic compartment, a postsy- 95

naptic compartment and the synaptic cleft. Pre- and postsynaptic compartments are 96

highly specialized morphological structures containing specific proteins that can be 97

used as markers for assessing neuronal connectivity. As such, fluorescent labelling 98

and quantification of synaptic proteins may provide valuable information about the 99

number of synapses, and therefore serve as an indicator of the connectivity in the 100

network. This is discussed in Sect. 5.2.3. 101

While inhibitory synapses are made directly on the dendritic shaft, the post- 102

synaptic compartment of excitatory synapses is predominantly located on highly 103

specialized structures, called dendritic spines. These spines are small (0.5–3 �m) 104
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protrusions from the dendritic shaft that were first described by Ramon y Cajal in 105

1891 (Cajal 1891). The exact functions of spines are still debated, but the general 106

view is that they compartmentalize the local electrical and biochemical processes 107

of a single synapse (Sala and Segal 2014). They are highly dynamic structures that 108

change in shape, volume and density in response to cues that influence synaptic 109

strength. Throughout the continuum of spine shapes, different morphological stages 110

(thin, stubby or mushroom shape) can be discriminated, which can change within 111

a matter of minutes via rearrangements of the actin cytoskeleton [Fig. 5.1; (Dent 112

et al. 2011; Lai and Ip 2013; Maiti et al. 2015)]. The synaptic receptors on 113

spines are connected to a local cytoskeletal network via the assembly of scaffold 114

proteins, called the postsynaptic density (PSD). Thin spines contain relatively small 115

PSDs and emerge and disappear over a few days, whereas mushroom spines with 116

larger PSDs may persist for months. Spine density and morphology are becoming 117

increasingly popular as readouts for neuronal network connectivity and alterations 118

in both features have been described in numerous neurological disorders, including 119

Alzheimer’s disease, schizophrenia, intellectual disabilities and autism spectrum 120

disorders (Penzes et al. 2011). 121

While morphological correlates provide a static impression of connectivity, 122

they do not inform on the actual synaptic communication taking place within a 123

network. It is only by direct assessment of this electrical activity that one can 124

grasp the true degree of functional connectivity (discussed in Sect. 5.2.3). Cultivated 125

neurons are known to exhibit spontaneous electrical activity, which tends to evolve 126

from stochastic activity of individual neurons into robust, synchronized network 127

activity (Cohen et al. 2008; Verstraelen et al. 2014). Neuronal electrical activity 128

can be visualized by means of voltage or calcium sensors, both of which are 129

available as synthetic dyes or genetically encoded fluorescent proteins (Broussard 130

et al. 2014; Fluhler et al. 1985; Jin et al. 2012; Paredes et al. 2008). Such a 131

functional approach not only allows assessing the effect of chronic treatments on 132

neuronal connectivity, but can also provide information about acute responses to 133

pharmacological perturbations. 134

5.1.3 From Snapshots to Numbers: Towards High-Content 135

Neuro-Imaging 136

Both primary and iPSC-derived neuronal networks can be cultivated in multi-well 137

plates, starting from a limited amount of biological material. In combination with 138

automated fluorescence microscopy, these networks make an attractive model for 139

upscaling to a high-content screening (HCS) platform (Cornelissen et al. 2013; 140

Schmitz et al. 2011). Of vital importance for such a platform is robust measurement 141

of the endpoint of interest. Manual quantification is not only labour-intensive, but 142

also prone to observer bias, which hampers reproducibility of the data. To eliminate 143

this bias and boost throughput, automation of image analysis is inevitable. However, 144
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the design and implementation of generic automated image analyses are non-trivial 145

since the experimental conditions, such as microscope settings, type of stains, 146

cell type and cell densities that are used, introduce a strong variability in image 147

quality (Meijering 2010). Nevertheless, with sufficient standardization of the sample 148

preparation and image acquisition protocols, and adequate pre-processing of the raw 149

image datasets, the major correlates of neuronal connectivity can be quantified in 150

an unbiased way. In the following paragraphs, we discuss the main image analysis 151

strategies for quantification of morphological and functional endpoints. 152

5.2 Measuring Morphological Correlates: From Networks 153

to Spines 154

As mentioned above, neurons exhibit strong morphological plasticity. Relevant 155

dynamic changes that can be quantified are neuronal morphology, synapse devel- 156

opment and the emergence and remodelling of dendritic spines. The analysis of 157

each of these features differs, but they all rely on a generic workflow that consists of 158

four major steps, namely pre-processing (image restoration), segmentation (object 159

detection), rectification (visual verification and correction) and analysis (feature 160

extraction). We will first briefly introduce some of the generic methods in image 161

pre-processing that apply to all analysis pipelines, after which we will focus on the 162

more dedicated algorithms for extracting morphological data. 163

5.2.1 Basic Image Pre-processing 164

The principal task of image pre-processing is to correct for systematic errors and 165

imperfections that have been introduced by the image acquisition system. These 166

errors include image blur (imposed by the point-spread function), noise (photon 167

and detector noise) and intensity gradients (due to spatiotemporal illumination 168

inhomogeneity). Various algorithms have been introduced to tackle these issues. 169

One of the first pre-processing steps that is often used is deconvolution (Heck et al. 170

2012). It is also known as image restoration since it aims at reversing the image 171

formation process, thereby improving the signal-to-noise ratio (SNR) and image 172

resolution (Sarder and Nehorai 2006). Image noise predominantly results from the 173

stochastic nature of the photon-counting process at the detectors (i.e. Poisson noise), 174

and the intrinsic thermal and electronic fluctuations of the acquisition devices (i.e. 175

Gaussian noise). Gaussian noise can be easily removed by conventional spatial 176

filtering techniques (e.g. mean filtering or Gaussian smoothing). This works fast, 177

but generally tends to reduce noise at the expense of sharpness. More advanced [e.g. 178

wavelet-based (Zhang et al. 2008)] methods that correct for Poisson noise have been 179

described as well. Heterogeneous illumination and nonlinearities in the acquisition 180
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path are usually corrected for by subtracting an image of an empty region (flat-field 181

correction) or by local background subtraction (pseudo-flat field correction). 182

5.2.2 Neuronal Morphology 183

The necessity for analysing neuronal morphology has led to the development of a 184

variety of image analysis strategies that mainly differ in their level of accuracy and 185

throughput [for an overview of tools see Parekh et al. (Parekh and Ascoli 2013); 186

Fig. 5.2]. Tracing methods tend to delineate individual neuronal extensions, with 187

high accuracy, but typically demand well-contrasted individual neurons. Thus, either 188

isolated neurons or sparsely labelled neuronal networks are warranted. The latter is 189

typically achieved by means of stochastic labelling methods (e.g. Golgi-staining or 190

DiI) or transgene mouse models [e.g. Thy1-YFP (Feng et al. 2000) or Brainbow 191

mice (Livet et al. 2007)]. Tracing is done either manually or semi-automatically, 192

assisted by global image processing operations and/or local path finding algorithms. 193

An alternative group of methods to define neuronal morphology rely on global, 194

intensity-based thresholding. The advantage of such methods is that they can be 195

applied easily to sparsely labelled networks but also to completely stained, dense 196

networks (using pan-neuronal markers, such as ˇ-III-tubulin or MAP2). Once the 197

neuron is segmented, different metrics can be derived depending on the density 198

of labelled cells. For sparse labelling methods, a fairly simple technique to gauge 199

the complexity of individual neuronal morphology is based on Sholl analysis. In 200

addition, more detailed metrics of single neurons can be obtained such as neurite 201

length and dendritic branching. For pan-labelled neuronal networks, an estimate of 202

these neuron-specific parameters can be given, provided a neuron-specific nuclear 203

counterstaining is available. 204

5.2.2.1 Sparsely Labelled Neurons 205

Starting from the camera lucida, an optical superposition system that was used to 206

draw the outline of nerve cells by hand, several efforts have been made to generate 207

digital reconstructions of neuronal morphology. The first tools that became available 208

[e.g. Neuron_Morpho (Brown et al. 2005) and Neurolucida (MBF Bioscience 209

2015b)] enabled the manual delineation of neurites in a single plane. Although more 210

recent methods allow the segmentation of neuronal processes in 3D by delineating 211

2D projected images (Peng et al. 2014), manual annotation is slow and labour- 212

intensive, and therefore not amenable to upscaling. 213

Although the nomenclature and classification of automated neuron tracing 214

algorithms are not consistent in literature, from an image informatics perspective, 215

we discern global image processing methods, local tracing methods, and more 216

modern algorithms that use a combination of both. 217
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Fig. 5.2 Morphological analysis of sparsely labelled and pan-labelled neuronal networks. A. To
acquire a detailed view of individual neurite length, sparsely labelled neurons can be traced using
semi-automated and automated algorithms. The traced neuron can then be subjected to skeleton
analysis to derive detailed information about the neuron’s morphology, or to Sholl analysis. The
latter method describes the complexity of the neuronal morphology by the number of intersections
of the neurites with a group of concentric circles drawn around the cell soma. B. This panel
shows a multi-tier global segmentation method for analysing pan-labelled neuronal cultures, as
implemented in MorphoNeuroNet (Pani et al. 2014). A combination of intensity-based (2, 3) and
edge-based (4) pre-processing algorithms enables the detection of neurites with variable thickness
and fluorescence intensity
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Early attempts to automate the neurite reconstruction process are based on a 218

global intensity threshold, followed by voxel thinning or a medial axis transform 219

to obtain the neurite skeleton (Koh et al. 2002; Wearne et al. 2005). As a result 220

of the global threshold, these methods experience difficulties in the presence of 221

signal inhomogeneities, and the iterative nature of the voxel thinning process is 222

computationally intensive. 223

More recent methods are based on a semi-automatic modus operandi, which 224

relies on local computer-aided identification of putative neurites, in tandem with 225

manual interaction and/or correction. These local exploratory algorithms, also 226

referred to as neuron tracing, better accommodate for gradual changes in neuron 227

morphology and image quality. Various methods have been developed for the local 228

detection of neurite structures. Amongst these, ridge detectors such as a Hessian 229

filter, which compute a square matrix of second order partial derivatives for every 230

pixel of the image, are used to measure the local tubularity. The directionality of the 231

neurite is obtained by calculating the eigenvectors from the obtained Hessian matrix. 232

The eigenvector with the smallest absolute eigenvalue points in the direction of the 233

vessel (i.e. the direction with the smallest intensity variations). NeuronJ (Meijering 234

et al. 2004) relies on this algorithm to determine the optimal path (that with the 235

lowest cost) between manually defined start- and endpoints (seeds). This approach 236

is also known as live-wire segmentation. Although NeuronJ was conceived for 2D 237

images, the cost function can readily be extended to 3D by using voxel cubes 238

instead of 2D kernels for the Hessian [as implemented in NeuroMantic (Myatt 239

et al. 2012) and AutoNeuron for Neurolucida (MBF Bioscience 2015b)]. Other 240

implementations to locally reconstruct neuronal morphology rely on the modelling 241

of deformable templates and the iterative addition of structural components (e.g. 242

cylinders) (Schmitt et al. 2004; Zhao et al. 2011; Al-Kofahi et al. 2002). Since 243

these local tracing methods produce one branch at the time, a separate branch 244

point detection method is required to complete the reconstruction (Al-Kofahi et al. 245

2008). Alternatively, model-free local tracing strategies, such as Rayburst sampling 246

(Rodriguez et al. 2006) and voxel scooping (Rodriguez et al. 2009), are able to 247

trace multiple branches from a single seed (typically the cell soma). Although these 248

methods enable fully automated segmentation of homogeneously stained neurons, 249

spurious gaps or branches can still occur when the implemented pre-processing 250

steps fail to accurately separate foreground and background. To address this issue, 251

algorithms have been developed to retrospectively attach disconnected branches 252

based on parameters such as orientation, distance, curvature and intensity (Chothani 253

et al. 2011). An alternative approach is to directly combine local tracing algorithms 254

with global processing methods to find multiple seed points at critical points (such 255

as terminations, bifurcations and inflections) and to guide the finer-scale tracing 256

process (Peng et al. 2011; Xie et al. 2010). While automation of the neurite tracing 257

process continues to improve, human intervention is often still required to steer the 258

tracing process. 259

Once the neurites are segmented, morphological information can be extracted 260

from the segmented neuron. An old, but still widely used method to study segmented 261

neurons is Sholl analysis (Binley et al. 2014). This method counts how many 262
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times the neurites intersect a series of concentric shells that are drawn around 263

the cell soma. Consequently, highly bifurcated neurite networks will return high 264

Sholl values. This tool, while still widely used, has been criticized for its limited 265

sensitivity and inability to correct for branches that cross the same circle multiple 266

times, and those that extend tangentially and do not cross a circle at all. This is why 267

current methods tend to focus more on extracting metrics that can be derived from 268

the backbone, such as neurite length and bifurcation points. 269

5.2.2.2 Pan-Labelled Neuronal Networks 270

Because neurite tracing relies on the precise delineation of individual neurons, 271

the throughput of this analysis method is generally low. Detailed neuronal models 272

of neurons, however, are very useful to investigate shape/function relations, or in 273

theoretical neurobiology, in which neuronal morphology is used to describe its 274

electrotonic compartmentalization (Costa et al. 2000). When a higher throughput 275

is required, global methods can be used to segment multiple neurons in the field of 276

view. Although these methods might lack the precision of neuron tracing in case of 277

signal inhomogeneities in the branches, they are well able to detect general changes 278

in neuronal morphology (e.g. neurite length) in response to compounds that affect 279

neurite outgrowth (Pool et al. 2008). 280

All global segmentation methods rely on binarization (i.e. thresholding) and 281

skeletonization of a pre-processed image [Fig. 5.2B; (Ho et al. 2011)]. The complex- 282

ity of the pre-processing steps (apart from those mentioned in Sect. 5.2.1) is what 283

truly discriminates different methods, and this is usually based on the image quality 284

and density of the cell culture. Especially in dense networks, the key is to detect both 285

low and high intensity structures of different sizes. To this end, multi-scale or multi- 286

tier object enhancement approaches have been implemented. MorphoNeuroNet 287

(Pani et al. 2014), for example, uses a combination of local contrast enhancement 288

and edge detection algorithms (unsharp masking and Laplace filtering) to highlight 289

less intense parts of the neuronal network. A combination of these images after 290

thresholding generates a more complete mask of the neuronal network than any 291

individual image would. Although this binary mask offers a basic measure of 292

the network density, it is often skeletonized to retrieve more detailed parameters, 293

including neurite length and diameter, the number of bifurcations and endpoints. 294

As the resulting skeleton often contains errors (such as spurious gaps or branches), 295

filling and pruning strategies are often used to rectify these retrospectively (Narro 296

et al. 2007). 297

In many neuronal network analyses, a measure of cellular density is calculated 298

as well. Cell or soma segmentation is facilitated in the presence of a nuclear 299

counterstain. Indeed, nuclei are preferred as seeds, because of their well-separated 300

distribution and relatively regular shape (this regularity has recently been chal- 301

lenged; cf. Box 1). Starting from the nuclear boundaries, regions of interest (ROIs) 302

are then grown to detect the soma. 303
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Box 1—Nuclear morphology as a novel correlate of neuronal connectivity
Neuronal nuclei have been shown to be extremely mouldable. They can
adopt shapes that range from near spherical to complex and highly folded,
and this is correlated with neuronal activity (Wittmann et al. 2009). Nuclear
folding has been suggested to be necessary for relaying calcium signals to
the nucleus, which is fundamental for proper gene expression (Bading 2013).
The activity-driven morphological changes of the nucleus are referred to as
morphology modulation. Quantification of the internal structure or folding of
the nucleus may thus serve as a readout for neuronal connectivity.

Nucleus segmentation is often included in neuronal image analysis
pipelines as a starting point for segmenting cell bodies and/or neurites (Mei-
jering 2010). From segmented nuclei in 2D images, nuclear shape descriptors,
such as surface and circularity, can easily be derived using general object
enhancement and thresholding procedures. As far as the internal nuclear struc-
ture is concerned, phenomena, such as folding, have been addressed far less.
Nuclear folds are generally visualized using stains for the nuclear lamina and
analysed using procedures that often include manual assessment (Wittmann
et al. 2009; Lammerding et al. 2006). To describe the internal structure of
nuclei in more objective terms, an automatic image analysis procedure has
been developed (Righolt et al. 2011) that quantifies the 3D internal structure
of nuclei on the basis of a nuclear lamina stain using three descriptors:
mean intensity, skewness and mean curvature. To track nuclear morphological
changes over time, Gerlich et al. (Gerlich et al. 2001) developed a technique
for fully automated quantification and visualization of surfaces from dynamic
3D fluorescent structures in live cells. 3D surface models were constructed for
the nuclear membrane and interpolated over time using a process called mor-
phing. These 4D reconstructions, which allow the quantification of volume
changes in the nucleus of live cells, could also serve as an indirect measure
of nuclear folding. However, both methods require a complex 4D analysis to
achieve a level of accuracy that is not necessary for measuring nuclear folding.
To make quantification of nuclear folding amenable to upscaling (high-
throughput), we implemented a 2D analysis. In our workflow (Fig. 5.3), 3D
widefield image stacks of lamin-stained neuronal nuclei are Z-projected and
nuclei are detected by means of image thresholding followed by a watershed
to dissociate neighbouring nuclei. Second, cross-referencing the nuclei with a
marker dedicated to neuronal nuclei (e.g. NeuN) allows the selection of neu-
ronal nuclei only, a process that is necessary in cell cultures, which typically
consist of neuronal as well as non-neuronal nuclei such as those of astrocytes.
Third, the lamin staining is used for segmentation of nuclear folds. A Laplace
filter specifically enhances the edges of nuclear folds as well as the edge of the
nucleus. To exclude the latter, the ROIs from the initial nuclear segmentation
are eroded and only particles lying within the eroded ROIs are identified as
folds. For each segmented ROI, the degree of folding is calculated.
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5.2.3 Sampling Synapses 304

Synapses are small structures that are close to or below the diffraction limit 305

(< 0:1 �m2), which is why their detection is often limited to the quantification 306

of diffraction-limited spots or puncta (synapse density). Pan-synaptic labelling 307

is typically achieved by targeting hallmark proteins of the pre- or postsynaptic 308

compartments (e.g. synaptophysin-I, synapsin and PSD95), although synapses 309

that process specific neurotransmitters can be discerned as well using vesicle- or 310

receptor-specific antibodies (e.g. VAChT, VGAT and GluR). Dendritic spines are 311

more pronounced neuronal substructures that only harbour excitatory synapses

Fig. 5.3 Quantification of nuclear folding. The percentage of nuclear folding can be determined
from images of lamin-stained (red) neuronal nuclei. First, neuronal nuclei are extracted based on a
neuronal marker (cyan; 3, 4). In parallel, a Laplace filter enhances (5) the detection (6) of nuclear
folds and edges of the nuclei on lamin-stained images. To identify only the ROIs that represent
nuclear folds, the nuclear masks (4) are eroded and only the ROIs that are confined within these
regions are detected
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(McKinney 2010), but exhibit different shapes that can be quantified and have 312

been suggested to relate to synaptic health. To visualize spines, the same pan- 313

cellular labelling methods are used as those discussed for analysing the neuronal 314

morphology of sparsely labelled neurons. 315

5.2.3.1 Counting Synaptic Puncta 316

Although numerous spot segmentation approaches have been developed (Meijering 317

2012), the small size of synapses makes the segmentation process very sensitive 318

to image noise and local variations in contrast (e.g. synaptic structures that display 319

weak signal intensity or the presence of intense background signals originating from 320

the soma or thick dendritic branches). Therefore, instead of more conventional noise 321

filtering methods (cf. Sect. 5.2.1), advanced denoising strategies [e.g. the wavelet- 322

based algorithm Multi-Scale Variance Stabilizing Transform (MSVST)] have been 323

proposed to enhance threshold-based segmentation of synaptic structures (Fan et al. 324

2012). 325

To further accommodate for local variations in contrast, local adaptive threshold 326

algorithms, whether or not preceded by blob detectors, such as a Mexican hat 327

or Laplace filters, can be used. In essence, the latter algorithms rely on the 328

assumption that synaptic puncta can be modelled as 2D Gaussian functions. A 329

potential disadvantage of these operators is that the approximate size of the Gaussian 330

should be specified up front. A solution to this is the use of machine-learning 331

algorithms that estimate the size of the kernel (Schmitz et al. 2011; Feng et al. 332

2012). As implemented in SynD (Schmitz et al. 2011), particles with a unique local 333

intensity maximum can be used to generate a data-driven single synapse kernel. 334

Alternative solutions are multi-scale spot segmentation (Bretzner and Lindeberg 335

1998; De Vos et al. 2010) or granulometric analysis to “sieve” image objects with 336

structure elements based on their geometry and size (Prodanov et al. 2006). 337

In a final step, several criteria can be implemented for filtering false positive 338

results. Particle size filtering and intensity cut-offs can be used to separate true 339

synaptic puncta from noise. Other methods also implement distance criteria to 340

exclude particles that are not connected to the neuronal skeleton (Schmitz et al. 341

2011). 342

Although there is a limited availability of tools that implement synapse detection, 343

SynD was successfully used in knockout studies aimed at identifying proteins that 344

are involved in synaptic transmission pathways, such as neurotransmitter vesicle 345

fusion (Meijer et al. 2012), and neurotransmitter receptor trafficking (Nair et al. 346

2013). This tool was later used to evaluate the efficacy of synapto-protective drugs 347

in a micro-fluidics screening platform (Deleglise et al. 2013). 348
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5.2.3.2 Detection of Dendritic Spines 349

Since dendritic spines are membranous protrusions that form an integral part 350

of the neurite network, their segmentation is usually part of neuronal network 351

segmentation approaches. Therefore, most tools that have been developed for the 352

detection of dendritic spines rely on or have built-in neurite tracing tools [e.g. 353

NeuronStudio (Rodriguez et al. 2006) and AutoSpine (MBF Bioscience 2015a)]. 354

As for segmentation of the previously discussed morphological parameters, 355

a simple global intensity threshold is inadequate to segment spines, since this 356

approach fails to accurately detect faint or thin spines without distorting the shape 357

of more intense spines. To address this issue, edge-enhancers [e.g. Laplace filtering 358

or unsharp masking (Bai et al. 2007)] and local adaptive threshold algorithms 359

(Cheng et al. 2007; Rodriguez et al. 2008) are used. In contrast to threshold-based 360

methods, another category of spine segmentation algorithms uses a curvilinear 361

structure detector (Zhang et al. 2007). This filter, used in many medical image 362

processing algorithms (e.g. for detecting blood vessels, airways or bones), delineates 363

the dendritic backbones directly on the original image by treating them as 2D line 364

objects. A similar method is then used to detect the centrelines of dendritic spines. 365

After segmentation and skeletonization, most dendritic spines are usually identified 366

as protrusions [Fig. 5.4A; (Bai et al. 2007; Cheng et al. 2007; Koh et al. 2002)]. 367

Some spines, however, become detached in the segmentation process and should be 368

reassigned, e.g. based on the distance from the backbone and on size criteria (Bai 369

et al. 2007). More advanced methods rely on a classifier, built from a library of 370

isolated spines (Zhang et al. 2007). 371

Although centreline extraction-based approaches offer a reasonable quantifi- 372

cation of lateral spines, the limited axial resolution of microscopes makes them 373

unreliable for quantifying spines that are oriented orthogonal to the imaging 374

plane. Therefore, most centreline-based algorithms estimate the spine density from 375

maximum intensity projected images which leads to a substantial underestimation 376

of spine densities (Bai et al. 2007; Cheng et al. 2007; Zhang et al. 2007). While 377

variations in the skeletonization algorithm have led to increased accuracy of 378

spine detection in 3D (Koh et al. 2002; Janoos et al. 2009), these algorithms 379

are computationally expensive. Model-based algorithms such as voxel clustering 380

(Rodriguez et al. 2008) and the marching cubes algorithm (Li et al. 2009) are faster 381

alternatives that identify spines based on a trained classifier. In addition, 3D Gabor 382

wavelets have recently been proposed as a fast method for detecting dendritic spines 383

by clustering candidate voxels according to the response to the wavelet transform 384

(Shi et al. 2014). 385

None of the existing algorithms are error-free. One common problem is that 386

neighbouring spines are merged on the segmented images as a result of low image 387

resolution or incorrect thresholding. To solve this, one can rely on the fact that voxel 388

intensities are naturally brighter at the centre of spines and dimmer at the edges. 389

Clumped spines can then be delimited based on their 3D intensity vector gradients 390

(Rodriguez et al. 2008). Other methods rely on 3D shape analysis to automatically 391

categorize spines into single spines or touching spines (Li and Deng 2012). 392
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Fig. 5.4 Image analysis of synapses and dendritic spines. A. Synapse puncta are extracted by
means of spot segmentation (Laplace filter). In a next step, false positives can be eliminated from
the resulting image, using intensity- and size-based filters. B. In the upper panel, workflows for
extracting dendritic spine density and morphology are shown. In the lower panel, the process is
shown of a centreline-based segmentation method, followed by Rayburst sampling to estimate the
diameter in different layers of the spine. The ratio between the width of the spine head and neck
can then be used to classify the spine type (stubby: no neck defined; thin: low ratio and mushroom:
high ratio)
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5.2.4 Identifying Spine Morphology 393

In centreline extraction-based methods, morphology determination is mainly limited 394

to quantifying the length of the segmented dendritic spines. Since small structures, 395

such as dendritic spines, comprise only a few voxels at maximal imaging resolution, 396

quantization errors due to the finite voxel representation in digital images can be 397

significant. Rayburst sampling was introduced to allow more reliable morphometric 398

studies of dendritic spines. This is done by casting a multidirectional core of rays 399

from an interior point (i.e. the centre of mass of the spine) to the spine surface, 400

allowing precise sampling of its anisotropic and irregularly shaped structure. As 401

the ray pattern is casted with sub-voxel accuracy using interpolated pixel intensity 402

values, quantization errors are minimized. Once the contours of the spine are 403

sampled, the spine diameter is calculated for different layers between the spine 404

head and spine neck (Fig. 5.4B). The aspect ratio and the width of the head are 405

then used to resolve the final spine types. Rayburst sampling has been successfully 406

used to detect a decrease in spine volume and dendrite diameter in mouse models for 407

Huntington’s disease [R6/2 (Heck et al. 2012)] and Alzheimer’s disease [TG2576 408

(Luebke et al. 2010)]. In addition to its original implementation in NeuronStudio 409

(Rodriguez et al. 2006), the algorithm was also adopted by AutoSpine [part of 410

Neurolucida 360 (MBF Bioscience 2015b)] and FilamentTracer (Andor 2015). 411

5.3 Sizing the Waves of Activity: Quantifying Calcium Fluxes 412

5.3.1 Visualizing Electrical Activity 413

Electrical activity exhibited by neurons can be visualized under the microscope 414

using membrane voltage sensors. Classical voltage sensors such as potential 415

sensitive aminonaphthylethenylpyridinium (ANEP) dyes display a spectral shift 416

upon a change in voltage across the membrane (Fluhler et al. 1985); more recently 417

developed genetically encoded sensors such as FlaSh (Siegel and Isacoff 1997), 418

ElectricPk (Barnett et al. 2012) or ArcLight (Jin et al. 2012; Piao et al. 2015) 419

change intensity with voltage. Despite rapid developments in the field (Jin et al. 420

2010), voltage sensors still do not cover a very high dynamic range and typically 421

have to be measured very fast (up to 60 kHz). This is why electrical activity is 422

still most often measured indirectly, by gauging calcium fluctuations (Herzog et al. 423

2011; Smetters et al. 1999). The high dynamic range of most calcium sensors 424

allows visualizing electrical activity on a conventional fluorescence microscope at 425

the single-neuron scale, albeit at lower temporal resolution (typically 2–4 Hz) than 426

voltage imaging. Non-ratiometric calcium probes such as Fluo-4 AM display an 427

increase in fluorescence intensity upon calcium binding, while ratiometric probes 428

like Fura-2 exhibit a shift in excitation or emission spectra, allowing precise 429

measurements of intracellular calcium concentration, not biased by uneven dye 430
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loading. In addition to synthetic calcium probes, genetically encoded sensors like 431

chameleons or GCaMPs have emerged over the last years (Broussard et al. 2014). 432

These sensors allow long-term follow-up of neuronal activity and their expression 433

can be limited to neurons, e.g. when driven by a synapsin promoter. Also, their 434

spatial localization can be confined to, e.g. synaptic compartments, when fused to 435

synaptic proteins. 436

5.3.2 Measuring Calcium Fluxes 437

Reliable quantification of dynamic calcium recordings requires integrated image 438

and signal analysis. The workflow of such an analysis is depicted in Fig. 5.5 (upper 439

panel), together with the output from a Fluo-4 AM recording of spontaneous activity 440

in a primary hippocampal culture of 7 days in vitro (DIV, lower panel). 441

To allow proper assessment of intercellular synchronicity of calcium oscillations, 442

it is essential that individual neurons be properly segmented. This issue is resolved 443

by including a nuclear label since the somas are the most abundant calcium domains. 444

If neuron-specific nuclear tags are available (e.g. nuclear-localized fluorescent 445

proteins expressed under a synapsin promoter), the analysis can immediately 446

proceed to the signal analysis stage. However, synthetic nuclear indicators load 447

all cells and require discrimination between the segmented neurons and astrocytes 448

in the field of view. This can be achieved by exposing the cultures to a high 449

concentration of glutamate, since neurons are known to respond with a very fast 450

Fig. 5.5 Workflow for analysing calcium recordings from neuronal cultures. The upper panel
shows image and signal analysis steps to extract numerical data from calcium recordings, while
the lower panel contains output from a primary hippocampal culture showing both synchronized
(corresponding to peaks in the pooled signal) and asynchronous calcium bursts
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and prolonged increase in intracellular calcium, while astrocytes exhibit a delayed 451

and transient calcium wave (Pickering et al. 2008). The first step following the 452

extraction of calcium traces from the segmented cells is to define the glutamate 453

addition point (typically the maximum signal). Then, two measures can be used to 454

classify the cellular responses. First, the rise time can be used to detect delayed and 455

slow responses of non-neuronal cells. Second, non-neuronal cells can be discarded 456

based on their relative faster loss in mean fluorescence intensity after glutamate 457

addition. 458

Similar pre-processing operations to those explained for 2D images (e.g. back- 459

ground subtraction and smoothing) are then performed on the 1D neuronal signals. 460

Inactive neurons are identified based on a signal cut-off and rejected from the 461

downstream analysis. Noise-tolerant peak detection on active neurons returns the 462

location (burst frequency) and amplitude of each peak, as well as the average 50% 463

decay time. Peaks displaying a decay time above a user-supplied maximum are 464

discarded from the analysis and are reported as the number of long decays. Readouts 465

originate from the rejection of inactive neurons (% active neurons) or from peak 466

detection on individual (frequency, amplitude and decay time) or pooled (frequency 467

of synchronized bursts) signals. However, one of the most sensitive readouts for 468

quantifying the correlation of calcium oscillations across individual neurons is the 469

burst correlation or synchronicity score (Cornelissen et al. 2013). 470

The proposed image and signal analysis pipeline allows quantifying the effects of 471

chronic pharmacological or genetic treatments on neuronal connectivity with great 472

sensitivity (Verstraelen et al. 2014). For instance, it was shown that deprivation 473

of nerve growth factor (NGF) impaired the synchronization of neuronal activity 474

while increased trophic support by a feeder layer of astrocytes enhanced network 475

formation. Additionally, division of a recording into 2 or 3 stretches allows the 476

evaluation of the acute responses to pharmacological treatments. In this context, it 477

was shown that synchronized network activity is mediated by the NMDA receptor, 478

as NMDA receptor antagonists decreased the synchronicity score. Calcium imaging 479

of in vitro network activity has also been used to study epilepsy by application of 480

the convulsive drug 4-aminopyridine and low magnesium (Pacico and Mingorance- 481

Le Meur 2014). Using an experimental in vitro model of traumatic brain injury, the 482

neuronal response to subsequent glutamate stimulation has also been studied with 483

calcium imaging (Gurkoff et al. 2012). 484

5.4 Conclusion and Perspectives 485

In this work we have given an overview of the image analysis algorithms that 486

are used to investigate neuronal connectivity in cell cultures. We discussed the 487

extraction of morphological features, such as the analysis of neuronal morphology 488

and synapses, as well as the measurement of functional parameters used in calcium 489

activity-related imaging studies. 490
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When addressing neuronal morphology, a clear trade-off should be made 491

between accuracy and throughput, and this has to be aligned with the labelling 492

procedure. Whereas neuronal tracing provides an accurate representation of 493

sparsely labelled neurons, it currently still demands manual intervention to rectify 494

segmentation errors. A machine-learning approach that is trained using a manually 495

delineated dataset has recently been proposed to reduce the proofreading time by 496

only highlighting the reconstructions with the lowest confidence (Gala et al. 2014). 497

Further elaboration on this approach may lead to a user-independent self-learning 498

algorithm such as SmartTracing (Chen et al. 2015), in which there is no need for 499

a sample dataset. On the other hand, global segmentation algorithms can be used 500

to delineate neurons and pan-labelled, dense networks in a fully automated mode, 501

albeit with lower accuracy. Recent developments are aimed at combining both 502

global and local segmentation methods to develop fully automated tracing methods 503

that are robust to staining imperfections and noise (Peng et al. 2011). Although 504

early neuronal tracing algorithms were limited to 2D, 3D tracing algorithms are 505

currently fine-tuned in such a way that they can be used to analyse stained neurons 506

in neuronal slices, or even in the intact cleared brain (Chung et al. 2013). To this 507

end, similar stochastic labelling procedures can be used for the sparse labelling 508

of single neurons. Alternatively, more refined labelling strategies (e.g. based on 509

GFP-expressing neurotropic viruses (Wickersham et al. 2007)) that allow trans- 510

synaptic tracing of neurons open doors for more detailed connectome studies. This 511

work further shows that numerous, sometimes redundant, approaches (described 512

in literature) are currently employed to analyse neuronal morphology, making it 513

difficult to select the best method for a given dataset (Peng et al. 2015). In order to 514

compare the accuracy and the computational efficiency of these different methods, 515

the BigNeuron project was launched in March 2015 (Peng et al. 2015). The major 516

goal of this project is to enhance neuron reconstruction by bench-testing multiple 517

algorithms against a large neuron dataset based on the experience of different 518

research groups around the world. 519

Synapses are analysed by direct labelling of proteins involved in synaptic pro- 520

cessing, or by assessing the density and morphology of dendritic spines. Although 521

synaptic puncta are easily extracted using blob detectors, pre- and post-processing 522

are often necessary to discriminate the true synaptic puncta from noise. Whereas 523

a count of synapses offers an estimate of the number of synaptic proteins, a 524

colocalization analysis of pre- and postsynaptic labels (e.g. VGluT and PSD95) 525

can be performed to define synaptic partners (Kay et al. 2013; Roqué 2011). In 526

addition, FM dyes can be used to selectively stain the presynaptic membrane of 527

living cells to monitor neurotransmitter release and reuptake over time (Fan et al. 528

2012). The extension of synapse segmentation to 3D is limited by the spatial 529

resolution of confocal microscopes in the axial direction. A solution to this issue is 530

to computationally reconstruct serial ultrathin sections, known as array tomography 531

(Micheva and Smith 2007). Alternatively, 3D superresolution imaging [e.g. 3D 532

STORM (Dani et al. 2010)] can be used for fast volumetric imaging of synapses 533

without the requirement of sectioning. 534
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From an image informatics perspective, dendritic spines are more difficult to 535

detect compared to synapses. This is because the segmentation process has to 536

accommodate for the irregular and variable shape of spines, compared to the more 537

consistent spot pattern that is found for synapse markers. Despite the development of 538

numerous workflows that incorporate parallel analysis lines to increase the detection 539

accuracy of spines, fully automated detection of spines is still a challenge. Similarly, 540

classifying spine morphology requires the input of a human operator for reasons of 541

quality control. Although most image processing algorithms are used to analyse

AQ3

542

small stacks of in vitro recordings, however, 3D dendritic spine analysis has also 543

been carried out in tissue slice cultures (Luebke et al. 2010) and in vivo recordings 544

(Fan et al. 2009). Tracking the changes in dendritic spine density and morphology in 545

living animals would not only allow real-time monitoring of the acute effects of drug 546

treatments, but also enable direct correlation of neuronal connectivity parameters 547

with cognitive and behavioural characteristics. Calcium imaging is a valuable tool 548

in the emerging field of iPSC technology to characterize iPSC-derived neurons and 549

to detect phenotypes in patient-derived cultures (Belinsky et al. 2014; Hartfield et al. 550

2014; Liu et al. 2012; Naujock et al. 2014). Although calcium imaging studies are 551

mostly performed on monocultures, a direct extension of such experiments would 552

be to shift to the co-cultivation of differentially labelled neuronal cultures. This 553

enables the study of cell–cell interactions on calcium bursting behaviour, which 554

might be of interest to investigate the effect of trans-synaptically transmitted toxic 555

proteins (Nussbaum et al. 2013). In addition, calcium imaging can be combined 556

with optogenetics (Deisseroth et al. 2006) or photostimulation (Godwin et al. 1997), 557

so as to perturb specific cells (or even subcellular compartments) and monitor 558

response within a multicellular context. Closing the loop between optical readouts 559

and the generation of these stimuli (i.e. by real-time generation of stimuli based 560

on live image analysis) will provide a powerful strategy to study cause-and-effect 561

relationships in neural circuitry (Grosenick et al. 2015). Although this discussion 562

was limited to calcium imaging of in vitro neuronal networks, obviously such 563

measurements can be expanded to live animals. However, this brings about an 564

additional layer of complexity and imposes challenges, such as correction for 565

motion artefacts and discrimination of calcium signals that originate from different 566

layers in the tissue (Wilt et al. 2009). Tackling these issues, however, will lead to the 567

emergence of further advanced experimental setups, such as those in which mice are 568

subjected to virtual reality systems to study their spatial navigation (Dombeck et al. 569

2010). 570

In conclusion, a lot of work has been done to automate the quantification of 571

morphological and functional features of neuronal networks. The ultimate goal 572

of these image analysis algorithms is to provide an accurate, fully automated 573

assessment of neuronal network status. Although there are still challenges to be 574

met in this respect, new methods for tissue preparation and labelling, continuing 575

advances in microscopic imaging systems and further development of image 576

analysis tools will be essential to extract meaningful data from microscopic images. 577
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