

This item is the archived peer-reviewed author-version of:

Proximity to roads, but not exposure to metal pollution, is associated with accelerated developmental telomere shortening in nestling great tits

Reference:

Grunst Andrea, Grunst Melissa, Bervoets Lieven, Pinxten Rianne, Eens Marcel.- Proximity to roads, but not exposure to metal pollution, is associated with accelerated developmental telomere shortening in nestling great tits Environmental pollution - ISSN 0269-7491 - 256(2020), 113373 Full text (Publisher's DOI): https://doi.org/10.1016/J.ENVPOL.2019.113373 To cite this reference: https://hdl.handle.net/10067/1642000151162165141

uantwerpen.be

Institutional repository IRUA

1	Proximity to roads, but not exposure to metal pollution, is associated with accelerated
2	developmental telomere shortening in nestling great tits
3	
4	Telomere shortening patterns in urban nestlings
5	
6	Grunst AS ¹ , Grunst ML ¹ , Bervoets L ² , Pinxten R ^{1,3} , Eens M ¹
7	
8	¹ Department of Biology, Behavioural Ecology and Ecophysiology Group, University of Antwerp,
9	2610 Wilrijk, Belgium
10	² Department of Biology, Systemic Physiological and Ecotoxicological Research Group, University of
11	Antwerp, 2020 Antwerp, Belgium
12	³ Faculty of Social Sciences, Antwerp School of Education, University of Antwerp, 2000 Antwerp,
13	Belgium
14	
15	[*] Corresponding author. Email: <u>andrea.grunst@uantwerpen.be</u> , Telephone: +32 (0)466 16 65 74
16	
17	Abstract
18	Comprehensively understanding the factors affecting physiology and fitness in urban wildlife requires
19	concurrently considering multiple stressors. To this end, we simultaneously assessed how metal pollution
20	and proximity to roads affect body condition and telomere shortening between days 8 and 15 of age in
21	nestling great tits (Parus major), a common urban bird. We employed a repeated-measures sampling
22	design to compare telomere shortening and body condition between nestlings from four urban study sites
23	south of Antwerp, Belgium, which are located at different distances from a metal pollution point source.
24	In addition, we explored associations between metal exposure and telomere dynamics on the individual
25	level by measuring blood concentrations of five metals/metalloids, of which lead, copper and zinc were

27	(e.g. noise and air pollution) might affect nestling condition and telomere shortening, we measured the
28	proximity of nest boxes to roads. Metal exposure was not associated with nestling telomere length or
29	body condition, despite elevated blood lead concentrations close to a metal pollution source (mean \pm SE =
30	$0.270 \pm 0.095 \ \mu$ g/g wet weight at the most polluted study site), suggesting that nestlings may have some
31	capacity to detoxify metals. However, nestlings from nest boxes near roads exhibited more telomere
32	shortening between days 8 and 15 of age, and shorter telomeres at day 15. Nestlings in poorer condition
33	also had shorter telomeres, but proximity to the road was unrelated to body condition. Thus, nutritional
34	stress is unlikely to mediate the relationship between proximity to roads and telomere length. Rather,
35	proximity to roads could have affected telomere shortening by exposing nestlings to air or noise pollution.
36	Our study highlights that traffic-related pollution, which is implicated in human health problems, might
37	also affect urban wildlife.
38	
39	Keywords: metal pollution; urban ecology, roads; telomeres; developmental stress; biomolecular
40	aging
40 41	aging
40 41 42	aging Capsule: Exposure to metals, particularly lead, was not related to telomere dynamics in nestlings,
40 41 42 43	aging Capsule: Exposure to metals, particularly lead, was not related to telomere dynamics in nestlings, whereas proximity to roads was associated with an increase in developmental telomere shortening.
40 41 42 43 44	aging Capsule: Exposure to metals, particularly lead, was not related to telomere dynamics in nestlings, whereas proximity to roads was associated with an increase in developmental telomere shortening.
 40 41 42 43 44 45 	aging Capsule: Exposure to metals, particularly lead, was not related to telomere dynamics in nestlings, whereas proximity to roads was associated with an increase in developmental telomere shortening. Introduction
 40 41 42 43 44 45 46 	aging Capsule: Exposure to metals, particularly lead, was not related to telomere dynamics in nestlings, whereas proximity to roads was associated with an increase in developmental telomere shortening. Introduction Urbanization exposes wildlife to an array of novel stressors which threaten to overwhelm organismal
 40 41 42 43 44 45 46 47 	aging Capsule: Exposure to metals, particularly lead, was not related to telomere dynamics in nestlings, whereas proximity to roads was associated with an increase in developmental telomere shortening. Introduction Urbanization exposes wildlife to an array of novel stressors which threaten to overwhelm organismal coping mechanisms, including ecosystem restructuring (e.g. novel predators and competitors) and
 40 41 42 43 44 45 46 47 48 	aging Capsule: Exposure to metals, particularly lead, was not related to telomere dynamics in nestlings, whereas proximity to roads was associated with an increase in developmental telomere shortening. Introduction Urbanization exposes wildlife to an array of novel stressors which threaten to overwhelm organismal coping mechanisms, including ecosystem restructuring (e.g. novel predators and competitors) and multiple types pollution (Sih et al., 2011; Swaddle et al., 2015). Chemical contaminants are often an
 40 41 42 43 44 45 46 47 48 49 	aging Capsule: Exposure to metals, particularly lead, was not related to telomere dynamics in nestlings, whereas proximity to roads was associated with an increase in developmental telomere shortening. Introduction Urbanization exposes wildlife to an array of novel stressors which threaten to overwhelm organismal coping mechanisms, including ecosystem restructuring (e.g. novel predators and competitors) and multiple types pollution (Sih et al., 2011; Swaddle et al., 2015). Chemical contaminants are often an especially serious problem in urban areas, where industrial activities and contamination from historical
40 41 42 43 44 45 46 47 48 49 50	aging Capsule: Exposure to metals, particularly lead, was not related to telomere dynamics in nestlings, whereas proximity to roads was associated with an increase in developmental telomere shortening. Introduction Urbanization exposes wildlife to an array of novel stressors which threaten to overwhelm organismal coping mechanisms, including ecosystem restructuring (e.g. novel predators and competitors) and multiple types pollution (Sih et al., 2011; Swaddle et al., 2015). Chemical contaminants are often an especially serious problem in urban areas, where industrial activities and contamination from historical pollution elevate exposure levels (Elliot et al., 2015; Kristensen et al., 2017). Moreover, particularly

51 along roadways, urban wildlife is also exposed to air and noise pollution from vehicular traffic (Barber et

52	al., 2010; Sanderfoot and Holloway, 2017), and artificial light at night (Swaddle et al., 2015; Raap et al.,
53	2017), all of which can negatively affect physiology, behavioral patterns and health status (Kight and
54	Swaddle, 2011; Van Kempen et al., 2012; Swaddle et al., 2015; Bauerová et al., 2017). Thus, developing
55	a comprehensive understanding of the factors affecting physiology and fitness in urban wildlife requires
56	concurrently considering multiple stressors. To this end, we simultaneously investigated the effects of a
57	metal pollution point source and proximity to roads on body condition and telomere dynamics in nestling
58	urban birds. Importantly, nestlings might be particularly sensitive to urban stressors due to
59	underdeveloped physiological coping mechanisms, and the sensitivity of developmental trajectories to
60	stress exposure (Meillère et al., 2015; Beaugeard et al., 2018).
61	Metal pollution and proximity to roads both have demonstrated negative effects on wildlife. Metals
62	are persistent inorganic pollutants that remain in the environment long after remedial policies have been
63	adopted to reduce emissions (Kristensen et al., 2017), and can have serious biological effects including
64	altering gene expression (Tchounwou et al., 2012), inducing oxidative stress (Ercal et al., 2001; Rainio
65	and Eeva, 2010), and disrupting behavior (Gorissen et al., 2005; Grunst et al., 2018; Grunst et al., 2019a)
66	and reproductive success (Janssens et al., 2003). Moreover, a substantial amount of research has
67	documented declines in avian biodiversity and reproductive success near roads, which might reflect
68	negative effects of noise, light, or air pollution, edge effects, or mortality caused by collisions (Fahrig and
69	Rytwinski, 2009; Summers et al., 2011; Swaddle et al., 2015; Raap et al., 2017). Past research has indeed
70	demonstrated negative behavioral and physiological effects of both noise (Brumm, 2004; Injaian et al.,
71	2018; Kleist et al., 2018) and light pollution (Swaddle et al., 2015) on birds, and urban air pollution has
72	been shown to cause health problems ranging from cardiovascular disease (Hoffmann et al., 2007) to
73	cognitive aging (Tzivian et al., 2015) in humans. However, whether metal pollution and dense road
74	networks cause developmental stress in urban wildlife, and mechanisms underlying potential
75	developmental effects, remain poorly elucidated.
76	Accelerated telomere shortening is an underexplored avenue whereby metal pollution, and roadway-

associated stressors, could affect life-history trajectories, and effects on telomeres could be particularly

78	pronounced during development. Telomeres are complexes of nucleotides and proteins that protect the
79	ends of chromosomes from degradation, and progressively shorten with age (Blackburn, 1991) and stress
80	exposure (Ercal et al., 2001; Epel et al., 2004; Boonekamp et al., 2014; Herborn et al., 2014). Telomere
81	shortening can be particularly rapid in developing organisms, due to fast growth rates and underdeveloped
82	physiological coping mechanisms (Boonekamp et al., 2014, 2017; Herborn et al., 2014; Nettle et al.,
83	2013, 2015). Moreover, increases in telomere shortening during development can have life-long
84	implications for physiology, behavior and fitness (Haussmann et al., 2012; Monaghan and Haussmann,
85	2006; Boonekamp et al., 2014; Monaghan, 2014; Reichert et al., 2014; Bateson et al., 2015). Indeed,
86	premature telomere shortening can lead to genomic instability, disease (Haussmann et al., 2005;
87	Monaghan and Haussmann, 2006), and reduced longevity (Salomons et al., 2009; Heidinger et al., 2012;
88	Bize et al., 2009; Barrett et al., 2013).
89	Past studies in birds suggest that the urban environment can accelerate developmental telomere
90	shortening (Salmón et al., 2016), but which urban stressors are responsible for this effect remains unclear.
91	Despite evidence from humans that pollutants (Zhang et al., 2013; Wong et al., 2014) including metals
92	(Pawlas et al., 2015; Zota et al., 2015) can accelerate telomere shortening, evidence from wildlife is
93	scarce, with only a handful of studies having addressed this issue (Blévin et al., 2016; Sletten et al., 2016;
94	Salmón et al., 2016; Stauffer et al., 2017). Moreover, air and noise pollution have also been linked to
95	telomere shortening in humans (Hoxha et al., 2009; Zhao et al., 2018). However, evidence for such
96	effects in wildlife is rare, although experimental elevation of traffic noise has been demonstrated to
97	shorten telomeres in nestlings (Meillère et al., 2015; Dorado-Correa et al., 2018). To our knowledge, how
98	proximity to roads is related to developmental telomere shortening has not been investigated in wildlife.
99	We explored whether metal pollution and proximity roads are associated with accelerated rates of
100	developmental telomere shortening in free-living populations of urban great tits. Great tits breed in nest
101	boxes that shield adults and nestlings from artificial lighting (Raap et al., 2018). Thus, light pollution
102	along roadways is unlikely to directly affect nestlings, and in a previous study, we indeed found no
103	statistically significant effects of the artificial light environment on nestling physiology (Casasole et al.,

104 2017; Raap et al., 2017). However, noise and air pollution along roadways could directly affect 105 nestlings, or edge effects on habitat quality (potentially mediated by artificial lighting) could lead to 106 changes in resource availability and nestling condition. Indeed, we previously found elevated 107 haptoglobin levels in great tit nestlings reared on noisy territories, suggesting that the noise environment 108 can affect nestling physiology (Raap et al., 2017). In this study, we measured telomere length at two time 109 points across the nestling period, at day 8 and 15, to monitor patterns of telomere shortening. Moreover, 110 we measured concentrations of five metals/metalloids in the blood to explore the link between individual 111 levels of metal exposure and telomere shortening, and monitored nestling body condition using 112 morphological measurements. Our study grants new insights into the factors affecting developmental 113 stress levels in urban environments. 114 115 Methods 116 Study system 117 We studied four populations of great tits in the south of the city of Antwerp, Belgium. These populations 118 are located at different distances from the Umicore smelter and metal refinery facility in Hoboken, which 119 is a major point source for metal pollution, especially lead (Pb), cadmium (Cd) and arsenic (As) (Eens et 120 al., 1999; Janssens et al., 2001, 2003; Grunst et al. 2018, 2019a, b). Metal deposition is high near the 121 smelter, sometimes exceeding emission limits (or target values) set by Flemish and European authorities 122 (VMM, 2016), and exponentially decreases with distance. The study populations are located 0-600 m 123 (site UM), 2500 m (F7), 4000 m (F6), 5000 m (F5) and 8500 m (F4) from Umicore (Fig. 1), and are thus 124 exposed to different levels of metal pollution. As in Grunst et al., (2018, 2019a, b), we grouped two 125 previously separated study populations (UM and F8; see Eens et al., 1999; Janssens et al., 2001) into one 126 site (referred to hereafter as UM), because these two sites are immediately adjacent, with some nest boxes 127 at F8 being as close to sources of metal pollution (waste piles) as some nest boxes at UM (Fig. 1). We 128 have studied these populations since 1999, and have accumulated substantial evidence that metal

140 Grunst et al. (2018, 2019b), we measured the distance of each nest box to the Umicore facility, as an

141 indicator of metal exposure levels. Measurements were made to the closest edge of the Umicore

143

144 *Satellite imagery from Google Earth Pro (version 7.1.8.3036): ©2018 Google, buildings ©2009 Stad

145 Antwerpen, height ©2004 AGIV. 51°09′05.95″ N 4°28′11.19″ E.

146	Figure 1. Location of study sites in relationship to (top left) Antwerp, Belgium, and (bottom) the
147	Umicore smelter facility (white star), a major source of lead and cadmium emission. UM = Umicore
148	study site, F8 = Fort 8, F7 = Fort 7, F5 = Fort 5, and F4 = Fort 4. For this 2018 study, UM and F8 were
149	grouped into one study area, referred to as UM. The rectangle on the upper panel shows the location of
150	the pollution gradient. The inset (top right) shows the location of nest boxes within F7, to illustrate that
151	nest boxes are located at varying distances from roads, and thus experience different levels of noise and
152	air pollution from traffic. Within all of the other study sites, nest boxes are also found at varying
153	distances from the road.

154

155 Nest monitoring and sampling nestlings

156 Beginning in mid-March 2017 and 2018, we checked nest boxes every other day to monitor nest building, 157 egg laying, incubation, and hatching. We only monitored first clutches. On day 8 of the nestling period, 158 we banded all nestlings with aluminum bands, and randomly selected 3-4 focal nestlings per nest to blood 159 sample for telomere length determination. We collected small ~10-20 µL blood samples via brachial 160 venipuncture using 26-gage needles and microcapillary tubes. Blood samples were immediately ejected 161 into a microvial containing 500 µL of glycerol buffer (50 mM Tris-Cl, 5 mM MgCl, 0.1 mM EDTA, 40% 162 glycerol), and stored on ice in the field. Within 5 hours, samples were flash frozen in liquid nitrogen and 163 then stored at -80°C. On day 15, we again collected blood samples from surviving focal nestlings for 164 telomere analysis, and also took an additional ~150 μ L blood sample for measuring blood metal levels. 165 Larger blood samples were stored on ice in the field, centrifuged to separate red blood cells (RBCs) from 166 plasma after return to the laboratory, and stored at -80°C. Overall, data on telomere length derived from: 167 N (measurements, nestlings, clutches)= total: 1140, 662, 194; F4:165, 100, 26; F5: 202, 123, 38; F7: 400, 168 227, 66; and UM: 372, 212, 64. However, samples for measuring blood metal concentrations were

169 collected only in 2017. Thus, for the analysis involving telomere length and blood metal levels, data

170 derived from: N (measurements, nestlings, clutches) = total: 483, 273, 89; F4: 92, 49, 20; F5: 65, 37, 13;

171 F7: 180, 101, 33; UM: 146, 86, 26.

172 On both day 8 and 15, we also measured the mass (±0.01 g) and tarsus length (±0.01 mm) of nestlings

and recorded brood size. We estimated nestling body condition using the residuals of a linear regression

174 of body mass on tarsus length (Schulte-Hostedde et al., 2005). The analyses regarding nestling condition

175 incorporated a slightly different group of nestlings than the telomere analysis (see results section for

176 sample sizes).

177

178 DNA extraction

179 We extracted DNA from 200 µL of the mixture of glycerol buffer and whole blood using the Macherey-

180 Nagel NucleoSpin® blood kit, and used a NanoDrop spectrometer to quantify the final concentration and

181 purity of DNA samples. Samples were of high purity, as indicated by 260/280 ratios close to the

182 recommended value of $1.8 (1.851 \pm 0.059)$, and 260/230 ratios close to the recommended value of 2.1

183 (2.720 ± 0.744) (Desjardins and Conklin, 2010). We diluted DNA samples to a concentration of 1 ng/µL

- 184 for use in qPCR.
- 185

186 Measuring telomere length

187 We determined telomere length using a relative real-time qPCR assay modified from Criscuolo et al.,

188 2009, which measures telomere length relative to a single copy reference gene. We used glyceraldehyde-

- 189 3-phosphate dehydrogenase (GAPDH) as our reference gene. We amplified GAPDH using primers
- 190 specifically designed and previously utilized in the great tit, GAPFD F (5'-TGTGATTTC
- 191 AATGGTGACAGC-3') and GAPDH R (5'-AGCTTGACAAAATGGTCGTTC-3') (Atema et al., 2013),
- and telomere sequences using the primers Tellb (5'CGGTTTGTTTGGGTTTGGGTTTGGGTTTGGGTTT
- 193 GGGTTTG GGTT-3') and Tel2b (5'-GGCTTGCCTTACCCCTTACCCTTACCCCTTACCCTTACCCTTA
- 194 3'), which amplify telomere sequences across avian species (Criscuolo et al., 2009). For both telomeres

195 and GAPDH, we ran 15 µL qPCR reactions containing 7.5 µL of FastStart Essential DNA Green Master 196 (Roche Diagnostic Corporation, Indianapolis, IN). Telomere reactions contained 0.9 µL each of forward 197 and reverse primers at a concentration of 10 µM (final concentration: 600 nM), 2.325 µL of water, 0.375 198 µL of 100% DMSO (2.5% of total reaction volume), and 3 µL of 1 ng/µL DNA. GAPDH reactions 199 contained 0.3 µL each of forward and reverse primers at a concentration of 10 µM (final concentration: 200 200 nM), 3.9 µL of water, and 3.0 µL of 1 ng/µL DNA. 201 We performed qPCR using a LightCycler[®]480 System (Roche). We ran telomere and GAPDH qPCR 202 reactions on separate 96-well plates. Telomere thermocycling conditions were: 10 min preincubation at 203 95°C, followed by 30 cycles of 15 sec at 95°C, 30 sec at 58°C and 30 sec at 72°C. GAPDH conditions 204 were: 10 min preincubation at 95°C, followed by 40 cycles of 15 sec at 95°C, 20 sec at 60°C, and 20 sec 205 at 72°C. We used a ramp speed of 4.4°C/sec, and followed amplification programs with high resolution 206 melting curve analysis. 207 Each 96-well plate contained a serial dilution (12 ng, 6 ng, 3 ng, 1.5 ng, 0.75 ng, and 0.375 ng) of 208 DNA, run in duplicate, which was used to determine and control for the qPCR's amplification efficiency. 209 The coefficient of determination for standard curves was high, averaging $99.2 \pm 0.001\%$ for GAPDH 210 reactions and $98.1 \pm 0.002\%$ for telomere reactions. Amplification efficiency averaged $97.6 \pm 1.3\%$ for 211 GAPDH reactions and $97.2 \pm 0.73\%$ for telomere reactions. Each plate also contained a golden standard 212 reference sample, derived by pooling DNA samples from multiple individuals. We ran all samples in 213 duplicate and in the same position on the GAPDH and telomere reaction plates. Negative controls were 214 included on every plate, and melting curve analysis confirmed amplification of a single product. We used the following formula to calculate calibrator-normalized relative telomere length (RTL; 215 amount of telomere sequence relative to GAPDH; T/S ratio): $RTL = E_T^{CtT(C)-CtT(S)} * E_R^{CtR(S)-CtR(C)}$. 216 217 In qPCR, the C_T (crossing threshold) is the number of amplification cycles needed for products to exceed 218 a threshold florescent signal, and varies with the amount of target DNA sequence in the sample. E_T is the 219 efficiency of the telomere qPCR reaction (e.g. 88% efficiency = 1.88), CtT(S) is the C_T of each sample,

221	reaction, $CtR(S)$ is the C_T of each sample, and $CtR(C)$ is the C_T of the calibrator (Pfaffl, 2001). The mean
222	intra-plate coefficient of variation of C_T values was 1.19% and 0.46%, and the mean inter-plate
223	coefficient of variation was 3.77% and 0.80% , for the telomere and GAPDH reactions, respectively. The
224	intra-plate coefficient of variation averaged 11.84% and the interplate-assay coefficient of variation for
225	RTL, calculated from duplicate samples run on each plate, averaged 14.20%. We calculated the inter-
226	plate coefficient of variation for RTL based on the third standard, which contained the same amount of
227	DNA (3 ng per reaction) as the samples for individual birds.
228	
229	Genetic sexing
230	Sex might influence telomere dynamics and body condition. Thus, we also determined the sex of
231	nestlings using molecular methods. We determined nestling sex by using the CHD-1F and CHD-1R
232	primers to amplify a region of the CHD gene that is located on the W and Z sex chromosomes
233	(Fridolfsson and Ellegren, 1999; Lee et al., 2010). Females were identified by two bands and males by
234	one band when products were visualized on an agarose gel.
235	
255	
236	Measuring metal exposure
237	We determined the concentration of five metals/metalloids: lead (Pb), cadmium (Cd), copper (Cu),
238	arsenic (As), and zinc (Zn), in red blood cells (RBCs). We measured concentrations in RBCs, rather than
239	whole blood, for comparability with a previous study on nestlings in these populations (Vermeulen et al.
240	2015), and to allow other measurements to be performed using plasma samples. After blood sampling
241	nestlings, we centrifuged whole blood samples to separate plasma from cell fraction, and measured the
242	mass of RBCs to the nearest 0.1 mg. RBCs were later dried in a desiccator, after which the dry weights of

and CtT(C) is the C_T of the calibrator (golden standard). E_R is the efficiency of the GAPDH qPCR

- 243 samples were measured using a precision scale (Sartorius SE2 Ultra-micro (d=0.001 mg), Sartorius,
- 244 37075 Göttingen, Germany). We then digested RBCs using a 5:1 mixture of HNO₃ (69%) and H₂O₂ (30%)

245	using a microwave destruction procedure (De Wit and Blust 1998). After digestion, the solution
246	containing RBCs was weighed and then diluted to a final volume of 6 mL using deionized water (Milli-Q
247	185, Ultrapore USA) to obtain 3-6% acid. Metal concentrations were subsequently measured using a
248	coupled plasma-mass spectrometer (7700× ICP-MS, Agilent Technologies, Santa Clara, CA, USA) (De
249	Wit and Blust 1998; Vermeulen et al. 2015).
250	For each batch of 108-165 samples, we included 6 reference samples and 6 blanks. We used
251	bovine liver as a reference material (Reference material 185R, Community Bureau of Reference,
252	Institute for Reference Material, B-2440 Geel, Belgium). The metal concentrations measured for
253	reference samples indicated an average recovery of 106 to 133%. For all of the
254	metals/metalloids measured, except Zn, blood levels fell below the limit of detection (LOD,
255	<0.10 μ g/L) for some samples. In these cases, we used LOD/2 in further calculations (Bervoets
256	et al., 2004; Custer et al., 2000). All metal concentrations were calculated in $\mu g/g$ on a fresh
257	weight basis, but using dry weights yielded qualitatively similar conclusions.
258	

259 Statistics

260	Variation in metal exposure: We conducted all statistical analysis in R version 3.4.0 (R Core Team,
261	2017). We first assessed whether the blood metal concentrations of nestlings differed among study sites,
262	with distance to the road, or as a function of the distance of individual nest boxes from the Umicore
263	industrial complex (within study sites). To this end, we performed a linear mixed effect model (LMM, R
264	package lme4; Bates et al., 2015) with Satterthwaite approximations for degrees of freedom (R package
265	ImerTest; Kuznetsova et al., 2016). We entered log-transformed blood metal concentrations, measured at
266	day 15, as the dependent variable. As fixed effect predictors, we entered distance to the road and the
267	interaction between study site and distance to UM. We explored this interaction because we hypothesized
268	that, within study sites, the distance from the industrial complex would have the strongest effect on metal

270	of nestlings from the same clutch (up to 4 nestlings were sampled per brood). To directly compare blood
271	metal concentrations among study sites, we then eliminated distance from Umicore and the interaction
272	term from the model, and used R package lsmeans (Lenth, 2016) to perform posthoc Tukey tests.
273	
274	Telomere dynamics and body condition: To model telomere dynamics across the nestling period, we
275	performed repeated measures LMMs using R packages lme4 and lmerTest. We first investigated whether
276	telomere length across the nestling period differed among study sites or with proximity to the road. We
277	entered log-transformed RTL as the dependent variable, with RTL at day 8 and day 15 entered for each
278	individual. As fixed effect predictors, we entered study site, the distance of each nest box to the nearest
279	road, nestling age (8 or 15 days), sex, brood size, nestling condition, and hatching date. To test whether
280	telomere shortening between days 8 and 15 differed as a function of the distance to the road or study site,
281	we entered two-way interactions between these predictor variables and nestling age. We entered nestling
282	ID, clutch ID, nest box ID, year, and assay number as random effects. Within site UM, we constructed an
283	equivalent model to explore whether distance to the industrial complex was related to telomere length.

exposure levels at site UM. We entered clutch ID as a random effect to account for the nonindependence

269

284 We also explored whether individual levels of metal exposure (blood Pb, Cu, and Zn levels) were

285 related to telomere length. Our sample size was reduced for this analysis, because nestling blood metal

286 levels were measured only in 2017, and we did not obtain large blood samples from all individuals. We

287 constructed a model in which we entered log-transformed RTL as the dependent variable, and blood metal

288 levels as fixed effect predictors. This model included the same additional fixed and random effect

289 predictors as listed above (with the exception of year), but used study site as a random effect.

290 We performed similar LMMs to assess how body condition (residual mass) varied between study sites

291 and with metal exposure. We entered residual mass as the dependent variable, with mass at day 8 and 15

292 entered for each individual. We entered nestling age, sex, brood size, hatching date, and study site as

293 fixed effect predictors, and nest and individual identity as random effects. To test whether changes in

294 nestling condition between days 8 and 15 differed as a function of the distance to the road or study site,

295	we entered two-way interactions between these predictor variables and age. In a second model, we
296	entered individual blood metal levels as fixed effects, with study site used as a random rather than fixed
297	effect, as done when considering telomere length.
298	We centered and standardized all continuous predictor variables, and report results (mean estimates
299	(and SE) of regression coefficients and their statistical significance) based on global models in all cases.
300	For models including study site, we used R package lsmeans to calculate least square means with 95%
301	confidence intervals for each study site, and to perform post-hoc comparisons (Tukey method). The
302	interaction between study site and age was excluded from the model when performing posthoc
303	comparisons among sites. We found no support for an effect of nestling sex on telomere length. Thus,
304	for models involving telomere length, we expanded our dataset to include 72 unsexed nestlings.
305	
306	Ethical statement: This study was approved by the ethical committee of the University of Antwerp (ID
307	2016-71) and conducted in accordance with Belgian and Flemish laws. The Belgian Royal Institute for
308	Natural Sciences (Koninklijk Belgisch Instituut voor Natuurwetenschappen) provided banding licenses
309	for authors and technical personnel.
310	
311	Results
312	Patterns of metal exposure
313	We found detectable levels of Pb, Cu, and Zn in the blood of great tit nestlings, but levels of Cd and As
314	were below the LOD in almost all samples (>90%). Blood Pb and Cu levels ranged from the below the
315	LOD to 9.62 μ g/g and 26.28 μ g/g, respectively, whereas blood Zn levels ranged from 0.656-1424 μ g/g
316	(see Fig. 2A-C for boxplots of blood metal levels across the study sites). Blood Pb concentrations of
317	nestlings varied significantly among study sites ($F_{3,81} = 5.143$, p =0.002), and there was also a significant
318	interaction between the distance of nest boxes from the pollution source and study site in predicting blood
319	Pb levels ($F_{3,80} = 4.376$, p = 0.006). This interaction reflected the fact that there was a negative
320	relationship between the distance of nest boxes from the industrial complex and blood Pb concentrations

321 within site UM ($\beta \pm SE = -0.027 \pm 0.008$, $t_{86} = -3.379$, p = 0.001; Fig. 2D), whereas this relationship was

- 322 non-significant at other study sites. Blood Pb concentrations were significantly higher at site UM than at
- $323 \qquad F7 \ (\beta \pm SE = 0.166 \pm 0.059, t_{82} = 2.803, p = 0.031), F5 \ (\beta \pm SE = 0.205 \pm 0.074, t_{85} = 2.740, p = 0.036)$
- 324 and F4 ($\beta \pm SE = 0.253 \pm 0.071$, $t_{82} = 3.547$, p = 0.003), but did not differ significantly between F4, F5
- 325 and F7 (Fig. 2A). Thus, differences in the exposure of nestlings to Pb occur as a function of distance from
- 326 the pollution source within site UM, and on a broader spatial scale, between site UM and the other sites.

Figure 2. Variation in blood metal concentrations of great tit nestlings from the four different study sites: blood concentrations of (A) Pb, (B) Cu and (C) Zn, and (D) blood Pb concentrations according to the distance of nest boxes from the pollution source within site UM. Note the log scale on the y-axis for panels A-C. In the boxplots, whiskers extend from the first and third quartiles to the highest value within $1.5 \times IQR$ (interquartile range) and points represent outliers. Within site UM (D), points represent the mean value for each clutch, and error bars show 95% confidence limits. *N* (nestlings, clutches) = 273, 89; F4: 49, 20; F5: 37, 13; F7: 101, 33; UM: 86, 26.

For Cu and Zn, there were no statistically significant differences in blood concentrations among the study sites (Fig. 2B, C; p > 0.110), and the interaction between distance to the smelter and study site was also non-significant (p > 0.50). See Online Supplement (Table S1) for mean Pb, Cu, and Zn concentrations at the different study sites. Distance to the road was not related to blood concentrations of any metal (p > 0.20).

340

341 Telomere dynamics

342 We found no evidence that high levels of metal pollution at site UM resulted in shorter telomere lengths 343 in nestlings. The interaction between study site and age was statistically non-significant in the model 344 predicting telomere length (overall $F_{3,626} = 1.325$, p = 0.265; see Table 1 for contrasts of each site to site 345 UM), suggesting no substantial effect of study site on rates of telomere shortening between days 8 and 15 346 of the nestling stage. Study site had a statistically significant effect on telomere length ($F_{3,118} = 3.337$, p = 347 0.022; see Table 1 for contrasts of each site to site UM). However, the effect of study site was 348 inconsistent with the hypothesized negative relationship between metal exposure and telomere length. 349 Rather, posthoc comparisons indicated a significant difference in nestling telomere length only between 350 sites UM and F5 ($\beta \pm SE = 0.107 \pm 0.039$, $t_{112} = 2.706$, p = 0.038), with telomere length being slightly 351 longer at UM (Fig. 3a). Other posthoc comparisons between sites were non-significant (Fig. 3a), and 352 within site UM the distance of nest boxes from the Umicore industrial complex was not associated with 353 telomere length ($\beta \pm SE = 0.387 \pm 0.463$, $t_{33} = 0.836$, p = 0.409). 354 On the other hand, there was a statistically significant interaction between the distance of nest boxes 355 from the road and nestling age in predicting telomere length (Table 1). This interaction indicated that 356 distance from the road was positively related to nestling telomere length among 15-day old nestlings ($\beta \pm$ 357 $SE = 0.047 \pm 0.018$, $t_{156} = 2.523$, p = 0.012, N = 583), but not among 8-day old nestlings ($\beta \pm SE = 0.001$ 358 \pm 0.017, t₉₄ = 0.098, p = 0.922, N = 558; Fig. 3b). In addition, nestlings in better body condition had 359 longer telomeres, whereas the effects of brood size and hatching date were non-significant (Table 1).

360 When predicting RTL from blood metal concentrations, we also found no support for a relationship

361 between metal exposure levels and RTL (p > 0.15 in all cases; see on Online Supplement Table S2 for

362 statistical model; N = 483 observations, 273 nestlings, 89 nests).

Figure 3. Variation in relative telomere length (RTL) (a) among study sites, and (b) with distance from the road and nestling age. Distance from the metal pollution source increases along the x-axis, from site UM to F4, and the categories close and far from the road were created by splitting the dataset at the median value of 91.41 m from the road. Error bars indicate 95% confidence intervals, and different letters above bars indicate significant differences in telomere length between study sites. Plotted values are least square means from LMMs.

370

371 **Table 1**. LMM predicting the telomere length of great tit nestlings at days 8 and 15 from study site,

distance to the road and covariates.

Fixed effects	$\beta \pm SE$	Df	Т	p (<ltl)< th=""></ltl)<>
Intercept	0.325 ± 0.050	90.7	6.482	0.114
Site F4	-0.040 ± 0.020	130.3	-1.967	0.051
Site F5	-0.026 ± 0.012	126.3	-2.161	0.032
Site F7	0.004 ± 0.007	111.6	0.624	0.534
Distance road	0.030 ± 0.014	100.4	2.102	0.038
Nestling age	-0.015 ± 0.010	643.1	-1.495	0.135
Body condition	0.020 ± 0.009	805.3	2.238	0.025
Brood size	-0.015 ± 0.012	-1.212	-1.212	0.227

Date	0.0004 ± 0.022	1003	0.020	0.983
Site F4 × age	-0.023 ± 0.015	633.3 -1.501		0.133
Site F5 × age	0.010 ± 0.009	631.0	1.163	0.245
Site F7 × age	-0.003 ± 0.005	626.2	-0.630	0.528
Dist. road \times age	0.023 ± 0.010	606.0	2.118	0.034
Random effects	Variance	SD		Ν
Bird ID	0.011	0.108		662
Clutch ID	0.004	0.067		194
Nest box	0.002	0.048		141
Assay	0.094	0.307		71
Year	0.001	0.039		2
Residual	0.092	0.304		1140

373 N (observations, nestlings, clutches): total = 1140, 662, 194; F4 = 165, 100, 26; F5 = 202, 123, 38; F7 =

374 400, 227, 66; UM = 372, 212, 64.

375

376 Body condition

377 Neither differences in exposure to metal pollution, as determined by study site (overall $F_{3,144} = 1.070$, p =

378 0.363), nor the proximity of nest boxes to roads showed a statistically significant association with nestling

379 body condition (Table 2). Moreover, there was not a statistically significant interaction between nestling

380 age and study site in predicting nestling body condition (overall $F_{3,918} = 1.672$, p = 0.171). Rather, only

381 nestling age and brood size explained a substantial amount of the variation in body condition (Table 2).

382 Moreover, we did not find substantial support for a relationship between blood Pb, Cu, or Zn

383 concentrations and nestling body condition (p > 0.15, see Online Supplement Table S3 for statistical

384 model).

Table 2. LMM predicting the residual mass of great tit nestlings at days 8 and 15.

Fixed effects	$\beta \pm SE$	Df	t	$p(\langle t t)$
Intercept	-0.010 ± 0.505	1.00	-0.022	0.985
Site F4	-0.012 ± 0.094	161.2	-1.312	0.191
Site F5	0.023 ± 0.055	150.1	0.424	0.672
Site F7	0.040 ± 0.030	135.3	1.333	0.184
Distance road	0.043 ± 0.065	117.1	0.665	0.507

Nestling age	0.070 ± 0.031	916.8	2.214	0.027
Brood size	-0.181 ± 0.053	233.0	-3.375	< 0.001
Date	-0.001 ± 0.016	997.3	-0.034	0.973
Sex ^a	0.076 ± 0.064	1040	1.178	0.239
Site F4 \times age	0.015 ± 0.047	914.6	0.325	0.745
Site F5 \times age	-0.008 ± 0.029	928.1	-0.295	0.768
Site F7 × age	0.034 ± 0.016	913.1	2.129	0.033
Dist. road \times age	-0.026 ± 0.033	907.8	-0.783	0.433
Random effects	Variance	SD	Ν	
Bird ID	< 0.001	< 0.001	575	
Clutch ID	0.265	0.515	188	
Nest box	0.103	0.322	139	
Year	0.500	0.707	2	
Residual	0.896	0.946	1081	

^aMales contrasted to females

388 N (observations, birds, clutches): total = 1081, 575, 188; F4 = 152, 86, 24; F5 = 185, 104, 37; F7 = 379,

389 198, 66; UM = 365, 192, 63.

390

391 Discussion

392 Little data is available to inform which stressors most strongly influence developmental stress levels in

393 urban wildlife. In this study, we found no evidence that metal exposure affects developmental telomere

394 dynamics in urban great tits, at least at the levels present in nestlings near the Umicore facility. On the

395 other hand, proximity to roads was associated with an increase in the rate of developmental telomere

396 shortening, suggesting an effect of roadway-associated stressors on telomere dynamics.

397 The finding that metal pollution from Umicore did not significantly affect nestling telomere shortening

- 398 was contrary to our predictions, and to the results of some past studies. Past studies have documented
- that metal exposure can elevate oxidative stress (Ercal et al., 2001; Lopes et al., 2016), which could

400 increase rates of telomere shortening (Haussmann et al., 2012; Stauffer et al., 2017). Indeed, a previous

- 401 study in great tits documented shorter telomeres in nestlings from a metal-polluted area in Finland as
- 402 compared to nestlings from an unpolluted zone (Stauffer et al., 2017). The discrepancy between this
- 403 previous study and our own could reflect differences in the metal pollution regime (i.e. the types and

404	amounts of metal deposited). We cannot directly compare nestling metal exposure levels between the two
405	studies because Stauffer et al., 2017, measured hepatic metal levels, whereas we measured blood levels.
406	However, a recent study that measured fecal metal concentrations in both study populations found that
407	nestlings from the UM population had higher fecal concentrations of Pb, Cd and As than the Finish
408	population, with Pb levels being over 20 times higher at UM (Pb levels were 61.77 μ g/g dry weight at
409	UM, versus 2.86 μ g/g dry weight in Finland; Ruuskanen et al., 2019). On the other hand, Cu and Ni
410	concentrations were higher in Finland than at UM (Ruuskanen et al., 2019). Thus, although differences in
411	the metal pollution regimes do exist, these results suggest that low levels of metal exposure at site UM do
412	not explain the discrepancy in results. An alternative possibility is that habitat quality is lower in Finland
413	than in our study areas, such that nestlings in Finland are unable to combat effects of metal exposure on
414	telomeres. However, we currently have no data regarding differences in habitat quality between the Finish
415	study area and our study sites. Thus, future research would be needed to substantiate this hypothesis.
416	Even if under some increased physiological stress due to metal exposure, as suggested by some of our
417	past research (Vermeulen et al., 2015), nestlings exposed to metals from the Umicore facility might be
418	able to avoid telomere damage through compensatory mechanisms, for instance by upregulating
419	antioxidant defenses or telomerase activity. In support of this hypothesis, we previously found that the
420	total antioxidant capacity of nestlings was higher at UM than at study sites farther from the metal
421	pollution source (Geens et al., 2009). In addition, populations that have experienced long-term exposure
422	to metal pollution might also undergo evolutionary changes enabling them to better cope with metal
423	exposure (Reid et al., 2016; Andrew et al., 2019). Indeed, by scanning the genome for single nucleotide
424	polymorphisms, a recent study on Australian house sparrows (Passer domesticus) found evidence that
425	populations near long-term mining and smelting communities have genetically adapted to Pb exposure
426	(Andrew et al., 2019). Also consistent with a capacity of nestlings to cope with metal exposure,
427	Turzańska-Pietras et al., 2017, found no statistically significant effect of metal exposure on body
428	condition in whitethroat (Sylvia communis) nestlings, and suggested that nestlings can detoxify metals.

429	Whereas we found no evidence for an effect of metal pollution on nestling telomere dynamics, we did
430	find an effect of proximity to roads. Specifically, nestlings from nest boxes near roads had shorter
431	telomeres at day 15, but not day 8, of age. This suggests that nestlings from nest boxes near roads did not
432	start development with short telomeres, for instance due to lower levels of antioxidants in eggs, or other
433	maternal effects. Rather, in nestlings reared close to roads, faster telomere shortening appears to have
434	occurred during the period of rapid growth between days 8 and 15.
435	The mechanism whereby proximity to roads would increase rates of developmental telomere
436	shortening is unclear, because roads are associated with multiple stress factors, including edge effects on
437	habitat quality, artificial light, noise pollution, and air pollution from vehicles. As previously mentioned,
438	artificial light is unlikely to directly affect nestling great tits because nest boxes block light pollution
439	(Raap et al., 2018). Moreover, we previously found no effect of the artificial light environment on
440	nestling physiology (Casasole et al., 2017; Raap et al., 2017), and have also found that experimentally
441	exposing nestlings to artificial light within the nest box does has no significant effect on telomere length
442	(Grunst et al., 2019c). It nonetheless remains possible that artificial light along roadways could indirectly
443	affect nestlings through an effect on adult provisioning behavior or resource availability. However,
444	contrary to this hypothesis, proximity to roads was not associated with a decline in nestling condition,
445	despite the effect on telomere length. This result suggests that nutritional stress due to poor habitat
446	quality or low parental effort near roads is unlikely to explain the increased rate of telomere shortening in
447	our study system. Rather, effects of exposure to traffic noise or air pollution might explain our results.
448	Noise pollution (Meillère et al., 2015) and traffic-associated air pollutants such as nitrogen dioxide,
449	carbon monoxide, black carbon, particulate matter, and polycyclic aromatic hydrocarbons (Hoxha et al.,
450	2009; Pavanello et al., 2010) have all been associated with increased rates of telomere shortening. For
451	instance, house sparrow nestlings experimentally exposed to traffic noise had shorter telomeres close to
452	fledgling than did controls (Meillère et al., 2015), and exposure to air pollutants is associated with
453	reduced telomere length in humans (Hoxha et al., 2009; Zhao et al., 2018). In line with our results, house
454	sparrow nestlings exposed to noise pollution exhibited a decrease in telomere length in the absence of an

455	effect on body condition (Meillère et al., 2015). Air pollutants from vehicular traffic might also affect
456	telomere length without affecting body condition if nestlings experience increases in corticosterone,
457	oxidative stress, or respiratory problems, but are not under nutritional stress. Indeed, studies in humans
458	have documented a wide range of health problems associated with proximity to roads and exposure to air
459	pollution, for instance cardiovascular disease (Hoffmann et al., 2007), asthma (Morgenstern et al., 2008)
460	and childhood cancer (Pearson et al., 2000). However, unidentified factors other than noise and air
461	pollution could also contribute to our findings. Thus, future research will be needed to solidly determine
462	which roadway-associated factors contribute to shortening of nestling telomere lengths.
463	High traffic volumes and a dense road network contribute to high levels of air pollution in Antwerp
464	(Peters et al., 2014; Van Brusselen et al., 2016; Dons et al., 2018). Indeed, a recent analysis of imagery
465	from the European Space Agency's Sentinel 5P satellite identified Antwerp as a hotspot for nitrogen
466	dioxide pollution (Greenpeace, 2018). There has consequently been extensive concern over potential
467	effects of air pollution on human health (Dons et al., 2018), but attention has not been focused on effects
468	on wildlife. Although more data are needed to directly connect levels of air pollution with effects on
469	nestlings, our results suggest that effects of poor air quality could extend to free-living animals,
470	specifically developing nestlings. Our study sites are not located in the center of Antwerp city, but rather
471	in an outlying suburban zone, where traffic volumes, noise pollution, and air pollution levels are still
472	substantial, but are lower than in the city center (Van Brusselen et al., 2016). Thus, effects of roadway-
473	associated stressors, such as air pollution and traffic noise, on urban wildlife might be even more
474	pronounced in more highly urbanized zones.
475	In conclusion, whereas exposure to metal pollution had no statistically significant effect on telomere
476	dynamics in nestling great tits in the present study, proximity to roads was associated with increased
477	telomere shortening. However, higher levels of metal exposure, or metal pollution with a different
478	composition, could increase developmental telomere shortening, as has indeed been reported by some
479	past studies. More data are needed to disentangle the possible avenues whereby proximity to roads might
480	affect telomere dynamics. However, body condition was not reduced near roads, suggesting that nestlings

481	were not under nutritional stress. Thus, the increase in telomere shortening near roads could be due to	
482	exposure to noise and air pollution, or to some other unidentified factor. Increased rates of telomere	
483	shortening during development reflect high levels of physiological stress, and can affect fitness in adults	
484	by leading to decreased survivorship and reproductive success (Heidinger et al., 2012; Barrett et al., 2013;	
485	Boonekamp et al., 2014). Therefore, increases in developmental telomere shortening near roads could	
486	have negative effects on individual fitness and population stability. Identifying the mechanisms whereby	
487	proximity to roads affects telomere dynamics and other aspects of health in wildlife should thus be a	
488	priority for future research.	
489		
490	Acknowledgements	
491	We are very grateful to Jasmijn Daans for aiding in laboratory work, and to Arvid Suls for providing	
492	access to a qPCR machine. Natasha Daem played an essential role in fieldwork and in conducting metal	
493	measurement assays, and we also thank Peter Scheys, Geert Eens, Cas Jorissen and Susan Grunst for	
494	providing support during fieldwork. We thank Steven Joosen for conducting the metal measurements.	
495	This study was made possible through financial support from the University of Antwerp, the FWO	
496	Flanders (to ASG: grant IDs: 1.2I35.17N and 1526018N, to MLG: grant ID: 1528018N), and the Marie	Met opmaak: Engels (V.S.)
497	Skłodowska-Curie fellowship (to MLG).	
498		
499	Data accessibility and Supplementary material	
500	Data associated with this paper are available in Dryad (<u>https://doi.org/10.5061/dryad.5x69p8d02</u>) and	
501	Supplementary Material (Tables S1-3) containing full statistical models for the relationship between	
502	blood metal levels, telomere length and nestling body condition is available online.	
503		
504	References	
505	Acevedo-Whitehouse, K., Duffus, A.L.J., 2009. Effects of environmental change on wildlife health.	
506	Phils. Trans. R. Soc. B 364, 3429-3438. doi: 10.1098/rstb.2009.0128.	

531	Bervoets, L., Voets, J., Chu, S.G., Covaci, A., Schepens, P., Blust, R., 2004. Comparison of accumulation
532	of micropollutants between indigenous and transplanted zebra mussels (Dreissena polymorpha).
533	Environ. Toxicol. Chem. 23, 1973–83. doi: 10.1897/03-365.
534	Bize, P., Criscuolo, F., Metcalfe, N.B., Nasir, L., Monaghan, P., 2009. Telomere dynamics rather than age
535	predict life expectancy in the wild. Proc. R. Soc. Lond. B 276, 1679–1683. doi:
536	10.1098/rspb.2008.1817.
537	Blackburn, E.H., 1991. Structure and function of telomeres. Nature 350, 569-573. doi:
538	10.1038/350569a0.
539	Blévin, P., Angelier, F., Tartu, S., Ruault, S., Bustamante, P., Herzke, D., Moe, B., Bech, C., Gabrielsen,
540	G., Bustnes, J.O., Chastel, O., 2016. Exposure to oxychlordane is associated with shorter
541	telomeres in arctic breeding kittiwakes. Sci. Total Environ. 563, 125-130. doi:
542	10.1016/j.scitotenv.2016.04.096.
543	Boonekamp, J.J., Mulder, G.A., Salmons, M.H., Dijkstra, C., Verhulst, S., 2014. Nestling telomere
544	shortening, but not telomere length, reflects developmental stress and predicts survival in wild
545	birds. Proc. R. Soc. Lond. B 281, 20133287. doi: 10.1098/rspb.2013.3287. Met opmaak: Nederlands (België)
546	Boonekamp, LL, Bauch, C., Mulder, F., Verhulst, S., 2017. Does oxidative stress shorten telomeres?
547	Biol Lett 13 20170164 doi: 10.1098/rsbl.2017.0164
548	Brahmia Z. Scheifler R. Crini N. Maas S. Giraudoux P. Benyacoub S. 2013 Breeding
549	performance of blue tits (<i>Cyanistes carulous ultramarinus</i>) in relation to lead pollution and nest
550	failure rates in rural intermediate and urban sites in Algeria Environ Pollut 174 171-178 doi:
551	10 1016/i envnol 2012 11 028
552	Brumm H 2004 The impact of environmental poise on song amplitude in a territorial bird. Journal of
552	Anim Egol 72 424 440 doi: 10.1111/j.0021.8700.2004.00814
555	Annii. Ecol. 75, 454-440. doi: 10.1111/j.0021-6790.2004.00814.X.

554 Casasole, G., Raap, T., Costantini, D., AbdElgawad, H., Asard, H., Pinxten, R., Eens, M., 2017. Neither

E E E		• • • • •	•	•	1	C 1	• . •	· . 1	
ררר	artiticial light at	night anthro	nogenic i	noice nor	distance	from roade	are accoriated	with	ovidative
555	artificial fight at	ment, anuno	DOZUIIU I		uistance	110III IUaus	are associated	with	Uniualive
		0 .,							

- 556 status of nestlings in an urban population of songbirds. Comp. Biochem. Physiol. A Mol. Integr.
- 557 Physiol. 210: 14-21. doi: 10.1016/j.cbpa.2017.05.003
- Chibuike, G.U., Obiora, S.C., 2014. Heavy metal polluted soils: effects on plants and bioremediation
 methods. Appl. Environ. Soil Sci. 2014, 752708. doi: 10.1155/2014/752708.
- 560 Criscuolo, F., Bize, P., Nasir, L., Metcalfe, N.B., Foote, C.G., Griffiths, K., Gault, E.A., Monaghan, P.,
- 561 2009. Real-time quantitative PCR assay for measurement of avian telomeres. J. Avian Biol. 40,
- 562 342–347. doi: 10.1111/j.1600-048X.2008.04623.x.
- 563 Custer, T.W., Custer, C.M., Hines, R.K., Sparks, D.W., 2000. Trace elements, organochlorines,
- polycyclic aromatic hydrocarbons, dioxins, and furans in lesser scaup wintering on the Indiana
 Harbor Canal. Environ. Pollut. 110, 469–82. doi: 10.1016/S0269-7491(99)00315-2.
- 566 Demeyrier, V., Charmantier, A., Lambrechts, M.M., Grégoire, A., 2017. Disentangling drivers of
- 567 reproductive performance in urban great tits: a food supplementation experiment. J. Exp.
- 568 Biol. 220, 4195-4203. doi: 10.1242/jeb.161067.
- 569 Desjardins, P., Conklin, D., 2010. NanoDrop microvolume quantitation of nucleic acids. J. Visual. Exp.
- 570 45, 2565. doi: 10.3791/2565.
- 571 De Wit, M., Blust, R., 1998. Determination of metals in saline and biological matrices by axial (Met opmaak: Nederlands (België)

572 inductively coupled plasma atomic emission spectrometry using microconcentric nebulization. J.

- 573 Analy. Atomic Spectrom. 13, 483-488.
- 574 Dons, E., Laeremans, M., Anaya-Boig, E., Avila-Palencia, I., Brand, C., de Nazelle, A., Gaupp-
- 575 Berghausen, M., Götschi, T., Nieuwenhuijsen, M., Orjuela, J.P., Raser, E., Standaert, A., Panis,
- 576 L.I., 2018. Concern over health effects of air pollution is associated to NO₂ in seven European
- 577 cities. Air Qual. Atmos. Hlth. 11, 591-599. doi: 10.1007/s11869-018-0567-3.

578	Dorado-Correa, A.M., Zollinger, S.A., Heidinger, B., Brumm, H., 2018. Timing matters: traffic noise	
579	accelerates telomere loss rate differently across developmental stages. Front. Zool. 15, 29. doi:	
580	10.1186/s12983-018-0275-8.	
581	Ecke, F., Singh, N.J., Arnemo, J.M., Bignert, A., Helander, B., Berglund, A.M.M., Borg, H., Bröjer, C.,	
582	Holm, K., Lanzone, M., Miller, T., Nordström, Å., Räikkönen, J., Rodushkin, I., Ågren, E.,	
583	Hörnfeldt, B., 2017. Sublethal lead exposure alters movement behavior in free-ranging golden	
584	eagles. Environ. Sci. Technol. 51, 5729-5736. doi: 10.1021/acs.est.6b06024.	Met opmaak: Nederlands (België)
585	Eens, M., Pinxten, R., Verheyen, R.F., Blust, R., Bervoets, L., 1999. Great and blue tits as indicators of	
586	heavy metal contamination in terrestrial ecosystems. Ecotoxocol. Environ. Saf. 44, 81-85. doi:	
587	10.1006/eesa.1999.1828.	
588	Elliot, J.E., Brogan, J., Lee, S.L., Drouillard, K.G., Elliot, K.H., 2015. PBDEs and other POPs in	
589	urban birds of prey partly explained by trophic level and carbon source. Sci. Total Environ. 524,	
590	157-165. doi: 10.1016/j.scitotenv.2015.04.008.	
501	East E.S. Discharge E.H. Lin, J. Discharge E.S. Adlar N.E. Margary J.D. Courthan D.M. 2004	
591	Eper, E.S., Blackburn, E.H., Lin, J., Dhabnar, F.S., Adler, N.E., Morrow, J.D., Cawinon, R.M., 2004.	
592	Accelerated telomere shortening in response to life stress. Proc. Natl. Acad. Sci. USA. 101,	
593	17312–17315. doi: 10.1073/pnas.0407162101.	
594	Ercal, N., Gurer-Orhan, H., Aykin-Burns, N., 2001. Toxic metals and oxidative stress part I: mechanisms	
595	involved in metal-induced oxidative damage. Curr. Top. Med. Chem. 1, 529-539.	
596	doi: 10.2174/1568026013394831.	
597	Fahrig, L., Rytwinski, T., 2009. Effects of roads on animal abundance: an empirical review and synthesis.	
598	Ecol. Soc. 14, 21. http://www.ecologyandsociety.org/vol14/iss1/art21/.	
599	Fridolfsson, A.K., Ellegren, H., 1999. A simple and universal method for molecular sexing of non-ratite	
600	birds. J. Avian Biol. 30, 116–121. doi: 10.2307/3677252.	Met opmaak: Nederlands (België)

601	Geens, A., Dauwe, T., Eens, M., 2009. Does anthropogenic metal pollution affect carotenoid colouration,	
-----	---	--

- antioxidative capacity and physiological condition of great tits (*Parus major*)? Comp. Biochem.
- 603 Physiol. C 150, 155–163. doi: 10.1016/j.cbpc.2009.04.007.
- 604 Gerhardt, A., 1993. Review of impact of heavy metals on stream invertebrates with special emphasis on
- 605 acid conditions. Water Air Soil Poll. 66, 289-314. doi: 10.1007/BF00479852.
- 606 Gorissen, L., Snoeijs, T., Van Duyse, E., Eens, M., 2005. Heavy metal pollution affects dawn singing
 607 behaviour in a small passerine bird. Oecologia 145, 504–509. doi: 10.1007/s00442-005-0091-7.
- 608 Greenpeace (Colley E)., 2018. New satellite data reveals world's largest air pollution emission hotspots-
- 609 Greenpeace Media Briefing. https://www.greenpeace.org.au/research/new-satellite-data-reveals-
- 610 worlds-largest-air-pollution-emission-hotspots-greenpeace-media-briefing/
- 611 Grunst, A.S., Grunst, M.L., Thys, B., Raap, T., Daem, N., Pinxten, A., Eens, M., 2018. Variation in
- 612 personality traits across a metal pollution gradient in a free-living songbird. Sci. Total Environ.
- 613 30, 668–678. doi: 10.1016/j.scitotenv.2018.02.191.

614 Grunst, A.S., Grunst, M.L., Daem, N., Pinxten, R., Bervoets, L., Een, M., 2019a. An important

- 615 personality trait varies with blood and plumage metal concentrations in a free-living songbird.
- 616 Environ. Sci. Technol. 53, 10487-10496. doi: 10.1021/acs.est.9b03548.
- 617 Grunst, A.S., Grunst, M.L., Pinxten, R., Eens, M., 2019b. Personality and plasticity in neophobia levels
- 618 vary with anthropogenic disturbance but not toxic metal exposure in urban great tits. Sci. Total
- 619 Environ. 656, 997-1009. doi: 10.1016/j.scitotenv.2018.11.383.
- Grunst, M.L., Raap, T., Grunst, A.S., Pinxten, R., Eens, M., 2019c. Artificial light at night does not affect
 telomere shortening in a developing free-living songbird: A field experiment. Sci. Total Environ.
- 622 662, 266-275. doi: 10.1016/j.scitotenv.2018.12.469.
- 623 Haussman, M.F., Winkler, D.W., Vleck, C.M., 2005. Longer telomeres associated with higher survival
- 624 in birds. Biol. Lett. 1, 212-214. doi: 10.1098/rsbl.2005.0301.

Met opmaak: Nederlands (België)

Met opmaak: Nederlands (België)

625	Haussmann, M.F., Longenecker, A.S., Marchetto, N.M., Juliano, S.A., Bowden, R.M., 2012. Embryonic
626	exposure to corticosterone modifies the juvenile stress response, oxidative stress and telomere
627	length. Proc. R. Soc. London B 279, 1447-1456. doi: 10.1098/rspb.2011.1913.
628	Heidinger, B.J., Blount, J.D., Boner, W., Griffiths, K., Metcalfe, N.B., Monaghan, P., 2012. Telomere
629	length in early life predicts lifespan. Proc. Natl. Acad. Sci. USA 109, 1743–1748. doi:
630	10.1073/pnas.1113306109.
631	Herborn, K.A., Heidinger, B.J., Boner, W., Noguera, J.C., Adam, A., Daunt, F., Monaghan, P., 2014.
632	Stress exposure in early post-natal life reduces telomere length: an experimental demonstration in
633	a long-lived seabird. Proc. R. Soc. London B 281, 20133151. doi: 10.1098/rspb.2013.3151.
634	Hoffmann, B., Moebus, S., Möhlenkamp, S., Stang, A., Lehmann, N., Dragano, N., Schmermund, A.,
635	Memmesheimer, M., Mann, K., Erbel, R., Jöckel, K.H., Nixdorf, H., 2007. Residential exposure
636	to traffic is associated with coronary atherosclerosis. Circulation 116, 489-496. doi:
637	10.1161/CIRCULATIONAHA.107.693622.
638	Hoxha, M., Dioni, L., Bonzini, M., Pesatori, A.C., Fustinoni, S., Cavallo, D., Carugno, M., Albett, B.,
639	Marinelli, B., Schwartz, J., Bertazzi, P.A., Baccarelli, A., 2009. Association between leukocyte
640	telomere shortening and exposure to traffic pollution: a cross-sectional study on traffic officers
641	and indoor office workers. Environ. Health 8, 41. doi:10.1186/1476-069X-8-41.
642	Injaian, A.S., Taff, C., Pearson, K.L., Gin, M.M.Y., Patricelli, G.L., Vitousek, M.N., 2018. Effects of
643	experimental chronic traffic noise exposure on adult and nestling corticosterone levels, and
644	nestling body condition in a free-living bird. Horm. Behav. 106, 19-27. doi:
645	10.1016/j.yhbeh.2018.07.012.
646	Iwasaki, Y., Kagaya, T., Miyamoto, K., Matsuda, H., 2009. Effects of heavy metals on riverine benthic
647	macroinvertebrate assemblages with reference to potential food availability for drift-feeding
648	fishes. Environ. Toxicol. Chem. 28, 354-363. doi: 10.1897/08-200.1.

Met opmaak: Nederlands (België)

649	Janssens, E., Dauwe, T., Bervoets, L., Eens, M., 2001. Heavy metals and selenium in feathers of great tits	
650	(Parus major) along a pollution gradient. Environ. Toxicol. Chem. 20, 2815–2820.	Met opmaak: Nederlands (België)
651	doi: 10.1002/etc.5620201221.	
652	Janssens, E., Dauwe, T., Pinxten, R., Eens, M., 2003. Breeding performance of great tits (Parus major)	
653	along a gradient of heavy metal pollution. Environ. Toxicol. Chem. 22, 1140-5. doi:	
654	10.1002/etc.5620220524.	
655	Johnson, M.T.J., Munshi-South, J., 2017. Evolution of life in urban environments. Science 607, 1-11. doi:	
656	10.1126/ science.aam8327.	
657	Kight, C.R., Swaddle, J.P., 2011. How and why environmental noise impacts animals: an integrative,	
658	mechanistic review. Ecol. Lett. 14, 1052–1061. doi: 10.1111/j.1461-0248.2011.01664.x.	
659	Kleist, N.J., Guralnick, R.P., Cruz, A., Lowry, C.A., Francis, C.D., 2018. Chronic anthropogenic noise	
660	disrupts glucocorticoid signaling and has multiple effects on fitness in an avian community. Proc.	
661	Natl. Acad. Sci. USA 115, E648-E657. doi: 10.1073/pnas.1709200115.	
662	Kristensen, L.J., Taylor, M.P., Flegal, A.R., 2017. An odyssey of environmental pollution: the rise, fall	
663	and remobilisation of industrial lead in Australia. Appl. Geochem. 83, 3-13.	
664	https://doi.org/10.1016/j.apgeochem.2017.02.007.	
665	Kuznetsova, A., Brockhoff, P.B., Christensen, R.H.B., 2016. ImerTest: tests in linear mixed effects	
666	models. R package version 2.0-33. http://CRAN.R-project.org/package=lmerTest.	
667	Lee, J.C., Tsai, L.C., Hwa, P.Y., Chan, C.L., Huang, A., Chin, S.C., Wang, L.C., Lin, J.T., Linacre,	
668	A., Hsieh, H.M., 2010. A novel strategy for avian species and gender identification using the	
669	CHD gene. Mol. Cell Probes 24, 27–31. doi: 10.1016/j.mcp.2009.08.003.	
670	Lenth, R.V., 2016. Least-Squares Means: The R Package Ismeans. J. Stat. Softw. 69, 1-33. doi:	
671	10.18637/jss.v069.i01.	

672	Lopes, A.C., Peixes, T.S., Mesas, A.E., Paoliello, M.M., 2016. Lead exposure and oxidative stress: a	
-----	--	--

- 673 systematic review. Rev. Environ. Contam. Toxicol. 236, 193-238. doi: 10.1007/978-3-319-
- 674 20013-2_3.
- Meillére, A., Brischoux, F., Ribout, C., Angelier, F., 2015. Traffic noise exposure affects telomere length
 in nestling house sparrows. Biol. Lett. 11, 20150559. doi: 10.1098/rsbl.2015.0559.
- Monaghan, P., 2014. Organismal stress, telomeres and life histories. J. Exp. Biol. 217, 57-66.
 doi: 10.1242/jeb.090043.
- Monaghan, P., Haussmann, M.F., 2006. Do telomere dynamics link lifestyle and lifespan? Trends Ecol.
 Kederlands (België)
 Evol. 21, 47–53. doi: 10.1016/j.tree.2005.11.007.
- 681 Morgenstern, V., Zutavern, A., Cyrys, J., Brockow, I., Koletzko, S., Kramer, U., Behrendt, H., Herbarth.
- 682 O., von Berg, A., Bauer, C.P., Wichmann, H.E., Heinrich, J., Grp, G.S., Grp, L.S., 2008. Atopic
- diseases, allergic sensitization, and exposure to traffic–related air pollution in children. Amer. J.
- 684 Resp. Crit. Care Med. 177: 1331-1337. doi: 10.1164/rccm.200701-036OC.
- Nettle, D., Monaghan, P., Boner, W., Gillespie, R., Bateson, M., 2013. Bottom of the heap: having

heavier competitors accelerates early-life telomere loss in the European starling, *Sturnus vulgaris*.

- 687 PLoS ONE 8, e83617. doi: 10.1371/journal.pone.0083617.
- 688 Nettle, D., Monaghan, P., Gillespie, R., Brilot, B., Bedford, T., Bateson, M., 2015. An experimental
- demonstration that early-life competitive disadvantage accelerates telomere loss. Proc R. Soc.
- 690 Lond. B 282, 20141610. doi: 10.1098/rspb.2014.1610.
- 691 Pavanello, S., Pesatori, A-C., Dioni, L., Hoxha, M., Bollati, V., Siwinska, E., Mielzyńska, D., Bolognesi,
- 692 C., Bertazzi, P-A., Baccarelli, A., 2010. Shorter telomeres in peripheral blood leucocytes of
- 693 workers exposed to polycyclic aromatic hydrocarbons. Carcinogenesis 31, 216-221.
- 694 doi:10.1093/carcin/bgp278.

695	Pawlas, N., Plachetka, A., Kozlowska, A., Broberg, K., Kasperczyk, S., 2015. Telomere length in children	
696	exposed to low-to-moderate levels of lead. Toxicol. Appl. Pharmacol. 287, 111-118. doi:	
697	10.1016/j.taap.2015.05.005.	
698	Pearson, R.L., Wachtel, H., Ebi, K.L., 2000. Distance-weighted traffic density in proximity to a home is a	
699	risk factor for leukemia and other childhood cancers. J. Air Waste Manage. 50,175–180.	Met opmaak: Nederlands (België)
700	Peters, J., Van den Bossche, J., Reggente, M., Van Poppel, M., De Baets, B., Theunis, J., 2014. Cyclist	
701	exposure to UFP and BC on urban routes in Antwerp, Belgium. Atmos. Environ. 92, 31-43.	
702	Pfaffl, M.W., 2001. A new mathematical model for relative quantification in real-time qPCR. Nucleic	
703	Acid Res. 29, e45. doi: 10.1093/nar/29.9.e45.	
704	Puterman, E., Gemmill, A., Karasek, D., Weir, D., Adler, N.E., Prather, A.A., Epel, E.S., 2016. Lifespan	
705	adversity and later adulthood telomere length in the nationally representative US health and	
706	retirement study. Proc. Natl. Acad. Sci. USA 118, E6335-E6342. doi: 10.1073/pnas.1525602113.	
707	Raap, T., Pinxten, R., Casasole, G., Dehnhard, N., Eens, M., 2017. Ambient anthropogenic noise but not	
708	light is associated with the ecophysiology of free-living songbird nestlings. Sci. Rep. 7, 2754.	
709	doi: 10.1038/s41598-017-02940-5.	
710	Raap, T., Pinxten, R., Eens, M., 2018. Cavities shield birds from effects of artificial light at night on	
711	sleep. J. Exp. Zool. A Ecol. Integr. Physiol. 329, 449-456. doi: 10.1002/jez.2174.	
712	R Core Team., 2017. R: A language and environment for statistical computing. R Foundation	
713	for Statistical Computing, Vienna, Austria http://www.R-project.org/	
714	Reichert, S., Stier, A., Zahn, S., Arrivé, M., Bize, P., Massemin, S., Criscuolo, F., 2014. Increased brood	Met opmaak: Nederlands (België)
715	size leads to persistent eroded telomeres. Front. Ecol. Evol. 2, 10114. doi:	
716	10.3389/fevo.2014.00009.	
717	Reid, N.M., Proestou, D.A., Clark, B.W., Warren, W.C., Colbourne, J.K., Shaw, J.R., Karchner, S.I.,	
718	Hahn, M.E., Nacci, D., Oleksiak, M.F., Crawford, D.L., Whitehead, A., 2016. The genomic	
719	landscape of rapid repeated evolutionary adaptation to toxic pollution in wild fish. Science 354,	
720	1305-1308. doi: 10.1126/science.aah4993.	

721	Remacha.	C., Delgado,	J.A., Bulaic.	. M., Pérez-Tri	s. J., 2016.	Human disturbance d	uring early life
·		C., 201 gauco,	on n, 2 analo,	,,	., .,	Trainan anotaroanee a	caring coury me

impairs nestling growth in birds inhabiting a nature recreation area. PLoS ONE 11, e0166748.

723 doi: 10.1371/journal.pone.0166748.

730

- Ruuskanen, S., Espín, S., Sánchez-Virosta, P., Sarraude, T., Hsu, B.Y., Pajunen, P., Costa, R.A., Eens,
- 725 M., Hargitai, R., Török, J., Eeva, T., Transgenerational endocrine disruption: Does elemental
- pollution affect egg or nestling thyroid hormone levels in a wild songbird? Environ. Pollut. 247,
 725-735. doi: 10.1016/j.envpol.2019.01.088.
- Salmón, P., Nilsson, J.F., Nord, A., Bensch, S., Isaksson, C., 2016. Urban environment shortens telomeres
 in great tit nestlings, *Parus major*. Biol. Lett. 12, 20160155. doi: 10.1098/rsbl.2016.0155.

Salomons, H.M., Mulder, E., van de Zande, L., Haussmann, M.F., Linskens, M., Verhulst, S., 2009.

- 731 Telomere shortening and survival in free-living corvids. Proc. R. Soc. Lond. B 276, 3157–3165.
 732 doi: 10.1098/rspb.2009.0517.
- Sanderfoot, O.V., Holloway, T., 2017. Air pollution impacts on avian species via inhalation exposure and
 associated outcomes. Environ. Res. Lett. 12, 083002. doi: 10.1088/1748-9326/aa8051.
- Schulte-Hostedde, A.I., Zinner, B., Millar, J.S., Hickling, G.J., 2005. Restitution of mass-size residuals:
 validating body condition indices. Ecol. 86, 155–163. doi: 10.1890/040232.
- Sih, A., Ferrari, M.C.O., Harris, D.J., 2011. Evolution and behavioural responses to human-induced rapid
 environmental change. Evol. Appl. 4, 367-387. doi: 10.1111/j.1752-4571.2010.00166.x.
- 739 Sletten, S., Bourgeon, S., Bårdsen, B.J., Herzke, D., Criscuolo, F., Massemin, S., Zahn, S., Johnsen, T.V.,
- 740
 Bustnes, J.O., 2016. Organohalogenated contaminants in white-tailed eagle (Haliaeetus albicilla)
- 741 nestlings: an assessment of relationships to immunoglobulin levels, telomeres and oxidative
- 742 stress. Sci. Total Environ. 539, 337–349. doi: 10.1016/j.scitotenv.2015.08.123.
- 743 Stauffer, J., Panda, B., Eeva, T., Rainio, M., Ilmonen, P., 2017. Telomere damage and redox status
- alterations in free-living passerines exposed to metals. Sci. Total Environ. 575, 841-848. doi:
- 745 10.1016/j.scitotenv.2016.09.131.

Met opmaak: Nederlands (België)

746	Stier, A., Massemin, S., Zahn, S., Tissier, M.L., Criscuolo, F., 2015. Starting with a handicap: effects of	
747	asynchronous hatching on growth rate, oxidative stress and telomere dynamics in free-living great	
748	tits. Oecologia 179, 999-1010. https://doi.org/10.1007/s00442-015-3429-9.	
749	Stier, A., Delestrade, A., Bize, P., Zahn, S., Criscuolo, F., Massemin, S., 2016. Investigating how	
750	telomere dynamics, growth and life history covary along an elevation gradient in two passerine	
751	species. J. Avian Biol. 47, 134–140. https://doi.org/10.1111/jav.00714.	
752	Summers, P.D., Cunnington, G.M., Fahrig, L., 2001. Are the negative effects of roads on breeding birds	
753	caused by traffic noise? J. Appl. Ecol. 48, 1527-1534. doi: 10.1111/j.1365-2664.2011.02041.x.	
754	Swaddle, J.P., Francis, C.D., Barber, J.R., Spoelstra, K., Voss, M., Longcore, T., 2015. A framework to	
755	assess evolutionary responses to anthropogenic light and sound. Trends Ecol. Evol. 30, 550-560.	
756	doi: 10.1016/j.tree.2015.06.009.	
757	Tchounwou, P.B., Yedjou, C.G., Patlolla, A.K., Sutton, D.J. 2012. Heavy metals toxicity and the	
758	environment. Exp. Suppl. 101, 133-164. doi: 10.1007/978-3-7643-8340-4_6.	
759	Turzańska-Pietras, K., Chachulska, J., Polechońska, L., Borowiec, M., 2017. Does heavy metal exposure	
760	affect the condition of Whitethroat (Sylvia communis) nestlings? Environ. Sci. Pollut. Res. 25,	
761	7758-7766. doi: 10.1007/s11356-017-1064-1.	
762	Tzivian, L., Winkler, A., Dlugaj, M., Schikowski, T., Vossoughi, M., Fuks, K., Weinmayr, G., Hoffmann,	
763	B., 2015. Effect of long-term outdoor air pollution and noise on cognitive and psychological	
764	functions in adults. Int. J. Hyg. Environ. Health 218:1-11. doi: 10.1016/j.ijheh.2014.08.002.	
765	Van Brusselen, D., Arrazola de Oñate, W., Maiheu, B., Vranckx, S., Lefebvre, W., Janssen, S., Nawrot,	
766	T.S., Nemery, B., Avonts, D., 2016. Health Impact Assessment of a Predicted Air Quality Change	
767	by Moving Traffic from an Urban Ring Road into a Tunnel. The Case of Antwerp, Belgium.	
768	PLoS ONE 11, e0154052. doi:10.1371/journal. pone.0154052.	
769	Van Kempen, E., Fischer, P., Janssen, N., Houthuijs, D., Van Kamp, I., Stansfeld, S., Cassee, F., 2012.	(Met opmaak: Nederlands (België)
770	Neurobehavioral effects of exposure to traffic-related air pollution and transportation noise in	
771	primary schoolchildren. Environ. Res. 115, 18-25. doi: 10.1016/j.envres.2012.03.002.	Met opmaak: Nederlands (België)

772	Van Parys, C., Dauwe, T., Van Campenhout, K., Bervoets, L., De Coen, W., Blust, R., Eens, M., 2008.	
773	Metallothioneins (MTs) and δ -aminolevulinic acid dehydratase (ALAd) as biomarkers of metal	
774	pollution in great tits (Parus major) along a pollution gradient. Sci. Total Environ. 401, 184-193.	Met opmaak: Nederlands (België)
775	doi: 10.1016/j.scitotenv.2008.04.009.	
776	Vermeulen, A., Müller, W., Matson, K.D., Tieleman, B.I., Bervoets, L., Eens, M., 2015. Sources of	
777	variation in innate immunity in great tit nestlings living along a metal pollution gradient: An	
778	individual-based approach. Sci. Total Environ. 508, 297-306. doi:	
779	10.1016/j.scitotenv.2014.11.095.	
780	Villarreal, V., Castro, M.J., 2016. Exposure to lead and other heavy metals: child development outcomes.	
781	in: Pediatic Neurotoxicology, Riccio, C.A., Sullivan, J.R. (Eds.), Springer International	
782	Publishing, Switzerland. pp. 143-165.	Met opmaak: Nederlands (België)
783	VMM., 2016. Luchtkwaliteit in Hoboken in 2014 en 2015. Vlaamse Milieumaatschappij, Aalst, Belgium	
784	(in Dutch).	
785	Wingfield, J.C., 2013. The comparative biology of environmental stress: behavioural endocrinology and	
786	variation in ability to cope with novel, changing environments. Anim. Behav. 85, 1127-1133. doi:	
787	10.1016/j.anbehav.2013.02.018.	
788	Wong, B.M.M., Candolin, U., 2015. Behavioural responses to changing environments. Behav. Ecol. 26,	
789	665-673. doi: 10.1093/beheco/aru183.	
790	Wong, J.Y.Y., De Vivo, I., Lin, X., Christiani, D.C., 2014. Cumulative PM (2.5) exposure and telomere	
791	length in workers exposed to welding fumes. J. Toxicol. Environ. Health A 77, 441–455.	
792	doi: 10.1080/15287394.2013.875497.	
793	Zhang, X., Lin, S., Funk, W.E., Hou, L., 2013. Environmental and occupational exposure to chemicals	
794	and telomere length in human studies. Occup. Environ. Med. 70, 743-749. doi: 10.1136/oemed-	
795	2012-101350.	
796	Zhao, B., Vo, H.Q., Johnston, F.H., Negishi, K., 2018. Air pollution and telomere length: a systemic	
797	review. Cardiovas. Diag. Ther. 8: 480–492. doi: 10.21037/cdt.2018.06.05.	

798	Zota, A.R.	, Needham,	B.L., B	Blackburn,	E.H.,	Lin, J.,	Park, S.K.,	Rehkopf,	D.H.,	Epel,	E.S.,	2015.
-----	------------	------------	---------	------------	-------	----------	-------------	----------	-------	-------	-------	-------

- Associations of cadmium and lead exposure with leukocyte telomere length: findings from
- 800 National Health and Nutrition Examination Survey, 1999-2002. Am. J. Epidemiol. 181, 127-136.
- 801 doi: 10.1093/aje/kwu293.