

DEPARTMENT OF ENGINEERING MANAGEMENT

A canonical form for non-regular arrays based on generalized

wordlength pattern values of delete-one-factor projections

Pieter T. Eendebak

UNIVERSITY OF ANTWERP
Faculty of Applied Economics

City Campus

Prinsstraat 13, B.226

B-2000 Antwerp

Tel. +32 (0)3 265 40 32

Fax +32 (0)3 265 47 99

www.uantwerpen.be

http://www.uantwerpen.be/

FACULTY OF APPLIED ECONOMICS

DEPARTMENT OF ENGINEERING MANAGEMENT

A canonical form for non-regular arrays based on generalized
wordlength pattern values of delete-one-factor projections

Pieter T. Eendebak

RESEARCH PAPER 2014-007

APRIL 2014

University of Antwerp, City Campus, Prinsstraat 13, B-2000 Antwerp, Belgium

Research Administration – room B.226

phone: (32) 3 265 40 32

fax: (32) 3 265 47 99

e-mail: joeri.nys@uantwerpen.be

The research papers from the Faculty of Applied Economics

are also available at www.repec.org

(Research Papers in Economics - RePEc)

D/2014/1169/007

mailto:joeri.nys@uantwerpen.be
http://www.repec.org/

A canonical form for non-regular arrays based on

generalized wordlength pattern values of

delete-one-factor projections

P.T. Eendebak∗

April, 2014

Abstract

We introduce a canonical representative for the isomorphism classes of
non-regular orthogonal arrays based on the generalized wordlength pat-
terns (GWLP) of delete-one-factor projections. These GWLP values have
been used recently to introduce a fast isomorphism test for two-level regu-
lar arrays. We show that the delete-one-factor projection GWLP method
can be adopted to reduce both regular and non-regular orthogonal arrays
to canonical form.

The new canonical form is used in an existing framework to generate
minimal complete sets of non-symmetric non-regular arrays. We show
that the new method is efficient for reduction to canonical form, but not
suitable for generating minimal complete sets.

KEY WORDS: Experimental Design; Orthogonal Array; Delete-one-factor;
Canonical form; Generalized Wordlength Pattern

∗E-mail: pieter.eendebak@gmail.com. Address: University of Antwerp, Departement En-
gineering Management, Prinsstraat 13, 2000 Antwerp, Belgium.

1

Contents

1 Introduction 2

2 Method 3
2.1 Preliminaries . 3
2.2 Canonical form . 5
2.3 Minimum complete set algorithm 7

3 Results 9
3.1 Reduction to canonical form . 9
3.2 Extension results . 13

4 Discussion 14

5 Acknowledgements 15

Bibliography 15

A Extension to non-symmetric arrays 16

B Example code 18

1 Introduction

Orthogonal arrays are an important tool in the design of experiments Hedayat
et al. (1999). Formally, an orthogonal array of strength t is an N × k matrix
whose jth column contains sj different factor-levels in such a way that, for any
t columns, every t-tuple of levels appear equally often in the matrix Rao (1947).
Two arrays are said to be isomorphic if one array can be obtained by permuting
rows, columns, and/or factor levels of the other array.

A major step in the analysis of orthogonal arrays is to generate represen-
tatives for all isomorphism classes of a specific type of orthogonal arrays. The
type is usually specified by the number of runs, the number of factors, the factor
levels and the strength. A minimal complete set (MCS) for a specific type of
arrays is a set of arrays with exactly one representative for each isomorphism
class.

A generic method for generating these isomorphism classes is to start with a
minimal complete set of arrays with a specified number of columns, say k, and
then extend this set to a complete set of arrays with k + 1 columns. In this
method two main components can be identified:

• Extension A method is specified to generate arrays with k + 1 columns
from the set of arrays with k columns. This method must guarantee that
for each isomorphism class for k+ 1 columns at least 1 array is generated.

• Reduction From the set of generated arrays a minimum complete set
has to be generated. This can be done by either transforming the arrays

2

to a canonical form or comparing the arrays pairwise and performing an
isomorphism check.

The most basic isomorphism check between two arrays is to test all possible
transformations of one of the arrays (exhaustive isomorphism testing). This
includes row, column and level permutations. Aan isomorphism check using
this method is computationally very expensive.

We present a short overview of other works using the extension and reduction
method. The extension method was used by Chen et al. Chen et al. (1993) for
symmetrical regular designs. Their extension method and reduction method use
properties specific to regular designs. Sun et al. Sun et al. (2002) present an
algorithm to construct all non-isomorphic two-level designs of specified run-size
and numbers of factors. Like Chen et al. Chen et al. (1993), the authors start
with a minimum complete set of designs with a certain number of factors and
they consider all possible extensions with one additional column. The resulting
designs are then classified with the extended word-length pattern Deng and
Tang (1999). Those belonging to the same class are further tested with algebraic
techniques.

By defining canonical forms for the isomorphism classes the reduction step
can be performed more efficiently. Canonical forms for non-symmetric arrays are
presented by Bulutoglu and Margot Bulutoglu and Margot (2008) and Schoen
et al. Schoen et al. (2010). The canonical form in Bulutoglu and Margot (2008)
is based on a canonical form for graphs based on Nauty McKay (1981); McKay
and Piperno (2013) while the canonical form in Schoen et al. (2010) is based
on the lexicographic ordering of arrays. Both approaches lead to the same
representatives for the isomorphism classes.

Recently, a series of papers has appeared Xu (2009); Ryan and Bulutoglu
(2010) which use the GWLP values of delete-one-factor projections as an al-
ternative ordering of the columns. Using this method impressive results have
been obtained for regular fractional factorial arrays. The new ordering can be
extended to non-symmetric as well as non-regular arrays.

In Section 2 we introduce generalized wordlength patterns, delete-one-factor
projections and the new canonical form for orthogonal arrays. Using this canon-
ical form a new method to generate minimal complete sets is presented based on
the generic framework described above. In Section 3 we compare the efficiency
of the new method to the method of Schoen et al. Schoen et al. (2010).

2 Method

In this section we introduce delete-one-factor projections and generalized wordlength
patterns and we define the canonical form for non-regular arrays. We modify
the framework in Schoen et al. (2010) to generate all isomorphism classes of
non-symmetric non-regular orthogonal arrays.

2.1 Preliminaries

To describe the modified algorithm, we need some definitions. We first introduce
orthogonal arrays. Next, we introduce GWLPs (the theory here is from Xu and
Wu Xu and Wu (2001)) and the ordering of arrays leading to canonical forms.

3

Definition 1. A symmetric orthogonal array (OA) of strength t, N runs and
k factors at s levels is an N × k array of 0, . . . , (s− 1)-valued symbols such that
for every t columns every t-tuple occurs equally often Rao (1947). The set of
all OAs with given strength, runs and levels is denoted by OA(N ; sk; t).

Two arrays are said to be combinatorially isomorphic if one array can be
obtained by permuting rows, columns, or factor levels of the other array.

An N × k design D consists of a set of row vectors of length k. For two
row vectors in D, say a and b, we denote by dH(a, b) for the Hamming distance
between a and b. We define the binomial coefficients as

(
n
k

)
= n!/((n − k)!k!).

We use the convention that 0! = 1.

Definition 2 (Distance distribution). Let D be an N × k matrix. For j =
0, . . . , k we define

Bj(D) = N−1|{(a, b) : dH(a, b) = j, a ∈ D, b ∈ D}|.

The distance distribution ofD is defined as (B0(D), . . . , Bk(D)). The MacWilliams
transforms of the distance distribution are defined as

B′j(D) = N−1
k∑
i=0

Bi(D)Pj(i; k, s)

where Pj(x; k, s) =
∑j
i=0(−1)i(s − 1)j−i

(
x
i

)(
k−x
j−i
)

are the Krawtchouk polyno-
mials.

Definition 3 (Generalized Wordlength Pattern). For an (N, sk)-design D the
generalized wordlength pattern ofD is equal toA(D) = (B′0(D), B′1(D), . . . , B′k(D)).

For regular 2-level arrays the value Ai(D) is equal to the number of words
of length i in the defining contrast subgroup of D Xu (2009). For any 2-level
array our definition of the generalized wordlength pattern is equivalent to

Ai(D) = N−2
∑

wt(u)=i

|Ju(D)|2 (1)

with the J-characteristic Ju(D) =
∑
x∈D(−1)〈u,x〉. The summation in Equa-

tion 1 is over all k-tuple binary vectors u with i nonzero elements.

Definition 4 (GWLP ordering). Let a = (a0, . . . , ak) and b = (b0, . . . , bk) be
two generalized wordlength patterns. We order the GWLPs by the lexicographic
ordering. So a < b if there is an l such that aj = bj for j = 1, . . . , l − 1 and
al < bl.

In statistical applications, designs with a small GWLP are desirable. The
arrays with strength t have a0 = 1 and a1 = . . . = at = 0.

Let X be an N × k array. For 1 ≤ j ≤ k we define πj(X) to be the array
obtained by deleting the jth column from X. With dj(X) we denote the GWLP
of πj(X).

4

2.2 Canonical form

We introduce several orderings of the set of orthogonal arrays. For each isomor-
phism class of OA(N ; s; t) an ordering defines a unique minimal element. The
minimal element for each isomorphism class defines a canonical form for that
particular isomorphism class.

Definition 5 (LMC ordering). Let X and Y be two N × k arrays. Let x be
the N · k tuple obtained by concatenating the columns of X, let y be the tuple
obtained by concatenating the columns of Y . We define X to be smaller than Y
in the LMC ordering (lexicographically minimum in columns ordering) if there
is an l ≤ Nk such that xi = yi for i < l and xl < yl.

The LMC ordering was used in Schoen et al. (2010).

Definition 6 (Delete-one-factor ordering). Let X and Y be two N × k arrays.
We define X to be smaller than Y in the delete-one-factor ordering if there
is an l such that dj(X) = dj(Y) for j = 1, . . . , l − 1 and dl(X) < dl(Y) or
dj(X) = dj(Y) for j = 1, . . . , k and X is lexicographically smaller than Y .

The delete-one-factor ordering is based on the GWLPs of the delete-one-
factor projections and on the LMC ordering. This new ordering defines for each
isomorphism class a unique element which is minimal according to this ordering.

Example 1 (Delete-one-factor values). Consider the following array in lexico-
graphically minimal form in OA(12, 2, 27)

X =

0 0 0 0 0 0 0
0 0 0 0 0 1 1
0 0 1 1 1 0 1
0 1 0 1 1 0 1
0 1 1 0 1 1 0
0 1 1 1 0 1 0
1 0 0 1 1 1 0
1 0 1 0 1 0 0
1 0 1 1 0 1 1
1 1 0 0 1 1 1
1 1 0 1 0 0 0
1 1 1 0 0 0 1

.

The delete-one-factor generalized wordlength patterns are given by:

Deleted column GWLP
0 d0(X) = (1, 0, 0, 2.222, 1.667, 0.4444, 0)
1 d1(X) = (1, 0, 0, 2.222, 1.667, 0.4444, 0)
2 d2(X) = (1, 0, 0, 2.222, 1.667, 0.4444, 0)
3 d3(X) = (1, 0, 0, 2.222, 1.667, 0, 0.4444)
4 d4(X) = (1, 0, 0, 2.222, 1.667, 0.4444, 0)
5 d5(X) = (1, 0, 0, 2.222, 1.667, 0.4444, 0)
6 d6(X) = (1, 0, 0, 2.222, 1.667, 0.4444, 0)

Since the delete-one-factor values are not ordered, this array is not in minimal
according to the delete-one-factor ordering. N

5

Delete-one-factor reduction

Input: Orthogonal array X
Output: Delete-one-factor canonical form of the array

1. For each column k, calculate the delete-one-factor GWLP dk(X).
Sort the columns of the array in increasing order of the delete-one-
factor GWLPs.

2. Reduce the resulting array to lexicographically minimal form while
respecting the ordering imposed by the delete-one-factor GWLPs.

Algorithm 1: Delete-one-factor reduction

Using the delete-one-factor ordering, we can create a powerful algorithm to
reduce an array from OA(N ; sk; t) to minimal form. This algorithm basically
consists of 2 steps: sorting the columns using the delete-one-factor GWLPs
and then reducing the array further using LMC ordering. The algorithm is
summarized in Algorithm 1.

The first step can be performed by calculating the delete-one-factor GWLPs
and sorting these using the ordering on GWLPs. Next, we explain how to
perform the reduction while respecting the ordering. Let X be an array in
OA(N ; sk; t) and assume the columns have been ordered with the delete-one-
factor ordering. The delete-one-factor GWLPs can be written as d1(X), . . . , dk(X)
where d1(X) ≤ d2(X) ≤ . . . ≤ dk(X). Let b = (b1, . . . , bn) be the vector such
that d1(X) = d2(X) = . . . = db1(X), db1+1(X) = db1+2(X) = . . . = db1+b2(X),
etc. We can then consider the array in OA(N ; sk; t) to be an element from
OA(N ; sb1sb2 · · · sbn ; t). We reduce this array to lexicographically minimal form
using the method of Schoen et al. (2010). The software used contains func-
tions (Eendebak, 2013, see the arraydata_t structure) to impose the ordering
of the columns. These functions set the column structure of the array equal
to the structure of the symmetry group obtained from the delete-one-factor
projections.

The method described above has a computational advantage over the original
LMC method. Since the columns with different delete-one-factor values cannot
be interchanged any more, the number of column permutations that has to be
checked in order to perform the reduction to minimal form is greatly reduced.
This is illustrated in Example 3 on page 10.

Definition 7. Let ρ be a method for reducing an array to some canonical form
and let π−1() be the projection of an array onto the first k − 1 factors (by
deletion of the last column). We say that the canonical form ρ is stable under
column extensions if for any extension Y of X we have

ρ(X) = π−1(ρ(Y)). (2)

The LMC canonical form of an array is stable under column extensions. The
delete-one-factor form is not stable, as illustrated in Example 2.

Example 2 (Delete-one-factor normal form). Let the strength 2 orthogonal array

6

X be defined by

Y =

0 0 0 0 0 0 0
0 0 0 0 0 0 1
0 0 1 0 1 1 0
0 0 1 1 1 0 0
0 1 0 1 0 1 1
0 1 0 1 1 0 1
0 1 1 0 1 1 1
0 1 1 1 0 1 0
1 0 0 1 1 1 0
1 0 0 1 1 1 1
1 0 1 0 0 1 1
1 0 1 1 0 0 1
1 1 0 0 0 1 0
1 1 0 0 1 0 0
1 1 1 0 1 0 1
1 1 1 1 0 0 0

and let X = π−1(Y) be the matrix obtained by deleting the last column from
Y . The array Y is in canonical form for the delete-one-factor ordering. The
delete-one-factor GWLP values are

d0(Y) = (1.00, 0.00, 0.00, 1.50, 1.00, 0.50, 0.00),

d1(Y) = (1.00, 0.00, 0.00, 1.50, 1.00, 0.50, 0.00),

d2(Y) = (1.00, 0.00, 0.00, 1.50, 1.00, 0.50, 0.00),

d3(Y) = (1.00, 0.00, 0.00, 1.75, 0.75, 0.25, 0.25),

d4(Y) = (1.00, 0.00, 0.00, 1.75, 0.75, 0.25, 0.25),

d5(Y) = (1.00, 0.00, 0.00, 2.00, 1.00, 0.00, 0.00),

d6(Y) = (1.00, 0.00, 0.00, 2.00, 2.00, 0.00, 0.00).

Hence, the GWLP values are ordered. However,

d0(X) = (1.00, 0.00, 0.00, 1.00, 0.50, 0.00),

d1(X) = (1.00, 0.00, 0.00, 1.00, 1.00, 0.00),

d2(X) = (1.00, 0.00, 0.00, 1.00, 1.00, 0.00),

d3(X) = (1.00, 0.00, 0.00, 1.00, 0.50, 0.00),

d4(X) = (1.00, 0.00, 0.00, 1.00, 0.50, 0.00),

d5(X) = (1.00, 0.00, 0.00, 1.00, 0.50, 0.00).

As a result, the GWLP values for X are not ordered, so X is not in canonical
form for the delete-one-factor ordering. We conclude that the delete-one-factor
ordering is not stable under column extensions. N

2.3 Minimum complete set algorithm

In this section, we present two algorithms to generate a minimum complete set
for OA(N ; sk; t). The first algorithm is given in Algorithm 2. This algorithm

7

is based on the LMC normal form and was introduced in Schoen et al. (2010).
In practice, it is not necessary to generate all the extensions in step 2a of Algo-
rithm 2. The requirement for the algorithm to work is that the generated set of
extensions contains, for each isomorphism class in OA(N ; sj+1; t), the canonical
form. We can use the methods described in Schoen et al. (2010) to reduce the
number of extensions. For example, when extending an array with k columns we
can let the algorithm generate only extension columns which are lexicograph-
ically larger than column the last column of the array. All extension columns
which are lexicographically smaller than the last column can be discarded since
these columns will not produce arrays in canonical form.

LMC Minimal Complete Set algorithm

Input: Specification of N , t, s and k.
Output: Minimal complete set for OA(N ; sk; t).

1. Start with the root array of OA(N ; st; t). The root forms a MCS for
OA(N ; st; t).

2. For j = t, . . . , k − 1 extend the MCS for OA(N ; sj ; t) to a MCS for
OA(N ; sj+1; t) using the following procedure:

(a) For each array, create all possible extensions to j + 1 columns.

(b) For all extensions, check whether the array is in LMC form

(c) Discard the arrays not in LMC form. The remaining arrays
form a MCS for OA(N ; sj+1; t).

Algorithm 2: The LMC MCS algorithm

Delete-one-factor Minimal Complete Set algorithm

Input: Specification of N , t, s and k.
Output: Minimal complete set for OA(N ; sk; t).

1. Start with the root array of OA(N ; st; t). The root forms a MCS for
OA(N ; st; t).

2. For j = t, . . . , k − 1 extend the MCS for OA(N ; sj ; t) to a MCS for
OA(N ; sj+1; t) using the following procedure:

(a) For each array, create all possible extensions to j + 1 columns.

(b) For all extensions, reduce the array to delete-one-factor normal
form using Algorithm 1.

(c) From the resulting set of arrays only keep the unique elements.
The set of unique arrays forms a MCS for OA(N ; sj+1; t).

Algorithm 3: The delete-one-factor MCS algorithm

A second algorithm to generate a MCS is specified in Algorithm 3. This algo-
rithm generates the MCS with representatives in the delete-one-factor canonical

8

form.
For this algorithm we can use some of the methods described in Schoen et al.

(2010) to reduce the number of arrays that has to be generated. The require-
ment is that, for each isomorphism class, there is at least one representative
array within the set of generated arrays. A method we cannot use to reduce
the generation of arrays is to discard the extension columns which are lexico-
graphically smaller then the previous column. The reason for this is that the
delete-one-factor normal form is not stable under columns extensions.

A crucial difference between Algorithm 2 and Algorithm 3 is that, in Algo-
rithm 2, we can check whether the generated arrays are in canonical form, but,
in Algorithm 3, we have to reduce the arrays to canonical form. The reason
we can use the check in Algorithm 2 is that the LMC canonical form is stable
under column extensions.

The algorithm can be extended to non-symmetric arrays. For non-symmetric
arrays, we can use the definitions from Xu and Wu (2001) to define the GWLPs.
We refer to Appendix A for details.

3 Results

The methods described in the previous section have been implemented in C++
with a command line as well as a Python interface. The code for analyzing
arrays is contained in the Orthogonal Array package Eendebak (2013) and is
available online Eendebak (2012). Example code to analyse some of the arrays
is included in Appendix B. We compare two applications of both methods:

• Reduction of an array to normal form.

• Generation of a MCS for a certain class of arrays.

3.1 Reduction to canonical form

The cases for which the delete-one-factor method works well, are the cases for
which the delete-one-factor GWLPs have a large variation. If the GWLPs are
all equal, then the GWLPs impose no additional constraints on the ordering of
the columns of the array and the ordering reduces to the LMC ordering.

We consider the cases OA(32; 2a; 3) and OA(40; 2a; 3). First we consider the
reduction of arrays in this class to canonical form. We do this by taking a rep-
resentative for each isomorphism class in OA(N ; 2a; 3), for various a, applying
a random transformation of the rows, columns, and levels to this representative
and then measuring the time needed for reducing the array to canonical form.
The procedure is performed several times to eliminate the effect of the random
component. The results for reduction of a randomized array to canonical form
are given in Table 1 and Table 2.

From the tables it is clear that the delete-one-factor method performs better
in all cases. The improvement is relatively larger number for a higher number
columns. The reason is that for a larger number of columns the delete-one-
factor projection values have enough variation to reduce the number of column
permutations. In Table 3, the structure of the delete-one-factor GWLP groups
is shown for OA(32; 29; 3). The symmetry groups have been calculated with the
Orthogonal Array package (see Appendix B for an example calculation). It is

9

clear that for most arrays there is enough structure in the group to reduce the
number of column permutations that have to be analysed. The average size of
the column permutation groups is 63611, which is about 18% of the full column
permutation group size which is 9! = 362880.

Example 3 (Column permutations in normal form reduction). Let X be the
array in OA(32, 3, 29) defined by

X =

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
0 0 1 1 0 0 1 1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 0 0 1 1 0 0 1 1
0 0 1 1 1 1 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 1 0 0 0 0 1 1
0 1 0 1 0 1 0 1 0 0 1 1 1 1 0 0 1 1 0 0 0 0 1 1 0 1 0 1 0 1 0 1
0 1 0 1 1 0 1 0 0 1 1 0 0 1 1 0 1 0 0 1 1 0 0 1 1 0 1 0 0 1 0 1

T

.

The GWLPs of the delete-one-factor projections are:

Deleted column GWLP
0 d0(X) = (1.0, 0.0, 0.0, 0.0, 5.0, 0.0, 2.0, 0.0, 0.0)
1 d1(X) = (1.0, 0.0, 0.0, 0.0, 5.0, 0.0, 2.0, 0.0, 0.0)
2 d2(X) = (1.0, 0.0, 0.0, 0.0, 5.25, 0.0, 1.5, 0.0, 0.25)
3 d3(X) = (1.0, 0.0, 0.0, 0.0, 5.25, 0.0, 1.5, 0.0, 0.25)
4 d4(X) = (1.0, 0.0, 0.0, 0.0, 5.25, 0.0, 1.5, 0.0, 0.25)
5 d5(X) = (1.0, 0.0, 0.0, 0.0, 5.25, 0.0, 1.5, 0.0, 0.25)
6 d6(X) = (1.0, 0.0, 0.0, 0.0, 6.0, 0.0, 1.0, 0.0, 0.0)
7 d7(X) = (1.0, 0.0, 0.0, 0.0, 6.0, 0.0, 1.0, 0.0, 0.0)
8 d8(X) = (1.0, 0.0, 0.0, 0.0, 7.0, 0.0, 0.0, 0.0, 0.0)

The structure of the column permutation group is [2, 4, 2, 1].
The array is from OA(32; 29; 3), but after calculation of the delete-one-factor

projection values we can consider the array to be an element of OA(32; 22242221; 3).
With a naive algorithm for reduction to canonical form, the number of column
permutations that has be checked is 9! = 362880. With the LMC algorithm
from Schoen et al. (2010) the columns are selected one at a time and the tree
is pruned as soon as possible. For the first 3 columns there is no pruning, since
there is no structure because of the strength of 3. Most column permutations
can be discarded at the fourth of fifth column. A rough estimate of the num-
ber of column permutation to be checked is 5!

(
9
5

)
= 15120. If we consider the

delete-one-factor projection values, the number of column permutations to be
checked is reduced even further. The first two columns are the columns with
lowest GWLP value. There are precisely 2! possible permutations for these first
2 columns. For the next 4 columns we have 4! combinations, etc. In total we
have 2!4!2!1! = 96 column permutations that have to be checked. N

The running time of the algorithm is to a large extent determined by the
number of column permutations that has to be checked. For the class OA(40; 2a; 3)
a rough estimate of the number of column permutations to be checked with the
LMC ordering is 5!

(
n
5

)
. A graph of this complexity together with the compu-

tation times per array for the LMC and the delete-one-factor method is given

10

Case Number of classes Reduction time LMC Reduction time DOP

OA(32, 3, 26) 10 6.2 [ms] 4.3 [ms]
OA(32, 3, 27) 17 6.5 [ms] 3.6 [ms]
OA(32, 3, 28) 33 11.5 [ms] 8.3 [ms]
OA(32, 3, 29) 34 17.3 [ms] 11.4 [ms]
OA(32, 3, 210) 32 43.6 [ms] 26.0 [ms]
OA(32, 3, 211) 22 86.9 [ms] 28.9 [ms]
OA(32, 3, 212) 23 210.5 [ms] 166.4 [ms]
OA(32, 3, 213) 12 444.5 [ms] 347.2 [ms]

Table 1: Mean calculation times for reducing randomized arrays to normal form.

Case Number of classes Reduction time LMC Reduction time DOP

OA(40, 3, 27) 25 3.4 [ms] 1.1 [ms]
OA(40, 3, 28) 105 5.7 [ms] 2.3 [ms]
OA(40, 3, 29) 213 8.1 [ms] 2.0 [ms]
OA(40, 3, 210) 353 13.0 [ms] 3.3 [ms]
OA(40, 3, 211) 260 22.3 [ms] 1.6 [ms]
OA(40, 3, 212) 235 37.5 [ms] 8.9 [ms]
OA(40, 3, 213) 132 71.2 [ms] 7.8 [ms]
OA(40, 3, 214) 96 138.3 [ms] 12.4 [ms]
OA(40, 3, 215) 36 318.5 [ms] 25.1 [ms]

Table 2: Mean calculation times for reduction of randomized array to normal
form.

11

Array index Group structure Group size
0 [8, 1] 40320
1 [6, 1, 2] 1440
2 [3, 4, 2] 288
3 [7, 2] 10080
4 [6, 2, 1] 1440
5 [8, 1] 40320
6 [5, 1, 2, 1] 240
7 [2, 4, 2, 1] 96
8 [6, 2, 1] 1440
9 [4, 1, 4] 576
10 [5, 2, 2] 480
11 [5, 2, 2] 480
12 [6, 2, 1] 1440
13 [8, 1] 40320
14 [3, 2, 4] 288
15 [9] 362880
16 [9] 362880
17 [9] 362880
18 [4, 3, 1, 1] 144
19 [8, 1] 40320
20 [4, 1, 4] 576
21 [4, 2, 2, 1] 96
22 [4, 2, 2, 1] 96
23 [3, 4, 1, 1] 144
24 [4, 4, 1] 576
25 [4, 4, 1] 576
26 [8, 1] 40320
27 [3, 2, 4] 288
28 [9] 362880
29 [9] 362880
30 [7, 1, 1] 5040
31 [8, 1] 40320
32 [8, 1] 40320
33 [8, 1] 40320

Table 3: Structure of delete-one-factor symmetry group for the arrays in
OA(32, 3, 29). The mean column permutation group size is 63611.3.

12

in Figure 1. The complexity estimate is scaled such that the mean complexity
and mean computation time of the LMC method are equal. We can see that
the computing times for the LMC method scale with the number of columns
roughly as the complexity estimate.

Figure 1: Mean reduction time per array.

3.2 Extension results

Recall that the methods to determine all isomorphism classes in OA(N ; 2a; t)
are based on two steps:

• Extension Generate a set of arrays that includes at least one representa-
tive for each isomorphism class.

• Reduction Reduce the set of arrays so that each class has only one rep-
resentative.

In this section we compare two such methods. The first method (Algorithm 2)
is the method from Schoen et al. (2010)), the second method (Algorithm 3) is
similar to the first, but uses the new canonical form described in Section 2.2.
The running times of both algorithms depend on both the extension and reduc-
tion part. The ratio between these part can differ between different classes of
orthogonal arrays.

For the delete-one-factor method we have implemented one additional step to
increase the computation speed. For each extension Y of an array X generated,
the delete-one-factor GWLPs dj(Y) are calculated, and, for an array in delete-
one-factor canonical form these values are decreasing. If we find an extension
for which the final column k satisfies dk(Y) > dk−1(Y), then we can discard

13

this array. The reason is that the array will be generated also as an extension of
the canonical form of the array πj(X) as well. The canonical form of the array
πj(X) is not equal to Y (since they have different GWLPs). Since we only need
to generate at least one representative for each isomorphism class, discarding
the array Y does not influence the MCS generated.

The results for extension of the classes OA(32; 29; 3) and OA(40; 29; 3) with
one additional factor are given in Table 4 and Table 3.2. The delete-one-factor
method generates more arrays to be checked. This results in a higher compu-
tation time.

LMC method DOP method
input arrays 34 34
generated extensions 217 292
reduced extensions 32 32
Processing time 0.9 [s] 5.1 [s]

Table 4: Results for extension of OA(32; 29; 3) to OA(32; 210; 3).

LMC method DOP method
arrays 213 213
generated extensions 1844 3105
reduced extensions 353 353
Processing time 3.8 [s] 5.2 [s]

Table 5: Results for extension of OA(40; 29; 3)

4 Discussion

Experiments show that with the new delete-one-factor ordering a reduction
to canonical form can be performed much faster than with the lexicographic
ordering. However, this new ordering does not work well with the current state-
of-the-art extension algorithms. In the extension phase much more arrays are
generated, so the overall calculation is not faster than the original lexicographic
ordering.

One method to reduce the running time of the new algorithm is to reduce
the number of arrays that is generated during the extension phase. However,
the number of arrays generated in the extension phase is always at least as large
as the number of isomorphism classes. Therefore the number of isomorphism
classes to be generated provides a lower bound on the calculation time that can
be achieved when reducing the number of arrays generated.

A second way would be to modify the new canonical form and make it
stable under extension of the arrays. The new ordering is defined in terms of
the delete-one-factor projections and each individual projection depends on the
entire array. The author has not found any new ordering that is stable and at
the same time efficient to calculate.

14

Our method is applicable to non-symmetric arrays. However, for non-
symmetric arrays columns permutations between columns with a different num-
ber of levels are not possible. So, the advantages of the delete-one-factor method
for non-symmetric arrays are smaller.

5 Acknowledgements

The author would like to thank Eric Schoen and Peter Goos for reviewing the
paper.

References

Bulutoglu, D. and Margot, F. (2008). Classification of orthogonal arrays by
integer programming. Journal of Statistical Planning and Inference, 138:654–
666.

Chen, J., Sun, D., and Wu, C. (1993). A catalogue of two-level and three-level
fractional factorial designs with small runs. International Statistical Review,
61:131–145.

Deng, L. and Tang, B. (1999). Generalized resolution and minimum aberration
criteria for plackett-burman and other nonregular factorial designs. Statistica
Sinica, 9:1071–1082.

Eendebak, P. T. (2012). Orthogonal array page. http://www.pietereendebak.
nl/oapage/.

Eendebak, P. T. (2013). The Orthogonal Array package. Technical report.

Hedayat, A., Sloane, N., and Stufken, J. (1999). Orthogonal arrays : theory and
applications. Springer.

McKay, B. (1981). Practical graph isomorphism. Congressus Numerantium,
30:45–87.

McKay, B. D. and Piperno, A. (2013). Practical graph isomorphism, ii. CoRR,
abs/1301.1493.

Rao, C. (1947). Factorial experiments derivable from combinatorial arrange-
ments of arrays. Journal of the Royal Statistical Society Supplement, 9:128–
139.

Ryan, K. J. and Bulutoglu, D. A. (2010). Minimum aberration fractional fac-
torial designs with large n. Technometrics, 52(2):250–255.

Schoen, E. D., Eendebak, P. T., and Nguyen, M. V. M. (2010). Complete enu-
meration of pure-level and mixed-level orthogonal arrays. Journal of Combi-
natorial Designs, 18(2):123–140.

Sun, D., Li, W., and Ye, K. (2002). An algorithm for sequentially construct-
ing nonisomorphic orthogonal designs and its applications. Technical report,
Department of Applied Mathematics and Statistics, SUNY at Stony Brook.

15

http://www.pietereendebak.nl/oapage/
http://www.pietereendebak.nl/oapage/

Xu, H. (2009). Algorithmic construction of efficient fractional factorial designs
with large run sizes.

Xu, H. and Wu, C. F. J. (2001). Generalized minimum aberration for asym-
metrical fractional factorial designs. Annals of Statistics, 29:1066–1077.

A Extension to non-symmetric arrays

The theory in this paper can be extended to include non-symmetric arrays.
First we extend the definitions of the distance distribution and GWLPs to non-
symmetric arrays. Then we define an ordering on non-symmetric arrays. The
rest of the theory is the same as for symmetric arrays.

Let s = (s1, . . . , sl) with si ≥ 2 and si 6= sj for i 6= j. Let n = (n1, . . . , nl)

with ni ≥ 1,
∑l
i=1 ni = k. We use sn as a shorthand for sn1

1 sn2
2 · · · slnl . For the

non-symmetric arrays in OA(N ; sn; t) we use the following definitions.

Definition 8 (Distance distribution). Let D be in OA(N ; sn; t). Every row
a ∈ D is split as a = (a1, . . . , al). For j = (j1, . . . , jl) ∈ Zn1

× · · ·Znl
we define

Bj(D) = Bj1,j2,...,jl(D)

= N−1|{(a, b) : dH(ai, bi) = ji for i = 1, . . . , l, a ∈ D, b ∈ D}|.

The MacWilliams transforms of the distance distribution are defined as

B′j(D) = N−1
n1∑
i1=0

n2∑
i2=0

· · ·
nl∑
il=0

Bi(D)Pj1(i1;n1, s1)Pj2(i2;n2, s2) · · ·Pjl(il;nl, sl)

where Pj(x; k, s) =
∑j
i=0(−1)i(s − 1)j−i

(
x
i

)(
k−x
j−i
)

are the Krawtchouk polyno-
mials.

Definition 9 (Generalized Wordlength Pattern). For an (N, sn)-design D, the
generalized wordlength pattern of D is equal to A(D) = (A0(D), . . . , Ak(D))
with k =

∑
i ni and

Aι(D) =
∑

j1+j2+...=ι

B′j1,...,jl(D).

Example 4. Let s = (4, 2), n = (2, 1). Let D be the orthogonal array in

16

OA(16; 422; 2) defined by

D =

0 0 0
0 1 0
0 2 1
0 3 1
1 0 0
1 1 0
1 2 1
1 3 1
2 0 1
2 1 1
2 2 0
2 3 0
3 0 1
3 1 1
3 2 0
3 3 0

.

Then the distance distribution of D is given by (see Definition 8)

B(0,0)(D) = 1, B(1,0)(D) = 2, B(2,0)(D) = 5,

B(0,1)(D) = 0, B(1,1)(D) = 4, B(2,1)(D) = 4.

The GWLP is given by A(D) = (1.0, 0.0, 0.0, 1.0). N

The delete-one-factor projections of a non-symmetric array cannot be com-
pared directly since not all columns have the same number of factor levels. We
therefore introduce an ordering that compares the columns only if the column
levels are identical. For columns with identical column levels we still use the
GWLPs to compare.

Definition 10 (Delete-one-factor ordering for non-symmetric arrays). Let D
be in OA(N ; sn; t). For each column k we define the mixed projection value
dM,k(D) to be the tuple defined by the factor level of column k and the GWLP
of the array obtained by deleting column k, so

dM,k(D) = (−sk, dk(D)).

We order the mixed projection values by the usual lexicographic ordering.
Let X and Y be two non-symmetric N×n arrays. We define X to be smaller

than Y in the delete-one-factor ordering if there is an l such that dM,j(X) =
dM,j(Y) for j = 1, . . . , l − 1 and dM,l(X) < dM,l(Y) or dM,j(X) = dM,j(Y) for
j = 1, . . . , k and X is lexicographically smaller than Y .

The definition of dM,k(D) contains a minus sign in front of the factor level
to make sure that the arrays in canonical form start with the columns with the
highest factor levels. For symmetric arrays the ordering defined above corre-
sponds to the original ordering since all levels si are equal.

17

B Example code

In this section, we give an example of the usage of the Orthogonal Array pack-
age Eendebak (2013) to analyse arrays. We calculate the GWLPs of the delete-
one-factor arrays and calculate the associated symmetry group.

Example 1: canonical form of an array

>>> import oalib

>>> al=oalib.exampleArray(4)

>>> al=oalib.reduceDOPform(al)

>>> al.showarray()

array:

0 0 0 0 0 0 0

0 0 0 0 0 0 1

0 0 0 1 1 1 0

0 0 0 1 1 1 1

0 1 1 0 0 1 0

0 1 1 0 0 1 1

0 1 1 1 1 0 0

0 1 1 1 1 0 1

1 0 1 0 1 0 0

1 0 1 0 1 1 1

1 0 1 1 0 0 0

1 0 1 1 0 1 1

1 1 0 0 1 0 1

1 1 0 0 1 1 0

1 1 0 1 0 0 1

1 1 0 1 0 1 0

>>> print(’GWLP %s’ % str(al.GWLP()))

GWLP (1.0, 0.0, 0.0, 3.5, 2.5, 0.5, 0.5, 0.0)

>>> for ii in range(0, al.n_columns):

... bl=al.deleteColumn(ii)

... print(’dof %d: GWLP %s’ % (ii, str(bl.GWLP())))

dof 0: GWLP (1.0, 0.0, 0.0, 1.5, 1.0, 0.5, 0.0)

dof 1: GWLP (1.0, 0.0, 0.0, 1.75, 0.75, 0.25, 0.25)

dof 2: GWLP (1.0, 0.0, 0.0, 1.75, 0.75, 0.25, 0.25)

dof 3: GWLP (1.0, 0.0, 0.0, 2.0, 1.0, 0.0, 0.0)

dof 4: GWLP (1.0, 0.0, 0.0, 2.0, 1.0, 0.0, 0.0)

dof 5: GWLP (1.0, 0.0, 0.0, 2.0, 1.0, 0.0, 0.0)

dof 6: GWLP (1.0, 0.0, 0.0, 3.0, 2.0, 0.0, 0.0)

>>> dopgwp = oalib.projectionGWLPvalues (al)

>>> sg=oalib.symmetry_group(dopgwp, 0)

>>> sg.show(1)

symmetry group: 7 elements, 4 subgroups: 1 2 3 1

18

	Introduction
	Method
	Preliminaries
	Canonical form
	Minimum complete set algorithm

	Results
	Reduction to canonical form
	Extension results

	Discussion
	Acknowledgements
	Bibliography
	Extension to non-symmetric arrays
	Example code

