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Abstract. Theoretical studies of Higgs production via gluon fusion are frequently carried out in the
limit where the top quark mass is much larger than the Higgs mass, an approximation which reduces
the top quark loop to an effective vertex. We present a numerical analysis of the error thus introduced
by performing a Monte Carlo calculation for gg→ h in kT -factorisation, using the parton shower
generator CASCADE. By examining both inclusive and exclusive quantities, we find that retaining
the top-mass dependence results in only a small enhancement of the cross-section. We then proceed
to compare CASCADE to the collinear Monte Carlos PYTHIA, MC@NLO and POWHEG.
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INTRODUCTION

In the kT -factorisation method [1–4] one makes the transition from parton-level to
hadron-level cross-sections through a convolution with the unintegrated parton distri-
bution functions [5, 6]. By retaining the dependence on the transverse momenta and
evaluating the cross-section with off-shell incoming partons, the potentially large high-
energy logarithms are automatically resummed.

Higgs boson production via gluon fusion is mediated through a top quark loop. In the
heavy-top limit in which 2mt/mH � 1 this loop can be replaced by an effective vertex,
reducing the loop count by one and simplifying the calculation [7]. This approximation
is frequently used in theoretical studies of the Higgs so a quantification of the error
introduced is important. Numerical analyses in collinear factorisation indicate that the
effects of the top-mass are small when 2mt/mH < 1 [8–10].

The cross-section of the top-quark triangle with off-shell initial-state gluons, having
first been derived in the heavy-top limit [11, 12], now exists in the literature with the
full mt dependence [13, 14]. It is therefore possible to examine the impact of this
approximation on both inclusive and exclusive quantities, now within kT -factorisation. A
comparison of the cross-sections was carried out in Ref. [13, 15] concluding that on the
inclusive level corrections are of the order of 5%. Through the use of the kT -factorised
Monte Carlo CASCADE [16, 17] we confirm this finding and extend the investigation to
the spectrum of the mini-jet radiation accompanying the Higgs.

An additional question, conceptually separate from the heavy-top approximation, is
the dependence of gluon radiation in association with Higgs production on the resumma-
tion of high energy corrections. We examine the impact of extra gluon radiation on the
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FIGURE 1. The quantity 1− dσ(mtop→∞)
dW /

dσ(mtop)
dW is plotted for W = pHiggs

T (left) and W = yHiggs (right),
where y is the rapidity. The error bars reflect only the statistical error of the Monte Carlo. These plots were
obtained using the CCFM Set A [16, 22].

Higgs pT spectrum by comparing CASCADE to the collinearly-factorised PYTHIA [18],
MC@NLO [19] and POWHEG [20, 21].

All plots have been obtained for pp collisions at
√

s = 14 TeV and mH = 120 GeV.

EFFECTS OF THE FINITE TOP-QUARK MASS

We find that retaining the full top-mass dependence in the matrix element leads to a small
and approximately uniform increase in the differential cross-sections in pT and y of the
order of 5%. This is illustrated in Fig. 1 and is consistent with previous studies [13, 15].

We extend the study of top-mass effects by examining the mini-jet activity accompa-
nying Higgs boson production. We follow the underlying event analyses of Ref. [23, 24],
to which the reader is referred for the basic approach and motivation. We divide the
azimuthal plane in four regions and accordingly classify the jets produced in asso-
ciation with the Higgs. Jets are defined using the SISCone algorithm [25] of the
FastJet [26] package with R = 0.4 and f = 0.5, applied on the hadron level. We
impose the cut pjet

T > 10 GeV. The resulting multiplicity distributions in the four az-
imuthal regions are shown in Fig. 2, plotted against the Higgs transverse momentum.
They appear to not be very sensitive to mass effects in the matrix element.

COMPARISON TO COLLINEAR MONTE CARLOS

We compare the effect of resumming higher-order contributions with a purely collinearly
description of radiation. We extend the analysis of Ref. [23] where CASCADE was
compared to the LO1 Monte Carlo PYTHIA to include the collinear NLO genera-
tors MC@NLO and POWHEG. Showering in MC@NLO is performed through the angular-
ordered HERWIG [27, 28] and we run POWHEG coupled to the PYTHIA shower. We
operate PYTHIA with the ‘new’ underlying event model [29, 30] (PYENVW) using the
‘Perugia 0’ tune.

1 PYTHIA also implements partial radiative higher-order corrections.
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FIGURE 2. The ratio 1− dN(mtop→∞)
d pT

/
dN(mtop)

d pt
is shown, where N the number of mini-jets. The his-

tograms are normalised to the pT spectrum of the Higgs and thus do not scale with the cross-section.
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FIGURE 3. The pT (left) and rapidity (right) spectrum of the Higgs. The curves have been scaled to a
common token cross-section of 1 pb.

In order to make a baseline comparison with the collinear Monte Carlos we take
ME(kT )→ME(kT = 0)θ(µ − kT ), where µ is the factorisation scale. We use uninte-
grated gluon distributions obtained from deconvolution of the ordinary distributions as
described in Ref. [1]. We use a standard set implemented in CASCADE [16, 17]. For the
collinear generators we used the CTEQ6M [31] set. The results are plotted in Fig. 3.

Additional corrections to the matrix element associated with the off-shellness con-
tribute significantly to the spectrum. The details of this will be elaborated on in a forth-
coming publication. We find that the details of the initial-state showering are important
even in the high-pT region.

CONCLUSION

We have implemented top-mass terms in the kT -factorised Monte Carlo CASCADE. We
have used this to analyse the uncertainty induced by the heavy-top approximation that
is commonly used to simplify loop calculations. We have investigated this both for the
inclusive cross-section and the multiplicity of mini-jets accompanying the Higgs boson.
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Furthermore, we have examined the effect of the higher-order radiative terms re-
summed by kT -factorisation on the Higgs pT spectrum. We have compared CASCADE
with the collinear Monte Carlos PYTHIA, POWHEG and MC@NLO. We find that the im-
pact of both the unintegrated gluon distributions and matrix elements is significant even
at pT of the order or higher than the Higgs mass.
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