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EN: Abstract

The growing reliance on automated software tests raises a fundamental question: How
trustworthy are these automated tests? Today, mutation testing is acknowledged within
academic circles as the most promising technique for assessing the fault-detection capa-
bility of a test suite. The technique deliberately injects faults (called mutants) into the
production code and counts how many of them are caught by the test suite.

Mutation testing shines in systems with high statement coverage because uncaught mu-
tants reveal weaknesses in code which is supposedly covered by tests. Safety-critical
systems –where safety standards dictate high statement coverage– are therefore a prime
candidate for mutation testing. In safety-critical software, C and C++ dominate the tech-
nology stack. Yet this is not represented in the mutation testing community: a systematic
literature review on mutation testing from 2019 analysed 502 papers and reported that
from the 190 empirical studies, 62 targeted the C language family and out of the 76 muta-
tion testing tools, only 15 targeted the C language family. Despite the apparent potential,
mutation testing is difficult to adopt in industrial settings, because the technique —in its
basic form— requires a tremendous amount of computing power. Without optimisations,
the entire code base must be compiled and tested separately for each injected mutant.
Hence for medium to large test suites, mutation testing without optimisations becomes
prohibitively expensive.

To make mutation testing effective in an industrial setting, we set three objectives: (1)
generate fewer mutants, (2) process them smarter and (3) execute them faster. To meet
our objectives, we investigate the most promising techniques from the current state-of-the-
art. This ranges from leveraging cloud technology to compiler integrated techniques using
the Clang front-end. These optimisation strategies allow to eliminate the compilation and
execution overhead in order to to support efficient mutation testing for the C language
family.

As a final step, we perform an empirical study on the perception of mutation testing in
industry. The aim is to investigate whether the advances are sufficient to allow industrial
adoption and to identify any remaining barriers preventing industrial adoption.

In this Ph.D. thesis we show that a combination of mutation testing optimisation tech-
niques from the do fewer, do faster, and do smarter are needed to perform mutation
testing in a continuous integration setting. Furthermore, the industrial perception of
mutation testing is evolving as additional organisations recognise its potential.
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NL: Samenvatting
De groeiende afhankelijkheid van geautomatiseerde softwaretesten roept een fundamentele
vraag op: hoe betrouwbaar zijn deze geautomatiseerde testen? In academische kringen
wordtmutation testing de dag van vandaag erkend als de meest veelbelovende techniek om
het vermogen van een testbatterij om fouten te detecteren, te beoordelen. De techniek
injecteert opzettelijk fouten (genaamd mutanten) in de productiecode en telt hoeveel
ervan door de testbatterij worden gevonden.

Mutation testing blinkt uit in systemen met een hoge instructiedekking, omdat niet-
gevangen mutanten de zwakke plekken in code onthullen die zogezegd door de testen
worden gedekt. Kritische systemen – waar de veiligheidsnormen een hoge instructiedek-
king voorschrijven – zijn daarom een uitstekende kandidaat voor mutation testing. In
veiligheidskritieke softwaresystemen domineren C en C++ de technologiestack. Echter is
dit niet vertegenwoordigd in het veld van mutation testing : een systematisch literatuur-
overzicht over mutation testing uit 2019 dat 502 papers analyseerde, meldt dat van de
190 empirische studies, 62 zich richten op de C-taalfamilie en van de 76 mutation testing
programma’s er maar 15 zich richten op de C-taalfamilie. Ondanks het schijnbare poten-
tieel, is mutation testing moeilijk toe te passen in een industriële omgevingen. Dit omdat
de techniek — in zijn basisvorm — een enorme hoeveelheid rekenkracht vereist. Zonder
optimalisaties moet voor elke geïnjecteerde mutant het volledige project afzonderlijk wor-
den gecompileerd en getest. Hierdoor wordt mutation testing zonder optimalisaties voor
middelgrote tot grote projecten onpraktisch.

Om mutation testing mogelijk te maken in een industriële omgeving, hebben we drie doe-
len gesteld: (1) minder mutanten genereren, (2) ze slimmer verwerken en (3) ze sneller
uitvoeren. Hiervoor zullen we de meest veelbelovende van de huidige grensverleggende
technieken onderzoeken. Dit varieert van het gebruik van cloudtechnologie tot compiler
geïntegreerde technieken met behulp van de Clang front-end. Deze optimalisatiestrate-
gieën maken het mogelijk om de compilatie- en uitvoeringsoverhead te elimineren en zo
efficiënte mutation testing voor de C-taalfamilie te ondersteunen.

Als laatste stap voeren we een empirisch onderzoek uit naar de perceptie van mutatie-
testen in de industrie. Het doel is om te onderzoeken of de vooruitgang voldoende is
om industriële adoptie toe te staan en om de eventuele potentiële resterende barrières te
identificeren die de industriële adoptie voorkomen.

In deze Ph.D. thesis tonen we dat een combinatie van mutation testing optimalisatie-
technieken die minder mutanten genereren, ze slimmer verwerken en ze sneller uitvoeren
nodig is om mutation testing uit te voeren in een continuous integration omgeving. Ver-
der, evolueert de industriële perceptie van mutation testing naarmate meer organisaties
het potentieel ervan erkennen.
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SE: Sammanfattning

Ökat användande av testautomation föranleder en grundläggande fråga: Hur tillförlitliga
är egentligen alla dessa automatiserade tester? Inom den akademiska forskningen anses
mutationstestning vara den mest lovande tekniken för att bedöma en testsvits förmågas att
upptäcka fel. Tekniken introducerar avsiktligt fel (så kallade mutanter) i produktionskoden
och utvärderar hur många av felen som upptäcks av testsviten.

Mutationstestning är särskilt användbart för källkod med hög grad av kodtäckning. Detta
beror på att mutanter som inte upptäcks avslöjar testfalls bristande förmåga att upptäcka
fel. Saknas kodtäckning finns inte heller någon anledning att utvärdera testfallen. Säker-
hetskritiska system - för vilka säkerhetsstandarder kräver hög grad av kodtäckning - är
därför lämpliga kandidater för mutationstestning. I säkerhetskritisk mjukvara dominerar
C och C++ teknikstacken. Detta återspeglas inte i mutationstestningsforskningen. En
systematisk översiktsstudie från 2019, baserad på 502 artiklar, rapporter att bara 62 av
190 empiriska studier betraktar C-språksfamiljen. Vidare rapporterades att enbart 15 av
76 identifierade mutationstestningsverktyg behandlar källkod från C-språksfamiljen. Trots
den uppenbara potentialen har mutationstestning visat sig svårt att införa i industriella
utvecklingsmiljöer, eftersom tekniken - i sin grundform - kräver en enorm mängd be-
räkningskraft. Utan optimeringar måste hela kodbasen kompileras och testas separat för
varje introducerad mutant. Av denna anledning blir mutationstestning utan optimeringar
i praktiken oanvändbart för medelstora till stora testssviter.

För att göra mutationstestning effektivt i en industriell utvecklingsmiljö sätter vi tre mål:
(1) generera färre mutanter, (2) bearbeta dem smartare och (3) exekvera dem snabbare.
Vi undersöker de mest lovande teknikerna från forskningsfronten. Till exempel, moln-
teknologi och kompilatorbaserade tekniker som använder Clang-front-enden. Dessa opt-
imeringsstrategier leder till eliminering av kompilerings- och exekveringsoverhead vilket
möjliggör resurseffektiv mutationstestning för C-språksfamiljen.

Avslutningsvis genomför vi en empirisk studie av industriella perspektiv på mutationstest-
ning. Syftet är att utvärdera om optimeringarna är tillräckliga för industriella kontexter
samt att identifiera eventuellt återstående hinder för storskalig tillämpning. Våra resultat
visar att industrins syn på mutationstestning har utvecklats efter hand som fler utveck-
lingsorganisationer upptäckt möjligheterna med tekniken.

Avhandlingen demonstrerar att en kombination av optimeringarna är nödvändiga för att
tillämpa mutationstestning i industriella continuous integration-kontexter. Avslutningsvis
visar vi att industrins syn på mutationstestning utvecklas positivt efter hand som fler
organisationer värdesätter dess potential.
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Speeding up Mutation Testing for a Superior
Alternative to Code Coverage

Sten Vercammen, Dept. of Computer Science, Lund University
Dept. of Computer Science, University of Antwerp

Nowadays, many programmers tend to write automated tests for their projects. Theythen decide whether their project is sufficiently tested by running a code coverage tech-nique. This tells us which parts of the project were executed during testing. But, this isexactly and only what these code coverage techniques can tell you. It cannot tell you thatyour tests are actually testing the code. For all we know, the executed code might noteven be verified in the test cases.

Even with 100% code coverage, all you know isthat the statements in your project have beenexecuted without issues. It does not guaranteethe absence of faults.
Mutation testingmeasures the faultdetection capacity{

|

This is wheremutationtestingcomes intoplay. Today, it is the state-of-the-art techniquefor assessing the fault-detection capacity ofa test suite by deliberately injecting defects(called mutants) into the production code andcounting how many of them are caught by thetest suite. The more mutants the test suite candetect, the higher its fault-detection capabilityis. Where mutants are uncaught, additionaltests need to be written.
Mutation testing shines in systems withhigh statement coverage because uncaughtmutants reveal weaknesses in code which aresupposedly covered by tests. Safety-criticalsystems –where safety standards dictatehigh statement coverage– are therefore aprime candidate for validating optimisationstrategies. In safety-critical software, C andC++ dominate the technology stack. Yet in the

mutation testing community, the C languagefamily is somehow neglected: a systematicliterature review on mutation testing from2019 reports that less than 25% of the primarystudies target source code from the C languagefamily. This opens up opportunities as the Clanguage family is a mature technology withconsiderable tool support available.
Optimisationsenable drasticspeedups{

|

Unfortunately,mutation testingis seldom adoptedin practice, evenless in an industrial setting, as it requires atremendous amount of computing power.Without optimisations, the entire code basemust be compiled and tested separately foreach injected mutant. To combat this, we im-plemented a series of optimisation techniquesthat drastically reduce the execution time ofmutation testing by generating fewermutants,executing them faster and processing themsmarter.
First, we exclude invalid mutants, as thesemutants only cause compilation problems,there is no benefit in executing them. For this,we build our mutant generation tool in tan-

xii



dem with the semantic analyser of the Clangcompiler, this allows us to verify which of ourmutants are compile-time correct.
The twomost time-consuming parts of a muta-tion analysis are 1: the compilation of themutants and 2: the execution of the mutants.

Mutant Schematareduces compilationfrom days to minutes!{
|

In orderto speedup thefirstpart, we implemented a mutant schematatechnique which allows us to compile allmutants simultaneously, instead of compilingeach mutant separately. Here, all mutantsare inserted into the project code at onceand additional functions are added to allowthe activation of a single mutant at runtime.Excluding the invalid mutants is a necessity asif even a single mutant causes a compilationerror, the complete mutation analysis will fail.This drastically reduces the compilation timeand allows us to execute the mutants faster.We saw a reduction in compilation time from4 days to just 7 minutes!
A mutant is onlyreached by 10%of the test cases{

|

This leavesus with theexecutionphase. Insteadof executing the entire test suite for eachmutant, we figured that we only need toexecute the test cases that actually reach themutant. We then created a tool that tells usjust that, by instrumenting the code base toemit which mutant is reached and executingeach test case separately. It turns out that,on average, only 10% of the test cases actu-ally reach the mutant. This reduction allowsus to execute themutants up to 10 times faster.
We can process the mutants smarter byexploiting state-space information. Instead ofletting each mutant initiate execution from thestart of the program, each mutant is startedfrom the mutation point itself by forkingthe process, essentially avoiding redundantexecutions. This can achieve an additional

speedup of 2 to 3 times.
Finally, we implemented a cloud solution todistribute the mutation workload over a cloudinfrastructure. Here we saw that by doublingthe number of hardware nodes, the executiontime almost halves, nearly increasing thespeed-up linearly.

Industry wantsto know their testeffectiveness{
|

Thanks tothese speeduptechniques,the mutationanalysis has been sped up drastically. Inorder to evaluate whether the speedups weresufficient for an industrial environment, weran a small-scale empirical study with differentcompanies. We set up a mutation analysis andasked their opinions about mutation testing.All companies were very interested about theresults as they wanted to know their test ef-fectiveness. The companies are positive aboutthe capabilities of mutation testing and allacted upon the analysis results. The empiricalstudy led to an increased test effort withinall participating companies. Some of themcontinue to run the mutation analysis withinsome departments and evaluate whether theycan extend the technique to others.
We can thus safely say that the muta-tion testing technique is starting tohave an impact in the industry and thatmore and more companies are lookinginto mutation testing as a superior al-ternative to code coverage.

xiii



xiv



List of Publications

Papers included in the Ph.D. thesis

A Sten Vercammen, Serge Demeyer, Markus Borg, and Sigrid Eldh. Speeding up mu-
tation testing via the cloud: lessons learned for further optimisations. In Proceed-
ings of the 12th ACM/IEEE International Symposium on Empirical Software En-
gineering and Measurement, pages 1–9, Oulu Finland, October 2018. ACM. ISBN
9781450358231. doi: 10.1145/3239235.3240506. URL https://dl.acm.org/doi/
10.1145/3239235.3240506

B Sten Vercammen, Mohammad Ghafari, Serge Demeyer, and Markus Borg. Goal-
oriented mutation testing with focal methods. In Proceedings of the 9th ACM SIG-
SOFT International Workshop on Automating TEST Case Design, Selection, and
Evaluation, pages 23–30, Lake Buena Vista FL USA, November 2018. ACM. ISBN
9781450360531. doi: 10.1145/3278186.3278190. URL https://dl.acm.org/doi/
10.1145/3278186.3278190

C Sten Vercammen, Serge Demeyer, and Lars Van Roy. Focal methods for C/C++ via
LLVM: steps towards faster mutation testing. In Proceedings of the 20th
Belgium-Netherlands Software Evolution Workshop, Virtual Event /
’s-Hertogenbosch, The Netherlands, December 7-8, 2021, volume 3071 of CEUR
Workshop Proceedings. CEUR-WS.org, 2021

D Sten Vercammen, Serge Demeyer, Markus Borg, Niklas Pettersson, and Görel Hedin.
Mutation Testing Optimisations using the Clang Front-end. 2022. doi:
10.48550/ARXIV.2210.17215. URL https://arxiv.org/abs/2210.17215
- under revision in Software Testing, Verification and Reliability 2023

E Sten Vercammen, Serge Demeyer, Markus Borg, and Pettersson. F-ASTMut
Mutation Optimisations Techniques using the Clang Front-end. 2023
- under revision in Software Impacts 2023

F Sten Vercammen, Serge Demeyer, Markus Borg, and Pettersson. Mutation Testing
Requirements Elicitation in Industry. 2023
- Submitted for peer review

xv

https://dl.acm.org/doi/10.1145/3239235.3240506
https://dl.acm.org/doi/10.1145/3239235.3240506
https://dl.acm.org/doi/10.1145/3278186.3278190
https://dl.acm.org/doi/10.1145/3278186.3278190
https://arxiv.org/abs/2210.17215


Papers not included in the Ph.D. thesis

1. Serge Demeyer, Ali Parsai, Sten Vercammen, Brent van Bladel, and Mehrdad Abdi.
Formal Verification of Developer Tests: A Research Agenda Inspired by Mutation
Testing. In Tiziana Margaria and Bernhard Steffen, editors, Leveraging Applica-
tions of Formal Methods, Verification and Validation: Engineering Principles, vol-
ume 12477, pages 9–24. Springer International Publishing, Cham, 2020. ISBN
9783030614690 9783030614706. doi: 10.1007/978-3-030-61470-6_2. URL http:
//link.springer.com/10.1007/978-3-030-61470-6_2

2. Zhong Xi Lu, Sten Vercammen, and Serge Demeyer. Semi-automatic Test Case
Expansion for Mutation Testing. In 2020 IEEE Workshop on Validation, Analysis
and Evolution of Software Tests (VST), pages 1–7, London, ON, Canada, February
2020. IEEE. ISBN 9781728162713. doi: 10.1109/VST50071.2020.9051637. URL
https://ieeexplore.ieee.org/document/9051637/

3. Sten Vercammen, Serge Demeyer, Markus Borg, and Robbe Claessens. Flaky
Mutants; Another Concern for Mutation Testing. In 2021 IEEE International
Conference on Software Testing, Verification and Validation Workshops (ICSTW),
pages 284–285, Porto de Galinhas, Brazil, April 2021. IEEE. ISBN
9781665444569. doi: 10.1109/ICSTW52544.2021.00054. URL
https://ieeexplore.ieee.org/document/9440140/

xvi

http://link.springer.com/10.1007/978-3-030-61470-6_2
http://link.springer.com/10.1007/978-3-030-61470-6_2
https://ieeexplore.ieee.org/document/9051637/
https://ieeexplore.ieee.org/document/9440140/


Contribution Statement

All papers included in the thesis have been coauthored with other researchers. Below we
list the contributions of each individual author.

A Four authors contributed to this paper. The first author, Sten Vercammen, concep-
tualised the paper, developed the software, curated the experiment data, performed
the analysis of the data, and wrote the paper. The remaining authors reviewed and
edited the paper, whilst Serge Demeyer also supervised the project.

B Four authors contributed to this paper. In this paper the ideology of an existing, non-
mutation related tool from Mohammad Ghafari, the second author, was investigated
as a potential technique to speed up mutation testing. Mohammad Ghafari provided
the details about the underlying technique. The first author, Sten Vercammen, con-
ceptualised the paper, curated the experiment data, performed the analysis of the
data, and wrote the paper. Serge Demeyer and Markus Borg reviewed and edited the
paper, whilst Serge Demeyer also supervised the project.

C Four authors contributed to this paper. This paper includes the preliminary research
of a master student thesis conducted by Robbe Claessens, who is the fourth author.
The research was conceptualised, reviewed, and supervised by the first author Sten
Vercammen. Additional research and evaluation was performed to complete the paper.
The paper is conceptualised and written by the first author Sten Vercammen. Serge
Demeyer and Markus Borg reviewed and edited the paper, whilst Serge Demeyer also
supervised the project.

D Five authors contributed to this paper. Here, Sten Vercammen conceptualised the
paper, implemented the proof-of-concept tool, curated the experiment data, performed
the analysis of the data, and wrote the paper. Niklas Pettersson ran the experiments
on the SAAB project and aided with the experimental integration into Dextool mutate.
The remaining authors reviewed and edited the paper, whilst Serge Demeyer and
Markus Borg also supervised the project.

E Three authors contributed to this paper. This paper describes the research tool de-
veloped and used to analyse the mutation testing optimisations. The tool itself was
conceptualised and developed by the first author Sten Vercammen. The paper was
also written by the first author. The second and third authors, Serge Demeyer and
Markus Borg, reviewed the paper.

xvii



F Three authors contributed to this paper. This paper describes the empirical study
about the industrial perspective on mutation testing and whether the recent advances
regarding the speedup are sufficient for industrial consideration. The paper was con-
ceptualised and written by the first author Sten Vercammen. The second author,
Markus Borg, aided in the review and analysis of the data. The third author Serge
Demeyer reviewed and edited the paper.

xviii



Contents

Acknowledgements iii

EN: Abstract v

NL: Samenvatting vii

SE: Sammanfattning ix

Popular Summary xi

List of Publications xv

Contribution Statement xvii

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Mutation Testing in a Nutshell . . . . . . . . . . . . . . . . . . . . . . . . 4

Mutation hypotheses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
The RIPR model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Weak, firm, and strong mutation testing . . . . . . . . . . . . . . . . . . . 4
Killed / survived mutants . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Mutation Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Invalid Mutants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Timed-out Mutants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Equivalent Mutants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Mutation Testing Process . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3.1 Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3.2 Test Suite Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.3.3 Compiler Integration . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.4 Research Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.5 Research Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.6 Roadmap Optimisation Techniques . . . . . . . . . . . . . . . . . . . . . . 11
1.7 Contributions of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.7.1 Research Advances . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.7.2 Research Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . 16

xix



1.8 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.9 Lessons Learned . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.10 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
1.11 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

Publications 27

A Speeding up Mutation Testing via the Cloud:
Lessons Learned for Further Optimisations 29
A.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
A.2 Background and Related Work . . . . . . . . . . . . . . . . . . . . . . . . 31

A.2.1 Mutation Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
A.2.2 Mutation Testing Optimisations . . . . . . . . . . . . . . . . . . . 32
A.2.3 Mutation Testing in the Cloud . . . . . . . . . . . . . . . . . . . . 33

A.3 Proof of Concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
A.3.1 DiMuTesTas Architecture . . . . . . . . . . . . . . . . . . . . . . . 35
A.3.2 DiMuTesTas Potential Delays . . . . . . . . . . . . . . . . . . . . . 37

A.4 Case Study Set Up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
A.4.1 Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
A.4.2 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
A.4.3 Hardware Set-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
A.4.4 LittleDarwin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

A.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
A.5.1 RQ1 - Speed-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
A.5.2 RQ2 - Delay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

A.6 Lessons Learned . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
A.7 Threats to Validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
A.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
A.9 Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

B Goal-Oriented Mutation Testing with Focal Methods 47
B.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
B.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

B.2.1 Mutation Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
B.2.2 Mutation Testing Optimisations . . . . . . . . . . . . . . . . . . . 49

B.3 Goal-oriented Mutation Testing . . . . . . . . . . . . . . . . . . . . . . . . 51
B.3.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
B.3.2 Focal Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
B.3.3 Limiting the Test Scope . . . . . . . . . . . . . . . . . . . . . . . . 52

B.4 Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
B.4.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
B.4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

B.5 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
B.5.1 Existing Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . 56
B.5.2 Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

B.6 Threats to Validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
B.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

xx



C Focal Methods for C/C++ via LLVM: Steps Towards Faster Mutation
Testing 61
C.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
C.2 Focal Methods under Test . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

C.2.1 Limiting Test Scope for Mutation Testing . . . . . . . . . . . . . . 63
C.3 The LLVM Compiler Infrastructure . . . . . . . . . . . . . . . . . . . . . . 64
C.4 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

C.4.1 Extracting Access Modifiers . . . . . . . . . . . . . . . . . . . . . . 65
C.4.2 Identifying Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
C.4.3 Identify Assertions . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
C.4.4 Extract Asserties (Variable Under Test) . . . . . . . . . . . . . . . 65
C.4.5 Identify Focal Methods . . . . . . . . . . . . . . . . . . . . . . . . 66
C.4.6 Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

C.5 Proof-of-Concept and Findings . . . . . . . . . . . . . . . . . . . . . . . . 67
C.5.1 Current Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . 68
C.5.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

D Mutation Testing Optimisations using the Clang Front-end 69
D.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
D.2 Background and Related Work . . . . . . . . . . . . . . . . . . . . . . . . 71

D.2.1 Mutation Testing Terminology . . . . . . . . . . . . . . . . . . . . 71
D.2.2 Mutation Testing Optimisations . . . . . . . . . . . . . . . . . . . 74
D.2.3 LLVM & Clang Compiler Infrastructure . . . . . . . . . . . . . . . . 75
D.2.4 Mutating on the LLVM IR and AST level . . . . . . . . . . . . . . . 76
D.2.5 Existing LLVM and Clang Mutation Testing Tools . . . . . . . . . . 77

D.3 Proof-of-Concept Tool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
D.3.1 Unoptimised Mutation Testing . . . . . . . . . . . . . . . . . . . . 82
D.3.2 Mutant Schemata . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
D.3.3 Reachable Schemata . . . . . . . . . . . . . . . . . . . . . . . . . . 85
D.3.4 Split-Stream Mutation Testing . . . . . . . . . . . . . . . . . . . . 87

D.4 Experimental Set Up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
D.4.1 Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
D.4.2 Hardware Set-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

D.5 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
D.5.1 Individual Timings . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
D.5.2 Complete Mutation Analysis . . . . . . . . . . . . . . . . . . . . . 96

D.6 Limitations and Lessons Learned . . . . . . . . . . . . . . . . . . . . . . . 100
D.7 Threats to Validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
D.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

E F-ASTMut Mutation Optimisation Techniques using the Clang Front-end107
E.1 F-ASTMut description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
E.2 F-ASTMut built-in techniques . . . . . . . . . . . . . . . . . . . . . . . . . 108
E.3 F-ASTMut underlying technology . . . . . . . . . . . . . . . . . . . . . . . 110
E.4 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
E.5 Impact of F-ASTMut . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
E.6 F-ASTMut research utilisation . . . . . . . . . . . . . . . . . . . . . . . . . 113

xxi



E.7 F-ASTMut Limitations and Future Work . . . . . . . . . . . . . . . . . . . 114

F Validation of Mutation Testing in the Safety Critical Industry through
a Pilot Study 117
F.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
F.2 Background and Related Work . . . . . . . . . . . . . . . . . . . . . . . . 118
F.3 Research Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

F.3.1 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
F.3.2 Case Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
F.3.3 Data Collection and Analysis Procedure . . . . . . . . . . . . . . . 121

F.4 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
F.4.1 Lessons Learned . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
F.4.2 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

F.5 Threats to Validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
F.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

xxii



List of Figures

1.1 Phases of Unoptimised Mutation Testing . . . . . . . . . . . . . . . . . . . 6
1.2 Research Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.3 Roadmap Optimisation Techniques . . . . . . . . . . . . . . . . . . . . . . 12
1.4 Causes of Flaky Mutants . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

A.1 DiMuTesTas Architecture – Single Task Queue . . . . . . . . . . . . . . . . 35
A.2 DiMuTesTas Architecture – Process View . . . . . . . . . . . . . . . . . . 36
A.3 DiMuTesTas Architecture – Physical View . . . . . . . . . . . . . . . . . . 37

C.1 Schematic Representation to Identify Focal Methods . . . . . . . . . . . . 65

D.1 LLVM Compilation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
D.2 Implementation strategies with algorithm steps . . . . . . . . . . . . . . . 81
D.3 Trace of Original and Mutated programs . . . . . . . . . . . . . . . . . . . 87
D.4 Split-Stream Mutation process . . . . . . . . . . . . . . . . . . . . . . . . 88

E.1 F-ASTMut Implementation strategies with algorithm steps . . . . . . . . . 110

xxiii



xxiv



List of Tables

A.1 Industrial Cases: Descriptive Statistics . . . . . . . . . . . . . . . . . . . . 38
A.2 Industrial Cases: Mutation Testing Data . . . . . . . . . . . . . . . . . . . 38
A.3 Results (Distributed) Mutation Testing Experiment . . . . . . . . . . . . 40
A.4 Results: Delays incurred in DiMuTesTas . . . . . . . . . . . . . . . . . . . 41
A.5 Overview of Expected and Actual Delays . . . . . . . . . . . . . . . . . . 41

B.1 Details Ant Project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
B.2 Results Focal Method Mutation Testing . . . . . . . . . . . . . . . . . . . 54

C.1 Details Stride Project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
C.2 Test classification Stride project . . . . . . . . . . . . . . . . . . . . . . . . 67

D.1 Overview of commonly used mutation operators for C and C++. . . . . . 72
D.2 Clang and LLVM IR Mutation Testing Tools . . . . . . . . . . . . . . . . . 78
D.3 Results: Project Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
D.4 Results: Individual Timings . . . . . . . . . . . . . . . . . . . . . . . . . . 94
D.5 Results: speedups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

E.1 Clang and LLVM IR Mutation Testing Tools . . . . . . . . . . . . . . . . . 112
E.2 Optimisation flags F-ASTMut . . . . . . . . . . . . . . . . . . . . . . . . . 113
E.3 Currently implemented mutation operators in F-ASTMut . . . . . . . . . 114

F.1 Overview of the case companies. . . . . . . . . . . . . . . . . . . . . . . . 120
F.2 Interview Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

xxv



xxvi



List of Algorithms

A.1 Pseudocode Mutation Testing . . . . . . . . . . . . . . . . . . . . . . . . . 32
B.2 Pseudocode Mutation Testing . . . . . . . . . . . . . . . . . . . . . . . . . 50
B.3 Exemplary Unit Test Case for Money Withdrawal . . . . . . . . . . . . . 52
C.4 Exemplary Unit Test Case for Money Withdrawal . . . . . . . . . . . . . 63
D.5 Pseudocode Mutation Testing . . . . . . . . . . . . . . . . . . . . . . . . . 74

xxvii



xxviii



List of Code Listings

1.1 Mutation Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
D.1 Mutation Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
D.2 AST Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
D.3 LLVM IR Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
D.4 Mutant Schemata Example . . . . . . . . . . . . . . . . . . . . . . . . . . 84
D.5 Mutating if Statements . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
D.6 Split-Stream Mutation Testing Example . . . . . . . . . . . . . . . . . . . 89
D.7 Invalid Schemata from const . . . . . . . . . . . . . . . . . . . . . . . . . . 101
D.8 Mutant Schemata using Switch Case . . . . . . . . . . . . . . . . . . . . . 102

xxix



xxx



Chapter 1

Introduction

Software testing is the dominant method for quality assurance and quality control in soft-
ware development organisations [10, 11]. Software testing was established as a disciplined
approach in the late 70’s when it was defined as “executing a program with the intent of
finding an error” [12]. In the last decade, this intent shifted dramatically with the advent
of continuous integration [13]. Many software tests are now fully automated, and serve as
quality gates, safeguarding against programming faults. The scale at which automated
software tests are adopted in modern software organisations is mind-boggling. Microsoft
for instance reported that approximately 11 months of development on Windows com-
prised more than 30 million test executions. Google, on the other hand, reported that “In
an average day, TAP integrates and tests [. . . ] more than 13K code projects, requiring
800K builds and 150 Million test runs.” [14]. As a result of this continuous integration
approach, software organisations are capable of releasing faster. Tesla, for example, up-
loads new software in its cars once every month [15]. Amazon pushes new updates to
production every 11.6 seconds [16].

1.1 Motivation

The growing reliance on automated software tests raises a fundamental question: How
trustworthy are these automated tests? For effective testing, software teams need strong
tests which maximise the likelihood of exposing faults [12]. Traditionally, the strength of
a test suite is assessed using code coverage, revealing which statements are poorly tested.
However, code coverage is a poor indicator of test effectiveness as it cannot determine
the fault-detection capacity of a test suite [17–19]. Moreover, stronger coverage criteria,
like full MC/DC coverage (Modified Condition/Decision Coverage, a coverage criterion
often mandated by functional safety standards that target critical software systems, e.g.,
ISO 26262 and DO-178C) still do not guarantee the absence of faults [20, 21]. Hence,
alternatives are being investigated. Today, mutation testing is acknowledged within aca-
demic circles as the most promising technique for assessing the fault-detection capability
of a test suite [22, 23]. The technique deliberately injects faults (called mutants) into the
production code and counts how many of them are caught by the test suite. The more
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mutants the test suite can detect, the higher its fault-detection capability is – referred to
as the mutation coverage or mutation score. The mutants generated by mutation testing
closely resemble actual faults [24, 25]. Furthermore, mutation testing has been shown to be
superior to simple code coverage metrics in discovering test suite weaknesses [26].

Alternative techniques like fault injection, fuzzing, and model-driven testing are valid
testing approaches with different purposes. Each of them are used to test and improve
different aspects of the code. They are complementary to mutation testing. Where
mutation testing measures the fault-detection capabilities of the test suite, fault injection
investigates the system’s reaction to faulty behaviour [27, 28]. Fuzzing examines the
system’s behaviour when invalid or unexpected inputs are provided [29, 30]. Model-
driven testing compares the current behaviour of the system to the expected behaviour
of the model [31, 32].

Case studies with safety-critical systems demonstrate that mutation testing could be ef-
fective where traditional structural coverage analysis and code inspections have failed [33,
34]. Google, on the other hand, reports that mutation testing provides insight into poorly
tested parts of the system, but –more importantly– also reveals design problems with com-
ponents that are difficult to test, hence must be refactored [35]. In a similar vein, a blog
post from a software engineer at NFluent, comments on integrating Stryker (a mutation
tool for .Net programs) in their development pipeline [36]. There as well, mutation test-
ing revealed weaknesses in the test suite but also illustrated that refactoring allowed for
simpler test cases which subsequently increased the mutation score.

Mutation testing shines in systems with high statement coverage because of uncaught
mutants reveal weaknesses in code which are supposedly covered by tests. Safety-critical
systems –where safety standards dictate high statement coverage– are therefore a prime
candidate for validating optimisation strategies. In safety-critical software, C and C++
dominate the technology stack [37]. Yet this is not represented in the mutation testing
community: a systematic literature review on mutation testing from 2019 analysed 502
papers and reported that from the 190 empirical studies, 62 targeted the C language family
and out of the 76 mutation testing tools, only 15 targeted the C language family [23].
In this Ph.D. thesis we use the term C language family to describe the C, Objective C,
C++, Objective C++ and their variants. This opens up opportunities as the C language
family is a mature technology with considerable tool support available.

Despite the apparent potential, mutation testing is difficult to adopt in industrial set-
tings. One of the reasons is that the technique —in its basic form— requires a tremen-
dous amount of computing power. Without optimisations, the entire code base must be
compiled and tested separately for each injected mutant [22]. During one of our experi-
ments with an industrial code base, we witnessed 48 hours of mutation testing time on a
test suite comprising 272 unit tests and 5,256 lines of test code for a system under test
comprising 48,873 lines of production code [1]. Hence for medium to large test suites, mu-
tation testing without optimisations becomes prohibitively expensive. Therefore, the goal
of this Ph.D. thesis is to investigate a series of optimisation techniques, which combined,
drastically speed up mutation testing to enable effective mutation testing in an industrial
setting. We, therefore, tailor the optimisation techniques to the C language family or to
be language-independent.
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1.1 Motivation

Thesis Statement — Although mutation testing has been shown to be the
most effective method for assessing the fault-detection capability of a test suite,
its widespread adoption in industry has been limited due to the time-consuming
nature of traditional, unoptimised approaches. By addressing this performance
issue, mutation testing has the potential to become a widely-used technique for
improving software quality.
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1.2 Mutation Testing in a Nutshell

Mutation hypotheses. Mutation testing (sometimes also named mutation analysis)
is based upon the following two fundamental hypotheses. The Competent Programmer
Hypothesis states that programmers are competent, implying that they program close
to the correct version, and that any faults that occur are due to small syntactical er-
rors [38, 39]. The Coupling Effect states that test suites that can detect simple errors are
also able to detect complex errors [39].

The RIPR model. The RIPR model (Reachability, Infection, Propagation, Reveal)
states that in order to reveal a fault, a test case must a) reach the faulty statement
(Reachability), b) cause the program state to become faulty (Infection), c) propagate the
fault to the program output (Propagation) and d) cause a failure, i.e. the faulty state is
asserted by the test case to its intended state (Reveal).

Weak, firm, and strong mutation testing. Three different kinds of mutation testing
are linked to the RIPR model: weak, firm, and strong. For weak mutation testing, only
the first two conditions of the RIPR model need to be satisfied. This means that a mutant
is considered detected from the moment the program state of the original program and
the mutated program differ. With firm mutation testing, an extension of weak mutation
testing, the user can decide which component of the program state should differ from the
original for a mutant to be considered as detected. Lastly, for strong mutation testing,
all conditions of the RIPR model need to be satisfied. This means that a mutant must
influence the observable output of the program (the test oracle). In this Ph.D. thesis we
utilise strong mutation testing as empirical evidence has shown that it is more powerful
than weak and firm mutation testing [40].

Killed / survived mutants. Mutation testing deliberately injects faults (called mu-
tants) into the production code and counts how many of them are caught by the test
suite. A mutant caught by the test suite, i.e. at least one test case fails on the mutant,
is said to be killed. When all tests pass, the mutant is said to be survived.

Mutation Operators. Mutation testing mutates the program under test by artificially
injecting a fault based on a mutation operator. A mutation operator is a source code
transformation which introduces a change into the program under test. Typical examples
are replacing a conditional operator (e.g., >= into <) or an arithmetic operator (e.g., +
into −).

Invalid Mutants. Mutation operators introduce syntactic changes, and hence may
cause compilation errors in the process. If we apply the arithmetic mutation operator
(AOR) to e.g. “a * b”, then we get four mutants as shown in Listing 1.1. However, the
modulo operator (%) will give an “invalid operands to binary expression”
error, as the modulo operator is not defined for floating point data types. The mutant
can thus not be compiled and is considered invalid.
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Listing 1.1: Mutation Example

1 float f(float a, float b) {
2 return a * b; // original code
3 }
4 return a + b; // mutant 1
5 return a - b; // mutant 2
6 return a / b; // mutant 3
7 return a % b; // mutant 4
8 ~~~^~~~Invalid operands to binary expression

Timed-out Mutants. Mutants can change the code in such a way that they can get
stuck in an infinite loop, or increase their execution time drastically. Such changes would
be caught by the continuous integration approach. To prevent such mutants from wasting
too much time, these mutants are generally stopped, and labelled as killed, after a certain
period of time, often a multitude of the original execution time.

Equivalent Mutants. Injected mutants can be syntactically different from the original
software system, but semantically identical. These mutants do not modify the meaning
of the original program, and can therefore not be detected by the test suite. They show
up as survived mutants, but they need to be manually identified and labelled as equiv-
alent mutants as they can never be killed. They waste developer time, as they need to
be manually identified and labelled as equivalent mutants, because they show up as sur-
vived mutants. As they waste developer time, a big challenge of mutation is handling
(and/or eliminating) these equivalent mutants. An overview of techniques to overcome
the equivalent mutant problem has been provided by Madeyski et al [41].

Mutation Testing Process. To explain the time-consuming nature of the mutation
testing process, Figure 1.1 shows the essential steps of a mutation analysis without any
optimisations. The software system needs to build without errors and all software tests
should succeed before mutation testing can even begin; this is called the pre-phase. Then,
the two main phases are executed: (A) the generate mutants phase and (B) the execute
mutants phase. In phase A, mutants are generated for all source files. In phase B, for each
mutant, all tests are executed and the result —whether or not it was killed— is saved.
Finally, all the results are gathered and the final report is created in the post-phase.

1.3 Related Work
A lot of research is devoted to optimising the mutation testing process, summarised under
the principle — do fewer, do smarter, and do faster [42].

• Do fewer approaches minimise the execution time by reducing the total number
of mutants to execute. Such an optimisation can be implemented by generating
fewer mutants in phase A in Figure 1.1 or by selecting a subset of all mutants.
An incremental approach [43], limiting the mutation analysis to code changed in a
commit, is a particularly relevant example of a “do fewer” approach. A reduced set
of mutants normally incurs an information loss compared to the full set of mutants,
however, the effectiveness is often acceptable [22]. Nevertheless, there exist mutants
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Figure 1.1: Phases of Unoptimised Mutation Testing

for which we can know the results before we execute them. Excluding them effec-
tively reduces the number of mutants we need to execute without any information
loss. These mutants include the invalid mutants which cause compilation errors
and the so-called unreachable mutants which are mutants in code that the test suite
does not cover, therefor they can never be detected.

• Do faster approaches attempt to minimise the execution time by reducing the ex-
ecution cost for each mutant (in phase B in Figure 1.1). By design, a mutated
program is almost identical to the original program which can be exploited dur-
ing the compilation step. Mutant schemata [44] is the best known example. With
this technique, all mutants get injected simultaneously (guarded by a global switch
variable), hence the project is compiled only once (Build in phase B). During the
mutant execution phase (Test in phase B) the global switch is used to select the
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actual mutant to execute. The execution time of a mutant can also be reduced
with test prioritisation techniques. By rearranging the test suite, the tests with the
highest likelihood of failure will be executed first, reducing the test suite run time
using early-failure [45].

• Do smarter approaches attempt to minimise the execution time by exploiting the
computer hardware (e.g. distributed architectures, vector processors, fast memory
access). Each mutant (in phase B in Figure 1.1) has few data dependencies, hence
can be executed in parallel. Parallel execution of mutants, either on dedicated hard-
ware [46] or in the cloud [1] is known to speed up the process by orders of magnitude.
Split-stream mutation testing is one example of a “do smarter” optimisation [47]. By
retaining state information between test runs, split-stream mutation testing avoids
the redundant execution of statements up until the mutation point.

The current state-of-the-art demonstrates the feasibility of mutant optimisations for the
C language family under the principle do fewer, do smarter, and do faster. These are,
however, investigated in isolation. There is no research that analyses these techniques
together for the C language family. Furthermore, detailed measurements to investigate
the impact of these techniques for each of the mutation steps are lacking.

Different approaches are often synergistic, where a combination of techniques becomes
more than the sum of the parts. Some approaches are orthogonal to one another and are
easy to combine. Excluding unreachable mutants, for example, can be combined with
any other optimisation. Other approaches, however, may depend on each other. Mutant
schemata, for instance, requires that all invalid mutants are excluded because even a single
invalid mutant will immediately invalidate the whole mutated program. Measuring the
speedup of a given optimisation strategy should take these synergies into account.

1.3.1 Distribution

Mutation testing has shown to be able to run in parallel on a distributed architec-
ture [46, 48, 49]. Consequently, researchers are currently investigating cloud solutions
to share the computational load across a series of hardware nodes. Hadoopmutator [50]
and Eminent [51] are the ones we have found in the literature.

Hadoopmutator is a cloud-based Mutation Testing framework that is implemented
using Hadoop’s MapReduce1. During the mapping phase, each mutation operator is
assigned to a separate node, creating a single mutant and executing the test suite. The
subsequent reduce phase aggregates the results from all the test executions and calculates
the mutation score.

Data transfer between the nodes is handled using Hadoop’s MapReduce and the Hadoop
Distributed File System (HDFS™). Hadoopmutator is applied on two open source projects,
and the authors report a speed-up of 9.57x and 12.83x using 13 nodes. For small projects
like Apache Wicket, the authors state that “the overhead of running Hadoop on the com-
pute nodes becomes significant relative to the time needed to generate and executes the
tests and hence the optimal performance gain is not attained ”. The influence of speed-up
with large projects that affect the I/O and network traffic was not investigated.

1https://hadoop.apache.org
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Eminent (EMbarrassINgly parallEl mutatioN Testing) is a distributed Mutation Test-
ing tool that relies on the Message Passing Interface standard for portable message-passing
in parallel computing architectures [51]. Eminent uses test-level granularity, the test suite
is split up and each test/mutant combination is run separately. If a single test (of a mu-
tant) fails, the mutant is killed and all other remaining tests (related to that mutant) are
canceled.

Eminent handles data transfer between the master and the nodes by means of a shared
database. The test cases are sent to the worker processes which will execute them against
the mutants and send the results back to the master, which compares them to the original.
Eminent is applied on three projects, and the authors report a speed-up between 8x and
22x using 32 nodes. Large projects can have an impact on the scalability “because of
the high volume of network and I/O traffic generated by this application, which acts as a
system bottleneck in the database node”.

1.3.2 Test Suite Reduction

Researchers have sought mitigation strategies for the computationally expensive mutation
analysis [22]. Many approaches originate in work on test suite minimisation, a set-cover
problem that has been shown to be NP-complete – but several approximation solutions
have been proposed [52]. For example, Jeffrey and Gupta presented a test suite reduction
technique with selective redundancy, a slightly more conservative approach (i.e. less
reduction) that retains more of the fault detection effectiveness of the original test suite
compared to previous work. Nevertheless, test suite reduction always requires a trade-off
between execution time and fault detection effectiveness [53].

Several regression test selection methods have been proposed to speed up mutation testing,
aiming at restricting test case execution to those that target the code changes. Regression
test selection methods are either dynamic (i.e. using execution information) or static (i.e.
based entirely on source code analysis). Chen and Zhang performed an extensive empirical
evaluation of several state-of-the-art regression test selection methods for mutation testing
on 20 GitHub projects [54], and concluded that the techniques are generally feasible on
a file level but not for finer-grained analysis. Also, the methods studied are intended for
evolving systems and not for a single version of source code.

Zhang et al. focused on speedup of mutation testing that works for a single source code
version [45]. They developed FaMT (Faster Mutation Testing) as an approach to prioritise
and reduce the number of test cases to execute for each mutant. Inspired by research on
regression test prioritisation, FaMT reorders the test cases in a way to kill the mutant
earlier. Subsequently, inspired by previous work on test suite reduction, FaMT runs only
the subset of test cases with a high likelihood to kill the mutant. Thus, FaMT might
under-approximate the mutation score – some of the skipped test cases might indeed
have killed the mutant if they were executed.

There are also other approaches to exclude test cases from a test suite targeting a specific
mutant. Bardin et al. proposed program verification to exclude test cases that cannot
reach the mutant and/or that cannot infect the program state [55]. Other authors have
explored using (static) symbolic execution techniques to identify whether a test case can
detect mutants [56, 57]. An example of a tool implementing this approach is PIT [58]
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that executes only those test cases that have a chance to kill the mutant, i.e. the test
cases that execute the faulty statement (thus fulfilling Reachability).

1.3.3 Compiler Integration
To reduce the computational cost of mutation testing, researchers have looked at com-
piler integration techniques. These techniques prevent the need to compile each mutant
individually [44]. The two main approaches to achieve this are by either manipulating
the source code, allowing the selection of the mutant at run time, or by manipulating the
compiled program, i.e. the bitcode by injecting the mutant before executing it.

Mull is an open-source mutation testing tool2 which modifies fragments of the bitcode.
It only needs to recompile the modified fragments in order to execute the mutants, keeping
the compilation overhead low [59]. Mull includes a do-fewer optimisation where you can
limit which mutants are executed to only those mutants that are within a certain call-
depth starting from the test case.

AccMut also modifies the bitcode to the compilation overhead low [60]. On top of
that, it reduces redundant execution statements anywhere in the program by analysing
the original and mutated program. It identifies the redundant statements by inspecting
the (local) state of both programs. When they are identical, all following statement
executions are identical and redundant until the next different statement. They have
demonstrated an average speedup of 8.95x over a mutant schemata approach [60].

WinMut is a further evolvement of AccMut. By grouping mutants, instead of analysing
each mutant individually, WinMut is able to reduce the amount of processes it spawns and
reduces the the high overhead introduced by the interpreter. Their evaluation achieves
an average speedup of 5.57x on top of AccMut.

Dextool is an open-source framework created for testing and static analysis of (often
safety-critical) code. The Dextool framework is used within industry, for example within
Saab Aeronautics. One of the plugins in the framework is Dextool mutate. It was devel-
oped with a heavy emphasis on the reporting part of mutation testing in order to better
understand the output of mutation testing and to gain more insight into the project under
test.

Dextool mutate (textually) analyses the source code for points to mutate and stores them
in a central database. A distributed setup can be used by utilising multiple nodes which
can each execute a subset of all mutants stored in the database. During this Ph.D. thesis,
we created a proof-of-concept schemata plugin for Dextool mutate. This allowed us to
work with the creators of Dextool to analyse the effects of the schemata plugin. As a
result, the creators of Dextool created a proper implementation for mutant schemata into
the tool.3,4

2https://github.com/mull-project/mull
3https://github.com/joakim-brannstrom/dextool/tree/master/plugin/mutate/

contributors.md
4https://github.com/joakim-brannstrom/dextool/blob/master/plugin/mutate/doc/

design/notes/schemata.md
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1.4 Research Objectives

To make mutation testing effective in an industrial setting, we set three objectives: (1)
generate fewer mutants, (2) execute them faster and (3) process them smarter. For
each of these objectives, we investigate the most promising techniques from the current
state-of-the-art and implement them into a proof-of-concept tool. As a final step, we
perform an empirical study on the perception of mutation testing in industry. The aim
is to investigate whether the advances are sufficient to allow industrial adoption and/or
identify any potential remaining barriers preventing industrial adoption.

Goal 1 – generate fewer mutants by excluding mutants that do not add value
In this Ph.D. thesis we implement an optimisation technique that during the generation
phase excludes invalid mutants, i.e. mutants that would cause compilation errors. Addi-
tionally we implement a technique to exclude mutants that are not reached by the test
suite. This reduces the number of mutants that needs to be considered for the mutation
testing analysis.

Goal 2 – execute mutants faster by reducing the execution and compilation overhead
Not every mutant is covered by the entire test suite. A test case that does not reach the
injected mutant does not add any value to the mutation analysis. We therefore implement
both a statical and a dynamical technique to reduce the test set for each mutant, effectively
reducing the execution overhead.

Instead of compiling each mutant individually, we implement a compiler integrated tech-
nique to compile all mutants at once. This drastically speeds up the compilation time. By
instrumenting the source code of the project, mutants can be activated at run time.

Goal 3 – process mutants smarter by exploiting the computer infrastructure
We implement a scalable cloud-based technique to share the computational load of a mu-
tation analysis across a series of hardware nodes. Each mutant is inherently independent
from each other, making them an ideal candidate for distribution.

In a conventional tool implementation, each mutant always starts its execution from the
same location, i.e. the start of the test case. It then executes the same path right until
the actual mutant. This means that many redundant statements are being executed.
To counter this, we implement a split-stream technique that exploits the state-space
information to start the mutant from its mutation point instead of from the start of the
test case.

Goal 4 – validate mutation testing advances with the intent of industrial adoption
To validate our optimisation techniques, we perform an empirical study in industry to
understand the perceptions and attitudes of professionals in the field towards mutation
testing. The aim is to investigate whether the mutation testing advances are sufficient
to allow industrial adoption. By collecting empirical data on the level of awareness and
understanding of the technique, as well as the factors that influence its perceived value and
utility, we aim to provide insight into the adoption and implementation of mutation testing
in industry. The results of this investigation will inform the development of strategies for
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promoting the wider use of mutation testing, and identify areas for improvement and
potential barriers to industrial adoption.

1.5 Research Approach

In this Ph.D. thesis we follow an iterative approach with a build-evaluate loop to speed
up the mutation testing analysis. Our general work flow is depicted in Figure 1.2. This
image is based on the design science research cycles [61]. We start from an (unoptimised)
mutation testing tool. Based on the application domain, we then select the most promising
optimisation techniques available from the current state-of-the-art and identify expected
improvements and potential side-effects. In order to do so, we create a proof-of-concept
implementation as part of a build-evaluate loop. We then validate the optimisations using
a pilot study. This allows us to identify when unintended side effects occur and measure
their impact. We then report these findings and publish the created artefact.

At this point, we start the cycle again by investigating which optimisation technique
would best align with our mutation tool and speed it up further.

Environment

(Industrial) 
Pilot Study 

Report

Artefact

Knowledge Base

Build Proof of
Concept

Optimisation 
 

Evaluate

Design 
Cycle

Design Science Research

(Unoptimised) 
Mutation Testing

Tool

Application Domain

Relevance 
Cycle

Rigor 
Cycle

Figure 1.2: Research Approach
Image adapted from Hevner et. al [61]

1.6 Roadmap Optimisation Techniques

Figure 1.3 represents an overview of the developed techniques during this Ph.D. thesis
and how they are linked to each other.

Paper A (p. 29) – We first implemented a cloud-based approach called DiMuTesTas
to speed up the mutation testing analysis by distributing the workload over multiple
computers. We find that by doubling the number of hardware nodes, the execution time
almost halves, nearly increasing the speed-up linearly.
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Figure 1.3: Roadmap Optimisation Techniques

Unoptimised mutation testing has two main time consuming phases: the first is the
compilation time as each mutant is injected individually and compiled separately, the
second is the execution time as all the test cases need to be ran against the mutant.

Paper B (p. 47) – To reduce the execution time of each mutant, we aim to reduce
the test set which needs to be executed for each mutant to only those tests which are
responsible for testing the methods in which the mutant resides. For this we validated
the novel goal-oriented mutation technique and but found the lack of private methods
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support limiting its accuracy and potential speedup.

Paper C (p. 61) – We then created a proof-of-concept implementation of the goal-
oriented mutation technique for the C language family including private method support.
While we see promising execution speedups of 575x, additional work needs to be done
before the technique can be used in practice, as most importantly, the static analysis does
not yet support pointers. However, the technique is mature enough so that it can be used
as a test prioritisation technique.

In order to reduce the test set for each mutant we look at an alternative approach using
dynamic analysis. This allows us to trace which test cases are actually covering which
mutants, allowing us to exclude the test cases that do not reach the mutant, effectively
reducing the test set. The reduced test set gained by this technique is larger than with the
goal-oriented approach as instead of covered test the goal-oriented approach aims to only
select those test cases with the intent to test the methods in which the mutant resides.
For the dynamic analysis we rely on the Clang front-end to instrument the code base.
This also allows us to investigate and enable other optimisations like excluding invalid
and unreachable mutants.

These optimisations reduce the execution time of each mutant. The compilation time
then takes up the largest amount of the mutation analysis. To reduce this we again
look at the Clang front-end to implement a compiler-integration technique called mutant
schemata.

Paper D (p. 69) – The Clang front-end allows us to implement a variety of opti-
misations. The first optimisation reduces the total number of mutants that need to be
executed by excluding the invalid and unreachable mutants mutants. Whilst generating
the mutants, we can detect the syntactically and semantically invalid mutants, i.e. mu-
tants that would cause compilation issues, by utilising the semantic analyser of the Clang
front-end. Compared to an unoptimised approach, this speeds up the mutation analysis
by a factor between 1.07x and 1.12x. While we can exclude the mutants that are not
executed by any of the test cases, we go a step further. By instrumenting the code base,
we can utilise a dynamic analysis to build a mutant to test relationship. This allows us
to reduce the test set to only those test cases that execute the mutant. From our mea-
surements, we have seen that the average number of mutants reached per test is between
10 and 20% of all valid mutants, implying a speedup between 5x and 10x.
The second optimisation presents a mutant schemata technique which virtually eliminates
the compilation overhead by compiling all mutants simultaneously instead of compiling
once for each mutant.
The third optimisation presents the reachable schemata technique. This is a combination
of the above techniques, reducing both the execution time as the compilation time of
the mutation analysis. Compared to an unoptimised approach we achieve a maximum
speedup of 23.45x and 30.52x.
The final optimisation presents a split-stream mutation technique which aims to reduce
the execution overhead by starting the execution of the mutants from their mutation point
instead of from the start of the test suite. While this technique could yield a speedup
of a factor 2, the technique is difficult to implement in real-world projects due to the
requirement that all dependencies need to be revertible to specific states of the execu-
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tion. This might even be impossible in case where data is stored and modified in external
databases.

Paper E (p. 107) – We published F-ASTMut, our open-source mutation testing re-
search tool for mutation optimisations utilising the Clang front-end as an artefact. The
tool is designed for detailed measurements, analysis, and tuning of optimisation tech-
niques. It includes the optimisations from Paper D.

During our work, we noted some peculiar behaviour from some mutants. These mutants
did not behaved deterministically. Moreover, they appear intermittently, making them
hard to detect. We call these flaky mutants and investigated their ramifications [9]. We
go into more details in Section 1.9. These flaky mutants also appear in industry as we
have seen then during our empirical study.

Paper F (p. 117) – We performed an empirical study examining the industrial perspec-
tive on mutation testing, whether it provides sufficient benefits for industrial adoption to
motivate its costs, whether the recent mutation testing advances are sufficient to meet the
computational performance requirements for industrial adoption, and whether significant
pain points remain to be tackled for widespread industrial use. We have seen that muta-
tion testing contributes to a requirements-based testing process, sometimes even revealing
flawed or poorly phrased requirements. We have seen that with optimisations, mutation
testing can be integrated into the continuous integration server. Mutation testing helps
with a shift-left testing strategy, but due to time constraints it may not be practical to
attempt to kill all mutants in large-scale applications. In this study, we have seen that
equivalent mutants are less of an issue than considered in academic circles. Flaky mu-
tants, however, are a real concern that needs to be addressed when considering mutation
testing in the long run. Furthermore, our study indicates that mutation testing is not a
replacement for human code review, it is a useful tool for offloading the identification and
correction of low-hanging fruit.

1.7 Contributions of the Thesis
In this section, we present an overview of the contributions we made to achieve our
research objectives. We first present the research advances we made to contribute to the
field of knowledge and then present how we achieved our research objectives.

1.7.1 Research Advances
Mutation optimisation techniques for the C language family. C and C++ dom-
inate the technology stack in safety-critical software [37]. Yet this is not represented in
the mutation testing community: a systematic literature review on mutation testing from
2019 analysed 502 papers and reported that from the 190 empirical studies, 62 targeted
the C language family and out of the 76 mutation testing tools, only 15 targeted the C
language family [23].

Safety-critical systems –where safety standards dictate high statement coverage– are
therefore a prime candidate for validating optimisation strategies. In safety-critical soft-
ware, C and C++ dominate the technology stack [37]. We, therefore, contribute to the
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mutation testing knowledge as our mutation optimisation techniques target the C langue
family, or are language independent.

Proof-of-Concept Tools. We have implemented different proof-of-concept tools in
order to perform feasibility analyses and case studies to validate the performance im-
provements of the optimisation techniques. These proof-of-concept tools are publicly
available. Our distribution tool DiMuTesTas is available on GitHub.5 Our open-source
research tool F-ASTMut that implements a variety of mutation optimisation techniques by
exploiting the compiler infrastructure, such as the Clang front-end. F-ASTMut is available
on Github.6

Detailed Measurements. During our work, we provided detailed measurements of
the different phases of mutation analyses for both an unoptimised approach as a baseline
and for our different optimisation techniques. This allows an in-depth analysis of the
potential reduction in compilation and/or execution overhead of the optimisation tech-
nique and highlights which parts of the mutation testing phases are prime candidates for
optimisations. Finally, the detailed measurements allow us to investigate where poten-
tial overheads from these techniques occur, how to mitigate them, and suggest potential
avenues for improvements.

Industrial Case Studies. For each of our optimisation techniques, we performed de-
tailed analyses on both open-source projects and industrial projects. The industrial anal-
ysis provides additional value as they serve as real-world applications of the evaluated
techniques and approaches in professional settings, helping to demonstrate their practi-
cality, relevance, and generalisability. They also offer valuable insights and lessons that
cannot be gained from only open-source projects, making them valuable sources of infor-
mation for practitioners.

Empirical Evaluation. At the end of our work, we did an empirical study on the
views on mutation testing in industry. We find this to be a crucial contribution as
it provides insight into the level of awareness and understanding of mutation testing
amongst professional developers. Our empirical study highlight important information
that identifies knowledge gaps or misconceptions that may be hindering the adoption and
implementation of mutation testing in industry. Additionally, our empirical study helps
to identify the factors that influence the perceived value and utility of mutation testing,
such as the costs and benefits of using the technique, the level of training and support
required, and the perceived difficulty of implementing it. The knowledge gained from
the empirical study can be incorporated into the strategies for promoting the adoption
and successful implementation of mutation testing in industry. Finally, our empirical
study identifies areas for improvement and potential barriers to the wider adoption of the
technique, which can inform future research and development efforts.

5https://github.com/Sten-Vercammen/DiMuTesTas
6https://github.com/Sten-Vercammen/F-ASTMut
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1.7.2 Research Objectives

Goal 1 – generate fewer mutants by excluding mutants that do not add value
To reduce the number of mutants we generate, we utilise the semantic analyser from the
Clang front end to prevent the generation of invalid mutants. We also implement a dy-
namic analysis to detect which mutants are reachable by the test suite. These techniques
allow us to exclude the invalid mutants and the completely unreachable mutants, without
information loss. We validated this goal in Paper D (p. 69) with four open-source projects
and one industrial project from SAAB.

Goal 2 – execute mutants faster by reducing the execution and compilation overhead
To reduce the compilation overhead we implemented a mutant schemata technique al-
lowing the compilation of all mutants at once instead of compiling once for each mutant.
As all mutants are included in the code base, additional functionality is instrumented to
activate a single mutant at a time during runtime. Here we saw a reduction in compila-
tion time to the point that it is only slightly longer than the compilation of the original
program. We validated this goal in Paper D (p. 69) with four open-source projects and
one industrial project from SAAB. With the compilation overhead virtually eliminated,
the execution of the mutants becomes the most time-consuming part. To reduce the
execution overhead, we implement a proof-of-concept static analysis method, called goal-
oriented mutation testing, that reduces the test suite per mutant to only those test cases
that have the responsibility of testing the method in which the mutant resides. This
effectively reduces the number of test cases that are executed per mutant to a handful.
We saw promising execution speedups of 575x [2]. These speedups are directly linked to
the size of the test suite, the more test cases there are the larger the speedup will be.
However, additional work needs to be done before the technique can be used in practice,
as most importantly, the analysis does not yet support pointers [3].

We then developed an alternative approach by implementing an extension to the mutant
schemata approach, called reachable schemata. It has the same goal of reducing the
test scope per mutant as the goal-oriented technique, but by utilising dynamic analysis.
This technique instruments the code base in order to extract which mutants are actually
reached by which test case. Here we saw an average reduction in the test suite size to
10%. We validated this goal in Paper D (p. 69) with four open-source projects and one
industrial project from SAAB.

Goal 3 – process mutants smarter by exploiting the computer infrastructure
We implemented a split-stream mutation testing strategy that reduces the execution over-
head of mutation testing even further. Instead of letting each mutant initiate execution
from the start of the program, each mutant is started from the mutation point itself.
This is achieved by exploiting the state-space information. By retaining state informa-
tion between test runs, split-stream mutation testing avoids the redundant execution of
statements up until the mutation point.

In theory, this strategy could yield a speedup of a factor 2 to 3, but in practice applying
the strategy proves to be too demanding. The split-stream mutation technique demands
that dependencies need to be revertible to specific states of the execution. Reverting to the
internal state demands too much specific knowledge about the design of the system under
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test, especially in case data is stored in external databases and filesystems. We validated
this approach in Paper D (p. 69) with four open-source projects and one industrial project
from SAAB, but we could not eliminate the execution overhead with the split-stream
mutation testing strategy.

Finally, we implemented a distribution tool that speeds up the mutation analysis by
distributing the workload over a cloud infrastructure. While we validated this using a
Java mutation tool on an industrial project from HealthConnect and an industrial project
from Intris in Paper A (p. 29), virtually any mutation testing tool can be used in its
place.

Goal 4 – validate mutation testing advances with the intent of industrial adoption
We performed an empirical study examining the industrial perspective of mutation test-
ing from two companies developing automation and mission safety/critical software in
Chapter F (p. 117). The case study research provides relevant viewpoints on the require-
ments for the industrial adoption of mutation testing techniques. In particular, we obtain
new insights concerning the costs vs. benefits of mutation testing, given the potential
improvements for computational performance reported in the earlier chapters.

Concerning benefits, we observed that mutation testing contributes to a requirements-
based testing process, sometimes even revealing flawed or poorly phrased requirements.
It can also help with a shift-left testing strategy, as mutation testing reveals under-tested
parts of the code early in the CI/CD pipeline. In that respect, our study indicates that
mutation testing is not a replacement for human code reviews, but it is a useful support
tool for automatic code reviews. Mutation testing identifies and remedies the low-hanging
fruits, increasing the overall code quality and thus offloading the human reviewer.

As far as costs are concerned, even with the proposed optimisation strategies in place, it
remains impractical to aim for killing all mutants due to time constraints. The optimi-
sation strategies we investigated in the earlier chapters are then complementary to other
optimisations, such as adopting a limited set of mutation operators or only executing
the most relevant mutants. An interesting observation was that equivalent mutants are
less of an issue than considered in academic circles and are handled with minimal effort.
On the other hand, mutants that cause non-deterministic behaviour, i.e. flaky mutants,
or mutating already non-deterministic production code, appear to be real concerns that
need to be addressed when considering mutation testing in the long run.

The study shows that the mutation testing optimisation techniques from the do fewer,
do faster, and do smarter approaches allow the mutation analysis to be integrated into a
continuous integration setting. Finally, our study suggests that the industrial perception
of mutation testing is evolving as more organisations recognise the potential benefits of
the technique and work to address its limitations and challenges.
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1.8 Limitations

In order to focus on our research goals where we investigate the potential speedups of the
mutation optimisation techniques, we had to impose boundaries on the functionalities of
our proof-of-concept tools. While this does limit the capabilities of our research tools,
it does not impact the validity of our research. These limitations exist due to the fixed
timespan of the Ph.D. thesis and the inherent limitations in development capabilities. We
list the limitations below together with their implications and potential solutions.

Goal-oriented. Our goal-oriented mutation technique offers a drastic speedup by lim-
iting the set of test cases that need to be executed for each mutant. As this technique
relies on a static analysis of the project, it requires no execution of the test suite in order
to establish the traceability links between the test cases and the mutants. We created
a proof-of-concept tool that can currently correctly create 77% of the links between the
test cases and the mutants with support for private methods. Further research and de-
velopment is needed to increase its accuracy, as it can currently not be accurately used
in “no throw assertion tests” and cannot follow pointers. While the technique cannot yet
be used as intended, it can still be utilised as a test execution order optimisation. The
goal-oriented technique selects the test cases that are most related to the mutant. These
have a higher likelihood of detecting the mutant. Executing these test cases first reduces
the time to detect the mutant, effectively speeding up the mutation testing.

Mutation Operator Support. Our open-source research tool F-ASTMut currently
supports the Relational Operator Replacement (ROR), Arithmetic Operator Replacement
(AOR) and Logical Connector Replacement (LCR). The tool is designed to be easily
extendable with other binary mutation operators and unary operators. However, other
mutation operator types, like the Access Modifiers Change (AMC) where e.g. the public
access label is changed to private, might require substantial implementation effort.

Const, constexpr, and templates. Our driver for mutant schemata relies on infor-
mation from outside the program to control the activation of the mutants by setting a
MUTANT_NR variable. The MUTANT_NR variable is initialised at runtime and will
thus never be const. This means that we cannot use the variable inside const and const-
expr functions, as these functions are evaluated at compile time and the MUTANT_NR
value cannot be known at compile time. Mutating const and constexpr will need to be
done differently as non-const functions. This includes type definitions (e.g. using ...),
template arguments, static_asserts, etc.

For now, we choose not to implement support for these kinds of mutations. They can
be implemented by creating separate values and/or functions for each mutated operation
and by selecting the correct one everywhere in the project where they are used (e.g. const
val becomes const val_0, const val_1, const val_2, ...). The impact of this will need to
be investigated as it will drastically increase the size of the code base and the compiled
binary.
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1.9 Lessons Learned
Throughout the course of this project, we gained valuable insights and lessons about
mutation testing. We list them below as they can provide insights and avenues for future
research.

Application domain. Mutation testing is primarily intended to assess the fault-detection
capability of a test suite. However, additional application domains do exist.

Mutation testing can be used as the underlying method to automatically extend an ex-
isting test suite with effective new test cases and/or to expand the existing test cases to
improve their test effectiveness. We ourselves did an exploratory study in order to reduce
the list of survived mutants by automatically detecting the trivial mutants by expanding
the existing test cases with simple assert statements [8].

Type Safety. Some challenges occur when we try to implement mutant schemata for
statically typed programming languages like C++. First and foremost, the mutated
program must be syntactically correct and no type errors should occur. This means that
every mutated statement should be valid. We cannot generate mutants like “string −
string” or “float % int”. Classes can implement or omit operators like “+” and “−” further
complicating the matter. Clang allows us to access all the statically available information
of the project and to verify if a mutated statement is syntactically correct without the
need to compile the complete project.

Instrumentation Overhead. Optimisation techniques that instrument the code base
always create a certain overhead when executing the mutants. We envisioned that there
would be a fixed overhead cost for the technique per mutant, but that this overhead
would remain limited. In our results, we saw that this was only the case for projects
with a low to medium number of mutants per line of production code. For projects
where the number of mutants per line of production code is high, such as math-heavy
projects, our implementation caused an execution overhead that negatively impacts the
speedup. For our mutant schemata technique, we utilised if statements, but math-heavy
projects should benefit from a switch-case implementation. While we point out avenues
for improvements, specific research will need to be performed to understand where and
how an optimal alternative implementation can be used to achieve the full potential of
the mutant schemata approach.

Test per test case vs per module. Our reachable schemata technique extracts the
reachable mutants per test case or per module for the program under test. The best
results are obtained by extracting the reachable mutants on a test-by-test basis. How-
ever, it is possible that the test driver of the test suite cannot execute individual tests
but only groups of tests, or so-called test modules. The speedup from this technique is
reduced when executing on a per-module basis. Changing the test framework to allow
the execution of individual tests might be considered for additional speedup.

Timed Out Mutants Overhead. For the bigger projects we analysed like CppCheck,
we have seen that the execution time of the optimised mutation analysis consists mostly of
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timed-out mutants. Here, the timed-out mutants take up 93% of the reachable schemata
mutation analysis. In our current approach, we detected the timeout once the total
time for that mutant reached a threshold. For the CppCheck project, this means that a
test that is stuck in an infinite loop would only be timed out after 45 seconds. As the
CppCheck project has 3,745 test cases, the average test time is below 0.01 seconds. The
impact of the timed-out mutants will be drastically reduced if we stop mutants not after
a global threshold but after localised thresholds based on the individual tests.

External Dependencies. Many large scale projects have external dependencies like
databases. Traditional, unoptimised mutation testing and techniques like mutant schemata
are highly likely to support these external dependencies. In Continuous Integration set-
tings, after a test suite has run, the external dependencies, like input/output files and
databases, need to be reset before the next run of the Continuous Integration. The support
for this is usually baked into the build systems of the projects (e.g. make clean).

Split-stream mutation testing on the other hand requires the external dependencies to be
able to be reset to a specific state. While we built in support to reset local files to a specific
state using a local GitHub repository, more advanced dependencies like running, or even
off-site, databases need very specific commands and domain knowledge to enable the
strategy to reset them to a specific state. The implementation for this will be different for
each project. This strategy requires too much knowledge of the system. It cannot easily
be incorporated with external dependencies, e.g. databases. Our current recommendation
is to not use split-stream mutation testing.

Equivalent Mutants. Academic literature indicates that equivalent mutants are a
widespread and problematic phenomenon, requiring significant human effort to detect
and resolve [41, 62, 63]. However, in our empirical study within industry, we have seen
that they can effectively manage the equivalent mutants with minimal effort. By carefully
selecting the mutation operators, filtering out non-interesting mutants, and utilising trivial
compiler equivalence, they ensure that the testers see almost no equivalent mutants. For
the few they do, they can label them as such in the code and avoid future generation of
them. As a result, equivalent mutants pose no issues for them adding minimal overhead
to the mutation analysis.

Flaky Mutants. An underlying, rarely mentioned, assumption for mutation testing,
is that the system under test behaves deterministically. Therefore, we challenged this
assumption and investigated the ramifications of mutation testing of non-deterministic
code and the introduction of non-determinism due to injected mutants. Testers can only
identify non-determinism by confirming the existence of –so-called– flaky tests which
intermittently pass and fail whilst executing the same code. This makes testing for non-
determinism in source code inherently challenging and impossible to detect from a single
execution. This wastes developer time, may hide bugs, and can lead to distrust in the
test suit [64–66].

Studies show that flaky tests are a substantial and frequent problem [67–73]. We, how-
ever, found no study relating this to mutation testing. For a mutation analysis, many
test cases need to be executed for each mutant. This drastically increases the likelihood
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of flakiness substantially, especially as each mutant also changes the code. It is thus very
likely that some mutants introduce non-determinism. We call these flaky mutants.

Running a mutation analysis on production code that already contains flakiness makes
things even more unpredictable. Introducing a mutant could exaggerate the flakiness,
maintain the flakiness, or even fix the flakiness. We currently have no automated way of
knowing if a test really detected the mutant or if it failed due to pre-existing flakiness.
It is possible that a test fails, causing the mutant to be killed, even though the mutated
code was never reached. The test can also fail unrelated to the mutant, even after the
mutant was executed.

We investigated open-source software repositories and found many commits dedicated to
fixing flaky tests. Of these commits, there were numerous examples where it is possible
to go from the committed code, in which the flakiness was solved, to the original code
with the use of a mutation operator. This shows that flaky mutants can be generated in
real projects. Our empirical study within industry reaffirmed that flaky mutants are an
actual problem with mutation testing as they appeared too often such that developers
started to complain about them [6].

We presented these findings in the IEEE International Conference on Software Testing,
Verification and Validation Workshops (ICSTW), 2021 [9]. As a first version into tackling
the flaky mutants problem, we propose to utilise existing tools that aim to detect flaky
tests to detect the flakiness in mutated code [72, 74, 75]. Our mutation testing use case
brings an important advantage compared to conventional flaky test management. As
we control the location of mutant insertion, we know where the potential root cause
of the flakiness lies. Consequently, we can provide this information to the flaky test
detection tools. As a starting point, we thus propose to build a model of potentially flaky
mutants based on Figure 1.4. The figure represents the taxonomy we constructed from
the flaky examples we found in the open-source software repositories and an analysis from
undefined behaviour in C/C++ and Java. Our taxonomy roughly aligns with previous
studies related to flaky tests and bugs, but with additions and adaptations to cover our
identified causes of flaky mutants [65, 70].

Our proposed taxonomy is organised into three main categories. The first, inserted, spec-
ifies how deterministic source code can turn into a flaky variant. The second category
covers inherited flakiness, meaning the code is flaky, but we cannot generate simple mu-
tants for them. An example would be switching compilers or test order dependency. The
last category includes the already flaky tests. For such examples, mutation testing can
cause the flakiness to appear more frequently. Examples for each category can be found
in our publicly available dataset [76].

Flaky mutants are a real concern that needs to be addressed when considering mutation
testing in the long run. Additional research will have to be performed and specialised
tools will need to be created.
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Figure 1.4: Causes of Flaky Mutants

1.10 Future Work

Each of our optimisation techniques orthogonally speed up the mutation testing analysis.
However they have been selected and designed in order to work together. Creating a
mutation testing tool that includes all of the above mentioned optimisations would deliver
an even greater speedup. Naturally, there are additional improvements that can be applied
to the existing techniques. One could optimise the schemata implementation to offset the
overhead introduced in mathematical heavy libraries. One could also investigate how to
integrate the equivalent mutant detections techniques with the other mutation testing
optimisations.

1.11 Conclusion

To make mutation testing effective in an industrial setting, we set three objectives: (1)
generate fewer mutants, (2) execute them faster and (3) process them smarter. For
each of these objectives, we investigated the most promising techniques from the current
state-of-the-art and implement them into a proof-of-concept tool.

Our prime candidates for mutation testing are safety-critical systems, where C and C++
dominate the technology stack [37]. Yet this is not represented in the mutation testing
community as less than 20% of the created mutation testing tools target the C language
family [23]. Therefore, we tailored our research and optimisation techniques to the C
language family.

For each of our optimisation techniques, we performed detailed analysis on both open-
source projects and industrial projects. At the end of our work, we performed an empirical
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study on the views on mutation testing in industry, to evaluate whether the advances of
the mutation testing optimisations are sufficient for industrial adoption and to identify
areas for improvement and the potential barriers that prevent the wider adoption of
mutation testing in industry.

Goal 1 – generate fewer mutants by excluding mutants that do not add value
We demonstrated the feasibility of using the Clang compiler front-end for different op-
timisation strategies and evaluated this on four open-source projects and one industrial
project from SAAB. We have shown that we can leverage the semantic analyser of the
Clang front-end to ensure, during the mutant generation phase, that the created mutants
are compile-time correct. While this reduces the number of mutants that we need to
analyse, it is a requirement for a mutant schemata based optimisation. We also imple-
mented a technique to exclude the mutants that are not reachable by the test suite. This
speedup, however, depends on the actual coverage of the test suite: a test suite with high
coverage (thus reaching more mutants) yields a lower speedup.

Goal 2 – execute mutants faster by reducing the execution and compilation overhead
With the reachable schemata strategy, we virtually eliminated the compilation overhead
to the point that the compilation for all mutants was only slightly longer compared to
the original compilation time and we reduced the execution overhead by only executing
the test cases for individual mutants which actually reach said mutants. Compared to
an unoptimised approach we achieve a maximum speedup of 23.45x and 30.52x on the
JSON and Google Test projects with the reachable schemata strategy. Even for less ideal
scenarios from the CPPCheck and TinyXML2 projects we achieve a speedup of 2.07x and
5.89x. These can be sped up further by two optimisations: Firstly, use switch statements
for the mutant selection to reduce the technique overhead. Secondly, tailoring the time-
out function, that e.g. detects mutants stuck in infinite loops, on a test-by-test basis
instead of on the global test suite. Our most important lesson learned is that we need
a different, specialised approach for generating mutants in const, constexpr, templates,
and define macros. These statements are evaluated at compile-time, thus obstructing the
runtime selection of the mutant required by the mutant schemata technique.

With four open-source projects and one industrial project from SAAB, we have shown
that the reachable schemata technique reduces the test suite scope to approximately 10%
for each mutant. This can be further reduced by the goal-oriented mutation technique
to only those test cases that have the responsibility of testing the method in which the
mutant is located. However, some extensions are needed to improve the accuracy of the
tool. Most importantly, the analysis needs to be able to deal with “no throw assertion
tests” and follow pointers.

Goal 3 – process mutants smarter by exploiting the computer infrastructure
Our proof-of-concept implementation of a split-stream mutation testing strategy shows
that the execution overhead of mutation testing can be further reduced. Instead of letting
each mutant initiate execution from the start of the program, each mutant is started from
the mutation point itself. This is achieved by exploiting the state-space information. By
retaining state information between test runs, split-stream mutation testing avoids the
redundant execution of statements up until the mutation point.
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In theory, this strategy could yield a speedup of a factor 2 to 3, but in practice applying
the strategy proves to be too demanding. The split-stream mutation technique demands
that dependencies need to be revertible to specific states of the execution. Reverting to
the internal state demands too much specific knowledge about the design of the system
under test, especially in the case data is stored in external databases and filesystems. Our
current recommendation is to not use the strategy.

Finally, we implemented a cloud solution to distribute the mutation workload over a cloud
infrastructure. Here we saw that by doubling the number of hardware nodes, the execution
time almost halves, nearly increasing the speed-up linearly. Despite these improvements,
there are still opportunities for further optimisation. We pointed out directions for future
work based on detailed measurements concerning delays in the analysis. In particular,
the use of multicast should ensure that the set-up delay —the current bottleneck– would
take constant time, regardless of the number of nodes in the system. In the same vein, we
can minimise the file server/disk delay by only sending the deltas of the files. Our most
important lesson learned is that tasks should remain completely independent for optimal
deployment in a cloud infrastructure. Mutant optimisation techniques that violate this
principle benefit less from deploying in the cloud. Nevertheless, there is ample room
for complementary optimisation techniques that reduce the time needed to generate and
execute mutants.

Goal 4 – validate mutation testing advances with the intent of industrial adoption
We performed an empirical study examining the industrial perspective of mutation testing
with two companies developing automation and mission safety/critical software. As part
of this goal, we explored whether mutation testing provides sufficient benefits for industrial
adoption and whether the recent mutation testing advances are sufficient to meet the
computational performance requirements for industrial adoption. For this, we integrated
our optimised mutation testing tool in the company developing automation software,
and performed the mutation analysis on a multitude of their software components. To
contrast their perspective, we were also in contact with a company developing mission
safety/critical software that had 5 years of experience with mutation testing and fully
integrated it within one of their development teams.

In our study, we learned that the initial perspective of mutation testing is that they need to
kill all mutants, which due to time constraints, is impractical for large-scale applications.
However, in practice a trade-off is made by using a limited set of mutation operators and
only executing the most-relevant mutants. An unintended side effect of this approach
is that very few equivalent mutants are being generated, most of which are caught by
utilising a trivial compiler equivalence technique. This causes equivalent mutants to be
less of an issue than considered in academic circles and shows that they can be handled
with minimal effort. On the other hand, mutants that cause non-deterministic behaviour,
i.e. flaky mutants, or mutating already non-deterministic production code, appear to be
real concerns that need to be addressed when considering mutation testing in the long
run. While we previously investigated the flaky mutant phenomenon, and proposed a first
vision on how to deal with them, seeing them occur in industry practice only validates
that they are a real concern and that they need to be addressed. For this, additional
research and tools is needed.
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Our study shows that the mutation testing optimisation techniques from the do fewer,
do faster, and do smarter approaches allow the mutation analysis to be integrated into
a continuous integration setting. However, mutation testing is not used as a replacement
for human code reviews. It is a useful tool for automatic code reviews, identifying and
correcting the low-hanging fruits, increasing the overall code quality, and reducing the
workload of the human reviewer.

Overall, our study suggests that the industrial perception of mutation testing is evolving
as more organisations recognise the potential benefits of the technique and work to address
its limitations and challenges. Mutation testing helps with a shift-left testing strategy,
and contributes to a requirements-based testing process, sometimes even revealing flawed
or poorly phrased requirements.

Concluding Thesis Statement — The mutation optimisation techniques in-
vestigated for the C language family, following the (1) generate fewer mutants, (2)
execute them faster, and (3) process them smarter approach, allows for mutation
testing to be adopted in a continuous integration setting for safety-critical systems.
However, due to time constraints, killing all mutants is impractical for large-scale
applications. In practice, a middle ground is advisable where mutation operators
are selected carefully, and only the mutants that are the most relevant or interest-
ing to the developers are executed. This allows the mutation testing to help with
a shift-left testing strategy, without overwhelming developers. While equivalent
mutants occur, they appear to be less of an issue than previously acknowledged in
academic circles. Instead, they might be handled with minimal effort in practice.
This is in contrast to flaky mutants which introduce non-deterministic behaviour,
as they appear in open-source projects and industry. They are a real concern that
needs to be addressed when considering mutation testing in the long run.
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A SPEEDING UP MUTATION TESTING VIA THE CLOUD:
LESSONS LEARNED FOR FURTHER OPTIMISATIONS

Abstract
Background: Mutation testing is the state-of-the-art technique for assessing
the fault detection capacity of a test suite. Unfortunately, it is seldom applied
in practice because it is computationally expensive. We witnessed 48 hours of
mutation testing time on a test suite comprising 272 unit tests and 5,258 lines
of test code for testing a project with 48,873 lines of production code. Aims:
Therefore, researchers are currently investigating cloud solutions, hoping to achieve
sufficient speed-up to allow for a complete mutation test run during the nightly
build. Method: In this paper we evaluate mutation testing in the cloud against
two industrial projects. Results: With our proof-of-concept, we achieved a
speed-up between 12x and 12.7x on a cloud infrastructure with 16 nodes. This
allowed to reduce the aforementioned 48 hours of mutation testing time to 3.7
hours. Conclusions: We make a detailed analysis of the delays induced by the
distributed architecture, point out avenues for further optimisation and elaborate
on the lessons learned for the mutation testing community. Most importantly,
we learned that for optimal deployment in a cloud infrastructure, tasks should
remain completely independent. Mutant optimisation techniques that violate this
principle will benefit less from deploying in the cloud.

A.1 Introduction

Software testing is the dominant method for quality assurance and quality control in soft-
ware development organisations [10, 11]. Software testing was established as a disciplined
approach in the late 70’s when it was defined as “executing a program with the intent of
finding an error” [12]. In the last decade, this intent shifted dramatically with the advent
of continuous integration [13]. Many software tests are now fully automated, and serve as
quality gates, safeguarding against programming faults. The scale at which automated
software tests are adopted in modern software organisations is mind-boggling. Microsoft
for instance reported that approximately 11 months of development on Windows com-
prised more than 30 million test executions. Google on the other hand reported that “In
an average day, TAP integrates and tests [. . . ] more than 13K code projects, requiring
800K builds and 150 Million test runs.” [14]. As a result of this continuous integration
approach, software organisations are capable of releasing faster. Tesla, for example up-
loads new software in its cars once every month [15]. Amazon pushes new updates to
production every 11.6 seconds [16].

The growing reliance on automated software tests raises a fundamental question: How
trustworthy are these automated tests? Today, mutation testing is the state-of-the-art
technique for assessing the fault-detection capacity of a test suite [22]. The technique
deliberately injects faults into the system under test and counts how many of them are
caught by the test suite. Mutation testing is acknowledged within academic circles as
the most promising technique for a fully automated assessment of the strength of a test
suite [23]. One of the reasons mutation testing is seldom adopted in industrial settings is
because the technique is computationally expensive: each mutant must be deployed and
tested separately [22].
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Mutation testing has shown to be able to run in parallel on a distributed architec-
ture [46, 48, 49]. Researchers are currently investigating cloud solutions to share the
computational load across a series of hardware nodes. Most notably among them are
Hadoopmutator [50] and Eminent [51]. These tool prototypes demonstrate that cloud in-
frastructure indeed allows to speed up the mutation testing. Yet, today it is unclear how
to optimally distribute the load across the available hardware nodes.

In this paper we evaluate an alternative cloud solution (named DiMuTesTas) against two
industrial projects, one small and one large. We achieve a speed-up between 12x and
12.7x on a cloud infrastructure with 16 workers, illustrating that substantial speed-up is
possible yet that the overhead is significant. We collect detailed measurements on the
cloud infrastructure (setup, scheduling, file transfer), analyse how the overhead occurs,
suggest avenues for further improvements and elaborate on the lessons learned for the
mutation testing community.

The rest of the paper is structured as follows. In Section A.2, we elaborate on the concept
of mutation testing and list related work. In Section A.3, we describe the cloud architec-
ture of our proof-of-concept, identifying where to measure overhead. In Section A.4, we
explain our case study setup, which naturally leads to Section A.5 where we discuss the
results. In Section A.6 we derive the lessons learned. As with any empirical research, we
list the threats to validity in Section A.7 to arrive at a conclusion in Section A.8.

A.2 Background and Related Work
In this section, we elaborate on the concept of mutation testing and contrast our proof-
of-concept against related work.

A.2.1 Mutation Testing
For effective testing, software teams need strong tests which maximise the likelihood of
exposing faults [12]. Traditionally, the strength of a test suite is assessed using code
coverage, revealing which statements are poorly tested. However, code coverage has been
shown to be a poor indicator of test effectiveness [17, 19]. Worse, even a 100% MC/DC
coverage (Modified Condition/Decision Coverage, the coverage criterion adopted for safety
critical systems) still does not guarantee the absence of faults [20, 21].

Today, mutation testing is the state-of-the-art technique for assessing the fault-detection
capacity of a test suite [22, 23]. The technique deliberately injects faults (called mutants)
into the production code and counts how many of them are caught by the test suite. Case
studies with safety critical systems demonstrate that mutation testing could be effective
where traditional structural coverage analysis and manual peer review have failed [33, 34].
Google on the other hand reports that mutation testing provides insight into poorly tested
parts of the system, but –more importantly– also reveals design problems with components
that are difficult to test, hence must be refactored [35].

Unfortunately, mutation testing is seldom adopted in practice [77]. One of the reasons is
that the technique —in its basic form– requires a tremendous amount of computing power.
For each injected mutant, the code base must be compiled and tested separately [22].
Algorithm A.1 shows the essential steps without any optimisations, in order to understand
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the time-consuming nature of the mutation testing process. The software system needs
to build without errors and all software tests should succeed before mutation testing can
even begin; this is called the pre-phase. Then, the two main phases are executed: (A) the
mutant generation phase and (B) the mutant execution phase. In phase A, mutants are
generated for all source files. In phase B, each mutant is executed and its result (whether
or not it was killed) is saved. Finally, all the results are gathered and the final report is
created in the post-phase.

Algorithm A.1 Pseudocode Mutation Testing

1: function mutationTesting(srcFolder src)
2: . Pre: verify build and if all tests succeed
3: if initialBuildAndTests() 6= True then
4: return
5:
6: . A: generate mutants
7: mutants← []
8: for all srcFile f ∈ src do
9: fMutants← generateMutants(srcFile f)

10: mutants← mutants+ fMutants

11:
12: . B: execute mutants
13: for all mutant m ∈ mutants do
14: result← executeMutant(mutant m)
15: storeResult(result, mutant m)
16:
17: . Post: process results
18: processResults()

A.2.2 Mutation Testing Optimisations

A lot of research is devoted to optimising the mutation testing process, summarised
under the vision - do fewer, do smarter, and do faster [42]. The do fewer approaches
minimise the execution time by reducing the total number of mutants to execute. Such an
optimisation can be implemented by generating fewer mutants on line 9 in Algorithm A.1
or by selecting a subset of all mutants on line 13. The fewer mutants that are executed,
the more information will be lost. Balancing time reduction versus information loss is
key. There are different ways to choose which mutants will be executed, varying in their
effectiveness compared to the full set of mutants [22]. Do smarter approaches attempt
to minimise the execution time by retaining state information between runs, e.g. split-
stream mutation testing [47]. Others prioritise test, giving priority to the tests with the
highest likelihood of failure. These optimisations would be implemented on line 14 in
Algorithm A.1. Lastly, do faster approaches try to minimise the execution time of each
individual mutant. One example is using a compiler integrated technique, where the
project is compiled only once instead of for each mutant [44]. These optimisations would
also be implemented on line 14 in Algorithm A.1.
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A.2.3 Mutation Testing in the Cloud

Mutation testing has shown to be able to run in parallel on a distributed architec-
ture [46, 48, 49]. Consequently, researchers are currently investigating cloud solutions
to share the computational load across a series of hardware nodes. Hadoopmutator [50]
and Eminent [51] are the ones we have found in the literature.

Hadoopmutator

Hadoopmutator is a cloud-based Mutation Testing framework that is implemented using
Hadoop’s MapReduce1. During the mapping phase, each mutation operator is assigned
to a separate node, creating a single mutant and executing the test suite. The subse-
quent reduce phase aggregates the results from all the test executions and calculates the
mutation score.

Data transfer between the nodes is handled using Hadoop’s MapReduce and the Hadoop
Distributed File System (HDFS™). Hadoopmutator is applied on two open source projects,
and the authors report a speed-up of 9.57x and 12.83x using 13 nodes. For small projects
like Apache Wicket, the authors state that “the overhead of running Hadoop on the com-
pute nodes becomes significant relative to the time needed to generate and executes the
tests and hence the optimal performance gain is not attained ”. The influence of speed-up
with large projects that affect the I/O and network traffic was not investigated.

For a MapReduce solution to reach an optimal load balance, there should be small variance
between the execution times of the respective mapper functions. This minimises the
inherent idle time between the termination of the mapper phase and the start of the reduce
phase. However, for mutation testing this principle does not hold. First, because the
analysis can terminate as soon as one test fails, thus some test executions will terminate
earlier than others. Second, because some mutants lead to infinite loops, which can only
be detected via time-outs. Therefore there is a large variance between the time to execute
the tests.

Eminent

Eminent (EMbarrassINgly parallEl mutatioN Testing) is a distributed Mutation Testing
tool that relies on the Message Passing Interface standard for portable message-passing in
parallel computing architectures [51]. Eminent uses test-level granularity, the test suite
is split up and each test/mutant combination is run separately. If a single test (of a
mutant) fails, the mutant is killed and all other remaining tests (related to that mutant)
are canceled.

Eminent handles data transfer between the master and the nodes by means of a shared
database. The test cases are sent to the worker processes which will execute them against
the mutants and send the results back to the master, which compares them to the original.
Eminent is applied on three projects, and the authors report a speed-up between 8x and
22x using 32 nodes. Large projects can have an impact on the scalability “because of
the high volume of network and I/O traffic generated by this application, which acts as a
system bottleneck in the database node”.

1https://hadoop.apache.org

33

https://hadoop.apache.org


A SPEEDING UP MUTATION TESTING VIA THE CLOUD:
LESSONS LEARNED FOR FURTHER OPTIMISATIONS

The main advantage of Eminent’s test-level granularity is that the sooner a mutant is killed
the faster the mutation testing tool becomes. Therefore, the test execution framework
should be configured such as to stop the execution of the test suite when the first one
fails. The second advantage of test-level granularity is that the load can in principle be
evenly distributed over multiple nodes. Nevertheless, the worst case scenario for test-level
granularity occurs when the last test is executed on one node while all the other nodes
are finished. The additional overhead of running the test-level granularity may be more
than the execution time of the complete test suite.

At the time of writing there was no implementation available for HadoopMutater nor
for Eminent. Replicating their results on other projects and measuring where over-
head occurred was impossible. Therefore we resorted to our own proof-of-concept named
DiMuTesTas.

DiMuTesTas

We developed DiMuTesTas to minimise the idle-time of the nodes and to minimise the
network load of the distributed application itself. The first is tackled by removing de-
pendencies between executions on the workers, allowing to distribute the generation of
the mutants and the execution of the mutants independently of each other. We keep the
network load low by only sending references to files over the network. We use mutant-level
granularity, thus apply a mutant and execute the complete test suite. Mutant-level gran-
ularity allows to further reduce the amount of messages that need to be exchanged.

In our current system, we use a file system to distribute the project, mutants, and store
their executed results. The data that needs to be transferred for the mutant is limited
to a single file. This can even further be reduced by only sending the delta of the file.
Writing to the file server is only done by each worker which has generated the mutants
(single files) or by each worker which executed a mutant and needs to store its build
output (multiple files).
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Summary. The current state-of-the-art demonstrates that cloud
infrastructure indeed speeds up the mutation testing. Yet, the op-
timal way of distributing the load across the available hardware
nodes is currently unknown. First of all, there is the potential for
idle-time when nodes are waiting for others to finish their tasks
before they can proceed. Secondly, there is the data-transfer bot-
tleneck, the consequence of copying files and exchanges messages
across the nodes. Today, detailed measurements on the impact of
both the idle-time and the data-transfer are lacking.
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A.3 Proof of Concept
In this section we first describe the cloud architecture of our proof-of-concept (loosely
inspired by the 4+1 model [78]) and then identify where delays may have a significant
impact, thus where we should measure overhead.

A.3.1 DiMuTesTas Architecture
Logical View — Single Task queue

To execute Algorithm A.1 in the cloud, we adopt a single task queue model for the main
phases A and B, as depicted in Figure A.1. For phase A, this means creating a first kind of
task, i.e. to generate the mutants from a source (src) file (represented by A in Figure A.1),
for each source file and push it onto the task queue. When a worker processes such a
task (e.g. 1 ), a new, second kind of task is created for each of the generated mutants, i.e.
to execute the mutant (corresponding to phase B). These newly created tasks are then
pushed back onto the task queue (e.g. 1a, 1b and 1c).

Figure A.1: DiMuTesTas Architecture – Single Task Queue

Process View — RabbitMQ

The single task queue is handled by RabbitMQ2, a broker which handles the message
passing between multiple computers. To map the logical view onto RabbitMQ we follow
a series of steps depicted in Figure A.2. First, the master performs the initial build and
verifies if all tests succeed (1, a.k.a. pre-phase); if not, the process is canceled. Afterwards,
all source files are gathered and (their file names) are sent to the task queue (2 ). From
here on, the master waits until he received all results. Once tasks are in the task queue,
workers will pull and process them. If a worker pulls a task containing the name of a
source file (3a), it will generate mutants for the corresponding file, store them on the file
server (3b) and send a reference for each mutant back to the queue. If the worker pulls a
task containing a reference to a mutant (4a), it will fetch the mutant from the file server
(4b) and execute it before storing its result on the file server (4c) and sending a “done”

2https://www.rabbitmq.com/
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message to the result queue (4d). Finally, when the master received all results, he creates
the final report for the mutation testing (5, a.k.a. post-phase).

Note that the mutants can be generated and executed by different workers and are needed
for the final report as well. Therefore, they are not stored in the task queue as this would
increase its memory usage and would require sending the mutants over the network one
additional time. Instead, the mutants, results and the final report are fetched stored on
a separate file server (3b, 3c and 4c) .

Figure A.2: DiMuTesTas Architecture – Process View

Physical View – Docker

To deploy the architecture on a physical system, we rely on Docker3. Figure A.3 provides
an overview of the different components and their interactions. As setting up each node
individually is impractical, the master and the worker are encapsulated into Docker im-
ages, i.e. an executable package that includes everything needed to run an application:
the code, the runtime environment, the libraries, the environment variables, and the con-
figuration files. As Docker images contain the installed software, they will startup very
quickly because no further installation is required. An image for the RabbitMQ server
already existed. The master and worker images do not include the project itself, but
will copy it from a file server once they startup. We used NFS for the file server, but
iSCSI, FC, and others are possible as well. The file server is also needed as the local
storage of each Docker container is removed together with the container after execution.
To distribute the tool over multiple PC’s and enable the different containers to talk to
each other, we make use of Docker Swarm.

3https://docs.docker.com/
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Figure A.3: DiMuTesTas Architecture – Physical View

A.3.2 DiMuTesTas Potential Delays

Now that we laid out the components and how they interact (see Figure A.3) we can
identify where potential delays might occur compared to a mutation test run on a local
PC.

• Setup delay. After the initial build on the master, DiMuTesTas copies the build
dependencies from the file server to the own local storage in each worker. This is
done to prevent the network connection from becoming a bottleneck, as otherwise
each worker has to download the build dependencies separately.

• Initial build. The pre- and post-phase are similar for a mutation test run on a local
PC and one that runs in the cloud, differing only in the place they store and gather
information.

• Mutant generation. The total time all workers needs to generate the mutants,
excluding the time to read from the file server/disk and writing the build output to
the file server/disk. For a mutation test run on a local machine, the total time to
generate the mutants, excluding the time to read or write the results.

• Mutant execution. Similar to the mutant generation phase, it measures the total
time for the mutant execution phase excluding the time to read or write.

• RabbitMQ (scheduling) delay. The time to gather the source files and push them to
the task queue on the RabbitMQ server. The time needed by the workers to pull
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tasks from the task queue is also part of this delay.
• File server/disk delay. The most likely cause for delays in a cloud solution is copying

data files back and forth between the different nodes. This delay occurs when a
container copies the project from the file server to its own local storage. However,
it also occurs when transforming Docker images (static, unchangeable) into Docker
containers (dynamic, changeable) at startup.

A.4 Case Study Set Up

This section describes how we evaluate the impact of running mutation testing in the
cloud. Essentially we apply DiMuTesTas on two industrial projects, comparing a cloud
solution against a version running on a local PC.

A.4.1 Cases

Table A.1: Industrial Cases: Descriptive Statistics

Company Project
Start
Date

Nr of
Com-
mits

Nr of
Devel-
opers

Java
Files

LOPC LOTC Test
Cases

Branch
Coverage

Intris 26 May
2014

27,034 14 85 of
4,070

8,389 343 45 1.27%

Health-
Connect

18 Jun
2014

22,956 10 601 of
273,722

48,873 5,258 272 28.34%

LPOC = Lines of Production Code; LOTC = Lines of Test Code

Case Project
Size

Test Suite
Run Time

build-
Output-
FileSize

avg-
FileSize

interNode-
Link-
Speed

readWrite-
Speed-

LocalDisk
Intris 116MB 7 s 37 kB 15 kB 100Mbps 95MBps
HealthConnect 1.8GB 47 s 840 kB 8.52 kB 100Mbps 95MBps

Table A.2: Industrial Cases: Mutation Testing Data

Company Project
Size

Executed
Mutants

Invalid
Mutants

Actual
Mutants

Killed
Mutants

Mutation
Coverage

Intris 116MB 1,364 312 1,052 33 3.14%
HealthConnect 1.8GB 4,104 50 4,054 360 8.88%

We collected two cases via our network of industrial partners, one small (Intris), and one
large (HealthConnect) project.

• Case 1: Intris [https://www.intris.be]. The project at Intris relies heavily
upon the visualisation and manipulation of database data. This manifests itself in
the way the tests are written, as most of them are scenario tests. We choose a (core)
subproject which does not rely on the database, but has few unit tests. This resulted
in a small task execution time, as building the project and running the test suite
only takes 7 seconds. The Intris project makes an interesting case for investigating
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mutation testing in the cloud as the execution times of the tasks are quite small
thus we expect more overhead from scheduling delays and file server/disk delays.

• Case 2: HealthConnect [https://www.healthconnect.be]. The project at
HealthConnect is 1.8GB large, and contains 48k LOPC (Lines of Production Code),
and 5k LOTC (Lines of Test Code). As each hardware node needs to copy the entire
code base, the fileserver hosting the source files from the project may become a
bottleneck. The project from HealthConnect makes an interesting case to examine
the behaviour on large (especially in data transfer) projects.

The descriptive statistics of the project are listed in Table A.1, while the details regarding
basic mutation testing are shown in Table A.2. Note that the given start date and number
of commits from HealthConnect is counted from the switch to the new version control
system, the actual start date is earlier. Note as well that the time to execute the test
suite assumes that all dependencies are loaded and stored locally.

A.4.2 Research Questions

The case study is driven by the following two research questions.

RQ1: Speed-up

How much speed-up can be achieved by running a mutation testing on cloud infrastruc-
ture?

Motivation. Assuming that we distribute the mutation test run over a system with
N hardware nodes, the ideal speed-up is a factor Nx. Here we investigate whether
DiMuTesTas approaches this ideal.

Approach. We deploy DiMuTesTas on a cloud system with a maximum of eight hardware
nodes, where each hardware node is configured with 2 workers. We measure the total
execution time with a set-up of 1, 2, 4, 8, and 16 workers and average the execution time
across 3 runs.

RQ2: Delays

Where does a cloud solution like DiMuTesTas suffer from delays? Do these delays corre-
spond to what may be expected?

Motivation. Deploying mutation testing in the cloud induces delays, in particular with
respect to data-transfer between the nodes. This research question compares a mutation
test run executed on a local PC against a mutation test run deployed in the cloud. By
making a thorough analysis of where delays occur we can suggest avenues for further
improvement.

Approach. Based on the set-up described in RQ1 (1, 2, 4, 8, and 16 workers) we measure
the points in the architecture where delays might occur as described in Section A.3.2:
Setup delay, Initial build, Mutant generation, Mutant execution, RabbitMQ (scheduling)
delay and the File server/disk delay. We compare the actual measurements against what
we expect.
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A.4.3 Hardware Set-up

The infrastructure used for the analysis of both projects is the same. We used 8 In-
tel(R) Core(TM)2 Quad Q9650 CPU’s, each with two 4GB (Samsung M378B5273DH0-
CH9) DDR3 RAM modules and a 250GB Western Digital (WDC WD2500AAKX-7) hard
drive. All PC’s were connected to the same subnet using a 3Com Baseline Switch 2016
(100Mbps, full duplex). The in- and outgoing internet connections/inter-PC communi-
cations were limited by the 100Mb links. We used a dedicated switch to remove any
external influences on the network load. All PC’s where running Ubuntu 16.04.2 LTS
with kernel 4.10.0-27.

The workers from the DiMuTesTas approach where divided equally over the nodes: when
using N nodes and 2N workers, each node will run two workers. When executing Lit-
tleDarwin, only one of the PC’s was used.

A.4.4 LittleDarwin

In principle, DiMuTesTas can be set-up with any mutation tool, as long as it can be
configured to apply a single mutator on a given file. For this particular case study we relied
on LittleDarwin, a tool distributed within our lab thus conveniently accessible [79].

Table A.3: Results (Distributed) Mutation Testing Experiment

LittleDarwin
DiMuTesTas

1 worker 2 workers 4 workers 8 workers 16 worker
(1 node) (2 nodes) (4 nodes) (8 nodes) (8 nodes)

Intris:
9,718.15 s 10,360.64 s 5,237.88 s 2,676.80 s 1,404.76 s 810.49 s
93.80% 100.00% 50.56% 25.84% 13.56% 7.82%

HealthConnect:
173,061.51 s 190,313.06 s 96,218.86 s 48,805.47 s 25,301.98 s 13,618.04 s

90.94% 100.00% 50.56% 25.64% 13.29% 7.16%

A.5 Results

A.5.1 RQ1 - Speed-up

How much speed-up can be achieved by running a mutation testing on cloud infrastruc-
ture?

Table A.3 compares the execution times of LittleDarwin against DiMuTesTas using 1, 2,
4, 8, and 16 workers. Each result is an average of 3 runs; the variance between each run
is less than 2%. For easy interpretation of the scaling, we took the execution time of
DiMuTesTas running on a single worker (therefore running sequentially) as our baseline,
indicating it as 100% of the execution time. As the number of workers double, we see that
the execution time almost halves thus the speed-up increases linearly. Nevertheless, the
relative execution time of LittleDarwin is below 100%, because —as expected— executing
mutation testing in the cloud adds overhead.
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�

�

�

�

For the Intris Case (8 kLOC production code, 300 LOC test code)
we could reduce the full mutation testing cycle from 2.7 hours to
13.5 minutes. For the HealthConnect case (48 kLOC production
code, 5k LOC test code) we could reduce from 48 hours to 3.7
hours. As such, our proof-of-concept achieved a speed-up between
12x and 12.7x on a cloud infrastructure with 16 nodes.

A.5.2 RQ2 - Delay
Where does a cloud solution like DiMuTesTas suffer from delays? Do these delays corre-
spond to what may be expected?

Table A.4: Results: Delays incurred in DiMuTesTas

Program Setup Initial Generate Execute Rabbit- File Server
section delay build Mutants Mutants MQ delay /disk delay
Intris:
LittleDarwin N.A. 7.98 928.46 8,770.34 N.A. 2.58
1 worker 18.39 7.72 1,018.49 9,296.29 9.09 5.24
2 workers 27.83 7.92 558.14 9,791.96 10.69 . 12.94
4 workers 46.63 7.82 332.04 10,090.61 23.71 18.20
8 workers 84.34 8.18 256.38 10,142.68 37.43 19.13
16 workers 81.59 8.35 255.23 11,057.54 95.08 21.56
HealthConnect:
LittleDarwin N.A. 114.78 253.27 172,681.67 N.A. 6.68
1 worker 156.37 159.03 296.11 189,488.88 22.69 144.86
2 workers 305.91 163.5 257.19 190,937.38 30.73 160.63
4 workers 613.83 177.63 270.29 191,310,10 106.06 187.34
8 workers 1,265.15 165.25 311.63 189,881.46 203.18 190.85
16 workers 1,319.37 180.31 269.92 191,940.89 386.73 253.95
(in seconds, bold program section represent cumulative timings, i.e. the sum of time all workers spend

in that phase)

Table A.5: Overview of Expected and Actual Delays

Program section Expected delay Actual delay
Setup delay Linear to nr. of workers Linear to nr. of nodes
Initial build Constant
Mutant generation Constant Decreasing
Mutant execution Constant
RabbitMQ delay max n− 1 workers * test execution time
File server/disk delay Linear to nr. of workers

The delays of the different phases are listed in Table A.4. Table A.5 summarises these
results, comparing the delay we expected against the delays observed.

Setup delay

In Table A.4, we see that the setup delay grows linearly with the number of workers. This
is as expected, as the source files from the project are copied to each worker individually.
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While we would expect the initial setup delay of the 16 workers to be twice as long as the
one of the 8 workers, we see that they are alike. When running the 16 workers, each node
has two workers. Because we used NFS as our file server, the kernel caches the data from
the requests, allowing the second worker on each node to use the cached data instead of
copying it from the file server.

The linear growth of the setup delay mainly impacts the execution time of the project
from HealthConnect. The larger the project, the more time the copying of the files will
take. In our case, the limited network connection of 100Mbps is making the delay extra
apparent. The delay can be decreased by using a gigabit network and by minimising
the amount of data that needs to be sent over the network. The latter can be achieved
by keeping the project in a Docker volume between consecutive runs of the distributed
mutation testing.

Another optimisation is to replace unicast with multicast [80]. With unicast, the project
is transmitted to each node individually, thus we send the same project 8 times over the
network when using 8 nodes. Multicast, on the other hand, sends the (same) project only
once over the network, making the amount of data sent over the network independent of
the number of nodes.

Initial build

Next in Table A.4 is the initial build on the master. We see that the execution times of the
initial build from the different workers are similar. As this step is the same, independent
of the number of workers, we expected a constant initial build delay, hence this result is
as expected.

Mutant generation

The third row in Table A.4 shows the total time to mutant generation, excluding the
time to read (write) the files from (to) the server/disk. The time to generate the mutants
using LittleDarwin or DiMuTesTas for all worker configurations should be the same, as
the same amount of work should be done. While this is the case for the project from
HealthConnect, we see a decrease in execution time for the project from Intris. The
shorter execution time using fewer workers is due to a memory limitation when needing
to process multiple large files. With more workers, each worker needs to process fewer of
these files, allowing for more memory to be used for each file.

The project from Intris has fewer mutants but a higher LOC/test file than the project
from HealthConnect (Table A.1). However, the mutant generation time of Intris is 3.6
times as long (see Table A.4). We assume this behaviour is caused by the complexity of
generating mutants. With LittleDarwin this complexity is exponential compared to the
number of lines in a file. In general, if two projects have the same LOC count, but differ
in the number of files, then the one with the most files (less LOC/file) will result in a
faster mutant analysis.

Mutant execution

The fourth row in Table A.4 shows the time needed to mutant execution, here as well
excluding the time to read (write) the files from (to) the server/disk. We observe execution
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times which are more or less similar, which should be the case as the code responsible
for this in DiMuTesTas is the exact same code as of LittleDarwin. Not surprisingly, the
mutant execution time comprises the largest chunk of the whole mutation testing time,
hence that is where optimisations should focus on.

RabbitMQ delay

The fifth row in Table A.4 shows the RabbitMQ (scheduling) delay, i.e. the time needed
to gather the names of the source files, send them to the task queue plus the time needed
for the workers to pull tasks from the task queue. This delay is calculated by removing
all timed functions (delays, mutant generation and execution) from the local execution
time of the worker. The delay incorporates the execution time of some small, untimed
functions. We can see that the delay increases, but it is important to note that this is
cumulative. If e.g. seven out of the eight workers are done processing, then for every
second that passes before the last worker is done, seven seconds are added to this delay.
If we divide the delay by the number of workers, then we see that this delay is smaller
than the time it takes to process a single task. We conclude that this delay is caused by
idle-time when some nodes stop processing earlier than others.

File server/disk delay

The sixth row in Table A.4 shows the file server/disk delay, i.e. the time needed to copy
data files back and forth between the different nodes. Although this delay is relatively
small, it grows linearly with the number of workers, hence is a point for concern. This
delay could be minimised by sending deltas of the files over the network instead of sending
the complete file.�

�

�

�

Based on detailed measurements concerning delays in the analysis
we point out directions for further optimisation. In particular, the
use of multicast should ensure that the set-up delay —the current
bottleneck– would take constant time, regardless of the number of
nodes in the system. In the same vein, we can minimise the file
server/disk delay by only sending the deltas of the files.

A.6 Lessons Learned

In this section we will derive the lessons learned geared towards the mutation testing
community.

Nightly Builds. The mutation testing algorithm in Algorithm A.1 is inherently paral-
lel, thus a cloud solution allows to share the computational load across a series of hardware
nodes. Given sufficient hardware it is possible to off-load a full-scale mutation testing on
dedicated hardware.�

�
�
�

�X Cloud infrastructure allows to speed up mutation testing de-
pending on the number of hardware nodes available. This speed-up
allows to perform mutation testing during the nightly build.
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Cloud Technology. We observed that it is beneficial to run many workers on the same
node to reduce the setup delay. However, the set-up delay is still significant and grows with
the number of nodes, mainly because we copy the whole project source code to each of the
available nodes. In the future, we intend to use Multicast the setup delay should become
a constant, independent of the number of nodes in the system. In a similar vein, we will
reduce the file server/disk delay by sending deltas of the files over the network.�

�
�
�

�X There is a lot of research and development on cloud infrastruc-
ture and the field is making rapid progress. In the near future, we
may expect new features that can be exploited to make a cloud
based mutation testing even faster.

Side-effects. Duringmutant generation we noticed that with more workers, each worker
needs to process fewer of these files, allowing for more memory to be used for each
file. �

�
�
��X Deploying mutation testing in the cloud sometimes lead to side-

effects having a positive impact on the execution time.

Completely independent tasks. DiMuTesTas is designed to minimise idle times be-
tween tasks. The single task queue does not add any delay because it only needs to pass
the name of the mutated file, and only the mutated file will be copied from the file server
to the worker. This can only work when there are no other dependencies between tasks,
in particular between the generation of the mutants (Phase A in Algorithm A.1) and the
execution (Phase B in Algorithm A.1). Likewise, executing a single mutant (line 14 in
Algorithm A.1) should not affect any other executions.�

�
�
�

�X For optimal deployment in a cloud infrastructure, tasks should
remain completely independent. Mutant optimisation techniques
that violate this principle will benefit less from deploying in the
cloud.

Complementary Optimisation. Deploying mutation testing in the cloud reduces the
total mutation testing time according to the number of hardware nodes available. Never-
theless, the mutant generation and mutant execution phases take the largest proportion
of the whole analysis.�

�
�
��X There is ample room for complementary optimisation techniques

that reduce the time needed to generate and execute mutants.

A.7 Threats to Validity

As with all empirical research, we identify those factors that may jeopardise the valid-
ity of our results and the actions we took to reduce or alleviate the risk. Consistent
with the guidelines for case studies research (see [81, 82]), we organise them into four
categories.

Construct validity: do we measure what was intended? In essence, we wanted to
know which parts of the distributed mutation testing process were causing extra delays.
Therefore, we compared execution times on phases where we suspected delays could occur.
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One may conceive other choices for measuring these delays. However, the suggestions for
further improvement (i.e. multicast and sending of deltas of files) are likely to remain
valid.

Internal validity: are there unknown factors which might affect the outcome of the
analyses? As the performance of a (distributed) system can be influenced by external
factors, a replication experiment could end up with different timings. For example, if the
computer cannot sufficiently dissipate the generated heat by the CPU, the CPU could slow
down over time. Similarly, the condition of the hard drive in the file server and the load
of the network could affect the measurements. However, the results would need to differ
significantly before they would invalidate the suggestions for further improvement.

External validity: to what extent is it possible to generalise the findings? We evaluated
our proof-of-concept distributed mutation testing tool to industrial cases, both a small
and a large one. We assume that similar measurements would apply on other projects,
however the proposed solutions will need to be tailored to the projects. Projects that are
small in size but have long running test suites are different from projects large in size but
with very short running test suites.

Reliability: is the result dependent on the tools? We deliberately choose a mutation
testing tool which clearly separates the different steps of the mutation testing process.
This allowed us to measure the delay of running the mutation tests in the cloud. If the
mutation testing tool contains optimisations which can be distributed without a negative
impact on the performance (i.e. test prioritisation), then the results should be similar.
However, as mentioned in Section A.6 For optimal deployment in a cloud infrastructure,
tasks should remain completely independent.

A.8 Conclusion

In this paper, we demonstrated that cloud infrastructure allows to speed up mutation so
much that it can be performed during the nightly build. For a small scale system (8 kLOC
production code, 300 LOC test code) we could reduce the full mutation test run from 2.7
hours to 13.5 minutes. For a large project (48 kLOC production code, 5k LOC test code)
we could reduce from 48 hours to 3.7 hours. As such, our proof-of-concept achieved a
speed-up between 12x and 12.7x on a cloud infrastructure with 16 nodes.

Despite these improvements, there are still opportunities for further optimisation. Based
on detailed measurements concerning delays in the analysis, we point out directions for
further optimisation. In particular, the use of multicast should ensure that the set-up
delay —the current bottleneck– would take constant time, regardless of the number of
nodes in the system. In the same vein, we can minimise the file server/disk delay by only
sending the deltas of the files.

Moreover, we also derive a few lessons learned for the mutation testing community. Most
important is the principle that for optimal deployment in a cloud infrastructure, tasks
should remain completely independent. Mutant optimisation techniques that violate this
principle will benefit less from deploying in the cloud. Nevertheless, there is ample room
for complementary optimisation techniques that reduce the time needed to generate and
execute mutants.

45



A SPEEDING UP MUTATION TESTING VIA THE CLOUD:
LESSONS LEARNED FOR FURTHER OPTIMISATIONS

A.9 Acknowledgments
This work is supported by (a) the ITEA TESTOMATProject (number 16032), sponsored by
VINNOVA – Sweden’s innovation agency; (b) Flanders Make vzw, the strategic research centre
for the manufacturing industry.

46



Paper B

Goal-Oriented Mutation Testing
with Focal Methods

Sten Vercammen Mohammad Ghafari
University of Antwerp University of Bern
Antwerp, Belgium Bern, Switzerland

Serge Demeyer Markus Borg
University of Antwerp RISE SICS AB
Antwerp, Belgium Lund, Sweden

Abstract
Mutation testing is the state-of-the-art technique for assessing the fault-detection ca-
pacity of a test suite. Unfortunately, mutation testing consumes enormous computing
resources because it runs the whole test suite for each and every injected mutant. In this
paper we explore fine-grained traceability links at method level (named focal methods),
to reduce the execution time of mutation testing and to verify the quality of the test
cases for each individual method, instead of the usually verified overall test suite quality.
Validation of our approach on the open source Apache Ant project shows a speed-up of
573.5x for the mutants located in focal methods with a quality score of 80%.
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B.1 Introduction
Software testing is the dominant method for quality assurance and control in software engineer-
ing [10, 11], established as a disciplined approach already in the late 1970’s. Originally, software
testing was defined as “executing a program with the intent of finding an error” [12]. In the last
decade, however, the objective of software testing has shifted considerably with the advent of
continuous integration [13]. Many software test cases are now fully automated, and serve as
quality gates to safeguard against programming faults.

Large-scale test automation is now a common practice among mature software-intensive busi-
nesses. For example, Microsoft reported that approximately 11 months of development on Win-
dows comprised more than 30 million test case executions and Google stated that “In an average
day, TAP integrates and tests [. . . ] more than 13K code projects, requiring 800K builds and 150
Million test runs.” [14]. By adopting high quality software testing in the continuous integration
context, software companies are now releasing software much more frequently. Examples include
Tesla, uploading new software in their cars once every month [15], and Amazon, pushing new
updates to production every 11.6 seconds [16].

Test automation is a growing phenomenon in industry, but a fundamental question remains:
How trustworthy are these automated test cases? Mutation testing is currently the state-of-
the-art technique for assessing the fault-detection capacity of a test suite [22]. The technique
systematically injects faults into the system under test and analyses how many of them are
killed by the test suite. In the academic community, mutation testing is acknowledged as the
most promising technique for automated assessment of the strength of a test suite [23]. One
of the major impediments to industrial adoption of mutation testing is the computational costs
involved: each individual mutant must be deployed and tested separately [22].

For the greatest chance of detecting a mutant, the entire test suite is executed for each and every
mutant [40]. As this consumes enormous resources, several techniques to exclude test cases from
the test suite for an individual mutant have been proposed. First and foremost, test prioritisation
reorders the test cases to first execute the test with the highest chance to kill the mutants [45].
Second, program verification excludes test cases which cannot reach the mutant and/or which
cannot infect the program state [55]. Third, (static) symbolic execution techniques identify
whether a test case is capable of killing the mutant [56, 57]. This paper explores an alternative
technique: fine-grained traceability links via focal methods [83].

By using focal methods, we can establish a traceability link at method level between production
code and test code. This allows us to identify which test cases actually test which methods and
vice versa. The greatest advantage of this technique is that if we know which test cases focus
on testing which methods, we do not need to execute the whole test suite nor test cases that
only cover a method. This allows us to drastically reduce the scope of the mutation analysis to a
fraction of the entire test suite by executing only those test cases that actually test the methods
of interest. This technique can also be used to quickly investigate how well a single method is
tested by only executing the mutants of that method with the (few) test cases that actually test
the method. We refer to this as goal-oriented mutation testing, and argue that the approach
could be used to selectively target the parts of a system where mutation testing would have the
largest return on investment.

To investigate the potential of focal methods in the context of mutation testing, we formulate
the following research questions.

• RQ1: To what extent, using focal methods, can we identify the right mutants for a test
case and vice versa?

• RQ2: How much speed-up is gained by using focal methods for mutation testing?
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We validate this concept on the unit testing level using a large open source project: Apache Ant
[https://ant.apache.org].

The rest of the paper is structured as follows. In Section B.2, we elaborate on the concept of
mutation testing and general optimisations. In Section B.3, we describe the motivation for using
focal methods, and how they work. In Section B.4, we explain our case study setup and discuss
the results. In Section B.5, we elaborate on related work. As with any empirical research, our
study is subject to threats to validity – we list the most important in Section B.6. Finally, we
arrive at a conclusion in Section B.7.

B.2 Background
This section explains why we need mutation testing, why it needs to be optimised, and which
types of optimisations exist.

B.2.1 Mutation Testing
Software teams need effective test cases to maximise the likelihood of exposing faults [12]. Tradi-
tionally, code coverage has been used to assess the strength of a test suite, revealing which parts
of the production code are inadequately tested. Unfortunately, research has shown that code
coverage might be a poor indicator of test effectiveness [17, 19]. On top of that, even a 100%
MC/DC coverage (Modified Condition/Decision Coverage, the coverage criterion mandated by
safety standards used for certification of safety-critical systems) does not guarantee the absence
of faults [20, 21].

Mutation testing is today the state-of-the-art technique for assessing the fault-detection capacity
of a test suite [22, 23]. By deliberately injecting faults (called mutants) into the production
code, and counting how many of them are killed by the test suite, mutation testing has been
shown to outperform traditional code coverage approaches. Case studies with safety-critical
systems demonstrate that mutation testing could be effective where traditional code coverage
analysis and manual inspections fail [33, 34]. Furthermore, Google reports that mutation testing
both can provide insight into poorly tested parts of the system, and also reveal design prob-
lems with modules that are difficult to test, i.e. mutation testing can identify candidates for
refactoring [35].

Still, mutation testing is rarely adopted in industry practice [77]. One of the reasons is that
mutation testing traditionally is computationally expensive, as the code base must be compiled
and tested separately for each mutant [22]. Algorithm B.2 shows the fundamental steps of
mutation testing. As a prerequisite for mutation testing, referred to as the pre-phase, the software
system needs to build without errors, and all software test cases should execute successfully.
Subsequently, the two main phases are executed: (A) the mutant generation phase and (B)
the mutant execution phase. In phase A, mutants are generated for all source code files. In
phase B, test cases for each mutant are executed and the result (whether or not the mutant was
killed) is saved. As a final step, the post-phase, all results are collected and the final report is
created.

B.2.2 Mutation Testing Optimisations
A lot of research is devoted to optimising the mutation testing process, summarised under the
vision - do fewer, do smarter, and do faster [42].

The do fewer approaches minimise the execution time by reducing the total number of mutants
to execute. Such an optimisation can be implemented by generating fewer mutants on line 9
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Algorithm B.2 Pseudocode Mutation Testing

1: function mutationTesting(srcFolder src)
2: . Pre: verify build and if all tests succeed
3: if initialBuildAndTests() 6= True then
4: return
5:
6: . A: generate mutants
7: mutants← []
8: for all srcFile f ∈ src do
9: fMutants← generateMutants(srcFile f)

10: mutants← mutants+ fMutants

11:
12: . B: execute mutants
13: for all mutant m ∈ mutants do
14: result← executeMutant(mutant m)
15: storeResult(result, mutant m)
16:
17: . Post: process results
18: processResults()

in Algorithm B.2 or by selecting a subset of all mutants on line 13. The fewer mutants that
are executed, the more information will be lost. Balancing time reduction versus information
loss is key. There are different ways to choose which mutants will be executed, varying in their
effectiveness compared to the full set of mutants [22].

Do smarter approaches attempt to minimise the execution time by retaining state information
between runs, e.g. split-stream mutation testing [47]. Another example is test prioritisation,
which gives priority to the test cases with the highest likelihood of failure. These optimisations
would be implemented on line 14 in Algorithm B.2.

Lastly, do faster approaches try to minimise the execution time of each individual mutant.
One example is using a compiler integrated technique, where the project is compiled only once
instead of for each mutant [44]. These optimisations would also be implemented on line 14 in
Algorithm B.2.

Currently, optimisation techniques with large speedups sacrifice accuracy [22, 23]. Thus when
evaluating mutation optimisation techniques, the trade-off between speed-up and accuracy must
be quantified.
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B.3 Goal-oriented Mutation Testing
Mutation testing and mutation testing optimisations have focused on detecting the overall quality
of the test suite as fast as possible. We, however, propose a more focused approach to mutation
testing, where only the test cases that actually test a method are considered.

B.3.1 Motivation
Finding the root cause of a fault is not an easy task, an entire field of study is dedicated specifically
to this problem. One solution is spectrum-based fault localisation. It tries to locate the faulty
component by cross referencing the test cases which detect the fault and which components
are used in those test cases. One of the most recent advances uses a new metric called DDU
(Density-Diversity-Uniqueness) to assess the diagnostic ability of a test suite [84]. The authors
state that “[t]he metric, tries to emulate the properties of calculating per-test coverage entropy,
to ensure accurate diagnosability. Ideal diagnostic ability can be proved to exist when a suite
reaches maximum entropy ... DDU focuses on three particular properties of entropy by ensuring
that a) test cases are diverse; b) there are no ambiguous components; c) there is a proportional
number of test cases of distinct granularity; while still ensuring tractability.” They observed a
statistically significant increase in diagnostic performance of about 34% when locating faults by
optimising DDU compared to branch-coverage.

In essence, this avoids the eager test code smell [85], i.e. testing too many methods of an object
in a single test case. To increase the diagnosability of the test cases, this and other forms of test
smells should be avoided [85]. From this we can conclude that it is best to test a method f in a
test case that is specifically designed to test f and not in a test case that just so happens to call
the method f in one of its routines.

If method f would be faulty, then testF is responsible to detect this. If f calls methods a, b, and
c, then testA, testB, and testC are responsible for detecting faults in their respective methods.
Therefore, testF is not required to detect a fault if the fault is inside method a, b, or c. We thus
argue that given a faulty method f , it should suffice to only execute those test cases which are
responsible for testing the method f . Finding which test cases are responsible to test a method
can be achieved using focal methods [83].

B.3.2 Focal Methods
Method invocations within a test case play different roles in the test. A majority of them are
ancillary to a few ones that are intended to be the actual (or focal) methods under test. More
particularly, unit test cases are commonly structured in three logical parts: setup, execution,
and oracle. The setup part instantiates the class under test, and includes any dependencies on
other objects that the unit under test will use. This part contains initial method invocations
that bring the object under test into a state required for testing. The execution part stimulates
the object under test via a method invocation, i.e., the focal method [83, 86] in the test case.
This action is then checked with a series of inspector and assert statements in the oracle part
that controls the side-effects of the focal invocation to determine whether the expected outcome
is obtained.

Algorithm B.3 represents a unit test case of a savings account where the intent is to test the
withdraw method. For this, an account to test the withdraw method must exist. Thus, an
account is created on line 3 (in Algorithm B.3). To deposit or withdraw money to/from an
account, the user must first authenticate himself (line 4). To make sure that the account has
money to withdraw, a deposit must be made (line 5). If the savings account has a sufficient
amount of money, the withdraw method will withdraw the money from the account (line 7), and
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the remaining amount of money in the savings account should be reduced. The latter is verified
using the assert statement on line 11.

In the example, the intent clearly is to test the withdraw method. This method is the focal method
as it is the last method that updates the internal state of the account object. The expected change
is then evaluated in the oracle part by observing the result of the focal method (line 10), as well
with the help of the getBalance method which only inspects the current balance.

Algorithm B.3 Exemplary Unit Test Case for Money Withdrawal
1: function testWithdraw
2: . Setup: setup environment for testing
3: account←createAccount(account, auth)
4: account.authenticate(auth)
5: account.deposit(10)
6: . Execution: execute the focal method
7: success← account.withdraw(6)
8: . Oracle: verify results of the method
9: balance← account.getBalance()

10: assertTrue(success)
11: assertEqual(balance, 4)

Therefore, focal methods represent the core of a test scenario inside a unit test case. Their
main purpose is to affect an object’s state that is then checked by other inspector methods
whose purpose is ancillary. A tool to detect focal methods exists, and has been recently used for
extracting API usage examples from unit test cases [86].

B.3.3 Limiting the Test Scope

Under the premise that it is the responsibility of the (few) test cases that test a focal method f
to catch all faults in the method f , we can assume that it suffices to limit the test scope to these
selected test cases when we are looking for faults in method f . We assume even if we exclude
those test cases that only happen to call a method f in one of its routines, there ought to be a
simpler test case which tests the method f as a focal method that ought to also reveal that the
method is faulty as that test case bears the responsibility to test the method and not the more
complex test case.

Applied to mutation testing, this means that if a mutant is located in method f , we only need
to execute these (few) test cases that test the focal method f .

It is possible that some test cases that are designed to test a particular method do not kill a
mutant while the complete test suite can. We can define the quality of the individual test cases
by investigating how many of the mutants that are located in a method are killed by the test
cases that are designed to test the particular method. This quality score can be calculated by
dividing the number of mutants killed by this technique with the total number of mutants located
in the focal methods.
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Summary. We propose a more straightforward approach to mutation
optimisation that incorporates the diagnostic capabilities of test suites.
By only executing the test cases which actually are meant to test the
method f , i.e. the focal method, we hope to drastically reduce the
number of test cases needed for mutants located in method f , reducing
the execution time, while retaining the fault detection capabilities of the
test suite.

B.4 Case Study
In this section, we explain our case setup, why and how we want to investigate our research
questions, explain our gathered results, and answer our research questions accordingly.

B.4.1 Setup
To evaluate our proof-of-concept, we generated all mutants of the Apache Ant project (version
1.9.111) using LittleDarwin2 (version as of May 3 20183). Project specific details4 about Ant can
be found in Table B.1. We executed the complete test suite for each mutant and stored all of the
generated reports. This allowed us to inspect which of the test cases killed which mutants. While
a tool exists to automatically detect the focal methods [83, 86], we will not use the tool for our
proof-of-concept study, as we want our results to be independent of the tool, and to eliminate
any possible errors made by the tool. As we manually needed to investigate for each test case
whether the method containing the mutant is a focal method, we only examined 423 mutants.
We compare our proof-of-concept against a normal mutation execution where all test cases are
considered and against a mutation execution where only all the test cases of the class from which
the method that contains the mutant are considered.

We point out that we encountered some intermittent faults in the test suite. Since mutation
analysis needs a passing test suite to start with, we omitted the failing test cases from our
analysis. The test cases in question are located in the “ant.AntClassLoaderTest” class: test-
CodeSource, testGetPackage, testSignedJar, and in the “ant.taskdefs.optional.XsltTest” class:
testXMLWithEntitiesInNon-AsciiPath. The error in question is a java.nio.file.InvalidPathExcept-
ion: “Malformed input or input contains un-mappable characters” where the path includes “ãnt”
instead of “ant”.

Table B.1: Details Ant Project

Commits 14,204
Contributors 98
LOC 229,019
Test Cases 1,777
Estimated amount of effort 59 years5

First commit January 2000
Mutant Generated 16,354

RQ1: To what extent, using focal methods, can we identify the right mutants for a test case and
vice versa?

1https://ant.apache.org/srcdownload.cgi
2https://github.com/aliparsai/LittleDarwin
3commit id: 976ae18f6535d11bf7f66e8985fa03040c419156
4Gathered data and data from https://www.openhub.net/p/ant
5According to the COCOMO model
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Motivation. Given the fact that we assign the responsibility to detect all possible faults in a
method to a few test cases, focal methods will not detect all mutants detected by the full test suite.
This can have multiple causes: a test case can be incomplete (not fulfilling its responsibilities),
a test case can be missing, or the focal method approach did not establish the traceability link
at method level between production code and test code.

Approach. We count the number of mutants killed by the entire test suite and we count the
number of mutants killed by the reduced test suite. The difference between them is the number
of mutants the latter method missed and may be considered as false negatives. However, a
deeper analysis is required here as they may also indicate poorly designed test cases suffering
from the eager test code smell [85]. Whether they are killed is up to the quality of the test cases
in question as discussed in Section B.3.3. The main goal is to assess for how many mutants we
can find test cases with focal methods that contain these mutants.

RQ2: How much speed-up is gained by using focal methods for mutation testing?

Motivation. If a mutant is detectable by a test case, then ideally that should be the only test
case to be executed. If the test suite cannot detect the mutant then it is pointless to run any
tests for it. Reducing the scope of the test suite ensures that when the mutant is not detectable,
fewer resources are wasted on the mutant. Furthermore, the fewer test cases are considered, the
earlier the test case that detects the mutant is executed and the faster the mutation testing tool
becomes.

Approach. For any mutant, we count the number of test cases for which the method that
contains the mutant occurs as a focal method. Naturally, for the full test suite based mutation
execution, all test cases are considered, and for the class based mutation execution, all test cases
from that class are considered. We also count the amount of time each test case takes until the
first test case that detects the mutant, this for all three mutation testing techniques.

B.4.2 Results

Table B.2: Results Focal Method Mutation Testing

Ant Class Technique
Focal

Mutants
Detected

False
Nega-
tives

AVG
Tests

Consid-
ered

Run Time Speed-up

Class-
Loader

Full Test Suite 11 / 20 0 1,777.0 3,113.238 s N.A.
Class Based 10 / 20 1 9.0 9.690 s 321.3x
Focal Methods 9 / 20 2 1.8 3.082 s 1,010.1x

Default-
Logger

Full Test Suite 4 / 4 0 1,777.0 6.287 s N.A.
Class Based 4 / 4 0 1.0 0.010 s 628.7x
Focal Methods 4 / 4 0 1.0 0.010 s 628.7x

Directory-
Scanner

Full Test Suite 15 / 17 0 1,777.0 785.979 s N.A.
Class Based 11 / 17 4 29.0 7.221 s 108.8x
Focal Methods 11 / 17 4 24.7 4.486 s 175.2x

Intro-
spection-
Helper

Full Test Suite 14 / 14 0 1,777.0 459.627 s N.A.
Class Based 11 / 14 3 14.0 0.433 s 1,061.5x
Focal Methods 11 / 14 3 1.1 0.034 s 13,518.4x

Total
Full Test Suite 44 / 55 0 1,777 4,365.131 s N.A.
Class Based 36 / 55 8 15.9 17.354 s 251.5x
Focal Methods 35 / 55 9 8.6 7.612 s 573.5x
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Table B.2 indicates how many mutants we found to be located in methods which we detected
as focal methods. It also indicates how many of the mutants were detected by the test suite.
The false negatives indicate mutants that are not killed due to the limited number of test cases
considered by the used techniques, but that would have been killed by the full test suite. AVG
tests considered indicates how many test cases the technique can execute (on average) to detect
the mutants. Run time indicates the time needed to execute all mutants (either until the mutant
is detected or all considered test cases are executed) and finally, speed-up indicates how much
faster the technique is compared to running the complete test suite.

The full test suite technique indicates a normal mutation testing technique where the entire test
suite is considered to detect the mutant. The class based technique indicates a mutation testing
technique where only the tests of the class in which the mutant is located is considered to detect
the mutant. We included this to give our focal method approach some perspective. Table B.2
contains detailed information on the gathered test classes and a global overview.

RQ1: To what extent, using focal methods, can we identify the right mutants
for a test case and vice versa?

In total, we examined the first 423 mutants out of 16,354. For 55 of them (13%), we detected
test cases for which the methods containing these mutants are identified as focal methods (see
Table B.2). Currently, the 368 mutants which are not found in test cases with focal methods are
due to missing tests. This low recall rate is due to the way private methods are tested. In our
anecdotal experience, most developers test private methods indirectly by calling public methods
which act upon them. However, the current definition of focal methods is able to identify private
methods as focal methods only when such methods are executed more directly, e.g. using Java
reflections6. In future, we plan to extend the requirements of focal methods to allow indirect
private methods to become focal methods.

Of the 55 mutants located in focal methods, we see that the focal method based approach detects
fewer mutants than the class based approach, and thus has more false negatives. The class
based and focal method based technique detect respectively 82% and 80% of the mutants the full
mutation testing technique detects. This is due to incomplete test cases. While some of these
mutants are detected by the test suite, they are not detected by the test cases that have the
responsibility to detect them. Therefore, the quality of the individual test cases in which the
detected focal methods are located can be said to be 80%.

The focal method approach benefits the most when there is an elaborate test suite where all
methods are individually tested. Test suites which test at a higher level than method level,
i.e. procedures and integration tests will benefit less from this technique. The extend of this
impact, and the possibility to adapt focal methods to cope with procedure tests will need to be
investigated in a future work.

RQ2: How much speed-up is gained by using focal methods for mutation test-
ing?

For the mutants located in focal methods, we see that the average amount of test cases con-
sidered for the mutants is drastically reduced, both for the class based as the focal methods
based approach: 0.9% and 0.5%, respectively. On average, the focal methods based approach
considers half of the number of tests the class based approach considers. However, this highly
depends on the number of tests for the class. The more tests per class, the faster the focal
methods based approach can be compared to the class based approach (see AntClassLoader and
IntrospectionHelper in Table B.2).

6https://docs.oracle.com/javase/tutorial/reflect/index.html
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We see that the total run time of these mutants is drastically reduced as well, both for the class
based as the focal methods based approach: respectively 0.4% and 0.2%.

There are two ways to look at these speed-ups, on the one hand, we can say that this currently
only impacts 13% of the investigated mutants. Therefore, the speed-up considering all mutants
is currently only 1.15x. On the other hand, we can say that for the methods in which 87% of the
mutants are located, the test cases that have the responsibility to detect all faults in them are
missing.

The current definition of focal method requires test cases to directly call a method for it to be
considered as a possible focal method. In our anecdotal experience, most developers test private
methods indirectly by calling public methods which act upon them. Therefore, we plan to extend
the definition of focal methods to allow indirect private methods to become focal methods as
well. This will increase the number of detected mutants and provides a drastic speed-up.�

�
�
�

⇒ Focal methods can be used as a viable alternative to drastically reduce
the test scope and run time of mutation testing, but improvements are
needed to better cope with private methods.

B.5 Related Work
The RIPR model (Reachability, Infection, Propagation, Revealability) [87] states that in order to
reveal a fault, a test case must a) reach the faulty statement (Reachability), b) cause the program
state to become faulty (Infection), c) propagate the fault to the program output (Propagation)
and d) cause a failure, i.e. the faulty state is asserted by the test case to its intended state
(Revealability).

Three different kinds of mutation testing can be linked to this model: weak, firm, and strong
mutation testing. For weak mutation testing, only the first two conditions of the RIPR model
need to be satisfied. This means that a mutant is considered detected from the moment the
program state of the original program and the mutated program differ. With firm mutation
testing, an extension of weak mutation testing, the user can decide which component of the
program state should differ from the original for a mutant to be considered as detected. Lastly,
for strong mutation testing, all conditions of the RIPR model need to be satisfied. This means
that a mutant must influence the observable output of the program (the test oracle), and not
just the program state or a component in it.

Empirical evidence [40] has shown that strong mutation testing is more powerful than weak and
firm mutation testing. In essence, to detect a mutant, at least one test case of the entire test
suite should fail. For faster mutation testing, one can choose to stop executing test cases as soon
as a test case kills the mutant. Ideally, we only execute those test cases for which all conditions
of the RIPR model are satisfied. Test cases that do not satisfy these conditions can be excluded
for performance optimisations. In the next section, we list existing techniques that consider the
RIPR model to optimise for strong mutation testing.

B.5.1 Existing Techniques
Since mutation testing is such a computationally expensive technique, many researchers have
sought mitigation strategies [22]. Many approaches originate in work on test suite minimisation, a
set-cover problem that has been shown to be NP-complete – but several approximation solutions
have been proposed [52]. As an example, Jeffrey and Gupta presented a test suite reduction
technique with selective redundancy, a slightly more conservative approach (i.e. less reduction)
that retains more of the fault detection effectiveness of the original test suite compared to previous
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work. Nevertheless, test suite reduction always requires a trade-off between execution time and
fault detection effectiveness [53].

Several regression test selection methods have been proposed to speed up mutation testing,
aiming at restricting test case execution to those that target the code changes. Regression test
selection methods are either dynamic (i.e. using execution information) or static (i.e. based
entirely on source code analysis). Chen and Zhang performed an extensive empirical evaluation
of several state-of-the-art regression test selection methods for mutation testing on 20 GitHub
projects [54], and conclude that the techniques are generally feasible on a file level but not for
finer-grained analysis. Also, the methods studied are intended for evolving systems and not for
a single version of source code.

Zhang et al. focused on speedup of mutation testing that works for a single source code ver-
sion [45]. They developed FaMT (Faster Mutation Testing) as an approach to prioritise and
reduce the number of test cases to execute for each mutant. Inspired by research on regression
test prioritisation, FaMT reorders the test cases in a way to kill the mutant earlier. Subsequently,
inspired by previous work on test suite reduction, FaMT runs only the subset of test cases with a
high likelihood to kill the mutant. Thus, FaMT might under-approximate the mutation score –
some of the skipped test cases might indeed have killed the mutant if they were executed.

There are also other approaches to exclude test cases from a test suite targeting a specific mutant.
Bardin et al. proposed program verification to exclude test cases that cannot reach the mutant
and/or that cannot infect the program state [55]. Other authors have explored using (static)
symbolic execution techniques to identify whether a test case can detect mutants [56, 57]. An
example of a tool implementing this approach is PIT [58], that executes only those test cases
that have a chance to kill the mutant, i.e. the test cases that execute the faulty statement (thus
fulfilling Reachability).

B.5.2 Comparison
As seen, there already exist techniques to exclude test cases from a test suite to speed up mutation
testing. The ultimate goal for these techniques, however, is to detect all the mutants that the
entire test suite can detect with as few test cases as possible. In Section B.3.1 we have argued the
need for mutation testing to focus on detecting the quality of each method and its corresponding
test cases instead of the overall quality of the test suite. Focal methods meet our needs, as their
goal is to test the methods with the test cases that are specifically designed to test them, thus
validating the quality of each test case individually.

Furthermore, focal methods deviate from the RIPR model as we will often exclude test cases
that reach the faulty statement, test cases that are infected by the faulty statement, test cases
that propagate the faulty statement to the program output and/or test cases that would cause
a failure due to the faulty statement, but that do not have the responsibility of detecting the
injected fault.

B.6 Threats to Validity
As with all empirical research, we identify those factors that may jeopardise the validity of our
results and the actions we took to reduce or alleviate the risk. Consistent with the guidelines for
case studies research (see [81, 82]), we organise them into four categories.

Construct validity: did we measure what was intended? In essence, we wanted to know
whether focal methods could be used to reduce the test scope for mutation testing to drastically
speed up mutation testing. Therefore, we investigated a part of the Ant project and verified that
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for the mutants located in methods we detected as focal methods in some test cases, there was
an average speedup of 573.5x. However, we only found test cases with focal methods for 13%
(55/423) of the investigated mutants. This low recall rate is due to the fact that this leaves out
most private methods, as developers mostly test these indirectly by calling public methods. In
our next version, we will extend the requirements of focal methods to include indirect private
methods. This will strongly influence our current results. Using focal methods, only 35 mutants
out of the 44 detectable mutants were detected. However, the 9 mutants that are detected
using full mutation testing are detected in places that do not have the responsibility to detect
them. These mutants are detected because they eventually altered the program state so that the
fault showed up in another place. While the test cases in which these faults showed up do not
necessarily have a test code smell like the eager tests code smell, they do test methods that are
not the intent of the test case. New, dedicated test cases that have the responsibility to detect
them should be written or existing ones should be expanded. It therefore does not matter that
focal methods do not detect the same number of mutants as the full mutation testing technique
does, as this highlights the quality of the underlying test suite.

Internal validity: were there unknown factors that might have affected the outcome of the
analyses? As we omitted the results from the test cases with intermittent faults, it is possible
that we falsely identified some mutants as undetected while the omitted test could have detected
it. Furthermore, as we manually analysed if the method where the mutant is located occurs
as a focal method in some test cases, these results are subject to human error. We, however,
believe that our obtained results show the viability of focal methods to reduce the test scope for
mutation testing and drastically speed up mutation testing.

External validity: to what extent is it possible to generalise the findings? The speedup of this
approach comes from validating only a few test cases for each mutant (for which focal methods
are found). The larger the software project and the more test cases the project has, the more
beneficial this technique becomes, as the use of focal methods will always limit the considered
amount of test cases to a handful. However, when the test suite has a lot of test code smells [85],
this might negatively impact the speedup of this approach. E.g. with the eager test code smell,
many methods are tested in a single test case. With this code smell, some methods are only tested
indirectly, preventing them from becoming focal methods and thus preventing them to leverage
the speedup of our proposed technique. Previous work that mines API usage examples from unit
test cases [86], alleviated this issue by identifying focal methods within each sub-scenario of a
unit test case.

In general, this technique performs better the less test code smells the test suite has. When a
project has a lot of test code smells, it might be better to first focus on removing them for better
maintainability and diagnosability of the test suite [85].

Reliability: is the result dependent on the tools? We explicitly chose to gather these results
manually instead of using the tool to detect the focal methods [83, 86] to eliminate any possible
inaccuracies of the tool. This allowed us to investigate the feasibility of this approach without
relying on the tool to make the results reliable. The only downside is that by doing so, we
limited the amount of investigated mutants, increasing the odds of skewed results. However, we
believe that the results indicate that the use of focal methods is a viable approach for speeding
up mutation testing.
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B.7 Conclusion
In this paper, we argued the need for mutation testing to focus on detecting the quality of each
method and its corresponding test cases instead of the overall quality of the test suite. For this,
a traceability link at method level between production code and test code must be established,
which we achieved by using focal methods. This allows us to identify which test cases actually
test which methods and vice versa.

We argued that for better diagnosability and maintainability of the test suite, it is best to test a
method f in a test case that is specifically designed to test f and not in a test case that just so
happens to call the method f in one of its routines. Using focal methods, we can focus on those
test cases that are designed to test specific methods and ensure their quality. This will increase
the quality of each method and its corresponding test cases and not just the overall ability of
the test suite to detect defects.

We demonstrated that focal methods can be used to drastically speed up mutation testing. In our
limited testing of the Ant project, we observed an average speedup of 573.5x for the mutants,
located in methods that we detected as focal methods in some test cases, without sacrificing
accuracy. In our experiments, we noted that the test cases with the focal methods killed 80%
of the mutants killed by the entire test suite. The remaining 20% could be detected by test
cases that are not intended to test the method in which these faults where injected. New, and
dedicated test cases that have the responsibility to detect them should be written or existing
ones should be expanded. It therefore does not matter that focal methods do not detect the
same number of mutants as the full mutation testing technique, as this highlights the quality of
the underlying test suite – indeed the purpose of mutation testing.

Despite these improvements, there are still opportunities for further optimisation. Currently, we
did not find test cases with focal methods for 368 mutants out of the 423 investigated mutants.
This low recall rate is due to the fact that the technique leaves out most private methods, as
developers mostly test these indirectly by calling public methods. We plan to adapt the notion
of focal methods such that it incorporates indirect private method calls as well. Then, a larger
percentage of the executed mutants will be drastically sped up.
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Abstract
Mutation testing is the state-of-the-art technique for assessing the fault detection capacity
of a test suite. Unfortunately, it is seldom applied in practice because it is computation-
ally expensive. In this paper we explore the use of fine-grained traceability links at the
method level (named focal methods), to drastically reduce the execution time of mutation
testing, by only executing the tests relevant to each mutant. In previous work for Java
programs we achieve drastic speedups, in the range of 530x and more. In this paper, we
lay the foundation for identifying such focal methods under test in C/C++ programs by
relying on the LLVM compiler infrastructure. A preliminary investigation on a 3.5 kLOC
C++ project illustrates that we can correctly identify the focal method under test for 47
out of 61 tests,
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C.1 Introduction
Software testing is the dominant method for quality assurance and control in software engineer-
ing [10, 11], established as a disciplined approach already in the late 1970’s. Originally, software
testing was defined as “executing a program with the intent of finding an error” [12]. In the last
decade, however, the objective of software testing has shifted considerably with the advent of
continuous integration [13]. Many software test cases are now fully automated, and serve as
quality gates to safeguard against programming faults.

Test automation is a growing phenomenon in industry, but a fundamental question remains:
How trustworthy are these automated test cases? Mutation testing is currently the state-of-
the-art technique for assessing the fault-detection capacity of a test suite [22]. The technique
systematically injects faults into the system under test and analyses how many of them are
killed by the test suite. In the academic community, mutation testing is acknowledged as the
most promising technique for automated assessment of the strength of a test suite [23]. One
of the major impediments to industrial adoption of mutation testing is the computational costs
involved: each individual mutant must be deployed and tested separately [22].

For the greatest chance of detecting a mutant, the entire test suite is executed for each and every
mutant [40]. As this consumes enormous resources, several techniques to exclude test cases from
the test suite for an individual mutant have been proposed. First and foremost, test prioritisation
reorders the test cases to first execute the test with the highest chance to kill the mutants [45].
Second, program verification excludes test cases which cannot reach the mutant and/or which
cannot infect the program state [55]. Third, (static) symbolic execution techniques identify
whether a test case is capable of killing the mutant [56, 57]. This paper explores an alternative
technique: fine-grained traceability links via focal methods [83].

By using focal methods, we can establish a traceability link at method level between production
code and test code. This allows us to identify which test cases actually test which methods and
vice versa, hence drastically reduce the scope of the mutation analysis to a fraction of the entire
test suite. We refer to this as goal-oriented mutation testing, and argue that the approach could
be used to selectively target the parts of a system where mutation testing would have the largest
return on investment.

In previous work, we estimated on an open source project (Apache Ant) that such goal-oriented
mutation testing allows for drastic speedups, in the range of 530x and more [2]. In this paper we
lay the foundation for identifying such focal methods under test in C/C++ programs by relying
on the LLVM intermediate code as emitted by the CLANG compiler infrastructure.

C.2 Focal Methods under Test
Method invocations within a test case play different roles in the test. A majority of them are
ancillary to a few ones that are intended to be the actual (or focal) methods under test. More
particularly, unit test cases are commonly structured in three logical parts: setup, execution,
and oracle. The setup part instantiates the class under test, and includes any dependencies on
other objects that the unit under test will use. This part contains initial method invocations
that bring the object under test into a state required for testing. The execution part stimulates
the object under test via a method invocation, i.e., the focal method of the test case [83, 86].
This action is then checked with a series of inspector and assert statements in the oracle part
that controls the side-effects of the focal invocation to determine whether the expected outcome
is obtained.

Algorithm C.4 represents a unit test case of a savings account where the intent is to test the
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withdraw method. For this, an account to test the withdraw method must exist. Thus, an
account is created on line 3 (in Algorithm C.4). To deposit or withdraw money to/from an
account, the user must first authenticate himself (line 4). To make sure that the account has
money to withdraw, a deposit must be made (line 5). If the savings account has a sufficient
amount of money, the withdraw method will withdraw the money from the account (line 7), and
the remaining amount of money in the savings account should be reduced. The latter is verified
using the assert statement on line 11.

In the example, the intent clearly is to test the withdraw method. This method is the focal method
as it is the last method that updates the internal state of the account object. The expected change
is then evaluated in the oracle part by observing the result of the focal method (line 10), as well
with the help of the getBalance method which only inspects the current balance.

Algorithm C.4 Exemplary Unit Test Case for Money Withdrawal
1: function testWithdraw
2: . Setup: setup environment for testing
3: account←createAccount(account, auth)
4: account.authenticate(auth)
5: account.deposit(10)
6: . Execution: execute the focal method
7: success← account.withdraw(6)
8: . Oracle: verify results of the method
9: balance← account.getBalance()

10: assertTrue(success)
11: assertEqual(balance, 4)

Therefore, focal methods represent the core of a test scenario inside a unit test case. Their main
purpose is to affect an object’s state that is then checked by other inspector methods whose
purpose is ancillary.

C.2.1 Limiting Test Scope for Mutation Testing
To adopt the focal method under test heuristic for mutation testing, we assume that a given test
method does not suffer from the eager test code smell [85]. This is good practice anyway as it
increases the diagnosability of the test cases. When this assumption holds, a test method testF
is specifically designed to test a method f and not a series of other methods (a, b, and c). If
method f would be faulty, then testF is responsible to detect this. If f calls methods a, b, and
c, then testA, testB, and testC are responsible for detecting faults in their respective methods.
Therefore, testF is not required to detect a fault if the fault is inside method a, b, or c. We thus
argue that given a faulty method f , it should suffice to only execute those test cases which are
responsible for testing the method f .

Under the premise that it is the responsibility of the (few) test cases that test a focal method f
to catch all faults in the method f , we can assume that it suffices to limit the test scope to these
selected test cases when we are looking for faults in method f . We assume even if we exclude
those test cases that only happen to call a method f in one of its routines, there ought to be a
simpler test case which tests the method f as a focal method that ought to also reveal that the
method is faulty as that test case bears the responsibility to test the method and not the more
complex test case.

Applied to mutation testing, this means that if a mutant is located in method f , we only need
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to execute these (few) test cases that test the focal method under test f .�

�

�

�

Summary. We propose a more straightforward approach to mutation
optimisation that incorporates the diagnostic capabilities of test suites.
By only executing the test cases which actually are meant to test the
method f , i.e. the focal method, we hope to drastically reduce the
number of test cases needed for mutants located in method f , reducing
the execution time, while retaining the fault detection capabilities of the
test suite.

C.3 The LLVM Compiler Infrastructure
The original tool for identifying the focal method under test was developed for Java programs [83,
86]. No such tool exists for C/C++ hence we set out to investigate whether we can adopt the
LLVM Compiler Infrastructure to expose the test-to-method relationship. LLVM is a set of
compiler and toolchain technologies which is generally used to provide an intermediary step in
a complete compiler environment. The idea is that any high level language can be converted
to an intermediary language. This intermediary language will then be further optimised using
an aggressive multi-stage optimisation provided within LLVM to then be converted to machine-
dependent assembly language code [88].

Specifically, for this research we focus on the intermediary language called LLVM IR, where
IR stands for Intermediary Representation. This is a low-level programming language, similar
to assembly, that is easily understandable and readable. Most importantly for our analysis, the
LLVM IR has explicit instructions marking the reading and writing a given variable. This implies
that it is easy to distinguish getter functions (which only read the variable, hence are seldom focal
methods under test) from mutator functions (which write to a given variable, hence are often good
candidates for serving as a focal method under test). Secondly, LLVM IR disambiguate higher
level programming constructs like function overloading. Indeed, many high level programming
languages have the concept of function overloading, where the same function name can have
different signatures for the same function name. It is not always apparent which overload of
a given function will be used and it is therefore very hard to properly disambiguate what will
happen. This in contrast to LLVM IR where every function name is unique, which is a clear
benefit when establishing fine-grained test-to-method relationship.

LLVM obviously also comes with some disadvantages. First of all, the LLVM files can only be
linked with other LLVM files, which on its own implies that we will need the source of every
library used within the project. Secondly, LLVM IR suffers from a slight loss in context. Some
high-level code constructs are not present in LLVM IR code as these are not required for the
optimisation for which LLVM IR is intended. One example –importantly for our analysis– is the
loss of public or private distinction.
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C.4 Approach

Identify Tests Identify Assertions

Test Signature

LLVM IR

Assertion Signature

Identify Focal
Methods

Extract Asserties
(Variable Under Test)

Filterclang-query Extract Access
Modifiers

Conformance Filter

Figure C.1: Schematic Representation to Identify Focal Methods

The following section explains the approach used in the process of identifying the focal methods.
The approach starts from an LLVM IR representation of the project, and results in a mapping
of test methods to their corresponding focal methods under test. This approach is represented
within Figure C.1.

C.4.1 Extracting Access Modifiers
As LLVM IR has no information about the access modifiers, we need to extract it beforehand.
For this, we use the “clang-query” tool. For each file we store all its methods together with its
acces modifier. We use this map to identify whether a method is public or private and how
we need to act on it.

C.4.2 Identifying Tests
There are three major types of methods we consider for this analysis, test, assertion and source
methods. A test method is distinguished from a source method by the naming convention used
by the testing framework, which can simply be passed as an argument by the user. This is a
necessary language dependent link as there is no fail proof way to distinguish test functions from
tested functions.

Once the test methods are distinguished from all other methods, we enumerate all test methods.
For each method we extract all relevant statements, in particular including all function invo-
cations (where overloaded functions are disambiguated) and all instructions related to memory
modifications.

C.4.3 Identify Assertions
To differentiate between assertions and source methods, we require a secondary input from the
user, being the naming convention for assertions. These are normally implied by the testing
framework used. This is usually a common prefix given to all assertion functions, eg. assert
<assertion type> or use the class in which all assertions are defined, such as AssertionResult for
the GTest framework.

C.4.4 Extract Asserties (Variable Under Test)
Before we can identify the focal methods for each test, we need to identify the variable under test
(VUT). These are the values that are being verified in te assert statements, which we can extract
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these from the LLVM IR. Often these assert statements compare the VUT against a constant.
Then it is easy to know which on of the two is our actual VUT. Other times, it is less obvious,
as it evaluates against a variable from another class, In the latter case, we simply track both
variables.

C.4.5 Identify Focal Methods
We identify the focal method by tracking the VUT throughout the invoked methods. During
this process, any modification of the memory of the tracked variable will be considered a mutator
function, hence a candidate focal method under test. It is now that the differentiation between
public and private methods becomes important. We know that all candidate focal methods
within the scope of the test suite are public. If one of these methods directly changes the VUT,
then we label that method as a mutator. If however said method does not directly changes
the VUT, but only invokes one or more public methods, then we do not analyse these public
methods, as each public method should be tested by its own test according to the “no eager
tests” assumption. No mutator is identified in this scenario. If however the method invokes one
or more private methods, then we need to analyse these private method, as it can become the
focal method, as in principle we cannot call private methods directly. We inspect all private
methods within private methods, but not public methods within private methods, as each public
method should be tested by its own test.

For our analysis to work with libraries for which the source code is not given, we define a
third class of invocations: uncertain. Method invocations labelled uncertain indicate that the
definition of the method is not known due to the absence of the actual implementation. Our
approach resolves this by marking the function as being a potential focal method, but not the
only focal method. The implication for a mutation analysis is that we will have slightly more
tests linked to a mutant than when we would know the accessor modifier of the method.

C.4.6 Filter
Finally, an optional focal method conformance filter can be used. Without a means for filtering,
functions defined within language specific libraries would be considered as being potential focal
methods, which greatly reduces the effectiveness of the tool. For example, in C++, an assignment
of string would be replaced by an assignment function defined within the standard C++ library.
This function will never be the intended function under test, but considering a case where strings
are compared in an assertion, the last function that will be used to assign said string to a variable
will be this string assignment function defined within the std namespace. To prevent this function
from being marked as the focal method, analysis of C++ code would benefit greatly from having
the std namespace filtered from the set of focal methods. In our analysis, we would then still
consider std library functions as functions leading to a mutation, but not as the focal methods
themselves.
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C.5 Proof-of-Concept and Findings
We did a preliminary investigation with our proof-of-concept tool on an extended version1 of the
Stride project (version 1.18.062). The details of which are in Table C.1.

Table C.1: Details Stride Project

Lines of code 3,776,986
Number of functions 54,811
Number of test functions 222

This project was chosen because it is written in a layered manner, where only the most outer
layer is accessible. The classes located on the most outer layer will be responsible for all classes
directly below them, the classes below the outer classes will be responsible for the classes below
those and so on. This structure is interesting, as it implies that test cases testing lower layers
must traverse several other classes before arriving at the actual mutation which we want to test,
making it an ideal candidate for our approach, as the method under test of those tests will be a
private function.

A manual inspection of the test code revealed that of the 222 tests, 77 serve as utility tests, 59 as
i/o tests, 61 as population and generation tests and 25 as scenario tests. We list these in Table
C.2. Note that considering the size of the project, the test size may seem very limited, however,
many of the functionalities part of the project are not testable on their own, due to the design
choices made.

For now, we focused on the population and generation tests, as these adhere to the “no eager
tests” assumption. More importantly, these 61 tests are tests in which the method under test
should be a private function in a lower layer. This selection allows us to more precisely determine
the percentage of focal methods we can correctly identify in case a private method is the method
under test. If we would not make this selection, the majority of the tests would be tests where
the focal method is public. These tests are less interesting for our approach as we already
demonstrated that the approach is capable of detecting the mutations in such instances.

Furthermore, a part of the utility tests were tests in which an inspector method was tested.
Such tests directly tests getters and might not even contain any mutations at all. Our approach
cannot currently identify such tests correctly. We also disregarded scenario tests, as our approach
is specifically intended to identify the method under test in unit tests, as scenario tests often test
a list of methods, rather than one single method. We will have to investigate later whether our
approach can be used for scenario tests.

Table C.2: Test classification Stride project

Utility tests 77
Input/Output tests 59
Population and generation tests 61
Scenario tests 25

For 47 of our 61 tests, we identified the correct focal methods. Of the remaining 14 tests, 8 were
misclassified because they corresponded with “no throw assertion tests”. Such tests only confirm
that no exception is thrown when the object under test is manipulated. For the remaining 6, we

1https://github.com/larsvanroy/stride
2https://github.com/broeckho/stride
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identified the wrong focal method because the variable under test (VUT) where manipulated via
pointers and this was not yet included in our LLVM IR Analysis.

C.5.1 Current Limitations
Library

functions will be labeled as uncertain. This can negatively impact the speedup of a mutation
testing analysis using focal methods.

Inspector test

are currently not supported. We should be able to remedy this by taking into account that when
no mutators are present, the last accessor method of the VUT, i.e. the inspector method should
be considered as the focal method.

No throw assertion tests

are currently not supported as they do not have actual VUTs. We should however be able
to detect these scenarios. We will need to investigate how or which mutants we best link to
them.

Pointer support

in LLVM is something we have not yet implemented into our detection algorithm. Adding this
should allow us to more accurately detect the focal methods.

C.5.2 Future Work
This proof-of-concept illustrates that it is feasible to implement the focal method under test
heuristic on top of the LLVM compiler infrastructure. However, some extensions are needed to
improve the accuracy of the tool. Most importantly, we need to expand the analysis to deal with
assertions and pointers. Next, we need to automatically assess whether a given test case indeed
satisfies the “no eager test” assumption. If we see that the assumption does not hold for a given
test case, we should just revert to full scope mutation analysis. Last but not least, we need to
test the tool on a larger scope of projects to see whether we can achieve similar speed-ups as
what we estimated on Java projects.
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Summary
Mutation testing is the state-of-the-art technique for assessing the fault detection capac-
ity of a test suite. Unfortunately, a full mutation analysis is often prohibitively expensive.
The CppCheck project for instance, demands a build time of 5.8 minutes and a test exe-
cution time of 17 seconds on our desktop computer. An unoptimised mutation analysis,
for 55,000 generated mutants took 11.8 days in total, of which 4.3 days is spent on
(re)compiling the project. In this paper we present a feasibility study, investigating how
a number of optimisation strategies can be implemented based on the Clang front-end.
These optimisation strategies allow to eliminate the compilation and execution overhead
in order to support efficient mutation testing for the C language family. We provide a
proof-of-concept tool that achieves a speedup of between 2x and 30x. We make a detailed
analysis of the speedup induced by the optimisations, elaborate on the lessons learned
and point out avenues for further improvements.
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D.1 Introduction
DevOps (Software Development and IT Operations) is defined by Bass et al. [89] as “a set of
practices intended to reduce the time between committing a change to a system and the change
being placed into normal production, while ensuring high quality” [89]. This allows for frequent
releases to rapidly respond to customer needs. Tesla, for example, uploads new software in its
cars once every month [15]; Amazon pushes new updates to production on average every 11.6
seconds [16]. The enabling factor for the DevOps approach is a series of automated tests which
serve as quality gates, safeguarding against regression faults.

The growing reliance on automated software tests raises a fundamental question: How trustwor-
thy are these automated tests? Today, mutation testing is acknowledged within academic circles
as the most promising technique for assessing the fault-detection capability of a test suite [22, 23].
The technique deliberately injects faults (called mutants) into the production code and counts
how many of them are caught by the test suite. The more mutants the test suite can detect,
the higher its fault-detection capability is – referred to as the mutation coverage or mutation
score.

Case studies with safety-critical systems demonstrate that mutation testing could be effective
where traditional structural coverage analysis and code inspections have failed [33, 34]. Google
on the other hand reports that mutation testing provides insight into poorly tested parts of
the system, but –more importantly– also reveals design problems with components that are
difficult to test, hence must be refactored [35]. In a similar vein, a blog post from a software
engineer at NFluent, comments on integrating Stryker (a mutation tool for .Net programs) in
their development pipeline [36]. There as well, mutation testing revealed weaknesses in the
test suite, but also illustrated that refactoring allowed for simpler test cases which subsequently
increased the mutation score.

Despite the apparent potential, mutation testing is difficult to adopt in industrial settings. One
of the reasons is because the technique —in its basic form— requires a tremendous amount of
computing power. Without optimisations, the entire code base must be compiled and tested
separately for each injected mutant [22]. During one of our experiments with an industrial
code base, we witnessed 48 hours of mutation testing time on a test suite comprising 272 unit
tests and 5,256 lines of test code for a system under test comprising 48,873 lines of production
code [1]. Hence for medium to large test suites, mutation testing without optimisations becomes
prohibitively expensive.

As a consequence, the last decades has devoted a lot of research to optimise the mutation testing
process [23, 52]. One stream of work focuses on parallelisation, either on dedicated hardware [46]
or in the cloud [1]. Another stream of work focuses on incremental approaches, limiting the
mutation analysis to what has been changed since the previous run [43]. A third stream of work
(and the inspiration for what is presented in this paper) focuses on techniques based on program
analysis, for example mutant schemata [44] and split-stream mutation testing [47]. The former
injects all mutants simultaneously, analysing the abstract syntax tree to ensure that the mutated
version actually compiles. The latter forks the test execution from the mutation point via a
combination of static and dynamic program analysis.

Mutation testing shines in systems with high statement coverage because uncaught mutants re-
veal weaknesses in code which is supposedly covered by tests. Safety-critical systems —where
safety standards dictate high statement coverage— are therefore a prime candidate for validat-
ing optimisation strategies. In safety-critical software, C and C++ dominate the technology
stack [37]. Yet this is not represented in the mutation testing community: a systematic liter-
ature review on mutation testing from 2019 reports that less than 25% of the primary studies
target source code from the C language family [23]. This opens up opportunities as the C lan-
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guage family is a mature technology with considerable tool support available. In particular, the
compiler front-end Clang that operates in tandem with the LLVM compiler back-end [90].

This paper presents a feasibility study, investigating to which extent the Clang front-end and
its state-of-the-art program analysis facilities allow to implement existing strategies for muta-
tion optimisation within the C language family. We present a proof-of-concept optimisation
tool, featuring a series of representative optimisation strategies. These optimisation strategies
are:

1. exclude invalid mutants: avoid compilation overhead from mutants that would cause down-
stream compilation errors.

2. exclude unreachable mutants: avoid execution overhead from mutants that are not reached
by the test suite.

3. mutant schemata: where all mutants get injected simultaneously and the project is only
compiled once [44]. At test execution time, the appropriate mutant is selected via a boolean
flag.

4. reachable mutant schemata: an extension of mutant schemata which reduces the test suite
to only those test cases which reach the mutant.

5. split-stream mutation testing : where tests are executed from the mutation point itself, by
forking the process, essentially avoiding redundant executions [47].

We validate the proof-of-concept tool on four open-source C++ libraries and one industrial
component. These cases cover a wide diversity in size, C++ language features used, compilation
times, and test execution times. Hence, they may serve as a representative benchmark to validate
mutation optimisation strategies. To illustrate the potential of Clang-based implementation of
mutation optimisation strategies, we report the overhead induced and the speedup achieved,
both in absolute as well as relative terms. Furthermore, we derive a series of lessons learned on
the benefits and impediments of implementing mutation testing optimisations using the Clang
compiler front-end.

The rest of the paper is structured as follows. In Section D.2, we elaborate on the concept of
mutation testing and list related work. In Section D.3, we describe the design of our proof-of-
concept tool. In Section D.4, we explain how we obtained the speedups induced by the different
optimisation strategies. This naturally leads to Section D.5 where we discuss the results and
Section D.6 where we derive the lessons learned. As with any empirical research validating
proof-of-concept tools, our study is subject to various threats to validity and limitations which
are listed in Section D.7. Finally we draw conclusions in Section D.8.

D.2 Background and Related Work
In this section, we elaborate on the concept of mutation testing, the different optimisation strate-
gies as available in the related work and discuss existing work mutation optimisation based on
the Clang front-end.

D.2.1 Mutation Testing Terminology
For effective testing, software teams need strong tests which maximise the likelihood of exposing
faults [12]. Traditionally, the strength of a test suite is assessed using code coverage, revealing
which statements are poorly tested. However, code coverage has been shown to be a poor indica-
tor of test effectiveness [17, 19]. Stronger coverage criteria, like full MC/DC coverage (Modified
Condition/Decision Coverage, a coverage criterion often mandated by functional safety standards
that target critical software systems, e.g., ISO 26262 and DO-178C) still do not guarantee the
absence of faults [20, 21]. Today, mutation testing (sometimes also named mutation analysis, the
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terms are used interchangeably) is the state-of-the-art technique for assessing the fault-detection
capacity of a test suite [22, 23].

Killed / survived mutants. Mutation testing deliberately injects faults (called mutants) into the
production code and counts how many of them are caught by the test suite. A mutant caught
by the test suite, i.e. at least one test case fails on the mutant, is said to be killed. When all
tests pass, the mutant is said to survive.

Mutation Coverage. A strong test suite should have as few surviving mutants as possible. This
is expressed in a score known as the mutation coverage: the number of mutants killed divided
by the total number of mutants injected. A high mutation coverage implies that most mutants
get killed; 100% is a perfect score as the tests can reveal all small deviations. Mutation coverage
is sometimes referred to as mutation score.

Table D.1: Overview of commonly used mutation operators for C and C++.

Code Short Decription
ROR Relational Operator

Replacement
Replace a single operator with another operator.
The relational operators are <,<=,>,>=,==,! =

AOR Arithmetic Operator
Replacement

Replace a single arithmetic operator with
another operator. The operators are:
+,−, ∗, /,%

LCR Logical Connector Replacement Replace a logical connector with the inverse.
The logical connectors are: ||, &&, |, &

UOI Unary Operator Insertion Insert a single unary operator in expressions.
Example unary operators are: increment (++),
decrement (−−), address (&), indirection (∗),
positive (+), negative (−), . . .

SDL Statement Deletion Selective deletion of code, including removing a
specific function call, or replacing a method
body by void

AMC Access Modifier Change Changes the access level for instance variables
and methods to other access levels. Access levels
are private, protected, public

ISI Super Keyword Insertion (or
Base keyword insertion)

Inserts the scope resolution operator ::
so that a reference to the variable or the method
goes to the overridden instance variable or
method

ICR Integer Constant Replacement Replaces every constant c with a value from the
set {−1, 0, 1,−c, c− 1, c+ 1}\{c}

Mutation Operators. Mutation testing mutates the program under test by artificially injecting a
fault based on a mutation operator. A mutation operator is a source code transformation which
introduces a change into the program under test. Typical examples are replacing a conditional
operator (e.g., >= into <) or an arithmetic operator (e.g., + into −). The first set of mutation
operators was reported in King and Offutt [47]. Later, special purpose mutation operators have
been proposed to exercise errors related to specific language constructs, such as Java null-type
errors [91] or C++11/14 lambda expressions and move semantics [92]. There are more than
100 mutation operators reported in the academic literature and there is no consensus of which
ones are best for a specific language and code base. Therefore mutation testing tools feature a
diverse set of mutation operators which can be configured when performing the mutation analysis.
Table D.1 lists commonly used mutation operators for C and C++ which we will refer to later
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in this paper.

Invalid Mutants. Mutation operators introduce syntactic changes, hence may cause compilation
errors in the process. If we apply the arithmetic mutation operator (AOR) to e.g. “a * b”,
then we get four mutants as shown in Listing D.1. However, the modulo operator (‘%’) will
give an “invalid operands to binary expression” error, as the modulo operator is not
defined for floating point data types. The mutant can thus not be compiled and is considered
invalid.

Another frequently occurring invalid mutant occurs when changing the ‘+’ into a ‘−’ which works
for numbers but does not make sense when applied to the C++ string concatenation operator.
If the compiler cannot compile the mutant for any reason, the mutant is considered invalid and
is not incorporated into the mutation coverage. Preventing the generation of invalid mutants is
one way to optimise the mutation testing process.

Listing D.1: Mutation Example

1 float f(float a, float b) {
2 return a * b; // original code
3 }
4 return a + b; // mutant 1
5 return a - b; // mutant 2
6 return a / b; // mutant 3
7 return a % b; // mutant 4
8 ~~~^~~~Invalid operands to binary expression

Unreachable Mutants. The Reach–Infect–Propagate–Reveal criterion (a.k.a. the RIPR model)
provides a fine-grained framework to assess weaknesses in a test suite which are conveniently
revealed by mutation testing [93]. It states that an effective test should first of all Reach the
fault, then Infect the program state, after which it should Propagate as an observable difference,
and eventually Reveal the presence of a fault. When a mutant is injected in a statement that is
never executed by the test suite, it can never be killed. Therefore, one can optimise the mutation
testing process by explicitly excluding unreachable mutants. To increase its effectiveness, this
should be done on the test case level instead of on the entire test suite.

Equivalent Mutants. Injected mutants can be syntactically different from the original software
system, but semantically identical. These mutants do not modify the meaning of the original
program, and can therefore not be detected by the test suite. Such mutants are called equivalent
mutants. They yield false negatives and decrease the effectiveness of the mutation analysis.
Additionally, they waste developer time, as they need to be manually labelled as equivalent
mutants because they show up as survived mutants, which can never be killed. Consequently, a
big challenge of mutation is handling (and/or eliminating) these equivalent mutants. An overview
of techniques to overcome the equivalent mutant problem has been provided by Madeyski et
al [41]. One of the frequently used techniques is called Trivial Compiler Equivalence (TCE): if
the compiler emits the same low-level code (machine code) then the mutant is guaranteed to be
equivalent.

Timed out Mutants. Some injected mutants cause the test to go into an infinite loop. To prevent
such infinite loops, mutants with an excessively long execution time need to be detected and
stopped. This is often done using a time out, which terminates the test after a predefined period
of time. A mutant which causes such a time-out is considered killed.
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D.2.2 Mutation Testing Optimisations
To explain the time-consuming nature of the mutation testing process, Algorithm D.5 shows the
essential steps of a mutation analysis without any optimisations. The software system needs
to build without errors and all software tests should succeed before mutation testing can even
begin; this is called the pre-phase. Then, the two main phases are executed: (A) the generate
mutants phase and (B) the execute mutants phase. In phase A, mutants are generated for all
source files. In phase B, for each mutant, all tests are executed and the result —whether or not
it was killed— is saved. Finally, all the results are gathered and the final report is created in the
post-phase.

Algorithm D.5 Pseudocode Mutation Testing

1: function mutationTesting(srcFolder src)
2: . Pre: verify build and if all tests succeed
3: if initialBuildAndTests() 6= True then
4: return
5:
6: . A: generate mutants
7: mutants← []
8: for all srcFile f ∈ src do
9: fMutants← generateMutants(srcFile f)

10: mutants← mutants+ fMutants

11:
12: . B: execute mutants
13: for all mutant m ∈ mutants do
14: compileMutant(mutant m)
15: result← executeMutant(mutant m, testsuite t)
16: storeResult(result, mutant m, testsuite t)
17:
18: . Post: process results
19: processResults()

A lot of research is devoted to optimising the mutation testing process, summarised under the
principle — do fewer, do smarter, and do faster [42].

• Do fewer approaches minimise the execution time by reducing the total number of mu-
tants to execute. Such an optimisation can be implemented by generating fewer mutants
on line 10 in Algorithm D.5 or by selecting a subset of all mutants on line 15. Incremental
approaches[43], limiting the mutation analysis to code changed in a commit are a par-
ticularly relevant example of a “do fewer” approach. A reduced set of mutants normally
incurs an information loss compared to the full set of mutants, however, the effectiveness
is often acceptable [22]. Nevertheless, when the mutation testing tool provides sufficient
guarantees to identify invalid mutants or unreachable mutants, excluding these is always
an effective optimisation.

• Do smarter approaches attempt to minimise the execution time by exploiting the computer
hardware (e.g. distributed architectures, vector processors, fast memory access). The for
loops in lines 9 and 15 in Algorithm D.5) have few data dependencies, hence can be
executed in parallel. Parallel execution of mutants, either on dedicated hardware [46] or
in the cloud [1] is known to speed up the process by orders of magnitude. Split-stream
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mutation testing is the de facto representative for “do smarter” optimisations [47]. By
retaining state information between test runs, split-stream mutation testing avoids the
redundant execution of statements up until the mutation point.

• Do faster approaches attempt to minimise the execution time by reducing the execution
cost for each mutant (cfr. line 17 in Algorithm D.5). By design, a mutated program is
almost identical to the original program which can be exploited during the compilation step.
Mutant schemata [44] is the best know example. All mutants get injected simultaneously
(guarded by a global switch variable), hence the project is compiled only once in line
16. During the mutant execution phase (in line 17) the global switch is used to select
the actual mutant to execute. The execution time of a mutant can also be reduced with
test prioritisation techniques. By rearranging the test suite, the tests with the highest
likelihood of failure will be executed first, reducing the test suite run time using early-
failure [45].

• Hybrid approaches. Different approaches are often synergistic, where a combination of
techniques becomes more than the sum of the parts. Note that some approaches are
orthogonal to one another hence are easy to combine. Excluding unreachable mutants, for
example, can be combined with any other optimisation. Other approaches, however, may
depend on each other. Mutant schemata, for instance, requires that all invalid mutants
are excluded because even a single invalid mutant will immediately invalidate the whole
mutated program. Measuring the speedup of a given optimisation strategy should take
these synergies into account.

D.2.3 LLVM & Clang Compiler Infrastructure
The LLVM Project is a collection of modular and reusable compiler and toolchain

technologies. [...] capable of supporting both static and dynamic compilation of
arbitrary programming languages. [https://LLVM.org]

Front-end

Clang

Gollvm

rustic

swiftc

Back-end

LLVM static compiler

X86

ARM

RISC-V

MIPS

LLVM optimizer

C

C++

Go
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Figure D.1: LLVM Compilation

LLVM is a collection of compilation tools designed around a low-level language-independent inter-
mediate representation, the LLVM IR. The project includes frontends that translate source code
to LLVM IR, optimisers that rewrite the LLVM IR to become faster, and backends that generate
machine code from the LLVM IR for different architectures. We visualised this in Figure D.1.
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Clang is the most well-known frontend for LLVM, and supports languages in the C family, like
C, C++, and Objective-C, among others. Internally, it represents programs as abstract syntax
trees (ASTs). Clang includes a semantic analyser that does type-checking and other compile-time
checks, before generating the IR. Furthermore, Clang contains a number of libraries based on the
visitor pattern, allowing more analyses or transformations to be added to the frontend.

LLVM and Clang serve as the de facto standard for building static analysis tools for the C language
family. It should therefore come as no surprise that several C and C++ mutation tools exist that
build upon these frameworks. These tools mutate the program either at the AST level or at the
LLVM IR level. Both approaches have advantages and disadvantages. Doing the mutations at
the LLVM IR level has the advantage that they will work for any frontend, but the disadvantage
that mutants injected in the LLVM IR are difficult or even impossible to trace back to a source
representation in the original code under test, which allows for the generation of many invalid
mutants.

The AST, on the other hand, is close to the source code. Mutating at this level provides good
traceability, which is critically important for reporting back results to the developer in the post-
phase (lines 18 and 22 in Algorithm D.5). Another advantage of mutating at the AST level is
that the frontend semantic analyser can be used to ensure that the mutated code is compile-time
correct, effectively eliminating invalid mutants.

D.2.4 Mutating on the LLVM IR and AST level
As the AST is close to the source code, the source code from Listing D.1 can be transformed into
an AST without losing any information. This can be seen in Listing D.2 where even the original
line and column information of the statements are retained. The AST includes all the semantic
details in an easily accessible manner. This, together with the frontend semantic analyser allows
for more informed mutations, allowing the detection of invalid mutations such as the modulo
operator of mutant 4. Mutating the multiplication, i.e. the binary operator ’*’ on line 6, is
achieved by changing the ’*’ to ’+,-,/’. As the location information is preserved, the mutants
are easily represented in the original source code. Tools mutating the AST will do so by either
iterating through the entire AST or by using AST matchers which provide a list of all candidate
nodes based on a set configuration e.g. BinaryOperator.

Listing D.2: AST Example

1 |-FunctionDecl 0x7fac9d87b710 <main.cpp:1:1, line:3:1> line:1:7 used f
’float (float, float)’

2 | |-ParmVarDecl 0x7fac9d87b5b8 <col:9, col:15> col:15 used a ’float’
3 | |-ParmVarDecl 0x7fac9d87b638 <col:18, col:24> col:24 used b ’float’
4 | ‘-CompoundStmt 0x7fac9d87b8a8 <col:27, line:3:1>
5 | ‘-ReturnStmt 0x7fac9d87b898 <line:2:5, col:16>
6 | ‘-BinaryOperator 0x7fac9d87b878 <col:12, col:16> ’float’ ’*’
7 | |-ImplicitCastExpr 0x7fac9d87b848 <col:12> ’float’ <

LValueToRValue>
8 | | ‘-DeclRefExpr 0x7fac9d87b808 <col:12> ’float’ lvalue ParmVar 0

x7fac9d87b5b8 ’a’ ’float’
9 | ‘-ImplicitCastExpr 0x7fac9d87b860 <col:16> ’float’ <

LValueToRValue>
10 | ‘-DeclRefExpr 0x7fac9d87b828 <col:16> ’float’ lvalue ParmVar 0

x7fac9d87b638 ’b’ ’float’

In Listing D.3 we show our mutation example in the LLVM IR format. Line 2 to 9 represent
‘return a *b;’ As this is closer to the machine code, less information from the original source
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code is preserved, e.g. the variable names a and b are converted to numbers %0 and %1, and
low-level instructions such as the allocation (alloca) of variables are introduced. Mutating the
multiplication in the LLVM IR code means mutating the fmul statement to fadd, fsub, and fdiv.
An LLVM IR mutation testing tool usually works in two steps. It first creates a list of mutation
points (specific LLVM instruction and its operands). It will then create a new LLVM IR version
for each mutant by applying the mutant to the mutation point.

Listing D.3: LLVM IR Example

1 define float @_Z1fff(float %0, float %1) #0 {
2 %3 = alloca float, align 4
3 %4 = alloca float, align 4
4 store float %0, float* %3, align 4
5 store float %1, float* %4, align 4
6 %5 = load float, float* %3, align 4
7 %6 = load float, float* %4, align 4
8 %7 = fmul float %5, %6
9 ret float %7

10 }

As there are many more instructions at the LLVM IR-level, they present more opportunities
for mutations. However, mutations can exist in the LLVM IR code which cannot be achieved
by changing the original source code [59]. As no conversion to the original code is possible,
there is no traceability and no easy feedback for the developers. Additionally, not all mutation
opportunities from the source code are available at the LLVM IR-level due to optimisation in
the conversion to LLVM IR. In short, LLVM IR mutations provide a different set of mutants than
mutating at the AST-level.

D.2.5 Existing LLVM and Clang Mutation Testing Tools
Below we discuss the most prominent mutation testing tools that are based on Clang and/or the
LLVM IR. Table D.2 lists them in alphabetical order with their features and optimisations. For
each of them, we briefly explain which optimisations are incorporated and refer to quantitive
evidence if present.

AccMut (IR-based): AccMut [60] is an LLVM IR mutation testing tool that reduces re-
dundant execution statements anywhere in the program by analysing the original and mutated
program. It identifies the redundant statements by inspecting the (local) state of both programs.
When they are identical, all following statement executions are identical and redundant until the
next different statement. They have demonstrated an average speedup of 8.95x over a mutant
schemata approach [60] .

CCmutator (IR-based): CCmutator [94] is an LLVM IR mutation testing tool specifically
designed to mutate concurrency constructs.

Dextool mutate (AST-based): Dextool is an open-source framework created for testing and
static analysis of (often safety-critical) code. The Dextool framework is used within industry,
for example within Saab Aeronautics. One of the plugins in the framework is Dextool mutate.
It was developed with a heavy emphasis on the reporting part of mutation testing in order to
better understand the output of mutation testing and to gain more insight into the project under
test.
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Table D.2: Clang and LLVM IR Mutation Testing Tools

Tool
Name

Mutation
level Mutation Operators Mutation Optimisation

AccMut LLVM IR AOR, ROR, LCR, SDL,
... Mutant Schemata, modulo states

CCmutator LLVM IR Concurrency Mutation
Operator

Dextool mu-
tate AST AOR, ROR, LCR, SDL,

UOI

Distribution, Mutant Schemata,
Exclude unreached mutants via
code coverage

Mart LLVM IR Operator groups Trivial Compiler Equivalence
MuCPP AST Class Level Mutants Reduced Mutants Set

Mull LLVM IR LLVM fragments Limit total mutants based on
call-depth

SRCIROR AST AOR, LCR, ROR, ICR
Trivial Compiler Equivalence,
Exclude unreached mutants via
code coverage

Dextool mutate works by (textually) inserting mutants into the source code one at a time after
analysing the abstract syntax tree (conveniently available via Clang) for points to mutate.

Dextool mutate allows users to provide scripts and special flags in order to compile and test
projects with the explicit intention to scale for more and bigger (industrial) projects. Dextool
mutate supports a distributed setup as the mutants are stored in a central database. Multiple
nodes can then access the database and execute a subset of all mutants. During this study, we
created a proof-of-concept schemata plugin for Dextool mutate to enable mutant schemata. This
plugin was requirement for our experiment in order to execute the mutant schemata approach
on the Saab Case as they where already utilising Dextool. The steps in the Dextool mutate
schemata plugin are identical to our standalone tool as described in this paper. The results
and timings from the Saab Case were gathered using the Dextool mutate schemata plugin. As
a result, the creators of Dextool created a proper implementation for mutant schemata into the
tool.1,2

Mart (IR-based): Mart [95] is an LLVM IR mutation testing tool that currently supports 18
different operator groups (with 68 fragments and 816 operators). These operator groups match
against the LLVM IR syntax to create the mutants. Additional operator groups can be imple-
mented by the user to further extend its capabilities. Mart has an in-memory implementation
of Trivial Compiler Equivalence to eliminate equivalent and duplicate mutants [63].

MuCPP (AST-based): MuCPP is a Clang-based mutation testing program that gener-
ates mutants by traversing the Clang AST and storing the mutants in different branches using
a version control system [96]. MuCPP implements mutations at the class level. These include
mutations related to inheritance, polymorphism and dynamic binding, method overloading, ex-
ception handling, object and member replacement, and more. The study is aimed at reducing
the total number of mutants that need to be executed by eliminating so-called unproductive

1https://github.com/joakim-brannstrom/dextool/tree/master/plugin/mutate/
contributors.md

2https://github.com/joakim-brannstrom/dextool/blob/master/plugin/mutate/doc/
design/notes/schemata.md
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mutants. These include equivalent mutants, invalid mutants, easy-to-kill mutants, and mutants
in dead code. MuCPP demonstrates that Clang can be used for implementing mutant analysis
and generation at the AST level. The study lists the speedup gained from the reduced mutation
set but does not list the overhead impact of the generation and analysis of the mutants using the
Clang framework. It does not implement other optimisation techniques, so there are no detailed
measurements of the potential reduction in compilation and execution overhead using the Clang
framework, nor the overhead the implementation of such techniques using the Clang framework
might cause.

Mull (IR-based): Mull is an open-source mutation testing tool3 which modifies fragments
of the LLVM intermediate representation (LLVM IR). It only needs to recompile the modified
fragments in order to execute the mutants, keeping the compilation overhead low [59]. As Mull
modifies LLVM code, it is compatible with all programming languages that support compilation
to LLVM IR, such as C, C++, Rust, and Swift. Mull includes a do-fewer optimisation where you
can limit which mutants are executed to only those mutants that are within a certain call-depth
starting from the test case. The study reports on the total runtime for the optimised mutation
tool but does not provide details for the runtime of the individual steps nor is the tool contrasted
to a traditional, unoptimised approach. While the tool certainly provides a speedup for mutation
testing, the lack of detailed measurements makes it difficult to estimate where the advantages lie
and where overhead might occur.

SRCIROR (AST or IR-based): SRCIROR [97] is a toolset for performing mutation
testing at the AST level or at the LLVM IR level. Both variants implement the AOR, LCR,
ROR, ICR mutation operators. When mutating the AST, SRCIROR uses the AST matchers
from the Clang LibTooling library to search for candidate mutation locations in the AST. It then
generates a different source file for each of the generated mutants. When mutating the LLVM
IR, SRCIROR creates a list of mutation opportunities (specific LLVM instruction and one of its
operands) within the generated LLVM IR code of the project. SRCIROR then creates a mutated
version for each of these mutation opportunities. SRCIROR allows to filter out unreachable
mutants based on code coverage metrics. It also allows to filter out some equivalent mutants
using trivial compiler equivalence [63].

�

�

�

�

Summary. The current state-of-the-art demonstrates that mutant anal-
ysis for the C language family is possible on top of the LLVM and Clang
compiler framework. However, the extent to which the various optimi-
sation strategies allow reduced compilation and execution overheads is
unknown. In particular, there exist no detailed measurements on two of
the most advanced techniques (mutant schemata and split-stream muta-
tion testing) for the C language family.

3https://github.com/mull-project/mull
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D.3 Proof-of-Concept Tool
In this paper, we investigate to which extent the Clang front-end and its state-of-the-art program
analysis facilities allow to implement existing strategies for mutation optimisation within the
C language family. For this, we implement five strategies: exclude invalid mutants, exclude
unreachable mutants, mutant schemata, reachable schemata, and split-stream. We published our
proof-of-concept tool as an artefact on codeocean together with an accompanying description on
how to use it4.

The goal of these optimisation strategies is twofold. On the one hand they try to eliminate
the compilation overhead. On the other hand, the optimisation strategies try to reduce the
execution overhead. The different strategies build on each other, and successively introduce
more optimisations.

The first compilation overhead comes from the invalid mutants, which cause compilation errors
and can therefore not be executed. Excluding them reduces the compilation overhead. The
second compilation overhead comes from individually compiling each mutant, which is compu-
tationally expensive. A mutant schemata strategy eliminates this overhead by compiling all
mutants at once, drastically reducing the compilation time.

The first execution overhead comes from the unreachable mutants. These mutants are unreach-
able by the test suite, hence, they will always survive. If we know which mutants are unreachable,
we can label them as survived without needing to execute them. The second execution over-
head comes form the fact that not all test cases reach each mutant. In order for a test case
to potentially kill a mutant, that test case needs to first reach and execute the target mutant.
If the test case does not reach the mutant, we know that it will never be able to kill it, hence
we know its result before we execute it. We created a detection algorithm that avoids this re-
dundant execution by detecting which test case reaches which mutant, and thus only executes
a subset of test cases for each mutant. The final optimisation strategy we looked into is the
split-stream mutation. This strategy exploits the state-space information so that the execution
of each mutant can start from the mutation point itself instead of always starting the execution
at the beginning of the test suite. This essentially cuts the amount of statements that need to
be executed in half.

We present a proof-of-concept optimisation tool, featuring an unoptimised approach for a base-
line and the aforementioned optimisation strategies. We discuss each strategy, their differences
and similarities, the potential impact on compilation and execution time and provided detailed
measurements of the steps in the optimisation strategies. The general steps of the optimisation
strategies are visualised in Figure D.2. We will explain each of the optimisations by its steps,
starting at the bottom of the image to the top.

Generate Mutants. (Bottom boxes in Figure D.2.) The generation of the mutants is
done independently of the optimisation strategies. This allows us to use the same mutants,
ensuring a fair comparison of the strategies. This is represented by its inclusion in every pillar
in Figure D.2.

Currently, for our proof-of-concept tool, we have implemented the Relational Operator Replace-
ment (ROR), Arithmetic Operator Replacement (AOR) and Logical Connector Replacement
(LCR) (see Table D.1). This is a representative selection of all possible mutation operators,
sufficient to demonstrate the feasibility of Clang based optimisation strategies. We discuss this
limitation under Section D.7.

4https://codeocean.com/capsule/3514968/tree/v1
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Figure D.2: Implementation strategies with algorithm steps (first step at the bottom).
Each strategy improves on the previous one by reducing compilation and/or execution
overhead.

Our proof-of-concept tool relies on the LibTooling library of Clang, and its ability to iterate
through all declarations, statements, and expressions from the abstract syntax tree (AST). For
each of these declarations, statements, and expressions, the implemented mutation operators will
create corresponding mutants. As an example, the AOR mutation operator when encountering
the multiplication ‘∗’ operator residing in the binary expression ‘a ∗ b’ will create the mutants
where the multiplication is replaced by ‘+’, ‘−’, ‘/’, and ‘%’ operators. To ensure that we know
where to replace the original operator with the mutated one, we store the filename in which the
mutant occurs, the offset to the beginning and the end of the original operator, and the mutant
itself. For each executed mutant, we store whether or not the mutant was reached, how long it
took to execute, and whether or not the mutant was killed. As it is possible that some mutants
will cause an infinite loop, the user can set a maximum execution time for each mutant. If the
test suite is not able to finish executing within this time, we stop the test execution and say that
the mutant timed out. Mutants that are timed out can be considered as killed, as they would
also time out in a continuous integration test. This information can then be extracted to form a
report to inform developers where and which mutants survived the test suite.
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D.3.1 Unoptimised Mutation Testing
In a traditional, unoptimised mutation testing setting each mutant is inserted, compiled and
executed separately. Some mutants, however, can be located in uncovered code. Such mutants
are unreachable and are unable to infect the program state, thus they can never be killed. In a
realistic scenario, one would first run a code coverage technique to determine which mutants are
located in uncovered code and instantly label them as survived. As the purpose of this paper is
to gain more insight into the potential speedups of our optimisation techniques, we do generate
and execute them in order to gain more insight into the kind of overheads these unreachable
mutants introduce.

For detailed measurements, we timed the generation of the mutants, the compilation of the
mutants, and the execution of the mutants. For the mutants themselves, we make a distinction
between the invalid mutants (i.e. mutants that cause compilation errors) and the valid mutants.
We further divide these valid mutants into the unreachable mutants (i.e. mutants that no test
case reaches), and the reachable mutants.

We implemented the unoptimised mutation testing approach to obtain a baseline for the mutation
analysis and to verify the correctness of our optimisation strategies.

Detect Unreachable Mutants. In order to determine which mutants are completely un-
reachable by the test suite, we instrument the code base with a wrapper on the mutated locations.
Running the test suite with the instrumented code base then provides us with a list of mutants
that are reachable by the test suite. From this, we can deduce the completely unreachable
mutants.

Compile Mutants. After the generate mutants phase, each mutant needs to be individually
inserted into the original code base and compiled before it can be executed. We measured the
compilation time for each mutant and divided them into three categories: reachable, unreachable,
and invalid mutants. This allows us to quantify the overhead caused by the unreachable and
invalid mutants.

All three can be seen in the first pillar, i.e. unoptimised, in Figure D.2. It is important to note
that we do not clean the build environment between the different mutants. We use consecutive
builds to speed up the compilation, as the compiler then only needs to re-compile the files that
are impacted by the mutant.

Execute Mutants. After generation and compilation, the valid mutants need to be executed.
For each mutant, the entire test suite needs to be run. The test cases of the test suite are
represented by T1 to T5 in Figure D.2. When a test case fails, represented by the red colour,
this means that the mutant is killed. When none of the test cases fail, the mutant survives,
represented by the green colour. To optimise the mutation testing execution, we rely on the
early-stop principle, for which the test suite execution stops when the first test case kills the
mutant. In the unoptimised approach, the entire test suite is run for each unreachable mutant.
We represented this with mutants X–Z in Figure D.2.

Expected Performance

For the unoptimised approach, we estimate the performance via Formula D.1. The formula
consists of three phases: the generate mutants, compile mutants, and execute mutants phase.
We included the generation of the mutants in the formula as this step is necessary and identical for
all approaches but its impact should be negligible. We do not include the detection of unreachable
mutants as it is not part of an unoptimised approach. We only need it to distinguish between
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the unreachable and reachable mutants. The total compilation time is subject to the amount of
reachable, unreachable and invalid mutants. From our measurements, we have seen that invalid
mutants can take up to 10% of the total execution time. The total test suite execution time is
only subject to the amount of reachable and unreachable mutants as invalid mutants cannot be
executed. Note that the compilation time of consecutive builds is lower than a clean build and
that the test suite execution time varies depending on where, if at all, the mutant is killed due
to the early-stop mechanism.

tmutant_generation

+ tcompilation ∗(reachable_mutants+ unreachable_mutants+ invalid_mutants)
+ ttest_suite_execution ∗(reachable_mutants+ unreachable_mutants)

(D.1)

D.3.2 Mutant Schemata
The mutant schemata strategy compiles all mutants at once, essentially eliminating the compi-
lation overhead [98]. Previous studies with mutant schemata have shown that this optimisation
approach can provide an order of magnitude improvement on a full mutation analysis. Untch et
al. reported a preliminary speedup of 4.1 [98]. In a later study, Wang et al. confirmed these find-
ings and reported a speedup between 6.46 and 14.00 on systems written in Java [60]. However,
we found no specific studies investigating the speedups of mutant schemata for the C language
family, hence, in this study, we will collect detailed measurements. We timed the generation
of the mutants, the compilation of all the mutants at once, and the execution of the mutants.
We can then compare this to the unoptimised approach to gain insights into its speedups and
potential overheads. For a fair and complete comparison, we again make the distinction between
the unreachable and reachable mutants.

Exclude Invalid Mutants. As all mutants are inserted into a single compilation unit, all
generated mutants need to compile. If even a single mutant causes a compilation error, the
complete mutation analysis will fail. This is especially challenging for statically typed languages
with many interacting features and unforgiving compilers (C, C++, . . . ). This is where the Clang
compiler front-end can be used for ensuring that all injected mutants will compile. As Clang has
access to all the type information from the project, our program can verify, during the generate
mutants phase, that a newly created mutant is compile-time correct. For this, we rely on the
semantic analyser of Clang. As all the information is available while traversing the AST, the
additional analysis time should be limited. If a mutant is incorrect, for example “string - string”
or “float % int”, the mutant is labelled as invalid, as the mutant would cause a compilation error.
To ensure that we exclude only the invalid mutants, we verified that the mutants we labelled
as invalid are the same mutants that actually caused compilation failures in the unoptimised
baseline. As this step is tightly integrated with the generation of the mutants, we measured this
together with the generation of the mutants.

Detect Unreachable Mutants. The detection of the unreachable mutants is identical to
the one for the unoptimised approach.

Compile Mutants. Instead of compiling each mutant separately, the mutant schemata strat-
egy compiles all mutants at once. This means that all mutants are inserted into the code, each
mutant being guarded by a conditional statement allowing the activation of individual mutants
at run-time. The result is a single code base and only one compilation is needed, drastically
reducing the compilation time. We visualised this in Figure D.2 by using a smaller ‘compile
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all mutants at once’ block . A specific mutant is activated by using an external environment
variable. For this, additional code, i.e. the external variable, needs to be added to each file of the
project (see line 1 in Listing D.4). Listing D.4 shows the mutant schemata version of the original
“a ∗ b” example. We use the ternary operator, the short-handed version of an if statement, to
allow nesting the mutants inside the condition of if statements.

In the example, the ‘%’ operator gives an “invalid operands to binary expression”
error, therefore, we cannot compile our program unless we remove this mutant. As we exclude
invalid mutants during generation, these will not show up in the mutated code base.

Listing D.4: Mutant Schemata Example

1 extern int MNR; // prepended external variable, allowing selection of
active mutant

2
3 // mutated ‘‘return a * b;’’ statement using the ternary operator:
4 float f(float a, float b) {
5 return (MNR == 1 ? a + b :
6 (MNR == 2 ? a - b :
7 (MNR == 3 ? a / b :
8 (MNR == 4 ? a % b : a * b))));
9 ~~~^~~~Invalid operands to binary expression

10 }

Execute Mutants. As a final step, all the mutants need to be executed. This can be done
by running the executable for each valid mutant and only changing the environment variable.
We again make the distinction between the reachable mutants, represented by mutants 1 to N,
and the unreachable mutants represented by mutants X-Z in Figure D.2.

Expected Performance

For the mutant schemata approach, we estimate the performance via Formula D.2. The formula
consists of three phases: the generate mutants, the compile mutants, and execute mutants phase.
We included the generation of the mutants in the formula as this step is necessary and identical for
all approaches but its impact should be negligible. We do not include the detection of unreachable
mutants as it is not part of the schemata approach. We only need it to distinguish between the
unreachable and reachable mutants. As the strategy removes the compilation overhead by only
compiling the project once, instead of for each mutant, a drastic speedup is to be expected.
Therefore, we no longer need to multiply the compilation time by the number of mutants. Note
that the compilation time will be slightly longer, as there is more code that needs to be compiled.
The execution part of the formula stays the same, as we still need to execute the test suite for
each mutant. The test suite execution time for each mutant will, however, also be slightly longer
as there is more code that needs to be executed due to the if statements of the ternary operator
in order to activate the correct mutant.

tmutant_generation

+ tschemata
compilation

+ tschemata
test_suite_execution ∗(unreachable_mutants+ reachable_mutants)

(D.2)
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Schemata Implementation

We implemented the mutant schemata technique using the ternary operator, the short-handed
version of an if statement. We do note that the most common case for this implementation is
the worst-case scenario. Most of the times no mutant in the statement will be activated, causing
an evaluation of all the if statements before the original statement can be executed. We believe
that this will create a fixed overhead per mutant, but we expect this overhead to be limited.
The advantages of this approach is that it simplifies and streamlines the implementation of the
schemata technique. It allows nesting the mutants inside the condition of an if statement. This
can be seen in Listing D.5. The body of the if statement can also directly be mutated inside
the expression. An alternative implementation would have been to use a switch case approach.
However, this approach would have prevented us from nesting the mutants inside the condition
of the if statement. Instead, we would have been forced to write the if statement inside the
switch cases. This would have caused a code explosion by repeating the body of the if statement
for each case, see Listing D.5. The body of the if statement could be mutated in the default case
or by appending the cases of the mutated body to the existing switch.

Listing D.5: Mutating if Statements

1 // original
2 if (a > b) {/*body*/}
3
4 // mutated using ternary operator
5 if (MNR == 1 ? a < b :
6 (MNR == 2 ? a <= b :
7 (MNR == 3 ? a == b :
8 (MNR == 4 ? a >= b : a > b)))) {/*mutated body*/}
9

10 // mutating using switch case
11 switch(MNR) {
12 case 1: if (a > b) {/*body*/} break;
13 case 2: if (a >= b) {/*body*/} break;
14 case 3: if (a == b) {/*body*/} break;
15 case 4: if (a >= b) {/*body*/} break;
16 default: if (a > b) {/*mutated body*/} break;
17 }

Another advantage of the ternary implementation is that it causes no local scope and can thus
mutate assign statements without additional analysis, unlike the switch case approach. On the
other hand, to mutate an assign statement using the switch case approach, the variable would
have needed to be defined outside the scope of the switch case.

D.3.3 Reachable Schemata
The previous strategy essentially eliminated the compilation overhead. This causes the test suite
execution to become the most time-consuming part of the mutation analysis. While eliminating
the completely unreachable mutants does speed up the mutation testing analysis, the reachable
schemata strategy aims to use a more fine-grained approach to reduce most of the execution
overhead. The reachable schemata strategy reduces the test suite scope to only those test cases
which reach the mutant, effectively reducing the execution overhead. We timed the generation of
the mutants, the compilation of all the mutants at once, and the execution of a reduced test suite
for each of the mutants. We can then compare this to the unoptimised and mutant schemata
strategies to gain insights into its speedups and potential overheads.
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Exclude Invalid Mutants As the reachable schemata strategy is an optimisation based on
the regular mutant schemata approach, we need to exclude the invalid mutants as well. This is
done in the same way as with the mutant schemata approach.

Detect Reachable Mutants/Test In order to determine which mutants are reached by
which test cases, we instrument the code base with a wrapper on the mutated locations. We
store each mutated location a test run reaches. Running the instrumented code base for each
test case provides us with lists of mutants that are reachable by each test case. This results in
a reduced set of test cases which need to be executed for each mutant, resulting in a speedup
without information loss.

The best results are obtained by using fine-grained test selection and running each test case
individually. The speedups of this technique will depend on the test driver used for each project.
Some test drivers might only be able to run individual modules instead of individual test cases.
Speedups from module-grained test selection will be lower than from fine-grained test selec-
tion. Our projects were all compatible with fine-grained test selection on a test-by-test case
basis.

Compile Mutants The compilation of the mutants is identical to the one for mutant
schemata. We do note that an extra optimisation can be done by only inserting and compiling
the reachable mutants in this phase. We, however, did not yet implement this optimisation in
our proof-of-concept.

Execute Mutants As a final step, all the mutants need to be executed. Instead of running
the entire test suite for each mutant, we now only need to run those test cases which reach the
mutated locations. In Figure D.2 we see that mutant 1 is not reachable by the entire test suite,
therefore no tests are executed for the mutant. For mutant 2, the second test case is not executed
as that test case does not cover mutant 2.

Expected Performance

For the reachable schemata approach, we estimate the performance via Formula D.3. The for-
mula consists of four phases: the generated mutants, the detect reachable mutants, the compile
mutants, and the execute mutants phase. We included the generation of the mutants in the for-
mula as this step is necessary and identical for all approaches but its impact should be negligible.
We included the detection of the reachable mutants/test as it is a part of the reachable schemata
approach in order to gather the reachable mutants to the test case relationship. We estimate its
time impact at a single compilation and execution of the test suite. This is immediately com-
pensated when there is more than one unreachable mutant. The compilation part again consists
of a single compilation as it is an extension of the mutant schemata approach. For the execution
part, only the reachable mutants are considered, together with a decoupling factor. This factor
is a percentage based on the reduction in average mutants reachable by each test case. The more
coupled a project is, the less effective this strategy will be. The less coupling there is (especially
in combination with mocking), the more effective this strategy will be. From our measurements,
we have seen that the average number of mutants reached per test is between 10 and 20% of all
valid mutants. This implies that our technique can reduce the number of tests needed to execute
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per mutant between 5 and 10x. We therefore also expect a speedup between 5 and 10x.

tmutant_generation

+
(
tschemata
compilation + tschemata

test_suite_execution
)

+ tschemata
compilation

+ tschemata
test_suite_execution ∗reachable_mutants ∗ decoupling_factor

(D.3)

D.3.4 Split-Stream Mutation Testing
The split-stream mutation testing strategy reduces the execution overhead of mutation testing
even further. Instead of letting each mutant initiate execution from the start of the program,
each mutant is started from the mutation point itself. This can be achieved by exploiting the
state-space information. Previous research has shown an average speedup of 3.49x of split-stream
mutation testing over mutant schemata by mutating the LLVM IR [60].

We explain the overhead and general idea of the split-stream mutation testing approach using
Figure D.3. Here we visualised the execution trace of the original, unchanged program, as a
long vertical trace of states, each representing the execution of a single instruction. The trace
of each mutant will look identical to the original mutant up until the mutated expression. In
Figure D.3 we show mutant 4 with a mutation in the 4th expression, mutant 3 with a mutation
in the 3rd expression, ... The trace will only start to deviate from the original trace after the
mutated expression. All of the states up until the mutated state are in fact redundant, as we
already know them from the execution of the original program. We highlighted these redundant
states and expressions in red in Figure D.3.
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Figure D.3: Trace of Original and Mutated programs

Exclude Invalid Mutants As this strategy is an optimisation from the regular mutant
schemata approach, we need to exclude the invalid mutants as well. This is done identically as
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with the mutant schemata approach.

Compile Mutants The compilation of the mutants is identical to the one for mutant
schemata. However, additional code needs to be instrumented in the code base in order to
exploit the state space and start the mutants from their mutation point instead of from the start
of the program.

Execute Mutants In order to exploit the state space, we start the split-stream mutation
analysis only once instead of for each mutant as with mutant schemata. We will explain the
split-stream mutation testing process using Figure D.4.
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Figure D.4: Split-Stream Mutation process

When we start the split-stream mutation analysis, no mutant is active. The first mutant the
program will encounter will not yet have been activated, so the program will fork the entire
program and pause the original one. The forked program will be in the exact same state as the
original program, essentially this is a duplicate of the state-space. In the forked program, we
activate the encountered mutant. We let the forked program execute, only taking into account
the active mutant and store its results at the end of its execution. We then continue our first
program, until it encounters another mutant that it has not yet activated. Here the process
is repeated, a fork is created, it is executed, and its results are stored. This goes on until the
original program reaches its end state.
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Like with the mutant schemata strategy, our proof-of-concept tool needs to decide what needs
to happen at each mutation position. Instead of only deciding whether or not a mutant needs
to be active or not, it now also needs to decide when it needs to fork the process. For this, we
instrumented additional code at each mutation point. We explain the general concept using the
C++ example in Listing D.6.

When we start our program with all the mutants in it, no mutant will ever be activated in it.
The original program is only responsible for forking newly encountered mutants and storing their
results.

When a mutant is encountered in the main program, e.g. on line 16, then it will continue to
line 7, where it will verify whether or not it already encountered that mutant. If it did, it will
continue the program, otherwise, it will fork the program and wait for the forked program to
finish, on lines 8 and 9. The forked program will only take into account the active mutant and
run till its end. When the forked program encounters a mutant, it will verify if it is the mutant
that the process was forked for, if so it will execute it, otherwise it will execute the original code.
The forked process will not create additional forks. The main program will then store the result
(exit code) of the forked program, add the mutant to the already executed list and continue until
it encounters a new mutant, on lines 9 and 10.

Listing D.6: Split-Stream Mutation Testing Example

1 extern list<int> MNR_list; // already activated mutants
2 extern int MNR; // active mutant
3
4 bool split(int mnr) {
5 if (/* this is the fork */) { return mnr == MNR; }
6 else { /* this is the main program */
7 if (MNR_list.contains(mnr)) {return false;}
8 else { /* fork, and set MNR to mnr in forked process*/ }
9 /* wait for fork to complete and store results */

10 MNR_list.insert(mnr);
11 }
12 return false;
13 }
14
15 float f(float a, float b) {
16 return (split(1) ? a + b :
17 (split(2) ? a - b :
18 (split(3) ? a / b : a * b)));
19 }

The split-stream mutation testing approach naturally ensures that unreachable mutants are not
executed. The approach will never create forks for mutants that it will not reach. By executing
each of the tests separately, only those mutants reachable by the test case will be executed for
that test. This is similar to the reachable schemata approach, with the added benefit that there
is no separate compilation and/or test suite execution run necessary in order to extract the
reachable mutants.

As we start the mutants from their mutation points, we now also need to ensure that all of the
project dependencies, e.g. files and databases, are in their correct state.

As this will likely require specific project knowledge and will differ for each project, we built in
hook functions which can be specialised for each project. Additionally, we built in support to
automatically reset local files to the state they were in for each of the mutation points.
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Expected Performance

For the split-stream mutation approach, we estimate the performance via Formula D.4. The
formula consists of three phases: the generate mutants, the compile mutants, and the execute
mutants phase. We included the generation of the mutants in the formula as this step is necessary
and identical for all approaches but its impact should be negligible. We no longer need to detect
the reachable mutants/test as it is inherent to the split-stream approach. The compilation part
again consists of a single compilation, which should be slightly longer than the compilation of
the schemata approach. The execution time will be impacted negatively as the forking of the
process will take some time. As the forking process works on a copy-on-change principle, only
the memory that is changed will be copied. This ensures that the impact of the forking is kept
at a minimum. The benefit of this strategy is that we no longer need to execute the redundant
code. A mutant that is located at the very end of the execution will now only take very little time
to execute. This is in contrast to the original mutation testing where it would have needed to
start its execution from the very beginning. Mutants located in the front will only have a small
improvement in their execution time. In general, one could thus assume that this strategy would
contribute to an additional 2x speedup. Similar to the reachable schemata approach, executing
the test suite on a test-by-test case will yield the best results. Hence, we have the same decoupling
factor.

tmutant_generation

+ t
split_stream
compilation

+ t
split_stream
test_suite_execution ∗ reachable_mutants ∗ decoupling_factor/2

(D.4)

D.4 Experimental Set Up
This paper presents a feasibility study, investigating to which extent the Clang front-end and its
state-of-the-art program analysis facilities allow to implement existing strategies for mutation
optimisation within the C language family. We measure the speedup from two perspectives
(compilation time and execution time) assessing four optimisation strategies. This gives rise to
the following research questions:

• RQ1: How much speedup can we gain from mutant schemata?
• RQ2: How much speedup can we gain from split-stream mutation testing?
• RQ3: How much speedup can we gain from eliminating invalid mutants?
• RQ4: How much speedup can we gain from eliminating unreachable mutants?

To answer these research questions, we need to measure the impact of our optimisations, which
delays we introduce, how much of the overhead we eliminate, and more importantly where these
strategies can be applied.

D.4.1 Cases
To investigate the strengths and weaknesses of the Clang-based optimisation strategies, we vali-
date our proof-of-concept tool on four open-source C++ libraries and one industrial component.
These cases cover a wide diversity in size, C++ language features used, compilation times, and
test execution times as shown in Table D.3. To allow other researchers to reproduce our results,
we refer to the latest commit id of the version of the project we used for our analysis.

5http://cloc.sourceforge.net
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Table D.3: Results: Project Details

TinyXML2 JSON Google Test CppCheck Saab Case
Commits 1,052 4,312 3,840 25,309

Confidential

Contributors 78 213 100 340
GitHub stars 3.9k 28.4k 24.9k 3.9k
LOPC 3,542 10,955 32,630 98,171
LOTC 1,885 26,586 28,064 159,780
Test Cases 1 88 61 3,745
Compilation time 1.12s 3m 52.88s 6m 31.34s 5m 49.68s 3m 08.52s
Test suite run time 0.11s 14m 10.76s 15.01s 17.04s 2.63s
Generated Mutants 1,038 3,764 4,488 61,007

Confidential
Excluded Mutants
(Const, Constexpr or
Templated Mutants)

185 3,254 1,755 5,591

Considered Mutants 853 510 2,733 55,416
Mutants/LOPC 0.241 0.047 0.084 0.564 0.233
Valid Mutants 716 333 2,498 54,643

Confidential

Invalid Mutants
(killed by compiler) 137 177 235 773

Completely
Unreachable Mutants 36 0 144 5,712

AVG Tests/ 0.95 8.46 11.91 402.96
Reachable Mutant 94.97% 9.61% 19.53% 10.76%
Survived Mutants 331 33 1,028 21,291

ConfidentialKilled Mutants (excl.
timed out) 211 300 1,419 24,639

Timed out 138 0 51 8,713
LOPC = Lines of Production Code; LOTC = Lines of Test Code. LOPC (incl. include files) calculated

using cloc5(excl. newlines and comments)

In the first block of the table, we list general details about the project, number of commits,
contributors, Lines Of Project Code (LOPC), Lines Of Test Code (LOTC), and the number of
test cases the project has.

The second block list the compilation time of the project and the test suite execution time.
Projects with a longer compilation time might benefit more from a mutant schemata strategy
than projects with a longer test suite execution time.

In the third block, we list how many mutants we generated for each project. As our mutant
schemata optimisation cannot yet work with mutants in so-called const-expression and/or tem-
plates, we excluded these mutants for a fair comparison. We also listed the number of mutants
per line of production code (LOPC) which indicates how densely or sparsely packed the mutants
are. A project with a high density of mutants might introduce delays specific to the optimisation
strategy.

In the fourth block, we list the number of valid mutants and the number of invalid mutants,
i.e. mutants that are killed by the compiler. We also list the number of mutants that are not
reachable by the current test suite. Finally, we list the average amount of test cases that actually
reach a valid mutant. We also listed thin in percentages to show how much of the total test
cases are considered for each reachable mutant. The reachable mutant schemata strategy uses
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this information to its advantage to reduce the mutant execution time.

In the last block, we list the number of survived mutants and the number of killed mutants.

TinyXML2

https://github.com/
leethomason/tinyxml2

commit id: ff61650517cc32d524689366f977716e73d4f924

TinyXML2 is a simple, small, efficient, C++ XML parser that can be easily integrated into other
programs. It represents our small-sized project with 3,542 lines of production code and 1,885
lines of test code (without empty lines and comments). Even though the project is small, we
generate 1,038 mutants for it. We choose this project deliberately because of its short compilation
and execution time (1.12s and 0.11s respectively), as it represents a worst-case scenario for any
overhead introduced by the optimisation strategy.

JSON
https://github.com/
nlohmann/json

commit id: 7c55510f76b8943941764e9fc7a3320eab0397a5

JSON is a special case as the entire source code consists of a single header file. This means that
any changes to that file will cause a complete rebuild of the entire project, including virtually all
test files. Furthermore, all valid mutants are reachable by the test suite. This means that there
will be no speedup from detecting the unreachable mutants.

The test suite of JSON consists of 88 tests with a runtime of 14 minutes. Two of the tests
however cause the majority of this time, i.e., test 12 with 1 minute and test 80 with 11 minutes
execution time. By limiting the number of mutants to only those mutants that are reached by
these tests, the total runtime can be reduced drastically.

Google Test

https://github.com/
google/googletest

commit id: f2fb48c3b3d79a75a88a99fba6576b25d42ec528

Google Test represents our medium size project with 32,630 lines of production code and 28,064
lines of test code. It is a widely used framework for testing C++ code, so one could expect it
to be fairly reliable. This is confirmed by our mutation coverage, from the 2,498 valid mutants,
only 144 (5.8%) are unreachable by the test suite.

CppCheck

https://cppcheck.
sourceforge.io

commit id: 8636dd85597acdc1560f7e0bd364c94851bec3b9

CppCheck is a static analysis tool for C/C++ programs. It aims to detect bugs, undefined
behaviour, and dangerous coding constructs. It has the most mutants per line of production code
and will thus also have the largest negative impact on the duration of its test suite execution. It
is the biggest of the projects we analysed with the highest number of mutants. We would like to
note that this project has many configurable macros. We ran the project without changing the
defaults. Running the project with different macro configurations can lead to different results.
This can even increase or decrease the number of unreachable mutants.

92

https://github.com/leethomason/tinyxml2
https://github.com/leethomason/tinyxml2
https://github.com/nlohmann/json
https://github.com/nlohmann/json
https://github.com/google/googletest
https://github.com/google/googletest
https://cppcheck.sourceforge.io
https://cppcheck.sourceforge.io


D.5 Results and Discussion

Saab Case
https://saabgroup.com/about-company/organization/
business-areas/

The Saab Case represents the project from our industrial collaboration. The company develops
safety-critical systems and must adhere to 100% MC/DC testing (Modified Condition/Decision
Coverage, the coverage criterion adopted for the highest Design Assurance Level (DAL) in ac-
cordance to the RTCA-DO178B/C standard). This means that their project is well tested. Due
to the project being classified as confidential, some information has been left out and marked
Confidential in the coming sections. However, the information related to the speedup caused by
the use of mutant schemata can be disclosed.

D.4.2 Hardware Set-up
We used the same infrastructure for the analysis of the selected open-source projects. We used an
Intel(R) Core(TM)2 Quad Q9650 CPU, with two 4GB (Samsung M378B5273DH0-CH9) DDR3
RAM modules (for a total of 8GB) and a 250GB Western Digital (WDC WD2500AAKX-7) hard
drive. The PC was running Ubuntu 18.04.1 LTS (GNU/Linux 4.15.0-29-generic x86_64). Using
an SSD will drastically influence the compilation times and negatively impact the total speedups.
Using more RAM and/or a faster CPU might influence the compilation time and/or execution
time, this however is presumed to be marginal.

The industrial project of Saab Aeronautics ran on their build server. Some of their results could
be slightly impacted by background services.

D.5 Results and Discussion
Before we measure the speedup induced by the different optimisation strategies implemented
using the Clang front-end, we first analyse the time spent in each of the optimisation phases.
The individual timing results can be found in Table D.4. In essence, this timing information
allows us to assess the significant terms in the performance estimation formulas for the unop-
timised configuration (Formula D.1 (p. 83)); the mutant schemata (Formula D.2 (p. 84) and
Formula D.3 (p. 87)) and the split-stream mutation testing (Formula D.4 (p. 90))

D.5.1 Individual Timings
Generate Mutants. The first block of Table D.4 confirms that the generate mutants phase
is negligible. This phase is necessary and identical for all our optimisation techniques and cor-
responds to tmutant_generation in Formula D.1 to 4. The four open-source cases illustrate that
this phase is orders of magnitude faster than any of the following steps and less than the original
compilation time of the projects as listed in Table D.3.

Detect (Un)Reachable Mutants. In the second block of Table D.4, we listed the de-
tection times of the (un)reachable mutants. For the unoptimised and schemata technique, we
detected which mutants were reached by the test suite. The reachable schemata approach is
more fine-grained and detects which mutants are reached on a test-by-test case. We estimated
this phase at

(
tschemata
compilation + tschemata

test_suite_execution
)
, a single compilation and test suite execution

in Formula D.3. The four open-source cases and the industrial case illustrate that this phase is
also orders of magnitude faster than any of the following steps.

As the split-stream approach inherently only executes reachable mutants, it does not have a
detection delay.
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D.5 Results and Discussion

Compile Mutants. The third block of Table D.4 confirms that the compilation phase takes
up a significant amount of time. Additionally, the compilation of the invalid and unreachable
mutants is considerable.

We estimated this phase for the unoptimised approach at tcompilation ∗ (reachable_mutants +
unreachable_mutants+ invalid_mutants) in Formula D.1.

By moving from the unoptimised approach to the schemata approach, we only need to compile
once instead of for all mutants, reducing the compilation time to tschemata

compilation from Formula D.2
where the multiplication is removed. This essentially removes the compilation overhead as is
confirmed by the four open source cases in Table D.4. We can also see that the compilation
is only slightly longer than the original compilation, as seen in Table D.3. This is due to the
fact that the injected mutants increase the code base, but this is limited to each function scope,
therefore leaving the linking part of the compilation untouched. However, when we introduce
more advanced mutation operators and mutate the aforementioned const expressions, we likely
need to introduce different functions, causing the compilation time to increase further. Still, we
can expect the compilation time to remain drastically decreased from an unoptimised traditional
approach. This is also the case for the split-stream mutation testing approach, which in its turn
is slightly longer compared to the mutant schemata one, as it has internal functions to regulate
the activation and forking of the mutants.

Execute Mutants. The fourth block of Table D.4 contains the execute mutant phase exclud-
ing the timed out mutants. Here we can see that the execute mutant phase also takes up a sig-
nificant amount of time. This was expected as we estimated its duration at ttest_suite_execution ∗
(reachable_mutants+unreachable_mutants) for the unoptimised and schemata approach in For-
mula D.1 and D.2. The first observation we can make is that the unreachable mutants can have
a minimal to large impact on the mutant test execution. The stronger a test suite is, the fewer
mutants will be completely unreachable. We see no impact in the JSON project as it has no
unreachable mutants. We see the most impact in the CppCheck project. Here, the test execution
time of the unreachable mutants for the unoptimised and mutant schemata approach is half of
the reachable ones. It is possible that running the project with a different configuration leads to
a different number of unreachable mutants.

Our second observation is that the execution time of the reachable schemata approach is drasti-
cally shorter than that of the schemata and unoptimised approach, even when compared to only
the reachable mutants. Instead of executing the entire test suite for each mutant, the reachable
schemata approach only executes those test cases that reach the specified mutant. A mutant
that survives will have fewer test cases executed compared to the mutant schemata and unop-
timised approach. It also stands to reason that mutants that are detected are detected faster
as the test cases that do not reach the mutant are not executed. We estimated its duration at
tschemata
test_suite_execution ∗ reachable_mutants ∗ decoupling_factor in Formula D.3. In Table D.4 we
can see that the decoupling factor varies from project to project. This factor can roughly be
represented by the average amount of tests that will be executed per mutant, which we listed
in Table D.3. TinyXML2 has only 1 test, so there is no additional speedup to be gained from
the reachable schemata approach. The JSON project has the most speedup from this approach
as it only needs to execute 9.61% of the test cases per mutant, this is followed by the CppCheck
project at 10.76% and the Google Test project at 19.53%.

Our last observation is that we, unfortunately, could not gather data regarding the test suite
execution of split-stream mutation testing on the projects under analysis. We, therefore, labeled
its result as DNF. While we build in support to reset local files to a specific state using a local git
repository, and built in hook functions to reset more advanced dependencies like running, or even
off-site, databases, we could not get this to work reliably for the tested projects. Our projects
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all relied on open IO-streams which we cannot reset unless we reimplement or overload these
functions. For our projects, this meant that eventually, the IO files got corrupted and/or the file
offset pointer. We did not search for a solution as while this strategy offers an expected speedup
of 2x, the strategy is difficult to incorporate with external dependencies such as databases as it
requires in-depth knowledge of the system. We, therefore, do not recommend using the strategy,
at least not as a first option.

Technique Execution Overhead. In block four we can see that the execution time for
both the unreachable and the reachable mutants is increased by using the schemata technique
compared to the unoptimised technique. This is due to the additional run-time instructions
that ensure the correct activation of the mutants. We listed the execution overhead introduced
by the optimisation techniques in the execute mutant phase in percentages in the fifth block
of Table D.4. We can see that the percentual overhead between the unreachable and reachable
mutants is, as expected, very close. As there are no unreachable mutants for the JSON project,
no overhead can be calculated for it. We can also see that there is a limited overhead for the
reachable mutants in the JSON and Google Test projects of 0.16 and 0.15%. The TinyXML2
project is impacted more by 17.44%. This increase in overhead can be attributed to the increase
in the number of mutants per LOPC. Where this was only 0.047 and 0.084 for JSON and Google
Test, it is 0.241 for TinyXML2. The more mutants there are per LOPC, the more if statements
there are to verify which mutant needs to be executed. Mathematically dense programs will suffer
more from the schemata implementation using the ternary operator. Switching to a switch-case
implementation would reduce the impact. The CppCheck case has, with 0.565 mutants per
LOPC, the highest number of mutants per LOPC. We thus also expected a higher impact on
the execution time of the project. We measured an overhead of 120.29%. This overhead can be
attributed to the many if statements that are introduced per statement. Changing the activation
of the mutants from if statements to switch-case-based should reduce this overhead.

Timed Out Mutants. For many of the projects, the test time caused by timed-out mutants
is fairly limited. This can be seen in the last block of Table D.4. However, for the bigger, and
longer running projects, this does become a significant amount of the mutation analysis time.
This is especially true for the CppCheck project as the timed-out mutants take up 93% of
the reachable schemata mutation analysis. We manually set a fixed timeout time for each of
the projects. The time out is identical for each of the optimisation approaches except for the
CppCheck project. The introduced overhead caused an additional delay for the schemata-based
approaches. Here we double the time-out time. The time-out time can be reduced specifically
for the reachable mutant schemata strategy. Here we execute each test case individually instead
of the entire test suite. We should thus set an individual time out for each of the test cases.
These time-outs will thus be much shorter, resulting in a reduced detection time when a mutant
times out due to, e.g., an infinite loop.

D.5.2 Complete Mutation Analysis
In this section, we look at the impact of the optimisation strategies in relation to the complete
mutation analysis whilst answering the research questions. Their timings and speedups can be
found in Table D.5.

RQ1: How much speedup can we gain from mutant schemata?

The schemata approach, which virtually eliminates the compilation overhead, drastically speeds
up the mutation analysis in most cases. As we have seen in Section D.5.1, mutant schemata
can reduce the compilation time down to almost the original, single, compilation time of the
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project. Here we see speedups of up to 5.03x for the valid mutants, and up to 4.95x for the
reachable mutants compared to the unoptimised approach, as listed in Table D.5. JSON has
a speedup of 2.22x due to a high proportion of test suite execution time versus its compilation
time. The CppCheck project obtained a speedup 0.81x due to the increase in mutant execution
time, attributed to the techniques implementation in combination with the high number of
mutants/LOPC. In the previous section we saw that there was a limited impact on the execution
times of the mutants in projects with a low number of mutants per line of production code
(less than 0.1: JSON and Google Test), projects with a high number of mutants per line of
production code (0.24 and 0.56: TinyXML2 and CppCheck) suffered from increased execution
overheads which limited its speedup potential. We proposed mitigating the overhead issue by
using switch statements instead of if statements for mutant selection. However, we leave the
implementation and evaluation of this mitigation as future work. But, we then expect to also
see a speedup for this project.

We measured a speedup of 5.16x for the industrial Saab project for the mutant schemata approach
compared to a traditional approach when excluding the completely unreachable mutants. For
the other projects we see that the speedups for this optimisation are slightly smaller than with
the unreachable mutants. This is as expected as more time (compilation and execution time)
is saved excluding the unreachable mutants in an unoptimised approach then in a schemata
approach (execution time).�

�

�



With the TinyXML2, Google Test and the industrial Saab project, the
mutant schemata technique obtains a speedup between 4.87x and 5.16x.
For the other cases the speedup was less eminent. JSON has a speedup
of 2.22x due to a high proportion of test suite execution time versus its
compilation time. CppCheck obtained as speedup of 0.81x due to due
to the increase in mutant execution time, attributed to the techniques
implementation in combination with a high number of mutants/LOPC.
The obtained speedup from a mutant schemata technique depends on
two factors: (a) the proportion of the project compilation time versus its
execution time; (b) the number of mutants per line of production code.
The latter is implementation specific and its impact can be reduced by
changing the activation of the mutants from if statements to switch-
cases.

RQ2: How much speedup can we gain from split-stream mutation testing?

For split-stream mutation testing we expected an additional speedup of approximately 2x over
mutant schemata. Unfortunately, we could not gather data regarding the test suite execution
on the projects under analysis due to IO dependent issues. While we build in support to reset
local files to a specific state using a local git repository, and built in hook functions to reset
more advanced dependencies like running, or even off-site, databases, we cannot recommend this
optimisation technique as it cannot easily be incorporate with external dependencies such as
databases as it requires in-depth knowledge of the system.�

�

�

�
In theory this strategy could yield a speedup of a factor 2, but in practice
applying the strategy proves to be too demanding. Reverting to the
internal state demands too much specific knowledge about the design of
the system under test, especially in the case data is stored in external
databases and filesystems.

98



D.5 Results and Discussion

RQ3: How much speedup can we gain from eliminating invalid mutants?

In Table D.5 we see that for the unoptimised approach a speedup between 1.07x to 1.12x is
achieved by excluding the invalid mutants. This speedup is attained by a reduction in the
compilation time as invalid mutants are mutants that cause compilation issues and can thus not
be executed.

Compiler-integrated techniques like mutant schemata and split-stream for the C language family
come with an important drawback: the tight integration with the compiler. Since all mutants
are injected simultaneously, the resulting program must compile without any errors. Invalid mu-
tants are not acceptable, since they prevent the compilation (and the execution) of the mutated
program. This is especially challenging for statically typed languages with many interacting
features and unforgiving compilers (C, C++, . . . ). Since Clang has access to all of the project’s
type-information, we can programmatically ensure that any of the created mutants are statically
correct. We can therefore not calculate a speedup for the invalid mutants as their exclusion is a
requirement for the schemata techniques.

�
�

�
�

Compared to an unoptimised approach the reduction in the compila-
tion overhead leads to a speedup by a factor between 1.07x and 1.12x.
This is not all that much, but excluding invalid mutants is a necessary
prerequisite for the mutant schemata strategy discussed under RQ1.

RQ4: How much speedup can we gain from eliminating unreachable mu-
tants?

In Table D.5 we see that for the unoptimised approach a speedup between 1.05x to 1.18x is
achieved by excluding the completely unreachable mutants, except for the JSON project as it has
no unreachable mutants This speedup stays approximately the same with the mutant schemata
approach where the speedup is between 1.03x to 1.25x by excluding the completely unreachable
mutants, except for the JSON project as it has no unreachable mutants. This speedup, however,
will depend on the coverage of the test suite. A test suite with low coverage, and thus reaching
fewer mutants will yield a higher speedup by excluding them.

However, the reachable schemata technique goes a step further by not only excluding completely
unreachable mutants but by also excluding the test cases which do not reach the mutant on
a mutant by mutant case. This gives an additional speedup between 1.83x and 12.98x over
the schemata technique that excludes completely unreachable mutants. This provides a speedup
between 2.29x and 12.76x over the normal schemata technique, except for the TinyXML2 project,
as it only has a single test case. Further speedups are possible by optimising the time-out function
that e.g. detects mutants stuck in infinite loops. This can be achieved by specifying a time-out
for each test case instead of a time-out for the global test suite.

�

�

�

�
Compared to an unoptimised approach, excluding the completely un-
reachable mutants provides a speedup between 1.05x to 1.18x. If we go
one step further (also excluding the test cases which do not reach the
mutant on a mutant by mutant base) we achieve an additional speedup
between 1.83x and 12.98x.
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D.6 Limitations and Lessons Learned

In this section, we will derive the limitations and lessons learned geared toward the mutation
testing community.

Mutant schemata for C++ can bring a performance improvement of an order of magnitude by
eliminating the compilation overhead. However, mutant schemata for C++, and all strongly
typed languages, require the ability to extract extra information to ensure that none of the
mutants causes compilation errors as all mutants need to be compiled at once. We achieved
this by using Clang, allowing us to extract the statically available information and to create the
mutants in the actual source code. Mutant schemata and the additional speedup strategies also
require instrumentation of the source code. For this, we also relied on Clang. Doing our work we
learned 10 lessons, which we list below.

Type Safety. Some challenges occur when we try to implement mutant schemata for statically
typed programming languages like C++. First and foremost, the mutated program must be
syntactically correct and no type errors should occur. This means that every mutated statement
should be valid. We cannot generate mutants like “string − string” or “float % int”. Classes can
implement or omit operators like “+” and “−” further complicating the matter. Clang allows
us to access all the statically available information of the project and to verify if a mutated
statement is syntactically correct without the need to compile the complete project.

While we currently have this working for binary expressions, we have not investigated how this
needs to be done for less straightforward mutations such as Access Modifiers Change (AMC),
where e.g. the public access label is changed to private. While we believe this can be done
using Clang, we envision that the analysis time for such a change will be longer compared to the
analysis of a binary expression.

Ternary Operator. Using the ternary operator also somewhat limits the mutation kinds
we can use, as all mutants in the expression need to be of the same type. We cannot have a
char pointer on the iftrue side and an unsigned int on the iffalse side. Fortunately, virtually
all mutations on a single expression will have the same type or can be dynamically cast to that
type.

Mutation Operator Support. Currently, for our proof-of-concept tool, we have support
for Relational Operator Replacement (ROR), Arithmetic Operator Replacement (AOR) and Log-
ical Connector Replacement (LCR). Our proof-of-concept tool can be easily extended to support
other binary mutation operators and unary operators. However, other mutation operators, like
the previously mentioned Access Modifiers Change (AMC) might need more work.

Const, constexpr, and templates. The driver for mutant schemata relies on information
from outside the program to control the activation of the mutants by setting the MUTANT_NR
variable. The MUTANT_NR variable is initialised at runtime and will thus never be const. This
means that we cannot use the variable inside const and constexpr functions, as these functions
are evaluated at compile time and the MUTANT_NR value cannot be known at compile time.
An example of this can be seen in Listing D.7.

100



D.6 Limitations and Lessons Learned

Listing D.7: Invalid Schemata from const

1 const float a = 1.2;
2 const float b = 2.0;
3 // original statement
4 const float r = a * b;
5
6 // mutated statement
7 extern int MNR; // driver for active mutant
8 const float r = (MNR == 1 ? a + b :
9 (MNR == 2 ? a - b :

10 (MNR == 3 ? a / b : 1.2 * 2)));
11 ~~~^~~~Invalid schemata MNR cannot be know at

compile time

This means that we cannot mutate const and constexpr in the same way as non-const functions.
This includes type definitions (e.g. using ...), template arguments, static_asserts, etc.

For now, we choose not to implement support for these kinds of mutations. We do however
generate and verify these for a standalone mutation, but using them in a single compilation for
mutation testing using mutant schemata and/or split stream requires additional logic. This can
be implemented by creating separate values and/or functions for each mutated operation and
selecting the correct one everywhere in the project where they are used (e.g. const val becomes
const val_0, const val_1, const val_2, ...). This will drastically increase the size of the code
base and the compiled binary. Additionally, this will reduce the readability of the code, however,
normal developers should not see this.

Switch-Case. In Section D.3.2 we explained the advantages of using the ternary operator for
a mutant schemata approach. We envisioned that there would be a fixed overhead cost for the
technique per mutant, but that this overhead would remain limited. In our results we saw that
this was only the case for projects with a low to medium number of mutants per LOC. For projects
where the number of mutants per line of production code is high, such as math-heavy projects,
the ternary implementation causes too many additional evaluations of the if statements to reach
the correct mutant. The most common case where no mutant in the statement is activated is the
worst-case scenario, as all the if statements need to be evaluated before the original statement
can be executed. In the simplistic example in Listing D.8, we can see that an “a∗b∗c” statement
has six mutations. This means that for every mutant outside of that expression, six if statements
would need to be evaluated. By switching to a switch-case implementation like in Listing D.8,
only the switch needs to be evaluated and the offset for which case to jump to needs to be
calculated. This would save many instructions especially when there are many instructions on a
single line of code. This would have greatly benefited performance in the CPPCheck case.

To reduce the overhead of the schemata strategy, we recommend using the switch-case implemen-
tation in larger projects, despite the implementation challenges that need to be overcome. We
described some of these challenges and tradeoffs in Section D.3.2, including code explosion and
the scoped nature of the switch case causing the need to initialise variables outside the switch.
Because of these challenges, specific research will need to be performed to understand where and
how switch cases should be used, and how to deal with its tradeoffs. We therefore deem this as
out-of-scope for the current research, but as something that needs to be investigated in future
work. It is possible that if statements and switch-cases should be used together to achieve an
optimal speedup.
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Listing D.8: Mutant Schemata using Switch Case

1 extern int MNR; // driver for active mutant
2 float f(float a, float b, float c) {
3 switch (MNR) {
4 case 1: return (a * b) + c;
5 case 2: return (a * b) - c;
6 case 3: return (a * b) / c;
7 case 4: return a + (b * c);
8 case 5: return a - (b * c);
9 case 6: return a / (b * c);

10 default: return a * b * c;
11 }
12 }

Test per test case vs per module. Our program extracts the reachable mutants per test
case or per module for the program. The best results are obtained by using fine-grained test
selection and running each test case individually instead of module-grained. All our projects are
compatible with the fine-grained test selection. Testing per test instead of per module reduces
the AVG number of tests per mutant. We verified this for the CPPCheck project. Here the AVG
tests/mutant for the fine-grained test selection is 403, while it is 812 for the module-based one.
The additional 409 tests selected by the module-based approach do not cover the mutant and
will never be able to kill the mutant. Given a random distribution of these tests, we can assume
that twice the amount of test cases will be executed per mutant for the CPPCheck project. If all
test cases take approximately the same amount of time, the reachable schemata technique per
test is twice as fast as the per module. Naturally, the AVG tests/mutant for the fine-grained test
selection or the module based one, and hence the speed difference, will depend on the project
itself.

The CPPCheck program implemented its own testrunner to enable running the tests per test
instead of per module. If you use ctest, then traditionally, tests are added using the add_test
command to a specific test module. Each test module can be run separately, but you cannot
run a specific test within a test module without running the other tests from that module. By
switching from the add_test command to gtest_add_tests and/or gtest_discover_tests, one can
run each test individually. This means that each test will run slightly slower, as a new test
environment will be created for each test instead of for each module. This will however be
greatly offset by the reduction in the number of mutants that will be selected to run for each
test.

Multi-threading. Traditional, unoptimised mutation testing and mutant schemata inher-
ently support applications that utilise multiple threads as they run from start to finish. Split-
stream mutation testing on the other hand does not. If we ‘start’ the first mutant after a
secondary thread was spawned, our mutant will likely run to the end of the program and wait
for the secondary thread to finish. A second mutant ‘started’ from the same location will expect
the secondary thread to be there, but as it is already closed, the second mutant will not run
correctly. Supporting multi-threaded programs for the split-stream approach will require addi-
tional development to ensure that not only the main thread will be forked, but also the existing
threads.

External Dependencies. Traditional, unoptimised mutation testing and mutant schemata
are highly likely to support external dependencies. This is due to the fact that external depen-
dencies are a common phenomenon in Continuous Integration settings. After the test suite has
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run, the external dependencies, like input/output files and databases, need to be reset for the
next run of the Continuous Integration. The support for this is usually baked into the used build
systems of the projects (e.g. make clean).

Split-stream mutation testing on the other hand requires the external dependencies to be able
to be reset to a specific state. While we build in support to reset local files to a specific state
using a local git repository, more advanced dependencies like running, or even off-site, databases
will need very specific commands and domain knowledge to enable the strategy to reset them to
a specific state. The implementation for this will be different for each project.

These problems are not insurmountable, they are similar in nature to the problems that occur
with distributed mutation testing.

Split-Stream Mutation Testing. Split-stream mutation testing allows us to reduce the
execution overhead by an approximate factor of 2. However, this strategy requires too much
knowledge of the system. It cannot easily be incorporated with external dependencies, e.g.
databases. Our current recommendation is to not use the strategy.

Timed Out Mutants Overhead. For the bigger projects like CppCheck, we have seen
that the execution time of the optimised mutation analysis consists mostly of timed-out mutants.
Here, the timed-out mutants take up 93% of the reachable schemata mutation analysis. In
our current approach, we detected the timeout once the total time for that mutant reached a
threshold. For the CppCheck project, this means that a test that is stuck in an infinite loop
would only be timed out after 45 seconds. As the CppCheck project has 3,745 test cases, the
average test time is below 0.01 seconds. The impact of the timed-out mutants will be drastically
reduced if we stop mutants not after a global threshold but after localised thresholds based on
the individual tests.

D.7 Threats to Validity
As with all empirical research, we identify those factors that may jeopardise the validity of our
results and the actions we took to reduce or alleviate the risk. Consistent with guidelines for
empirical research (see [81, 82]), we organise them into four categories.

Construct validity: do we measure what was intended?
In essence, we want to know which parts of the mutation testing process are affected by building
a mutant schemata and split-stream mutation optimisation on top of the Clang front-end, as we
believed these strategies would eliminate the compilation and execution overhead of mutation
testing. The mutant schemata strategy and extended reachable schemata strategy cause addi-
tional delays in some parts of the mutation testing process, but in return eliminate the need to
compile every mutant individually. The real question is whether the time benefit from a single
compilation outweighs the added delays. For this, we measured each part of an unoptimised
mutation testing process and compared it to the optimisation strategies.

We implemented all of our mutants using the ternary (conditional) operator. This causes many
additions to the code base, which impact the compilation time and test suite execution time. As
mentioned before, this caused a large delay in the test suite execution time for the CheckCpp
project as many ternary operators are written on frequently executed lines. In such cases, a
different structure using switch-cases could have prevented such large delays.

While we chose a limited set of mutant operators (i.e. ROR, AOR, and LCR) and omitted
mutants in const and templated expressions, we believe that our results represent the performance
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benefits one can achieve using the strategy. We believe so because the compilation times for the
currently supported mutants are only impacted slightly, adding less than 25% to the compilation
time for our biggest project. The test suite execution times were not impacted significantly except
for the CheckCpp case where it caused an additional delay of 120%, which could be improved
by using switch statements instead of if statements to select the mutants.

To ensure that the results are reliable and comparable, we used the same generate mutants
method for all optimisation techniques. Additionally, we verified that the mutants we label as
invalid mutants using the Clang front-end are the same mutants that actually caused compilation
failures in the unoptimised baseline. This ensures that the same mutants are used across the
various steps of the optimisation techniques.

Internal validity: are there unknown factors which might affect the outcome of the analy-
ses?
We expected that the more mutants there are per line of code, the more the test suite execu-
tion time would be impacted as there is simply more code to execute. However, most of our
projects did not show such results, they showed no difference in execution time with and without
mutants.

As mentioned before, we believe that this might be due to the architecture of modern CPUs
where out-of-order execution and pipeline depths/stalls can influence the effective performance.
However, we did not investigate this sufficiently to draw firm conclusions.

We, however, did verify this in the case of CppCheck, for which the test execution times were
heavily impacted. This was due to the number of mutants that can occur on a single line,
drastically changing the execution time of that specific line. When that line is executed frequently,
the performance of the entire system is affected considerably. On the other hand, the performance
impact is minor if that single line is only executed once. Ideally, we need to investigate this further
using a profiler.

To minimise environment factors, we locked the frequency of the CPU to the base frequency of
the CPU and kept the computer in a well-ventilated space to prevent CPU throttling. While
we used an older computer (Intel(R) Core(TM)2 Quad Q9650 CPU) architecture to run our
experiments, we believe that this does not impact the analysis. The use of a hard drive instead
of an SSD however will reduce the compilation times and likely lower the total speedups. We
believe, however, that this should be limited, and that the benefits of the optimisation techniques
would still be valid even when using an SSD.

We used the same infrastructure for the analysis of the five selected open-source projects. We
used an Intel(R) Core(TM)2 Quad Q9650 CPU, with two 4GB (Samsung M378B5273DH0-CH9)
DDR3 RAM modules (for a total of 8GB) and a 250GB Western Digital (WDC WD2500AAKX-
7) hard drive. The PC was running Ubuntu 18.04.1 LTS (GNU/Linux 4.15.0-29-generic x86_64).
Using an SSD would drastically influence the compilation times and negatively impact the total
speedups. Using more RAM and/or a faster CPU might influence the compilation time and/or
execution time, this, however, is presumed to be marginal.

External validity: to what extent is it possible to generalise the findings?
We evaluated our proof-of-concept tool on four open-source projects with different characteristics
and one industrial project. These projects vary in size and in computational needs, varying from
a low number of mutants per line of production code to high numbers. We believe that our
results from these different projects represent the performance benefits one can achieve by using
the different optimisation strategies.
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Reliability: is the result dependent on the tools?
We took great care to ensure that external tools did not impact our timing results. The internal
toolchain builds on very established components from the LLVM and Clang projects. We only
measured the time it took to compile the project, generate the mutants, and execute them. We
excluded any timings related to external tools or implementations like database access times
to store the mutants. Our results thus represent the performance benefits of the optimisation
strategies as implemented. On the other hand, we do see areas which can affect the performance.
In some cases, where many mutants are listed on a single line, it might be faster to execute them
using a switch statement than to use our if statement. In this case, the compiler can create a
jump table (using consecutive indexes), i.e. an array of pointers, to directly jump to the correct
label. Adding more mutation operators might also impact the performance.

D.8 Conclusion
In this paper we investigate to which extent the Clang front-end and its state-of-the-art program
analysis facilities allow to implement existing strategies for mutation optimisation within the C
language family. We present a proof-of-concept tool that allows us to collect detailed measure-
ments for each of the mutation phases, i.e. generate mutants, compile mutants, and execute
mutants. We validate the proof-of-concept tool on four open-source C++ libraries and one in-
dustrial component, covering a wide diversity in size, C++ language features used, compilation
times, and test execution time. As such, we analyse the speedup from two perspectives (compi-
lation time and execution time) assessing four optimisation strategies (exclude invalid mutants,
mutant schemata, reachable mutant schemata, split-stream mutation testing). We address four
research questions.

RQ1: How much speedup can we gain from mutant schemata? We could virtually
eliminate the compilation overhead to the point that the compilation for all mutants was only
slightly longer compared to the original compilation time, i.e. the time it takes to compile
the project without any mutants. With the TinyXML2, Google Test and the industrial Saab
project, the mutant schemata technique obtains a speedup between 4.87x and 5.16x. Yet, the
obtained speedup depends on two factors: (a) the proportion of the project compilation time
versus its execution time; (b) the number of mutants per line of production code. The latter is
implementation specific and its impact can be reduced by changing the activation of the mutants
from if statements to switch-cases. As a consequence of our implementation, for the other cases
the speedup was less eminent: JSON has a speedup of 2.22x due to a high proportion of test suite
execution time versus its compilation time. CppCheck obtained as speedup of 0.81x due to the
increase in mutant execution time, attributed to the techniques implementation in combination
with a high number of mutants/LOPC.

RQ2: How much speedup can we gain from split-stream mutation testing?
In theory this strategy could yield a speedup of a factor 2, but in practice applying the strat-
egy proves to be too demanding. Indeed, the split-stream mutation technique demands that
dependencies need to be revertible to specific states of the execution. Reverting to the internal
state demands too much specific knowledge about the design of the system under test, especially
in the case data is stored in external databases and filesystems. Thus for the cases we inves-
tigated, we could not eliminate the execution overhead with the split-stream mutation testing
strategy.

RQ3: How much speedup can we gain from eliminating invalid mutants? Com-
pared to an unoptimised approach the reduction in the compilation overhead leads to a speedup
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by a factor between 1.07x and 1.12x. This is not all that much but it is a necessary prerequisite
for the mutant schemata strategy. Since all mutants are injected simultaneously, the resulting
program must compile without any errors. Invalid mutants are not acceptable, since they prevent
the compilation (and the execution) of the mutated program. This is especially challenging for
statically typed languages with many interacting features and unforgiving compilers (C, C++,
. . . ). Since Clang has access to all of the project’s type-information, we can programmatically
ensure that any of the created mutants are statically correct.

RQ4: How much speedup can we gain from eliminating unreachable mutants?
Compared to an unoptimised approach, excluding the completely unreachable mutants provides
a speedup between 1.05x to 1.18x. One notable exception is the JSON project which had no
unreachable mutants. This speedup stays approximately the same with the mutant schemata
approach where the speedup is between 1.03x to 1.25x. This speedup, however, depends on the
actual coverage of the test suite: a test suite with low coverage (thus reaching fewer mutants)
yields a higher speedup. The reachable schemata technique goes one step further by not only
excluding completely unreachable mutants but also excluding the test cases which do not reach
the mutant on a mutant by mutant base. This gives an additional speedup between 1.83x and
12.98x over the schemata technique that excludes completely unreachable mutants. Providing a
speedup between 2.29x and 12.76x over the normal schemata technique. Further speedups are
possible by optimising the time-out function that e.g. detects mutants stuck in infinite loops.
This can be achieved by specifying a time-out for each test case instead of a time-out for the
global test suite.

Overall. In summary, we successfully demonstrated the feasibility of using the Clang com-
piler front-end for different optimisation strategies. With the reachable schemata strategy, we
virtually eliminated the compilation overhead to the point that the compilation for all mutants
was only slightly longer compared to the original compilation time and we reduced the execu-
tion overhead by only executing the test cases for individual mutants which actually reach said
mutants. Compared to an unoptimised approach we achieve a maximum speedup of 23.45x and
30.52x on the JSON and Google Test projects with the reachable schemata strategy. Even for
less ideal scenarios from the CPPCheck and TinyXML2 projects we achieve a speedup of 2.07x
and 5.89x. These can be speedup further by two optimisations: Firstly, use switch statements for
the mutant selection to reduce the technique overhead. Secondly, tailoring the time-out function,
that e.g. detects mutants stuck in infinite loops, on a test by test basis instead of on the global
test suite.

Finally, we report some lessons learned for deploying a mutant schemata tool using the Clang com-
piler framework. Most important is that we need a different, specialised approach for generating
mutants in const, constexpr, templates, and define macro’s. These statements are evaluated at
compile-time, thus obstruct the runtime selection of the mutant required by the mutant schemata
technique.
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Abstract
F-ASTMut is an open-source mutation testing research tool for the C language family
based on manipulation of the abstract syntax tree. The tool is designed for detailed
measurements, analysis, and tuning of optimisation techniques. The goal of F-ASTMut is
to analyse the speedups of optimisation techniques to ultimately enable mutation testing
in industrial settings. Currently, F-ASTMut features four optimisation techniques; an
exclusion scheme for invalid mutants, a test-suit-scope reduction to only cover relevant
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Code metadata
Nr. Code metadata description Please fill in this column
C1 Current code version v0.2
C2 Permanent link to code/repository

used for this code version
https://github.com/
Sten-Vercammen/F-ASTMut

C3 Permanent link to Reproducible
Capsule

https://codeocean.com/capsule/
3514968/tree/v1

C4 Legal Code License GPL 3.0
C5 Code versioning system used git
C6 Software code languages, tools, and

services used
C++, Python, bash, SQL

C7 Compilation requirements, operating
environments & dependencies

llvm, llvm-dev, clang, libclang-dev, cmake
sqlite3, libsqlite3-dev, git, cmake, bash

C8 If available Link to developer
documentation/manual

https://github.com/
Sten-Vercammen/F-ASTMut

C9 Support email for questions Sten.Vercammen@uantwerpen.be

E.1 F-ASTMut description
F-ASTMut is an open-source abstract syntax tree-based mutation testing research tool for the C
language family. The tool implements a variety of optimisation techniques to speed up mutation
testing. The main goal of mutation testing is to verify the fault detection capabilities of a test
suite. For this, artificial faults —called mutants— are injected into the source code. For each
fault, the test suite needs to be run. The fraction of mutants that result in at least one failing test
case provides an indication of the fault detection capabilities of a test suite. The more mutants
detected, the stronger the test suite.

As a research tool, F-ASTMut is built with the primary intent of enabling fine-grained perfor-
mance analysis. The tool is built for collecting the impact statistics of various optimisation
techniques. Each phase of the mutation testing process is separated, i.e. mutant generation,
compilation, and execution [22]. For each of these phases, precise timing data is collected. Dif-
ferent optimisation techniques, or versions of said techniques, can then be compared against each
other or analysed for further improvements.

E.2 F-ASTMut built-in techniques
F-ASTMut incorporates an unoptimised baseline technique and four complementary optimisa-
tions:

1. A detection technique to exclude invalid mutants.

2. A test suite reduction technique to execute unreachable mutants and an improved version
which only executes those tests that reach that specific mutant.

3. A mutant schemata technique to reduce the compilation overhead by compiling all mutants
at once.
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4. A split-stream technique to reduce execution overhead by starting the mutant from the
mutation point instead of from the beginning of the test suite.

The same method for mutant generation is used for all the optimisations, ensuring that the
resulting speedup of each optimisation can be compared.

Figure E.1 illustrates the different optimisations and the impact they have on the compilation
time and test execution time. The figure should be read from bottom to top, left to right.

• Unoptimised. First, (and this applies to all optimisations) the mutants themselves must
be generated; shown in the yellow box at the bottom. This is achieved via a visitor walking
over the abstract syntax tree provided by the Clang compiler front end. Then, for each
injected mutant the complete source code must be recompiled. We divided this into three
categories: 1) the mutants that are reachable, shown by the rather large orange box; 2) the
unreachable mutants; and 3) the invalid mutants. We consider the last two as overhead
as the unreachable mutants will never be detected during execution, their result is thus
predetermined. In the unoptimised approach we represent this, and the other overhead, in
blue. The invalid mutants will fail to compile, their result is thus also predetermined.

At this point in time, we have a compiled version of the system for each injected mutant.
What is left to do is run all the tests for each of the mutants, shown in the green and
red boxes marked with T1–T5; green marks a passing test (mutant is not killed) while red
marks a failed test (mutant killed). Ideally, each mutant is killed.

The first optimisation included in F-ASTMut is within the generation of the mutants. Here,
the semantic analyser of Clang allows us to detect invalid mutants and exclude them; this
is included in the yellow box.

For the second optimisation, code instrumentation is utilised to identify unreachable mu-
tants; shown in the purple box.

Utilising both optimisations allows for the exclusion off the blue boxes from the unopti-
mised approach.

• Schemata. The schemata technique injects all mutants at once, using a run-time con-
figuration parameter to select the appropriate mutant. This technique requires that all
injected mutants are valid, hence the requirement for the additional step at the beginning:
“Exclude Invalid Mutants”. Here we only need to compile the system once, hence the
orange block showing the compilation time is reduced and the overhead of compiling in-
valid mutants is also removed. The test execution time (the red and green boxes) remains
unaffected.

• Reachable Schemata. An improved version of the reachable mutants is included in
F-ASTMut. Here, instead of only detecting completely unreachable mutants, the technique
detects which test cases reach and execute the mutant. We need an additional analysis
(the purple block “Detect Reachable Mutants/Tests”) but now we save a lot during test
execution (indicated by the reduced set of red and green blocks at the top).

• Split-Stream. The last optimisation technique starts the mutant from the mutation point
instead of from the beginning of the test suite. Compared to the previous optimisation,
we can now reduce the test execution time for each individual test.
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Figure E.1: F-ASTMut Implementation strategies with algorithm steps (first step at the
bottom).

E.3 F-ASTMut underlying technology
The Clang project provides a language front-end and tooling infrastructure for

programming languages in the C family [...] for the LLVM project [https://clang.
llvm.org]

The LLVM Project is a collection of modular and reusable compiler and toolchain
technologies. [...] capable of supporting both static and dynamic compilation of
arbitrary programming languages. [https://LLVM.org]

LLVM is a collection of compilation tools designed around a low-level language-independent
intermediate representation, the LLVM IR. The project includes frontends that translate source
code to LLVM IR, optimisers that rewrite the LLVM IR to become faster, and backends that
generate machine code from the LLVM IR for different architectures.

Clang is the most well-known front-end for LLVM. It supports languages in the C family, like C,
C++, and Objective-C, among others. Internally, Clang represents programs as abstract syntax
trees (ASTs). Clang also includes a semantic analyser that allows for type-checking and other
compile-time checks. In addition, Clang contains several libraries based on the visitor pattern,
allowing more analyses or transformations to be added to the front-end.

LLVM and Clang serve as the de facto standards for building static analysis tools for the C
language family. These tools mutate the program either at the AST level or at the LLVM IR
level. Doing the mutations at the LLVM IR level has the advantage that they will work for any
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frontend, but the disadvantage is that mutants injected in the LLVM IR are difficult or even
impossible to trace back to a source representation in the original code under test, which allows
for the generation of many invalid mutants [59].

The AST representation of a program, on the other hand, is close to the source code. Hence,
mutating at this level provides good traceability, as these mutants can be represented in the source
code. Another advantage of mutating at the AST level is that the front-end semantic analyser
can be used to ensure that the mutated code is compile-time correct, effectively eliminating the
acknowledged issue of invalid mutants.

F-ASTMut relies on the LibTooling library of Clang, and its ability to iterate through all decla-
rations, statements, and expressions from the AST. For each of these declarations, statements,
and expressions, variations will be created, i.e. the so-called mutants. This is done using muta-
tion operators that describe which pieces of code shall be changed and according to which rules.
For example, the AOR (Arithmetic Operator Replacement) mutation operator describes that
an arithmetic operator shall be replaced with other arithmetic operators. A multiplication ‘∗’
operator residing in the binary expression ‘a ∗ b’ could, for example, create mutants by replacing
the multiplication with the ‘+’, ‘−’, ‘/’, and ‘%’ operators.

To ensure traceability of the operator replacement, F-ASTMut stores the filename in which the
mutant occurs, the offset to the beginning and the end of the original operator, and the mutant
itself. For each executed mutant, F-ASTMut stores whether or not the mutant was reached, how
long it took to run the corresponding test cases, and whether or not the mutant was killed. As
some mutants might cause infinite loops during execution, the user can set a maximum execution
time for each mutant. If the test suite is not able to finish executing within this time, F-ASTMut
stops the test execution and records that the mutant timed out. Mutants that are timed out
can be considered as killed, as they would also time out in a continuous integration test. This
information can then be extracted to form a report to inform developers which mutants were
never detected by the test suite, as well as where in the source code they reside.

E.4 Related Work
In Table E.1 we list the most prominent mutation testing tools that are based on Clang and/or
the LLVM IR in alphabetical order with their features and optimisations. We briefly explain
which optimisations they incorporated and refer to quantitive evidence if present.

AccMut (IR-based) features a mutant schemata approach and an optimisation called modulo
states that applies the mutant schemata technique on local states. They have demonstrated an
average speedup of 8.95x over a mutant schemata approach [60].

CCmutator (IR-based) is an LLVM IR mutation testing tool specifically designed to mutate
concurrency constructs [94].

Dextool mutate (AST-based) is an open-source framework created for testing and static analysis
of (often safety-critical) code1. It allows for distributed mutation testing in combination with a
mutant schemata approach and can exclude mutants located in code that is not covered by the
test suite.

Mart (IR-based) currently supports 18 different operator groups (with 68 fragments and 816
operators) [95]. These operator groups match against the LLVM IR syntax to create the mutants.
Additional operator groups can be implemented by the user to further extend its capabilities.

1https://github.com/joakim-brannstrom/dextool
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Table E.1: Clang and LLVM IR Mutation Testing Tools

Tool
Name

Mutation
level

Mutation
Operators Mutation Optimisation

AccMut LLVM IR AOR, ROR,
LCR, SDL, ... Mutant Schemata, modulo states

CCmutator LLVM IR
Concurrency
Mutation
Operator

Dextool mu-
tate AST AOR, ROR,

LCR, SDL, UOI
Distribution, Mutant Schemata, Exclude
unreached mutants via code coverage

Mart LLVM IR Operator groups Trivial Compiler Equivalence

MuCPP AST Class Level
Mutants Reduced Mutants Set

Mull LLVM IR LLVM fragments Limit total mutants based on call-depth

SRCIROR AST AOR, LCR,
ROR, ICR

Trivial Compiler Equivalence, Exclude
unreached mutants via code coverage

Mart has an in-memory implementation of Trivial Compiler Equivalence to eliminate equivalent
and duplicate mutants [63].

MuCPP (AST-based) generates mutants by traversing the Clang AST and storing the mutants
in different branches using a version control system [96]. MuCPP implements mutations at the
class level. These include mutations related to inheritance, polymorphism and dynamic binding,
method overloading, exception handling, object and member replacement, and more. The study
is aimed at reducing the total number of mutants that need to be executed by eliminating so-
called unproductive mutants. These include equivalent mutants, invalid mutants, easy-to-kill
mutants, and mutants in dead code.

Mull (IR-based) is an open-source mutation testing tool2 which modifies fragments of the
LLVM intermediate representation (LLVM IR). It only needs to recompile the modified fragments
in order to execute the mutants, keeping the compilation overhead low [59]. Mull includes a
do-fewer optimisation where you can limit which mutants are executed to only those mutants
that are within a certain call-depth starting from the test case.

SRCIROR (AST or IR-based) is a toolset which can be set up to perform the mutation
testing at the AST level or at the LLVM IRlevel [97]. Both variants implement the AOR, LCR,
ROR, ICR mutation operators. SRCIROR allows filtering out unreachable mutants based on
code coverage metrics. It also allows to filter out some equivalent mutants using trivial compiler
equivalence [63].

The current state-of-the-art demonstrates that mutant analysis for the C language family
is possible on top of the LLVM and Clang compiler framework. However, the extent to
which the various optimisation strategies allow reduced compilation and execution over-
heads is unknown. In particular, there exist no tool that allows for detailed measurements
and analysis of different optimisations and/or their combinations.

2https://github.com/mull-project/mull
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E.5 Impact of F-ASTMut
Using F-ASTMut, we have seen mutation testing speedups of up to 30.5x compared to the base-
line, an unoptimised implementation [99]. F-ASTMut allows researchers to measure the speedup
impact and potential delays of mutation testing optimisations. F-ASTMut also includes promi-
nent mutation optimisation techniques such as mutant schemata, split-stream mutation testing
and a test suite reduction technique which only executes those tests that reach that specific
mutant. We made the tool open-source so that it can be extended and/or adapted. Researchers
can utilise this tool to determine where the bottlenecks of mutation optimisation techniques lie,
how to act upon them improve them and quantitatively analyse the improvements. For example,
we have observed that our mutant schemata technique, which compiles all mutants at once and
allows the activation of the mutants at runtime, causes a considerable execution overhead when
many mutations exist in the same statement. F-ASTMut allowed us to determine the cause of
the delay and how to improve the implementation of the optimisation. F-ASTMut also allows us
to quantify any improvements we, or other researchers, make to optimisation techniques.

E.6 F-ASTMut research utilisation
The main part of the tool is implemented in the main.cpp file under the tool folder. This part
is responsible for analysing the target source code, generating and exporting the mutants, and
instrumenting the same source code with the injected mutants. Our tool also has accompanying
scripts that drive the execution of the specific optimisations. Each optimisation is located in its
own folder. Researchers can extend the main part of the tool or adapt the accompanying scripts
to implement their own optimisations or run their own experiments.

The functionality of F-ASTMut can be manipulated by setting the different flags listed in Ta-
ble E.2. Below we give a brief overview of the possibilities of F-ASTMut.

Table E.2: Optimisation flags F-ASTMut

Optimisation flags
Traditional implementation EXPORT_MUTANTS &

EXPORT_NON_COMPILING_MUTANTS
Detecting reachable mutants EXPORT_REACHABLE_MUTANTS
Mutant Schemata SCHEMATA & EXPORT_MUTANTS
Split-Stream SPLIT_STREAM

F-ASTMut can generate the mutant and store them into a numbered mutants.csv file. This
file contains the start and end position of the original code, and the mutated code to take its
place. As F-ASTMut relies on the Clang infrastructure it can automatically determine whether
a generated mutant can be compiled or not. Therefore we have two different flags to export the
valid and non-compilable mutants. Optimisation techniques can either directly plug in to the
main tool or utilise the accompanying scripts to process the generated mutants.

For our traditional implementation, we developed an accompanying traditional script to indi-
vidually insert the generated mutants into the code base, compile them separately and run the
corresponding test suite.

Our EXPORT_REACHABLE_MUTANTS flag instruments the code base by putting markers
inside the positions of all mutants. Running the accompanying reachable script executes the
code base and collects which mutants are reachable by which test cases. This information can
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then be utilised to speed up the traditional implementation or another optimisation, e.g. mutant
schemata.

For our mutant schemata technique, the SCHEMATA and EXPORT_MUTANTS flags need to
be activated. The technique is implemented in the main tool and directly instruments the code
base to include all mutants at once. The accompanying schemata script extracts the mutant
numbers from the exported mutants.csv file. It then activates each mutant individually and runs
the test suite against the mutated source-code. Alternatively, only the reachable mutants can be
activated by combining the previous technique.

The split-stream optimisation is activated using the SPLIT_STREAM flag. Just like the schemata
optimisation, it instruments the code base and relies on a script to run the mutants against the
test suite.

E.7 F-ASTMut Limitations and Future Work
In version 0.2 of F-ASTMut, we have implemented the Relational Operator Replacement (ROR),
Arithmetic Operator Replacement (AOR), and Logical Connector Replacement (LCR) (see Ta-
ble E.3). The current version of F-ASTMut can be readily extended to support other binary
mutation operators and unary operators. Other mutation operators, like the Access Modifiers
Change (AMC) which can change private functions to public functions, might need more devel-
opment effort.

Table E.3: Currently implemented mutation operators in F-ASTMut

Code Short Description
ROR Relational Operator

Replacement
Replace a single operator with another operator. The
relational operators are <,<=,>,>=,==,! =

AOR Arithmetic Operator
Replacement

Replace a single arithmetic operator with another
operator. The operators are: +,−, ∗, /,%

LCR Logical Connector
Replacement

Replace a logical connector with the inverse. The logical
connectors are: ||, &&, |, &

The driver for mutant schemata relies on information from outside the program to control the
activation of the mutants by setting the MUTANT_NR variable. The MUTANT_NR variable
is initialised at runtime and will thus never be const. This means that F-ASTMut cannot use
the variable inside const and constexpr functions, as these functions are evaluated at compile
time and the MUTANT_NR value cannot be known at compile time. Consequently, F-ASTMut
cannot mutate const and constexpr functions in the same way as non-const functions. This
includes type definitions (e.g. using ...), template arguments, static_asserts, etc. Hence, in
version 0.2, F-ASTMut does not implement these kinds of mutations. This can be implemented
by creating separate values and/or functions for each mutated operation and by selecting the
correct one everywhere in the source code where they are used (e.g. const val becomes const
val_0, const val_1, const val_2, ...).

The current implementation of the mutant schemata technique uses the ternary operator, which
is the short-hand version of an if statement. This turned out to cause some execution delays
when many mutants are located in a single expression. We envision that this can be optimised
by implementing the mutant schemata technique using switch cases [99]. An improvement to
the detection mechanism for mutants stuck in infinite loops should be addressed in future work.
Currently, there is a single timeout based on the execution time of the entire test suite instead
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of individual test cases. As almost half of the analysis time is spent by these mutants, specifying
a reduced timeout per test case would further speed up the analysis.
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Abstract
Mutation testing is the state-of-the-art technique to evaluate the fault-detection capabili-
ties of a test suite, but its adoption has been limited. In this paper, we aim to investigate
where mutation testing fits within the existing test strategies, whether the mutation
analysis can be done in a timely manner, and which pain points remain to be tackled for
industrial integration.
For this, we performed open format interviews with two companies developing safety
critical software. Our first case had no experience with mutation testing, allowing us
to analyse and aide them with the setup, integration, and the mutation analysis. Our
second case has 5 years of experience with mutation testing, providing us with a mature
view on mutation testing in practice.
Our study found that mutation testing can be combined with continuous integration
and offload the work of the human reviewer by providing an initial code-quality review.
Equivalent mutants appear to be a less prevalent obstacle, although flaky mutants are
a concern that needs to be addressed. Overall, the industrial perception of mutation
testing is evolving as more organisations recognise the potential benefits of the technique
and work to address its limitations and challenges.

Submitted for peer review
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F.1 Introduction
Today, mutation testing is acknowledged within academic circles as the most promising tech-
nique for assessing the fault-detection capability of a test suite [22, 23]. Furthermore, mutation
testing has been shown to be superior to simple code coverage metrics in discovering test suite
weaknesses [26]. Still, the industrial adoption of mutation testing is limited. One of the major
problems of mutation testing is that is computationally expensive. However, recent advances
have sped up the mutation testing analysis significantly. In this paper, we present an empir-
ical study on the perception of mutation testing in industry. We explore the perceptions and
attitudes of professionals in the field towards mutation testing.

Our goal is twofold. First, we investigate whether practitioners believe that mutation testing
offers sufficient benefits for use in industrial contexts. Second, we study whether the recent mu-
tation testing advances are sufficient to meet the computational performance requirements for
industrial adoption. By collecting empirical data on the level of awareness and understanding
of the technique, as well as the factors that influence its perceived value and utility, this study
provides insights into the adoption and implementation of mutation testing in industry. Fur-
thermore, we explore whether other significant pain points remain to be tackled for widespread
industrial use.

The rest of the paper is structured as follows. In Section F.2, we elaborate on the concept of
mutation testing and list related work. In Section F.3, we describe the design of our research
methods, present the studied cases, and the data collection and analysis procedures. This natu-
rally leads to Section F.4 where we discuss the results and lessons learned. As with any empirical
research, our study is subject to various threats to validity and limitations which are listed in
Section F.5. Finally, we draw conclusions in Section F.6.

F.2 Background and Related Work
Nowadays, it is common practice to execute automated tests on a continuous integration server
to ensure that no changes to the project changed the behaviour of the project in an unexpected
way. The tests themselves then serve as the quality gates of regression faults. Effective test
suites maximise the likelihood of exposing faults [12]. Traditionally, code coverage is used to
assess the strength of a test suite, revealing which statements are poorly tested. However,
the code coverage technique has been shown to be a poor indicator of the test effectiveness of
the test suite [17, 19]. Even the stronger coverage criteria, like full MC/DC coverage (Modified
Condition/Decision Coverage, a coverage criterion often mandated by functional safety standards
that target critical software systems, e.g., ISO 26262 and DO-178C) still do not guarantee the
absence of faults [20, 21]. Hence, alternative techniques have been investigated. Today, mutation
testing is acknowledged within academic circles as the most promising technique for assessing
the fault-detection capability of a test suite [22, 23]. Mutation testing deliberately injects faults
(called mutants) into the production code and counts how many of them are caught by the test
suite. The more mutants the test suite can detect, the higher its fault-detection capability is
– referred to as the mutation coverage or mutation score. An unoptimised mutation analysis
would for each mutant, insert each mutant individually, compile the project and run the entire
test suite against it [22]. This causes the mutation analysis to be computationally expensive,
prohibiting it from being adopted in industrial settings. As a consequence, in the last decades,
a lot of research has been devoted to optimise the mutation testing process [23, 52]. In this
paper, we thus investigate whether the recent mutation testing advances are sufficient to meet
the computational performance requirements for industrial adoption.
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In 2017, Ramler et al. [34] performed an empirical study on the application of mutation testing
for a safety-critical industrial software system. They applied a mutation analysis on a software
system containing 60,000 LOC that generated more than 75,000 mutants. While they demon-
strated the technical feasibility of applying mutation testing to the entire software system, they
concluded that both the effort and costs required exceed what usually can be dedicated to unit
testing. They also found that the computational execution time for the mutation analysis needed
to be sped up drastically before it could be applied on a daily basis. Finally, they saw that on
average, the time it takes to review a mutant and revise the tests took ca. 5 minutes. The large
number of mutants inhibits a comprehensive use of mutation testing for the entire system.

F.3 Research Design
In this section, we present our research questions, the case companies, the data collection and
the analysis procedures. The research design follows the guidelines for conducting and reporting
case study research proposed by Runeson et al. [100].

We conduct a holistic multiple-case study in two development contexts represented by two dif-
ferent companies. For both contexts, the case under study, i.e. “the contemporary software
engineering phenomenon in its real-life setting” [100], is mutation testing adoption.

F.3.1 Research Questions
The overall goal of this study is to explore the industrial perspective on mutation testing. This
empirical study is the final step in a 5-year research project that focuses on speeding up the
mutation analysis. In this work, we investigate how mutation testing fits with the current source
code quality metrics, whether the mutation analysis can be done in a timely manner, and which
pain points remain to be tackled. For this, we investigate the following research questions in the
context of large organisations developing safety-critical software:

RQ1 How does mutation testing fit the existing test strategies?
RQ2 What are the practitioners’ expectations of mutation testing before having any hands-on

experience?
RQ3 What is the industrial perception of mutation testing utility after a pilot study?
RQ4 Which are the major obstacles for industrial mutation testing adoption?

F.3.2 Case Description
This section presents the two case companies under study. Both companies develop complex
safety-critical software systems and are thus primary candidates for adopting mutation test-
ing. Table F.1 presents an overview of the companies, the module where mutation testing was
evaluated, and its corresponding contexts.

Company A is a large international company active in the power and automation sector. The
department we study is part of a development organisation managing hundreds of engineers,
with development sites in Sweden, India, Germany, and the United States. The development
context is safety-critical embedded development in the domain of industrial control systems,
governed by IEC 61511. Projects typically last 2–4 years and follow an iterative stage-gate
project management model. The product is certified to Safety Integrity Level (SIL) 3 as defined
by IEC 61508, mandating rigorous development and maintenance processes. The product’s
typical customers require safe process automation in very large industrial sites.

The components for which we performed mutation testing are part of a complex automation
system. Parts of the system are very mature, with some legacy source code files that are more
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Table F.1: Overview of the case companies.

Company A Company B
Domain Process automation Aerospace
Product Automation system Aeronautical product
Main standards IEC 61508, IEC 61511 RTCA-DO178B/C
Developers 100-200 100+
Process model Iterative with gate decisions

Case A Case B
Project duration 2–4 years >20 years, iterating 6-18 months

Modules size multiple components totalling
34k LoC

100+ components ranging from 500
LOC to 100k LoC

Language C/C++ C/C++
Line coverage >80 % 100 %

Mutation Use Pilot, Experimental setup, 1
month

Under evaluation by test
improvement champions, integrated
into development, 5 years

Mutation
Optimisations Compiler Integration

Compiler Integration, Mutant
Filtering, Distribution, Trivial
Compiler Equivalence (TCE)

than 30 years old. Most of the software is implemented in C/C++. Testing is a vital constituent
in the safety assurance case, and code coverage metrics are carefully collected. The modules
selected for mutation testing are modules belong to a new product currently in the early stages
of development. The modules contain in total 34k lines of C/C++ code with a current line
coverage goal, i.e., a target during active development, of >80%. Note that the selected modules
do not conform to the safety standards, but were selected by the industry partner as particularly
relevant.

Company B is a global company with offices and facilities in many countries around the world.
The company has a long history of producing high-quality products for the aerospace sector and
works with customers and partners in a variety of countries. The company has a decentralised
structure, with business units focused on specific products and markets. It has a reputation
for innovation and is often at the forefront of developing new technologies and solutions to
meet the changing needs of its customers. The company develops safety-critical systems and
adheres to 100% MC/DC testing (Modified Condition/Decision Coverage, the coverage criterion
adopted for the highest Design Assurance Level (DAL) in accordance with the RTCA-DO178B/C
standard).

The company has a team of test improvement champions with over ten years of mutation testing
experience. They are continuously evaluating mutation testing within their organisation and
have integrated it into the daily workflow for several teams. The components for which mutation
testing is adopted vary from 500 LOC to 30k LOC and are part of a complex safety-critical
system. The components are all written in C/C++ and range from simple libraries to complex
applications.

120



F.3 Research Design

F.3.3 Data Collection and Analysis Procedure

This study is based on data collected from mutation testing adoption in Company A (Case
A) and Company B (Case B). The major differentiating factor between the two cases is the
time frame during which they have been using or experimenting with mutation testing. On the
one hand we have Case A, which represents a short-term mutation testing pilot for preliminary
evaluation of the mutation testing technique and its potential benefits. We helped Company A
to set up, execute and analyse the corresponding results on-site. The data collection spanned
the entire time frame of the pilot and includes informal discussions and structured focus group
meetings to gather broad perspectives from the practitioners. On the other hand we have Case
B, which represents a long-term mutation testing pilot that started with a single team but now is
constantly expanding within the organisation. The team we contacted had been actively involved
in a five year research project on software testing improvements.

For both cases, we held semi-structured interviews guided by a list of open interview questions.
We transcribed the interviews, summarised our findings, and verified the findings with the rele-
vant stakeholders in the case companies to avoid potential misunderstandings.

The data analysis was done by one researcher and then verified by another. The analysis was
carried out following a reviewed protocol and keeping a clear chain of evidence, i.e., allowing to
trace the derivation of results and conclusions from the collected data [101].

Case A – Mutation testing adoption in Company A

The department under study in Company A had no experience with mutation testing before this
study. We pitched mutation testing to them as a way to evaluate the fault-detection capabilities
of their test suites and as one of the better indicators of code quality. As part of the study
we would help integrate the mutation testing in their build server and perform an analysis of
the mutation testing results. To do so, we then extended our tools to make them Windows-
compatible as they utilise a Windows Azure build server. Finally, we scheduled a two-week time
window in which we went to the company’s premises to integrate our mutation testing tool with
optimisations into their build server. On-site, we ran our optimised mutation testing techniques
on the candidate projects, gathered the mutation testing results, and analysed their implications.
We then presented the findings to the stakeholders of Case A in a focus group meeting with the
first and second authors present. In this meeting, we discussed the results, how they should
be interpreted and what would be needed to improve the mutation testing results. Most focus,
however, was on the quality of the analysed test suite. We then elaborately discussed how to
use and integrate our experimental mutation testing tool, but also other tools, into their build
server in order for them to use the mutation score as an additional quality measure for their test
suite.

We recorded the focus group meeting, allowing us to analyse it later, and to keep track of our data
collection. From the transcription of the meeting, the first author summarised lessons learned
and created a first version of the interview questions to aid subsequent discussions with both
Company A and Company B. We validated the lessons learned in two steps. First, to mitigate
researcher bias, the second author checked the summary and proposed areas for improvement.
At the same time, the second author proposed refinements to the interview questions. Second,
the summary was shared with the stakeholders of Case A to confirm the lessons learned. We
then scheduled an additional interview to elaborate on our questions for which maturation had
not already been reached. The final version of the interview questions with answer summaries is
listed in Section F.3.3.
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Case B – Mutation testing adoption in Company B

Since 2017 we have been in regular contact with the test improvement champion team of Company
B regarding mutation testing and their optimisations. The team has been experimenting with
and utilising mutation testing for over 5 years in their current project. Today the team has a fully
integrated setup and workflow with mutation testing. The team agreed to share their findings
regarding mutation testing with us in an interview. We sent our questionnaire by email, so that
they could prepare their answers, and put safeguards in place to prevent the spread of confidential
information. After their preparations, we scheduled and conducted the interview, aided by the
questionnaire. The meeting was recorded and transcribed, allowing us to analyse it later, and
to keep track of our data collection. From this transcription, the first author summarised the
lessons learned. We validated the lessons learned in two steps. First, to mitigate researcher bias,
the second author checked the summary and verified the findings. Second, the summary was
shared with the stakeholders of Case B to confirm the lessons learned. The interview questions
with answer summaries are listed in Section F.3.3.

Interview

Aided by the guideline questions, we asked the company representatives about their thoughts
on mutation testing, their interests, whether or not they want to have mutation testing as an
additional test quality metric, and whether or not mutation testing is sufficiently sped up for
them to use in their development contexts. The interviews were conducted in an open format
and were not limited to these questions. We summarised the lessons learned at the end of the
meeting in order to prevent misunderstandings.

F.4 Results and Discussion
In this section, we answer the research questions based on the studied cases and summarise our
findings. In order to do so, we first present a summary of the interview and the companies’
answers in Table F.2.

Table F.2: Interview Questions

Company A Company B
Which indicators do you use or consider good indicators of code quality in your
context?
We look at code quality as a
broad term as it is more than
just unit testing. We view re-
quirement testing as a vital part
of the code quality. For this, we
keep a traceability matrix from
the requirement specifications to
the description of the test case/-
functions. For the code itself,
we have review processes, check-
lists and conventions in place and
utilise static analysis tools. We
run line- and statement coverage
to verify our test effectiveness.

We utilise several tools and techniques to highlight poten-
tial problematic code areas. Our first and most obvious,
but anecdotal, indicator of code quality is whether or not
a reviewer complains about the understandability of the
code. From our experience, we have seen that functions
with high complexity are usually poorly tested and most
likely contain bugs. We, therefore, have different design
rules and guidelines in place to ensure the readability and
understandability of the code. One example is to keep the
lines of code in a single unit below 1,500 lines of code. Our
static code analysis tools also highlight code with high Mc-
Cabe complexity, as they might indicate problematic ar-
eas. As for test code, we have a guideline that, in general,
a test case should not contain any if statements or other
forms of branches.
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Do you find this sufficient for your current needs, or do you see room for
improvement?
Today, our product is huge. We
see that the areas for which we
introduce late errors, or have
pressing issues, mainly reside in
sub-optimally tested parts of the
code, which our current testing
methods can amend.We do have
some known “black-sheep” com-
ponents due to our enforcement
of global, average code coverage
metrics.

This always comes down to a matter of cost and payoff.
Tools should not get in the way of the user nor should they
give them extra work. If the feedback is too complicated
or overwhelming, we as users will stop using it. We did
“recently” start to use more dynamic analysis tools such
as address and undefined behaviour sanitisers. These in-
strument the binary to catch where and when undefined
behaviour occurs.

Do you think mutation testing can help/helped with the previously mentioned
“issues”?
Something entirely different like
mutant testing is probably a very
good code quality indicator to
have, but at the current time, it
is difficult to qualify.

Mutation testing cannot find code with undefined be-
haviour. While we were aware of the issue, we needed
to remove all undefined behaviours as otherwise, compiler
optimisers will exploit these loopholes. What made this
problem worse is that some mutants were causing unde-
fined behaviour, and our testers were complaining about1.
We thus started using the dynamic analysis tool, which al-
lowed us to more quickly find the causes of the undefined
behaviour. We could then utilise this information to stop
generating the mutants that cause undefined behaviour.

What were your expectations of mutation testing? Which insights did you
expect from mutation testing?
We would expect a time-efficient
tool, with easy and accessible in-
formation to analyse each test
case individually, where it fails,
why it fails and so on. Apart
from running the tool in the con-
tinuous integration pipeline on
pull request and nightly builds,
we think that there is real value
in running the tool locally to en-
able fast feedback. If we need to
wait a day for feedback it takes
forever to get rid of everything.
Ideally, to prevent information
overload, we would like to only
see the feedback for the currently
developed test case.

Before using mutation testing, we believed that mutation
testing would automate the review of test cases and that
it would replace code coverage tools. We came to the con-
clusion that mutation testing can never replace a human
reviewing a test case. Mutation testing raises the bar and
improves the overall quality of the test cases before a hu-
man reviewer looks at the test case. Such that the human
can focus on understanding the test case not finding that
you missed an assertion. Mutation testing will prompt
you to correct this beforehand. Mutation testing covers
the fundamentals of the test suite while the human can
then focus on the traceability and how this relates to the
requirements.

1To kill a mutant, additional tests are written. Then the mutated code can be run to see if the tests
kill it. When the mutant is flaky, its execution path and results might differ from run to run, making it
hard to kill.
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Which insights did mutation testing bring?
The mutation pilot showed us
that we could improve our test
suite. This led to an effort to
increase the coverage with exist-
ing tools, as with our tight sched-
ule, and the current stage of the
newly introduced modules, we
currently have no resources avail-
able to experiment with other
tools.

In the beginning of the project we thought that we needed
more mutants and that we needed to kill them all. But
now we know that for our use case “less is more”. We do
not have enough time to kill them all. It is of no use if
we generate mutants the user would not care about, like
removing a log statement. We thus try to focus on mutants
that provide us with the most value. For example, we no
longer mutate the “for” statements like: for (int i = 0; i
< 10; ++i) from < to != and/or increments (++). We
have rigorous test procedures in place where these faults
would be found.
We also stopped using the statement deletion operator on
single statements, as they generated too many mutants.
We delete bigger blocks of data like the body of for loops
and if statements. With these mutants, it is very easy to
convince the users to either delete the code or write a test
case for it.
Another insight we gained is that for a human it can be
hard to see that a test case is verifying the input and not
the output, like verifying the default value of the output.
Mutation testing helps a lot in this regard. We can also
trace how many mutants a test case kills, so when a test
case kills 0 mutants, we know that we need to review it.
We intent to improve the resolution to individual assert
statements to allow the detection of assert statements that
kill no mutants.

In your context, what potential do you think mutation testing has to improve
code quality/alleviate bugs from slipping into production?
We have seen that in our cur-
rent setup, it is possible that a
fault can creep into the produc-
tion code. From what we can re-
member these occur in parts for
which we did not have, or had
insufficient, unit tests. Mutation
testing might help in finding er-
rors earlier.

The most important part for us is that mutation testing
raises the bar of the code quality so that the human re-
viewer can focus on the non-obvious parts. As an example,
we manually went over 1,000 review comments and found
out that at least 20% of them would have been directly
found with mutation testing. Although this being anec-
dotal evidence for one specific project, it provided us with
indications that mutation testing automatically handles
the low-hanging fruits, that would otherwise go over to
the expensive manual review processes.
We also had one instance where mutants survived or were
killed when we did not expect them to behave as such. We
traced the mutant, from the test case to our software veri-
fication cases and all the way to our software requirement
where it turned out that the requirement itself was wrong
and we needed to fix the requirement.
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Do you think it is worth investing in mutation testing, both from a time to
“implement” perspective as from a developer perspective?
If we had the time, it would
be great to invest in a muta-
tion testing tool to investigate
if, and how much, it can im-
prove the code. Adding yet
another tool also means adding
additional maintenance for the
tool. This should not outweigh
the benefits of the tool.

This mainly comes down to cost, person hours are much
more expensive than machine hours. For us, mutation
testing is worth it. Mutation testing finds the low-hanging
fruits. We have seen that mutation testing offloads the
review process, it automatically reviews the test cases and
can preempt simple review comments like missing assert
statements. Mutation testing can also find issues that are
hard and/or take a long time to detect by human reviewers
like verifying default outputs.

How do/would developers react to the large output from mutation testing, i.e.,
the many examples of mutants that the current test cases do not cover?
This depends on the developer.
Some like to get feedback, but
some can get annoyed when they
get a lot of feedback. Our
developers understand the need
for quality and well-tested code.
They understand that we need to
have safeguards in place to verify
the code quality, be it mutation
testing or line coverage.

We worked a lot on our tooling to filter out mutations as
we know that a user will not care about all mutants. By
design, we also exclude a lot of mutants, like the mutants
in the “for” loop statements. In our context, if you have a
lot of mutants it means you’re doing it wrong as you need
to filter them. In addition to our filtering options, our
tool also allows you to annotate the source code to prevent
specific mutants from affecting the mutation score.
We want our users to consider mutation testing as an ex-
perienced test engineer, who does not get tired. He (pre-
)reviews your test cases so that the human reviewers can
focus on the non-obvious parts. He removes so much of
the manual review work.
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Based on the mutation output, did you identify a need to write more test cases
given the results of mutation testing? In general, how willing are developers to
extend existing test cases and/or add new test cases for existing functionality
in order to improve the mutation testing score?
The mutation output caused an
increased effort to improve the
code coverage on a local basis in-
stead of a global average. For
this many additional tests were
written. Our developers under-
stand that this is for a good rea-
son.

We can easily convince our developers that test cases need
to be added or extended when we show them the mutants
that delete code blocks. If there is a tool that tells you,
“hey there might be something wrong, would you like to
know?” most developers would always say yes, and then
it is a judgment whether an action is required or not. The
mutation testing score itself is not a goal, we use it more
as a trend to see how the test suite has evolved over time,
and to see if we need to do something about it or not?
But it does trigger the gaming instinct, where you always
want to improve and to be better than your neighbour.
We do not use mutation testing for fast feedback, but we
look at it a couple of times during the sprint to see where
to focus our test efforts or if we need to improve the test
suite. If needed, we act upon it or plan for it in the next
sprint. We also do not write test cases just to kill a mutant,
as we do not have the time or budget for this. We write
test cases for the software verification cases that trace back
to the requirements, which kill the mutants. We do not
need to kill all mutants, as not all mutants are equally
important. Sometimes a verification case does not exist,
so we might need to write a verification case to kill the
mutants. Sometimes there is no requirement, this implies
that the code is either incorrect or not needed (causing the
code to be deleted, which is the most common outcome)
or the requirements are wrong.
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Which obstacles did you encounter with mutation testing? e.g. integration,
scalability, interpretability, execution time.
We integrated the tool on a sep-
arate pipeline in our Azure De-
vOps server. The execution time
of the mutation testing tool al-
lowed us to run the analysis on
the unit tests of our core compo-
nents. But it is not fast enough
to run daily for our entire project
It does seem fast enough to run
locally for test cases under cur-
rent development.

It took a long time to get to the workflow we have today.
It took us two years to integrate and improve the mutation
testing so that it can run on our integration server. We do
not execute the mutation testing on a pull request basis,
but we run it every hour. Here we only execute mutants
for modified or new functionality together with 10 % of the
oldest mutants. Every 10h all mutants are re-evaluated.
We can do this as we exclude a lot of mutants and focus
on the “productive” ones. This ensures that the execu-
tion time stays relatively short. We believe that we can
scale the mutation testing company-wide, with our current
setup and optimisations like mutant schemata, running on
the change code, filtering mutants, and the annotations to
not generate mutants.
We also put a lot of effort into the interpretability of our
HTML report. This is super important, as otherwise, our
developers will not use it if it is not easy to understand.
An unexpected consequence of our rigorous filter of mu-
tants and mutation operators is that we generate almost
no equivalent mutants. After applying the trivial com-
piler equivalence (TCE) technique, we virtually have no
equivalent mutants left.

F.4.1 Lessons Learned
In this section, we present the general lessons learned from the utilisation of mutation testing in
industrial settings.

Requirement Based Testing. In both cases, a traceability matrix between the require-
ments and test cases/functions is maintained. As Case B has integrated mutation testing into
their workflow, they extended the traceability matrix with the information from the mutants.
This allows them to easily identify test cases that do not kill any mutants, providing them with
an additional indicator for potentially problematic areas.

Shift Left Testing. Both cases have rigorous test procedures in place which can detect
errors that are not caught by the unit tests. Any new tool that essentially has the same purpose,
should be more cost-effective and/or bring more value. A tool like mutation testing promises a
stronger unit test suite and consequently promises to catch more errors earlier. This is known
as shift left testing, catching errors earlier is generally preferred and assumed to be more cost-
effective.

Test Effort. With mutation testing, any survived mutant can seem like a weakness in the
test suite. Hence, one might try to kill all mutants, but the test effort required to kill all
mutants is tremendous. This test effort requirement is a major barrier for industrial adoption.
However, in Case B we saw that they took a pragmatic approach to mutation testing where
less is more. They realised that not all mutants are interesting and that testers do not want to
kill the non-interesting mutants, like the removal of a log statement. By tailoring the mutation
operators and excluding the non-interesting mutants they reduced the test effort required for
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mutation testing whilst keeping the relevant quality improvement for their test suites. This is
in line with the recent trend to detect and exclude unproductive mutants from the mutation
analysis [35, 102–105].

Silver Bullet. Mutation testing is not a silver bullet. It should not be treated as a re-
placement for existing tools like static analysis, code coverage, or other dynamic analysis tools.
Mutation testing is a complement to these tools and should therefore also be used as such. This
means that while mutation testing could take over the functionality of some existing tools, like
code coverage, the existing tools often provide the relevant information in a more timely and
cost-effective manner.

The team in Case B has anecdotal evidence that the mutation testing technique pays off for
them. For once project, they analysed over 1,000 review comments and found that mutation
testing could prevent at least 20% of these review comments. The automated reviews from
mutation testing remove the low-hanging fruits and increase the quality of the code. This frees
up the expensive human reviewers and allows them to reason on a higher level instead of the
fundamentals such as missing assert statements.

Tool Chain. The developers in Case A would like a localised mutation testing tool in addition
to the tool on the continuous integration server, with fast feedback in order to create optimised
test cases without intermission. Such a tool can be created by only executing the mutants
relevant to the test case. Such techniques are already in development [2, 3]. The developers
in Case B integrated mutation testing on their build server with hourly runs. They do not use
mutation testing for fast feedback but rather look at it a couple of times during a sprint to see
where to focus their test efforts. They either act on it immediately or plan it during the next
sprint.

The difference in approaches could be due to the maturity and experience of mutation test-
ing within the studied cases or due to the nature of the company, their culture, and/or the
development approaches.

Equivalent Mutants. Academic literature indicates that equivalent mutants are a widespread
and inconvenient phenomenon that takes up many human work hours to detect and resolve [41,
62, 63]. However, the pragmatic approach that Case B utilises for mutation testing where they
reduce the number of mutation operators and mutants by excluding the non-interesting ones has
an unintentional side effect that they generate almost no equivalent mutants. For the few they
do, they can label them as such in the code and avoid future generation of them. As a result,
equivalent mutants pose no issues for them with minimal effort.

Flaky Mutants. Some mutants can cause undefined behaviour, where multiple executions of
the same mutant can have different outcomes, allowing a mutant to be detected in one run and
survived in another. We call this flaky mutants [9]. While we have studied these academically,
Case B has seen their frequent existence in an industrial environment. They now utilise more
dynamic analysis tools such as undefined behaviour sanitisers to quickly find the causes of the
undefined behaviour and extend this to the mutation testing tool to stop generating the mutants
that cause undefined behaviour.
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F.4.2 Research Questions

RQ1: How does mutation testing fit the existing test strategies? Mutation testing is
not a replacement for existing tools. Killing all mutants in large industrial projects is considered
impractical and too time-consuming. The human review cannot be replaced by mutation testing.
A reduced set of mutant operators and mutants can be used to offload the workload for the human
reviewers so that they can reason on a higher level instead of the fundamentals such as missing
assert statements.

The mutation testing results can be intertwined with existing procedures and techniques to offer
additional value. One example is the integration of mutants into the traceability matrix used for
requirement-based testing in Case B. This can visualise whether there are any problematic areas
or test cases that do not detect any mutants and might not yet fulfil their role as verification
cases.

RQ2: What are the practitioners’ expectations of mutation testing before having
any hands-on experience? Mutation testing evaluates the fault-detection capabilities of a
test suite. The more mutants killed, the better the test suite becomes. However, the test effort
to kill all mutants is tremendous and cannot be applied for large-scale applications [34, 35, 105].
This together with the up-front effort to integrate mutation testing into the workflow provides a
major barrier to industrial adoption.

RQ3: What is the industrial perception of mutation testing utility after a pilot
study? Mutation testing exposes the limitations of a test suite. This provides the fundamental
motive to write additional tests. Mutation testing with optimisations is now fast enough so that
it can be integrated into the continuous integration servers. However, the bottleneck and barrier
for widespread addition is the sheer number of mutants that needs to be killed. There is simply
not enough time to kill all mutants. In large industrial projects, a hybrid solution where only
the most interesting mutants are executed, offloading the human reviewers, might offer a good
middle ground. This finding is in line with the recent trend to minimise the mutation set for the
mutation analysis [35, 102–105]. While this works for Case B, mature mutation testing tools that
integrate this ideology, in order to break down the initial startup effort and continuous human
effort cost, are needed before companies will be willing to integrate mutation testing in their
workflows.

RQ4: Which are the major obstacles for industrial mutation testing adoption? As
we have seen with the setup in Case B, where they utilise a reduced set of mutation operators
and exclude the non-interesting mutants, they generate almost no equivalent mutants. They
only rely on the trivial compiler equivalence detection technique to detect, as the name suggests,
trivially equivalent mutants. For the few, remaining equivalent mutants, they can label them as
such in the code and avoid generating them in the future. As a result, equivalent mutants pose
no issues and can be handled with minimal effort.

However, they observed many mutants with non-deterministic behaviour. These mutants can be
killed in one run, but survive in another one. To find the root cause of undefined behaviour, they
now utilise dynamic analysis tools such as undefined behaviour sanitisers. This can then also be
utilised to gain insights into the mutation testing analysis to label mutants as flaky when they
cause undefined behaviour.
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F.5 Threats to Validity
As with all empirical research, we identify those factors that may jeopardise the validity of our
results and the actions we took to reduce or alleviate the risk. Consistent with the guidelines for
case studies research (see [81, 82]), we organise them into four categories.

Construct validity refers to how well the chosen research method has captured the concepts
under study. There is a risk that academic researchers and industry practitioners use differ-
ent terms when discussing advanced software testing due to their different frames of reference.
Previous work indeed indicated that the language used by academics and professional testers is
poorly aligned [106]. To mitigate misunderstandings related to mutation testing terminology, we
relied on prolonged involvement. The interviewees in Case B, have worked actively with muta-
tion testing for several years. Case A, on the other hand, represents mutation testing novices for
which we provided basic training as part of the two weeks spent by the first author at their site.
The two weeks ended with a focus group discussion, after which the first and second authors
iteratively developed the interview guide (presented in Section F.4) for the concluding interviews.
Terms such as mutation scores, mutation analysis, and equivalent mutants were known by the
interviewees at that time.

In addition, interview sessions with researchers may threaten the interviewees and lead them
to respond according to assumed expectations, i.e., desirability bias. To reduce this threat, we
guaranteed the interviewees’ anonymity, and no rewards were provided for their participation. We
also explicitly told the interviewees about their rights to withdraw at any time without requiring
an explanation. Finally, we tried to minimize the potential for response biases by asking open-
ended questions and allowing participants to provide additional context or explanations as they
saw fit.

Internal validity concerns whether unknown factors might have affected the outcome of the
analysis. Our study is exploratory, thus the conclusions in this paper are not primarily about
causal relations. On the other hand, the identification of challenges somewhat resembles iden-
tifying factors in causal relations. We mitigate the risks of identifying incorrect factors by
interviewing multiple roles at both case companies.

Two obvious differences between Case A and Case B are 1) the mutation testing tool used and 2)
the amount of time the tool was used. We do not consider this a threat as we refer to Case A and
Case B as separate cases and provide two separate context descriptions. However, as we used
open interviews, the interview sessions were not identical, and different follow-up questions were
explored. This might have influenced the way detailed avenues of the interviews were saturated.
The use of the interview guide mitigated this threat, as well as using observer triangulation during
sessions. Finally, we hypothesize that some contextual variation points might have influenced the
answers provided by the interviewees, e.g., the use of an in-house mutation testing tool in Case
B, the Case B interviewees’ mandates as test improvement champions, the timing just before
summer for the pilot study in Case A, and the longer project duration in Case B.

External validity refers to what extent it is possible to generalise the findings. For qualitative
studies such as ours, findings can only be extrapolated using analytical generalisation, i.e., trans-
ferring findings based on a theoretical analysis of contextual factors and relating them to other
cases. We support such generalisations by carefully describing the industrial contexts of Case
A and Case B. Our findings suggest that mutation testing is a promising technique that has a
place within the future test strategies of high-assurance software development. We believe this
finding holds for C/C++ development in other safety-critical contexts. Furthermore, we believe
that mutation testing, including the optimisations discussed in this paper, is ready for evaluation
also in mission-critical software development in other domains, e.g., banking and insurance. We
recommend that future studies target other industry sectors, possibly using other programming
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languages, to increase the external validity of our findings.

Reliability relates to whether the same outcome would be expected with another set of re-
searchers. Interpretation is a core component of qualitative research and enabling exact repli-
cations is not a goal. Still, we reduced the influence by single researchers, i.e., mono-researcher
bias, by the joint development of the interview guide, observer triangulation, and internal vali-
dation of interpretations within the research team. Finally, we used member checking, i.e., the
interviews had the chance to validate our results at different levels of interpretation – from the
transcribed interviews to the final drafts of the paper.

F.6 Conclusion
Our empirical study found that mutation testing is a powerful technique for evaluating the fault-
detection capability of a test suite.The recent advances in mutation testing techniques and tools
have helped to significantly improve the speed and scalability of the technique, allowing it to be
integrated into the continuous integration process.

We have seen that mutation testing contributes to a requirements-based testing process, some-
times even revealing flawed or poorly phrased requirements. Mutation testing also helps with a
shift-left testing strategy, but due to time constraints it may not be practical to attempt to kill
all mutants in large-scale applications. Therefore Case B sought a middle ground and developed
their own tooling, where they limit the number of mutation operators and only execute those
mutants that are the most relevant or interesting to the developers. Mature, publicly available,
mutation testing tools that integrate such ideology are needed, in order to break down the initial
startup effort and continuous human effort cost, before companies will be willing to integrate
mutation testing into their workflows.

In this study, we have seen that equivalent mutants are less of an issue than considered in
academic circles. Besides trivial compiler equivalence, there are other ways to ensure that they
do not hinder the testing organisation, e.g., carefully selecting the mutation operators, filtering
out non-interesting mutants, and storing and labelling any remaining equivalent mutants. Flaky
mutants, however, are a real concern that needs to be addressed when considering mutation
testing in the long run.

Furthermore, our study indicates that mutation testing is not a replacement for human code
review, it is a useful tool for offloading the identification and correction of low-hanging fruit.
Overall, our study suggests that the industrial perception of mutation testing is evolving as more
organisations recognise the potential benefits of the technique and work to address its limitations
and challenges. By leveraging recent advances and addressing key issues such as performance,
relevant mutants, and flaky mutants, mutation testing has the potential to become a widely-used
technique for improving software quality in industry.
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