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Abstract10

The study of physiological processes resulting from water-limited conditions in crops is11

essential for the selection of drought-tolerant genotypes and the functional analysis of related12

genes. A promising, non-invasive technique for plant trait analysis is close-range hyperspec-13

tral imaging (HSI), which has great potential for the early detection of plant responses to14

water deficit stress. In this work, a data analysis method is described that, unlike vege-15

tation indices, the present method applies spectral similarity on selected bands with high16

discriminative information, while requiring a careful treatment of uninformative illumination17

effects. The latter issue is solved by a standard normal variate (SNV) normalisation that18

removes linear effects and a supervised clustering approach to remove pixels that exhibit19

nonlinear multiple scattering effects. On the remaining pixels, the stress-related dynamics20

is quantified by a spectral analysis procedure that involves a supervised band selection pro-21

cedure and a spectral similarity measure against well-watered control plants. The proposed22

method was validated by a large-scale study of water-stress and recovery of maize plants in a23

high-throughput plant phenotyping platform. The results showed that the analysis method24

allows for an early detection of drought stress responses and of recovery effects shortly after25

re-watering.26

Keywords: Close-range hyperspectral imaging, high-throughput plant phenotyping,27

clustering, spectral similarity measure, drought stress28
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1. Introduction29

Imaging techniques have improved the precision and throughput of plant phenotyping,30

and now become a new frontier in phenotypic trait measurement. Current phenotyping plat-31

forms include a variety of imaging modalities to obtain high-throughput, non-destructive32

phenotype data for quantitative assessment of structural and functional plant traits. Plant33

trait assessment in high-throughput plant phenotyping platforms (HTPP) has recently been34

studied using close-range hyperspectral imaging (HSI) as a promising non-invasive tool (Ge35

et al., 2016; Mishra et al., 2017). In particular, HSI has been applied for the assessment of36

plant responses to biotic and abiotic stress conditions, such as fungal infection, water and37

nutrient deficits. During the stress development, a number of physiological and biochemical38

responses happen in plants, including modifications in the functioning of the photosynthetic39

apparatus, plant organ, water content, leaf surface and internal structure. These modifi-40

cations alter the leaf optical properties (Sun et al., 2018a) that can be measured by HSI.41

Recent advances in this field encourage studies on plant responses to drought stress, and on42

the plant’s capability to adapt and recover from this stress. Such studies are crucial for the43

further improvement of crop drought-tolerance in breeding programs.44

A common approach for plant trait estimation based on HSI is to utilize vegetation indices45

(VIs), defined as ratios or linear combinations of reflectances at a few single wavelengths.46

One advantage of VIs is that they minimize the possible influence of scale factors, including47

slope effects and variations in illumination conditions (Jay et al., 2017). VIs usually focus48

on very specific biological traits and processes in plants (Heiskanen et al., 2013; Katsoulas49

et al., 2016; Ihuoma and Madramootoo, 2017), whereas the complex physiological effects of50

drought stress alter the reflectance in many different wavelength regions. Thus, VIs may51

discard significant information leading to a decrease in the discrimination accuracy (Römer52

et al., 2012).53

Another widely used method for retrieving vegetation characteristics from reflectance54

data is the inversion of radiative transfer models (RTM). In RTM inversion, model param-55
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eters such as chlorophyll concentration, water content, dry matter, and canopy structures56

are retrieved using look-up-tables and optimization techniques (Sun et al., 2018b). A com-57

mon challenge of these methods is their ill-posedness (Jacquemoud et al., 2009), as various58

combinations of vegetation parameters may correspond to almost similar spectra. Moreover,59

this method does not apply well to close-range settings because the physically-based leaf or60

canopy RTMs are difficult to adapt to the specific close-range illumination problems (Jay61

et al., 2016).62

Data-driven machine learning regression algorithms provide a third way to retrieve plant63

biophysical variables from the reflectance spectrum (Verrelst et al., 2015; Rapaport et al.,64

2015). Regression analysis reveals statistical correlations between the spectral variables and65

biological information. Typically, a flexible learning model is inferred from a training dataset66

by optimizing the estimation error of the extracted variables. As they implicitly derive67

the underlying model distribution from a given dataset, these methods are very flexibel.68

However, they cannot be applied if the required output variables for training the model are69

not available.70

In this work, an alternative data-driven method is proposed. To eliminate scaling effects71

from leaf orientations and specific allignment of the imaging system in close-range settings,72

a standard normal variate (SNV) normalisation is applied first. To filter out noninformative73

nonlinear variability induced by multiple scattering and shading in more complex canopy74

structures, a supervised clustering procedure is proposed and clusters of spectra associated75

to shadowed and partially occluded areas were discarded. To quantify the dynamics of the76

water-deficit stress response of a plant, it was characterized by the average SNV spectrum77

from the retained clusters. An Euclidean distance function was then applied to discrimi-78

nate stressed from well-watered plants. To optimize the discrimination, a supervised band79

selection procedure was applied to extract a small subset of top-scoring variables with high80

class separability. The proposed methodology was validated by a large scale experiment in a81

HTPP that monitored maize plants during their entire vegetative development period. Six82

different groups of test plants were monitored: well-watered control plants, and five groups83

of plants undergoing different water-deficit stress conditions, for which we analysed their84
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response to the drought stress and their recovery after re-watering.85

2. Materials and methods86

2.1. Data acquisition87

A batch of maize plants was grown in PHENOVISION, the HTPP infrastructure located88

at VIB, Ghent, Belgium. The plants were divided into six groups udergoing different water89

irrigation strategy (Figure 1). All treatments started at the seedling level.90

• Group WW (Figure 1 (a)): the well-watered treatment. Seven plants were irrigated91

with sufficient water to keep the soil water content at the optimal level of 2.4 g H2O/g92

dry soil throughout the entire plant developmental period.93

• Group PD-RW1 (Figure 1 (b)): the progressive drought with re-watering 7 days after94

the V5-stage treatment. Seven plants received a WW treatment from the beginning95

(seedling) until they reached the V5-stage (five leaves developed). At the V5-stage,96

the plants were not irrigated for seven days (at that time they reach V6 or V7), after97

which they were re-watered at V6-stage (six leaves developed) with a low amount of98

water to maintain the soil water content at a deficit level of 1.4 g H2O/g dry soil until99

the end of the developmental period.100

• Group PD-RW2 (Figure 1 (c)): the progressive drought with re-watering 7 days after101

V5-stage and at V12-stage treatment. Seven plants received the PD-RW1 treatment up102

to V12 vegetation stage (twelve leaves developed). From V12-stage onward, the plants103

were irrigated with the WW treatment until the end of the developmental period.104

• Group SD (Figure 1 (d)): the severe drought treatment. Four plants were irrigated105

with a deficit soil water content of 1.4 g H2O/g dry soil throughout the developmental106

period.107

• Group SD-RW1 (Figure 1 (e)): the severe drought with re-watering at the V7-stage.108

Six plants received the SD treatment from the beginning until they reached the V7-109
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stage (seven leaves developed). From this stage onward, the plants were irrigated110

according to the WW treatment until the end of the developmental period.111

• Group SD-RW2 (Figure 1 (f)): the severe drought with re-watering in the V12-stage112

treatment. Seven plants received the SD treatment from the beginning until they113

reached the V12-stage after which they were irrigated according to the WW treatment114

until the end of the developmental period.115

From all plants involved, hyperspectral images were acquired daily during 50 days from116

117 growth stage V2 (two leaves developed), about 2 weeks after the start of the water treat-

118 ments. A line scan push-broom VNIR-HS camera (ImSpector V10E, Spectral Imaging, 

119 Oulu, Finland) was used to capture the hyperspectral images. The completed acquisition 

120 process produced 350 hyperspectral images for each WW, PD-RW1, PD-RW2 and SD-RW2 

121 treatment, 300 images for SD-RW1 and 200 images for SD treatment, which resulted in a 

122 total of 1900 images. The acquired images had 510 × 328 pixels and an average spectral 

123 sampling of 3.1 nm which corresponds to 194 bands ranging between 400-1000 nm.

All images were radiometrically calibrated by subtracting a dark frame and reflectance124

125 was calculated relative to a white reference. Because of high noise levels below 500 nm and 

126 above 850 nm (Figure 2), the images were limited to 111 spectral bands in the range 500-850 

127       nm for further data processing. The levels Gaussian noise present in the spectrum were first 

128       quantified (see Table 1) using the Generalized Cross Validation (GCV) score (Garcia, 2010). 

129      The plant pixels were then segmented from the background using the normalized difference 

130 vegetation index (NDVI). All pixels with a NDVI higher than 0.3 were segmented as plant 

131 pixels (see Figure 3).

All plants were imaged in indoor environment inside a closed cabin. The imaging cabin132

133 is illuminated with halogen lamps homogeneously distributed in a 2-dimentional plane of 

134       the field of view of the HS camera. Although the illumination is well controlled, spectral 

135       variability still exist due the physical phenomena of light reflection. In particular, the 

136 high spatial resolution of HSI in close-range sensing used here makes the recorded signal 

137      very sensitive to specific alignment of the imaging system and the non-solid architecture of
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138 the plant. This sensitivity increase further in the whole-plant screening scenarios, where 

139 the crops are susceptible to complex plant geometry. Assuming that the leaf surface is a 

140      Lambertian, the fraction of the leaf reflectance received by the sensor is largely affected 

141 by the inclination of the leaf towards the light source and the distance towards the sensor. 

142      These physical effects can be explained by the lambert’s cosine law and the inverse square 

143      law, which describe that these variabilities induce multiplicative and additive effects on 

144      the reflectance spectra. This induces high uninformative variability in the recorded signals 

145      which overlay the subtle effects of the biological traits. Since these effects are linear, a linear 

146 pre-treatment technique, the Standard Normal Variate (SNV) was applied (Asaari et al., 

147 2018) to reduce these nuisance variabilities.

Table 1: Gaussian noise estimation on the full and several sub-regions of the obtained spectrum in Figure 2.

The estimated variance of this noise are estimated based on GCV score (Garcia, 2010). Lower GCV score

indicates the noise level is low.

Wavelength Estimated Noise Variance

Region ( GCV score )

400 nm - 1000 nm 4.560 ×10−2

400 nm - 500 nm 5.677 ×10−1

400 nm - 850 nm 7.320 ×10−2

500 nm - 850 nm 3.416 ×10−5

500 nm - 980 nm 1.434 ×10−4

500 nm - 1000 nm 3.890 ×10−4

850 nm - 1000 nm 1.600 ×10−3

2.2. Clustering148

The SNV normalization method only accounts for linear scaling effects. In larger plants149

with a more complex canopy structure, partially occluded leaves, shadowing and multiple150

reflections at the leaf edges cause unwanted nonlinear variability. To remove this variability,151

a clustering procedure to discard these regions is proposed.152
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Figure 1: Six different irrigation strategies applied to maize plants, showing the level of soil water content

over the entire vegetative developmental period at different V-stages, indicating the number of developed

plant leaves and the day at which the plants reach a particular V-stage. (a) well-watered treatment (WW),

(b) progressive drought with re-watering 7 days after V5-stage treatment (PD-RW1), (c) progressive drought

with re-watering 7 days at a water deficit levels after V5-stage and in the V12-stage treatment at a WW

level (PD-RW2), (d) severe drought treatment (SD), (e) severe drought with re-watering in the V7-stage at

a WW level (SD-RW1) and (f) severe drought with re-watering in the V12-stage at a WW level (SD-RW2).

Typically, unsupervised clustering such as the k-means clustering algorithm can be ap-153

plied (Asaari et al., 2018; Behmann et al., 2014). In the proposed experiments, tens of154

millions of spectra are involved. The large-scale data streams in HTPP systems pose com-155

putational challenges as the system memory may become saturated. Therefore, in this156

work, a different clustering strategy is proposed: a supervised method, which combines the157

Support Vector Machine (SVM) classifier with the k-means clustering algorithm (Li et al.,158

2004). Since it is a supervised algorithm, it requires labeled instances for training the classi-159

fier. To avoid time-consuming manual labeling, unsupervised labeling is performed to create160

7



Figure 2: The obtained reflectance spectra covering the spectrum region between 400 nm to 1000 nm. The

presented spectrum are those selected from the plant pixels. The spectrum show high noise levels occur

at wavelength region below 500 nm and above 850 nm. In order to avoid impairments from noisy data, a

reduced spectrum from 500 nm to 850 nm was used. The noise level were quantified using the GCV score

matric ( see Table 1).

representative spectra for different groups of pixels.161

In first instance, k-means clustering was performed on a small subset of all the acquired162

images from the well-watered control plants and the different stressed groups over the entire163

development period. The number of clusters k was estimated by analyzing the dispersion164

of the within-groups sum of squares for different values of k (Sarstedt and Mooi, 2014) and165

was set to 12 (Figure 4). Then, the resulting cluster centroids were arranged in ascending166

order, based on the Euclidean norm. In the next step, the training sample size was limited167

to 100 spectra for each cluster, chosen relatively close to the cluster centroids. This data168

reduction strategy was aimed at improving the computational efficiency of SVM in both169

training and prediction phases (Tang et al., 2018). Then, SVM with a radial basis function170

kernel (Chang and Lin, 2011) was used to train the classifier and all the unlabeled spectra171

from the entire image collection were classified as belonging to one of the k clusters.172
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Figure 3: Segmentation of plant pixels based on NDVI threshold. Full hyperspectral image (a), segmented

hyperspectral images based on NDVI threshold of 0.1 (b), 0.2 (c), 0.3 (d), 0.4 (e) and 0.5 (f).

Figure 5 shows an example of an obtained cluster map, in which the pixels are mapped173

using a false color representation in accordance with their cluster number. Based on these174

cluster maps, less-informative clusters were annotated and pixels from these clusters were175

discarded. Finally, each plant was characterized by one SNV spectrum, obtained by av-176

eraging the normalized spectra of all pixels belonging to the retained clusters. The entire177

development period of each plant is then represented as one spectral time-series.178

2.3. Spectral similarity measure179

To distinguish stress-related behaviour from control plant growth dynamics, a spectral180

similarity measure (SSM) was applied between stressed and well-waterd plants. The Eu-181

clidean distance measure was applied to calculate the spectral distance between any two182

spectra q(λ) and r(λ):183

ED(q, r) =

√√√√ B∑
λ=1

(q(λ) − r(λ))2 (1)

where B is the number of bands.184

The similiarity measure allows to compare the dynamics of a plant against a reference.185

In this work, the reference spectrum at each day was defined as the average spectrum of all186

plants in the WW group of that particular day. The obtained spectral time-series represents187
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Figure 4: Choosing the number of clusters by analyzing the dispersion in the within-group sums of squares

(wk). A break point in the curve occurs at k = 12.

control plant growth and functioning dynamics. The dynamics of a control plant will be very188

similar to the reference time series (slightly positive since a distance is always positive), while189

behaviour other than the regular dynamics of the control plants will result in a significant190

difference with the reference time series.191

To increase the disciminative power between stressed and control plants, a supervised192

band selection procedure was applied. In this work, Fisher’s statistics criterion (Grünauer193

and Vincze, 2015) was applied. It selects a subset of top-scoring bands with high discrimi-194

native power that optimise the class separability between two predefined classes (in our case195

well-watered versus the five groups of stressed plants). The band selection criterion was196

defined as:197

ρ̃(λ) =

ρ(λ), if F (λ) ≥ T

0, else
(2)

where ρ̃(λ) is the selected spectral band, T is a threshold value and F (λ) is the ratio of198

the between-class and the within-class variance. The spectral similarity measure was then199

applied by only using the selected bands.200

10



3. Results and discussion201

In the first experiment, we validated the clustering strategy of section 2.2. To do so, we202

evaluated the performance of the proposed technique against the original k-means clustering203

algorithm. For this, a fraction (25%) of the spectral data was proportionally distributed to204

five test data sets, to conduct five independent experiments. The ground truth labels for205

this test data was obtained using the k-means clustering algorithm. Then, for each of the206

five experiments, 100 spectra of each cluster (k = 12) were randomly chosen to train the207

SVM. The remaining spectra acted as validation data, for which the obtained label was208

compared against the ground truth obtained by k-means clustering. Table 2 shows the209

SVM classification accuracy on this validation dataset. The overall agreement between210

the proposed and the k-means clustering was above 96%, confirming that the use of the211

supervised clustering approach was justified.212

Table 2: Classification accuracy of the proposed supervised clustering approach in five independent experi-

ments. Ground truth labeling was obtained from the k-means clustering algorithm. The processing time is

based on the experiment running on Matlab R2018a with 4.00GHz Intel Core i7 CPU and 32.0GB system

memory.

Data Number of Match cluster between Processing time (s)

set test spectra SVM and k−means (%) SVM k-means

1 2.0007 × 106 95.83 101.55 405.41

2 2.0929 × 106 96.23 105.94 439.98

3 2.3254 × 106 96.33 118.98 619.30

4 2.2473 × 106 96.32 113.82 616.38

5 2.1135 × 106 96.26 108.26 483.52

Overall performance: 96.19 109.71 512.92

The proposed clustering algorithm was applied to label every pixel in each individual213

plant and the resulting cluster map was further analyzed to filter out less-informative spectra.214

Figure 5 shows an example of a cluster map of a single maize plant at developmental stage215
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V13 (13 leaves developed). At this stage, the complex canopy structure may lead to non-216

linear illumination effects, particularly due to multiple scattering. These non-linearities217

cannot be corrected by the applied SNV normalization as that method only reduces the218

linear effects (i.e. scaling and offset due to leaf inclination and elevation variability). From219

visual comparison of the cluster map with the RGB image, one can notice that the lower220

clusters (1-3) are mostly associated with regions that receive a low level of illumination221

because they are more distant from the light source or that contain shading and partially222

occluded leaves. Leaf edges belong to these lower clusters as well. The spectra in these223

regions are expected to be influenced by multiple scattering and were therefore discarded224

from further analysis.225

Figure 5: RGB image and cluster map from a maize plant at the V13 growing stage.

The next experiment was an actual experiment with well-watered control and water-226

deficit stress treatments to monitor the growth dynamics of the plants from the six different227

watering treatment groups, and to analyse the response to drought and recovery after re-228

watering. The proposed method from section 2.3 was applied to obtain the spectral distance229

of each plant from the reference spectra, during the entire experiment (53 days). The well-230
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Figure 6: Evolution of the spectral distance with respect to the control group throughout the drought stress

experiment for the WW control group, the PD-RW1 group (acute drought between T1 and T2), the PD-

RW2 group (acute drought between T1 and T2 and re-watering to WW level at T3), the SD group and the

SD-RW1 (re-watering to WW level at T4), and SD-RW2 groups (re-watering to WW level at T5). Plants

grew from the V2 until the V18-stage.
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Figure 7: The obtained spectral distance when no cluster treatment was performed. The evolution plots

show the comparison between plants in PD-RW1 group versus control plants throughout the drought stress

experiment.

watered group acts as a control group. Figure 6 shows the plots for the five different stressed231

groups, each time compared to the plot of the WW control group. Each data point is an232

average over all plants of the group; standard deviations are given as well. Note that there233

were no measurements available on days 8, 32 and 33.234

Figure 6(a) shows the results of the group PD-RW1 versus the WW control group.235

The drought stress was detected as early as the third day of the drought induction (at236

T1, irrigation was completely stopped). The difference with the control group gradually237

increased as the plants were withheld from water. At T2, 7 days after T1, the plants were238

watered again albeit to a lower soil water content than the well-watered treatment, after239

which the difference started to decrease, indicating that the plants were recovering. About240

15 days after re-watering, the plants seemed to have completely recovered. However, this241

situation did not persist until the end of the developmental period, as after day 40, the242

difference with the control started to grow again. Apparently, the plants initially adapted to243

the lower soil water content, but at a later development stage, they seemed to re-experience244

drought stress.245

Figure 6(b) shows the results of the group PD-RW2 versus the control group. The water246

treatment of this group is identical to the one of PD-RW1 up to day 37 (T3). As expected,247

the behaviour is very similar to the behaviour of the PD-RW1 group. After that day, the248

plants were irrigated again with higher water levels equivalent to the WW treatment. From249
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Figure 8: Evolution of spectra for the plants in PD-RW1 group versus plants in the WW group based on

the calculation of vegetation indices (a) PRI (b) PSRI and (c) RENDVI (d) NDVI.

day 40 on (3 days after starting the WW treatment), a significant deviation from PD-RW1250

group was observed, as the PD-RW2 group seemed to have fully recovered from the drought251

stress.252

Figure 6(c) shows the results of the group SD versus the control group. Since the irri-253

gation for SD plants was limited from the start (i.e. two weeks before day 1), the effect of254

drought stress was visible from the first day of observation. From that day on, the difference255

with the control group decreases monotonically until day 10, indicating that the drought256
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Figure 9: The F -value obtained from the band selection procedure. The threshold was set to 70% of the

maximum F value.

plants were adapting to the water stress environment. From the literature, it is known that257

plants can adapt through various biological mechanisms (Xu et al., 2010; Zegada-Lizarazu258

and Monti, 2013; Sun et al., 2016). After this, the plants seemed to behave as WW control259

plants until day 35, after which the plants start to re-experience drought stress. This effect260

seemed to start earlier and to be more severe than for the plants in the progressive drought261

treatment (PD-RW1), indicating a very serious impairment in the plant development of the262

SD group.263

For the remaining two groups, SD-RW1 and SD-RW2, the goal was to evaluate to what264

extent plants have the capacity to recover from severe drought stress when re-watering is265

performed. The SD-RW1 group was fully re-watered after severe drought induction, at an266

early vegetative state (V7), while SD-RW2 was fully re-watered at a later development stage267

(V12). Figures 6(d) and (e) show the results of these groups versus the control group. For268

the SD-RW1 group, the plant health status stabilizes shortly after re-watering (at point T4)269

and remains undifferent from the control group until the end of the vegetative development270

stage. This indicates that these plants were able to fully recover and regain their optimal271
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growth and functioning pattern. However, this was not achieved by the SD-RW2 group,272

that deviates from the control group after the late re-watering period (T5). This indicates273

that re-watering at a later development stage does not allow plants to entirely recover from274

severe drought stress.275

In the next experiment, the aim was to study the positive effect of the cluster procedure276

on the results. For this, the same experiment on the WW and the PD-RW1 groups was277

repeated but then without performing the clustering. As a consequence, all pixels of the278

plants, including the ones that were influenced by nonlinear effects, were included in the279

experiment. All other procedures, i.e. SNV normalization and band selection were performed280

as before.281

Figure 7 plots the evolution of the plants in the PD-RW1 group against the WW control282

283 group. From this plot, it can be observed that in general, the standard deviations were 

284       larger than in the original experiment. This effect was rather small at the early vegetation 

285 stages, but became large during the later vegetation stages, where the canopies were large 

286       and more complex, and thus the effects of multiple scattering and shading becoming more 

287 serious. Because of this, during the early vegetation stage, not performing the clustering 

288       had only a minor effect on the discrimination between control and drought plants. The only 

289       difference that was observed was that the onset of the water stress was detected only on 

290 the fourth day after the drought induction, one day later than the case where clustering 

291 was applied. However, at later vegetation stages, the high standard deviations hindered 

292 the distinction between healthy and drought plants, such that the re-experience of drought 

293 stress after 40 days remained entirely unnoticed.

Many past and recent studies have applied VIs to characterize the biophysical and phys-294

iological plant status in response to drought stress (Rumpf et al., 2010; Kim et al., 2011;295

Amatya et al., 2012; Sun et al., 2014; Behmann et al., 2014; Gago et al., 2015). The pho-296

tochemical reflectance index (PRI) and the normalized difference vegetation index (NDVI)297

are the most commonly used VIs for crop water stress assessment. Other reflectance indices298

like the red-edge normalized difference vegetation index (RENDVI) and plant senescence299

reflectance index (PSRI) have also been used with varying results. In Sun et al. (2014), a300
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Table 3: The p-values of a one-way ANOVA at the 0.05 significance level for the proposed method and the

four VIs. The obtained p-values are based on the comparison between plants from the WW group and the

SD-RW1 group.

Early vegetative stage Later vegetative stage

Day Proposed PRI PSRI RENDVI NDVI Day Proposed PRI PSRI RENDVI NDVI

method method

1 0.7372 0.2236 0.4022 0.7630 0.3992 27 0.0005 0.3441 0.5796 0.6976 0.0645

2 0.9277 0.5799 0.5979 0.8586 0.3863 28 0.1679 0.8147 0.2396 0.3780 0.0023

3 0.2696 0.8332 0.3635 0.9205 0.9096 29 0.0625 0.0918 0.4345 0.9798 0.0080

4 0.8635 0.4295 0.8261 0.9744 0.5388 30 0.0766 0.2084 0.3618 0.8588 0.0592

5 0.5378 0.5926 0.4745 0.9652 0.3278 31 0.1401 0.3700 0.3038 0.5027 0.1399

6 0.4600 0.5100 0.3235 0.8707 0.3206 34 0.1100 0.0652 0.4076 0.6012 0.2394

7 0.2191 0.7718 0.2154 0.9692 0.0367 35 0.2523 0.9366 0.3583 0.2406 0.1635

9 0.1683 0.2129 0.6387 0.0416 0.0737 36 0.1718 0.4621 0.3819 0.4515 0.1000

10 0.2091 0.9063 0.6815 0.1186 0.2872 37 0.0486 0.5161 0.0197 0.2593 0.0392

11 0.0366 0.8479 0.0611 0.4353 0.8184 38 0.3959 0.3895 0.6715 0.2187 0.0117

12 0.0216 0.0392 0.9530 0.0776 0.8894 39 0.6940 0.7205 0.1211 0.9861 0.5397

13 0.0000 0.0619 0.1098 0.0228 0.4294 40 0.0968 0.6887 0.4539 0.3899 0.6709

14 0.0000 0.0510 0.0314 0.0211 0.0505 41 0.0161 0.0706 0.9326 0.2079 0.8077

15 0.0000 0.0937 0.1318 0.0056 0.0092 42 0.0378 0.8634 0.9499 0.1208 0.4192

16 0.0000 0.3341 0.0569 0.0034 0.0025 43 0.0466 0.7792 0.4542 0.4301 0.7397

17 0.0000 0.0112 0.0127 0.0006 0.0042 44 0.0236 0.0442 0.5086 0.4659 0.7123

18 0.0000 0.0667 0.0073 0.0005 0.3626 45 0.0452 0.4044 0.8618 0.2917 0.9515

19 0.0000 0.0252 0.0013 0.0015 0.7318 46 0.0076 0.4155 0.3545 0.2486 0.8008

20 0.0000 0.1660 0.0891 0.0015 0.9838 47 0.0258 0.4004 0.3391 0.4173 0.5864

21 0.0001 0.1221 0.0490 0.0028 0.7882 48 0.0560 0.8625 0.2016 0.6139 0.3713

22 0.0001 0.0889 0.1008 0.0130 0.5704 49 0.0101 0.8138 0.5188 0.3303 0.3720

23 0.0001 0.9523 0.0315 0.1362 0.1930 50 0.0214 0.0148 0.2856 0.8201 0.2923

24 0.0000 0.1845 0.0538 0.1999 0.2497 51 0.0383 0.5005 0.9895 0.9784 0.3237

25 0.0005 0.5216 0.1688 0.1383 0.1961 52 0.1411 0.7394 0.9408 0.6797 0.2370

26 0.0001 0.0725 0.9700 0.2241 0.2348 53 0.0730 0.2188 0.1773 0.3711 0.0913
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significant correlation between PRI and water content was found, while in Kim et al. (2011)301

it was shown that RENDVI and NDVI are two indices that are highly correlated with plant302

water stress. In addition to these indices, Behmann et al. (2014) reported PSRI as a relevant303

indicator for detecting plant stress.304

To test the relevance of the proposed spectral analysis method, a comparison with the305

aforementioned VIs on the drought stress experiments was performed. To calculate the VIs,306

no SNV normalisation was applied, because VI’s need to be obtained directly from reflectance307

spectra, and because VI’s take scaling effects automatically into account. However, the308

same clustering treatment as in the proposed method was applied to account for nonlinear309

illumination effects.310

Figure 8 shows the plots of PRI, PSRI, RENDVI, and NDVI of the PD-RW1 versus the311

control group. In general, deviations from the control seem to appear at the same time312

intervals as in the proposed method (between day 10 an day 30 and from day 40 on), but313

less clear. To quantify this, a statistical significance test was conducted using analysis of314

variance (ANOVA). Table 3 presents the p-values obtained from the ANOVA test at 0.05315

significance level for the proposed method and the four VIs.316

Among the four VIs tested, RENVI was the best index for the detection of the wa-317

ter stress. Nevertheless, when compared to the proposed method the result was far less318

significant. None of the VIs was able to significantly determine the recovery at the later319

development stage. Clearly, the limited amount of spectral information provided by the VIs320

was not sufficient for a proper analysis of the drought stress and recovery after re-watering.321

The proposed method is capable of revealing these subtle differences by making optimal use322

of the most discriminative spectra from the entire wavelength range.323

In the proposed method, the discrimination between control and drought-stressed plants324

was achieved solely by determining differences in plant spectra. Such spectral character-325

ization is referred to as non-targeted, since it reveals no direct link between the spectral326

reflectance and specific phenotypic traits. For a possible biological interpretation, the in-327

formation from the band selection strategy may provide useful indicators to correlate the328

spectral variations to specific plant traits. In Figure 9, the F -score from the band selection329
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procedure is shown. The curve follows a systematic shape with several peaks of top-scoring330

bands with high discriminative power, occurring in the 600-700 nm, 700-780 nm and 800-850331

nm spectral regions. The position of these peaks are quite relevant when compared with the332

wavelengths used in the calculation RENDVI and NDVI, the best two indices proposed in333

a study of plant responses to drought by Kim et al. (2011). This specific pattern may be334

linked to the changes in the biological properties of the plant during the stress and recovery335

period, such as the leaf biochemical composition, the morphology of the leaf surface and336

the internal cell structure (Linke et al., 2008). Changes in reflectance in the visible and the337

red-edge regions are mainly related to the modification of photosynthetic pigments, while in338

the NIR, the reflectance is influenced by light scattering of the internal properties of the cell339

structure that is related to leaf thickness and plant dry matter(Peñuelas and Filella, 1998).340

Another remark is that, the proposed method avoid the wavelength region in the ex-341

342 tremities of the global range of spectral bands because of noise. However, previous literature 

343      (Peñuelas et al., 1993; Serrano et al., 2000) suggested that spectral beyond 850 nm are also 

344 useful for a direct assessment of plant stress. To test whether the information from this spec-

345 tral region can improve our earlier results, we reapplied our methodology by considering the 

346 spectral range up to 1,000 nm. Figure 10 shows the F -value calculated for this wavelength 

347 range. Compared to Figure 9 the systematic pattern remained similar, indicating that the 

348 locations of the important information did not change. From our analysis of F -score curve, 

349 the value of F-score decrease after the 850 nm region. It can also be observed that a slight 

350 peak occurs around 900-950 nm water absorption region, however such peak is still less 

351 dominant as compared to the spectral variation at 600-700 nm, 700-800 nm and 800-850. 

352 In order to include information from bands beyond 850 nm, the threshold for F -value need 

353 to be reduced, and this we expect that it may not increase the discrimination results. A 

354 possible explanation is that the biological changes beyond the 850 nm wavelength region 

355 could be very subtle, and because the extreme level of signal noise in this region it overlays 

356 the important signature correlated to with plant traits.
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Figure 10: The F -value obtained from the band selection procedure. The threshold was set to 70% of the

maximum F value.

4. Conclusions and future perceptive357

In this study, it was demonstrated that HSI is a promising rapid and nondestructive358

technique for the detection of drought stress responses of individual plants over time. The359

proposed method is able to reveal drought stress and recovery from drought stress from360

spectral reflectance by a data-driven method that combines clustering, band selection, and361

a spectral similarity measure. In the experiments, the analysis method was validated in a362

HTPP in a study of maize plants udergoing different types of drought stress during their363

entire vegetative development. Experimental results showed that the method clearly dis-364

criminated plants under water-deficit stress from healthy plants at an early stage of stress365

development. The method also clearly revealed the recovery of plants after a re-watering366

period. This demonstrates the usefulness of HSI as a novel technology for high-throughput367

phenotyping studies that can boost the understanding of the genetics of drought tolerance368

in breeding research. It is also to be noticed that the presented method is general and not369

limited to drought stress, and whenever there is an interest for monitoring plant process370

dynamics at the plant scale, it can be applied to different types of systemic stress.371
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Further research and practical optimization are however required to fully realize its po-372

373      tential for the phenotypic exploration of novel traits based upon prevailing spectra in groups    

374      of genotypes, or differences in spectra between genotypes. The compensation of illumination    

375      effects can be further improved by adopting more descriptive illumination models such as a      

376      dichromatic reflection model (Uto and Kosugi, 2013) or digital surface models (Friman et al.,    

377      2011). To attain a more accurate estimation of geometry-related parameters, the integration    

378      of the 3D scene (Behmann et al., 2016) and the use of machine-learning algorithms can be      

379     considered. An interesting approach to render the 3D plant model can be explored using            

380      multiple viewpoints with a full frame snapshot hyperspectral camera system that captures      

381      all bands simultaneously (Aasen et al., 2015). With the release of high resolution snapshot        

382     hyperspectral cameras such as the Specim IQ sensor (Behmann et al., 2018), the genera-             

383     tion of highly accurate 3D plant models becomes possible and interesting to be explored.           

384     Another benefit of such 3D plant models is that for the data fusion capability, where the            

385 physiological traits extracted from the spectral information can be fused with morphological     

386 traits extracted from the 3D plant structural information. This would be the interesting   

387 research direction for our future works.
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Behmann, J., Steinrücken, J., Plümer, L., 2014. Detection of early plant stress responses in hyperspectral410

images. ISPRS Journal of Photogrammetry and Remote Sensing 93, 98–111.411

Chang, C.-C., Lin, C.-J., 2011. LIBSVM: A library for support vector machines. ACM412

Transactions on Intelligent Systems and Technology 2, 27:1–27:27, Software available at413

http://www.csie.ntu.edu.tw/ cjlin/libsvm.414

Friman, O., Tolt, G., Ahlberg, J., 2011. Illumination and shadow compensation of hyperspectral images415

using a digital surface model and non-linear least squares estimation. Proceedings of SPIE 8180: In416

Image and Signal Processing for Remote Sensing XVII, Online: 10.1117/12.898084.417

Gago, J., Douthe, C., Coopman, R., Gallego, P., Ribas-Carbo, M., Flexas, J., Escalona, J., Medrano, H.,418

2015. UAVs challenge to assess water stress for sustainable agriculture. Agricultural Water Management419

153, 9–19.420

Garcia, D., 2010. Robust smoothing of gridded data in one and higher dimensions with missing values.421

Computational statistics & data analysis 54 (4), 1167–1178.422

Ge, Y., Bai, G., Stoerger, V., Schnable, J. C., 2016. Temporal dynamics of maize plant growth, water use,423

and leaf water content using automated high throughput rgb and hyperspectral imaging. Computers and424

Electronics in Agriculture 127, 625–632.425

Grünauer, A., Vincze, M., 2015. Using dimension reduction to improve the classification of high-dimensional426

data. In: 39th Annual Workshop of the Austrian Association for Pattern Recognition (OAGM 2015),427

arXiv:1505.01065v1.428
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Peñuelas, J., Filella, I., Biel, C., Serrano, L., Save, R., 1993. The reflectance at the 950–970 nm region as458

an indicator of plant water status. International journal of remote sensing 14 (10), 1887–1905.459

Rapaport, T., Hochberg, U., Shoshany, M., Karnieli, A., Rachmilevitch, S., 2015. Combining leaf physiology,460

hyperspectral imaging and partial least squares-regression (pls-r) for grapevine water status assessment.461

ISPRS Journal of Photogrammetry and Remote Sensing 109, 88–97.462
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and classification of plant diseases with support vector machines based on hyperspectral reflectance.467

Computers and Electronics in Agriculture 74 (1), 91–99.468

Sarstedt, M., Mooi, E., 2014. Cluster analysis. In: A concise guide to market research. Springer, pp. 273–324.469

Serrano, L., Ustin, S. L., Roberts, D. A., Gamon, J. A., Penuelas, J., 2000. Deriving water content of470

chaparral vegetation from aviris data. Remote Sensing of Environment 74 (3), 570–581.471

Sun, C., Gao, X., Chen, X., Fu, J., Zhang, Y., 2016. Metabolic and growth responses of maize to successive472

drought and re-watering cycles. Agricultural Water Management 172, 62–73.473

Sun, C., Li, C., Zhang, C., Hao, L., Song, M., Liu, W., Zhang, Y., 2018a. Reflectance and biochemical474

responses of maize plants to drought and re-watering cycles. Annals of Applied Biology 172 (3), 332–345.475

Sun, J., Shi, S., Yang, J., Du, L., Gong, W., Chen, B., Song, S., 2018b. Analyzing the performance of476

prospect model inversion based on different spectral information for leaf biochemical properties retrieval.477

ISPRS Journal of Photogrammetry and Remote Sensing 135, 74–83.478

Sun, P., Wahbi, S., Tsonev, T., Haworth, M., Liu, S., Centritto, M., 2014. On the use of leaf spectral indices479

to assess water status and photosynthetic limitations in olea europaea l. during water-stress and recovery.480

PloS One 9 (8), e105165.481

Tang, T., Chen, S., Zhao, M., Huang, W., Luo, J., 2018. Very large-scale data classification based on k-means482

clustering and multi-kernel SVM. Soft Computing, Online at: https://doi.org/10.1007/s00500–018–3041–483

0.484

Uto, K., Kosugi, Y., 2013. Leaf parameter estimation based on leaf scale hyperspectral imagery. IEEE485

Journal of Selected Topics in Applied Earth Observations and Remote Sensing 6 (2), 699–707.486
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